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Abstract
We are launching a series to celebrate the 40th anniversary of the first issue of Molecular Biology and Evolution. In 
2024, we will publish virtual issues containing selected papers published in the Society for Molecular Biology and 
Evolution journals, Molecular Biology and Evolution and Genome Biology and Evolution. Each virtual issue will be ac
companied by a perspective that highlights the historic and contemporary contributions of our journals to a specific 
topic in molecular evolution. This perspective, the first in the series, presents an account of the broad array of meth
ods that have been published in the Society for Molecular Biology and Evolution journals, including methods to infer 
phylogenies, to test hypotheses in a phylogenetic framework, and to infer population genetic processes. We also men
tion many of the software implementations that make methods tractable for empiricists. In short, the Society for 
Molecular Biology and Evolution community has much to celebrate after four decades of publishing high-quality sci
ence including numerous important inferential methods.

Key words: Society for Molecular Biology and Evolution, anniversary celebration, inferential methods, software 
packages, SMBE journals.
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Forty Years of the Society for Molecular 
Biology and Evolution Journals
Molecular Biology and Evolution (MBE) has reached its for
tieth anniversary. The journal, and ultimately the Society 
for Molecular Biology and Evolution (SMBE), traces its ori
gin to a June 1982 meeting held at the State University of 
New York at Stony Brook. Following a symposium on the 
“Evolution of Genes and Proteins,” the participants gath
ered to discuss an idea for a new journal. They saw a 
need for a journal that bridged the gap between molecular 
and evolutionary biology, provided a high-quality forum 
for publications at an accessible cost, and was governed 
by the scientific community. The first issue of MBE was 
published only 18 months later, in December 1983.

The success of MBE contributed to the formation of the 
SMBE in 1992. SMBE has grown as a society and supported 
the founding of a second journal, Genome Biology and 
Evolution (GBE), in 2009 (Fig. 1). Originally designed to fo
cus on emerging genome-scale data, GBE was among the 
first society-owned open-access journals. Recently, MBE, 
following GBE's lead, has also become open access. In keep
ing with the goals of the founding group, the cost of 
publishing in the SMBE journals remains modest, and 
both journals have an inclusive waiver policy with a 

commitment to publish high-quality science regardless 
of an author’s ability to pay publication costs. The pro
ceeds from SMBE publishing support other SMBE activ
ities, including the annual meeting, IDEA initiatives, 
satellite meetings, and various awards and fellowships.

To mark our 40-year anniversary, the SMBE journals 
are launching a collaborative year-long celebration. 
Throughout 2024, MBE and GBE will publish perspectives 
centered on topics of both contemporary and historical 
significance within our field. Each perspective will be com
plemented by virtual issues housing selected publications 
from both journals that highlight work relevant to the 
monthly topic. In addition to their availability on journal 
websites, the virtual issues can be accessed from the newly 
launched website that represents the SMBE family of jour
nals (www.academic.oup.com/smbejournals). We hope 
that the perspectives and virtual issues will encourage 
our community to celebrate the lasting impacts of journals 
built by, and for, the community.

The monthly topics in the anniversary series will be as 
varied as the papers in the journals, including topics like 
testing for selection, human diversification, the mechan
isms and consequences of recombination, sex chromo
somes, and microbial diversity. For this first installment, 
we have created virtual issues and this perspective to 
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highlight papers on inferential methods in evolutionary 
biology. Over the last four decades, our journals have 
played a central role in developing methods for the study 
of molecular evolution, resulting in a rich literature of 
highly cited studies. In fact, the literature is so vast that 
we cannot hope to mention all the impactful papers 
here. Instead, we focus on a few key research areas (e.g. 
phylogenetic inference, hypothesis testing in a phylogen
etic framework, and population genetic analysis). We 
hope that this perspective highlights the variety of meth
odological improvements that have been published in 
the SMBE journals and illustrates the success of the foun
ders’ goal to bridge gaps between molecular and evolu
tionary biology (Fig. 2).

An Overview of Methods Published in SMBE 
Journals
Phylogenetic Inference
The SMBE journals have played a pivotal role in the 
development and application of molecular phylogenetic 
methods. One example is the neighbor-joining algo
rithm (Saitou and Nei 1987), which remains the most 
cited single publication in the SMBE journals with 
more than 50,000 citations. Neighbor-joining has had 
a lasting influence because it is easily implemented, 
accurate if distances are unbiased (Rzhetsky and Nei 
1993), and lightning fast, even for very large numbers 
of sequences (Huelsenbeck 1995).

Other tree-building methods presented in our journals 
include BIONJ (Gascuel 1997), FastTree (Price et al. 2009), 
minimum-evolution (Rzhetsky and Nei 1992), weighted 
neighbor-joining (Bruno et al. 2000), generalized neighbor- 
joining (Pearson et al. 1999), NJML (Ota and Li 2000), and 
quartet puzzling (Strimmer and von Haeseler 1996). An 
alternative to these bifurcating tree-building methods is 
family-joining, which is for taxa that have been sampled 
over evolutionary time when a strictly bifurcating tree 
may not be appropriate (Kalaghatgi et al. 2016). 
Family-joining is a distance method in which operational 
taxonomic units (OTUs), such as viruses, can be placed 
not only at external branches but also at internal vertices. 
Another set of papers have focused on network construc
tion, which can be more relevant for building intraspecific 
trees with low genetic distances among OTUs. Network 
approaches published in our journals include a combina
torial method (Huson and Scornavacca 2011), median- 
joining (Bandelt et al. 1999), neighbor-net (Bryant and 
Moulton 2004), and the Bayesian inference for species’ net
work (Zhang et al. 2018).

SMBE journals have played a leading role in adopting 
Bayesian approaches for constructing phylogenies. For ex
ample, the work of Yang and Rannala (1997) was among 
the first to implement the Markov chain Monte Carlo 
(MCMC) algorithms for Bayesian phylogenetics. This was 
a significant step forward and merits recognition, because 
MCMC has become the go-to approach to approximate 
the posterior distribution of evolutionary parameters.

Fig. 1. Recent covers from the two SMBE journals, MBE (left) and GBE (right).
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Many tree-building methods use a concatenated (mul
tigene) alignment to build a single phylogenetic tree. For 
the same set of OTUs, however, individual genes may yield 
different topologies due to distinct evolutionary histories 
such as gene duplications/loss, lateral gene transfers, or 
the presence of genetic polymorphism in the ancestral 
species. Pamilo and Nei (1988) provided the theoretical 
foundation to phylogenetic reconstructions based on 
multispecies coalescence models. Their method provides 
analytical solutions for the probability of topological 
matches between gene and species trees. In this approach, 
a phylogenetic tree is first built for each available marker, 
and then individual gene trees are summarized into a sin
gle species tree, analyzing conflicts between gene trees. 
Similar methods have been published across our journals, 
including extensions of coalescent approaches (Ané et al. 
2007; Heled and Drummond 2010) and methods suitable 
to large data sets (Ullah et al. 2015).

A newer method for testing incongruences between 
gene trees is PhylteR, which is useful for phylogenomic 
data sets. In this case, distance matrices built from each 
marker are compared in order to detect (and possibly re
move) outlier sequences that are the OTUs that do not fol
low the general pattern (Compte et al. 2023). In 2012, 
Bryant et al. introduced a new method, for biallelic and 
nonlinked markers, to build a species tree considering all 
possible gene trees (Bryant et al. 2012). In this method, ra
ther than integrating over all possible genealogies to deter
mine the probability of data given the species tree, the 
authors developed a pruning algorithm for analytical cal
culation of this value, bypassing the construction of indi
vidual gene trees.

It might be useful to delimit species using molecular 
markers, particularly if the taxonomic group presents 
few conspicuous morphological characteristics. Using the 
multispecies coalescent model in a Bayesian framework, 
Yang and Rannala (2014) developed a method to infer spe
cies delimitation and to estimate the species phylogeny at 

the same time. This new method differed from previous al
gorithms that required a guiding phylogeny.

Studies published in our journals have also advanced 
our ability to evaluate the robustness of phylogenetic 
tree clades for large data sets, where algorithm speed is 
critical. These methods include UFBoot, an ultrafast ver
sion of the bootstrap test of branch support (Minh et al. 
2013; Hoang et al. 2018) and a coalescent-based method 
that quickly evaluates branch support from quartet fre
quencies (Sayyari and Mirarab 2016). Earlier studies have 
provided important insights about reliability estimates; 
for example, Hedges (1992) estimated the number of boot
strap replications needed for a precise estimate of the 
bootstrap support value.

Phylogenies cannot be produced without quality align
ments, and the SMBE journals have contributed to this im
portant step, publishing versions of the popular MAFFT 
(Katoh and Standley 2013) and GBlocks (Castresana 
2000) software. MAFFT allows rapid generation of multise
quence alignments under a variety of parameterizations, 
while GBlocks evaluates alignment quality, identifies the 
most conservative (and presumably trustworthy) blocks 
of alignment, and allows the user to discard more variable 
sections with poorer alignments.

Most methods of phylogenetic inference require nu
cleotide substitution models. But how accurate and gen
eral are these models, and which one best suits specific 
data sets? The availability of numerous nucleotide substi
tution models creates the challenge of model choice be
cause the wrong model can affect both phylogenetic 
inference and other statistical analyses. Our journals 
have led the field in proposing and evaluating nucleotide 
substitution models, ranging from the first model pub
lished in MBE (Tajima and Nei 1984) to refinements that 
improve their generality (Tamura and Nei 1993). The jour
nals have also published several methods to test the fit of 
evolutionary models, such as PartitionFinder (Lanfear et al. 
2012; Lanfear et al. 2017), SMS (Lefort et al. 2017), 

Fig. 2. The first issue of MBE in
cluded a flier that advertised 
the intention to merge the 
fields of molecular biology 
with evolutionary biology. 
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ModelTest-NG (Darriba et al. 2020), jModelTest (Posada 
2008), and additional tests that take codon position into 
account (Shapiro et al. 2006). Huelsenbeck et al. (2004) ex
panded the pool of models for comparison using Bayes 
factors and a reversible jump MCMC; their approach 
included the possibility to test among nonnested models 
(Huelsenbeck et al. 2004). Using empirical data, it is a com
plex task to ascertain the correct model and it is useful to 
know if the tree-building method is robust against 
model violations. To assess the scale and impact of model 
violations for phylogenetic inference, Naser-Khdour et al. 
(2019) implemented a maximal matched-pairs test of 
homogeneity.

Finally, rooting an evolutionary tree is a critical step in 
phylogenetic inference, as only rooted trees can be directly 
related to divergence times. Lake et al. (2007) developed 
the top-down indel rooting method that uses nonubiqui
tous genes to root the tree of life. Unlike previous meth
ods, this rooting method uses information not only on 
indel gains and losses but also on gene gains and losses 
(Lake et al. 2007).

Hypothesis Testing in a Phylogenetic Framework
Phylogenies allow us to address questions about species re
lationships, but they also form the basis for downstream 
analyses. Some fundamental analyses use phylogenies to 
visualize data (phenotypic, experimental, clinical, etc.) 
onto a phylogenetic framework. For cases like these, Yu 
et al. (2018) developed an R package named ggtree to 
map and visualize data.

Other applications require additional inference. One 
useful goal is to produce a timetree that places divergence 
times on interior nodes. The construction of timetrees has 
a lengthy history in the SMBE journals. For example, 
Takezaki et al. (1995) developed a method based on the 
assumption of a strict molecular clock. Their application 
used a single calibration time point and allowed users to 
remove lineages that deviated significantly from the rate 
constancy assumption. This linearized tree method differs 
from the current relaxed-clock methods that are currently 
popular. For example, Yang and Rannala (2005) developed 
a Bayesian MCMC algorithm that allows for multiple and 
softbound calibration priors for estimating divergence 
times, contrasting with the single or hardbound time 
priors of earlier methods. New methods can even accom
modate phylogenetic uncertainty (Baele et al. 2012), and 
most of them are able to estimate divergence times 
when evolutionary rates vary across lineages (Sanderson 
1997; Rambaut and Brooman 1998; Thorne et al. 1998; 
Sanderson 2002).

Many of these methods employ Bayesian approaches, 
which can be computationally intensive and prohibitive 
with large data sets. RelTime is a faster algorithm for 
estimating timetrees. Although originally published 
elsewhere (Tamura et al. 2012), recent advances and 
evaluations of RelTime have been published in MBE, 
including the theoretical foundation of the method 
(Tamura et al. 2018) and evaluations based on simulated 

(Filipski et al. 2014) and empirical (Mello et al. 2017) 
data sets.

We have also published a helpful online resource called 
TimeTree of Life (Kumar et al. 2017). This project assem
bles information on the timescale of life, in a similar way 
to the Tree of Life project (Maddison et al. 2007), but fo
cuses on divergence times rather than clades. This resource 
includes searchable divergence time data from ∼4,000 
studies across ∼148,000 species and is now in its fifth re
lease (Kumar et al. 2022). Apart from time estimates, 
TimeTree also allows users to explore timetrees that are 
extracted, for a given taxonomic group, from the global 
timetree.

Another major theme, which is closely related to esti
mating and testing molecular clocks, is estimating rates 
of nonsynonymous (dN) and synonymous (dS) evolution 
and their ratio (dN/dS) along evolutionary branches of a 
tree. The use of dN/dS as a signal of adaptive evolution 
was fueled in part by advances like the publication of 
a simple distance method that estimates dN and dS be
tween pairs of OTUs (Nei and Gojobori 1986). The later 
publication of codon-based models of nucleotide substi
tution (Goldman and Yang 1994; Muse and Gaut 1994) 
laid the groundwork for maximum likelihood hypothesis 
testing of dN/dS on evolutionary trees, including the 
capability to test for adaptive evolution on individual 
branches and on specific codons (Yang and Nielsen 
2000, 2002).

Population Genetic Analysis
Population genetics has been a prominent topic in SMBE 
journals since their inception. In fact, the first issue fea
tured a paper by Motoo Kimura, which extended his “neu
tral theory of molecular evolution and polymorphism” to 
estimate the fraction of selectively neutral alleles among 
new mutations from what became known as the site fre
quency spectrum (Kimura 1983). This method presaged 
those that estimate the distribution of fitness effects 
(DFE) and the rate of adaptive evolution (Eyre-Walker 
and Keightley 2009; Huang et al. 2021). These and similar 
methods have spawned numerous empirical studies (e.g. 
Slotte et al. 2010; Gossmann et al. 2012; Tsagkogeorga 
et al. 2012; Campos et al. 2018) that have provided insights 
into both the evolutionary processes and the variation of 
DFEs across populations and species.

Another major theme has been analyzing the effect of 
evolutionary forces, such as gene flow and drift, on rates 
of population divergence. Before these forces can be char
acterized, however, it may be important to first identify 
separate populations. To this end, Hudson et al. (1992)
published a widely used test for detecting geographic 
subdivision among populations. Once populations are 
identified, one can model the process of divergence in 
the face of gene flow between populations. Also, Hey 
(2010) contributed seminal work to this topic by extend
ing isolation–migration models to multiple populations, 
which also provided a means to estimate divergence times 
and migration rates across populations. Related 
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innovations include the ABBA–BABA statistics (Durand 
et al. 2011) and their extensions (Martin and Amos 
2021). These statistics can detect the signatures of intro
gression between populations and, in some cases, can 
also infer the direction of historical introgression events 
(Martin and Amos 2021).

Population divergence is affected by genetic drift, which 
is a function of demographic history, another recurring fo
cus of our journals. The inference of demography has 
undergone a revolution with the introduction of methods 
that estimate the chronological history of effective popu
lation size (Ne) without a predefined demographic model. 
These methods rely on the temporal rate of coalescence in 
a genealogy, and they typically produce a plot of estimated 
Ne over time—i.e. a “skyline plot.” Several refinements and 
improvements to this approach have been published in 
SMBE journals, including generalizing skyline plots for 
cases with low divergence (Strimmer and Pybus 2001), es
timating plots directly from sequence data rather than 
from an inferred genealogy (Drummond et al. 2005), and 
improving temporal smoothing and inference (Minin 
et al. 2008).

We have touched on many themes in population gen
etics, but some might argue that the major theme is de
tecting adaptive evolution. This topic is so broad, with 
such a rich history in our journals, that one of the perspec
tives in the 40th anniversary series will focus on detecting 
deviations from neutrality. In this context, we want to 
draw attention to three basic points. First, the historical ef
fects of demographic changes often complicate the infer
ence of selection, because these processes can produce 
similar diversity patterns (Johri et al. 2022). Substantive ef
forts have been invested into controlling for demographic 
history prior to inferring selection using both empirical 
(Tenaillon et al. 2004; Stajich and Hahn 2005) and model
ing approaches. An example of the latter is dadi, which 
uses allele frequency information to infer demographic his
tory (Gutenkunst et al. 2009) but can incorporate selection 
on single sites and predict the joint distribution of selected 
alleles among populations. An update in MBE improves the 
performance of dadi and applies it to more than three po
pulations (Gutenkunst 2021).

Second, our community has shown strong interests in 
detecting and understanding the behavior of selective 
sweeps. For example, SweeD adapted the CLR (Composite 
Likelihood Ratio) test (Nielsen et al. 2005) to a high- 
performance computing environment (Pavlidis et al. 2013). 
The CLR test is most effective at detecting hard sweeps 
caused by a single, new adaptive mutation. However, 
both theory (Pennings and Hermisson 2006) and empirical 
data (Schrider and Kern 2017) suggest that soft sweeps— 
i.e. sweeps that result from multiple (often competing) 
alleles—are likely to be common in nature. Haplotype- 
based methods have been particularly helpful for detecting 
soft sweeps. Excoffier and Slatkin (1995) produced key early 
work in this area by presenting methods to estimate haplo
type frequencies; Ferrer-Admetlla et al. (2014) introduced 
a summary statistic based on haplotype frequencies to test 

for selection, with improvements in statistical power com
pared to previous methods; and Harris and DeGiorgio 
(2020) published an approach that is useful for detecting 
both hard and soft sweeps from the haplotype frequency 
spectrum. More recent publications include a haplotype- 
based method (Flex-sweep) that utilizes convolutional 
neural networks (Lauterbur et al. 2023) and an efficient 
haplotype-based approach suitable for large data sets 
(Kirsch-Gerweck et al. 2023).

Many methods for detecting both soft and hard sweeps 
focus on single loci or genomic regions, but adaptation is 
often polygenic (Pritchard et al. 2010). The detection of 
polygenic adaptation requires different approaches, and 
one valuable approach for detecting potential polygenic 
adaptation was published in MBE. Frichot et al. (2013) ap
plied a “latent factor mixed model” (LFMM) to identify al
leles (i) with frequency distributions that are not easily 
explained by population structure and (ii) that are asso
ciated with other variables, such as bioclimatic measures. 
Alleles that fit both of these criteria are candidates for con
tributing to local adaptation that may be polygenic. A sub
sequent publication updated the LFMM approach (Caye 
et al. 2019).

Finally, the prevalence and role of balancing selection in 
the evolutionary process remains poorly understood. 
However, many of the methods that have been used to de
tect balancing selection have been published in SMBE jour
nals (Hunter-Zinck and Clark 2015; Siewert and Voight 
2017; Bitarello et al. 2018; Cheng and DiGiorgio 2019).

Software Packages
In addition to publishing methods, the SMBE journals have 
published numerous popular software packages that make 
methods accessible to our community. Many of these 
packages embed features like alignment, model choice, 
phylogenetic inference, and associated downstream ana
lyses. MEGA is the most prominent of these packages. 
Although MEGA was first announced elsewhere (Kumar 
et al. 1994), several versions have been published in MBE 
(e.g. Tamura et al. 2007; Kumar et al. 2018; Tamura et al. 
2021). These more recent versions have widely increased 
its scope, including more statistical analyses and various 
tree-building and timetree methods. Taken together, the 
collection of MEGA papers has been cited more than 
any other set of publications in our journals, which is a 
strong testament to both their scientific contributions 
and their practical importance. The fast RelTime analyses 
have been implemented in MEGA (Tamura et al. 2021), 
allowing users to evaluate the robustness of time esti
mates by, for example, comparing divergence times using 
distinct calibration sets. Three protocol papers, which de
tail pipelines for empirical analyses, have been published 
that focus on analyses using MEGA. These protocols 
guide MEGA users for building phylogenetic trees (Hall 
2013), performing bootstrap tests of branch support 
(Russo and Selvatti 2018), and estimating divergence 
times (Mello 2018).
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Our journals have published other prominent software 
packages like DAMBE (Xia 2013), PAML (Yang 2007), 
IQ-TREE (Nguyen et al. 2015; Minh et al. 2020), and 
SEAVIEW (Gouy et al. 2010). DAMBE covers most of the 
major steps of phylogenetic inference, such as sequence 
alignment, model selection, and tree building, as well 
as analyses like codon bias detection and inferring the 
isoelectric point of a particular enzyme in a solution. 
SEAVIEW is useful for aligning sequences, to inspect and 
edit alignments, and to concatenate individual blocks of 
alignment. It also performs some phylogenetic inference, 
although it is not its major focus. PAML features a large 
number of evolutionary models that can be used to com
pare and test phylogenetic trees and to test alternative 
biological hypotheses. Importantly, PAML can also be 
used to reconstruct ancestral gene and protein sequences. 
Many nonsynonymous (dN) and synonymous (dS) evolu
tion and similar methods are also available in PAML 
(Yang 2007) and HYPHY (Pond et al. 2005); these pro
grams are largely responsible for the burst of interest in 
investigating adaptive molecular evolution in coding 
sequences during the 2000s. MBE has published recent up
dates to both programs (Xu and Yang 2013; Pond et al. 
2020) as well as FUBAR, an approach that can rapidly 
detect positive and purifying natural selection with large 
data sets (Murrel et al. 2013). A useful PAML protocol to 
estimate synonymous and nonsynonymous distances 
and to detect positive selection was recently published 
in MBE (Álvarez-Carretero et al. 2023).

The IQ-TREE package is another popular and user- 
friendly program. It includes a search algorithm that great
ly improves exploration of tree space, yielding ML trees 
with higher likelihoods (Nguyen et al. 2015). In the latest 
release, search algorithms are able to use multicore CPUs 
and a parallel MPI (Message Passing Interface) system to 
speed analyses (Minh et al. 2020). The latest version incor
porates over 200 time-reversible evolutionary models for 
DNA, protein, codon, binary, and multistate morphologic
al data, as well as the ultrafast bootstrap and ModelFinder 
algorithms.

For timetree analysis, a popular program is BEAST, which 
can use either strict- or relaxed-clock models in a Bayesian 
framework. The species tree inference using biallelic markers, 
such as SNPs and AFLPs, was also implemented in BEAST 
(Bryant et al. 2012). BEAST has now been updated elsewhere 
(Suchard et al. 2018), but an earlier version was published in 
SMBE journals (Drummond et al. 2012). We have also 
published BEAST-related protocols for estimation of past 
population dynamics (Hill and Beale 2019) and for phylogeo
graphic inference (Dellicour et al. 2021).

The latest update of the BUSCO method (Simão et al. 
2015) was published in MBE (Manni et al. 2021). The primary 
purpose of BUSCO is to provide quality control on new gen
ome assemblies by assessing the complement of near- 
universal single-copy orthologs within an assembly. BUSCO 
works with taxon-specific databases of single-copy orthologs, 
and the latest versions include greatly expanded representa
tion of eukaryotic, prokaryotic, and viral genes. The new 

version of BUSCO also enables automatic database selection 
based on the phylogenetic insertion of input sequences.

With respect to population genetic analyses, the SMBE 
journals have published packages such as DNASP (Rozas 
et al. 2017), POPGENOME (Pfeifer et al. 2014), FUBAR 
(Murrell et al. 2013), and SLIM3 (Haller and Messer 2019a). 
The latest version of DNASP is configured for large data 
sets and is particularly suitable for genomic partitioning 
data such as RADseq. The POPGENOME package uses the 
R environment to process genome-scale data; it offers a range 
of population genetic analyses, including neutrality tests, 
population differentiation analysis, and recombination and 
disequilibrium detection tests. Finally, the SLiM forward 
simulation software is a popular and invaluable tool for popu
lation genetic analyses; MBE has published updates to this 
software (Haller and Messer 2017, 2019a) and a step-by-step 
protocol for new users (Haller and Messer 2019b).

It is important to emphasize that these software packages 
do not simply provide access to various methods and algo
rithms; new versions often introduce new and more accur
ate methods, enabling users to pursue their own analytical 
designs. Furthermore, the packages are freely available, usu
ally multiplatform, and often feature detailed manuals with 
user-friendly graphical interfaces. In many cases, they can 
run on regular desktop computers without large memory 
or disk space requirements. These factors are aligned with 
SMBE journals’ policies and traditions and could explain 
their enormous success and critical role in bringing new 
members to our molecular evolution community.

The Next 40 Years
The SMBE journals are thriving, publishing over 500 articles 
a year that merge the approaches of molecular biology, 
computational biology, statistics, genomics, and evolution
ary theory. They have grown to encompass new fields and 
technologies associated with functional and evolutionary 
genomics, and they continue to be ranked among top evo
lutionary biology and genetics journals. Moreover, the 
SMBE journals remain dedicated to ensuring that data 
and tools are fully accessible from the point of publication 
onward, exemplified by GBE's initiative to manually verify 
data availability statements in all accepted manuscripts.

This perspective, along with the accompanying virtual is
sue, should convince readers that authors publishing in 
SMBE journals have had a major impact on the methods 
and software used for evolutionary inference. Given the suc
cess of the last 40 years, we cannot help but wonder what 
the next 40 will bring. Although we are well into the “post
genomics era,” the pace of methodological advances for in
terpreting genomic data has not slowed. Some of these 
advances are fueled by the relative ease of procuring new 
data, contributing to ever larger data sets. Other innovations 
are fueled by new data types—e.g. single cell expression, 
chromatin and epigenomic data, improved biochemical 
structures, 3D genome topologies, and long-read assemblies.

As data sets expand, computational and statistical ap
proaches will continue to evolve. Machine learning 
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methods are increasingly applied to numerous problems in 
our field, including phylogenetic inference (Azouri et al. 
2021), coevolutionary rates of branches on a phylogeny 
(Tamura et al. 2021), model selection for phylogenetic in
ference (Abadi et al. 2020), detection of selective sweeps 
(Lauterbur et al. 2023), and other population genetic infer
ences (Flagel et al. 2019). Likewise, the broader field of arti
ficial intelligence (AI) is already having substantive 
impacts, both formally and informally. Researchers are, 
for example, using ChatGPT and other AI platforms for 
editing, coding, and preliminary data analyses. The applica
tion of these methods across distributed computing plat
forms will yield a new generation of methods for the 
curation, analysis, and interpretation of large data sets. 
We want to be at the forefront of these developments 
over the next four decades, just as our journals have con
tributed to revolutions in genomic, genetic, and structural 
analyses over the last four.

We conclude this perspective by inviting you to cele
brate the 40th anniversary (Fig. 3) by perusing the upcom
ing virtual issues and accompanying perspectives. But you 
need no invitation, because the SMBE journals are your 
journals. They were established by our burgeoning com
munity in 1983, and they continue to be managed by 
the community and for the benefit of the community. 
They rely on your expert opinions as authors, reviewers, 
and editors. If you have authored, reviewed, edited, or 
read papers in GBE and MBE, then this is your celebration!
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