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Abstract—We present a framework for evaluating the perfor-
mance of Byzantine fault-tolerant (BFT) protocols theoretically.
Our motivation is to identify protocols suitable for a particular
power grid application. In this application, replicas are located in
a LAN network where latency is the priority. To fully understand
the performance of BFT, we provide a generic approach that
quantifies the performance of BFT protocols based on the number
of cryptographic operations under five different scenarios (in the
presence of failures and without failures).

We present the performance of three representative BFT
protocols: PBFT, Prime, and SBFT. To validate our framework,
we also evaluate the protocols experimentally in the CloudLab
testbed. Our experimental results match the findings predicted
by the framework. Although a variety of factors may affect the
performance of the protocols, our framework can be used as a
valuable reference to understand the performance of BFT.

Index Terms—BFT, cryptography, power grid

I. INTRODUCTION

Fault-tolerant state machine replication is a technique that
masks failures in computing systems. Fault-tolerant protocols
typically focus on masking either crash failures or Byzantine
failures. These protocols leverage replicas — typically 2f +1
or 3f + 1 — to overcome f failures.

Applications critical enough to require fault-tolerant proto-
cols have varying requirements in terms of latency, throughput,
number of replicas required, processing capacity, the types
of failures tolerated (crash vs. Byzantine), and so on. As
a result, different fault-tolerant protocols are appropriate for
different situations. Determining which protocol to leverage
can be challenging since although tens or hundreds of fault-
tolerant protocols have been developed and published, there
are no straightforward or generic means that we are aware of
for evaluation and comparison of these protocols to determine
their appropriateness for given situations. This paper describes
a theoretical approach to accomplish an evaluation of Byzan-
tine fault-tolerant (BFT) protocols given a set of constraints
and validates the approach experimentally.

A. Motivating Use Case

Electrical transmission lines that carry a load of 345kV
and higher are critical components in the power grid. U.S.
power grids have been generally reliable for almost a century.
However, aging infrastructure is being modernized, including
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elements that are connected to computer networks. While
technical advancements in the power grids have improved the
efficiency, reliability, and capacity of the systems, but it has
also introduced challenges, including components like protec-
tive relays that can be attacked over computer networks. The
dependence of the public on critical infrastructure providing
secure and reliable electricity requires new means to ensure
secure transmission of electricity through power grids.

Electrical power grids have three main functions at the
systems level: generation, transmission, and distribution. Elec-
tricity is generated at power stations, transported through high-
voltage transmission lines, stepped down in substations, and
distributed through low-voltage lines to residence and business
customers. At each level, various grid-attached components
exist and can all be the target of manipulations resulting in
grid instability, theft of intellectual property, and denial of
service. These attacks can manifest themselves externally over
a network, through internal components in a supply chain
attack, or via insider attack.

The transmission grid is the portion of the grid that trans-
ports high-voltage electricity from large-scale generation facil-
ities to cities, where voltage is stepped down to where it can
be ingested in buildings. Given the vital role the transmission
grid serves as the arteries for powering large portions of the
grid affecting many people and facilities, it is, therefore, the
most important to protect.

In electrical engineering, circuit breakers are leveraged
when faults are detected in order to protect the circuit wiring
and any devices connected to the circuit. In the power grid,
protective relays are used to trip circuit breakers when faults,
including over-current, over-voltage, and other potentially
damaging conditions might occur. In the transmission grid,
these relays protect equipment both up and down stream from
where they are installed, including the generation facilities and
the distribution systems that the transmission systems supply.

Like many control systems, modern protective relays are
now computer-controlled and networked. As such, an attacker
could potentially control the relays to cause an incorrect action
based on false sensor readings from the electrical lines they
affect. In order to protect these vital pieces of equipment so
that the correct action is taken based on the current grid state,
Byzantine fault tolerance (BFT) is being evaluated.



B. Needs of BFT in the Grid

In our study on using BFT in transmission grid relays,
extremely low latency is the focus, both without failures
and under Byzantine failures. In particular, a response that
is too slow might fail to protect grid-attached equipment
in time to prevent damage. A number of prior efforts have
studied the application of BFT in the Supervisory Control
and Data Acquisition (SCADA) system [2, 3, 19], a control
system architecture used in the power grid, among other
places. However, our focus is on the use of BFT for controlling
modern protective relays, not SCADA in general. Such a use
case favors low latency over high throughput and scalability.

In this paper, we evaluate a variety of BFT protocols and
propose a suitable implementation for the power grid relay
use case via the protocols’ performance parameters, including
types of failures tolerated, resilience, latency, message com-
plexity, hardware requirements, and cryptographic modules.

C. Framework for Evaluating BFT
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Figure 1: The framework for evaluating BFT protocols.

The paper aims to accomplish “apples-to-apples” evalua-
tions of BFT protocols both theoretically and experimentally,
and with a focus on latency. As shown in Fig. 1, we pro-
pose a framework to quantify the performance of BFT by
analyzing the accurate number of cryptographic operations
in different scenarios. Previous studies have shown that the
number of cryptographic operations is directly related to per-
formance, especially latency, in local area networks (LAN) [12,
15]. Furthermore, most studies only discuss the authenticator
complexity in general, rather than the concrete number of
operations. In contrast, we provide a customized framework
that considers multiple scenarios. This way, we can determine
if protocols meet the requirements of the target application
under all conditions. Thus, our framework provides a generic
way to evaluate BFT theoretically and comprehensively.

We also evaluate the performance of BFT protocols experi-
mentally to validate the framework’s predictions. In particular,
we evaluate the latency of PBFT [6], SBFT [13], and Prime [1]
in the same CloudLab distributed environment [11]. We com-
pare the performance of our experimental results to the results
of our framework. The evaluation shows that our framework
provides a reasonable estimation of protocol performance.

II. MOTIVATION

A. Overview of BFT

The goal of BFT is for the replicas to operate correctly to
reach a consensus on the order of client requests. BFT can be
categorized into synchronous BFT (where there exists a known
upper bound on message transmission and processing delay),
partially synchronous BFT (where there exists an unknown
upper bound), and asynchronous BFT (where there does not
exist such a bound). Starting with PBFT [6], a a partially
synchronous BFT, an impressive number of efficient BFT
protocols have been proposed (e.g., [9, 12, 17]). Numerous
efforts have been made to improve the performance of partially
synchronous BFT [7,8,14,18]. Meanwhile, there are efficient
protocols for completely asynchronous environments [10,16].

Our work focuses on partially synchronous BFT, although
our approach is generic to all categories. We chose partially
synchronous BFT for two reasons. First, partially synchronous
BFT is more practical than synchronous BFT. Compared
to asynchronous BFT, partially synchronous BFT achieves
lower latency which fits the needs of our case study. Second,
by modeling different components (normal operation, view
changes) of protocols in the same category, we obtain a fair
and comprehensive comparison. We consider protocols that
require n ≥ 3f+1 replicas, where f the number of Byzantine
replicas and n is the total number of replicas in the system.
Without loss of generality, we consider n = 3f + 1. In BFT,
a replica delivers client requests, each submitted by a client.

B. Needs and Challenges

BFT protocols have been studied extensively. To analyze
system’s performance, most prior studies of BFT have fo-
cused on criteria such as message complexity, communication
complexity, etc. Some studies present the number of cryp-
tographic operations of the bottleneck server to understand
the performance better. However, a wide variety range of
different approaches have been used in these prior studies since
many factors can affect the performance, i.e., programming
languages used, different system parameters, communication
libraries used.

Furthermore, the design of most protocols focuses on the
performance during the normal operation, i.e., when there are
no failures or only backup failures. The protocols are evaluated
in a failure-free case partially because it is extremely challeng-
ing, if not impossible, to simulate Byzantine behaviors. While
it is reasonable to consider that failures are rare, there is still
a lack of full picture of how a protocol performs, especially
under failures and attacks. It leaves a gap for understanding
how useful a BFT approach will be since we cannot know
how it will perform under attack.

In our work, we seek to provide a more comprehensive
framework that provides such a full picture of how a protocol
performs. For instance, some protocols may have the same
message complexity but significantly different numbers of
concrete cryptographic operations. Also, some protocols may
sacrifice performance under failures to enjoy the improved



performance in failure-free cases. While such an observation is
natural since there are always trade-offs in the protocol design,
our framework quantifies the trade-offs. Thus, our framework
provides a detailed and “apples-to-apples” comparison of the
BFT protocols in terms of the performance of each step and
performance under primary/backup failures.

III. THE FRAMEWORK FOR EVALUATING BFT PROTOCOLS

This section describes our framework for evaluating BFT
protocols. We first discuss five scenarios in the framework.
Then we discuss TheoLat, the key number in our framework
to evaluate the protocols theoretically.

A. Evaluation Scenarios

Partially synchronous protocols are usually leader-based and
usually include two major components: normal operation and
view change. During normal operation, leader proposes the
sequence of client requests and replicas agree on the order of
requests. When the leader is suspected to be faulty, a new one
needs to be elected via view change.

We consider five scenarios of a partially synchronous BFT
protocol to determine performance, including performance
without failures and under failures.
• Failure-free: The normal operation when there are no

failures.
• Backup failures: The normal operation when there are only

backup failures.
• Primary failures: When the primary fails, we consider

three different sub-scenarios:
• Best benign scenario: The primary crashes and the fol-

lowing designated primary is correct, i.e., replicas resume
to normal operation upon one view-change.
• Worst benign scenario: f primaries crash, i.e., replicas

run f rounds of view-changes before resuming to normal
operation.
• Worst Byzantine scenario: f primaries are Byzantine,

i.e., replicas resume to normal operation upon f rounds
of view-changes.

B. TheoLat

TheoLat is an approach to evaluate the performance of the
five scenarios given a BFT protocol. In particular, we calculate
TheoLat that can be used to quantify the performance of a
protocol. TheoLat consists of two components: TheoLatNO
and TheoLatVC. TheoLatNO evaluates the normal operation,
and TheoLatVC evaluates the view-changes. We use several
system parameters such as the type of cryptographic operation,
batch size, size of the request. Based on the system parameters,
we calculate TheoLatNO and TheoLatVC of the bottleneck
replicas. The notations are shown in Table I.

As shown in Fig. 2, TheoLat consists of TheoLatNO and
TheoLatVC. For the normal operation, we count the number of
cryptographic operations per step per phase using the number
of nodes and batch size as the input. Then we calculate the
result via the algorithm as TheoLatNO similarly according to
different scenarios.

Table I: Notations

Notation Meaning
Gen Generation of a cryptographic authenticator
Vrf Verification of a cryptographic authenticator
Sσ Unit latency of σ operation
σd An operation of digital signature
σt,s A partial threshold signature signing operation
σt,c A partial threshold signature combining operation
σt,v A verification operation of threshold signature
N The number of Gen or Vrf operations
b Batch size
ρ Number of requests carried in the view change messages

Algorithm 1: TheoLatNO

• Based on unit latency (Sσ) and the number of phases i, calculate the
number of NGen and NVrf respectively.
• The theoretical latency TheoLatNO of one BFT in NO can be com-
puted as TheoLatNO =

∑i
j=0(SσGen ×NGen)+

∑i
j=0(SσVrf ×NVrf),

where i is the total number of steps.
Algorithm 2: TheoLatVC
• Based on the unit latency (Sσ), the number of phases i, number of
requests in each view change ρ, and f , calculate the number of NGen

and NVrf respectively.
• The theoretical latency TheoLatVC of one BFT in VC can be
computed as follows, where i is the number of steps.
− In the best benign scenario
TheoLatVC=

∑i
j=0(SσGen ×NGen) +

∑i
j=0(SσVrf ×NVrf)

− In primary failures - worst benign scenario
TheoLatVC=f

∑i
j=0(SσGen ×NGen) + f

∑i
j=0(SσVrf ×NVrf) + ρ

− In the primary failures - worst Byzantine scenario
TheoLatVC=f

∑i
j=0(SσGen ×NGen)+f

∑i
j=0(SσVrf ×NVrf)+f ∗ρ

Figure 2: The algorithm to calculate TheoLat.

Note that a BFT protocol usually has a checkpoint sub-
protocol which is used for garbage collection. Checkpoint
protocol may affect the performance of the system as discussed
in prior works [5]. The reason why we do not include the
evaluation of the checkpoint sub-protocol here is two-fold.
First, the checkpoint sub-protocol is relatively independent
of the normal operation and view-changes, i.e., choosing a
different checkpoint sub-protocol typically does not affect the
correctness of the BFT protocol. Second, most BFT protocols
use the same checkpoint sub-protocol. Although the frequency
of garbage collection affects the performance of the BFT
protocols, the impact of any BFT protocols is similar.

IV. EVALUATING BFT UNDER THE FRAMEWORK

While our approach is generic that can be applied to any
BFT protocol, in this paper, we focus on three protocols:
PBFT, Prime, and SBFT. We chose these three protocols for
two reasons. First, we consider the three protocols represen-
tative of our purpose. PBFT is a classic BFT protocol, and
a large number of partially synchronous BFT studies have
compared the performance of their protocols with PBFT [4,
7,8,13,20]. Prime improves the performance of PBFT under
attack, and it has been extensively applied to study in SCADA
environments [2, 3], which makes it a perfect choice for
our study. SBFT simplifies the workflow of PBFT, so it is
worth evaluating the performance trade-offs between different
designs. The second reason for selecting these three is that
all are widely studied, so there are mature, open-source



implementations. It is important because, in our work, we
aim to validate our framework via experimental evaluation.
Note that Prime and SBFT both consider benign failures in
addition to crash failures, e.g., slow replicas. To conduct a
fair comparison between the protocols, we consider that all
replicas crash when we consider benign failures. Furthermore,
proactive recovery is another option for BFT protocols [4,
6]. Both PBFT and Prime support proactive recovery and the
approach can be integrated with other BFT protocols as well.
For simplicity, we do not consider it during our evaluation.

A. PBFT

Workflow. PBFT has three phases: PRE-PREPARE, PREPARE,
and COMMIT. In PRE-PREPARE phase, the primary broadcasts
a pre-prepare message to all replicas. In PREPARE phase, upon
receiving a valid pre-prepare message, each replica broadcasts
a prepare message to all replicas. In COMMIT phase, upon
receiving 2f prepare messages (or 2f + 1 messages if we
consider the pre-prepare message from the primary is also a
prepare message), each replica broadcasts a commit message
to all replicas and receives 2f + 1 commit messages. Then a
replica delivers the client request and replies to the client.

PBFT’s view-change has two phases, VIEW-CHANGE and
NEW-VIEW. If a replica starts the view change process, it
increments its view number and sends a view-change message
to all replicas. The view-change message consists of the last
stable checkpoint, the requests that have been prepared since
the last stable checkpoint, the largest sequence number, and
the view number. Upon receiving 2f view-change messages,
the designated primary, in NEW-VIEW phase, sends a new-view
message to all replicas that consists of the last stable check-
point, a sequence of requests that have been prepared or
committed in the previous view, the view number, and 2f
view-change messages. Replicas then move to the new view
if the new-view message is well-formatted.

TheoLat in the five scenarios. The bottleneck server of PBFT
is the primary. Latency of the primary is calculated as follows.
• Failure-free (Fig. 3a): TheoLatNO is (4f + 2+ b)× Sd for

each round. In PRE-PREPARE phase, the primary executes b
NVrf = σd operations for the client requests, and executes
one NGen = σd operation when generating the prepare mes-
sage. In PREPARE phase, the primary verifies 2f pre-prepare
message(s) and generates one authenticator for the commit
message. In COMMIT phase, primary replica executes one
NGen = σd, and 2f NVrf = σd operations.
• Backup failures (Fig. 3a): The normal operation of PBFT

also deals with the backup failure scenario. Therefore,
TheoLatNO of backup failure is as same as that in the failure-
free scenario.
• Primary failures best benign scenario (Fig. 3b): TheoLatVC
= (2×ρ×f+2f+2ρ+2)×Sd. The new primary verifies 2f+
1 NVrf = σd view-change message(s). In addition, it includes
ρ pre-prepare messages, where ρ is the number of requests
that have been processed since last stable checkpoint. For
each request, in NEW-VIEW phase, the primary also verifies

whether there exists a prepare certificate (with (2f +1)× ρ
NVrf = σd digital signatures). In other words, in NEW-VIEW
phase, 1+ρ NGen = σd operations and (2f +1)×ρ NVrf =
σd operations are executed.
• Primary failures worst benign scenario (Fig. 3c):
TheoLatVC = (2f2 + 3f + 2ρf + 2ρ + 2) × Sd. In the
worst case, f VIEW-CHANGE phases are triggered. In each
VIEW-CHANGE, every replica verifies 2f + 1 NVrf = σd
view-change message(s). After f VIEW-CHANGES, the cor-
rect primary executes (2f + 1) × ρ NVrf = σd and 1 + ρ
NGen = σd operations.
• Primary failures worst Byzantine scenario (Fig. 3d):
TheoLatVC = (2f2+2ρ×f2+4f+4ρ×f+2ρ+2)×Sd. In
the worst case, f VIEW-CHANGE phases are triggered where
each primary generates an incorrect new-view message.
In each round, every replica verifies 2f + 1 view-change
message(s), i.e., 2f+1NVrf = σd operations are executed. In
each NEW-VIEW, the faulty replica first executes (2f+1)×ρ
NVrf = σd to verify pre-prepare messages in view-change
messages, and then executes 1 + ρ NGen = σd when broad-
casting a faulty new-view message. The number of opera-
tions for all f view changes is therefore 2f+2ρ×f+2ρ+2.
In the worst case, after f view changes, the primary replica is
correct. The primary executes 2f + 1 NVrf = σd operations
for the view-change messages and executes (2f + 1) × ρ
NVrf = σd and 1 + ρ NGen = σd operations.

B. Prime

Workflow. Prime is a leader-based BFT. It has two sub-
protocols, PREORDERING and GLOBAL ORDERING. The
PREORDERING sub-protocol has three phases, PO-REQUEST,
PO-ACT, and PO-SUMMARY. In each round, one replica broad-
casts a po-request message consisting of a batch of client
requests and a pair of server number and sequence number.
Upon receiving a po-request message, each replica broadcasts
a po-ack message. After receiving 2f matching po-ack mes-
sages, the correct replica creates a preorder certificate (2f +1
signatures). Each correct replica then broadcasts po-summary
messages. After that, replicas move to the global ordering
phase, which is analogous to PBFT normal operation.

The view change protocol has three phases:
STATE DISSEMINATION, PROOF GENERATION, and REPLAY.
It covers both the best and worst scenarios of primary failure.
In STATE DISSEMINATION, a replica broadcasts a report
message and a pc-set message consisting of the prepare
certificates. Upon collecting 2f + 1 complete states, replicas
broadcast vc-list messages. In PROOF GENERATION phase,
when a replica receives a vc-list message, it broadcasts a
vc-partial-msg message. Upon collecting 2f+1 vc-partial-msg
messages, the replicas sign the message using threshold
signature and each replica broadcasts a vc-proof message.
Finally, in REPLAY phase, the leader receives the vc-proof
message, and then broadcasts a reply message. Replicas then
move to NEW-VIEW phase and resume normal operation.



(a) Failure-free and backup
failures scenario (f=1).

(b) Primary failures best
benign scenario (f=1).

(c) Primary failures worst benign
scenario (f=1).

(d) Primary failures worst Byzantine sce-
nario (f=1).

Figure 3: PBFT evaluation under the framework.

(a) Failure-free and backup failures scenario
(f=1).

(b) Primary failures in best and worst scenario
(f=1).

Figure 4: Prime evaluation under the framework.

(a) Failure-free scenario (f=1). (b) Backup failures scenario (f=1). (c) Primary failures best
benign scenario (f=1).

Figure 5: SBFT evaluation under the framework.

TheoLat in the five scenarios. The bottleneck server of Prime
is the primary. Latency of the primary is calculated as fol-
lows.

• Failure-free (Fig. 4a): TheoLatNO = (8f+8+b)×Sd. The
failure-free case for Prime is similar to two PBFT’s normal
operation, as shown in the figure.
• Backup failures (Fig. 4a): The scenario is the same as that

in failure-free scenario, i.e., TheoLatNO = (8f+8+b)×Sd.
• Primary failure best and worst scenarios (Fig. 4b): Prime’s

view change protocol ensures that a correct replica is
elected after the view change. Therefore, the number of
cryptographic operations is the same under primary failures.
In the best and worst scenarios, TheoLatVC = (10f +
9) × Sd + (4f + 2) × St,v + 1 × St,c + (2f + 2) × St,s.
In STATE DISSEMINATION phase, each replica executes one
NGen = σd operation for the report message and one NGen =
σd operation for pc-set message. Each replica verifies 2f+1
σd operations for the report messages and 2f + 1 σd
operations for the pc-set messages. In PROOF GENERATION
phase, the designated primary executes one NGen = σd
and 2f + 1 NVrf = σd operations for the vc-list messages.
After that, a replica executes 2f + 1 NGen = σt,s, 2f + 1
NVrf = σt,v , and one NVrf = σt,c operation for vc-partial-sig
messages. Finally, the primary executes one NGen = σt,s
and 2f + 1 NVrf = σt,v operations for vc-proof messages.
In REPLAY phase, the primary executes a NGen = σd
operation and a NVrf = σd operation for replay message.
In REPLAY-PREPARE and REPLAY-COMMIT, the number of
cryptographic operations are the same as PREPARE and

COMMIT in Prime’s normal operation, i.e., (4f + 3)× Sd.

C. SBFT

Workflow. SBFT is designed to enhance the scalability of
conventional BFT protocols. SBFT is structured by primary
and replicas (including 1 + c C-collector and 1 + c E-
collector) and three threshold signatures schemes, σ with
threshold 3f + c + 1, τ with threshold 2f + c + 1, π with
threshold f+1. The normal operation of SBFT has two phases,
OPERATION, and EXECUTION. OPERATION phase consists of
a FAST PATH protocol in the failure-free scenario and a fall
back LINEAR-PBFT protocol under failures. In this work, we
consider c = 0.

In FAST PATH protocol, upon receiving requests from
clients, the primary broadcasts a pre-prepare message. Upon
accepting pre-prepare messages, each replica signs, and sends
a sign-share message to C-collector. The C-collector verifies
σ signature shares, combines them and sends them back to
all replicas. In EXECUTION phase, replicas sign and send a
sign-state message to E-collector. Upon collecting τ messages,
The E-collector verifies and combines them into one signature
and broadcast full-commit-proof messages. Each replica veri-
fies and accepts the message.

LINEAR-PBFT is a fall-back protocol in normal operation.
The primary also acts as C-collector and E-collector in
this protocol. The protocol has four phases: SIGN-SHARE,
PREPARE, COMMIT-PROOF, and PBFT COMMIT-PROOF. In
SIGN-SHARE phase, replicas use τ as authenticator for commit
message, and send to the primary. Upon collecting σ or



τ signatures hares, the primary combines them and broad-
casts a prepare message. In PREPARE phase, replicas send
commit messages to the primary. In PBFT COMMIT-PROOF
phase, the primary combines 2f + 1 shares, and broadcasts
full-commit-proof-slow message. After verifying the message,
replicas enter EXECUTION phase.

The view change protocol of SBFT is similar to that in
PBFT.

TheoLat in the five scenarios. SBFT assumes point-to-point
authenticated channels (via TLS). In our framework, we
ignore the authenticators of the underlying channels and
consider cryptographic operations at the application level.
We consider the extreme case where a replica is a primary,
E-collector, and also C-collector. Indeed, this might be the
default setting in some setups. The latency of the bottleneck
server is calculated as follows.
• Failure-free (Fig. 5a): TheoLatNO = 3× St,s + 2× St,c +
(4f+4)×St,v . SBFT executes FAST PATH and EXECUTION
in failure-free scenario. In the FAST PATH phase, the primary
executes a NGen = σt,s operation and the C-collector verifies
3f + 1 NVrf = σt,v shares and combines them (executing
a NVrf = σt,c operation). In EXECUTION phase, each
replica verifies one NVrf = σt,v signature and generates a
NGen = σt,s threshold signature. The E-collector verifies
f + 1 NVrf = σt,v and combines the threshold signatures
(one NVrf = σt,c operation). Each replica then verifies the
message, executing one NVrf = σt,v operation.
• Backup failures (Fig. 5b): TheoLatNO = 4 × St,s + 3 ×
St,c + (5f + 6) × St,v . SBFT consists of a LINEAR-PBFT
phase and an EXECUTION phase under backup failure(s).
The major difference from the failure-free case is that each
replica creates two threshold signature shares in each round.
• Primary failures best benign scenario: TheoLatVC = (2f+
1)×Sd+ρ×St,v . This scenario is analogous to PBFT’s view
change. The main difference occurs in NEW-VIEW phase:
the designated primary verifies all historical commit-proof
messages sent in the view-change messages via threshold
signatures (i.e. ρ NVrf = σt,v).
• Primary failures worst benign scenario: TheoLatVC =
(2f2+3f +1)×Sd+ρ×St,v . According to the illustration
above, there are f rounds in worst case and the f + 1-
th designated primary is correct. TheoLatVC per round is
(2f + 1) × Sd in terms of benign failures. Therefore, the
TheoLatVC in total is (2f + 1)× Sd × (f + 1) + ρ× St,v .
• Primary failures worst Byzantine scenario: TheoLatVC =
(2f2+3f+1)×Sd+(ρ×f+ρ)×St,v . There are f rounds in
worst case. TheoLatVC per round is (2f+1)×Sd+ρ×St,v

in terms of Byzantine failures. Therefore, the TheoLatVC in
this scenario is ((2f + 1)× Sd + ρ× St,v)× (f + 1).

V. EXPERIMENTAL EVALUATION

A. Overview

We evaluate the BFT protocols experimentally. Our goal is
to validate our theoretical results in the framework.

We present the performance of three representative BFT
protocols: PBFT, Prime, and SBFT. Their corresponding open-
source codebase libraries are Sawtooth-PBFT from Hyper-
ledger1, Prime from Johns Hopkins University2, and Concord-
BFT from VMware3. We consider all five scenarios as dis-
cussed in our framework. We focus mainly on the performance
of latency as it is the motivation of our work. Our evaluation
results show that our theoretical framework is useful in evalu-
ating BFT protocols, especially for the latency breakdown of
different phases.

B. Evaluation Setup

We use CloudLab [11] platform for our evaluation as
CloudLab provides an environment similar to that in the
control systems of the power grid. We use 6 Intel(R) Xeon(R)
CPU E5-2640 v4 with 2.40GHz instances running in Utah
cluster. By default, it provides 2×10 Gbps network interfaces,
and each node has 64-bit ARM processors. What’s more, we
also considered experiments with different testbeds, which
also include a local Dell/EMC docker cluster. For Dell/EMC
docker cluster, all Docker deployed on a Dell/EMC local
machine with Intel(R) Core™ i7-8700 CPU with 3.20GHz ×
12 processors and 15.5GiB memory.

C. Latency Breakdown in Normal Operation

We first assess the latency of PBFT, Prime, and SBFT in
the failure-free scenario, with four replicas. Table II shows the
latency per request and its breakdown in each phase. For each
experiment, we run it several times and report the average
values.

Protocol/Phase PRE-PREPARE PREPARE COMMIT REPLY Total
PBFT 8.32 3.21 3.85 2.38 17.76

Protocol/Phase PREORDERING PRE-PREPARE PREPARE COMMIT Total
Prime 13.49 4.78 4.73 5.12 28.12

Protocol/Phase PRE-PREPARE OPERATION EXECUTION Total
SBFT 0.3 1.67 0.74 2.72

Table II: Latency breakdown of BFT protocol under failure-
free scenario (unit: ms).

For PBFT, the latency of PRE-PREPARE, PREPARE,
COMMIT, and REPLY phases account for 46.85%, 18.07%,
21.68%, and 13.4% of the overall latency, respectively. Our
results show that the PRE-PREPARE phase incurs the highest
latency. This result matches the fraction of cryptographic
operations under our framework (i.e. 2 : 0 : 1 : 1 by calculating
TheoLatNO letting f = 0 and b = 1).

For Prime, the latency of PREORDERING, PRE-PREPARE,
PREPARE and COMMIT phases accounts for 47.97%, 17%,
16.82%, and 18.21% of the latency, respectively. According
to the results of our framework, the fraction of cryptographic
operations of four phases is 6 : 1 : 0 : 2, which matches our
experimental evaluation results.

The results for SBFT are similar. The latency of
PRE-PREPARE, OPERATION, and EXECUTION accounts for
11.03%, 61.4% and 27.2% of the latency, respectively. Since

1Sawtooth-pbft: https://github.com/hyperledger/sawtooth-pbft
2Prime: http://www.dsn.jhu.edu/prime/
3Concord-bft: https://github.com/vmware/concord-bft
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Figure 6: Latency of BFT protocols when f changes (Gray:
PBFT, light blue: Prime, dark blue: SBFT).
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Figure 7: Scale-up latency of SBFT.

the SBFT uses threshold signatures, we evaluate the unit
latency St,s, St,c and St,v and put them in the results of
our framework. According to our framework, the fraction of
different phases in SBFT is 0 : 11 : 9, which approximately
matches the experimental results.

D. Latency Breakdown under Backup Failures

We assess the performance under backup failures. We
evaluate the latency and report the breakdown for f = 1,
f = 2, and f = 5. For all experiments, we simply stop f
backup replicas. The results are summarized in Figure 6.

For all three BFT protocols, the overall latency increases
as f grows. Besides, Prime has the highest latency among the
three protocols. The results match those in our framework.
Compared to the other two protocols, the latency of SBFT
does not increase significantly as f grows. Since the latency
of threshold signatures is related to f (instead, the latency
of digital signature is static), we add a scale-up evaluation
for SBFT, where we evaluate latency using up to f = 30, as
shown in Figure 7. The evaluation shows that when f is large,
the latency of SBFT increases significantly.

We show the fraction of each phase for all three protocols
(f = 1) in Figure 8a and compare the theoretical results with
the experimental results. The results show that the fractions
of each phase roughly match that of the experimental results.
Furthermore, we also evaluate the latency for Sd, St,s, St,c,
and St,v , put them in our framework, and evaluate the latency
based on TheoLat. As shown in Figure 8b, the latency ob-
tained from our framework is consistently lower than that in
the experimental results. It is expected since the latency of
a protocol also involves significantly more other operations
and network communication. The overall trend of the latency,
however, matches that of the experimental results.

Besides the above evaluation of latency under backup fail-
ures, we also report the latency breakdown for the protocols in
Figure 9. As illustrated in Figure 9a, Figure 9b and 9c, each
phase in BFT protocols achieves a higher latency when f is
larger and its latency is expanded in every phases, as expected
in our framework.

E. Latency under Primary Failure - Best Scenario

We then evaluate the overall latency under primary failures
and assess the best scenario. In this scenario, the primary
replica crashes only once while the next primary is correct
so that all replicas resume normal operations upon only one
round of view change. Based on this, we set up the BFT
evaluation by starting a f = 1 network, applying a normal

operation workload, and killing one replica in the middle of
each experiment. During the evaluation, we record the latency
of view change protocol and report latency breakdown of the
protocols as shown in Table III.

According to the TheoLatV C values, the fractions of differ-
ent steps during view changes for SBFT, PBFT and Prime are
3Sd : ρSt,v , 3Sd : (4ρ+1)Sd and 8Sd : 4St,s+St,c+6St,v+
4Sd : 7Sd, respectively. In our experiments, ρ is around 10.
The results match the experimental results except for PBFT. It
is mainly because, in the implementation, verification of the
messages. are executed in the VIEW-CHANGE phase.

F. Latency Breakdown under Primary Failures - Worst Sce-
narios

For the worst scenarios under primary failures, we first
consider the crash failures where f primary replicas all crash.
Then all replicas resume normal operations after view changes.
We start a f = 5 network, apply a normal operation workload,
and kill all f primary replicas (identify primary replicas by
the replica IDs) in the middle of the experiments. Similar to
the best scenario under primary failure, we assess the latency
breakdown of the protocols, as shown in Table IV.

According to TheoLatV C , the fraction of view change
steps for SBFT and PBFT are both 11Sd : ρSt,v and
11Sd : (12ρ + 1)Sd. These results do not match exactly the
experimental results. This is mainly because verification of
committed requests in the view-change messages are imple-
mented in the view change step, incurring a higher fraction
of latency. The view change latency for SBFT is shorter than
PBFT, which is expected in our framework. This is mainly
because each primary verifies fewer authenticators due to the
use of threshold signatures.

We also assess the performance of the worst-case scenarios
under Byzantine failures. When we simulate the behavior of
Byzantine replicas, we set up all f Byzantine primaries by
letting them broadcast inconsistent messages to other replicas.
During the evaluation, we find that the performance of Byzan-
tine failures scenario is similar to that in the benign failures
scenario. Therefore, the results we present in Table IV repre-
sent both the worst benign scenario and the worst Byzantine
scenario of BFT consensus.

VI. CONCLUSION AND LESSONS LEARNED

We present a theoretical framework for evaluating BFT
protocols. We provide a generic approach that calculates the
concrete number of cryptographic operations in five different
scenarios to understand the performance of BFT protocols. We
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Figure 8: Theoretical and experimental practical results of BFT protocols in the backup failure scenario where f = 1 (the
upper three are theoretical results, and others are experimental results).
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Figure 9: Latency breakdown of PBFT, Prime, and SBFT when maximum number of faulty replicas f changes.

Protocol/Phase VIEW-CHANGE NEW-VIEW Total
SBFT 5 18 23

Protocol/Phase VIEW-CHANGE NEW-VIEW Total
PBFT 35.9 66.8 102.7

Protocol/Phase STATE-DISSEMINATION PROOF-GENERATION REPLAY Total
Prime 4.1 7.1 3.7 14.9

Table III: Latency breakdown of BFT protocol under primary
failure best scenario (unit: ms).

Protocol/Phase VIEW-CHANGE NEW-VIEW Total
SBFT 404 15 419

Protocol/Phase VIEW-CHANGE NEW-MESSAGES Total
PBFT 739 94.2 833.2

Table IV: Latency breakdown of BFT protocol under primary
crash failure worst scenario (unit: ms).

also evaluate the performance of selected protocols experimen-
tally in the same LAN environment. Our experimental results
validate most of our theoretical results.

Evaluating BFT protocols and understanding how each
protocol behaves experimentally, especially under failures, has
always been a challenge in the literature. In this work, we
follow prior works that calculate the number of cryptographic
operations. In practice, the performance of the protocols is
related to many factors such as programming languages used
and the underlying communication approach. Our experience
with evaluating the protocols experimentally has shown that
our framework is useful in estimating the fractions of la-
tency in each phase of the protocols and the performance
improvement/degradation of different protocols. Therefore, for
the scenarios that are difficult to evaluate experimentally, the
theoretical framework serves as a reference for assessment.
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fault tolerance beyond crashes. In OSDI, pages 485–500, 2016.

[18] P. J. Marandi, M. Primi, and F. Pedone. High performance state-machine
replication. In DSN, pages 454–465. IEEE, 2011.

[19] A. Nogueira, M. Garcia, A. Bessani, and N. Neves. On the challenges
of building a bft scada. In DSN, pages 163–170. IEEE, 2018.

[20] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, 2019.




