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Abstract

In this paper, we generalize Witten’s non-abelian bosonization in (1 + 1)-D to two and three spatial
dimensions. Our theory applies to fermions with relativistic dispersion. The bosonized theories are non-
linear sigma models with level-1 Wess-Zumino-Witten terms. We apply the bosonization results to the
SU (2) gauge theory of the m-flux phase, critical spin liquids in 1,2,3 spatial dimensions, and twisted bilayer
graphene.
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0. Introduction

Bosonization in (1 + 1)-D has been a very useful theoretical tool. It allows one to map a
theory, where the Lagrangian is expressed in terms of fermionic variables, to one expressed
with bosonic variables. Often, things that can be seen easily in one picture are difficult to see
in the other. The best-known bosonization is the abelian bosonization [1-4], where fermions
are solitons in the Bose field. A shortcoming of the abelian bosonization, when fermions have
flavor (e.g., spin) degrees of freedom, is that the flavor symmetries are hidden. This problem was
solved by Witten’s non-abelian bosonization [5]. In this paper we generalize Witten’s non-abelian
bosonization to (2 4+ 1) and (3 + 1) space-time dimensions.

The limitation of our theory is that it only applies to fermions with relativistic dispersion.
(However, we do not restrict the Fermi velocity to be the speed of light.) In the absence of a mass
gap, such theories have Dirac-like dispersion relation. In one space dimension, massless fermions
are generically relativistic at low energies. In two and three space dimensions, relativistic mass-
less fermions have been discovered in many experimental condensed matter systems. Examples
include graphene and twisted bilayer graphene, Dirac and Weyl semi-metal,...etc. Moreover, rel-
ativistic massless fermions can appear in the mean-field theory of strongly correlated systems.
Such theory serves as the starting point of a more rigorous treatment. For example, the “spinon
m-flux phase” mean-field theory sets the stage for a gauge theory description of the Mott insulat-
ing state of the half-filled Hubbard model.

Another important area where relativistic massless fermions appear is at the boundary of
topological insulators or superconductors, which are simple examples of symmetry-protected
topological (SPT) phases. The classification of topological insulator/superconductor [6,7] can be
viewed as asking how many copies of the massless fermion theories on the boundary are required
to couple together before a symmetry-allowed mass term emerges.

The paper contains two major parts: I. bosonization and II. applications. Each of them contains
several sections, namely, 14 sections in Part I and 3 sections in Part II. In each section of Part
I, we discuss an important step or input of the bosonization. We shall illustrate the relevant
concepts with examples in the lowest spatial dimension where it first appears. For higher spatial
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dimensions, we simply present the result while leaving the details to the appendices. Together,
the 14 sections in Part I provide the readers with the idea and technical details of the bosonization.
In Part II there are 3 sections, each gives an example of how this bosonization can be applied.
The topics include the SU (2) gauge theory of the -flux phase of half-filled Hubbard model, the
critical spin liquid of “bipartite-Mott insulators” in spatial dimensions 1, 2, 3, and the twisted
bilayer graphene. Finally, the 11 appendices provide the details omitted in the main text.

Part I. Bosonization
1. The idea

A massless free fermion theory contains two types of gapless excitations. The first is single-
particle-like, corresponding to adding or removing a particle. The second type is the collective
excitations (e.g., particle-hole excitations). Such excitations are bosonic in nature. In this paper
by “bosonization”, we mean finding bosonic nonlinear sigma models to describe these collective
excitations. Depending on whether the electric charge is required to be conserved or not, such
collective excitations can correspond to the boundary modes of topological insulators or super-
conductors. This motivates us to separate the fermion theories into “complex” and “real” classes.
In the complex class, the collective modes are the particles-hole excitations with a fixed total
electric charge. On the other hand, in the real class, the collective excitation can include, e.g.,
particle-particle excitations which do not conserve the electric charge.

As mentioned in the introduction, our theory applies only to relativistic fermions. In the rest
of the paper, unless otherwise stated, “massless fermion” always refers to massless relativistic
fermion. Here we stress again that “relativistic massless fermion” does not imply the Fermi ve-
locity is the speed of light. As mentioned in the introduction, in several (2 + 1) and (3 + 1)
dimensional condensed matter systems, relativistic massless fermions have been encountered.
Another limitation of our theory is that we have not been able to write down bosonic expressions
for the fermion creation/annihilation operators. However, this does not prevent us from bosoniz-
ing the Hamiltonian because the latter always involves the fermion bilinear. Nonetheless, this
does prevent us from calculating the fermion single-particle Greens function. For this reason,
our theory is less powerful than the abelian bosonization in 1+1D.

Our work benefits from looking at the massless fermion theories from two points of view.
(1) As d (spatial) dimensional theories with emergent, but anomalous, symmetries. (2) As the
boundary theories of d + 1 dimensional topological insulators/superconductors, where the emer-
gent symmetries serve as the protection symmetries.

The bosonization proceeds by introducing mass terms (or order parameters) whose fluctuation
represents the particle-hole excitations of the fermion theories. These order parameters break
the emergent (protection) symmetries. However, by fluctuating them smoothly (in both space
and time) the broken symmetries can be restored. Since the order parameter fluctuations are
smooth, we expect the fermion gap to remain intact. Under such conditions, we can integrate
out the fermions to yield bosonic non-linear sigma models governing the dynamics of the order
parameters. It turns out that in all cases the resulting non-linear sigma model has the level-1
Wess-Zumino-Witten (WZW) topological terms. Such term encodes the symmetry anomalies,'
and also causes the solitons of the non-linear sigma model to have fermion statistics.

' The anomalies divide into two classes: the continuous symmetry anomalies and the discrete symmetry anomalies.
For continuous symmetry anomalies there is an obstruction in gauging, i.e., once gauge field is introduced, the partition
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From the perspective of the boundary of topological insulators/superconductors, after the sym-
metry is restored the non-linear sigma models are either gapless or possess topological order. We
conjecture that the mechanism of symmetry restoration is the proliferation of fermionic solitons.
Because of such proliferation, the non-linear sigma models are gapless and equivalent to the
massless fermion theories. This conjecture is supported by the fact that the fermion and boson
theories have (1) the same symmetries, (2) the same anomalies, and (3) the boson theories have
fermionic solitons. However, we have not proven that (1)-(3) are sufficient conditions for the
conjecture to hold true.”

As to the question of why do we bother to bosonize? One reason is it allows us to determine
the low energy physics of a non-trivial bosonized theory by solving the theory of free massless
fermions, and often what is subtle in one picture can become clearer in the other. Of course, we
will not stop at the massless free fermion theories, the goal of bosonization is to enable one to go
further. This will become clear in the applications.

2. Emergent symmetries of the massless fermion theory

A necessary condition for two theories to be equivalent is that they have the same symmetry.
Thus it is important to determine the symmetry of massless fermion theories. It turns out the
symmetries of such theories are rather rich. Because the massless fermion theories are low energy
effective theories, we shall refer to their symmetries as the emergent symmetries.

In the following, we shall consider massless n-flavor fermion theories in spatial dimensions
1, 2, and 3. As mentioned at the beginning of section 1, we separate the theories into complex
and real classes depending on whether the collective excitations conserve the electric charge. In
particular, for the complex class, we shall focus on the Q (electric charge) equals to zero sector
of the collective excitations. Such sector is often referred to as the “charge neutral point” in the
condensed matter physics. For obvious reason, it’s convenient to use the Dirac/Majorana fermion
for the complex/real class.

A clarification is in order here. By complexification one can attain an n-flavor complex
fermion theory from a 2n-flavor Majorana fermion theory. The reason we divide the fermion
theories into complex and real classes is the strict constraint we impose on the complex class,
which requires every state in the Hilbert space of the particle-hole excitation being the eigenstate
of the total electric charge. The reader can view this as the definition of the two classes. Because
of the difference in the Hilbert space dimensions, the nonlinear sigma models in the complex and
real classes are not equivalent even at the low energies.

2.1. Complex class

Now, as an example, let’s determine the emergent symmetry group of a one dimensional
massless fermion theory. To this end let’s first consider a complex class, n-flavor, massless Dirac
fermion theory described by the following action

Soz/.dxodxle(ao—iFlal)w where 1)

function fails to be gauge invariant. This is referred to as the 't Hooft anomaly. As to discrete symmetry anomalies, the
one relevant to this paper is the time-reversal (or parity) anomaly. Section 4.3 is devoted to the discussion.

2 Putting it differently, our conjecture amounts to asserting that under smooth order parameter fluctuations, the non-
linear sigma model with WZW term does not give rise to topological order.
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T =ZI,

Here I, denotes n x n identity matrix. In the following we shall use the shorthand
1,X,Y, Z, E to denote the Pauli matrix o¢ x,y,;, {0y, and when two matrix symbols stand next to
each other, e.g., Z1,, it means tensor product Z ® I,,. For complex fermion field i, the possible
unitary transformations include

v—->U-¢
v—c-hH'
where U and C are unitary matrices. Note that as a discrete transformation (the second line of
the above equations), the charge conjugation transformation does leave the Q = 0 eigenspace
invariant.’
One can easily show that the full emergent symmetries of the action in Eq. (1) are
Chiral U (n) symmetry:
Un): xUm)— ¢ — (PJr Qg+ + P ®g,)1/f where g+ € U(n)
Charge conjugation symmetry:
C:y—ZL) W)

Time reversal symmetry (anti-unitary):

T:Yy—> XLy 2

Here
p '_I:I:Z 3
A 3)

are the projection operators with the subscript + denoting the “right/left” moving fermions, re-
spectively. Note that any other anti-unitary symmetry can be written in terms of the composition
of a unitary symmetry and the time reversal transformation above.

2.2. Real class

Next, we consider the one-dimensional massless theory in the real class. In this case, we write
the action in terms of the n-component Majorana fermion field

Sozfdxodxlxr[ao—iFlal]x where )
Ty :=ZI,

For Majorana fermion field, the possible unitary transformations are of the form
x—>0-x

where O is an orthogonal matrix. The full emergent symmetries of the action in Eq. (4) are

3 However, we do not allow the charge conjugation operator to generate continuous transformations, since under such
transformations v will go into the superposition of 1 and ¥, This violates the requirement that the Hilbert space is the
eigenspace of the charge operator. This requirement distinguishes the complex class from the real class (introduced in
the next subsection), and will affect the mass manifolds in section 3.
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Table 1

A summary of the emergent symmetries of massless fermions in (1 4 1)-D, (2 + 1)-D, and (3 4 1)-D. Here P+ :=
(I £2)/2asinEq. 3).

(1+1)-D Real class Complex class

I; Z® Iy ZQ Iy
T=X®I, gi;g;n

Emergent symmetries Or(n)xO0—-(n): P ®g++P-_Q@g— D "

Uty xU_(n): P+ Qg+ +P-Qg—

where g+ € O+-(n) and g— € O—(n) where g4 € Uy (n) and g— € U_(n)

2+ 1)-D Real class Complex class
I; ZRIy, XQ®1Iy ZRIy, XQ1Iy
T=EQ®I, T=rol
Emergent symmetries Omn):1® C=1al
gent sy : 8 Un):1®g

where g € O(n) where g € U(n)

B+ 1)-D Real class Complex class

I; ZIQL, XIQI,,YYQ®I, ZIQL, XIQRIL,,YZR I,
T=EZQ®]I, gffig’f’

Emergent symmetries Un):11®g1 —IE® g D "

Urm)xU_(n): 1P ®@g++I1P_Q@g—

where u = gy +ig; € U(n) where g4 € Uy (n) and g— € U_(n)

Chiral O (n) symmetry:
04 x O()_: x — (P+ Qg+ P ®g_)x where g4 € O(n)
Time reversal symmetry (anti-unitary):

T:x = (X@L)x. ©)

In D =d + 1 space-time dimension, the massless fermion actions are

d
Complex class: S()Z/‘dD)CI/I# BO—iZFiBi ¥
i=1

d
Real class: S():/dexT ao—izriai X (©6)
i=1

where ¥ and x are complex and Majorana fermion fields, respectively. In Table 1 we summa-
rize the emergent symmetries of massless fermion theories in 1,2 and 3 dimensions. See the
detailed derivation in appendix A. Here the discrete symmetries, such as charge conjugation or
time-reversal, should be viewed as the generators of more general charge conjugation and time-
reversal transformations. For example, compounding the time-reversal transformation with an
arbitrary unitary symmetry yields another anti-unitary symmetry. The reason for the particular
choice of the discrete symmetry generators in Table 1 will be discussed in subsection C.1 of
appendix C.



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565

3. Mass terms and mass manifolds

Mass terms, or order parameters, are fermion bilinears, namely,
Y My, or
T
X My, (N

which opens an energy gap when added to Eq. (6). To achieve that, the hermitian mass matrix M
must anti-commute with all the gamma matrices, i.e.,

{M,T;}=0fori=1,..,d ®)
We will further require that the gap is flavor independent by imposing
M*=m?-1 )

Here 1 means the identity matrix of appropriate size. The mass matrices satisfying Eq. (8)
and Eq. (9) form a topological space — the mass manifold. In the simplest case, it can be a k-
dimensional sphere. In general, it is a closed k-dimensional manifold. If, in addition to Eq. (8),
the mass terms are required to be invariant under certain unitary or anti-unitary transformations,
the mass manifold will be affected. In the classification of the free fermion SPTs, it is important
to know what is the homotopy group of the mass manifold [6].

In the following we give two examples in one spatial dimension, to let the readers get a feeling
of what’s involved in figuring out the mass manifold.

3.1. Complex class

Let the U(1) symmetry transforms the field according to
v — eigl/f.
Then all mass terms in the form
vimMCy,

are invariant under U(1). Here the superscript C is to remind us that this is a mass matrix in the
complex fermion class. MC is a 2n x 2n (2n is the number of component of /) satisfying

M€ = (M‘C)T
(MC,11=0
(M‘C)2 —m2h,

Here I, is the 2n x 2n identity matrix. Associated with the massless fermion action given in
Eq. (1), the first two conditions require M € to be of the form

MC=m(X®@H +Y® H) (10)
where H; and H, are n x n hermitian matrices. If we define
Q% :=H| +iH, (1)

it can be easily shown that the third condition requires
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0°- () =1.

Therefore the mass manifold for one dimension, in complex class, is the topological space formed
by n x n unitary matrices.

3.2. Real class

In this case, the mass term is the Majorana fermion bilinear

x" MRy

where the matrix MR is an anti-symmetric matrix satisfying
MR = (MR)T
(M. Ti) =0
(M]R)2 = m2D,

The first two conditions require
MR =m (Y ®S+X®(iA)

where S and A are real symmetric and anti-symmetric matrix, respectively. If we define
OR =5+ 4

the last condition requires

T
0% (0%) =1,
Thus, the mass manifold is the space of n x n orthogonal matrices.

In Table 2 we summarize the mass manifolds for 1,2 and 3 dimensions. The detailed deriva-
tions are left in appendix B.

4. The symmetry anomalies of the fermionic theories

Emergent symmetries of a low-energy effective theory can be broken when a cutoff is im-
posed. In this section, we review the symmetry anomalies of the massless fermion theories.

4.1. The continuous symmetry anomaly — the 't Hooft anomaly

The emergent symmetries discussed in the section 2 can suffer the “’t Hooft anomaly”. A
theory is said to have the 't Hooft anomaly with respect to global symmetry group G if there are
obstructions against gauging G [8]. In the following we shall use the (1 + 1)-D complex class to
illustrate the ideas.

The simplest example is the chiral anomaly associated with the (1 + 1)-D complex class
theory defined in Eq. (6). This theory has emergent global U, (n) x U_(n) symmetry. However,
when one tries to gauge this symmetry, an anomaly is encountered. Namely, in the presence of
gauge field with non-zero curvature, the theory can not be made to conserve the Noether’s current
associated with the full U, (n) x U—_(n) symmetry.

10
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;ial:lllemzmary of the mass manifolds for the real and complex class fermions in (1 4 1)-D, (2 4 1)-D, and

3+ 1)-D.

(1+1)-D Real class Complex class

I; ZQ Iy ZQ I

Mass manifold M=Y ®RS TX®64) M=x %CHI T ®.H2
where 0 =S+ A€ 0®@n) where O~ = Hy +iHy € U(n)

2+1)-D Real class Complex class

I ZQIn, XQ I ZQIy, XQ Iy

Mass manifold M= ®RS n 0(n) M=r ®CH n U(n)
where O™ =S e | oOX0m=D where O™~ = H € | TOXUG=D

B+ 1)-D Real class Complex class

I ZIQL,, XIQI;,YY®Iy ZIQL,XIQI,,YZ® I,
M=YXQS51+YZ®S$ M=YXQH +YYQ®H)

Mass ifold
ass mantto where QR =851+iS € % where QC =H| +iHyeU(n)

Starting from the massless fermion theory, we can introduce the Uy (n) x U_(n) gauge field
(i.e., “gauging” U4 (n) x U_(n)) via minimal coupling. Moreover, we can define the effective
gauge action after integrating out fermions,

W[A4,A_]=—1In [/ Dy DI/_fe_S[W/_”A*’A]] , where

Sy, ¥, Ay, A_] = /d2x v [iv" (0 +iPy ® Ay +iP-®A_ )] . (12)

Here Ay are the n x n matrix value gauge fields associated with Ui (n), and Py are the
projection operators selecting the chiral fermion modes defined in Eq. (3). Adler [9], Bell, and
Jackiw [10] first showed that in the presence of a diagonal (i.e., Ay = A_) U(1) gauge field, the
axial current is not conserved. Shortly after, this was generalized by Bardeen [11] who showed
that under infinitesimal gauge transformation, W in Eq. (12) is not gauge invariant, namely,

SW:=W[Ay +dey, A_+de_]— W[A4, A_]

i
- / w[Apdes — A de_]. (13)
M

This is the 't Hooft anomaly.

This phenomenon is also connected to the physics of SPT. In odd space dimension, this con-
nection constitutes the so-called “anomaly inflow picture” [12]. In fact, each of the emergent
symmetry groups in Table 1 protects a D + 1 dimensional Z-classified free fermion SPT. The
D-dimensional massless free fermion theories in Eq. (6) describe the boundary of the generator
of the SPT, i.e. the 1 € Z. We shall discuss this point further in appendix I.

The most familiar anomaly inflow example is for » = 1 in 1D. In this case, we can view the
1D (non-chiral) massless fermions as the edge modes of two Chern insulators stacked together,
with each Chern insulator having Hall conductivity oy, = %1 (see Fig. 1). In the presence of a
time-dependent flux associated with the diagonal gauge field, there will be the electric fields in
the azimuthal direction. This induces a Hall current causing the charge to flow from the outer to

11
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Diagonal U(1)-flux (1)

Fig. 1. Two layers of annulus shape Chern insulators with oy = £1 stacked together. The outer edge harbors the 1D
n = 1 non-chiral massless fermion modes. The green and red arrows represent the opposite chiralities. When a time-
dependent diagonal U (1) flux pierces the inner hole, the induced electric field in the azimuthal direction causes a Hall
current (dashed arrows) flowing from inner to outer boundary in the top layer and from outer to inner boundary in the
bottom layer. As the result, the chiral current J4 — J_ is not conserved viewed from the outer edge alone. This system is
realized as the “spin Hall insulator” experimentally. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

the inner edge on one layer, and from the inner to the outer edge on the other layer. Viewing from
the edge (one-dimensional world), the chiral current J. — J_ is not conserved. This manifests
the chiral anomaly, namely gauging the diagonal U(1) symmetry breaks axial U(1) symmetry -
an example of the ’t Hooft anomaly.

Although the U, (n) x U—_(n) anomaly makes it impossible to gauge the whole group con-
sistently, it’s possible to gauge a subgroup of it. For example, if we only gauge the diagonal
subgroup U (n) within Uy (n) x U_(n), i.e., if

A=A, =A_
€:=€p=€_

then the two terms in Eq. (13) cancel out, hence the theory is anomaly free with respect to
diagonal U (n) subgroup.

4.2. A heuristic way to determine the 't Hooft anomaly

The discussions presented above require rather involved field theory calculations. However,
there is a heuristic way to get the correct answer. The basis of this heuristic argument is the
fact that if a theory can be defined on a lattice with all its (continuous) symmetry, then these
symmetries can be gauged without anomaly. When an anomaly does occur, the above statement
is reminiscent of the SPT physics, namely, the boundary modes of an SPT cannot be regularized
on a lattice in the dimension of the boundary. In the following we shall again use the (1 4+ 1)-D
complex class to illustrate the ideas.

Under Wilson’s regularization [13] (see later), whether a theory with global symmetry group
G can be defined on a lattice, is determined by whether there is a mass term that respects G.*
Thus, a theory with the U4 (n) x U_(n) anomaly, means no mass term is U4 (n) x U_(n) sym-
metric. Again, this is the condition that the gaplessness of the boundary modes is symmetry
protected.

4 Using Wilson’s regularization method [13], the existence of such a mass term is a sufficient condition for the theory
to be regularizable on a lattice. However, it is more involved to show that it is the necessary condition [14].

12
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First, we show that no mass term is allowed if U, (n) x U_(n) symmetry is to be respected.
Under U4 (n) x U_(n) the fermion field transform as
) ==/ 4

Y — (P ®gy+ P_®g_)y where Pi:T'

Under such transformation, there is, e.g., no mass term preserving the axial U4 (1) generated by
Z1,. This is because according to Table 2 the mass terms have the form

v (X @ H +Y ® Hy) .

In fact, the anomaly is not only in the axial U4 (1) part. To see that, let’s consider n > 1. The
diagonal U (n) symmetry requires that both H; and H, be proportional to the identity matrix.
However, such mass term would break U4 (n).

Now we show that if we relax the condition to only demanding the diagonal U (n) symmetry,
there is a mass term. For example,

Mg =X ® I,

This means that we can then write down a lattice model in momentum space using Wilson’s
regularization [13]

A= )" g/ [sink Ty + (1 — cosk) Mreg | ¥
keBZ

where “BZ” stands for the Brillouin zone. We can Fourier transform the above hamiltonian back
to the real space which gives us a lattice tight-binding model. The diagonal U (n) gauge field can
then be introduced via Peierls’ substitution

Vv — %TeiA”fWi

for two adjacent sites i, j. Here A; ; is the gauge connection from site i to j.
4.3. Discrete symmetry anomaly

A (global) discrete symmetry in a fermion theory can also be broken by regularization. In this
subsection, we shall review the simplest example — the “parity anomaly” [15,16] of the (24 1)-D
Dirac fermions in the complex class.

When the anomaly-free U (n) symmetry is gauged, the low energy fermion action is given by

S=/drd2x1/ﬁ[(ao+i1®Ao)—iri(ai+i1®Ai)]1/f (14)

where 'y =Z1,, Th=XI,

Here A, is the n x n matrix-valued U (n) gauge field. Under the global emergent symmetries
listed in Table 1, the gauged field transforms as

Un): Ay —g-Au-g'

Time reversal: A, — — (4,)"

Charge conjugation: A, — — (A,L)T (15)
It’s easy to check that the low energy action Eq. (14) is invariant under the combined transfor-

mation of the fermion and the gauge field.

13
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As we saw in the preceding subsection, the condition for a symmetry to be anomaly-free is the
theory can be regularized while preserving the symmetry. In the present case, to preserve U (n)
we need to choose a regularization that is U (n) invariant. In Wilson’s regularization [13] this
amounts to choose a U (n) invariant regularization mass. The most general mass term is given by

M=mY ®H,

where H is an n x n hermitian matrix with H> = I,,. When acted upon by the global U (n),
M—>Ixg) - M-(Ixg)

(see Table 1). Requiring it to be invariant forces us to choose
Mg =mY ® I,. (16)

Under Wilson’s regularization the momentum space Hamiltonian of the massless Dirac fermion
(without gauge field) read,

A= )" v [sinki T\ +sinkl + (2 — cosky — coska) Mreg | i (17)
keBZ

To incorporate the gauge field, we Fourier transform the above equation back to real space and
introduce the gauge field by Peierls’ substitution. This is all good as far as regularizing Eq. (14)
is concerned.

Under the action of the discrete symmetries, however

Charge conjugation: Myeg — — (I ® I,) - MrTeg (I ® Iy) = Myeg
Time reversal: Myeg — (Y ® 1) - Mr”;g (Y ® ) = —Myeg

Therefore charge conjugation is respected by the regularization, however, time-reversal symme-
try is not.

It was first shown by Redlich [15,16] that one can detect the time-reversal anomaly through
the effective U (n) gauge action after integrating out the fermions. We reproduce his argument in
the following. In momentum space (the Brillouin zone) we have four low energy Dirac fermions,
each around a time-reversal invariant k points:

k=(0,00+¢: Hoo~ Y Y 0.0)1¢ [91 T1 + a2 T2190,0)+4 (18)
small ¢
k=0 +q: Hgxo~ v —qiT1 + @2 T2 4 2m M,
T, q: Hao (.0)+q L= 1+ q2 T2 +2m Mieg [ Y1(7.0)+4
small ¢
k=0,m)4+q: Hon~ wl Ty — gD +2m Myeg | ¥
, T q: 0,7) (O,m)+g L9111 — G212 reg | V(0,m)+q
small ¢
k=@ n)+q: Hpn~ "l [-q1T1 — g2 T+ 4m Mreg | ¢
T, q: (,m) (7,7)+q qi1l1—4q212 m Myeg | V(r,m)+q
small g

Among the four, the first is massless and preserves the time-reversal symmetry. The remain-
ing three, however, acquire a large regularization mass, which is time-reversal breaking. In the
presence of the U (n) gauge field, these massive Dirac fermions would each contribute a Chern-
Simons effective gauge action after the fermions are integrated out [16]. In particular, for each
massive fermion the effective gauge action is

14
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1 .
= x (1) x L/AdA,

2 4

where the sign depends on the product of the signs in front of ¢1I"1, g2I"2, and Myeg. Combining
them, the massive fermions contribute the following breaking effective action

(—l—l+l>ﬂl/tr[AdA—i-gAﬂ——L/tr[AdA+gA3} (19)
2 2 2) |ml4x 37| 8n 377

This is time-reversal odd, as can be explicitly shown by replacing A;, — — (A u)* and complex
conjugating the action. As to the massless fermions near k = (0, 0), based on the fact that the
first line of Eq. (18) is time reversal invariant so should their effective gauge action. Thus after
regularization, the time-reversal symmetry of Eq. (14) is broken! As expected, charge conjuga-
tion is not broken by the regularization. Since T is broken while C is not, based on the CPT
invariance, the parity should also be broken.’

In Table 3, we summarize the maximal anomaly-free continuous symmetry and the dis-
crete symmetry that is broken after regularization. The only discrete symmetry which possesses
anomaly occurs in (2 4+ 1)-D for the time-reversal symmetry. More detailed discussions are left
to appendix C.

A disclaimer is in order, namely, in some cases the free fermion anomaly we discussed in this
section might become trivial when interactions are considered. A simple example is shown in
[17], and a more complete discussion on this subject can be found in Ref. [18]. We also note that
this section is entirely devoted to flavor-symmetry-based anomalies. Naturally, the method and
argument we used here might not be able to detect anomalies which are independent of the flavor
symmetry.

5. Breaking the emergent symmetry by the mass terms

The mass terms discussed in the last section necessarily break some of the emergent symme-
tries in Table 1. This is because so long as the full emergent symmetries remain unbroken, the
fermions will remain massless. In the rest of this section, we use one-dimensional examples to
illustrate this.

5 In two space dimension, the “parity” transformation P is realized by spatial reflection. Take the reflection in x-
direction as an example, the fermion field transforms according to

V(T x,y) D Xl pr(T, —x, y).

It is easy to see the that the regularization mass defined in Eq. (16) changes sign under P. However, the combined C PT
transformation leaves it invariant. Thus, there is no C PT anomaly. The same conclusion can be drawn by looking at the
parity transformation of the effective gauge action. Under P the gauge field transforms as

P

Ac(t,x,y) > A (T, —x,y)
P

Ax(t,x,y) = — Ax (T, —x,y)
P

Ay(t,x,y) > Ay(T,—x,y)

Again, Eq. (19) changes sign under P, but is invariant under C PT.
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Table 3

The summary of the global symmetry groups and the anomaly-free parts of the sym-
metry groups of the massless fermions (and the bosonized non-linear sigma models) in
(1+1)-D, 2+ 1)-D, and (3 + 1)-D.

(1+1)-D Real class Complex class

Discrete

Anti-unitary: T2 =+1
Unitary: Cc2=+1
Continuous unitary
Chiral U (n) x U(n)

Discrete

Anti-unitary: T2 =+1
Continuous unitary
Chiral O (n) x O(n)

Global Symmetry

Anomaly free part Diagonal O(n), T Diagonal U(n), T, C
2+ 1)-D Real class Complex class
X Discrete
Discrete

. 2 Anti-unitary: T2 =1
Global Symmetry Anti-unitary: 7 = —1 Unitary: C% = +1
Continuous unitary v -

Continuous unitary

O(n) U
Anomaly free part O(n) U(n), C
B+ 1)-D Real class Complex class
Discrete Diserete

Anti-unitary: T2=-1
Unitary: Cc2=+1
Continuous unitary
Chiral U (n) x U(n)

Global S o« Anti-unitary: T2=-1
obal Symme
Y Y Continuous unitary

U(n)

Anomaly free part o), T Diagonal U(n), T, C

5.1. Complex class

The mass terms for the complex class in (1 4+ 1)-D can be written as

. c\'
vIXOH +YQH)Y =y OC (Q) V.
0 0

When acted upon by the emergent symmetries in Eq. (2), Q(C transforms as
Up(m) x U-(n): 0€ — g7 - 0% - gy (20)
. . C c\*
Charge conjugation: Q~ — (Q )
: C c\’
Time reversal : 0™~ — (Q )

Thus a space-time constant Q<C breaks the emergent symmetry because both g4 and g_ can
be arbitrary unitary matrices.
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5.2. Real class

For the real class in (1 4+ 1)-D, the mass term can be written as

0 (o)
x"'[Y®s+X®<z‘A>]x=xT[ - (Q ) }x. 1)
ioR 0

When the emergent symmetries in Eq. (5) acts on it OR transforms as
04(n) x O_(n): Q% — g" . QR . ¢,
T
Time reversal : Q]R — (QR) .

Therefore a space-time non-zero OR breaks the emergent symmetry because both g4 and g_
can be arbitrary orthogonal matrices.

6. Restoring the emergent symmetries

So far we have seen that space-time constant Q(C or OR breaks the emergent symmetry.
But what if Q(C and Q]R fluctuates in space-time? As in statistical mechanics, when the order
parameters fluctuate, the broken symmetry can be restored. Likewise, if we fluctuate 0€ and
OR over the appropriate mass manifold we expect the emergent symmetry to be restored.

Our approach is conceptually similar to that in Ref. [19,20] where, on the surface of the
topological insulator, the fluctuating superconducting order parameters restore the symmetries of
the massless fermions. The important difference is that the required order parameter fluctuation
in Ref. [19,20] is not smooth, because it involves the proliferation of superconducting vortices.
Since the structure of vortex cores, e.g., the fermion zero modes, is important in that approach,
and such structure depends on the short-distance physics, this approach is constrained to the
surface of SPTs where regularization is not an issue. In contrast, our goal is to bosonize the low
energy effective theory, where the emergent symmetry is necessarily broken at short distances
(due to anomaly). As the result, we restrict our order parameter to be smooth in space and time,
so that they act on the low energy theory only.

But what does “appropriate mass manifold” mean? For complex class in (1 + 1)-D, 0C needs
to fluctuate over the space formed by n x n unitary matrices, or U (n). Such a space is connected
and has a single component. On the other hand for the real class in 1D, QR needs to fluctuate
in the space formed by n x n orthogonal matrices, or O(n). This space has two disconnected
components, corresponding to det[ QR = +1.1’s only when OR fluctuates in both components
with the equal statistical weight we can restore the emergent symmetry.

In (3 4+ 1)-D the mass manifold consists of a single component, in which 0CR fluctuate.

However, in (2 + 1)-D the mass manifold in complex class is U;’:()% which contains

n + 1 disconnected components. Here 0C needs to fluctuate in the component / = n/2 in order
to restore the time reversal symmetry.® In real class, the mass manifold in two space dimension
is U?:o%’ and QR needs to fluctuate in the / = n/2 component in order to restore the
time reversal symmetry. We summarize the results for higher dimensions in Table 4 and leave

the detail in appendix B.

6 Of course this requires n to be even.
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The summary of the symmetry transformations of QR*C, and the mass manifolds in which the QR*C fluctuations can

restore the full emergent symmetries.

(1+1)-D Real class Complex class
T
’ T: Q(C — (Q(C>
Symmetry transformations T: QR — (QR) C: Q<C — (QC>*

of 0GR

04 x O—(n): QR — g7 . R . g,

Ur(n) xU—(n):
0C g . 0C gy

The mass manifold required to
restore the full emergent symmetries

O(n)

U(n)

2+ 1)-D

Real class

Complex class

Symmetry transformations

T:QR—>—QR

om): oR — ¢T . oR .¢

T:Q(Cef(QCY
C:Q(C—>(QC)T
Um: Q€ — g7 0% 4

The mass manifold required to

restore the full emergent symmetries

O (n)
0/2)x O(n/2)
for n € even

U(n)
T2 xUm/2)
for n € even

B3+ 1)-D Real class Complex class

7:0C - ()’

X
Symmetry transformations T:0R (QR) c:0¢ > (Q(C)T
of gC-R R _, T R
Un): 0™ —u’ -0 -u Us(n) x U—(n):
0C > 0C gy

The mass manifold required to ggz)) U

restore the full emergent symmetries

7. The conditions for the effective theory being bosonic

In order to achieve bosonization, the fermions in Eq. (1) and Eq. (4) must not appear in
the low energy theory. To ensure that, we need to impose some conditions on the space-time
dependence of Q(C and QR. Namely, as functions of x and 7, Q(C (t,x) and Q]R (t,x) needs to
fluctuate smoothly (comparing with the length and time scale set by m). Under such conditions,
the original fermions can be integrated out, yielding a non-linear sigma model for the order
parameters. The idea is similar to that encountered in magnetism, where electrons form local
moments. After integrating out the electrons we arrive at an effective theory — a non-linear sigma
model describing the fluctuations of the local moments in space and time.

8. Fermion integration
In this section, using (1 + 1)-D as an example, we shall describe how to integrate out the
fermions. In higher spatial dimensions we shall present the results while leaving the details in

appendix D.
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8.1. Complex class

The fermion action with a space-time dependent mass term reads
S=[drdxy' [ao—irlal +m1\?1(r,x)]1p (22)
where and I'y = Z1,,, and
(C1, M, x)} =0, and M(z,x)> = b,. (23)
The M(r, x) that satisfies Eq. (23) is given by

M, x)=m[X ® Hi(1,x) + Y ® Ha(t, x)].

For smooth order parameter configurations M(t, x), the fermion integration can be done via
gradient expansion. (See [21] for example. We shall convert the action to a Lorentz invariant
form and present the general formalism applicable for all spatial dimensions in appendix D.)
The resulting effective action consists of two types of terms: the non-topological and topological
terms. For the non-topological term (the stiffness term) we shall keep the one with the smallest
number of space-time derivatives (they are the most relevant in the renormalization group sense).
The topological term is dimensionless. In (1 4 1)-D, explicit fermion integration yields (see
appendix D for details)

e e e B B (s
M B

where Q€ is given in Eq. (10) and Eq. (11). The first term in Eq. (24) is the stiffness term and
the second is the Wess-Zumino-Witten (WZW) topological term. Eq. (24) reproduces the level-1
U (n) (abbreviated as U (n)1) WZW model in Witten’s non-abelian bosonization [5]. Note that the
symbol “tr” means tracing over the n x n portion of the matrix. (In doing fermion integration,
we have already traced out the matrix part involving y*’s.) In Eq. (24) M is the space-time
manifold, and B is the extension of the space-time manifold M so that

oB =M.
In addition, QC (u, x) is an extension field of Q<c (x) so that
0%u=1,x)=0%x) and
OC (u =0, x) = constant

In the equation above, “constant” means a space-time independent matrix.

For simplicity we shall focus on the space-time manifold M = S so that B is a D + 1-
dimensional disk. The reason for this choice is to ensure the extension QC (u, x) exists. Because
we require a smooth evolution from Q(C (u=0,x) to QC (u =1, x) (x denotes (7, x)), it means
the mapping

Q(C : (u =1, x) > mass manifold
is homotopically equivalent to the mapping

Q(C : (u =0, x) —> mass manifold.
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Since QC (u = 0, x) = constant is homotopically trivial, a necessary condition for the smooth
extension to exist is

7 p(mass manifold) =0,

i.e., all smooth mappings from the space-time manifold to the mass manifold are homotopically
trivial. It turns out this condition is met for sufficiently large # in all spatial dimensions. We shall
return to this point in appendix B, D, and H. For (1 + 1)-D, 7 (U (n)) = 0 for any n.

For the WZW term to be well defined, it had better not depend on the extension. When there
are two different extensions on the D + 1 dimensional disk, say one defined by Q(lc on 31 and
the other by Qg on 35, the difference in the WZW term associated with these two extensions is
given by

sC,_ 2w 5Ct o, AC)
aWwai0€1=—205 [ o (6%1ag°)'] ©3)
BiU(=B>)

where — B3, is the mirror reflection of Bs. Since By U (—B,) = SP*+!, removing the factor 2771,
Eq. (25) is the topological invariant associated with o4 1(mass manifold). It turns out that for
all relevant cases, 7 p 1 (mass manifold) =Z (see appendix B). In (1 + 1)-D, 73(U (n)) = Z for
n > 2 (n =1 corresponds to flavorless or spinless fermion where the bosonization is abelian).
The coefficient of the WZW term renders AWwzw = 2mi X integer. The fact that the WZW
term is 27 times the topological invariant implies the level (k) is 1. After the exponentiation,
the phase factor associated with the WZW term is well-defined.

8.2. Real class
The 1+1-D Majorana fermion action with a space-time dependent mass read

S:fdtdxxT[ao—iF131+mM(T,x)]X (26)
where

M=ZLandM(t,x)=[Y ®S+ X ® (iA)].

Following the same steps discussed in the last subsection, fermion integration yields the fol-
lowing effective action (see appendix D)

j ~ o\ 3
W[OR] = % /dzx tr [8MQRT8“ QR] - % tr[ (QRTdQR> ] 27)
M B

Eq. (27) is the O(n)r=1 WZW model. Again, Q]R (u, x) is extension field of Q]R (x), which
exists if 77 p(mass manifold) = 0. In (1 4 1)-D, (0 (n)) = 0 for n > 3. Here the difference in
the WZW term associated with two different extensions is the topological invariant associated
with 3(0(n)) = Z for relevant n (see appendix B). The coefficient of the WZW term renders
AWwzw = 2mi x integer hence yields the same phase factor upon exponentiation. Again, the
fact that the WZW term is 2mi times the topological invariant implies the level (k) is 1.

Thus, for both complex and real classes, the bosonization of massless fermion is the non-
linear sigma model with WZW term. This reproduces Witten’s non-abelian bosonization results,
which was obtained using a totally different method (the current algebra).

20



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565

Table 5
The n values above which the 7 p | (mass manifold) is stabilized.
Real class complex class
(1 +1)-D O(n); WZW term U(n); WZW term
stabilized for n > 3 stabilized forn > 2
0(n) Un)
@2+1)D [oerrsdem ]1 WZW term [remSen L WZW term
stabilized forn > 6 stabilized for n > 4
G+ 1)-D [U(m)/O(n)]y WZW term U(n); WZW term
) stabilized forn > 5 stabilized for n > 3

The above bosonization scheme can be straightforwardly generalized to higher dimensions.
One thing that needs some care is the fact that the homotopy group of the mass manifold depends
on n. For n exceeds certain value 7 p1(mass manifold) = Z. In that case fermion integration
does lead to a nonlinear sigma model with k = 1 WZW term. However, for small n (before the
“homotopy stabilization”) sometimes, e.g., 7 p+1(mass manifold) = 0. We shall discuss one such
instance in appendix H. Fortunately, for the vast majority of applications 7 is sufficiently big so
that 7 p 1 (mass manifold) = Z.

9. Non-linear sigma models in (2 + 1)-D and (3 + 1)-D

As mentioned, the bosonization strategy described in the preceding section can be applied to
two and three spatial dimensions. To facilitate later discussions, including the applications in (24
1)-D and (34 1)-D, the explicit form of the nonlinear sigma models in Table 5 are given here. For
briefness, we shall only include the results for sufficiently large n so that 7 p 1 (mass manifold) =
Z. As discussed earlier, under such conditions the non-linear sigma model possesses a WZW
term.

9.1. Complex class in (2+ 1)-D

For Dirac fermions with n flavors in the complex class, after bosonization the sigma model
matrix field (or the order parameter) lives in the space of complex Grassmannian, namely,

U(n)

C
Q"W € G x U2

This means that at any space-time point x, OC (x) is an n x n hermitian matrix with half of the
eigenvalues +1, and the other half —1. One can specify 0Cx) by the unitary matrix, C(x),
which renders Q€ (x) diagonalized upon similarity transformation, i.e.,

0C () =Cx)- (”32 _2/) CT(x).

Obviously two different C (x)s related by

C'(x) = Clx) - (gl(()X) gﬁx)) ’
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where g1(x), g2(x) € U(n/2), will lead to identical Q(C (x). Due to this redundancy, the order
parameter lives in the quotient space m
Explicit fermion integration yields the following non-linear sigma model

Wie®1= 2 /d3xtr[(a“QC) ] 2?61;2/H[QC (dQC>4]’ (28)
M B

where A3 is a parameter having the dimension of length. In the limit where the short distance
cutoff is zero,

A= — (29)
m

where m is the fermion energy gap.
The first term in Eq. (28) is the stiffness term and the second is the level-1 (k = 1)
Wess-Zumino-Witten term. Q (x,u) is the extended field of Q(C (x), which exist because

m(m) 0 for n > 4. The difference in the WZW term associated with two different

extensions is 2mi times the topological invariant associated with 714(%) = Z. Con-
sequently upon exponentiation, different extensions yield the same phase factor. (To recapitulate
the explanation, the readers are referred to subsection 8.1.)

9.2. Real class in (24 1)-D

For massless n-flavor Majorana fermions in the real class, the fluctuating order parameters
OR (x) lives in the space of real Grassmannian, namely,
0O(n)
0(n/2) x 0(n/2)
This means that at any space-time point x, OR(x) is an n x n real symmetric matrix, with half

of the eigenvalues +1, and the other half —1. One can specify OR(x) by the orthogonal matrix,
R(x), required to render QR(x) diagonalized, namely,

oR(x) e

R (1) = R(x)- (”6/2 _2/2) BT (0.

Two different R(x)s related by

R'(x)=R(x)- (g1éx) gz(()x)>’

where g1(x), g2(x) € O(n/2), will lead to identical QR (x). Due to this redundancy, the order
parameter lives in the quotient space an)mﬂ)'
Explicit fermion integration leads to the following non-linear sigma model

2 1 - . 4
wiot= b [ el (0.0%)] - 2 [l 0* (a0")')
M B
Again, A3 has the dimension of length, and in the limit where the short-distance cutoff is zero A3
is given by Eq. (29).
The first term in Eq. (30) is the stiffness term and the second is the Wess-Zumino-Witten
topological term of level k = 1. QR(x, u) is the extended field of QR(x), which exist because
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ng(m) = 0 for n > 6. The difference in the WZW term associated with two differ-

ent extensions is 277 times the topological invariant associated with 7{4(%) =7Z.
Consequently upon exponentiation different extensions yield the same phase factor. (Again, to
recapitulate the explanation, the readers are referred to subsection 8.2.)

9.3. Complex class in (3 + 1)-D

For the n-flavor massless Dirac fermions in the complex class, the fluctuating order parameters
Q(C (x) lives in the space of n x n unitary matrices, namely,
0% eUMm).
Explicit fermion integration leads to the following non-linear sigma model
1 2 ~ PN
Cy_ 4 C Ct Ct ;»C
Wie® = [ a*xtr[3,0%0"0%] - /tr[( o). 31
[0€] 213/ I L 0% (31)
M B
where A4 has the dimension of length. Using dimensional regularization A4 is given by
| [r(oﬂm2 ] 172

A - 812

(32)

signifying that A4 is cutoff-dependent. Here I'(0™) is the gamma function evaluated at 0" from
dimensional regularization (see appendix D for the details).

The first term in Eq. (28) is the stiffness term and the second is the level kK = 1 Wess-Zumino-
Witten term. QC (x, u) is the extended field of QC(x), which exist because 74 (U (n)) = 0 for
n > 3. The difference in the WZW term associated with two different extensions is 27ri times the
topological invariant associated with 7rs5(U (n)) = Z. Consequently upon exponentiation different
extensions yield the same phase factor. (Again, to recapitulate the explanation, the readers are
referred to subsection 8.1.)

9.4. Real class in (3+ 1)-D
For the n-flavor massless Majorana fermions in the complex class, the fluctuating order pa-

rameters Q]R (x) lives in the space of “real Lagrangian Grassmannian”, namely,

R U(n)
0 (x) e _O(n)'

This means that at any space-time point x, OR(x)isann xn symmetric unitary matrix. Accord-
ing to the Autonne decomposition (e.g., corollary 2.6.6 of [22]), any symmetric unitary matrix
can be decomposed into

Ry =w)-wh ),
where W (x) is unitary. Hence, two different W (x)s related by
W (x)=W(x) - gx),

where g(x) € O(n), will lead to identical QR(x). Due to this redundancy, the order parameter

lives in the quotient space OEZ) .
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Explicit fermion integration yields the following non-linear sigma model

W[QR]:é/d‘thr[aﬂQRa“QRT] — 9628;3 / tr[(QRTdQR)S]. 33)
M B

The first term in Eq. (30) is the stiffness term and the second is the level k = 1 Wess-
Zumino-Witten topological term. QR(x, u) is the extended field of QR(x), which exist because
m4(U(n)/0((n)) =0 for n > 5. The difference in the WZW term associated with two dif-
ferent extensions is 2mi times the topological invariant associated with 5(U (n)/O (n)) = Z.
Consequently upon exponentiation different extensions yield the same phase factor. (Again, to
recapitulate the explanation, the readers are referred to subsection 8.2.)

In Table 5 we summarize the n values above which 7 p1(mass manifold) is stabilized. We
shall discuss some of the small n cases which are relevant to our applications in appendix H.

9.5. The value of the stiffness constant and the phases of non-linear sigma models

Unlike in (1 4+ 1)-D, the stiffness constants of the non-linear sigma models in (2 4 1)-D
and (3 + 1)-D are dimensionful parameters. A natural question then arises, how does the values
of these parameters determine the phase of the non-linear sigma models? For small A3 and Ai
the action costs of space-time varying OR.C s large, hence we expect spontaneous symmetry
breaking to occur. Quantum disorder sets in for large A3 and )&. In the presence of the WZW
term, the quantum disordered phase is gapless. It is in the latter phase do the non-linear sigma

models represent the massless free fermions.
10. Non-linear sigma models as the effective theories of interacting fermion models

As we have seen in section 9, while the coefficient in front of the stiffness term in the
non-linear sigma model is dimensionless in (1 + 1)-D, those in (2 4+ 1)-D and (3 + 1)-D are
dimensionful parameters. This begs the question of what are these parameters? and for what
values of these parameters are the non-linear sigma models equivalent to the massless fermion
theories? In addition, for D = 2 + 1 the mass manifold consists of more than one connected
components. What kind of model can realize phases correspond to different components of the
mass manifold? In the following, we answer these questions by focusing on the complex class.
It is straightforward to generalize the result to the real class.

As listed in Table 2, the mass terms correspond to 0C are given by

. Cq_ [ ¢ c\' L[ ¢ c\'
(1+1-D: MO ]—X®§[Q +(e >}+Y®E[Q (e )}
Q2+ 1)-D: M[Q€1=Y® Q€
: Cq_ 1 c c\' 11 c (,c\
(G+1)-D: M[Q ]_YX®2[Q +(Q >]+YY®2i [Q (Q )]
(34)

Let’s consider the four-fermion interacting generated by the following inverse Hubbard-
Stratonovich transformation,

ool [i9]] -
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. 1
[ prowie {— [ a7 [w' MIQ1 Y + z-tr| Q) Q(x)]]} (35)

where Q(x) is an n x n matrix-valued function of space-time. We note that the strength of the
four fermion interaction in Eq. (35) is proportional to Aj.

The emergent global symmetries transform Q(x) in exactly the same way as Q(C (see Table 1).
This is because Q(x) and Q<C couple to the same fermion bi-linears. Such transformation can be
absorbed by the redefinition of the integration variable Q(x). Therefore as long as the integration
measure in Eq. (35) is symmetric under the symmetry transformations, Sy is invariant under the
action of emergent symmetries.

When A; is sufficiently large, it is energetically favorable for

w[(Q'(0Qw)]

to acquire a non-zero expectation value. Assuming such expectation value doesn’t spontaneously
break the continuous symmetry’ it must satisfy

(QT()O()) — ¢" - (QT () Q) - g = (QT(x) Q())

forall g € U(n) (for (14 1)-D and (3+ 1)-D g € U4 (n)). This requires the expectation value of
QT (x)Q(x) to be proportional identity matrix,

(QT () Q) =«°1I,

where «2 should grow monotonically with A;. At low energy and long wavelength, the dynamics
of Q is governed by the Goldstone modes Q(C (x), where

O(x) —» k0 (x), and (QC>TQC=I,1.

The manifold in which Q(C (x) fluctuates is exactly the mass manifold given in Table 2.
The effective action governing the fluctuations of 0C (x) is given by the results of section 9,
1

where the stiffness term coefficients 5 and # should grow with «2 which, in turn, mono-

tonically increases with A;. As the result, strong four-fermion interaction implies small A3 and
kﬁ, while weak four fermion-interaction implies large A3 and kﬁ. Thus, we obtain a duality-
like relation, namely, strong coupling fermion theory corresponds to weak coupling non-linear
sigma model, and weak coupling fermion theory corresponds to strong coupling non-linear sigma
model. Since, by dimension counting, local four-fermion interaction is an irrelevant perturbation
to the massless theory in (2 + 1)- and (3 + 1)-D, we expect there is a range of large A3 and Ai
where the non-linear sigma model is massless.

Now we come to (2 4 1)-D, where according to Table 2, the mass manifold has n + 1 com-
ponents, namely,

n

c Un)
Q eg)U(l) xUm=1)

(Here [ corresponds to the number positive eigenvalues of QC(x), the readers are referred to

appendix B for details.) The condition that the order parameter is a smooth function of space-time
confines Q€ (x) to fluctuate in one of the mass manifold components. If such fluctuation is to

7 The possible symmetry breaking phases are captured by the non-zero expectation value (Q(x)).
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restore the time-reversal symmetry, it further restricts / = n/2 (we focus on n = even). However,
if we allow the possibility of spontaneous time-reversal symmetry breaking, then QC(x) can
fluctuate in the / # n/2 mass manifold. It is interesting whether the order parameter fluctuation
in the / # n/2 mass manifolds can restore the unitary part of the emergent symmetry, and if it
does can the resulting phase be gapless.

11. Global symmetries of the non-linear sigma models

Up to this point, we have derived the non-linear sigma model. The bosonic partition function
is given by

Z= / proCRy S [0”]

Here QC-R ¢ mass manifolds, and the integration measure is defined so that at every space-time
point Q(C’]R and the symmetry transformed Q(C’]R (see Table 5) have the same weight.

Now, using the complex class in (1 4 1)-D as an example, we demonstrate that the non-linear
sigma model in Eq. (24) respects the emergent symmetries of the massless free fermion theory.
Under the action of the global emergent symmetries, a configuration 0C€(z,x) transforms by
Eq. (20), namely,

Ur(m) x U-(n): Q€(r.x) > ¢ - 0C(r.%) - g

Charge conjugation : Q(C (1,x) > (Q‘C (z, X)>*
T
Time reversal : Q(C (1,x) > (Q(c (r,x)) .

Under the action of U4 (n) x U_(n)

0%19,0% — gL+ (0%9,0%) - g+

Due to the cyclic invariance of trace, the similarity transformations cancel out and the action
Eq. (24) is invariant.
Under charge conjugation, the stiffness term transforms as

_ 8Lnfd2xtr|:(Q(CT8“Q(C>2] N —é/dzxtr[(cha“QC*)z}
M M

- é/dzx tr[(f)“ Q‘CTQ‘C) (a”Q‘CTQ‘C)]
M

__ é/d%tr[(QC"a”Q‘c) (Qc-rauQc)]
M

hence is invariant. Here the first equality in the second line is due to the invariance of trace under
transposing, and the second equality is due to 9*QCTQC = —QCT9# QC. A similar argument
applies to the WZW term,
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200 [ (090 |- 22 [uf (6Ta0%)']
B B

== 5 | o (a0%10%) J= 5 [ o] (0a0) ]
B B

The extra minus sign in the second line is because transposing causes an odd number of crossing
of the differential 1-forms. This negative sign is canceled out in the last term due to the odd
number of negative signs arising from d QC? Q(C =— QCTd Q(C. Therefore Eq. (24) is invariant
under charge conjugation.

Under the action of time-reversal transformation, the stiffness term transforms as

1 . 1
—/dzx tr [BMQC'EJ“QC] N —/d2x tr [BMQC*B“QCT]
8 8
M M
1 2 Cy HC 1 2 C C
28_;1/d xtr[&“Q 9,0 T] ZS_n/d xtr[&MQ IF129) ]
M M
As for the WZW term, note that the i in front becomes —i due to the complex conjugation
involved in the time-reversal transformation.® Thus the WZW term transforms as

2247::2/tr[@mdécf]_’_2247:2/”[@6*‘{@“)3]

B B
- [ () o) 10
B
= 2247:2 f tr[@md@cﬂ (36)
B

The disappearance of the minus sign in the second line is because transposing causes an odd
number of crossings of differential 1-forms. The passing to the third line follows from the cyclic
invariance of trace.

In summary, the non-linear sigma model is invariant under the action of the global emergent
symmetries. The same conclusion applies to the real and complex classes nonlinear sigma models
in other space-time dimensions. The detail is left in appendix D.

12. The symmetry anomalies of the nonlinear sigma models

A necessary condition for the bosonized non-linear sigma model to be equivalent to the mass-
less fermion theory is that the former has the same symmetry anomalies as the original massless
fermion theories. In this section, we will show this is indeed the case.

8 The time-reversal symmetry in Euclidean space-time requires a complex conjugation on the Boltzmann weight. It is
important to check whether a term is real or complex before deciding how time-reversal transformation acts.
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12.1. Gauging the non-linear sigma models and the 't Hooft anomalies

In Table 3 we see that in (1 + 1)-D and (3 + 1)-D, the massless free fermion theories have
the ’t Hooft anomalies (with respect to the continuous symmetries). In this subsection, we first
gauge the non-linear sigma models and then determine their "t Hooft anomalies.

Again, taking the complex class (1 4+ 1)-D example, under an infinitesimal U4 (n) x U_(n)
transformation, Q€ and gauge fields transformed as

Q(C N e*ié_ QCei€+
Ay = Ay +dey +i[As, e4] 37

where we let g1 = ¢/“* in the symmetry transformation. For the stiffness term, the usual minimal
coupling guarantees the gauge invariance

1 N 2
Wanl 0% A1 Al =~ [ dxu [(QC‘ (90° —i0%As, +ia-.0%)) ] :
M

However, it is less clear how to gauge the WZW term. Here we follow Witten’s “trial-and-error”
method [23], which we shall explain in the following.

First, we determine the variation of the WZW term when Q€ undergoes space-time dependent
transformation given by the first line of Eq. (37)

{1k [+](ee0)]

1 " :
= / r [de+ (deQC) tde_ (dQ‘C Q‘W)]

o4

M

Here we remark that although writing down the action requires the extended space-time manifold
B, the variation of the action can be expressed solely in the space-time manifold M, which is
(14 1)-D in the example.

In an attempt to make the theory gauge invariant, we subtract a term with dey replaced by
A4 . Together, the gauge variant part becomes

8[— éB/tr[(QCTdQc)j _ ﬁ/\[u[fu (Q(CTdQ(C> LA (dQC QCT)H
=— ﬁftr [A+ (de+ - Q(CTdG_Q(C) LA (—de_ n ch€+QCT>]
M

Last, we repeat the previous step by adding another term with dey in the above equation
replaced by A.. After some work we obtain

o [l (e0e) ]
B
_ ﬁftr [A+ (QCTdQC) +A- (dQC QCT) + iA+QCTA_QC]]
M
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1

= — E/tl‘ [A+d€+ — A7d67]
M

Now the gauge variant part contains no Q(C anymore. Hence we cannot find any term to cancel
the remaining non-gauge-invariance. This result reproduces Bardeen’s result in Eq. (13).
In summary, the gauged WZW model is given by

wioC, Ay, A_]=— % [d%ctr[(QC* <8MQ(C —i0%A4, +iA,,LQC))2}

M
7 [ v (e=1a0%)']
B
_éftr [A+ (Q(CTdQC) +A_ (dQ(C QCT) +i4: 057 QC] ]
M

Moreover, we have shown that it has the same ’t Hooft anomaly for the continuous symmetry as
the original massless fermion. In appendix F we summarize the gauged non-linear sigma model
ind=1,2,3.

12.2. Discrete symmetry anomalies

In section 4.3, we saw that massless fermion theory has a time-reversal anomaly for the com-
plex class in (2 4 1)-D. This anomaly originates from the massive Dirac fermion at time reversal
invariant k points other than k = (0, 0) where the mass breaks time-reversal. We would like to
see the same phenomenon in the nonlinear sigma model.

In the following, we focus on the complex class in (2 4 1)-D. First, let’s focus on the vicinity
of k = 0 (under Wilson’s regularization). The bosonized model is given by Eq. (28). Following
Witten’s trial-and-error method discussed in the preceding subsection (see appendix F for the
detail), we obtain the following gauged nonlinear sigma model,

wi0C, 4] =;T3/d3xtr[(aug‘c +ilA, QC])z] (38)
M
~soms] [ w0° (a0°)']
B
+8ftr[iAQ‘C(dQ‘C)2 —(40%)240C€
./\/l
—%(AQC)3+iA3QC —AQ‘CF—AFQ‘C]}

This action is invariant under global symmetry transformations where the gauge field and 0C are
transformed according to Eq. (15) and Table 4. This is expected, given the low energy fermion
theory near k = O respects these symmetries.

For the Dirac fermions near k = (i, 0), (0, ), and (7, ), there are time reversal breaking
masses, namely, M =2mY ® I, for k = (,0), (0,7) and M =4mY ® I, for (w,m). The
non-linear sigma model describes these massive fermions is again given by Eq. (38) except that
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now [ =n or 0. Due to the signs in front of g1 "1 and ¢>I"; at k = (7, 0), (0, ), and (i, ) the
effective mass sign for these massive fermions are given by

ng :=sign of (¢q1'1) x sign of (g21"2) x sign of (m).

Consequently the Q€ associated with the massive fermions obeys

0C =i 1,. (39)

We can thus use the gauged nonlinear sigma model in appendix F to predict the Chern-Simons
term due to the massive fermions at k = (77, 0), (0, ), and (7, ) by plug in Eq. (39). For these
space-time constants 0C we can drop all the terms with derivatives on Q€. The remaining
can be combined into the Chern-Simons term. Summing the contribution from k around (=, 0),
(0, ), and (rr, ), we get

1 1 1\ m i 2i 4
Wi,00 + Wo,n) + Wern) = _§_§+§ ma tr AdA-l-?A‘

i 2i
=—— [ r|AdA+ =43
87 / r[ *3 }
which agrees with Eq. (19).

As for other discrete symmetry anomalies, with the input of how QC-R and the gauge field
transform under discrete symmetries, it’s simple to show that in (1 + 1)-D and (3 + 1)-D, there
is no discrete-symmetry-anomaly after gauging the anomaly-free part of the continuous sym-
metries. In (2 4 1)-D, gauging the continuous symmetry breaks the time-reversal symmetry as
discussed in subsection 12.2.

In appendix F, we show that all the symmetry anomalies of massless fermions in Table 3 are
reproduced by the corresponding gauged nonlinear sigma models. This lends strong support to
the idea that the nonlinear sigma models are equivalent to the original massless fermion theories.

13. Soliton of the non-linear sigma models and the Wess-Zumino-Witten terms

In order for the bosonization to hold, somehow the bosonic non-linear sigma model must
possess fermion degrees of freedom. In this section, we show that due to the WZW term, the
solitons of the non-linear sigma model are fermions.

13.1. Soliton classification

Soliton is a spatial texture of the “order parameter” (QC'R). Such texture represents a non-
trivial mapping from the spatial space to the mass manifold, i.e., the space where the order
parameter lives. In d spatial dimension, solitons are classified by the d-th homotopy group of the
mass manifold, namely,

74 (mass manifold) .

In appendix B, we list the relevant homotopy groups. Since exchange statistics only make sense
for spatial dimension greater than one, in the following we shall focus on d > 2. For the nonlinear
sigma models considered in section 9, when # is sufficiently large so that there is a WZW term,
the soliton classifications are Z for the complex classes, and are Z, for the real classes, namely,
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nz( Ui ):Z forn >4
Umn/2) x Un/2)
O(n) _
”Z(O(n/z) x O(n/z))_ZZ forn =6
m(U(n)) =7 forn >3
U
773(02;):22 forn >5

This means that for the complex classes, we can define a topological quantum number, namely,
the “soliton charge” Qg,1. When we fuse two solitons of different charges, Qo adds; for the real
classes, on the other hand, this soliton charge is defined mod 2 so that two solitons with unit
soliton charges can fuse into zero soliton charge.

13.2. Soliton charge and the conserved U (1) charge Q

For the complex classes, it is natural to ask what is the relation between the soliton charge
QOsol and the conserved charge Q. The conserved charge Q is associated with a global U(1)
symmetry. In (3 4 1)-D such U(1) symmetry belongs to a diagonal subgroup of U, (n) x U_(n).
As shown in Table 3, it is anomaly-free. For (2 4 1)-D the U(1) symmetry is a subgroup of the
global symmetry group U (n), which is also anomaly-free according to Table 3.

In appendix F we present the gauged non-linear sigma model. In particular, by focusing on
the term linear in the gauge field (associated with the anomaly-free U (1) subgroup) derived from
the WZW term, we can extract the U (1) current. The answer is’

Q+1)-D: JH= —aneWtr [QCaVQ‘Cap QC] (40)

] (090,0°) (00,0°) (00.0°)]

Thus the U (1) charge given by

B+ 1)D: JH=—

Q+1)-D: Q:—ﬁ dzxeijtr[QcachanC]
(3+1)-D: Q:—ﬁ dx e[ (0%,0°) (2%19;0°) (e“'a0®)].

These are, in fact, exactly the same expression as the topological invariant corresponding to

nz(m) =7 in 2+ 1)-D and 73(U(n)) = Z in (3 + 1)-D (see appendix B for the

details). Thus, for both cases
Q = Qsol~ (41)
13.3. Statistics of soliton

One way to derive the statistics of soliton is to calculate the topological spin by comparing
Berry’s phase difference between the following two processes. In the first process, we have a

9 The same result can be derived by fermion integration.

31



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565

static soliton. In the second process, the spatial soliton configuration is adiabatically rotated by
27 in time. Following Witten [24], we show in appendix G that such Berry’s phase difference is
e~k where k is the level of the WZW term (see appendix G for the details). Since all nonlinear
sigma models in section 9 have k = 1 WZW term, their solitons are fermion.

14. A summary of Part I

So far, we have established the fact that the fermion theory and non-linear sigma model have
the same global symmetries and anomalies. In addition, we have shown that the solitons of the
non-linear sigma model are fermions. All of these support the equivalence between the fermion
theory and non-linear sigma model. However, we stress again such “the equivalence between
the non-linear sigma model with the k=1 WZW term and the massless free fermion theory” is a
conjecture rather than a proven theorem.

Now we present a brief summary of Part I. We begin in section 1 by presenting the essential
idea underlying the present work. Prior to performing the fermion integration, we first identify
the emergent symmetries in section 2, and the mass manifolds in section 3. For a given massless
fermion theory, the mass manifold is the topological space formed by all mass terms that can
fully gap out the fermions. We then work out the anomalies with respect to the emergent symme-
tries in section 4. Afterward, we introduce mass terms at the expense of breaking the emergent
symmetries in section 5 and fluctuate the mass terms smoothly to regain the emergent symmetries
in section 6. As discussed in section 7, the smoothness of the mass fluctuations is to ensure that
the original fermions remain gapped, hence can be integrated out to yield non-linear sigma mod-
els in section 8 and section 9..'" The level-1 WZW term resulting from the fermion integration is
checked against the prediction of homotopy groups in the appendix, which is referred to in sec-
tions 8 and 9. In section 10, we present local interacting fermion theories that have duality-like
relationships with the bosonized non-linear sigma models. In section 11, we analyze the symme-
tries of the non-linear sigma models. A comparison with the results obtained in section 2 leads to
the conclusion that the fermion and boson theories have the same symmetry. Using the method
of reference [23] we determine the anomalies of the non-linear sigma models in section 12. A
comparison with the results obtained in section 4 leads to the conclusion that the fermion and
boson theories have the same anomalies. Finally, in section 13, we show the bosonized theories
have fermionic degrees of freedom, namely the solitons of the non-linear sigma models.

Part II. Applications
15. The SU(2) gauge theory of the x-flux phase of the half-filled Hubbard model
15.1. The “spinon” representation of the spin operator

The paradigmatic model describing a Mott insulator is the Hubbard model in the large U limit.
At half-filling, every site is occupied by one electron. Below the Mott-Hubbard gap, the active
degrees of freedom are those of spins. Through Anderson’s super-exchange [25], the dynamics
of the spins is governed by the anti-ferromagnetic Heisenberg interaction

10 The procedure can be easily applied to higher dimensions, though we shall not pursue it in the present paper.
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H=Y"1;S"85;.
(ij)
In the “spinon” treatment [26,27] one decomposes a spin-1/2 operator into auxiliary fermion
(spinon) operators

¢ = 3 Kot fis @)
and supplement it with the single occupation constraints
fiyfir+ £ fiu =1
11, =0
fiy fir =0. (43)
In the following we shall refer to the above constraints as the “Mott constraint”. The decompo-
sition in Eq. (42), where one separates the physical spin degrees of freedom into the auxiliary

“spinon” degrees of freedom, is an example of the so-called “slave particle” approach.
In terms of the spinon operators the Heisenberg Hamiltonian read

2 Z%( Jia aﬂfzﬂ) (f,-Tyfffafj(s)

qu( fiufiaFlgfip = 2fiutiat s Fip)

1

:_EZ ( fz]:xflotf fjﬂ+f;zlfjafﬁﬁ )
(ij)

Upon Hubbard-Stratonovich transformation, we express

B
expi — /dr[ZfiLBofm +H]} =
0 i
ﬂ 1
f D[U]exp |—f [Z viaowi+ Y 2 J,J< (w; Uijrj+h.c. ) +2Tr[U U,,] )]}
0 (ij)
(44)
where
)=l 5]
= LU= T . 45
vi= <fi¢ Y A;'kj —Xij )
For later convenience, we rewrite the spinon operator in terms of Majorana fermions
fia == Fi,1a +1Fi 2,
in terms of which, the spin operators are represented as
|
St = EF; >4F;, where
Y =(YX,I1Y,YZ). (46)
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In the last line, the first and second Pauli matrices carry the Majorana and spin indices, respec-
tively.

The spin operators in Eq. (46) are invariant under the following local “charge-SU(2)” trans-
formation

Fi — Wi F;
where W; is generated by
T" = (XY,YI,ZY).
In terms of The Majorana fermion operators, the Mott constraint in Eq. (43) becomes
[ fia—1=F YD F=F'T?F =0
e (fiafip + Fipfi) = FI (XY) Fy = F/T'F, =0
i€ (ﬁaﬁﬂ - fl.;fil) = FI (ZY)F; = FIT3F; =0 @7)

These constraints are implemented via the Lagrange multipliers in the path integral

Z:/D[F]D[U]D[ao]exp(—S)

with
/ 3
S :/dr{ S FlooFi+ ) gJ,-,-[Ff (Re[Xij]YI +iImlxij 11T + Re[A;;1XY
0 i @)
— Im[AGZY )y + 1P+ g P+ Yl (FTT0F) ). (48)
i

15.2. The m-flux phase mean-field theory and the SU (2) gauge fluctuations

In treating the path integral, Eq. (48), one often starts from a mean-field theory where U;;
and af’o are assumed to be space-time independent. To see the many possible mean-field ansatzes
we refer the readers to, e.g., Ref. [27]. In the following, we shall focus on the so-called “z-flux
phase mean-field theory” [28] for the nearest neighbor Heisenberg model.

The m-flux mean field theory assumes the following mean-field U;; and Elf’o

Aij=0, ay=0,

Xiith =1Xs

Xij+s=i(=D"x (49)
where y is a real parameter (see Fig. 2). This leads to the following fermion mean-field Hamil-
tonian,

Avir = —%J Z {i X [FZ.ZNE (an Fi] Fi(=D)iy [Fiiy (1) F,-] + h.c.}

Because the Pauli matrices are identity in both the Majorana and spin spaces, this mean-field
Hamiltonian enjoys both global spin- and charge-SU(2) symmetries generated by
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Fig. 2. The m-flux mean-field theory. Here the black bonds represent hopping amplitude i x in the positive x- or y-
direction and the green bonds represent —i x . The unit cell is enclosed by the orange rectangle.

Spin-SU(2) generators: 3¢ =(YX,IY,YZ)
Charge-SU(2) generators: T9 = (XY,YI,ZY). (50)

Using the eigenvalues 1 of the “sub-lattice Pauli matrix” Z to label the blue and red sub-
lattices in Fig. 2, and performing Fourier transform we obtain the following momentum-space
mean-field Hamiltonian

A 3 T i (e”‘2 — e_ikz) —i + ek
Hmr = _ZJX ; FZy [11 ® |: i —je—2ik _i (eikl _ e*"k2) Fx

= —%JX Z F_Tk [II ® (—sin2k; X + (1 —cos2k;) Y — 2sinky Z)] Fk.
' 619}
In the above equation the tensor product of Pauli matrices are ordered according to
Majorana & spin ® sub-lattice.
In Eq. (51) the (halfed) Brillouin zone is
—n/2<ki<m/2, —nm<k<mw

and the Dirac nodes are situated at ko = (0, 0) and (0, ), which are referred to as two “valleys”
in the following.

Expand k = k¢ + ¢ around these two Dirac nodes, and Fourier transform (w.r.t. ¢) back to the
real space, we obtain the following low energy mean-field Hamiltonian

Hur =/d2x FT (—il;9) F,
where
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Oy =1IXI
h=1I1ZZ. (52)

The tensor product of four Pauli matrices in Eq. (52) are arranged according to

Majorana ® spin @ sub-lattice ® valley.

Including the sub-lattice and valley Pauli matrices the generators of the charge and spin SU(2)
transformations are given by

Spin-SU(2) generators: ¢ = (YXII,IYII,YZII)
Charge-SU(2) generators: T9 =(XYII,YIII,ZYII). (53)

Because the local charge-SU(2) gauge degrees of freedom is a redundancy in the original
half-filled Mott insulator, we expect the field theory in Eq. (48) to have the local charge-SU(2)
symmetry. This motivates one to think the low energy theory, including fluctuations in U;; and

af’o, is a charge-SU(2) gauge theory with

U,'j = Ul'jeiaij
where a;; = af’/.Tb is the spatial component of the charge-SU(2) gauge field. According to

Ref. [27,29], because the mean-field U; ; commutes with the global charge-SU(2) transforma-
tions, the low theory is a charge-SU(2) gauge theory, with ag and a;; playing the roles of the
time and spatial components of the gauge field, respectively.

The partition function of the charge-SU(2) gauge theory reads

Z:/D[ﬁ]D[a#]e—S[ﬁv“u]

2
. . .1
S:/d3x{FT [(ao +iafT) —iy T'(9; +ia?T“):| F+ 5fjv}. (54)
i=1

In Eq. (54) the i fﬁv is generated by integrating out the higher energy fermion degrees of free-
dom. The theory in Eq. (54) describes the n = 8 real class fermion theory coupled to a dynamic
charge-SU(2) gauge field.

According to the bosonization in section 9.2, the bosonized theory is a gauged %

nonlinear sigma model with the k = 1 WZW term.'! Here the charge-SU(2) subgroup of the
fermion (emergent) global symmetry group O (8) is gauged.

In the following let’s assume that the effect of the SU(2) gauge field is to cause confinement
(note, however, we are not implying the deconfined phase does not exist).'> Under such con-
dition, the fermion-antifermion pair oder parameter (analogous to mesons in QCD) must be a

' Note that although for n = 8, the homotopy group are not yet stabilized, fermion integration still gives a WZW term.
When B is a closed manifold, and after division by 27i, the WZW term is the topological invariant of one of the Z factor
of the 4.

12 Note that unlike the compact U(1) gauge field, here the confinement can be not caused by the proliferation of
monopoles. This is based on the following homotopy argument. The SU(2) gauge configurations on the space-time
surface §2 surrounding the location of the monopole are classified by the mapping classes of $2 — BSU(2), where
BSU (2) is the classifying space of SU(2). Using the following identity in algebraic topology,

[S2, BSUQ)lx =[SS!, BSUQ)Ix =[S', SU@)1 = 71 (SU(2)) =0,
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charge-SU(2) singlet. Since OR is precisely the “meson” field, it follows that in the charge-
SU(2) confined phase the finite energy OR are restricted to a sub-manifold of % which

are invariant under the charge-SU(2) transformation'?.'* This sub-manifold is the $* spanned by
the following 5 mutually anti-commuting masses,

5 5
§* = { ZniMi; Zn?: 1}, where

i=1 i=1
Mi=YXZX, IYZX,YZZX,1IYI, IIZY. (55)
In order to match the gamma matrices and mass matrices convention in Table | and 2 (based
on which the non-linear sigma models in subsection 9 and appendix C and F are derived), we

will make the following change the basis. We first exchange the order of the third and the fourth
(i.e., sub-lattice and valley) Pauli matrices, followed by the orthogonal transformation,

I 0
e[l 0]

In the new basis the gamma matrices and the mass terms become

Oy =111X
O,=1I111Z
M;=YXYY,IYYY,YZYY,IIXY,IIZY (56)

These are consistent with the matrices shown in Table 1 and Table 2, except a trivial exchange

of the first and the last Pauli matrices. In this basis, the order parameter QR is defined by M =
R

mOoT®Y.

15.3. Antiferromagnet, valence bond solid, and the “deconfined” quantum critical point

For the mass manifold in Eq. (55), we expect the non-linear sigma model to have a WZW
term because 74(S*) = Z. Substituting

QR =n; N; where
Ni=XXY, IYY,YZY, IIX,IIZ) (57)

into the non-linear sigma model given by Eq. (30) in subsection 9.2 we obtain

it follows that there is no topologically non-trivial gauge field configuration on 52, hence there is no monopole. Here ¥
denotes “reduced suspension”, and [ X1, X2 ], is the homotopy class of base-point-preserving maps X1 — X». Physically
speaking, assuming the SU (2) monopole exists, we can take the northern and southern hemispheres as the patches to
define the gauge connection so that on each patch, the gauge field configuration is non-singular. On the equator, st
where the two patches overlap, a gauge transformation must relate the gauge fields originated from the two patches. At
each point of § Uthe gauge transformation is an element in SU (2). Therefore the monopole classification is given by the
homotopy class of gauge transformation on the st ,ie., T (SU((2)).

13 In addition to restricting QR to be invariant under charge-SU(2) transformations, the charge-SU(2) gauge fluctua-
tions can also generate four-fermion interactions, the effects of which are not studied in the current work.

14 Our result is analogous to Witten’s non-linear sigma model description of QCD in the color SU(3) confined
phase [24].
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Fig. 3. Translation by one lattice constant in the x-direction compounded with the gauge transformation which multiplies
the fermion operators on sites in the orange rows by -1 leaves the mean-field Hamiltonian invariant.

Wil = )\2—3 f dx (n)° — % / MMy dii j divg diiy diipy. (58)
B

This model has O(5) global symmetry generated by the pair-wise product of the matrices in M;,

which are also the generators of O (8) that commutes with the charge-SU(2) generators. Hence

Eq. (58) is often referred to as the “O(5)” non-linear sigma model in the literature [30-33] (a

recent related work can be found in [34]).

Now we address the physical meaning of the five masses given in Eq. (55) (or equivalently
the physical meaning of M; in Eq. (56)). The first three of the masses in Eq. (55) correspond to
the Néel order parameters, while the last two to the valence bond solid (VBS) orders. To see this,
we first note that the first three masses rotate into each other under spin-SU(2),

4 =(YXIILIYII,YZII)

while the last two are invariant.

We can also deduce the effect of translation by one lattice constant on these mass terms. In
writing down the mean-field Hamiltonian we have chosen a particular charge-SU(2) gauge that
explicitly breaks the symmetry associated with x-translation by one-lattice spacing. However,
this is an artifact of gauge choice. The compounded transformation where the x-translation is
followed by the gauge transformation which multiplies the fermion operator located on the or-
ange rows in Fig. 3 by —1

7,
(Fz.1, Fr2) = (=105 x (Fz2, F115.1)

T;
(Fr1. Fr2) = (Fres1, Fra.2), (59)

leaves the mean-field ansatz invariant. This is an example of “projective transformation”. In
Eq. (59) 7 label the unit cell in Fig. 2, and we have omitted the Majorana and spin indices
because they are unaffected by the translation.

In the following, we derive the effects of the “projective translation” on the fermion operator
F which is related to F via
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Fri= ). (Fq,<z,1)e""'1+ﬁq,(,,z)e"(@’””‘U'I)

small ¢

where the (/, v) are the indices for sub-lattice and valleys respectively. Doing the inverse Fourier
transform, the above projective translation transforms F according to

F— T; 3 F
where
T,=1I1XX
T, =111Z. (60)

Here we have put back the Majorana and spin (i.e., the first two) Pauli matrices.
Under T} ; the mean-field Hamiltonian is invariant, but the first three mass terms change sign

under YA“X and 7} (as should the Néel order parameter) while the remaining two masses each

breaks f"x or f"} These are the expected transformation properties of the VBS order parameters.

In appendix J we show that the order parameters in Eq. (57) completely decouple from the
charge-SU(2) gauge field. Thus even in the presence of such gauge field the non-linear sigma
model preserves the form in Eq. (58). Before moving on, there is one additional thing worth
mentioning, namely,

m(SH =0.

Hence there is no soliton in the order parameter associated with Eq. (58).

In summary, we have found that after the charge-SU(2) confinement Eq. (58) describes the
critical point between the AFM and VBS phases the so-called “deconfined quantum critical
point” [30,31,35,36]. It is import