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ABSTRACT

An incremental variational formulation for the nonlinear
finite element analysis of time dependent deformations in solids
is developed. Both material and geometrical nonlinearities are
considered. The material nonlinearities are due to creep and
plasticity, and the geometrical one is caused by large displace-
ments resulting from finite rotations. The time dependence is
due to creep in metals and viscoelasticity in polymeric materials.

The incremental equilibrium equations ére derived in the
Lagrangian mode of description using the virtual work principle.
The resulting equations are linearized and solved by a step-
forward integration procedure. For added accuracy an equilibrium
check 1s made at each step, and the unbalanced force is added to
the next load increment. Based on monitoring of the positive
definiteness of the system stiffness matrix, a capability of
postbuckling analysis of shells is developed.

Basic constitutive relations for creep and plasticity are
reviewed, and the theory of viscoplasticity is extended to the
case of large displacements in order to account for the effect
of creep deformations on the strain hardening. 1In the plastic
range the appropriate load criterion is obtained using von Mises
yield condition assuming isotropic hardening. 1In the theory of
finite linear viscoelasticity an approximate solution is formu-

lated using Prony series expansion for the relaxation modulus.



Based on this formulation a finite element program was
written for the analysis of large axisymmetric deformations of
shells of revolution. Shell elements including shear deformations
were used, which makes the program applicable to the analysis of
both thin and moderately thick shells. Several numerical examples
are presented to show the capabilities and accuracy of the formu-
lation. The examples include the snap—through analysis of shallow
elastic shells, and large displacement analyses of torispherical
pressure vessels subjected to creep and plasticity. Creep buckling
of columns and shallow shells, as well as viscoelastic buckling of

shells, is investigated.
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NOMENCLATURE

All symbols are defined when they first appear. The symbols
that are introduced in some sections but which are not referred to
later are not included. Some symbols may have two meanings in
different sections; these are clearly defined when used. Both
Greek and Latin indices range from 1 to 3, unless otherwise noted.

In Chapter 2, F and u represent the complete tensor and
vector, with base vectors included. In other chapters the same
symbol is used to denote the matrix or vector of tensor and

vector components.

lA Stored energy per unit mass in (Bl

AIJKL Strain transformation matrix, Eq. (3.53)

dA, da, da Infinitesimal areas in @)0, OBl and @2 respectively
Bg B1 B, Initial configuration, and configuration 1 and 2

respectively.

9@ 0 %l %2 Areas of @0=a’l’&2 with prescribed tractions

LIJKL ;
CIJKL’ Stress—strain transformation tensor.
c Right Cauchy-Green deformation tensor.
%g Rate—of-deformation tensor in(Bl
'QF,‘QF Elastic and inelastic part of D, see Eq. (3.6).
E, Et Young's modulus and tangent modulus
1 .
EIJKL Components of Hooke's generalized law
1 2 ;
Eg» EIJ’ EIJ Lagrangian strain in(Bl,(Bz and increment of
Lagrangian strain between @l andCE2 respectively.

lﬁ s Lagrangian strain rates in @, and @

iJ’ 1J 1 2
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viii

Elastic, plastic and creep strain rates in Q&

Instantaneous creep strain increment, Eq. (3.64)
Transient creep strain increment, Eq. (3.65)

Li t
inear part of EIJ

Components of el Eq. (2.50b)

Deformation gradient in(Bl, and intﬂz relative
to CBl, respectively.

Elastic and inelastic pért of_g, respectively
Eq. (3.4).

Strain transformation tensor, Eq. (3.54).

Body force vectors in @l and @2 respectively.

Yield surface

Shear modulus

Shear and bulk relaxation modulus, respectively
Discrete relaxation moduli

Integrating (relaxation) functions

Base vectors in 80,681 and @2, respectively

Plastic potential

As defined in section 4.2.

Stress-strain transformation tensor, Eq. (3.57)
Creep and plastic hardening functioms.

As defined in section 3.6.

Shell thickness at node i; and as defined in

section 4.2.
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ix

Normal vector in 650,(31 and @2, respectively.

Normal pressure in@l and @2, and incremental
pressure between@l and@z.

Internal variables.

Rotation tensor

Generalized load

Generalized displacement; and radius

Local curvelinear coordinate

2nd Piola~-Kirchhoff stress temsor in 81 and

032, and increment between Ql and @2, respectively.
Rates of 2nd P-K stress in (Bl and(?:2

Delayed (creep) increment of P-K stress between

Gl r:md@2

, . IJ
Deviatoric component of S

Cauchy stress in @l and 032, respectively.
Traction vectors in @O’Cbl and @2

Local coordinate; time

Stretch tensor

Displacement vector to 551 and CBZ from CBO’
and from @l to @2, Fig. 2.1.

Elastic and inelastic displacement vector,
Fig. 3.2.

Horizontal displacement at node i

Virtual work in @1 and @2

Creep and plastic work
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Vertical displacement at node i

Coordinates of material point in @O,@l,@z
Rotation of normal at node i

Defined in Section 6.2.2.

Virtual variation

Kronecker delta

Right and left divergence operator

Eulerian strain inG&l

Equivalent strain; equivalent plastic and
creep strain.

Defined in section 3.6.

Local coordinate, Fig. 6.3.

Nonlinear part of EIJ
Circumferential coordinate for shell
Angle at node i, see Fig. 6.3.

Creep and plastic hardening parameter
Hardening parameter

Lame constant

Proportionality factors in Chapter 3.
Discrete relaxation time in Chapter 4.
Lame constant

Poisson's ratio

Local coordinate, Fig. 6.3.

Mass density in(BO,CBl and (BZ

Load proportionality factor in Chapter 5.

Equivalent stress
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qéi. Meridional angle at node i, Fig. 6.3.
5? Creep potential
ﬁ[g;?)’?g[g) Interpolation polynomials
HVij’ Y13 Tensor valued functional
[ 1] Matrix
R Column vector
< v Row vector
[B] Transformation matrix between displacement

gradients and displacements.

[Bl}, [Bz] Components of [B]
<bi.7 j Row vector of [Bl] or [BZ]
[D] Transformed stress—strain matrix

[DI]’ [DZ]’ [D3] Integrated forms of [D]

[Hij] Defined in section 6.4.2.

[J] Jacobian matrix; Appendix B

K] Stiffness matrix

[KA] Augmented stiffness matrix

[Ko] Incremental stiffness matrix

[Kl]’ [KZ] Nonlinear stiffness matrices

[K3] Stiffness matrix due to nonconservative loading
[KG] Geometric stiffness matrix

(LSRR IS o As defined in Eq. (6.29)

{NO}.{N1§ As defined in section 6.5.

{QO}'{Q1§ As defined in section 6.5.

{ri Vector of nodal point global coordinates; and

vector of generalized displacements.
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{u
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[ A

[ ™

[ ¢
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a‘*
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1,
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xii

Vector of radial displacements

Vector of displacement gradients

Vector of vertical displacements

Vector of nodal point global coordinates

As defined in section 6.3.
Transformation matrix defined by Eq. (6.15)
As defined in section 6.3.
Matrices of interpolation polynomials, see

Chapter 6.

As defined in section 6.3.



1. INTRODUCTION

1.1 General Remarks

Shells of revolution play an important role in numerous
technical and industrial applications. Structural components of
this type can be found in aerospace structures, deep—submersible
vessels, piping systems and as superstructures in the building
industry. In recent years their use in nuclear power plants has
become increasingly important, and they have found wide use as
containers for transport of liquefied gasses, etc.

New design philosophies have emerged over the last decades
employing design concepts based on ultimate strength, shake—-down
loads, and factors of safety. This trend together with the
increased requirements for economic and optimum design necessitate
the consideration of both geometrical and physical nonlinearities
in the analysis procedures. The ever increasing stress levels in
modern structures, and the more severe enviromment in which they serve
impose greater challenges on the analyst.

High temperature creep and elastic-plastic deformations are of
major importance in pressure vessels for nuclear power generators,
and creep problem may become even more important in future fusion-
type reactors. Creep must also be considered in certain aerospace
applications. The introduction of new and exotic materials and the

increasing use of high polymers as structural materials necessitate

that creep problems be considered also at moderate stress levels and

temperatures.




Recent advances in continuum mechanics and the development of
powerful computer methods make the analysis of this class of prob-
lems feasible, and extensive research is being done in this area.

1.2 Survey of Existing Literature

The classical field theories for nonlinear problems have been
formulated by Green et al [1, 2] and Truesdell et al [3, 4].
However, the complexity of these theories is such that only some
very simple cases can be solved in closed form. The use of the
computer and the new numerical methods allows a wider class of
problems to be analyzed.

At first, researchers were mostly concerned with the solution
of the governing differential equations by finite difference
methods. The development of the finite element method, however,
provided the analysts with a new and efficient tool for solving
nonlinear boundary value problems. Variational methods have
been the basis for a great number of papers on nonlinear problems
over the last fifteen years.

In the following a brief survey of some of the literature in
this field is made. This survey is not intended to be all
inclusive, and only a few of the most important references are
included in the compilation.

The first attempt at solving nonlinear problems by the
finite element method was made by Turner et al [5]. The terms
geometric stiffness or initial stress stiffness were introduced
to account for the geometric effects. Martin [6] and Gallagher
and Padlog [7] studied stability problems for beam columms.

Argyrls considered linearized stability problems and large



displacement problems [8-11]. The nonlinear behavior of
structural members such as truss bars, beams, frames, plates

and shells were investigated in a number of studies [12-20].
Energy principles and concepts from continuum mechanics were
used by Oden [21-25]. Conjugate stress and strain measures were
employed by Felippa [30] and Marcal [26-29], and a very rigorous
treatment of the incremental equilibrium equations was given by
Yaghmai [31].

The energy methods are not restricted to finite element
formulations, and have been applied to finite difference solutions
for nonlinear shell problems by Bushnell and Almroth [32].

The finite element method was used extensively in the analysis
of inelastic problems during the same period. Important contri-
butions were made by Argyris [8], Popov et al [33], Khojasteh-
Bakht [34], Marcal [35] and Zienkiewicz [36]. Combined geo-
metrical and material nonlinearities were considered by Marcal
[27], Yaghmai [31], Armen et al [37] and Zudans [38].

Classical closed form solutions for infinitesimal creep
problems are given by Odquist and Hult [39], Finnie and Heller
[40], Hult [41] and Rabotnov [42]. Constitutive relations for
creep and creep rupture are discussed in reference [43].
Numerical solutions for more complicated creep problems were
introduced by Wahl [44], Mendelson et al [45] and Lin [46].

Early applications of the finite element method to creep
problems were given by King [47] and Selna [48] for concrete
dams and frames respectively. Linear viscoelastic problems

have later been investigated by a number of authors [49-51], and



creep in metal structures are considered in references [52, 53].

When considering creep in structures with large displacements
distinction must be made between stability problems and buckling
problems. 1In stability problems the structure is perturbed
from a stable configuration, and is then considered unstable if
the perturbation increases with time. The buckling problem,
however, is concerned with structures with initial displacements
or external loads. The former approach has been used extensively
by Rabotnov and Shesterikov [54], and the latter one by Hoff
[55, 56]. Solutions to the creep buckling problem in columns
and flat arches are given in references [57, 58, 59].

Creep buckling of shells subjected to primary or steady
state creep has been studied by a number of investigators.
Hoff, Jashman and Nachbar [60] studied steady state creep of
cylindrical shells, discretizing the shell by the double membrane
(or sandwich) model. Creep buckling of cylinders under bending
was treated by a semiempirical method by Mathauser and Berkovits
[61], and Stricklin, Hsu and Pian [62] studied the snap-through
buckling of a shallow arch under a point load subjected to creep.
Sander's variational principle and the finite difference method
were used by Grigoliuk and Lipovtsev [63] for the analysis of
shells of revolution with initial imperfections. The double
membrane model was also used by Samuelson [64] in his study of
cylinders with initial imperfections.

Creep buckling and large displacement analysis of shells
and plates of linearly viscoelastic materials have received less

attention. Using the Galerkin method Bychawski [65] obtained a



solution for cylindrical and spherical panels. Huang [66] applied
the correspondence principle to the snap-through analysis of
shallow spherical shells using finite differences to solve the
governing equations. Finally an investigation of circular plates
subjected to in-plane forces was made by DeLeeuw [67].

1.3 Objective of Present Study

The objective of the present investigation was the study of
geometrical and material nonlinearities in shells of revolution
under axisymmetric loads. More specifically this includes:

(i) Large displacement and postbuckiing analysis of

elastic and elastic-plastic shells.

(ii) Large displacement analysis of shells subjected

to time-dependent effects, such as nonlinear creep
and linear viscoelasticity.

(iii) Develcpment of a constitutive theory capable of

describing the coupling between nonlinear creep
and instantaneous plasticity.

The study is restricted to quasi-static problems, and is
based on the use of virtual work principles to obtain the total
and incremental equilibrium equations. A Lagrangian formulation

is used throughout the study.



By introducing the plane strain or the plane stress condition
both axisymmetric shells and arches may be studied.

The discretized equilibrium equations are obtained using
the finite element methods. Shear deformations are included through

the use of the 'degenerate" isoparametric family of elements.
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2. LARGE DEFORMATION OF CONTINUA

2.1 Description of Motion

The motion of a body in general can be defined as a continuous
sequence of configurations in Euclidean space and time. This
motion can be described in a variety of modes, depending on which
Euclidean space is chosen as a reference. The most common modes
and their characteristics are [68].

i, Material description

ii. Reference description

iii. Spatial description

iv. Relative description (or current configuration as

reference)

V. Convected description

Mode (1) uses the material particle in the body as the
primitive quantity, while (ii) takes the material coordinates in
a reference configuration as the primitive quantities. In most
applications no distinction is made between the two, and they
are both commonly denoted as the Lagrangian description. The
spatial description, also called the Eulerian description, takes
a point in space and time as primitives and observes material
particles that pass through this point. The relative mode is a
special variant of (ii), while the convected mode assigns fixed
coordinates for the material points and describes the motion in
terms of the deformation of the "body space'.

The choice of mode of description for a particular problem is

determined from a number of considerations. The most important



ones are the computational method used for solving the nonlinear
field equations, and the constitutive theory describing the
material. Modes (i), (ii) or (v) are the natural choice when
dealing with elastic bodies, since the initial configuration is
here of special importance. The relative mode has also been used
for such problems, but is disadvantageous from a computational
point of view. In problems associated with fluid flow, the spatial
description is most commonly used.

For problems associated with plastic flow, creep flow,
viscoelasticity, etc., the choice of mode of description is far
from obvious. This is due to the variety of constitutive theories
used for such problems. It should, however, be noted that the
nonlinear equilibrium equations are most efficiently formulated
and solved in the Lagrangian description. Even though the consti-
tutive relations might be best formulated in an Eulerian descrip-
tion, the extra computational effort needed to transform these to
a Lagrangian description is offset by the savings in formation
and solution of the field equations.

In the present study, the Lagrangian description is chosen.
In addition, an auxiliary convected coordinate system is intro-
duced in order to facilitate certain coordinate transformations.

2,2 Kinematics of Deformation

In order to describe the kinematics of the system three con-
figurations will be introduced. @&, denotes the initial con-
figuration, da the current configuration, and &, a neighboring

configuration to (3{ , Fig. 2.1, Associated with d% is given a

fixed, orthogonal curvilinear coordinate system with coordinates



Current configuration

Initial configuration

configuration

FIG. 2.1 DESCRIPTION OF MOTION.

FIG. 22 CONVECTED COORDINATES.
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:XI and base vectors Qz- . Configuration @., is described by
the coordinates x“ and base vectors 3. » and (Bz by X* and
‘é‘ . (All indecies have the range 1 to 3). The coordinates
X% will be assumed to be a global system in which the motion is

described.

The motion of a particle with material coordinates X? is
given by:

x=X(X%t) (2.1)

where X 1is a mapping function from @‘. » and the parameter t is
time. This mapping function will take the value X* in (5, , and

x% in @2 , with reference to the base vectors in the respective

spaces.

The structure of this mapping is given by
X=XCZ5 ¢y Gy Xl = G (XL (2.2a)

X KRy T G XS = G (X (2.2b)

« I 7 ;
=GR w®) g X e

where the shifters are given by:

G = 9% G

T ~ 2T (2-3)
Gt = j?“ Gr
g% = 3% 9,

In addition, an auxiliary convected coordinate system is
introduced, Fig. 2.2. This system is defined such that it

I
initially coincides with fixed system X~ and QI . The coordinates
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will remain X% in both configuration B, and B, , but the base
vectors will be 'Q[ and iC!I in 03, and Bz respectively. This
auxiliary system will simplify certain coordinate transformatioms,
but it will not be used in the description of motion. The reason
for this is that rate expressions become complicated in convected
coordinates.

The relationship between the base vectors can be obtained by

chain-rule of differentiation [69]

!

G 3 F

- 2 — X 2.4}
QJ": T F'“:=f?o<F‘F‘.z (2.4)
za=§°( Fo{c

4 1
where £ , # and £ are the deformation gradient tensors between

& and ® , & and @ , and B, and B, respectively, Fig.
*
2.1( ). The components of these two-point tensors are given by

2 _ ¢
F‘é = =% X

. . (2.5)
IF-‘Z = X‘/.t

Fo= x5
The square of the length of a line element in the three

configurations is

(55)%~ Gpy AX*dX’
(2.6)

(5532 = g di el + Gy l27 AT
(507 = Gy ditdlzP = Grylx’l2’

(*) The complete tensor (including the base vectors) is denoted by
£ while the matrix of the tensor components is written
[ F1. Similarly for vectors, X and {x}.
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Using Egs. (2.6) the Green strain tensor is defined by

z = 2.% 2./ z
251.7‘?‘-:,5 FrF.g= Gy ® Gpy-Gypy

7 : X ? (2.7)
2 &gy 9:'/‘1/:-:1/"1’_7' Gyg = Gyy~ Gy

- = z 7 C ; 2 7
ZELJ —3.756'—.(1 Fﬁj—aJF}'FJJ‘GIJ—GIJ

1
€75 and £z17 are the components of Green

Here zEIJ ,
strain between &, and ®, , &, and B, , and B, and @,

respectively. All components are referred to base vectors in
@,

Note that the strain increment é:_-/- between @, and @7

referred to 8, is different from £z3

= G FXEB - g,
€= Fun £ 0 FL - 9y (2.9)

Noting that
2 o 1_¢
Fre= Fio FY
one gets from Eq. (2.7c)

—c 1_;
E;y = FSF/, € (2.9)

or in rectangular Cartesian coordinates:

T

In terms of the displacement increment «, the increment in

Green strain is obtained from Egqs. (2.7a, b)

1 14 A N
2E 5= FAoudyt TGl v ey s (2.10)
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When adding strain during the deformation one has the

relationships

H
Ez;=Ez;* Er3 (2,11
or

_ <
Ery= Eppt g F I &y (2.12:

For later use the physical components of the deformation

gradient tensors in convected coordinates are given
1-¢ -v"_ 7J
('Fiy) 91’ ﬂ éJ (2.13)

where ( )* indicates physical components. No sum implied.

In the discussion of constitutive theory the rate-of-deforma-
tion tensor £ will be needed. The distinction between the rate-
of-deformation and Green strain rate arises from the fact that
the former is referred to base vectors in the current configura-
tion B, , while the latter is given relative to & .

The velocity vector in Lagrangian description is

o

g
J=de Y(X. ¢t /
~ g'(onst

In the spatial (Eulerian) description, the velocity is a

primitive, and the spatial velocity gradient is given by [70]

dor = . Jx (2.14)
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or

dule Y olx? (2.15)

4
where L is the velocity gradient in configuration B, .
The non—-symmetric velocity gradient can be decomposed into
the symmetric rate~of-deformation tensor O and the skew-symmetric

spin tensor W
~

1 o { 4, 7T
R=7(L+L) (2.16)
tw =41, _1 T
W=z (L-L)

~-

The components of are given by

o~

1 : f- .
D, =% ( ’U"-U IR RAR ARV (2.17;
Following Malvern [69]), it is found that

~ ™~

(&>t 2 oDy < 2 'Dﬁ.dx"cw (2.18)

Using the definition of Green strain, one also has

o ’.
fc&sz—dsz) < Zdst) -2 EE-X (2.1¢)

By further recalling the definition of the deformation

gradient
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By restricting both the displacement increment ¥ and the

time increment &¢ to be infinitesimal

: 14
E=cdt=E ¢ pde)F (2.21)

As can clearly be seen, the strain rate and the rate-of-
deformation tensor coincide only when the displacement gradients
are small compared to unity, i.e. :E'-? }; . For finite deformation
this is obviously not the case. In infinitesimal theory, however,
this distinction is lost.

2.3 Stress Measures

The equilibrium equations in finite deformation are in
general formulated in the deformed configuration. However, since
the Green strain tensor is used to describe the kinematics of the
system, a conjugate stress measure must be used. For this purpose
the 2nd Piola-Kirchhoff stress tensor is introduced.

In configuration ®®, the following definitions are used:

(Z : Cauchy stress tensor in configuration &, . The

components TY are defined as force per unit area
of the deformed configuration and referred to

orthogonal base vectors in ®, .

Piola-Kirchhoff stress tensor in configuration &, .

(¥

The components '517 are defined as force in @, per

unit areain the reference configuration &, , and

referred to base vectors in &, .
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Note that the choice of &, as a reference configuration is
quite arbitrary, except for the fact that @B, is the basis for
the Green strain tensor.

The Cauchy components "TY can be interpreted physically as
the force acting on a unit area normal to base vector Ea»and in
the direction of base vector .gj . For the components of Zg s
however, no such interpretation is possible. They are merely
defined by the fact that they are conjugate to the component of
the Green strain tensor in an energy sense.

. . ’ f/
Using Cauchy's theorem, the stress tractions £ and ¢

in ®, and ®, respectively are given by Fig. 2.3

t=snv (2.22;
2=i2 (2.23)
where

4

’§ =ISIJ§JIQ:

4 4 .

L7943 (2.24)
K

R
k

Ry

The 2nd Piola-Kirchhoff stress tensor can now be defined

using the relationship

"t o = E-t A (2.25)

~
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FIG. 2.3 TRACTION VECTORS AND NORMALS.
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and introducing Nanson's formula [69]

-y T

zda=-§=(:§')-g’d,‘l (2.26)

which when combined give
L4 - .

‘tda="Toda TLOE A IE L dh = F s
Comparing terms, one gets

1o S0 1. 1T (2.27)

RAS AN
or on component form

VI G STV & 2.28)

TV FLFL s (2.28.
(4

In Cartesian coordinates this simplifies to

P Ox 2%
7, T % DX 79X, 510

The Piola-Kirchhoff tensor is symmetric whenever the Cauchy

stress is symmetric

f _I7 1 _JI

The question of representation of the Piola-Kirchhoff stress
tensor has occasionally arisen. Yaghmai [31] attempted to write
the tensor in terms of the base vectors in the deformed configura-
tion

15 - 4599. 7.
~ ‘\‘L“’J
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The relationship between the components is obtained by a

simple coordinate transformation

- 7

I -1
where 1F7¢ are the component of the tensor Lf
Combining Eqs. (2.29) and (2.28) the following equation is
obtained:

-L": _‘?of l:/
R (2.30)

This is the form used by Lee [71] in his work on finite
plastic deformation.

2.4 Stress and Strain Rates

The constitutive relations for nonlinear materials are
frequently expressed in terms of stress and strain rates. For

Piola-Kirchhoff stress and Green strain tensors

3 ] . |

ffé =c‘%( fEIJ ,(JIQJ Y= 1€, G ~1 (2.31)
oA 12 _ 117

’;\5, T4t - gzé-’ )='5 91,67 (2.32)

I . .
since CQI and & are fixed base vectors in @3, , and are

s

independent of time

Define:
2 1
. Eoq - .
AL-»0O ol »0o
2,71 ¢ ZI2 )
% T Ml D z
187 lim T3 = fm 2 (2.34)

At—2>0 at—vo
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Using the above definitions, the stress and strain tensors
A 1
in (32 » o and £ , can be found by Taylor series expansion
around a& . For a sufficiently small time increment only the

linear terms are needed, and the increments are given by

.-
EIJ = "E., Jt (2.35)

5T = 15T ¢ (2.36)

referred to base vectors in &,
The time rate of the Cauchy stress tensor is, on the other

hand, given by
;o= 17y TG g o
2: 7"3(Ep +'7 'gtsp -7 j@ 7

where the time derivative of the base vectors does not wvanish.

2.5 Virtual Work in Finite Deformations

In this section an incremental equilibrium equation will be
derived for a body subjected to initial stresses and strainms.
This will be done by writing virtual work expressions in two
neighboring configurations, and by proper identification of
stresses and strain obtain the desired incremental equation.
This approach was first proposed by Yaghmai [31].

The following derivation is independent of the constitutive

theory used, but will later be specialized to the case of plasticicy
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and creep problems.

The body during deformation will describe a motion from an
initial configuration @, to the final one 8. An arbitrary
configuration in this deformation space will be denoted ®, and
its neighboring one @, . Each configuration can be described
relative to some Eucledian space. The choice of this space is
quite arbitrary, but for the present the configuration & is
described relative to the space (3 . This duplicity in notation
should not lead to problems, since its meaning should be clear
from the context,.

The virtual work done by the external forces in (&, under

an infinitesimal virtual displacement is given by

Swy = [ gyt da [5 a5 o7 (2.37)
%, ®,

1, . , . :
where £ is the surface traction vector per unit area in &;
2 _—
and f is the body force vector per unit mass. ¢ is the mass
density and 9@2 is the surface of 62 where tractions are pre-

scribed.

Similarly the virtual work expression in @, is given by

éW(= fé&(-:‘ﬁa/a + ff d;‘_{-f:fdcr (2.38)
B, B

At this stage it should be noted that Egs. (2.37) and (2.38)
are given relative to the spaces @?_ and (b., respectively. Before
they can be subtracted they must be transformed to a common space.

This common space may be any one of
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i) Initial space .,

ii) Current space &,

iii) "Final" space &,

Alternative (iii) leads to a spatial (or Eulerial) descriptionm,
(i1) to a relative description and (i) to the Lagrangian description.
According to our previous discussion the latter altermative is
chosen. Yaghmai [31] used (ii) in his treatment of elastic-plastic
deformation.

It should be noted that the transformation of the integrals
over 02 and (32 to integrals over (®, is purely kinematical. The
choice of constitutive theory is therefore immaterial to this
transformation.

By Cauchy's principle

Sw, = [$ufr 7oz +f§ Sy f d5 (2.39)
2 032
Sw, = i w'Tpea + _ff Su-t o (2.40)
20$1 -~ -~ 034 ~

Using Nanson's formula, Eq. (2.26), the following relatioms

are established

pea= Ny A
2.41)
N oo =,%(2F")T.NAA (
{ ~ ~o
D da =_§_;( F'Yin da

By substituting (2.4la, b) into the virtual work expression

the Lagrangian formulation is obtained. Eq. (2.4lc) combined with
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(2.39, 40) gives the relative formulation, and the inverse of
(2.41c) leads to the Eulerian formulation. The correct form of
the incremental equilibrium equations can therefore be obtained
simply by using the appropriate combination of Eq. (2.41).

From the definition of the 2nd Piola~Kirchhoff stress tensor,

(2.27) one has

2 ¢ 2 e
=3 FhE
(2.27)
- £ 9. 1_ (T
/ 2 .
~ fa~~t\}:—

Combining Eqs. (2.27, 41, 40, 39) the virtual work expressions
become

5Wz*?fé3- CFsY Nt + [g, Su b av
®, B, o

!
Sw, =[Sy CESywodd g Sulf v
o6 o
The surface integrals are transformed to volume integrals by
the Green—-Gauss theorem

Sw;ﬁf( cax-égy-(i;.f@+5q.(%-%+f,3r>.%3w

Y S A P
L

-~ O AD s
Pard L

W= [ C g (ET5)+ Su-CES » . )- Dy
8

©
where (€%-) and Cmar\ are the left and right divergence operators
respectively., The derivatives are taken with respect to @, .

For vectors the two operators coincide. The last term in each

integral is recognized as a statement of equilibrium of the body.
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-~ (2.42)

The virtual work expressions can then be simplified to

éwz’/(%-é)'(f-fg)_iv (2.43)
6 =

Sw, = [ (2g-8yy (1£-15 (2.44)
b~

At this stage the formal vector notation will be abandoned,

and the equations will be written in component form.

S, = [ Sup B, 5T v (2.45)
&,

Sw, = /(CgU‘.)/;F‘; ALY, (2.46)
®,

Stuy=8cau,)
J( “) = é( CTCNUN)

Following Toupin [72] the shifters can be taken as constants

during differentiation and variation

6 = Gl e Gt e Gt =




25

Hence

$(ux) = G Su,, (2.47)

Scur = G Su,

[2

The motion is given by

1]

= x+wu=X+Tu +u
NN ~ N~
or

- 04 I x
X°<=GI(X. +4uz+u )
Hence:

ng} = C&fi('éii + 1?5 + )

. . z (2.48)
1F.‘J =G.Lz(é.\7"'u1/:!)

Combining Eqs. (2.47) and (2.48) with the virtual work

expression (2.45) and (2.46) gives

W, = [ (Supd (85" vy ) 57ty (2.49)
B,

Wy = [ (Sup)) (85 + W)y 5w (2.50)
2

since

G,(HG.; = Gz = éﬂz s 6‘-”62 = éA./I

Due to the symmetry of the 2nd Piola-Kirchhoff stress tensor
2_IK_ 2 IK
(Supdlk 5 =78 (Urfe+untr) 5" = BTEe,,
2.7 27 gk
(éqI)/k UI/J 5 e é é(Uz/K UI/J )s = 25 JKCS?JK

(éuI>/K "/I/J 2.53(- -Zl (AUZ/K 1UI/‘7"' JUI/J 'C/I/K ) 25‘7K= %JKJ gJK
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where

- o ? 2

Using Eq. (2.10) and introducing the displacement e , this gives

A

2€:5= 2e5,+ 25, (2.50b)
where
2213 = Urlg+ Ui/t (2.50c)
A
2 515 = Un/r ,Hk/g * el Tw A (2.504)
29z; = Ux/z (/,:/1 (2.50e)

and “z3is the nonlinear part of the strain increment.
Since the Piola-Kirchhoff stress tensor is always referred
to fixed base vectors in the initial configuration ®, , the

following additive decomposition can be used

b T _ 15T S19 (2.50£)
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Subtracting Eq. (2.50) from (2.49) and introducing the

above relations gives

SW,- 8w, = [ ¢ 5T8E,* 5 dpyg YV (2.51)
&,

Equation (2.51) 1is an incremental virtual work expression,
or a statement of incremental equilibrium. In a displacement
formulation for the finite element method it will give rise to
the stiffness matrix of the structure.

2.6 Traction Boundary Conditions

In contrast to the displacement boundary conditions, the
traction boundary conditions introduce further complications in
a Lagrangian formulation of finite deformation. The latter has
to be formulated in the deformed configuration, and will hence
depend on the deformation itself. This problem has been dis-
cussed by Oden [25] who solved the problem by an iterative
procedure.

In order to obtain a correct load term of the incremental
equilibrium equations the external loading is divided into two
groups

i) Conservative loading

ii) Nonconservative loading

The first group consists of forces that can be derived from
a potential, such as gravitational and inertia forces. These
forces do not change direction during deformation. The forces

in the latter group, however, do change direction, and can be
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represented by hydrostatic pressure and "follow-through'" forces.

2.6.1 Conservative Loading

The traction vector Z’,té ,3{ and ££ in Eqs. (2.37) and
{(2.38) do not change direction during the deformation.
Imposing the condition of conservation of mass
gdr = gdv = g, IV
the volume integrals can be transformed to integrals over &, .

In transforming the surface integrals to Zh% the total load

remains unchanged, but the load intensities will change according

to the ratiOSCkZhand =la/d4

Define _
‘tda ="t da
tt:d/‘} '—'Zé da

where fé and 4}: are the traction vectors in ®, and &,
respectively, measured per unit area in B, . For most structures
this distinction is immaterial, but it may be important for
instance in large deformations of rubberlike materials.

Subtraction of Eq. (2.38) from (2.37) using the above
definitions gives

SWy-SW,= [ Sy 1E-E1dA + [2,8u-CF-F IV
®, @,

Defining the incremental traction and body forces by:

7 1
I=%f
E-%-y
o A ~
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the virtual work expression becomes

Sw,-dw, = [ Su-Edh + [ g du- £ v (2.52)
%, é,

2.6.2 Nonconservative Loading

Following Oden {25] the traction vectors can for a pressure

type loading be written as

- ?2 - ,-
ztdq=—F2°/q
%dq_--—’)bzda

2 . _
where » and 7/-7 are the pressures in (®, and 057 » and n and 2
are the unit outward normals respectively.

Using Nanson's fomula,(Z.Al))this can be transformed to
“ - —foj:-f—" CEDT N A
L odda s p (TN N A

Substitution into Eqs. (2.37) and (2.38) gives

Sw, = f—%'&ég-(fg’ﬁ’gof/? +/§° Su- o v (2.53)
B S & "~
cSw7=9f-;ol;;3q’¢r-(i/—;”>fgc/4+ffoég-,’{°/u (2.54)

Introducing the proper shifters the above equations can be

written on component form

I
SW, ’;/ZF’?J"I CFE)TL A ’"/fo Sesy }ZQ/V
B 2,

JW, = ;/'f»‘fff— Juz ('F—'){J /YJc/A +£ff,, Juz ;f'r‘:/y
@ °

(4
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Defining the pressure increment g , the following decompositinn
cam be made
7 1

P=TF*F

Finally

7
Sw, - dw, ”/7’ !fi:éul -;’:9 (505 ndA - /fo Sy SV -
) B,

e
- SRS (L2 - O IN A (239
2@0 £ hY
Here the first integral gives rise to the conventional load
term associated with the pressure increment £ between , and ®,
The second term is the effect of the increment in body force, and
the last term gives the effect of the pressure 177 during the
deformation from (B, to &, .
So far no assumptions have been made regarding the magnitude
of strains and rotations. However, in order to simplify Eq. (2.55)
the following restrictions are imposed:
i) The displacement increment « between (b, and CB,_
is small compared to, 1’1(_1 .
ii) The rotations associated with ¢ are small compared
to unity,

Mathematically this means

'_f =7 (2.56a)
B

= 2 (2.56b)
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. Z .-/
Using (2.56b) F can be written in rectangular Cartesian

coordinates:
(%) - OX; _ Xz x¢ _ 2Zr 2 (% -
7] 2X4g Xk OXg xg 2X3 - Xk Uk)

. 2Ly _ 32X 2. du
) 2XK 2»\"; 2)‘3 ?ff‘l

Introducing this into Eq. (2.55) gives in Cartesian

Compon.en.ts

t [ )-?-’Jq, %%i %—f;' %‘—Aé:/v:dﬁ (2.57)

The equivalent version in curvilinear coordinates can easily
be obtained by taking the covariant derivatives with respect to
the proper coordinate system.

Note that the last surface integral in (2.57) is linear
in the displacement increment & , and has hence the form of a
stiffness term. It should also be noted that this term is non-
symmetric, as could be expected since it accounts for the non-
conservative loading.

Equation (2.57) is equivalent to the load term derived by
Marcal et. al. [28] using a different approach.

2.6.3 Residual Load Approach

The finite element method, or the Ritz method, are two of the
most efficient methods for solving general boundary value problers.

These methods ensure global force equilibrium of the system, but
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do not guarantee that the local stress equilibrium equations are
satisfied. Hence the internal stress field in a displacement
formulation will not necessarily be in equilibrium with the applied
external tractioms.

This means that the surface traction ZE is not in general
in equilibrium with the stress fields t{ or 1{ . A residual

. 1 ,
traction vector ,@ can therefore be defined by

Jéugda = [du-c7n-"¢)da (2.58)
% %,

This residual traction vector is often called the "out-of-
balance" force, and should be added to the incremental traction
vector in (2.57).

Computationally it can be done by using (2.50) instead of
(2.54) when deriving Eq. (2.55). By so doing a virtual work
expression using the stress field is used instead of one using
surface tractions. Introducing the approximations (2.56a, b) and

(2.57) the incremental virtual work expression becomes

Suy-buy= - pF b, Ty W't - [0 5 0y Xk Xy ol Wt
2, 6,
- f '51'7(5213+é§n)41/ +af [ &,Iﬁo/,/ (2.59)
B. .

where the deformation gradients are taken with respect to &,

and the displacement gradient with respect to o, .
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The second surface integral 1is stilllinear in ¢ , and is
hence of the stiffness type. It is, as previously noted, also
non-symmetric.

Equation (2.59) is valid for nonconservative loading.

The equivalent expression for conservative loading is easily

obtained

Sw,- &, =2f Sur 't A+ [g, 8 A~ [57 38 438,00 (2.60)
%, B, B,

2.7 Incremental Constitutive Relations in Elasticity

In order to use the virtual work expression previously
derived, an incremental constitutive relationship has to be
obtained. The form of this relationship is highly dependent
on the stress and strain measures used. When a spatial des-
cription and Cauchy stresses are used Biot [73] has shown that
the initial stresses have to be introduced into the incremental
constitutive equations. For hypoelastic materials this leads
to a formulation in terms Jaumann's stress rate and the rate-of-
deformation [74].

For a hyperelastic material, the strain energy function W
exists. W 1is an analytic function of the Green strain tensor

§L , and is given per unit mass in the undeformed configuration.

Following Fung [74]

2,19 oW 2.61
S = fo B%IJ ( )



34

and

1513 2w (2.62)

i

e
o
A\V)

z . . R . . i,
where "W is the strain energy in configuration ®,, and W
is the strain energy in (4

For an isotropic body the strain energy function can be

written as

2
tw='w (%, ', Ty ) (

[ 3]
.

[e))
W
g

2 L . , . 2
where I, are the principal invariants of the strain temsor &, ;
1
Similarly an expression for W may be written.

For a linearly elastic material Eq. (2.63) can be simplified,

and
4 Ikl 2 2
g, W= C Er; EweL (2.64)
1 ZIxl pl _
o W= C Eyy ErL (2.65)

Substitution of (2.64) and (2.63) and subtracting the (2.62)
from (2.61) gives

2,73 1_15 23K
C

577 1522, CEp - e

(2.66)

23 ZIKkL
or S = C Eg(_

where .

CZJ:L-/« (AIKJDL*‘ éné:K)f— )\ é_z’.?é:L
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and s and ) are the Lame constants:

_ E ) v E
s 2(++V) =(/+y)(/—2v)

2.8 Variational Methods and Virtual Work in the Theory of Creep
and Plasticity

2.8.1 Review
Over the years a number of variational methods have been

formulated in the theory of elasticity. Many of these are based

on the existence of strain energy or complementary emnergy functicn:

for the system at hand. 1In the theory of creep and plasticity,
however, the stresses or strains cannot in general be derived
from potentials. The variational methods that can be constructed
for such problems are therefore more restricted.

The most extensive discussions of variational methods
in creep and plasticity are given by Kachanov [75] and Rabotnov
[42]. Extremum and variational principles for work hardening
and rigid plastic materials are also presented by Hill [76]. in
Washizu's presentation [77] distinction is also made between

principles valid for the deformation theory of plasticity and

those valid for flow theory. The form of the variational primcip =:

depend in general on the mathematical model used to describe the
physical processes in creep and plasticity. This brings up the
necessity to distinguish between steady state creep, transient

creep, and deformation and flow theory of plasticity.
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In steady state creep and deformation theory of plasticity
the governing equations are similar to those of the nonlinear
theory of elasticity, in that the creep and plastic straims can
be derived from state functions. For infinitesimal deformations
variational principles of the Lagrangian type can be used [42, 77],
provided the concept of unloading is introduced for the plastic
deformation. Kachanov's principles [75] can be applied to problem:
of transient creep and deformation type plasticity. However, ther
may be considered inconsistent since creep is described by a flow
law while the deformation theory is used for plastic deforma*icn.

When flow theory of plasticity is used, the variational
principles have to be formulated in incremental form. One such
principle is given by Wang and Prager [78] for infinitesimal
deformations. Here the creep strain rate is assumed independert
of the stress rate, which leads to an initial strain formulatiou.
A varilational principle of the Hellinger-Reissner type was derived
by Sanders et al [79], and later discussed by Pian [80]. The
assumptions of Wang and Prager were retained, but the inclusion of
the effect of initial stresses in the deformed configuration
makes the principle valid also for geometrically nonlinear problems.
The principle is given in terms of the Cauchy-Green strain tensor
in a Lagrangian description. In order to have a conjugate formu-
lation the 2nd Piola-Kirchhoff stress tensor must therefore be
used. This fact is not stated in reference [79] nor that volume
and surface integrals must be taken over the undeformed configura-

tion.
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Sanders functional in rectangular Cartesian coordinates is

given by

T= €Sy +# bz s S137%( €55+ 2E530 555> IV

(-4

+ [ 2’1 wpdA - [¢ Gp-ig )ty <A (2.67)
2030 963,,

L, . . C .
where EI is the instantaneous strain rate, £ ;, the creep strain

J
rate, and ¢, and ¢/ the prescribed rate of traction and velocity
respectively on the boundary.

Taking the variation of Eq. (2.67) with respect to the rate

quantities gives

ST = [[( (&y-Ef-EEY 850 ~Scin S5 ("Far 20,3 )V
@,

Y
™~
.
(&)
o

N

;0{(151—?1)&;: oA —9{(&:-5})64&4
(=4 (]
Here ’/-}J are the components of the deformation gradient temsor
:C in the current configuration, 03, .
It should be noted that Eq. (2.68) is only valid when the
creep strain rate is derived from a state function. Since Ei;
is independent of the stress rate this implies that 5553 o

As typical for variational principles of the Hellinger—Reissner

type, the stress and strain rates may be expanded independently.
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2.8.2 Modification of the Incremental Equilibrium Equations

The most general of the variational methods described pre-—
viously was derived from virtual work expressions. The extension
of Eq. (2.51) to creep problems should therefore be natural.
Equation (2.51) was derived without any restrictions on the con-
stitution of the material at hand. However, before creep probleme
can be considered, the following assumptions must be made:

i) Assuming the elastic, plastic and creep strain rates tn

be defined, the additive decomposition law is wvalid.

. _ L€ P _c _ T ¢
EzJ'E +E,,7E eE,.+ &

(aj
I3 I3 3 23 /

-~ . . . -
where &j75 is the instantaneous strain rate. For small
enough time steps a similar equation can be written for
the strain increments.

ii) There exists a linear relationship between the increment

of P-K stress and the instantaneous strain incremen:z (*:

z N
515 % Czoke €t (b

It should be noted that Eq. (a) is not the only way of
decomposing the kinematic variables, as will be discussed in
section 3.2. Assumption (ii) is fundamental for any incremental
formulation using the displacement method, and is used both ir

plasticity and viscoplasticity.

(*) Rectangular Cartesian coordinates are used in this section
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For most metals subjected to creep the creep strain rate is
independent of the stress rate. This implies that the increme:nt
E;J must be treated as an initial strain increment in the
equilibrium equations.

Combining Eqs. (a) and (b) gives

= - 4 I € Y
S13= Crane € El” Ec N = 57 ~ Sz (=)
where
I .
Sr3 = Crake Exr ‘ (d’
C c
575= CroeL Ewe (e)

L c
Here 5&3 and $,5are defined as the "instantaneous" and
"creep" stress increment respectively, and are assumed to have
the same invariance properties as S5.

Substituting Eq. (c) into Eq. (2.51) gives

é"Vz.‘él'v1 ;3[( Sf:, ‘Seﬂ +( 313- 'S.zca 557_,_-,_ 'SICJ 56-':1 MV (2.69)

(-4

Eq. (2.69)gives the incremental equilibrium equations for a
body subjected to initial stresses and creep strains. The effect
of the "creep' stress séz is two-fold. One is the presence of
the creep pseudo-loading given by the last term in Eq. (2.69).
The other is the contribution to the geometrically nonlinear

term.
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From a computational point of view, Eq. (2.69) is in the
most convenient form. The creep pseudo-loading can, however, be

transformed further by the Green—-Gauss theorem

jsnée = [ 55y Seve s IV *

®, ®, (2.70)

/ _zg k.[/y g‘/ A /( FKI Jdu -h/

where the "fictitious'" traction and body-force due to creep can
be identified.
It can easily be shown that Eqs. (2.68) and (2.69) are

equivalent if Egs. (c, d, e) are substituted into Eq. (2.68).
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3. CONSTITUTIVE RELATIONS FOR CREEP AND PLASTICITY IN METALS

3.1 Introduction

In general the term creep 1s associated with the time-
dependent deformations in materials. For most metals creep is of
importance only at elevated temperatures, but is observed at
room temperature for materials like concrete and plastics.

The physical theory of creep can be described in terms of
the micro-structure of the material [8l]. For metals creep is
caused by cross-slip and dislocation climb in the material
lattice. Dislocation motion and vacancy migration are thermally
activated, and are the dominant mechanisms at elevated temperatures.
In polymers creep i1s due to stretching and distorsion of the
individual chain-molecules, and to large scale relative motion
of the molecules. The importance of the physical theory of
creep is that it provides important guidance for the formulation
of the constitutive theory describing the phenomenon.

A phenomenological description of creep is provided by the
uniaxial creep test under constant stress, Fig. 3.1. Her« the
commonly used terminology is defined. When loaded, the material
exhibits an instantaneous response that may be elastic—plastic if
the stress level is above the yleld stress. The primary or
transient creep is characterized by a decreasing strain rate,
and is followed by the secondary or steady-state creep where the
strain rate i1s constant. Finally, the tertiary state is reached

that takes the material to rupture.
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The steady—-state period is dominant in most materials, buf
'J may be missing for some materials at given stress and temperetrre
levels. The simple creep test is even today the basic source of
[ information regarding creep behavicr of materials.

The theory of plasticity is usually divided into two sub-~
classes, the flow theory and the deformation theory. The d-forma-
tion (or Hencky) theory gives a relationship between total stress
and strain, where the total plastic strain components are functicr.:
of the current state of stress. This approach is similar to the

treatment of nonlinear elasticity, except for the concept of

unloading in plastic region. The flow theory, on the other han.,
is an incremental theory that gives a relationship between incie-
ments of plastic strain and increments of stress. Whereas the
former is independent of the loading path, the latter has to be
integrated along the loading path in order to give total strains.
For proportional or radial loading, i.e., where the ratios

between the stress components are kept constant during loading.

it can be shown that the two theories are equivalent. Hewever,
for nonradial loading the flow theory is considered the superior
one, and is therefore chosen in this study.

In the flow theory of plasticity the behavior of 2 body is
governed by three conditions:

i) The initial yield condition

ii) The flow rule

' iii) The hardening rule
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The flow rule and the hardening rule are also present in most
creep theories, but the equivalent of the yield condition is not
defined. The lack of the yield condition accounts for the problem
of obtaining an incremental stress—strain relationship in creep,
and ultimately for the necessity of using the initial strain
method in solving creep problems.

3.2 Kinematic Decomposition of Finite Inelastic Deformation

In a general inelastic problem in continuum mechanics the
total deformation of a stressed body is determined by a number of
physical effects. When formulating a constitutive theory for a
material these effects must be identified. The most common form
of this identification is the decomposition of the kinematic
variables.

For the problem at hand these effects are the deformation
due to creep and plasticity. In the following, these two effects
are lumped together and denoted inelastic effect.

During the deformation of an inelastic body three configura-
tions can be defined, [82, 83, 71], Fig. 3.2. The initial
configuration (B, is stress free, while the current configuration

®, has undergone the combined elastic-inelastic deformation.
The intermediate configuration (B is obtained when the stresses
in CB, are conceptually released. It should be noted that ®&
in general is non-Euclidean [71].

The Cauchy-Green strain tensor is given by

2= FT- T (3.1a)
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or
*
o 1 S, ®
2E,4% Uz,3 t Uy T U Yk (3.1b)
From Fig. 3.2 the total displacement field is given by
£
w= et (3.2)
Substitution of Eq. (3.2) into (3.1a) gives
EIJ = Ezy"' EI:? +2 (aK,I UK,j +uk“7uk’1') (3-3)
where Z.E and EEI are defined by Eq. (3.16) with £5£ and gﬁz

respectively substituted for « .

Eq. (3.3) clearly shows that the elastic and inelastic

N 7€ -z . :
strains £ and £ are not in general additive during finite
deformations. For infinitesimal deformation, however, the non-
linear terms in the strain-displacement relationship are neglected,
and Eq. (3.3) degenerates to the classical form. It should be
noted that this derivation was based purely on kinematics, and

€ I
the displacement fields & and & were assumed continuous and

=~
differentiable.

Green and Naghdi [84] retained the additive decomposition
of the total elastic and inelastic strains. No kinematic inter-
pretation of ﬁif and £§I is given, and they are determined from

constitutive theory only. Furthermore, they are assumed to have

. {
the same invariance properties as 52 .

(*) Rectangular Cartesian coordinates are used in this Chapter.
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The multiplicative decomposition was given by Lee [83, 71]

in the form

4F = FE FI (3-4)

where if is the deformation gradient at (B, relative to &, .
er. and Jﬁz are in general not deformation gradients, but linear
transformations determined by the constitutive theory. For the
case where the mapping between @,,(ﬁ and éh, is continuous and
differentiable, they are found by chain rule of differentiation.
Yaghmai has shown [31] that Green and Naghdi's and Lee's
formulation are equivalent, provided the proper definitions are

1 r
used for £€ and 'E
rad -~

£
2e - 2'e% 2!

DFETES ET (3.5)

~

<( (EVE It (E
It is here quite clear that the "elastic" strain in general no
longer can be determined from the generalized Hooke's law.

The complexity of both the additive and multiplicative
decomposition render them rather unfeasible for practical appli-
cations at the moment. Green and Naghdi's formulation mainly
because it requires the determination of Helmholtz free energy
function.

A number of formulations have therefore been made that
impose the additive decomposition of the kinematic rate quantities,
since these are linear in the velocities.

Bodner [85] toock the total rate of deformation in the form
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This form is very convenient when the equilibrium equations are
formulated in a relative description. In a Lagrangian formulation
Eq. (3.6) must be transformed back to the reference configuration,
(Bo . This transformation gives rise to the different inter-
pretations.

Bodner gave the Lagrangian strain rates by

T __E E
)

’£E= ( "D F (3.7a)

M

. I

'€7= ¢

™M

I pt £F (3.7b)
where ifE.and ﬁfzare defined by Eq. (3.4) and Fig. 3.2. Egs.
(3.7a, b) imply that the strain rates are no longer additive.
Yaghmai [31] assumed that the rate of deformations were
additive, but gave them the same invariance properties as DO,
i.e. using the deformation gradient Qz in Eqs. (3.7a, b).
Equations (3.7a, b) are based on an extension of the trans-
formation from rate of deformation to Lagrangian strain rate,
Eq. (2.20). This transformation is based on purely kinematic
considerations, while 2: and QE are determined from the
constitutive relations and do not in general satisfy kinematics.
They may even be discontinuous. It seems therefore inconsistent
to use the transformations in Eqs. (3.7a, b). By giving £2€ and
;Zz the same invariance properties as D the additivity of strain
rates are also ensured. The only consequence of this assumption

I £
is that the constitutive relations for LA and £ must be

formulated as to satisfy the principles of thermodynamics.
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In a Lagrangian formulation the decomposition is most con-
veniently given in terms of the Lagrangian strain rates directly

1E'=('E+IE' _f,éc (3.8)

s ~ —~

where the elastic, plastic and creep strain rates have the same

invariance properties as Qg . This form is used in the following
development.

3.3 Uniaxial Creep Theories

The constitutive equations for creep deformations in materials
can in general be written either on integral or differential form.
The former has been used mainly for polymers, fibers and biological
tissues. The latter is most commonly used for metals, and will be
discussed here.

An extensive discussion of uniaxial creep theories for con-
stant stress can be found in the references by 0Odquist and Hult
[39], Finnie and Heller [40], and Rabotnov [42]. See alsoc a review
paper by Finnie [86].

The earliest work on creep of metals was mostly concernad with

the steady-state creep. A number of creep laws were proposed, like

Bailey-Norton: éL= Bs" (3.9)
. S/,

Ludvig eE.=Ce (3.10)

Nadai: €, = Dsinh () (3.11)

where ék is the creep strain rate and o the applied stress.

B,c,D,n , 06, and § are constants that may be temperature

dependent.
For short time tests where the transient creep 1s dominant,

the following form is widely used
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e =Ae t* (3.12)

where t is time since loading.

Odquist [43] gave a simplified creep law that included both
the transient creep and the steady state using the following
decomposition

¢ o
€, = €.+ €, (3.13)

Here éif is given by the steady-state creep law, and e;i
is the intercept on the strain axis obtained by extending the
steady-state line back to zero time, Fig. 3.1. The term é;f
includes both the "equivalent" transient creep and the instantaneous

plastic strain, and is given by a power law
€. = (S/6,)7 (3.14)

Since é: represents an irrecoverable strain, it is only included
during loading.

The previous laws do not provide for the inelastic behavior.
Marin and Pao [87] observed that part of the primary creep strain
was recoverable, and modified the transient creep law to include
this effect. However, this formulation introduces two additional
creep constants to be determined experimentally, which is a great
disadvantage.

The primary motivation for many of these creep laws was
their ease in computational use. In numerical methods such
considerations are of minor importance, and more complicated laws

can be used.
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For transient problems like creep buckling problems the
stresses will vary considerably, and the constant stress assumption
above 1s no longer satisfied. The effect of a sudden increase in
stress, &§ , 1s illustrated for Eq. (3.12) in Fig. 3.3.

Differentiation of Eq. (3.12) with respect to time gives

Bs -/
e

€ =khe t (3.15)

Solving for t from Eq. (3.12) and substituting into Eq. (3.15)
gives

. L
€. = k(peP%)% fc/ “« (3.16)

where €, is the total accumulated creep strain. The 'time-
hardening" law (3.15) and the '"strain-hardening" law (3.16)

are equivalent when the stress is kept constant. Eq. (3.16) has
in general been shown to be in better agreement with experimental
results, and will be used in later numerical examples.

3.4 Flow Theory for Creep and Plasticity

Based on the physical causes of creep and plasticity or
metals, certain similarities in the constitutive relations for
these effects may be expected. The most important of these
similarities is the use of the flow rule.

Using a constitutive relation of differential form the creep

strain rate is in general given by

1~ _
€™ %5(2:) (3.17)

where ol;, is a symmetric tensor-valued function in terms of the

internal variables 52 . The functional structure of X719 and the
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identification of the variables g, may be quite general, but has
to satisfy certain thermodynamical restrictions [84, 88].

Similarly the plastic strain rate is
45.':: ® 13 (F;,) (3.18)

In the following a special case of the general theory will

be considered, where

2%
e —= 3.19)
oL 13 2% (
-
ﬁla - } 2‘517

1S

(3.20)

¢ and g are the creep and plastic potentials, respectively,
and » is a non-negative scalar. Furthermore, the potentials

are assumed to be convex, such that for uncoupled creep and

plasticity effects

X3
(5p5-55) 55,z 0 (3.21)
1 = 29
('53-573) 5%, zo (3.22)

for all points '51: within or on the surfaces ¢ and g9 in the
& —dimentional stress space. Egs. (3.21) and (3.22) are merely
restatements of Drucher's postulate, and are not a consequence of
the thermodynamics of the process.

Following the infinitesimal theory of plasticity the plastic

potential g 1s taken equal to the yield function #

1E'P=;\ af

23 ‘a“!‘s"n (3.23)
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For steady state creep the potential ¢ is only a function
of the state of stress. During isotropic deformation qE can

furthermore be written in terms of the stress deviators.

é': é(‘jl’)75) (3-24)
where 4z
Ty = Sr1 20
R (3.25)
J2= 2 515527
T4=3 5,575 %
and F] 10 Yo YxI

7= _ 1 _ 7
517 = 513 éz'J 5k (3.26)

For many materials it is not necessary to allow for the

influence of .73 , and the von Mises theory of creep is obtained

§= é(c‘) (3.27)

The equivalent stress G is given by
c=¥V37, (3.28)

Combining Eqs. (3.17), (3.19) and (3.27) gives

. a -
ie = Té - 2& 3 S, (3.29)
257, 95 2T
Eq. (3.29) gives the creep strain rate as a linear function
of the stress deviator, and is equivalent to the Prandtl-Reuss

equations.

For transient creep the more general form

3’5 - é( 151_7, %) (3.30)
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should be used. This gives

1..¢ ;é Qé

-

Ez3 " é’_b_—;_, 29;

22
;ﬁ;}J (3.31)

The two terms on the right side represent steady-state and
transient creep respectively. Rabotnov [89] defined the internal

variables through a linear differential equation

g = g, ', b+ c t (3.32)

¢ i

where t is the time. According to the identification of the
constants, time-hardening, strain-hardening or inelastic effects
are obtained.

A special case is given by

F= B 55,0, €S ) (3.33)

For isotropic deformations the invariants of stress and
strain tensors are used. Following infinitesimal theory of
plasticity two measures of hardening is possible.

The work-hardening parameter is given by

-C
EIJ
/Q=‘rc(/"/“/c) (3.34)
o ‘E;
Ko = ,o(/a’wp) (3.35)
17}

where the increment of creep and plastic work is given by

1 42 ¢ <
AW < B EL de - 5, EL (3.36)
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with the superscript i indicating creep or plasticity.

The strain-hardening is similarly expressed by

-C
E.Z'J
K= ([ e (3.37)
o
‘€%
Ko = Kol [ SEP) (3.38)
o

with the equivalent creep and plastic strain defined as

de‘= ¢ & £f

<
e E_ZJ> 2 (3.39)

It should be noted that in the most general case a mixed
invariant measure representing both creep and plasticity of.the
form e’ EC should be introduced.

I7 o)

The previous derivation was based on the existence of a
creep potential éﬁ . A discussion of its existence based on
micro— and macro-structural slip theory 1s given by Rice [90].

A more stringent constitutive equation for crystalline
elastic—visco—plastic materials has been given by Kratochvil and
Dillon [91] without using creep potential. This formulation
utilizes thermodynamics with internal state variables related to
crystal effects in the material. A similar formulation has also
been proposed by Tseng [92]. However, at the present time
these formulations are far too complex for use in analysis, and
the material constants used in the constitutive equations are not

available for most engineering materials.
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3.5 Yield Function and Loading Criterion

The constitutive relations for viscoelastic/plastic solids
have been discussed in detail by Naghdi and Murch [93], and
Perzyna [94] for infinitesimal theory. These relationships will
be extended here to the special case of small strains-large
rotations. This extension is based on the use of the 2nd Piola-
Kirchhoff (P-K) tensor, and the following postulate:

The physical components of the Cauchy stress tensor

in surface coordinates of the deformed shell are approxi-

mately equal to the components of the P-K tensor in the

undeformed configuration.

The implication of this is that the mathematical represen-
tation of the yield function is the same in both the P-K and
Cauchy stress space.

The yield function is given by a surface in the é-dimensional
stress space, and contains the origin. As in inviscid theory of
plasticity this surface is convex [93, 94]. However, the plastic
strain rate will only be normal to the instantaneous yield
surface, which is determined from the time and path stress
history.

During its path through the deformation space, the body is in
configuration é& at time t. In this configuration the yield
function is given by

[ 1 4
FC55, €L, €y, o) = 0 (3.40)
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where ¢f 1is a hardening parameter that depends on the whole
deformation history of the body. Contrary to the inviscid theory
of plasticity £ will vary with time even when the stress is kept
constant. This is due to the dependence on time through the
. (g€
creep strain ‘E7,.
For initially isotropic materials with isotropic hardening

Eq. (3.40) can be rewritten

F=F('s,)-or( '€, Efy =0 (3.41)

Eq. (3.41) implies that the shape of the yield surface is retained
but undergoes a uniform expansion in stress space, Fig. 3.4.
This hardening rule, however, does not account for the Bauschinger
effect.

Assuming that creep deformations do not alter the initial

yield stress, the von Mises condition for initial yielding is

Ft's,5) = J, = Kt (3.42)

where J, is given by Eq. (3.28) and k is the initial yield
stress in pure shear.

The hardening parameter & may also be taken as
f c (_p
IH (€3, Ex3) = H( K, Kp) (3.43)

where K_ and Kl" are defined by Egs. (3.34) to (3.38).
Following infinitesimal theory of inviscid plasticity [95],

the following types of behavior can be defined
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i) Loading

ii) Neutral loading

iii) Unloading

For an elastic state <o , for a plastic state f=o,
while £ > constitutes an inadmissible state.

The time rate of f is given by

2 q 2{ g _a_f 'P
f= 2,5 ‘5IJ+2’5§J EIJ B'EL €15 (3.44)

Associated with the plastic state three paths of actions
are possible.
Unloading is characterized by zero plastic strain rate,
'E:D =0 , and is characterized by #=o and <o .

From Eq. (3.44) the criterion for unloading is determined as

o ¢ . Of rpc

5 7 <o (3.45)
2%;; “r1 PESL, L7

Neutral loading is a change from one plastic state to

another without change in the plastic strain rate, i.e.,

f=o, £=o0

of 1 f tpo.c
2—451]513 =3 €7, =0 (3.46)

Loading is a change from one plastic state to another

accompanied with strain hardening; f=o ., f =0

ﬁ e of .C
2,5”5”* 2%, %, o (3.47)
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Note that in contrast to inviscid plasticity the time enters
as a parameter in the loading criterion through the creep rate.

3.6 Incremental Stress—Strain Relationships

The plastic strain increment E;J is known as soon as the

proportionality factor X in Eq. (3.23) is determined

F vy 2F | of
Ery® d[’f_,';) = \dt 55,, U 2%, (a)

In the plastic state d) can be determined by substituting
Eq. (a) into Eq. (3.44),and setting the latter equal to zero.

Replacing the rate quantities with the incremental variables

gives
2f 2f
dh= =% ( 35, 5,7 Spe ) (3.48)
where iy >F £

Substituting Eq. (3.48) into Eq. (a) one gets

T oL (2t 2z £ ) (3.49)

2
€17 7= 2574 ( 2-'5:1_5'“*- 2k,

Eq. (3.49) gives the increment in plastic strain as a linear
function of the increments in stress and creep strainms.

In a displacement formulation the relationship between
increments of stress and strain is needed. This may be obtained
by inverting Eq. (3.49) numerically and combining the result with

the generalized Hooke's law:

< P
\5'2-‘7 = EIJKL ( Ek(__ Eg(_- EKL ) (3.50)
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where

Ez]m ‘/““(‘5 J’L I JJK )+ A JIJ ‘gzL (3.51)

The Lamé constantS/«. and X are given in section 2.7.

In the theory of plasticity the incremental stress-strain
relationship may be obtained directly without numerical inversion.
This is due to the restriction, &f=¢©, that is imposed on the
yield function during plastic deformations.

of |, 2 e

_ L2 e
df"a’jm %137 2, Fas T FE,Car T O ()

Combining Eqs. (a), (b) and (3.50) one gets

o Y ¢
dA=h (2313 Era EKL*(a’E:—L— 25, Ersee) Eg) (e)
where
< of of _2f 2f
b= 5t 55, Con T s, Dl (@

An alternative expression to Eq. (3.49) is now obtained by

substitution of Egs. (c) and (d) into Eq. (a).

= A4 <

I3kL KL ’ "::[ch E:L (3.52)

where the following definitions are given

2f 2f

ALz = h 8515 35.4u Ermee (3.53)
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_, of of (3.54)
Pk = P 9{51_;, B'EEL - Akt

The incremental stress—strain law is obtained by Eqs. (3.50),

(3.52), (3.53), and (3.54) as

(4
S19= Crope Exr ™ gt Exr (3.55)

with

Croxe = Epgper ™ Ergrw Amnel (3.56)

and

F

Hrane = Ergmw Fanee 7 Epzee (3.57)

Note that in the case of elastic—creep deformations without

plastic strains occurring

Croke © Hraee (3.58)

Using von Mises yield criterion and isotropic hardening

the following relations hold

of - 217

05, 25 *m

oF _ Bf 2EP MW _ __t 1 (3.59)
2€l, 2&F owp, 9%, T # 32g

97‘ _ If Qéc o We /i V¢

= — = 5
2ES, 2&° dup IES, & 7
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where

Here H' can be determined from a simple uniaxial tension

test for a given amount of creep hardening

! / L
= 3.60)
K E &, (
. . dF
where the tangent modulus E; is given by ﬁé- gz

Similarly H'" can be determined from a plot of the hardening
. . =cC .
parameter versus the equivalent creep strain € when the plastic

strain is kept constant.

-

L
HY &

“n‘l\

Since H' and H" are strongly dependent on the accumulated
creep and plastic hardening respectively, such tests are not
readily available today.

Define

= EE
7= F

which gives

1 _ zl+v(U-5)

) St E(3-gCI-2vY) (3.61)
With this notation one gets
9 I R Sl
AIJKL= Z-/‘/’ o2 5;; Spe (3.62)

CJJzL=/“(é'z 5.71." J.[LJJK) *4 A.-zagcz_ = Z“EA o=-L" gu’gzz_ (3.63)
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Note that both ADzLand C.IJA:L are functions of the total creep

strain.
From Egs. (3.54) and (3.57) one finally gets

.3 1
";JKL 2% Sk

12 3 ¢ 1=
51.7( # 51:L+'3/" Sec) (3.64)
Hrzee = A (Jzzéu*éﬂ S2e )+ A0 -
-3 - v ‘s (3.65)
= o S, (K5 S )
Vadd
Finally, Eqs. (3.62) to (3.65) must bé modified to the

generalized plane stress state used in the shell application.

3.7 0Odquist's Creep Theory

A less stringent method for treating the combined creep and
plasticity problem was proposed by Odquist [43]. Considering
the primary creep strain as an instantaneous irreversible defor-
mation, he combines this with the instantaneous plastic deformation.
However, no coupling between creep and plasticity was accounted
for in the formulation of the yield criterionm.

Using the Prandtl-Reuss equations, a linear relationship
is assumed between the instantaneous inelastic strain increment

zc . .
E and the deviator of the stress increment

Io
I _ s .\K 3 =
€y = K(5) 75 S (3.66)
where 7¢ p e

€13 = &y * Ep,

TC , .
with Eia being the increment of transient (primary) creep.



64

Ic
Since £, is considered to be irrecoverable, Eq. (3.66)
is only applicable during loading. The loading criterion is here
not based on the concept of a yield function, but was proposed

by Odquist to be:

Loading : S dF >0
(3.67)
Unloading : © <& <O
Taking the total differential of Eq. (3.28) one gets
— 28 =
ds = 2'5—13 513
which transforms Egs. (3.67) to
oS =275 5 Zo (3.68)
CoS Tz “r31 %15 < .

It should be noted that Eq. (3.68) is similar to the loading
criterion used in the theory of inviscid plasticity. However,
the concept of neutral loading and yielding has no meaning here.
Even though plastic deformations strictly occur only when fro ,
the transient creep deformation takes place independently of
the value of the yield function f. Eq. (3.66) is not capable of
separating the two phenomena.

When using a2 displacement formulation the incremental form
of the stress—-strain relationship must be determined. In the
theory of inviscid plasticity this relationship may be obtained
directly through the use of the yield function. Such an approach,
however, is not possible in Odquist's method unless additional
postulates regarding the existence of a yield function are
introduced. The incremental stress~strain relationship must

therefore be obtained by numerical inversion of Eq. (3.66) and
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the generalized Hooke's law:

&
EI J

I _ X
Ry C 525~ /+v CYERI

where the shear modulus G' is given by

/

L&
G 2¢1+v)

The instantaneous tangent modulus E' is defined by [41]

-3
&= &z (3.69)

where €, is the instantaneous strain due to the elastic and

primary creep response.

Defining
- . K =
S —
€=K(Eﬂ ZE
one gets

A V. - c
£, e (53~ irv Jza Skr ) +5 30 * £

where Eg, is the steady state creep strain. This can be

written as

C
.= G S+ &y, (3.70)

IJ IokL TKEL

For axisymmetric deformations the strain-stress matrix GiJKL

is given by
[ (Z+#e) (-2-3%) -5-36) o
2 /
(2759 (-£-35) o (3.71)
(£+358) o

(%)

[a]

SymmetriC
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By inverting Eq. (3.71) the stress—strain relationship is

obtained on the form

_ [
Sr7 = CszL 4 Em_' Eer ) (3.72)

where
- f

Croer = Grgp, (3.73)

3.8 Generalized Plane Stress

In thin shell and moderately thick shell applications the

stress—-strain relations in a state of generalized plane stress

are needed.

For this purpose, Eqs. (3.56) or (3.65) must be modified.

For axisymmetric deformations we assume

1 1 1
527 533 T 533_ @
5122 523 = 533 =0

£, Ez3 =°

Hence

513% Crawe €t Crzss Ess (3.74)

S33 " C!JKL 5a* C3333 533 (3.75)
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Solving for £33 from Eq. (3.75) and substituting into

Eq. (3.74) gives

573 Crop Exe (3.76)
with

Co. = - ke

Crox Cszz_ Craas Cazss (3.77)

In the calculations this modification will be done numerically
using Gaussian elimination. Similarly Eqs. (3.53) and (3.54) must
be modified for plane stress.

3.9 Some Remarks on the Creep—Plasticity Interaction

The interaction between creep and plastic deformations in
metals is very complex, and is difficult to formulate mathe-
matically within the scope of creep potentials and yield functions.

It has been found that small prior plastic deformations
do not harden the material relative to creep at stresses below
the proportionality level [42]. Large plastic deformations,
however, have significant effect on creep deformations. On the
other hand, the creep behavior of a given material is changed
substantially when subjected to stresses above the proportionality
level. This is observed in tests both for aluminum alloys and
steel.

Conversely, previous creep deformations have a significant
effect on the instantaneous stress—strain characteristics of
most materials. This is illustrated in Fig. 3.5, where a specimen

is loaded to a stress level above the proportionality level. The
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stress is then kept constant for some time, during which the
creep strain € is accumulated. Upon instantaneous reloading a
new tangent modulus is obtained [42]. This indicates that the
effect of creep hardening on the modulus E; in Eq. (3.60) is of
particular interest. Berkovits [96] studied this problem for
commercially pure aluminum by subjecting a constant bending creep
specimen to a sudden stress change after creep had taken place.
In general, the tangent modulus obtained after several hours of
creep was approximately equal to the elastic modulus, both for
increasing and decreasing stress. Fig. 3.6 shows the variation
of the ratio QQ% as a function of time, as given by Berkovits.
As can be seen, recovery has taken place within a very short time
(or after a small amount of creep deformation).

This phenomenon can be explained from the changes in the
microstructure of the material. Due to dislocation motions and
vacancy migration during creep the number of mobile dislocations
at the time of the stress change is much lower than when the
creep deformation was initiated in the inelastic range. It has
been surmised that the number of mobile dislocations after creep
has taken place is approximately of the same order as for the
initially elastic material. This explains the high tangent
modulus that is observed in Figs., 3.5 and 3.6. It should be
noted, however, that if the stress increase is large enough
dislocation multiplications might take place, resulting in a

lower modulus.
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Based on these observations it is clear that the problem of
creep—plasticity interaction is very complex. The phenomenon is
difficult to describe mathematically, and much work remains to be

done before the problem is resolved.
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4. AN APPROXIMATE SOLUTION TO PROBLEMS IN FINITE LINEAR
VISCOELASTICITY

4.1 Constitutive Equations for Linear and Finite Linear Visco-
elasticity

The theory of linear viscoelasticity for infinitesimal defor-
mations is well known, and is presented in a number of texts
[97, 98, 99, 100]. A brief review of this theory will be given
here, as well as its extensions to geometrically nonlinear appli-
cations. The presentation will be restricted to isothermal
conditions and quasi-static deformation of isotropic materials.

The basic hypothesis of the classical theory is that the
present state of stress O;; is a function not only of the present

state of strain € but also of the past strain history. Mathe-

iy
matically this is expressed by

j (4.1)
0y () = ¥ [ €y (t-5), € (2) 1
=0

S
where Vy is a linear tensor-valued functional that transforms
each strain history ég(t), -o0 £ f £ oo into a corresponding
stress history. For a continuous strain history Riesz repre-

sentation theorem may be used to write Equation (4.1) as a

Stieltjes integral
: d
0ty = [ Gy (2-0) J €y v 4.2)
o

The integrating function 691( is a fourth order tensor, commonly
denoted the relaxation function. Equation (4.2) is invariant

under time shifts, and is hence restricted to non-aging materials.

A discontinuous strain history may be included by integrating the
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Dirac delta functionm.
¢

Ogj(t)=Gyu(t) €4 (0) +fGW (t-r)aé}eu(c) dr (4.3)
o

The concept of fading memory was defined in a mathematical
sense by Truesdell and Noll {4]. From pure physical considerations
the concept is based on the postulate that the stress is more
strongly dependent on the recent strain history than the distant

history. In terms of the integrating function this is expressed

by

< d
/dt thu /,_4._51 < /d‘t G‘./u /tf'tz_ ; ff>fz ]

The concept of fading memory is of paramount importance
since it reduces the number of past strain histories that must be
stored for the evaluation of the convolution integrals in Eqs. (4.2)
or (4.3).

It is well known that any isotropic fourth order temsor can

be represented by

Gyer = f(6-6,) Sgcgu +726,(8, &

¢ T 5&5}‘: )

where G1 and G2 are independent functions. 1In the present context

they are the shear and bulk relaxation moduli respectively.

Using this, Eq. (4.3) may be recast
¢

/
g;(¢)= G, () €;,-(a) +f6,(t—r) % éé(r) oz (4.4)
o

t
T (¢) = G, (t) &, (0) +/a, “ —r);‘g- €,,(T) dT (4.5)
o
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where the deviatoric tensors are given by

) {
Of./ Og - 315‘./ Okl
/

This formulation is advantageous for many polymeric materials,
where the shear effect 1is highly viscoelastic while the bulk
behavior is almost elastic.

The theory of nonlinear viscoelasticity has many features in
common with the infinitesimal theory, the most important one being
the memory hypothesis. However, for finite deformations the more
stringent definitions of stress and strain must be used, conf.
Chapter 2. Furthermore, the formulation should satisfy the
principles of determinism, local action and material frame
indifference. The latter meaning that the constitutive equations
should be invariant under change of frame of reference.

The most general formulation starts from the Clausis-Duhem

inequality [99] and gives*)
Py
e - K=Xal
517 $o '€, (4.6)

where the stored energy’A per unit mass 1s a functional of the
type

t

W= W [ B (¢-8), Eg ()] (4.7)
S$=0

*) In this chapter all derivations will be made in rectangular
Cartesian coocrdinates.



74

Assuming the functional to be Fréchet differentiable and continuous
in the strain history the proper derivatives may be obtained.
However, Eqs. (4.6) and (4.7) are far too general for
practical use. Attempts have therefore been made to obtain inte-
gral equations of the form (4.3), that satisfy the general principles
listed above. This leads to a constitutive theory commonly denoted
finite linear viscoelasticity [4], [101]. Here no restrictions
are imposed on the magnitude of deformations.
Truesdell and Noll [4] gave the response as a function of

the deformation history measured with respect to the current

configuration
Ri7r= frC)+F [Ges, ] (4.8)
~ -~ ~ ~ P

where

and

¢l (e)= Reo- L

® Loy (T R(2)

£;“1 is the relative right Cauchy-Green deformation tensor

(4].

The polar decomposition theorem gives

L= RU
and

g\
‘

FiF = ¢
A A ~

U= CT”t
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where the rotation tensor R 1is orthogonal and & is the symmetric
and positive definite stretch tensor. In order to obtain £ the
square root of C must be computed and then inverted numerically.
This is a very time consuming operation that makes Eq. (4.8)

quite cumbersome in practical applications.

An alternative formulation is used by Fredrickson and Lodge
[102], [103], [104], using Eq. (4.3). The stresses C and
strains ?9‘ were here referred to convected coordinates. The
formulation satisfies the invariance requirements, but the use of
convected strain rate is quite inconvenient.

Rivliin [105] suggested the following form
1 ty
S1(4) = Yoy [ Crp (275), Cro(20) ] (4.9)
S=0
Equation (4.9) may be considered as a restatement of Eq. (4.6),
and indicates kinematical and mathematical variables necessary for
an invariant formulation.
Assuming the functional Y%7j; to be linear and of integral type
one may write
Z

! =4 )
[+

Equation (4.10) is a direct extension of Eq. (4.3) that
satisfies all invariance principles. The equation also reduces

to Eq. (4.3) for infinitesimal deformations.
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GIJKL should be identified from experimental results of

finite strain tests. However, for small strain, large rotation

applications the relaxation function G may be approximated by

IJKL

without loss of accuracy. G,, is assumed known from

€1 jx1 15kl

infinitesimal strain test for the material at hand.
The integrating function G and the strain increment E,_,
IJKL vi
are both given with respect to fixed base vectors in configuration
d% . This is a necessity for the evaluation of the integral in
Eq. (4.10), since the integral is the limit of a summation process.
Any attempt to write an integral constitutive relation of type
(4.10) in terms of Cauchy stress and rate-of-deformation is

therefore impossible.

4.2 Method of Solution

Solutions to boundary value problems for materials described
by the infinitesimal theory of linear viscoelasticity have been
given in the literature [106, 49, 107, 51]. The solutions of
large displacement problems have been given in reference [64, 65].

For most initial boundary value problems the spatial dis-
cretization of the system is most conveniently obtained by the
finite element method. This reduces the equilibrium equations to
a set of simultaneous integral equations. The size of this set
will in most cases prohibit the use of integral transform methods,
and a step-forward integration scheme is the only recourse. In
this method the kinematic rate quantities must be approximated

by some finite difference formula.
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The mathematical representation of the relaxation function
from the experimental test data will greatly influence the
computational effort in the evaluation of the convolution integral.
Even for materials possessing a fading memory a finite number of
past solutions must be retained. The objective is therefore to
obtain a recursive algorithm reducing the number of past solutions
needed for the integration process. Such algorithms have been
proposed by Chang [49] and Selna [48].

The simplest recursive algorithm available may be formulated
for generalized Maxwell type materials where the relaxation moduli

may be represented by a Prony series

o T ¢ =t/ N
G'a((t) = Ga(*Z Guf )' o(-'/z (4-1;;

<=7

where Gl and G2 are the shear and bulk moduli respectively. q:
is the equilibrium value obtained when #-—*oc , and A, may be
interpreted as discrete relaxation times. I is the number of
generalized Maxwell elements in the representation.

The advantage of this representation is that only the solution
from the previous step has to be retained. The algorithm used
here was given by Taylor, et al [51], and is shown here for the
sake of simplicity for a uniaxial case.

Let the body occupy configuration Gi, at time £, , at which

time the stress and strain are given by O and ¢, . Substituriug

the uniaxial version of Eq. (4.11) into Eq. (4.10) gives
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I —tn

A
C,=0(t,)= (ell,)+ Z G e €lo) ™
e
4 7
_( -’
Z G Tl e(r) dr (4.12)
et "
The integral may be decomposed by
n ik
f(~--~)c(2~ Z ) d
o
tk-/
Consider one term in this series
E: z 4 Y
-(Ea2)/; S IV s S DN
f}_’,@e Zeridr=Z ge e’ e e (a)
9'./ < 5"—/

Assuming the strain to vary linearly within the time interval

< 9;,, %/ b , the strain rate may be approximated by
2oy = 2 deth ®
with
delt) = €G- €(L,)
Aé = é.— lf/._,
Define
- (-7 /) ’ -ati /A
h; (at) = At e g =g (1me ) (e
Combining these expressions, Eq. (a) becomes
g z Y/
_(f =& IJ"
j( ...... )d{* = Z e n 9 /-,‘(éé-) Qle(é) (d)
=/
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Equation (4.12) may now be recast into

I I —-atna/y
o= [ ¢, +% G; b (atn)] detd) r Z G € €Co) (4.13)

-1 RYIT
? (tn E’)/A‘A"(A

Z -

‘/l/ =/

1) de (g/-J

Further simplifications are possible by defining

-, /k n-1 —ct.-¢.) /.

9.y =Gl e ”/)‘e(owzi/ e " 7 /"‘/;‘.(a;)a’e(@] (e)
J=
n=1
or recursively
—atn /4

Gty = e G, ) v Gotat, Nty ] ()

nzf{

Equation (4.13) and (f) gives

z T
o, =[G~ ZG, b (ad,) ]de(t,) * G, € (4, *Z 9 () (6.14)
L= =

Here cd&(¢,) 1is the strain increment between ﬁ;_,and
@, » and €(¢, ) the total accumulated strain in ®,,

Similarly the stress in configuration GL_Iis given by

I I
Crei= €8, N+ T G hlat, )by ) * T 9:(2,.,) (6.15)
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The stress increment between d%_, and &% is defined as

I
0 =0,-0,.,= LG+ Z Ghlat,)]delt,) (4.16)

”

z - .
e Z (€ 1Y [ Gl VTG b Aty ) e (e ]

Y

Note that tﬁe response 1s separated into two parts. The
first part is an instantaneous response proportional to the strain
increment de(t,) . For equal time steps this Instantaneous
modulus is a constant. The second part 1s the delayed response.
In order to calculate the latter the previous strain increment
deltn-,) and g (4,,) must be stored.

The extension of Eq. (4.16) to a multiaxial case is straight

forward

{Sm} = (Gf*é,éi‘et-(afnﬂ{dfu (2,0} *

(4.17)
z —al, Ji; * Vi —
Y Z‘:/(e -1)( {5‘; (tn-/)} *61 64.' (‘é‘tn-/){df]] ("‘n-r)})
and
s I .
SKK= ( Gz*; C‘z‘hi(din)7dfkk(én>*
€= (64.18)
I - in/[ ¢
+% (e o NG lt, N G b lal, Vg &,.))

Py

where {5;} follows immediately from Egs. (e) and (f).



81

Let

I ,
G+ 2 Glhtat,)

£

L
A, = G, + E, G, h; (4ad,)

I —A.éﬂ/tl" ¢
B =2 (e 1) G:(L _V+Gy h(al,.,)dEpe (L, ) )
c=f

- at :

£ n//lc ¢ -
{b} i % (e - ( {g:(t,,_,)-r Gf h«.’ (Aén—/) {dfn(fn-/)})

With these abbreviations the response for axisymmetric

deformation is

Fsﬁ 7 —(Zd,-rdz) (oty=oty)  (BXyely Y o ] dE,,‘ [ b, - _51_/6 3
J S| (Zo+0t,) (4-dds) O ||dEy b+3p (4.19)
r= 3 < b+ 1 L
553 (qu"'d,_\ o} JE” 65 + éﬂ
Symmercic
- S{j J - D(,- v dE” J L b4

For thin shell applications Eq. (4.19) must be modified due
to the generalized plane stress condition 533 = 0. Due to the
appearance of the delayed response this condensation is not as
straight forward as given in Chapter 3. Special attention
must be given to the definition of b3 and df33 at each step of
the integration.

For materials where Poisson's ratio remains constant during

the deformation, v{t)= y(o) , the above relationship may be

simplified since the Poisson's ratio effect may be kept outside
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the integral.

The constitutive relation in matrix form is

{sy - [clidey ~ { &% (4.20)

where {§°] denotes the delayed stress response and is often
called the '"creep'" stress.

4.3 Some Remarks of the Sources of Errors in the Solution

The accuracy of any numerical method is determined by the
approximations made in the initial formulation, and the errors
accumulated during the computational procesé. For the class of
viscoelastic boundary value problems discussed here these errors
are

(1) Errors assoclated with the finite element formulation.

These originate from the discretization of the system, and
from the lack of completeness of the assumed displacement
field. Both errors may be reduced by refining the mesh

or refining the element.

(ii) Rounding errors in the computation. This error is due to the

use of a finite word length in the computer, and may be
neglected except for the solution of ill-conditioned systems.

(iii)Errors due to the viscoelastic model. In the present context

the assumption

GkaL T Mokt
may introduce errors with the increasing magnitude of the
strains. However, for most creep buckling problems the
structure will lose stability before the strains reach a

level where this becomes important.
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(iv)
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Secondly, the strain rate approximation given by Eq. (b)
may be too crude. This will occur when the time step is
too large and the strain varies significantly with time.

For this case the error may be reduced by using a higher
order difference approximation to the strain rate.

Another error source may be the inadequacy of the Promy
series expansion to model the material behavior of certain
materials. If more complicated functions have to be used
in the modeling, the simple recursive algorithm used here
will break down. For such cases, algorithms that require a
larger number of past solution to be stored might be
necessary.

Finally, errors may arise from the computational
method used in the calculation of the convolution integrals.
For isothermal conditions the calculations are exact, but
errors will arise for nonisothermal cases [51].

Errors from the solution of the nonlinear equations. For

infinitesimal theory the step-by-step integration of the
incremental equilibrium equations does not introduce
further errors. For geometrically nonlinear problems,
however, the forward integration scheme is known to give
solutions that drift away from the exact solution unless
equilibrium checks are performed. These equilibrium checks
may initiate parasitic oscillations in the solutions, as

discussed further in section 5.7.
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Concluding, the accuracy of the solutions obtained by the
method discussed in this chapter 1s quite good. The most serious
problems are associated with the oscillations in case (iv), and
the identification of the material parameters in the Prony series
expansion. For creep buckling problems the choice of step length
in the forward integration also becomes crucial for the accuracy

and economy of the solution.
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5. ANALYSIS OF NONLINEAR PROBLEMS

5.1 Characterization of the Nonlinear Problem
A given nonlinear system can be characterized according to
the sources of the nonlinearities of the system. For a structural
system these sources are:
1. Geometric nonlinearities
2., Physical (material) nonlinearities
For most structural problems both these effects are present,
and prominently so in the subject of this study. For better
understanding of the nonlinear behavior, the following distinctions
should be made:

1. Geometric Nonlinearities

The geometric nonlinearities are due to the finite
deformation of the structure, and the necessity of distinguishing
between the deformed and undeformed configuration. Two contri-

butions must be considered

(1) The use of the complete nonlinear strain-displace-
ment relationms.

(ii) The equilibrium equations are written in the
deformed configuration; whereby they become a
function of the total deformation.

2, Physical Nonlinearities

The physical (material) nonlinearities are caused by a
nonlinear relationship between kinematic and mechanical variables,
i.e., through a nonlinear constitutive law. For engineering

material this relationship may be of either
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(1) Differential form. Stress and strain rates are related
through a linear (nonlinear) differential equation.
This is the form most commonly used for creep and
plasticity of metals, where time and path dependence
are given implicitly in the differential equation.

(11) Functional form. The functional law relates the

instantaneous value and past history of the two
variables. A special form of this is the hereditary
integral law used in linear viscoelasticity. This
formulation is extensively used for biological tissues
and high polymers.

In the present study material laws of both type (i) and (ii)
are applied.

The equilibrium equations, incremental or total, obtained
from the field equations will in general result in a system of
nonlinear differential or integro-differential equations. For
most cases these equations are of such complexity that only
numerical solutions are available. For most structural problems
the size of this system of equations is such that extensive
considerations should be given to what numerical solution method
would be most efficient for the problem at hand.

5.2 Numerical Solution Methods_ for Nonlinear Systems

During the recent years great emphasis has been placed on
the development of efficient numerical solution methods for non~
linear equations. A number of authors have characterized and

evaluated these methods as related to structural analysis.
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Most solution methods can basically be separated into two

classes [105, 109].

Class 1. Incremental Methods

Class I1. Self-correcting Methods

Incremental Methods

The most common of these methods are

1)

(11)

Pure incremental method

This is essentially a Euler forward integration method,
where the solution is obtained through a sequence of
linear analysis. The tangent (or instantaneous)
stiffness matrix is evaluated at each step, and the
total load applied in small increments, Fig. 5.la. For
quasi~static problems the time domain is spanned step-
by-step. The method is conceptually extremely simple,
and can be applied to nonlinear problems of both types.
However, the solution will drift away from the true
solution unless extremely small increments are used.
The error is of first order in the displacement increment.

Mid-point Methods

Here the tangent stiffness is replaced by an approximate
cord stiffness, K. , Fig. 5.1b, solving for an approxi-
mate displacement increment gt* using the tangent
stiffness, the approximate K. can be evaluated at
£-f5g’ . The improved displacement increment is

then obtained from K_-<r=oK& . This is a second

‘order method, but requires two linear solutions per

step. A cruder approximation to K. is obtained by
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estimating Etf directly on the basis of the previous
displacement increment, without using the tangent
stiffness [110].

(iii) Initial-value methods

The initial-value methods are based on the conversion

of the equilibrium equations from nonlinear algebraic

equations to ordinary differential equations. The

methods are discussed in details by Haisler et al [108].
The characteristic feature of all these methods

is that equilibrium is in general violated at all points

on the solution path. Hence the solution tends to

drift away from the true solution unless extremely small

load increments are used. Both (i) and (ii) are appli-

cable to physically nonlinear problems, but some caution

should be taken when using (ii).

I1. Self-Correcting Methods

(1) Pure iteration

The simplest iteration scheme available is one where

the stiffness matrix is kept constant and equal to

the initial value during the iteration process, Fig. 5.2a.
After each cycle the'out-of-balance" force is computed

in the deformed configuration, and applied as a new
loading. The computational effort per cycle is small,

but convergence is extremely slow.



(11)

(1ii)

(iv)
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"Secant' iteration

The secant stiffness and the load vector are in general
dependent of the total deformation. From the initial
linear analysis, a first approximation to the displace-
ment 1s obtained, and the approximate secant stiffness
determined. Based on this stiffness a new displacement
vector is obtained, and the process is repeated until
convergence, Fig. 5.,2b. In this approach, convergence
is in general slow, and computation of the secant
stiffness is relatively time consuming.

Newton—-Raphson iteration

The Newton-Raphson method is a second order method based
on a linear Taylor series expansion about a known
approximate solution. At each point in the solution

path the tangent stiffness and the out—-of-balance force
are computed, and a new displacement increment determined.
Adding this to get a new total displacement, the prbcess
1s repeated until convergence is achieved, Fig. 5.2c.

The method requires the updating and "inversion' of the
tangent stiffness matrix for each cycle, but had
quadratic convergence,

Modjified Newton-Raphson methods

The necessity of evaluation and triangularization of
the tangent stiffness for each cycle makes the Newton-
Raphson method relatively slow. In order to speed up
the solution a number of schemes have been devised

where the stiffness has been kept constant for a certain
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number of cycles, and only updated when the rate of
convergence has deteriorated [112].

(v) Residual load method

This modified incremental method was originally proposed
by Wilson and Murray [15, 16]. At the end of each load
increment the '"out-of-balance" force &8 in the deformed
configuration is computed, and added to the load incre-
ment g for the next step. This is equivalent to a

" force,

one-cycle iteration on the "out—of-balance
without ever formally updating the displacement after the
iteration, Fig. 5.2d.

(vi) Self-correcting initial-value methods

This is a modified version of type (iii) in Class I-

The method has been found to be extremely efficient

for geometrically nonlinear problems [108], but since
the stiffness matrix is kept unchanged during the pro-
cess, it will fall within the initial strain methods for
flow theory of plasticity.

All Class II methods are applicable to geometrically nonlinear
problems, with (iv), (v) and (vi) being the most efficient. The
convergence of the iterative method can be accelerated using
extrapolation methods like Richardson's method, etc. [112]. The
incremental methods may be improved using the mid-point method as
discussed above. For physically nonlinear problems the choice of
method 1s more restricted. For nonlinear elasticity most of the
iterative methods may be applied, and method (ii) has been used

for deformation (Hencky) type plasticity [111]. Flow theory of
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creep and plasticity, however, is path dependent, and an incre-
mental method is the only recourse.

In the present study the Newton-Raphson and the residual-
load method were used for elastic problems, and the latter one
for inelastic problems and for elastic snap-through cases where
the iterative methods become unstable.

5.3 Post—-Buckling Analysis of Structures

The post-buckling behavior of structural elements can be
separated into three classes according to the slope of the

generalized load-deflection curve in the post-buckling domain,

Fig. 5.3a.
I, Positive slope, — plates
II. Approximately zero slope,— columns
III. Negative slope,— arches, shells

In plate-type structures, a stiffening is observed in the
post-buckling domain, while columns exhibit almost zero stiffness
until the displacements become very large ("Elastica', [113]).
Shells and arches, however, show softening with loss of stability,
causing large displacement under decreasing loading. The latter
phenomenon is commonly called snap-through.

The snap-through problems can be further divided into two
cases. Case (a) is characterized by the displacements being
multi-valued in the loading, and the loading single-valued in
terms of the displacement, Fig. 5.3b. This is typical for
spherical shells and arches. Case (b) is common for axially
loaded cylindrical shells, where even the loading is multi-

valued in the displacements, Fig. 5.3c. 1In the present study
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FIG. 5.3 POST-BUCKLING BEHAVIOR OF
STRUCTURAL MEMBERS.
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the attention will be limited to case (a).
The generalized load-deflection curve for snap-through
problems is divided into three paths, Fig. 5.3b.

1. Stable ascending path, deld K)>o

2. Unstable descending path, oe? (K)<o

3. Stable ascending path, Jde?ck)>o

When passing from one path to another the determinant of the
stiffness matrix will change sign, causing stability problems in
the solution technique. Iterative methods will tend to oscillate

while incremental methods will diverge unless the loading is
reversed.

The advantage of displacement control is apparent in case
(a), where the loading is single-valued in the displacement.

This implies that the displacements should be the primary variable
instead of loading in the displacement formulation. ¥For multi-
degree of freedom system this is quite difficult, but has been
obtained for structures subjected to single point loads. Aug-
menting the structure with a heavy "fictitious' spring under the
load renders the combined structure positive definite in the
entire displacement domain.

This concept was extended to structures under general loading
conditions by Sharifi [114]. Using a linear constraint for each
degree of freedom, the constraining force vector was determined
as a linear function of the applied load vector R and a single

spring parameter. This gives a modified equilibrium equation

( K+Kav0 =K (5.1)
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The augmenting stiffness matrix K, is given by
7
£A=°‘ R-R (5.2)

where % is a proportionality factor given in terms of the spring
parameter and trace £,

The major disadvantage of this method is that K, will in
general be a full matrix, such that the total stiffness matrix
will lose its banded form. However, the method has been found
to be very valuable in the analysis of elastic-plastic structures
near collapse load. Here the load deflection curve is very flat,
and the use of displacement control will reduce the error.

A more efficient method for tracing the complete load-
deflection curve was used by Wissmann [115] for a simple 2-bar truss.
This is an incremental method with load reversal on the unstable
path, and does not destroy the banded structure of the stiffness
matrix. The major problem in this method is that the local extremum
values are not in general known apriori, and hence a simple test
must be devised for the load reversal decision. 1In this study the
positive (negative) definiteness of the tangent stiffness matrix
was used for this purpose. This test is a direct byproduct of the
Gaussian elimination process on the matrix. After transformation
to upper triangular form, the determinant is given by the trace
of the matrix.

At any point ¢(») on the loading path the load increment

is given by

R, = ¢, R~ de’, (5.3)
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vwhere R 1is the total applied load, d&: is the out-of-balance
force vector at point (n) and §, is a load proportionality factor.
The problem is then essentially that of assigning the sign and
absolute value of ¢, at each increment.

The basic procedure is as follows:

(i) Compute and assemble the system tangent stiffness
matrix at point ).

(ii) Use Gaussian elimination to transform the matrix to
triangular form, and compute the determinant.

(iii) Test the sign of the determinant to determine on
which path point ¢») is. 1If on path (1) or (2),
write the triangularized matrix on tape.

(iv) Assign the proper sign and value to §, , and compute
o, . Back-substitute to find &, and compute
total displacements and stresses at point (m+s) .

(v) Repeat the process.

If going from point ¢m) to (n+r) the determinant changes sign,
the extremum point is passed and the value is given in the interval
< Rn,R,e;,”> . 1If a closer interval is needed, backspace to
point /) and read the triangularized matrix from tape. Take
¢"=02p, and use this value for the necessary number of incre-
ments until a new sign change is observed. At this point reverse
the loading, and proceed according to the basic procedure.

In a pure incremental method d,@:so , and no problems
were experienced using this procedure. For the residual 1load
method, however, special precautions must be taken at load

reversal. Situations will occur where the out-of-balance force
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45;' is positive when passing the local maximum. If @, is
chosen negative, but with too small an absolute value, the
resulting dKR,, may be positive even when a negative load increment
was intended. This problem can be alleviated using large enough
values of ¢, , but this will often lead to large errors in the
displacements, due to the small stiffness of the system near the
local maximum. Here, this problem was avoided by restricting the
generalized displacement increment to 2-~57 of the total displace-
ment, and solving for the associated value of ¢, . This method
was used the first 2 to 4 increments after load reversal.

It is the author's experience that the local extremum values
can be quite accurately determined by this method. Even when no
apriori estimate for the critical load was used, the error in the
critical value was about 2-5%,depending on the number of load
increments used.

5.4 Determination of Step Size for Time-Integration

For a given creep problem the feasibility of the proposed
method is mainly restricted by the computer time needed for the
time integration. Of paramount importance here is the choice of
step size and integration limit.

Two different problems are considered here.

(i) Determine the "critical time" for a structure sub-

jected to sustained loading during creep.

(ii) Determine the steady state solution for intermally

pressurized pressure vessels subjected to creep.
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In problem (i) the displacement wW—==o0 as ¢— %, and in
(1i) w-—=w, as z—~ee | yhere W, is the steady state solution.
The objective is to determine ¥, and w, , and the associated
stress and strain fields. In order to obtain a sharp estimate
for ¢, , problem (1) should be recast to =0 as ¢—=7%, ,
which is better conditioned.

Due to lack of computer time only limited attention was paid
to the automatic generation of time steps. Most extrapolation
methods are difficult to apply since the stiffness matrix is a
function of the time step for viscoelastic materials. The following
guidelines were used:

(i) From an elastic analysis the equivalent elastic strains
due to inplane forces were computed for the sustained
load P and the critical load &,. Let

A€ = €. (R )- € (P)
be the strain difference at a characteristic node.
For a given creep law a crude estimate of the critical
time is then obtained by equating

AEE‘ € (o, %,)
and solving for £, assuming the stress, & , to be
constant over the entire time interval. Since the
stress increases as ¢=f¢, , this is a conservative
estimate. When the total number of increments, N,
is chosen, the initial time step is &= Z,/N .
During the solution process a given displacement com-
ponent or displacement norm is recorded at each incre-

ment. At time t" a quadratic polynomial 1s passed
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through these values at ¢  ¢._, and ékz , and
the constant curvature computed. Every time the
curvature is ¢£7)" times bigger than the initial
curvature, the initial time step 4! is reduced by
the same factor.

(ii) The initial time increment is determined from th=
requirement that the initial creep strain increment
should not exceed 10%Z of the effective elastic straf:
Subsequent time steps are chosen such that

ar;, “l2-at
More extensive studies of step size and convergence for
infinitesimal creep problems have been given in references [52,
53].

5.5 Linearized Incremental Equilibrium Equations

A sequence of virtual work expressions for finite deformations
were derived in Chapter 2. Eg. (2.51) gives the virtual work i-ne
by the internal stress field during the deformation from cenfiv- . ra-
tion G% to 62' The virtual work of surface tractiomns and .«
forces were derived for different classes of loading, and iz v -1
by Egqs. (2.52), (2.57), (2.58), and (2.59).

For the subsequent discussion the residual load approa::h
nonconservative loading will be considered. The incrementr?l

equilibrium equations for this case are obtained by equatir

Egs. (2.51) and (2.59).
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(5.4)
) ;fzf% NJZI/’ JUI A _/(451J561J - fe’(l‘{”z )V
78 1)

o ©

The second integral on the left side of Eq. (5.4) 1is derived
from the loading, but is linear in the displacement increment Y
and hence has the form of a stiffness term.

The equilibrium equations of the form above are nonlinear
in ¥ , and can only be solved by iteration. This nonlinearity is

due to the nonlinear part of the Cauchy-Green strain tensor, which

can be decomposed by

Eyjy = €1y 717 (2.50a)
where €, and 9,, are given by Eqs. (2.50b), (2.50e).
Recalling the incremental stress-strain relations of
Chapters 3 and 4, the stress increment is
17 .11 1IKL
§7- ¢ s CT (et ) (5.5)

Substitution of Eq. (5.5) into (5.4) gives the incremental

equilibrium equations of symbolic form
(Kor£1+f1rfj+fa).££=f-$’g (5.6)

~

where the following definitions are used:
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ﬁo‘ég =j ok e ‘Sez:/ oy @)
&,
13k
ﬁ'(“")'éﬁ' ’/C Ceridzzs * 7a Sy AV ®)
ﬁz(U;,uJ-)-{cj =f Pl Ze 5217 Y, (c)
@O
88y = [P FHTRILTy o b S @
%,
Ko du = [1s5 g, I (e)

R Sy = _36{270 % NXT, Syl - [(5%8ey, 55 Byl (1)
&

From Eqs. (a-e) the source of nonlinearity is revealed for
each term. K, and X are linear in & , and are the infinite-
simal strain and geometric stiffness matrix respectively. Xy is
due to the nonconservative loading and is also linear in ¥ . For
conservative loading this term vanishes. The remaining stiffness
terms are of higher order in & . The load term 5_ includes both
the load increment and the out-of-balance force.

From the discussion of solution methods it is quite clear
that the equilibrium requirement is most essential. The degree
of accuracy in the tangent stiffness should be of less concern.

In view of this the terms K4 and k, can be neglected. Being
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quadratic and cubic in ¢ , and restricting &« to be small, these
terms are likely to be negligible compared to f9' and Ko -

The nonconservative loading term K, is nonsymmetric, and
would give a nonsymmetric system stiffness matrix if included.
For most structures this term will be small, and can be neglected
in view of the prior discussion. The added accuracy of the
tangent stiffness obtained by including K, is by far exceeded
by the computational effort needed for the solution of the non-
symmetric system of equations, which makes the inclusion of Ky
uneconomical. However, in pneumatic structures where both strains
and rotations are large, Xy should be included.

This leads to the linearized equilibrium equation

( Kor£g) du= R Sy (5.7)
It should be noted here that ﬁ; is quadratic in Qi . The
linear strain component is
€r;= 37 (Ft; Uels+ 5w/ )
which substituted in Eq. (a) gives the correct expression for XK,.
The linearization of the tangent stiffness has created some
confusion in the evaluation of strain and stress increments.
Arguing that the strain computation should be consistent with
the above linearization, some authors have neglected the nonlinear
term 7;,. However, in order to avoid "drifting" of the solution,
the stresses should at all times be compatible with the kinematics
based on the approximate solution obtained at the end of each

increment. For iterative methods this is imperative for
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convergence, and can only be obtained by including 227+ For
elastic materials, this is even more clear since the total stress
in configuration (B, is computed from the total strain between
Go and @1 » and not by adding stress increments along the
deformation path. However, since ‘2;;1s always positive, it will
give a positive axial force that may cause oscillation in the
solution of problems like the "Elastica" unless small load incre-

ments are used.

5.6 Numerical Examples of Solution Methods

The efficiency of the residual load method is illustrated
for two simple problems.

(i) Elastic-plastic analysis oflbeam. Infinitesimal theory.

The simply supported, uniformly loaded beam in
Fig. 5.4 was analyzed using both the pure incremental
and the residual load method. The results are compared
to Prager and Hodge's exact solution [116]. From the
normalized load-deflection curves in Fig. 5.4 a sub-
stantial improvement in the convergence is observed.
The explanation for this improvement is as follows.

For each load increment a linear relationship
is derived between the increments of stress and strain.
The stress increment and the total stress obtained
from this series of linear analysis would be in
equilibrium with the applied load had not the material
yielded in some regions. In these regions the
computed stresses are scaled down to the yield stress,

whereby the equilibrium between the total applied load
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and the total stress field is destroyed, whereby an
"out-of-balance'" force is obtained.

(ii) Large displacement analysis of plate strip

A large displacement analysis was made for the
infinite plate strip shown in Fig. 5.5. The strip,
uniformly loaded and with fixed end supports, was
analyzed using the same two methods as above. The
step sizes were 10 steps @ 30 psi, and 3 steps @ (50,
100, 150) psi. The results are shown in Fig. 5.5 and
Fig. 5.6. The pure incremental method gives results
that drift, even for the smallest load increments.
The results from the residual load method, however,
give very good results even for the largest increments.
After increment number one the variation in the axial
force N is completely wrong, being zero at the center
and having the maximum value at the support. This is
due to the nonlinear term in the strain-displacement
relationship. However, after the second increment
both the value and the variation are very close to
the exact one.

5.7 Some Comments on the Residual Load Method

The effectiveness of the residual load method was illustrated
for elastic large deformation problems and problems of infinite-
simal theory of plasticity in section 5.6. However, the method
is not restricted to such problems only, but is equally applicable
to large displacement problems in viscoelasticity, plasticity, and

viscoplasticity. For the latter classes of problems, the concept
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of unloading is essential which means that certain constraints must be
introduced in connection with the residual load method. The
problems that must be considered are as follows:

(i) Viscoelasticity

The basic concept in the theory of viscoelasticity 1is
the fading memory hypothesis. This hypothesis implies
that the response is more strongly dependent on the
recent strain history than the distant history. For
large displacement problems in viscoelasticity, this
becomes very important, since unloading is possible
under constant or monotonically increasing loading.
The cause for this unloading is quite clear.
Consider the plate strip in section 5.6, and the
load sequence (50+100+150) psi. If this loading
sequence was changed to (50+50+....) psi, it can be
seen from Fig. 5.5 that the unbalanced (residual)
load would be larger than the next load increment.>
' The same thing may happen for a constant loading
problem if the time step is chosen such that the
creep ''pseudo-loading' is smaller than the unbalanced
| load. In both cases the structure will unload when
subjected to the combined loading. Due to the fading
, memory property of the material, this unloading might
1 cancel out the total previous loading history, and
cause a reduction in the stresses also for the next
1 time increment. This reduction in stresses will

give new creep "pseudo-loading' that causes further
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unloading for this time step. At this time the lack

of equilibrium has been overcorrected, and the numerical
solution will start to oscillate around the correct
solution.

This problem can be avoided by choosing the load
or time increments such that unloading will not take
place. It should be noted that just reducing the time
increments will not be sufficient, and may even increase
the amplitude of the oscillations. Furthermore, this
is an impractical method since the load-displacement-
time relationship is in general not known. Instead
the unbalanced load should be applied instantaneously,
giving rise to an elastic strain increment. Adding
this elastic strain increment to the previous visco-
elastic strain increment and proceeding with the time
integration will ensure that unloading will not take
place. This method was applied to the viscoelastic
creep buckling problems in section 7.6.2.

Plasticity

As in the case of viscoelasticity, unloading might
take place if the unbalanced load is greater than the
next load increment. This is a situation that is
most likely to occur for postbuckling analysis of
shells and arches where the load-deflection curve has
a negative slope. An example of this is given in
Fig. 7.4 for an elastic shallow spherical shell. 1In

this case, however, the oscillations are due to the
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fact that Young's modulus will be used for the next
load increment when unloading is observed. Since the
unloading is due only to our solution procedure and not
the physical process in the structure, the lack of
equilibrium will again be overcorrected.

Contrary to the viscoelastic case, the problem
cannot be avoided by applying the umbalanced force
elastically since this will in general give the wrong
modulus for the next step. 1Instead the simplest
solution would be to use displacement control where
the load steps must be small, and use large enough

load step elsewhere.
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6. FINITE ELEMENT FORMULATION OF THE NONLINEAR PROBLEM

The linearized equilibrium equations derived in Chapters 2
and 5 will be discretized using the finite element method. This
method was first introduced by Turner et al [118], and has later
found widespread applications. The method is basically an
extension of the classical Ritz method in the sense that the
primitive field variables are expanded over a series of subdomains,
called finite elements, instead of over the total region. This
expansion is commonly obtained by polynomal interpolation, where
certain requirements are imposed in order to ensure convergence
of the solution. The mathematical background of the method has
been discussed in references [119, 120, 121, 122].

The method has been used extensively for problems in linear
elastostatics and dynamics, and lately for both geometrically and
physically nonlinear problems. Other recent applications have
been in the field of mixtures and multiphase materials.

Given the coordinate functions (or interpolation functions)
of the field variables, the equilibrium equation can be discretized
over each subdomain. Using the direct stiffness method of the
displacement formulation the discretized set of equilibrium
equations for the total region is then obtained, and solved using
Gaussian elimination. The solution process is enhanced by the
fact that the coefficient matrix is symmetric, positive definite

and banded.
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6.1 Isoparametric Finite Elements

Over the years an extensive library of finite elements has
been developed. These elements vary from the simplest constant
strain triangular element to the highly refined free form shell
elements. For most applications the number of feasible elements
is quite large, and the choice of the optimum element may be
difficult [123].

The isoparametric family of finite elements [124] is among
the most effective elements recently developed. This family of
elements allows large flexibility in choice of element to fit
geometry and continuity requirements. This presentation gives a
short review of the theoretical background pertinent to the choice
of element for the axisymmetric problem at hand.

On a general quadrelateral in a two-dimensional space any

field variable can be approximated by

N A R
Y= 2 R Y = < {y] -1

where ¢/, are interpolation polynomials in terms of the natural
coordinates 5 and ’7 , and ;% are the nodal point values of the
variable. The number of nodes and the order of the polynomials
are determined by the shape of the subdomain and the differentia-
bility requirements on ¥.

The basic concept of the isoparametric element is the choice
of the same interpolation formula for both geometry and displace-

ment field.
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{;} ) gcﬁ(ﬁ’?) {;} = [91{7] (6.2)

L)

b= acem {2} - teriay o

il

where (r; 2;) and (u; w)are the nodal point coordinates and dis-
placements respectively, Fig. 6.1. This choice completely defines
the geometry of the element, and includes the constant straining
and rigid body modes. A more general parametric representation
would be to use a higher order approximation for the displacements
than for geometry [125].

Using this formulation the stiffness matrix must be evaluated
using numerical integration. This makes this type of elements
quite slow for inelastic analysis of moderately thick shells, since
the integration through the thickness cannot be made separateiy.
Furthermore, at least a quadratic variation of displacements over
the thickness must be used in order to ensure convergence [126].
The latter problem has been avoided by adding incompatible dis-
placement modes that are condensed before solution [127, 126].

All this implies that an excessive number of degrees of freedom

must be used, which makes the elements unfeasible for the non-

linear analysis of moderately thick shells.




115

N Y
§
\ l; §
BI- LINEAR

B/ —QUADRATIC

f'Z

QUADRATIC -CUBIC

FIG. 6.1 ISOPARAMETRIC FINITE ELEMENTS.

k !
= ——¢ e === .

HINEAR QUARTIC
K ki
ég—»§ §
QUADRATIC cusic

FIG. 6.2 DEGENERATE ISOFARAMETRIC FINITE
ELEMENTS.



116

‘6.2 Degenerate Isoparametric Shell Elements

The deficiencies of the general isoparametric elements
outlined in the previous section were alleviated in the socalled
"degenerate'" isoparametric shell elements [128]. In these elements
different parametric representations are used for geometry and
displacement field. The classical Kirchhoff assumption used in
thin shell theories is relaxed, permitting shear deformations to
be included. This 1is obtained by prescribing the rotation of the
normal to the middle surface independently of the rotatiom of the
tangent to the same surface. Furthermore, the element is con-
sidered as part of a solid and not a shell, allowing the use of
the strain-displacement relations from the three-dimensional
theory of elasticity. The latter implies that the classical
problem of the inconsistencies of nonlinear shell theories is
redundant.

For moderately thick shells this formulation gives excellent
results. However, significant errors occur in applications to
thin shells unless special integration schemes are used for the
evaluation of the stiffness matrix [129, 130]. The reason for
this error is that the relaxation of Kirchhoff's hypothesis
allows shear deformations in a pure bending mode. The excessive
strain energy due to shear is most dominant for elements with
linear and quadratic variation of the displacements. For this

reason the cubic element has been chosen for most applications.
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6.2.1 Geometric Representation

Following [128] the shell geometry is described by a trans-
formation between two coordinate systems, a global Cartesian
system (r,2) and a local natural system (%,‘Z). The latter system
is in general curvilinear, with

-4 < E € 2/

-7 ‘f(z < +1
The %—axis describes the middle surface of the shell and bisects
the shell thickness. Note that for shells with large curvature
the middle surface does not coincide with the neutral surface.
The "z—axis is not necessarily normal to the middle surface, but
is rather defined by %=o along the axis. In this system the
outer and inner face of the shell will be described by 7= -1
and ”z'='f respectively, and ends of the element by §=if.
Finally the ''mnormal" angle & is defined as the angle between the
r-axis and the "Z-axis, Fig. 6.2.

For later use an auxiliary local orthogonal system (s, t)
will be introduced, where the s-axis coincides with the %-axis.

The global coordinates of any point (%.”2) within the element

are obtained by the transformation [128]

{;}'ﬁ, %(5){2}*72%%(5)6‘-{:;‘;2} (6.4)

where ﬁ[g) are interpolation polynomials, h. the thickness

&

and &; the "normal" angle at node i. The number of nodal

points M, and hence the order of the polynomials is determined



118

by the element type used. In Appendix A the interpolation poly-
nomials are given for linear, quadratic, cubic and quartic
elements.

6.2.2 Displacement Field

The following displacement field is used both for the dis-
placement increment &« and the tdtal displacement 2&.

The kinematics of the element 1s based on the following

assumptions:

(i) Plane sections initially normal to the middle
surface remain plane, but not nécessarily normal
after deformation.

(ii) The displacement normal to the middle surface is
constant through the thickness.

This leads to the assumed displacement field, Fig. 6.3.

{ } Z %(g){ } 7 3 LOUE o) PO

Here the first term represents the displacement of the
middle surface and the second the effect of the rotation of the
normal. & and w are the global displacements, «; and W
the displacements and o the rotation of the normal at node i,
Fig. 6.3. This gives three DOF at each node. The number of
nodes N in the displacement expansion should be equal or greater

than M. For reason of convenience M=N in this study.
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Symbolically Eq. (6.5) may be written

{u}=T¢,1{4] (6.6)

-
where {u{ is the vector of nodal point displacements and rotationms.
The displacements relative to the auxiliary coordinate system

(s, t) is given by Fig. 6.3
{u, cos¥ sin¥liu
= . (6.7)
U, -snY cos Y W

where ‘f’(?) is defined in Fig. 6.3.
For a straight beam the relationship between the tangent
rotation X , the normal rotation o and the shear deformation 2’

is given by
« (%)= K(8)-7(E)
The rotation ){ of the middle surface for thin shells is

given by

= ﬂf__‘-(_r
X=Z - % (6.8)

her or.z 2221 %2
P [(as)*(g%)]

and combine Egqs. (6.5), (6.7) and (6.8) to obtain

(U cosy+ Wy smy) (6.9)

X %y
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Equation (6.9) shows that the rotation of the tangent to
the middle surface can be prescribed independently of the normal
rotation « . However, this boundary condition requires modifi-
cation of the system stiffness matrix, and is not used in this

study.

6.3 Strain-Displacement Relations for Axisymmetric Deformatioms
The increment in Cauchy-Green strain between configuration

@, and B, , referred to @, 1is given by

Ez3 = €257 717 (2.50a)
where
2 ey, F uely t S unly (2.50c,d)
oA
2y~ Uiz t/s (2.50e)

and €;; and 7;; are the linear and nonlinear parts respectively.
For axisymmetric deformations the three coordinate axes will
be identified with the meridianal (s), hoop and transverse normal

(t) direction respectively. Hence

1.2 1 1.3
1F,12’F.'=F.15=F.z-0

3
ully =¥, =« uth <ty =0
Furthermore, assumption (ii) in section 6.2.2 implies
Ush =0 (6.10)

(2N (6.11)
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In addition to assumptions (1) and (ii) in section 6.2.2,
Love's first thin shell approximation postulates the transverse

normal stress to be negligible:

= o (6.12)

This postulate is retained also for the moderately thick
shells in order to avoid the constraints imposed in the transverse
direction by the assumed displacement field. However, since

». 0 are mutually exclusive, the well known

ts/+ = 0 and s
inconsistency in shell theories must be faced. This inconsistency
can be removed by either considering the material to posses a
special form of orthotropy [131l], or using the generalized plane

stress approach. Following the latter approach, the following

approximations are made

("‘3/3)* = (535)* ap (6.13)

Equation (6.13) is used for the condensation of the stress-
strain transformation matrix in section 3.8, while Eq. (6.14) is
imperative in large deformation problems where changes in thick-
ness become important.

1t should be noted that E£z4 and 'E’, are not determined
from kinematics but from the constitutive relations. Since the

constitutive relations are given in terms of physical components,

(1

(5*Denotes physical components
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the distinction between tensor and physical components will be
dropped in the further development.
The linear part of the strain increment is given in matrix

form

{e}=[Al{u) (6.15)

where

-
{e}=<e, €, 2¢,7

and the displacement gradient vector

T.¢ Qu u Juy e
Ug’:-(z’ = 5 5. (6.16)

The transformation matrix between strain and displacement gradients

is defined by

[Al=) 0o 4, o o (6.17)

Using Eqs. (6.14), this is rewritten in terms of displacements

as

i ‘ r ]
ou Ju
{f+ z' (o] o ?5—1
v
[Al-] o & 0 o (6.18)
ol '
S o0 14 g &5 |

The displacement gradient vector {qa} is given in terms of

the displacement increments through the matrix operator [B]

{u_a},[a]{ u.} (6.19)
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{u.ST= <u w >

Similarly for the total displacements

{"w}=[8 ] {'} (6.20)

The mathematical form of [B] is given in Appendix B.

For shell applications the [B] matrix may be decomposed

[B¢gp]=[8c]-7[8,(8)] (6.20a)

Combining Egs. (6.15) and (6.19)

{e}=[a][B}{«] (6.21)

For axisymmetric deformations the nonlinear part of the strain

increment is defined by

2 2 2 )
» (24)'r ( 522)
! 6.22
N2 = % L (6-22)
aU, 26/1
lrs 25 2t |

Denoting the ith row of [Bl] and [B2] by <b,7, and by,

respectively, Eq. (6.22) can be written as

» [Hy ]
=Z'<“—7 [Ha] | {u}

713 [ #4s]

(6.23)
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.[H"] = ( {b(}f"’?{bz}')(<bf71*7<b2>l)*

[ A4yl

["/zz] =

[#s] =

* ({51]4 7 {bz}4>(<6174"7<5174)
(r], <7121, +7" [a],
({61}2'7{61}2)(<647Z *7 <by7,)
[rl, =% (7]~ 7 2],

({3, {6}, (< b7+ Cby7y)

[r],= 7 [7], -],

[F-.I1= {b,}’<6'71? {6134<6174

[rl,-

[rl,
(7],

[~],
[n],

[n],

]

{b;1,< 6,7,

{61, <7,

b <0+ {by3,C 7, +{6,1,<60, + {by],<b,7%
163,67 * {6,],< 6,7,

{6,1,< b7+ {6.],< 6,7,

(6,3, <>, * {6,0,<b,7,

{6,1; < 6,7,

{61}1 < 6173

It should be noted that [QJ are of the order (%)2 .

where h is the shell thickness and R is the radius of curvature.

These terms are retained here even though they are commonly

neglected in classical thin shell solutions.
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The singularity of €,; at the apex (r=0) can be removed

using L'Hopital's rule

ou
- i = /' er - —au
r—-o 2_r. r=o

If at the apex the tangent to the middle surface is horizontal,

we have
€,2 = €, for r=o

6.4 Element Stiffness Matrix

The linearized incremental equilibrium equations previously
derived will, when discretized by the finite element method give
rise to the element stiffness matrix [K].

The element stiffness matrix can be decomposed thus:

EIRICARIEA
where [Ko] includes the classical infinitesimal strain stiffness
and the initial strain matrix as defined by Marcal [27]. [KC] is
the geometric (or initial stress) stiffness matrix.

In the following sections these matrices will be derived.

In order to simplify the presentation the radius and the deter-

minant of the Jacobian of Eq. (6.4)are assumed to be independent

of
K r=r(g)

17/ = /Jcp/
This restriction is relaxed in Appendix B, where the detailed
derivations are presented.
All volume integrals in the equations for the stiffness
matrices are evaluated using Gaussian quadrature. For the

integration along the meridional direction no problems appear.
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However, both the stress field and the comstitutive matrix [C] may
possess a discontinuous first derivative in the transverse normal
direction during elastic-plastic deformations. For these cases

a composite integration scheme will normally give more accurate
results than Gaussian quadrature. The improvement experienced in
this study using a 13-point Simpson integration compared to a
12-point Gaussian quadrature was of the order of 1% of the total
displacement for a simply supported beam under uniform loading.
More extreme conditions may occur but it is the opinion of the
author that Gaussian quadrature is quite satisfactory for most
cases of elastic-plastic deformation.

6.4.1 Incremental Element Stiffness Matrix;chl

The element stiffness [Ko] is defined by Eq. (5.6a)

ff'é‘;‘ = f Cum-eza éeKL v
a

(-
From Appendix B, we have

aV=2mrdd=2mr|7| 7

Comwbining this with Eq. (6.21) gives

-? +f

[Ko]=277//[5]7[A]7[C][A][5]rI.'JIa‘?di (6.24)

-1 -7

Let
-

[o]= [~] [c]{a] (6.25)

and define
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P 4

[5,8)] = / 0] 17| o7

[2,08)] / [o]13] 4% (6.26)

Y 4

[ 508)] = f 7' [6]]9] <7

Combining Eqs. (6.20a), (6.24) and (6.26) leads to

N 277./([51]7[&][5/] * [Br]r[Dz][Bz] ”

(6.27)

AN AR CAH N CARCCAET

Here the first term represents the membrane action, the second

and third are coupling terms between membrane and bending action,

while the last term is due to bending alone.

For flat plates and shallow shells subjected to small defor-
mations in the elastic range, [D2] will vanish and no coupling
takes place. For inelastic materials and in large displacement
theory [D] will be a function of both ‘Z and ? , and [Di] must
be evaluated numerically.

6.4.2 Geometric Stiffness MatrixLJKGl

The geometric stiffness matrix is defined by Eq. (5.6e)

{,‘4 = /1517371-7 JdV (5.6e)

(<]

K
~E

Let
-
(537 <'s” 5% 257>

and

{gZ}T" < ‘S?n 8722 57/37
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{52} is obtained taking the variation of Eq. (6.23) which gives

5741 [ Hu ]
Hia ] {ul
$2 3 [#]* [Ha]) |

(6.28)

O
~3
~nN
~

]
A
Y
A4

—

where [H,.], [sz] and [Hl3] are defined in section 6.3.

11

Define the following vectors:

!
{m]~ J{’s}f:ud7
(6.29)
{#,3 - frz{:} 13/ ey
{7y - f»z {'s} 131 ey
Combining Eqs. (5.6e), (6.28) and (6.29) the final fomm

becomes

’2”’/.23 C LM [P+ imd [7]) (6.30)
- FREY 4 '3
+ {M 3[R ) E

where

[rli=1[r], Ao conz
[r15= 4clrd- 10D,
and similarly for [’IT‘]L and {,.ﬂ.'.l'-_’t . Note also that {M,} means
the 1B component of the vector {M,}, and that [P];_' is a square
matrix.

In classical shell theory, the second moment {M,} is commonly
neglected, but can be retained here without significant computa-

tional efforts.
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6.5 Consistent Nodal Loads

6.5.1 Equilibrium Nodal Forces

Using the Green-Gauss theorem the virtual work equation
expressing the equilibrium between the total stress field and the

generalized equilibrium nodal forces is obtained

Syu=] 5T 8 dV (5.6£)

R

Combining Eqs. (6.20a), (6.21) and (5.6f), the equilibrium

nodal forces are given by

+1

{R'E?!T’ 277/( <No>[B,]+<N47[B1J)f($) clg (6.31)
-/

where

+1
Ny = [ %57 LT 17/ Iy
-/

+7
CNy> = [9 <57 14113/ 7
-7

Here the integration in both %, and ’7 direction is performed
numerically using Gaussian quadrature. Here it should be pointed
out that (A, and <(AN,Yare different from the stress resultants
defined in section 6.4.2.

6.5.2 Creep Pseudo Loading

The pseudo loading due to creep is constructed similarly to

the equilibrium nodal loads

17
oo oV 5.6f
R &y a/sc Se,, (5.6£)
(4
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where SZJ is the time-dependent increment in Piola stress between

B1 and BZ' 557 may be given directly from the stress-strain
law as in linear viscoelasticity or by Eq. (2.68e), in flow theory

of creep.

Let
<s5,7= <s)" 8% 25>

(4

and

+1
{Ry> = _/<5c>[/l3 /J/c/'z
-/

+17
<&,7 =/~Z <&y [AT13/y
-/

which finally leads to

+1

N
{RY=20/( ca>y181+<a>[51) r(g) JE (6.32)
-/

6.5.3 Traction Type Loading

As indicated in section 2.6, distinction must be made between
conservative and nonconservative traction type loading. The con-
servative loading is derivable from a potential, as for example
gravity loads, while hydrostatic pressure is a typical example of

nonconservative loading.
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For conservative loading the nodal load vector is given by

R-Su = [ £ 8y, da (2.52)
28

©

where £ is the prescribed traction vector.

The load intensity at any point on the loading surface is

given by
5
fal_ DAL g (6.33)
¥ o {7 2

with £, and ¢, being the load intensities in direction s and t

respectively. <¥7 1is a vector consisting of the interpolation

polynomials ﬁ(ﬁ) and f% and f% are vectors of load intensities

at nodal points. The number of interpolation polynomials necessary
to represent the variation in loading may vary, but in most cases
three terms is quite sufficient.

Using Egs. (6.6) and (6.7)

cos ¥ Ny A
‘i ¢,] {5
Uq &N (7‘/ 60.554

Further
dA = 277'"(‘@)ﬂ dg
where /5 is defined in section 6.2.2.

Substitution into Eq. (2.52) gives
L [1f} o J[eosy siny

+1
- <P, Pp7 ¢ plEdr(e)d
{R} 27_7// Fr F2 o 1ot||-smg sy [.] pEINCEYSE  (6.34)
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For nonconservative loading the nodal load vector may be

written, Eq. (5.6f) as

R-ou= 'fr % C,’f").’, Njc;u_t A (5.6£)

960

From the requirement of conservation of mass

_? = dcfc:f) "F"’z (’F’f 'F33 ‘1F-’3 415.3¢ ) (6.35)

The unit normal to the middle surface may be decomposed as,

Fig. 6.2,
! {N}T= K-sny o casy 7 (6.36)

( Finally, the inverse of the deformation gradient Lf is

{ inverted numerically to yield
+/
i {ﬁ}--2fff<f7>{f}£m£'r'i7{~} r(g)plg)dE (6.37)

where <P> is the vector of nodal point values of hydrostatic
pressure, and {¥} is given above.
Equation (6.34) or (6.37) is integrated numerically using

Gaussian quadrature, and assembled to give the total load vector.
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7. NUMERICAL EXAMPLES

7.1 Description of Computer Programs

Three separate computer programs were written based on the
formulation presented in the preceding chapters. All programs
were written in FORTRAN IV for use on CDC 6400, using dynamic
storage allocation:

i) Program I was written for large displacement analysis
of axisymmetric shells with linearly elastic material
properties. Post~buckling behavior is included.

ii) Program II treats large displacements of elastic~plastic
shells of revolution, and of shells subjected to creep.
Both creep and plasticity may occur simultaneously.

iii) Program III analyzes large displacements of shells made
on linearly viscoelastic materials. The relaxation
modulus of the materials must be given as a Prony series.

All programs basically use in-core storage, except small
segments where tape—-simulated disc storage is used for displace-
ment gradient matrices and stress—-strain matrices. All programs
need ca. 40000 (octal) words for the program proper, and addi-
tional blank commén storage for data and stiffness matrix, etc.

Program I:

This is the basic large displacement program for elastic
shells. Large segments of this program are also used in Programs
Il and III. The program consists of:

MAIN program dynamically assigns the needed storage, and

drives the subroutines.
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INPUTD subroutine reads geometric and material data and
initializes all matrices.

STIFFNS. During the first load increment this subroutine
computes all displacement gradient matrices at prescribed inte-
gration and nodal points, and stores these on tape=-simulated
discs. For subsequent increments these matrices are read from
tape. Numerical integration of the stiffness matrices is per-
formed using 4 or 6 Gaussian integration points in the meridional
direction and 2 points over the thickness. The stress—-strain
matrix is transformed according to the vaiue of the deformation
gradient, and incremental and geometric stiffness matrices are
assembled. Finally the equilibrium nodal forces are computed
from the stress field.

DISPL. This subroutine triangularizes the system stiffness
matrix, and governs the loading sequence for the postbuckling
analysis. It calls the load generating subroutine NODLOD and the
equation solver BANSOL.

STRESS computes the Piola-Kirchhoff stresses at integration
and nodal points, and transforms these to Cauchy stresses. It
also computes the deformation gradients at all needed points,
and outputs all stress results asked for.

Program II:

Most subroutines are as in Program I, and only those features
that are different will be mentioned here.

STIFFNS. For elastic-plastic analysis the stress-strain

matrix is read from tape, but computed for creep analysis. The
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numerical integration of the stiffness matrix is performed with
2-16 points over the thickness for elastic-plastic cases. For
creep analysis the creep pseudo—loading and equilibrium nodal
forces are computed.

CREEP. This subroutine computes the creep strain increments
and stress increment. Time-hardening or strain-hardening laws
may be used for primary creep. Steady state creep is included
and also Odquist's inelastic approach.

MATP. Computes stress—-strain relationship for elasto-
plastic deformations. Checks loading criterion and interpolates
material data given in discrete form. If stress exceeds yield
stress the total stress or stress increment may be scaled down
to yield stress. Stress-strain matrix may be computed using
Odquist's modified inelastic theory. All stress-strain matrices
are written on tape.

Program III:

This program is identical to Program I in most aspects,
except postbuckling capabilities are not included. Only differences
are in the STIFFNS subroutine where creep pseudo-loading is com-—
puted as in Program II.

VISCO. This subroutine performs the convolution integra-
tion using the recursive algorithm given in Chapter 4. Relaxation
modulus must be given in terms of an exponential (Prony) series

expansion.
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7.2 Nonlinear Analysis of Elastic Systems

The program's capability of solving geometrically nonlinear
elastic systems has already been illustrated in section 5.6. The
infinite plate strip considered there is not a particularly
crucial test for the program. Plate structures with fixed supports
and normal load are of the stiffening type, where the stiffness
increases with increasing loads.

A more representative test would be a softening system,
where a small increase in loading will yield a large increase in
displacement.

The analysis of highly nonlinear structures will here be
illustrated by a torus subjected to external pressure, and the
snap—-through behavior of a shallow spherical cap. For the latter
case instability will occur, and load reversals must be used to
solve the problem.

7.2.1 Torus Under External Pressure

The torus shown in Fig. 7.1 is subjected to uniform external
pressure. The geometry of the torus is defined by

L = 150 in. R = 100 in. h =1 in.
and the material properties were taken as

| E = 107 psi v= 0.3

Due to symmetry only the upper half of the torus is con-
sidered. The finite element analysis was carried out using
30 evenly spaced elements. The external pressure was 4 = 100
psi, and a total of 20 load increments were used. Each load
increment was 5% of total applied load, and no iterations were

performed during the analysis. Equilibrium check using out-of-
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balance force method was used to control the convergence.

The numerical results were compared with Kalnins multisegment
analysis [132]. The resulting normal displacements, meridional
moments and hoop membrane force is given in Figs. 7.1, 7.2 and
7.3. The normal displacement agrees closely with those of
Kalnins, while the stress resultants obtained here are slightly
smaller than given in [132]. The trend of the results agrees
very well, however.

The discrepancies of the stress resultants are only pro-
nounced near the crown of the torus, where the shear stresses
are greatest. The inclusion of shear deformations in the present
analysis may therefore explain some of the discrepancies. It
should also be pointed out that the torus is a quite nonlinear
structure, where the nonlinear effects become important even
though the normal displacement is only 307 of the wall thickness.

The computer time for the analysis was 0.3 sec. (CP) per
element and load step.

7.2.2 Buckling of Shallow Spherical Cap

The large displacement analysis of spherical caps has been
the subject of extensive research during the last decade. An
excellent bibliography of this work, beth cleosed form solutions
and numerical solutions, is given by Yaghmai [31].

It is well known that the nonlinear behavior of this type
of structures is highly sensitive to its characteristic geometric

parameters. Depending on these parameters the deformation mode
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will be either axisymmetric or asymmetric, and the stability
criterion will be either bifurcation buckling or smnap-through.

The characteristic parameter most commonly used is
\e= (ra-vint P (7.1

where V 1is Poisson's ratio, h is the rise and t is the thickness

of the shell. Kornishin {133] used the parameter

£ === (7.2)

Here R 1is the radius of the middle surface of the shell, t the
thickness and a the radius of the horizontal projection of the
shell.

Finally Weinitschke [134, 135] introduced a slight modifi-

cation of Eq. (7.1)

2 2
/u-z' ”m :ﬁ o (7.3)
where « is half the opening angle of the shell, R and t as given

above, and

2 %2

me (12¢/-vY))

Following Weinitschke the following criterion exists for simply
supported shells with uniform pressure

i) 2,2 < £ Ho
The critical deformation mode is symmetric, and

i1) PR A
The asymmetric mode becomes governing.

For other boundary conditions these limiting values are

modified, for a clamped shell to 3.4 and 5.5,
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In order to illustrate the capability of tracing the post-
buckling behavior, a shallow cap with an axisymmetric buckling
mode was chosen. The geometrical data were as follows, Fig. 7.4.

R = 50" t = 0.1" o = 4.48°

The material was assumed to be linearly elastic, with
Younge's modulus and Poisson's ratio

E = 106 psi vV =1/3

This gives a characteristic parameter /uz= /o . The
shell was fixed at the boundary and loaded by uniform pressure.
The normalized load parameter is given by

2
e (Ep
and the applied external pressure was 40 psi.

The shell was analyzed using 5 elements, and a total of 36
load increments. Of these, 8 load steps were used to determine
the upper critical load, and the remaining steps to trace the
complete postbuckling behavior.

The results are compared with Weinitschke's power series
solution in Fig. 7.4. The agreement between the two solutions
1s very good. Even though the load increments used were quite
large, both the upper and lower critical value are determined with
good accuracy.

The loading sequence was as follows: The ascending part of
the load-deflection curve was determined using 5 steps with a
load factor of 10%, and then proceeding with steps @ 57 until
buckling took place. Then 2 steps with displacement control

and 2 steps with load factor equal -17 were used to determine the
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FIG. 7.4 POSTBUCKLING BEHAVIOR OF ELASIIC,
SHALLOW SPERICAL SHELL.
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start of the descending part of the curve. Thereafter the load
was reduced by 7.5% until the lower critical load was reached, and
above mentioned procedure was again applied to get onto the final
ascending curve.

The computer time needed for the complete analysis of the
structure was 0.3 sec. (CP) per element per load step.

7.3 Primary Creep in Pressure Vessels

To demonstrate the application of the method to nonlinear
creep problems, a torispherical pressure vessel head under uniform
internal pressure is considered. The nonlinear elastic behavior
is investigated, and the deformation and stress redistribution
under primary creep is studied.

The torispherical head has a skirt diameter, D = 100 in.,
the radius of the sphere, R = D = 100 in., and the meridional
radius of the torus, r = 0.2.D = 20 in. The shell has a uniform
thickness h = 0.008:D = 0.8 in. The material is an aluminum
alloy 7075-T6, and the temperature T = 600°F. The following
material properties were used:

E = 5.2 10° psi v =0.3

and the creep law was taken in, the form

€ = Aeacz‘k
where

A< 209.06°

8= laz 15"

ke 066
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Fur use in the analysis the creep law was recast into the
strain~hardening form.

The internal pressure was 25 psi.

A total number of 20 elements was used, with 8 equal elements
describing both the sphere and the torus, and the remaining 4
representing the cylinder. Eight (8) integration points were used
over the thickness to compute the creep "pseudo-loading'.

The pressure vessel is only moderately nonlinear at the applied
loading range, as indicated in Fig. 7.5. Here the meridional
bending moment and in-plane force is plotted for both linear and
nonlinear analysis. The nonlinearity can be expected to be more
pronounced as the displacements increase due to creep.

For the creep analysis the pressure is applied instantaneously
using 6 load steps. A total of 26 time steps were used to trace
the behavior up to t = 1000 hours. The step length varied from
0.2 hours to 300 hours.

The normal displacement at the apex is given in Fig. 7.6.

It should be noted that the strains here are so small that the
reduction of thickness can be neglected. If deflection is used
as the controlling factor in design or performance evaluation,
the difference between linear and nonlinear analysis may be
significant. The variation of normal displacement along the
meridian is shown in Fig. 7.7 at various time intervals, and

the redistribution of meridional stress due to creep deformation
is shown in Fig. 7.8. The reduction of the stress peaks is

quite significant.
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It should be noted that the analysis was not brought to a
point where a steady state solution was obtained, from which the
creep rupture load could be determined. The rupture criterions
suggested by Kachanov or Rabotnov can, however, easily be
incorporated into the program.

Finally the distribution of effective creep strain through-
out the pressure vessel is given in Fig. 7.9. The unit used is
(in./in. x 10-4). As can be seen, the strains are moderate
through most of the shell, except in the torus near the juncture
with the sphere.

A total of 312 sec. (CP) computer time was needed for the
nonlinear analysis.

7.4 Elastic-Plastic Analysis of Pressure Vessel

The elastic-plastic behavior of a torispherical pressure
vessel was studied using Program II. The geometry of the vessel

is identical to the vessel analyzed in section 7.3.
D= foo in, R= (oo in.

r= 20 in, h=o08m.

The material is assumed to be elastic-perfectly plastic, with
yield stress, &y = 3.104 psi, Young's modulus E = 3.107 psi,
and Poisson's ratio V = 0.3,

For the analysis the shell was discretized by 20 finite
elements. Eight (8) equal elements were used to describe the
sphere and the torus, and 4 elements for the cylinder. The

tangent stiffness matrix was integrated using 12 Gaussian

integration points over the shell thickness, and 4 points along
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the meridian of the element. The internal pressure was applied in
increments of 50 psi up to a pressure of 400 psi, when the load
increment was reduced to 20 psi.

The load-deflection curve for the normal displacement at the
apex is plotted in Fig. 7.10, and compared with the results given
by Yaghmai [31]. The two analyses give results that agree very
well up to a pressure of 480 psi, at which point Yaghmai predicts
a more rapid reduction in the stiffness of the shell. The dis-
crepancies between the curves are mostly due to the better repre-
sentation of the plastic zones in Reference [31]. There 16
integration points were used over the shell thickness and the load
applied in increments of 7.5 psi.

In the present study the discretization of the shell and the
load sequence were restricted by the limited computer time avail-
able for the investigation. For this reason a valid comparison
between the two formulations of the elastic-plastic problem was
not possible.

7.5 Creep Buckling Problems

7.5.1 Creep Buckling of Imperfect Column

The program's capability for solving creep buckling problems
will be verified for an imperfect column with rectangular cross
section. This problem has been extensively studied in the
literature, and is often used to compare alternative analysis
methods [57], [58].

The objective of this analysis is to find the displacement

variation with time, and to determine the critical time 7. .
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t. is defined as the time when the column becomes unstable
subjected to the given loading, i.e., when the displacements go
to infinity. In a large displacement analysis the critical time
is reached when the displacements become excessively large.
The columm has the following dimensions:

L= Bo . h= 025 /m»n. brlo /. wW,= ooz .
where W, is the excentricity at midspan. The material used in
the analysis was an aluminum alloy 7075-T6, which has the following
material properties at 600°F

E= ﬁ‘.Z-/O‘ps/ v=2ae3 S, = bSco0 ps/

The creep law was of the time-hardening form

€L= Ae (a)

with t being the lapsed time. The creep constants were given

by Lin [58]

- -l
A= Z.w-/os 8= /92-/0 k=06é

For the analysis the time-hardening law, Eq. (a), was recast
into the strain-hardening form as given by Eq. (3.16).

The Euler load for the column is

% = Tch

4170 ps/

An elastic large displacement analysis gave a critical load
of 4185 psi.

The finite element analysis was performed using 8 equal
elements over half the column length. The numerical integration

of the creep pseudo-loading was made using Gaussian quadrature

with 4 points in the %-—direction and 6 points in the‘z-direction.
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For creep analysis where the stress does not exceed the yield
stress, increasing the number of points in the 7 ~direction has a
negligible effect. An analysis using 12 points gave results that
were indistinguishable from those based on 6 points, except
immediately before the critical time, when the creep strain rate
approached infinity.

The excentricity of the column is so small that the column
will buckle elastically, i.e., column will lose stability before
the extreme fibers reach the yield stress. This analysis was
therefore based on the linearly elastic relationship between
increments of stress and strain, without plastic deformations.
For other values of the excentricity the column may buckle
plastically, and the stress-strain relationship based on the flow
theory of plasticity must be used.

The buckling behavior was investigated for three stress

levels
G .
i) o025 ; o= 2085 pv
ii) 9=0¢ . O = 2500 pPS/
iii) p*o7 ; © =290 ps/

The results of the analysis for case (ii) are given in
Figs. 7.11 and 7.13. The effect of the step length in time
integration is illustrated in Fig. 7.11. Doubling the number
of steps has reduced the calculated critical time by 10%. For
comparison, the results given by Lin [58] are also plotted.

Lin used the time-hardening law, Eq. (a), directly. For con-
stant stress the time-hardening and strain-hardening should give

the same results, while discrepancies will occur for varying
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stress. As seen in Fig. 7.13, the stress may be considered constant
up to t = 3~4 hrs., and the difference between the solutions is
therefore due to the more realistic displacement assumptions used
in the finite element solution.

The displacement vs. time relationship for all three cases is
given in Fig. 7.12. Here the effect of the stress level,f’ , on
the critical time is clearly discernible. As seen, the critical
times are spaced one decade apart. Since the creep strain depends
exponentially on the stress level, an exponential dependence on the
stress for the critical time is to be expected. Here an increase
in the stress by 0.1'Gz seems to reduce the critical time by one
decade.

7.5.2 Creep Buckling of Shallow Spherical Shell

The creep buckling problem of shells of revolution has been
given increasing attention during the last few years. Grigoliuk
and Lipovtsev [63] and Samuelson [64] treated shells with initial
imperfection, the first two authors using Sander's variational
principle.

In the present analysis no imperfections are given in the
circumferential direction, leading to an axisymmetric deformation
mode.

The geometry of the shallow cap is identical to the one

treated in section 7.2.2. The characteristic parameter of the

shell is

2R 12
/u=m2"o<=f0
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The critical external pressure for linearly elastic analysis

was determined to be
2, ™ 12.75 ps/

The material was assumed to be aluminum alloy 7075-T6, sub-
jected to creep at 600°F. The creep law and material data are
as given in section 7.5.1. The applied external pressure was
taken as

P8 = 765 ps

For the finite element analysis of the shell 5 elements were
used, and a total of 45 load increments. Of these 10 increments
were used to determine the instantaneous elastic response, and
35 steps to solve the quasi-static creep problem. The time steps
were chosen as 1 hour up to a lapsed time of 15 hours, and then
proceeded with step length 0.5 hours until snap-through occurred.
No attempt was made here to trace the postbuckling behavior. The
critical time was here taken to be the instant when loss of
stabillity was detected.

The normalized apex displacement, w/{¢)/w/(e) , as a function
of time is given in Fig. 7.14. It appears that smaller time
steps should have been used from t = 20 hours in order to determine
the critical time more accurately. The variation in normal displace-
ment and meridional stress with time is given in Figs. 7.15 and
7.16 respectively.

From the stress variation it is quite clear that the shell
will buckle elastically. At no time is the yield stress of 6500
psi exceeded, and the flow theory of plasticity is not needed to

describe the material behavior.
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No attempt was made in this example to determine the post-
buckling behavior of the shell, even though such a study is quite
feasible using the procedure outlined in section 7.2.2.

The total computer time needed for the complete analysis was
96 sec. (CP).

7.6 Viscoelastic Problems

7.6.1 1Identification of Material Parameters

The problem of identification of material parameters in con-
stitutive theorles 1s becoming more important with the increasing
use of nonlinear materials and materials with time-dependent
behavior. In the present study the objective was to identify the
material constants in a Prony series expansion of the relaxation
modulus for Plexiglas, using a simple least squares fit to the
given data.

The material chosen, Plexiglas grade 'G", is produced by
Rohm and Haas Corp., and 1s an acrylic with the generic name
PMMA (polymethylmathacrelate). The material was chosen due to 1its
application in the structure analyzed in section 7.6.2.

Relaxation data for Plexiglas obtained from creep tests are
given in reference [136]. The data are available only for a
stress level of 1000 psi, and the material is therefore assumed to
be linear for the purpose of the present study. The discrete values
of the relaxation modulus G(t) 1s given in Tablé 7.1 for 73°F

Table 7.1
Time (hrs) 0 10 30 100 300 1000

G x 10°(psi)|4.5 | 4.1 3.6 | 3.18( 2.8 | 2.45
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The instantaneous Young's modulus and Poisson's ratio are 4.5.105
psi and 0.35 respectively. It has been found that Poisson's ratio
remains constant during creep or relaxation for PMMA [107].

A four term Prony series was chosen to represent the relaxa-

tion modulus

nd -/l
Gt)= G,+Z G e
iwy €

Here both &,, &, and A; are to be determined from the given
data. Hildebrand [137] gives a method where the discrete relaxa-
tion times ); are determined from the roots of a 4th order poly-
nomial equation, and the discrete moduli from a set of linear
algebraic equations. The latter set is usually solved using
least squares fit., However, stability problems are often encountered
in the solution of the polynomial equation, giving complex roots.
For this reason »; were chosen one decade apart. This choice
is quite arbitrary, but will in most cases give a monotonically
decreasing modulus if the discrete moduli &, are restricted to
be positive.

In this case a simple search was made to find the values of

M.

. that minimized the root mean square error of the modulus.

The results are given in Table 7.2.

Table 7.2
i Gflos(psi) Xi (hrs)
0 1.25
1 0.97654 20
2 0.81018 200
3 0.56758 2000
4 0.89394 20000
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The relaxation modulus is given in Fig., 7.17, and has a root

mean square error of 0.0373.105 psi.

Assuming the creep compliance to be given in the form

4 -¢/7.
Jty=J, += T, e ¢
¢=/
and using the property
¢
d7T)
Jeo) Gl é) +/G(t-?') - JdT =7 tzo”

o

the creep compliance parameters were determined.

Table 7.3

5. -1
i Ji.lO (psi) ’Ti (hrs)
0 0.8
1 -0.05742 0.2535.10°
2 ~0.08266 0.2594.10°
3 ~0.09163 0.2517.10%
4 ~0.34599 0.3477.10°

The creep compliance is plotted in Fig. 718. It is clear
from Fig. 7.17 and 7.18 that the compliance is delayed compared
to the relaxation modulus. This implies that a structure will
continue to deform long after the relaxation modulus has reached
its equilibrium value.

In order to test the algorithm used for the computation of

the convolution integrals in Chapter 4, a simple bar under uniaxial

constant stress was analyzed. By monltoring the displacements
the creep compliance can be calculated at discrete times when the
relaxation modulus is given as input. This analysis may be used

for determining the optimum time step to be used under constant




MODULUS G (PSI.)*10°

167

4.0

W
o

G,= 4.5=10° psi

Gg=1.2510° psi

2.0
L o Ref (136)
Go ]
__________ 7
10 -
0 L1 ] ! ] 1 1
! 5 10 50 100 500 1000 5000

TIME ( HOURS )

FIG. 717 RELAXATION MODULUS FOR PLEXIGLAS.

=5

) =10

o
(o)
|

!

COMPLIANCE J ( PSI.

08¢t

4,=02222+10° psi”’ i

4= 08~10°psi” -

1 —l 1 —

50 100 500 1000 5000

TIME ( HOURS )

FIG. 718 CREEP COMPLIANCE FOR PLEXIGLAS.



168

stress conditions.
Two analyses were made using time steps of A% = 200 and

4ot = 500 hours. The results are given in Table 7.4.

Table 7.4
Compliance J(t).10 > (psi)
Time (hrs) "Exact" At = 200 at = 500
1000 0.40148 0.40142 0.39858
, 2000 0.43325 0.43367 0.43225
3000 0.45613 0.45692 0.45585
4000 0.47409 0.47531 | 0.47446
5000 0.48877 0.49041 0.48970

Here 1t is quite clear that &t = 500 hours gives sufficient
accuracy for constant stress conditions. It should also be noted
that even though at = 500 has the largest error at t = 1000 hrs.,
this is not the case at t = 5000 hrs. This shows that errors do
not accumulate in the solution of the integral equation. This
is due to the use of the decaying exponential functions in the
Prony series, which also implies that the errors will decay with
time.

7.6.2 Viscoelastic Creep Buckling of Spherical Shell

The use of polymers as structural material in industrial
applications is becoming increasingly more common. The visco—
elastic character of these materials require that both instan-—
taneous and sustained loading conditions be considered.

The program's capability of handling nonlinear amalysis of

linearly viscoelastic shells is i1llustrated forra spherical shell.
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The structure to be considered is the window for a deep-submergence
pressure vessel, tested by U.S. Naval Civil Engineering Laboratory
[138]. The objective of the present study is to determine the
life expectancy of the shell under sustained pressure without the
occurrence of implosion.

The radius of the middle surface is R = 31.75 in. and the
thickness h = 2.5 in., giving h/R = 0.08. The material considered
is an acrylic, Plexiglas grade "G'", with instantaneous Young's
modulus and Poisson's ratio of 4.5.105 psi and 0.35 respectively.
The geometric parameter of the shell /uz = mz 7,? o(z = 16.6.
Relaxation and compliance parameters of the material are given
in the previous section.

The Navy tests [138] consisted of spherical shells supported
by a rigid frame, where the shells were free to slide against the
flange parallel to the shell normal, see insert in Fig. 7.19.
Neglecting the friction between shell and flange this is equivalent
to a complete sphere subjected to external pressure. The shéll
was considered to have failed when the deformations became so
large that the flange could no longer offer sufficient support,
and the shell imploded. The stability of the shell was not
considered.

A linear analysis of the sphere subjected to an external
sustained pressure of 1000 psi was made;3 finite elements and a
total of 23 time increments were used. The loading was applied
instantaneously. The result of the analysis is displayed in
Fig. 7.19, where the normal displacement w is plotted vs. time.

As can be seen a 80% increase in displacement is obtained after
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1000 hours. The computer time needed for the analysis was 23
sec. (CP).

From a structural point of view this is a quite elementary
problem, and the structure utilizes the material inefficiently. A
shell with clamped edges would be more economical. The basic
reason these particular boundary conditions were used is the
superior optical properties of this shell. This shell has more
uniform optical magnification factors along the meridian, and
these remain uniform during deformation. For the clamped shell,
the image of an object observed through the window will become
more distorted, and the distortion will vary with time.

Without reference to any particular application a clamped
window will now be considered, see insert in Fig. 7.20. The post-
buckling behavior of the shell under instantaneous external pressure
is given in Fig. 7.20. 8Six (6) finite elements and 23 load incre-
ments were used to obtain the load-deflection curve. The upper
and lower critical pressures were found to be 1885 psi and 1780
psi respectively, and the shell will exhibit snap—-through. However,
loss of stability will not take place if a displacement pertubation
is imposed on the shell at a pressure below the lower critical
pressure.

Three separate analyses were made for the viscoelastic pro-
blem, with the external pressure equal to 1510 psi, 1320 psi and
1130 psi respectively. This represents 807, 707 and 60% of the
critical load. The external pressure was applied instantaneously
using 12 load increments, and then sustained during the creep

process. The displacement of the apex vs. time is plotted in
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Fig. 7.21 for all three cases.

The case ¢ = T/ p., = 0.8 exhibited a sudden loss
of stability after 70.5 hours, and buckled. The cases € =0.7
and € = 0.6, however, exhibit a period of gradual softening of
the system, followed by a period where the stiffness is small and
the displacement increased rapidly. In the third period the
stiffness increased rapidly showing a decreasing rate of deflectiom.
The latter two cases show the typical behavior of a shell with a
geometric parameter in the domain & £/M15'40 R [134],

The reason for the snap-through occurring for ¢=0.81s
as follows. The relaxation of the stresses at the clamped edge
will gradually decrease the degree of rotation constraint., Hence
the shell will not behave as a fully clamped shell if subjected
to a displacement pertubation. In this respect it should be noted
that a simply supported shell will snap-through already for /u‘z; .
For the cases S’= 0.7 and §= 0.6, however, the reduction in
rotation constraint is not sufficient to give an instability
condition, and the shell behaves similarly to a shell with para-

4
meter s < G | [134].
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8. SUMMARY AND CONCLUSIONS

An incremental displacement formulation has been presented
for the time dependent nonlinear analysis of structures. Both
geometric and material nonlinearities are included. The physical
nonlinearities are caused by coupled or uncoupled creep and
elastic-plastic deformations in metals. The time dependence of
the response arises from creep deformations in metals and from
the viscoelastic behavior in polymeric materials. As observed
in thin shell applications, the geometric nonlinearities for most
cases are restricted to large displacements resulting from finite
rotations. No restrictions regarding the magnitude of strains
or rotations are 1lmposed on the elastic structures.

Based on a preliminary study of the accuracy and computational
efficiency of various modes of descriptions, it was concluded that
the Lagrangian formulation was best suited to describe the motion
of the body. Using a fixed coordinate system in the reference
configuration the appropriate transformations of stresses and
strains were introduced. Applying the virtual work principle the
incremental equilibrium equations were derived, and modified to
account for time effects. The latter was done by decomposing
the stress increment into an instantaneous and a delayed part,
and deriving the creep "pseudo-loading'.

The constitutive relations for creep, plasticity and linear
viscoelasticity were written in terms of the symmetric 2nd Piola-
Kirchhoff stress tensor and the Lagrangian strain rates. Subse-—

quently the stress response was obtained by transforming the
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P-K stress tensor into the Cauchy stress tensor in the current
configuration. Both primary and steady state creep were con-
sidered; this approach was also used for Odquist's modified
“creep-plasticity" formulation. A more fundamental method of
coupling creep and plasticity was presented following the theory
of viscoplasticity. In this, the flow theory of plasticity, the
von Mises yield criterion, and isotropic hardening rule were
employed. The complexity of such a formulation was exhibited by
showing the time dependence of the flexural modulus of aluminum
during creep. Finally, the linear theory of viscoelasticity was
extended to large displacement problems, using a Prony series
expansion of the relaxation modulus.

Restricting the displacement increments to being small, the
incremental equilibrium equations were linearized. .The forward
integration of these equations were improved using an equilibrium
check at each step, and adding the '"out-of-balance' load to the
next load increment. This method was shown to give excellent
results for elastic problems and for problems in the infinitesimal
theory of plasticity. However, for finite inelastic and visco-
elastic problems, the method gave rise to oscillations unless
special modifications or precautions were introduced. This
residual load method was shown to give excellent results for
postbuckling analysis of a structure when combined with a pro-
cedure that controlled the loading sequence based on the positive

definiteness of the system stiffness matrix.
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Using a degenerate isoparametric shell elemgnt, three finite
element programs were written for the analysis of axisymmetric
deformations of shells of revolution. With these programs the
snap-through behavior of a shallow spherical shell was determined,
and an elastic analysis of a torus was made. Similarly the
creep and elastic—plastiﬁ deformations in torispherical pressure
vessels were investigated, and the creep buckling behavior of
columns and shallow shells was determined. Finally the method
was applied to the viscoelastic buckling of a shallow shell made
of plexiglas.

For the cases where exact solutions are available favorable
agreement was obtained. However, very few experimental data
exist for large creep deformations in shells, and the programs
could therefore only be verified by inference from‘simple one-
and two-dimensional cases known in the literature.

A number of topics for further research have been pointed
out. Much work still has to be done in the field of coupled
creep and plasticity in order to determine the material parameters
in such constitutive models. Secondly, it is well known that a
linear hereditary constitutive law is unsatisfactory for many of
the commerically used plastics. Great efforts should therefore
be made to obtain nonlinear kernel functions that can be used in
efficient ?ecursive algorithms for such materials.

An obvious extension of the present work would be to include
the possibility of bifurcation buckling into a nonsymmetric mode
during the creep process. This may be done using Fourier series

expansion in the circumferential direction or using a general
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three-dimensional shell element. In the former case the harmonics
will be coupled, and only a very few terms can be used in the

series before the computational effort gets out of hand. Another
natural extension of the present work is the study of creep buckling
of sandwich shells with a soft viscoelastic core. Here the plastic

deformations of the metallic facings can be included.
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APPENDIX A - INTERPOLATION POLYNOMIALS

The following interpolation polynomials and nodal point

coordinates were used:

Linear element:

Nodal points (-7, +7)
# (€)= 7(/-§)
% (€) « 7 (/+E)

Quadratic element:

Nodal points (-7 o0, 6 +7)

hN(€)= 2 €(I-E)
(€)=~ (/-&)
75(€) <3 €(/+E)

Cubic element:

Nodal points (-7,-% + 3 +7)
% (€)= 7 (I-§)(-1+TED)
#UE) = & ((-36)(/-E")
HEV= 7T (1+36)(1-EY
T lEY=J5 (1+€)(~1 *9E?)

Quartic element:

Nodal points ("’g"'zl',o 7 +1)

b} h ]

GE)=CE(I-ENCI-9E")
B(E)=-FE(1-2€)(I-E?)
P3(E)= /- EN5-4E")
(€)= $E(/+2€)10-E")
flE)= £ €(/7E)(/I-4E")
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APPENDIX B - DERIVATION OF DISPLACEMENT GRADIENTS

The equations defining the geometry and assumed displacement

field for the degenerate isoparametric elements are given by

r) % re oo [eoss,
{a} - ‘%/‘f;cg){?cg “7T ), {me‘% (6.4)
and

-sinB,’

f“}- Zem (5172 ¢ v {200 @

Equations (6.4) and (6.5) are given in terms of the local
natural coordinates E,ﬂz . Before the global displacement
gradients can be computed the chain rule differentiation has

to be used to give

2 2
P EARRA 3.1)
% 5

where [J ] is the Jacobian of transformation (6.4) and is given

by
2z _2J2
[5]~- T °% (B.2)
2 opr '
21 °%
and
[T - cdet T = 2«9_‘25%_;9%%;_7" (B.3)
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Combining Eqs. (6.4), (6.5), (B.1) and (B.2) one gets
7 '4 r.o+3 4 Y #
13/ = ’7-5 z?ﬁ,iﬁ-mq)zﬁ

Let

(B.4)

17 = @.(@(gsm% -2 costa‘/.)*?é A‘.b‘j(smg.(a,sq.-gnq.m@))

Define

J(8)= ik (rsing ~ 2, c0s &)

¢
L
F4

g, (%) = T;/ [{4‘, [51/)640&5 -5/18) cos6;’)

The determinant {J ] can now be decomposed in one term that is

independent of “Z and one that depends omn ‘7 .

13/=J,(€)+7 J,(€) (B.5)

Introduce the following notation

{Ps} = 51/79\',
{pct-= th cos 6
<spy= K h o
<CP>= 7y h o
{RP> = P~~/‘-

{Z¥P>= PJ 2,

This leads to the form

(B.6)

J (€)= <r>{Ps}t-<cey{Pc}

7z(§) = <hecosp>» {Ps}—<hsne>{rc}
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The displacement gradients can be derived similarly:

” Sy o2 _ 2
%-,-’,(af‘z%'fz?%’
‘3/5.!/)9 (f‘f N iZ?lfé 3106 o, )+
+ if%*izﬁzf Slﬂg)i h -S/Oﬁd )

(B.7)

/[<U7{Ps}*<EP>fbsméo<} F9(<sPr{hsinBual-<hsimbu > {Ps}))

%IEJ
u‘*

7
/
"3 (A fh cos Bt (Frgr+ 3w fp brcosE) ) -
¥ 7%} y (5.8)
7

Jur_ 1 (-<w> {PC}*(RP>{haa39-4}*'zC(cP){hcoié-c }-<¢heosour {Pc} ) )

ot /7/

Frr(Ru-gdfhismb, ) (8-9)
Su _ { ,2r du _ 2r Pu
52 " 771 (o8 57 ~ &y 3¢ )
=,31[_z‘fh 5/!794:(( -;G*z?’pi J)_
(B.10)

“ Ak ost ( fig ;=37 g hosnEon))

[

g‘_g JI (—<”7{PC} -< 377{‘751"790(}‘7i((CP){hSIbBe(}" {hs:hﬁx} <Pc))
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Jw _ _L 2z 0 dz Jur
Seh (B A B
=_"_ (,L .
43/ Z?éﬂﬂ?(}ﬁg(o‘-f-iz%s[hme,(‘)_
TCfg 2 Y w18 ELh o) (5.11)

e _7("/(<w>{PS}'<2P7{hco59a(} ~ 7 2(<hcosBux7iPS}—<sP> [heosb«} ))

o

Note that
131 =13¢g,%
r- r‘(g ’.'Z>
Let
e (el ey B y,)
20 k(b v <07y
L. E o ebTy, 87y (B.12)
24 . L, ( <ty <b7,)
Here

<b'y, =< (P}, © <Py hismE, {PS5}, o 2Py hysin By >

(1x3W)

and
<877 = < 2(R3P) <P Vb, 5in8, H(<SPoy-<PsHY by iy -
({xN)

where <l>,,'7i= (lxi2) and <bz*>‘. = (I1x4) for

the cubic element.
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The vectors <&,*7; and <bz"7‘. , ¢¥7 can similarly be

determined from Egs. (B.8 - B.1ll)

Finally, a simple coordinate transformation from the global
Cr 2\ coordinate system to the local system (g,»?) yields
Kb @nd by ,c=l4

The displacement gradient matrices L[®,] and [£B8,7 as

defined by Egqs. (6.20) and (6.20a) are then given as
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The dependence on "Z is here kept as a multiplying factor
that is easily included in the numerical integration of Egs.
(6.25) and (6.26). The same procedure is used for the computation
of the creep pseudo-loading and for the equilibrium nodal loads.

In the case of the geometric stiffness matrix [KG] the
stress vector {'s}in Eq. (6.29) must be pre or postmultiplied by

the matrix

Lz

7,
ré: 4
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From this derivation it is quite clear that letting /7/

and r vary over the shell thickness does not increase the com- ‘

|

plexity of the formulation. The additional computational effort

is also negligible.






