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Phosphoproteomic mapping reveals 
distinct signaling actions and activation of 
muscle protein synthesis by Isthmin- 1
Meng Zhao1,2,3, Niels Banhos Danneskiold- Samsøe1, Livia Ulicna1, 
Quennie Nguyen1, Laetitia Voilquin1,2,3, David E Lee4,5, James P White4,5,6, 
Zewen Jiang1,7,8, Nickeisha Cuthbert1, Shrika Paramasivam1, 
Ewa Bielczyk- Maczynska2,3,9, Capucine Van Rechem1, Katrin J Svensson1,2,3*

1Department of Pathology, Stanford University School of Medicine, Stanford, 
United States; 2Stanford Diabetes Research Center, Stanford University School of 
Medicine, Stanford, United States; 3Stanford Cardiovascular Institute, Stanford 
University School of Medicine, Stanford, United States; 4Duke Molecular Physiology 
Institute, Duke University School of Medicine, Durham, United States; 5Department 
of Medicine, Duke University School of Medicine, Durham, United States; 6Duke 
Center for the Study of Aging and Human Development, Duke University School of 
Medicine, Durham, United States; 7Department of Laboratory Medicine, University of 
California, San Francisco, San Francisco, United States; 8Diabetes Center, University 
of California, San Francisco, San Francisco, United States; 9Division of Cardiovascular 
Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, 
United States

Abstract The secreted protein isthmin- 1 (Ism1) mitigates diabetes by increasing adipocyte and 
skeletal muscle glucose uptake by activating the PI3K- Akt pathway. However, while both Ism1 and 
insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence 
in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 
signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping 
and distinct pathways of Ism1 and insulin. We identify a 53% overlap between Ism1 and insulin 
signaling and Ism1- mediated phosphoproteome- wide alterations in ~450 proteins that are not 
shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related 
to protein translation, mTOR pathway, and, unexpectedly, muscle function in the Ism1 signaling 
network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle 
protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, 
and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 
targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal 
muscle protein content, these studies define a non- canonical mechanism by which this antidiabetic 
circulating protein controls muscle biology.

Editor's evaluation
This article will be of interest to those who study integrated physiology by which muscle size, 
strength, and metabolism are regulated. Effects of the protein Ism1, which is released by adipocytes 
and immune cells, on the phosphoproteome were compared and contrasted to those of insulin 
revealing overlapping though distinct signaling pathways. Ism1 was also shown to determine skeletal 
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muscle size and strength. These data describe a new humoral linkage between fat and skeletal 
muscle that should have broad implications.

Introduction
Hormonal signaling through protein phosphorylation is one of the most important post- translational 
modifications allowing for rapid changes in cellular metabolic states (Humphrey et al., 2015). Meta-
bolic stressors such as diabetes or fasting can lead to pronounced physiological and cellular adapta-
tions in protein regulation (Powers et al., 2009). Consequently, pathological conditions can result in 
muscle atrophy, a net loss of muscle mass, which is highly associated with morbidity (Cohen et al., 
2015; Jackman and Kandarian, 2004). Muscle strength is reduced in individuals with insulin resistance 
and type 2 diabetes (Andersen et al., 2004; Park et al., 2007), and muscle weakness is even a diag-
nostic predictor of diabetes (Peterson et al., 2016). The mechanisms underlying this association have 
remained elusive, but it is plausible that factors derived from adipose tissue can contribute to muscle 
proteostasis. Identifying such molecular triggers of muscle metabolism could facilitate our efforts to 
develop pharmacological agents that improve muscle function and systemic metabolic health.

Skeletal muscle is the most abundant tissue in humans, representing up to half of the total mass in 
normal- weight individuals (Janssen et al., 2000). As a major organ for glycogen storage and insulin- 
mediated glucose uptake, skeletal muscle controls whole- body energy expenditure and nutrient 
homeostasis (Deshmukh, 2016; Shulman et al., 1990). Importantly, skeletal muscle also acts as a 
protein reservoir that is highly responsive to anabolic or catabolic hormonal stimulation, including 
growth hormone (GH) and insulin- like growth factor- 1 (IGF- 1), both of which stimulate muscle fiber size 
(hypertrophy) (Moro et al., 2016; Velloso, 2008). Muscle mass is balanced by pathways controlling 
protein synthesis and protein degradation. The most well- described anabolic signaling pathway that 
promotes protein synthesis requires Akt/mTORC1 signaling, which robustly induces muscle hyper-
trophy upon stimulation by growth factors or amino acids (Bodine et al., 2001; Glass, 2011; Lai et al., 
2004). In both flies (Scanga et al., 2000) and mammals (Edinger and Thompson, 2002), the PI3K- Akt 
pathway controls cell size by increasing protein synthesis at the level of translation initiation. Akt also 
inhibits the catabolic function of FoxO family members, which upon phosphorylation are no longer 
able to enter the nucleus and turn on the transcription of atrophy genes, including the E3 ubiquitin 
ligases MuRF1 and atrogin- 1 (Bodine et al., 2001; Bodine and Baehr, 2014; Gomes et al., 2001; 
Lecker et al., 1999).

We recently reported that the adipocyte- secreted protein isthmin- 1 (Ism1) improves glucose toler-
ance and insulin resistance by phosphorylating AktS473, which mediates increased adipose and skel-
etal muscle glucose uptake (Jiang et al., 2021). Ism1 adipose expression and circulating levels are 
elevated in mice and humans with obesity (Jiang et al., 2021; Ruiz- Ojeda et al., 2022), suggesting 
that the expression is under nutrient- sensing regulatory control. Intriguingly, Ism1 administration to 
mice simultaneously prevents hepatic lipid accumulation while increasing protein synthesis in hepato-
cytes (Jiang et al., 2021), demonstrating that Ism1 governs an anabolic pathway that is molecularly 
and functionally distinct from insulin. In this study, we find that Ism1 induces specific Ism1- regulated 
phosphoproteome changes enriched for proteins controlling protein translation, mTOR signaling, and 
muscle function. Furthermore, we show that Ism1 is important to maintain skeletal muscle fiber size 
under fasting, thereby defining a non- canonical mechanism by which Ism1 controls muscle biology.

Results
Phosphoproteomics reveals overlapping and distinct pathways of Ism1 
and insulin
The PI3K- Akt pathway is a key pathway of convergence for ligands that activate receptor tyrosine 
kinases (RTKs), including insulin (Humphrey et al., 2013; Luo et al., 2003; Zhao et al., 2020). We 
recently identified Ism1 as an adipose- secreted protein that increases glucose uptake into fat and 
muscle by potently activating PI3K- Akt signaling across a range of mouse and human cell types, 
but unlike insulin, does not induce de novo lipogenesis (Jiang et al., 2021). Therefore, the extent 
to which the entire Ism1- signaling network overlaps with insulin or whether other signaling nodes 
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are involved remains to be determined. Therefore, to increase our understanding of the signaling 
divergence and obtain an unbiased, more complete view of the Ism1- induced signaling network, we 
performed phosphoproteomics in the Ism1 and insulin- responsive 3T3- F442A cells. To characterize 
the Ism1- induced phospho- signaling profile after acute treatment in cells, we used phosphopeptide 
enrichment with TiO2 followed by LC- MS/MS using Orbitrap Elite (Yue et al., 2015; Zhou et al., 2008; 
Figure 1A). Cells were starved overnight, followed by a 5 min treatment with 100 nM recombinant 
Ism1, or 100 nM insulin. As a negative control, bovine serum albumin (BSA), a secreted protein in the 
same size range as Ism1, was used at 100 nM. Although pAkt S473 induction was more pronounced 
by insulin, we observed robust activation of pAkt S473 5 min post- treatment with Ism1, and therefore 
selected this time point for our analysis (Figure 1B). The proteomic experiments were performed 
in treatment groups of six biological replicates, after which the pooled cells were divided into two 
technical replicates for the proteomics analysis. In total, ~7700 raw MS precursor ions (peptides) were 
acquired, resulting in the identification of unique phosphopeptides on >5000 proteins (Figure 1—
figure supplement 1A and B). Principal component analysis (PCA) demonstrates high reproduc-
ibility between biological replicates and distinct separation of the Ism1- and insulin- treated groups 
compared with each other and the albumin control (Figure 1C). Interestingly, we identify overlapping 
and distinct Ism1 and insulin- specific phosphoproteome- wide alterations upon acute stimulation, with 
BSA as control. There is a 53% overlap between Ism1 and insulin signaling (Figure 1D). Insulin induces 
phosphorylation of 654 phosphosites, out of which 347 phosphosites are also phosphorylated or 
dephosphorylated by Ism1 (Figure 1D).

Remarkably, Ism1 causes changes in the phosphorylation status of 445 proteins compared with 
BSA that are not shared with insulin and not previously described (Figure 1D). Groupwise compari-
sons between treatments show phosphosites selectively regulated by the specific ligands (adj. p- value 
of <0.05), many of which have not previously been identified (Figure 1E). Based on the notion that 
Ism1 causes alterations in phosphorylation of a subset of proteins, while another subset is shared with 
insulin, we next used Gene Ontology (GO) analysis to discern cellular signaling pathways associated 

eLife digest Cells need energy to survive and carry out their role in the body. They do this by 
breaking down molecules, like sugar, into substances that can fuel the creation of new compounds, 
like proteins or lipids. This process, known as metabolism, involves a series of interconnecting chem-
ical reactions which are organized into pathways.

Metabolic pathways contain proteins that catalyze each sequential reaction. Hormones can change 
the activity of these proteins by adding a chemical group called a phosphate. This reversible modi-
fication can majorly impact the metabolism of cells, resulting in changes to the body’s tissues. The 
hormone insulin, for instance, alters a well- known metabolic pathway that triggers skeletal muscle 
cells to produce more proteins, leading to stronger and larger muscles.

In 2021, a group of scientists discovered a molecule made by fat cells, called Isthmin- 1, also acti-
vates components in this pathway. Similar to insulin, Isthmin- 1 encourages muscle and fat cells to take 
up sugar. However, it also prevents the liver from accumulating excess fat, suggesting Isthmin- 1 may 
trigger a different cascade of molecules to insulin.

To investigate this possibility, Zhao et al. – including some of the researchers involved in the 2021 
study – exposed cells grown in the laboratory to Isthmin- 1 or insulin and looked for phosphates on 
all their proteins. This revealed that only 53% of the proteins Isthmin- 1 modifies are also altered 
by insulin. Of the proteins unique to Isthmin- 1, several had known roles in making and maintaining 
proteins in muscle cells.

To understand more about the role of this newly discovered pathway, Zhao et al. genetically engi-
neered mice to lack the gene that codes for Isthmin- 1. This decreased the size and strength of the 
mice’s muscle fibers and reduced the signals that normally lead to skeletal muscle growth.

These findings suggest that Isthmin- 1 regulates skeletal muscle size via a metabolic pathway that is 
slightly different to the one activated by insulin. Many metabolic disorders are associated with muscle 
loss, like diabetes, and this newly discovered network of proteins could further our understanding of 
how to prevent and treat these diseases.

https://doi.org/10.7554/eLife.80014
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Figure 1. Phosphoproteomics reveals overlapping and distinct pathways of Ism1 and insulin. (A) Experimental design of the untargeted 
phosphoproteomics analysis. 3T3- F442A cells were serum- starved for 16 hr and treated with 100 nM recombinant Ism1 or insulin for 5 min (n = 
6 biological replicates per group were pooled and then divided into n = 2 technical replicates). Proteins were extracted, trypsin digested, and 
fractionated. Phosphopeptides were enriched using TiO2 chromatography, and phosphopeptides were analyzed with LC- MS/MS. (B) Western blot 

Figure 1 continued on next page
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with Ism1 or insulin. While Ism1 and insulin share the majority of phosphopeptides for detected genes 
annotated to these GO terms, some phosphorylated residues could only be identified in one condi-
tion (Figure 1F). Furthermore, we analyzed to which extent the phosphorylation patterns overlapped 
between the Ism1 and insulin for genes belonging to the GO terms ‘GO:0008286, insulin receptor 
signaling,’ ‘GO:0038201, TOR complex,’ and GO terms including the word ‘muscle’ (Figure 1F). Inter-
estingly, we find that Ism1 exclusively alters the phosphorylation status of proteins involved in the 
mTOR complex and muscle (Figure 1F). These overlapping and distinct signaling nodes may reflect 
the signaling networks underlying the cell- specific responses.

Phospho-specific mapping identifies an Ism1-induced signature 
consistent with protein translation and muscle function
To interrogate the Ism1- specific signal transduction pathway in more detail, we compared the over-
lapping phosphopeptides clustered by functional GO pathway groups. Expectedly, insulin induces 
robust phosphorylation of a subset of proteins, including the insulin receptor (IR). This phosphopro-
teomic mapping shows that Ism1 does not induce the exact same targets in the insulin pathway as 
insulin (Figure 2A), which is entirely consistent with our previous study using phospho- tyrosine anti-
bodies for the IR (Jiang et al., 2021). For example, only insulin phosphorylates the InsR at Y1175/
Y1163 while no significant phosphorylation is induced by Ism1 (Figure 2B). Interestingly, Ism1 induces 
phosphorylation of some of the same proteins as insulin, including IR substrates Irs1 and Irs2, but 
with distinct phosphosite patterns. For example, Irs2 was phosphorylated at T347 by insulin but 
at S588 by Ism1 (Figure 1F, Figure 2—figure supplement 1). Therefore, Ism1 and insulin activate 
overlapping but distinct pathways, which may account for some of the phenotypic and cell type- 
specific functions of Ism1. Similar clustering for the mTOR and muscle pathways (Figure 2C and D) 
revealed several proteins regulated only by insulin or only by Ism1. Insulin induces phosphorylation 
of ribosomal protein S6 (Rps6), a regulator of protein synthesis downstream of mTOR (Figure 2E 
and F), while Ism1 inhibits Rps6S236 and Rps6S240 phosphorylation (Figure 2F). While the function of 
these specific phosphosites of Rps6 is understudied, our data suggest a direct regulation of mTOR 
activity, potentially functionally distinct from insulin. Furthermore, Ism1 induced phosphorylation of 
several proteins shown to regulate muscle growth and fiber size, such as adenomatous polyposis coli 
(Apc)S1040(Chen et al., 2020; Parisi et al., 2015; Figure 2G), supervillin (Svil)S220 (Hedberg- Oldfors 
et al., 2020; Figure 2H), and FGF- receptor substrate 2 (Frs2)S327 (Chen and Friesel, 2009; Figure 2I). 
Frs2 is also a lipid- anchored adapter protein and downstream mediator of signaling of multiple RTKs 
supporting the existence of a distinct Ism1 receptor (Zhou et al., 2009). As protein translation is a 
critical downstream target of mTOR and functionally controls muscle growth, we next investigated 
the regulation of ribosomal targets that catalyze protein synthesis. Interestingly, eukaryotic translation 
initiation factor 3 subunit A (Eif3), a complex- subunit playing a major role in translation initiation (Ma 

analysis of p- AKTS473, total AKT, and β-actin in cells treated with 100 nM bovine serum albumin (BSA), 100 nM Ism1, or 100 nM insulin for 5 min (Western 
blot n = 2 pooled from n = 6 per treatment group; quantification n = 4 combining three independent assays). p- Values are calculated by one- way 
ANOVA, *p<0.05, **p<0.01, ***Pp0.001. (C) Protein intensity- based principal component analysis (PCA) of the phosphoproteomic dataset. (D) Venn 
diagram of the phosphopeptides detected in both replicates after BSA-, Ism1-, or insulin treatment. (E) Heatmap of differentially phosphorylated 
peptides with 100 lowest significant p- values (adj. p<0.05) from three comparisons displayed as log2 ratio (BSA vs. Ism1, BSA vs. insulin, and insulin vs. 
Ism1). (F) Distribution diagram of shared and unique phosphosites (detected in at least one sample) between treatments for selected Gene Ontology 
(GO) pathways. Inner links in shades show phosphosites detected in two or more treatment conditions. Gray shows phosphosites detected in all 
samples; purple shows phosphosites detected in both Ism1 and insulin- treated cells; green shows phosphosites detected in both BSA and insulin- 
treated cells; blue shows phosphosites detected in both BSA- and Ism1- treated cells. The middle ring displays GO pathway/pathway group with ticks 
indicating the number of phosphopeptides. Large ticks indicate 50 phosphopeptides, and small ticks indicate 5 phosphopeptides. The outer ring 
displays gene symbols and the phosphosite exclusively detected in each treatment. See also Figure 1—figure supplement 1 and Figure 1—source 
data 1, Figure 1—source data 2, and Figure 1—source data 3.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. List of phosphosites significantly different between treatments for Figure 1E.

Source data 2. List of shared and unique phosphosites between treatments for selected Gene Ontology (GO) pathways for Figure 1F.

Source data 3. Uncropped Western blot images with relevant bands labeled.

Figure supplement 1. Quality controls for the phosphoproteomics analysis.

Figure 1 continued
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Figure 2

Figure 2. Phospho- specific mapping identifies an Ism1- induced signature consistent with protein translation and muscle function. (A) Venn diagram 
of shared and unique phosphosites between treatments for the Gene Ontology (GO) pathways Insulin. (B) Abundance of InsR Y1175/1163 in cells 
treated with bovine serum albumin (BSA), Ism1, or insulin (n = 2). Individual comparisons between conditions across phosphopeptides were performed 
using empirical Bayes statistics followed by adjustment for multiple testing using false discovery rate, *p<0.05, **p<0.01, ***p<0.001. The minimum 

Figure 2 continued on next page
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et al., 2022), was phosphorylated by insulin but not Ism1 (Figure 2J), while 60S ribosomal protein L12 
(Rpl13) at S77 (Figure 2K) and 40S ribosomal protein S13- 1 (Rps13a) at S237 (Figure 2L) and Rps3a at 
S238 (Figure 2M) were entirely dephosphorylated by both Ism1 and insulin. Lastly, ribosomal protein 
S6 kinase alpha- 5 (Rps6ka5), a known mTOR substrate (Chauvin et al., 2014). was phosphorylated by 
both Ism1 and insulin at S375 (Figure 2N). These data conclude that Ism1 induces phosphorylation of 
a specific set of proteins involved in mTOR signaling and proteostasis, while other phosphosites are 
unchanged (Figure 2O).

To globally discern possible pathways activated by Ism1 and possible grouping of functional 
effects, we conducted GO enrichment analysis using biological processes coupled with visualization 
by semantic similarity. We found associations previously linked to Ism1, including metabolic processes 
such as glucose and lipid metabolism (Jiang et al., 2021; Ruiz- Ojeda et al., 2022), nervous system 
development (Osório et al., 2014; Pera et al., 2002), and the immune system (Lam et al., 2022; Li 
et al., 2021; Valle- Rios et al., 2014; Wu et al., 2021; Figure 2P). Intriguingly, also here, we identify 
several pathways associated with muscle, skeletal muscle, and cardiac muscle in the Ism1 treatment 
group (Figure 2P). These results show a broad regulation of signatures indicating a role for Ism1 in 
muscle function.

Ism1 induces mTOR-dependent protein synthesis in muscle cells
Given the Ism1- induced muscle- signaling signature in 3T3- F442A cells and that the PI3K- Akt pathway 
is known to promote anabolic programs in muscle cells (Edinger and Thompson, 2002), muscle cell 
differentiation (Wilson and Rotwein, 2007), and skeletal muscle hypertrophy (Bodine et al., 2001; 
Jaiswal et al., 2019), we next asked whether Ism1 induces anabolic cellular signaling pathways in 
muscle cells. In differentiated C2C12 myotubes, Ism1 induces phosphorylation of AktS473 and ribo-
somal S6S235/S236 starting at 5 min and remaining up to 4 hr (Figure 3A). The effect of Ism1 on Akt 
signaling is robust but lower than that of the skeletal muscle hypertrophy hormone insulin- like growth 
factor- 1 (Igf1) (Figure 3A and B). Similarly, undifferentiated C2C12 myoblasts are also responsive to 
Ism1 in a dose- dependent manner (Figure 3C). Notably, Ism1 treatment induced a 2.5- fold increase 
in protein synthesis as determined by [35S]-methionine incorporation into proteins (Figure 3D). As 
expected, Igf1 treatment resulted in a threefold induction in protein synthesis (Figure 3D), and the 
combined Igf1 and Ism1 treatment did not induce protein synthesis further, suggesting that the 
maximal capacity of protein synthesis has been reached under these conditions. Previous data showed 
that mTORC1/2 inhibition with rapamycin inhibits Ism1- induced signaling in 3T3- F442A cells, demon-
strating that intact mTOR activity is required for the signaling capacity of Ism1 (Jiang et al., 2021). 
Importantly, low- dose rapamycin also inhibits Ism1- induced protein synthesis, establishing that the 
functional effects are directly linked to the signaling cascade induced by Ism1 (Figure 3E). These 

normalized intensity across the dataset was subtracted from each normalized data point, and phosphorylation was calculated as a fraction of the 
maximum value of all samples for each phosphopeptide. Bars show mean ± SEM. (C) Venn diagram of shared and unique phosphosites between 
treatments for the GO pathways Insulin mTOR. (D) Venn diagram of shared and unique phosphosites between treatments for the GO pathways and 
muscle. (E–N) Abundance of proteins with indicated phosphosite in cells treated with BSA, Ism1, or insulin (n = 2). Individual comparisons between 
conditions across phosphopeptides were performed using empirical Bayes statistics followed by adjustment for multiple testing using false discovery 
rate, *p<0.05, **p<0.01, ***p<0.001. The minimum normalized intensity across the dataset was subtracted from each normalized data point, and 
phosphorylation was calculated as a fraction of the maximum value of all samples for each phosphopeptide. Note that, in case of non- detectable 
phosphopeptides, significance testing was based on imputed values, n.d., non- detectable. Bars show mean ± SEM. (O) Ism1 signaling network in 3T3- 
F442A cells. Ism1 ligand stimulation triggers activation of the PI3K/AKT pathway and the mTORC1 pathway, which leads to changes in phosphorylation 
status of multiple proteins involved in protein translation and muscle function. (P) Pathway analysis of enriched GO pathways in the Ism1 group versus 
BSA. Clusters are dominated by (1) mixed terms, (2) metabolic process, (3) development, and (4) localization/transport. Plotted GO terms all have p- 
values <0.01 calculated using the classic Kolmogorov–Smirnov test. See also Figure 2—figure supplement 1, Figure 2—source data 1, and Figure 
2—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Enriched pathways for proteins with phosphosites significantly different between Ism1 and bovine serum albumin (BSA) clustered by 
semantic similarity.

Source data 2. Raw data related to Figure 2B,E–N.

Figure supplement 1. Insulin receptor substrate- 1 and 2 (Irs1/2) phosphorylation status in response to Ism1 or insulin.

Figure 2 continued

https://doi.org/10.7554/eLife.80014
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data align with the inhibitory effects of rapamycin on muscle hypertrophy during anabolic conditions 
(Pallafacchina et al., 2002). In conclusion, Ism1 induces a signaling cascade that requires intact mTOR 
signaling to induce protein synthesis in muscle cells.

Ism1 ablation results in reduced skeletal muscle fiber size and muscle 
strength
Skeletal muscle atrophy, a reduction in muscle mass, occurs when the protein degradation rate 
exceeds protein synthesis (Cohen et al., 2015; Jaiswal et al., 2019; Sandri et al., 2004). We previ-
ously showed that Ism1 controls glucose uptake into adipose tissue and skeletal muscle in mice (Jiang 
et  al., 2021), but the role of Ism1 in skeletal muscle function beyond glucose regulation has not 
been studied. Ism1 is broadly expressed, including highly in adipose tissue and blood (Jiang et al., 
2021). By analyzing single- cell RNA sequencing data from murine skeletal muscle (Baht et al., 2020), 
we find that Ism1 is not expressed in muscle precursors or mature muscle cells (Figure 4—figure 
supplement 1). Given the observed signaling action of Ism1 on muscle cells, this indicated a non- cell- 
autonomous effect of Ism1 on muscle cells in a physiological setting. Therefore, we next sought to 
determine whether whole- body ablation of Ism1 in mice, in which blood levels of Ism1 are completely 
ablated (Jiang et al., 2021), resulted in changes to skeletal muscle mass. To evaluate muscle atrophy, 
8- week- old WT and Ism1- KO mice were either fasted for 12 hr or fasted followed by a 12 hr re- feeding 
period (fed state) (Figure 4A). As expected, at dissection, all fasted mice had a reduction in body 
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Figure 3. Ism1 induces mTOR- dependent protein synthesis in muscle cells. (A) Western blot analysis of p- AKTS473, total AKT, p- S6S235/236, total S6, and 
β-actin in C2C12 myotubes treated with 100 nM bovine serum albumin (BSA), 100 nM Ism1, or 50 ng/ml Igf1. (B) Quantification of protein expression of 
p- AKT S473/β-actin and p- S6 S235/236/β-actin. (C) Western blot analysis of p- AKTS473, total AKT, and β-actin in C2C12 myoblasts treated with indicated 
concentrations of BSA, Ism1, or Igf1 for 5 min. (D) Levels of protein synthesis measured by [35S]-methionine incorporation in C2C12 myotubes after 
48 hr of indicated treatments (n = 3, one- way ANOVA, *p<0.05, **p<0.01, ***p<0.001). (E) Levels of protein synthesis measured by [35S]-methionine 
incorporation in C2C12 myotubes with indicated treatments for 2 hr in the presence or absence of 100 nM of the mTOR inhibitor rapamycin (n = 3, two- 
way ANOVA, *p<0.05, **p<0.01, ***p<0.001). Bar graphs show mean ± SEM. See also Figure 3—source data 1 and Figure 3—source data 2.

The online version of this article includes the following source data for figure 3:

Source data 1. Raw data related to Figure 3B, D, and E.

Source data 2. Uncropped Western blot images with relevant bands labeled.

https://doi.org/10.7554/eLife.80014


 Research article      Cell Biology

Zhao et al. eLife 2022;11:e80014. DOI: https://doi.org/10.7554/eLife.80014  9 of 28

B

E G Grip strength 

0
40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00
40

00
44

00
48

00
52

00
56

00
60

00
0

5

10

15

20

Area (um2)

%
 o

f f
ib

er
s

Quadriceps muscle fiber size 

WT fed
WT fasted
Ism1-KO fed
Ism1-KO fasted

WT Ism1-KO
M

us
cl

e 
fo

rc
e 

(N
)

F

WT Ism1-KO

Fe
d

Fa
st

ed

D

A

Average muscle fiber size

C

Remove food

Refeed food

Dissection

0

12h

24h

Fasted: Ad lib food

Remove food

Dissection

0

12h

24h

Fed Fasted

0

10

20

30

40
Body weight

Bo
dy

 w
ei

gh
t (

g)

WT KO WT KO
Fed Fasted

0

50

100

150

200
Blood glucose

 B
lo

od
 g

lu
co

se
 (m

g/
dl

)

WT KO WT KO

***
***

WT KO WT KO
Fed Fasted

Ar
ea

 (µ
m

2)

*

***

WT   Ism1-KOFed: WT   Ism1-KO

Quadriceps muscle

0

1000

2000

3000

4000

0.0

0.2

0.4

0.6

0.8

Lam
inin N

ucleus

Figure 4. Ism1 ablation results in reduced skeletal muscle fiber size and muscle strength. (A) Schematic description of the fasting and feeding protocol. 
(B) Body weights of WT and Ism1- KO mice in the fed or fasted groups (WT fed, n = 3; Ism1- KO fed, n = 3; WT fasted, n = 3; Ism1- KO fasted, n = 3, two- 
way ANOVA). (C) Blood glucose level in fed and fasted mice before dissection (WT fed, n = 3; Ism1- KO fed, n = 3; WT fasted, n = 3; Ism1- KO fasted, 
n = 3, two- way ANOVA, *p<0.05, **p<0.01, ***p<0.001). (D) Immunolabeling of laminin (red), staining of nucleus (blue) of mouse quadriceps muscles 
from WT and Ism1- KO mice in the fed or fasted groups (scale bars: 10 μm). Images are representative examples of three mice showing similar results. 
(E) Fiber size distribution of mouse quad muscles (WT fed, n = 3; Ism1- KO fed, n = 3; WT fasted, n = 3; Ism1- KO fasted, n = 3). Mean percentage of 
myofibers within the indicated range is shown. (F) Quantification of average muscle fiber area (WT fed, n = 3; Ism1- KO fed, n = 3; WT fasted, n = 3; 
Ism1- KO fasted, n = 3, one muscle tissue per mouse, 2–4 images per muscle tissue,~60–100 myofibers quantified per image; two- way ANOVA, *p<0.05, 
**p<0.01, ***p<0.001) performed in a blinded fashion by two independent investigators. This experiment was repeated using two independent cohorts 
of mice. (G) Grip strength measured by two- paw muscle force (N) on a grid in WT and Ism1- KO mice (WT, n = 15; Ism1- KO, n = 15). p- Values are 
calculated by two- tailed Student’s t- test, *p<0.05, **p<0.01, ***p<0.001. Bar graphs show mean ± SEM. See also Figure 4—figure supplements 1 and 
2 and Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data related to Figure 4B, C,E–G.

Figure supplement 1. Ism1 acts non- cell- autonomously on muscle cells.

Figure supplement 2. Ism1 ablation does not reduce muscle mass or muscle fiber size in all tissue locations.

https://doi.org/10.7554/eLife.80014
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weight compared with fed mice (Figure 4B). Blood glucose levels were 150 mg/dl in the fed state, 
and <80 mg/dl in the fasted state (Figure 4C), but no differences were seen between genotypes. 
Under the same conditions, quadriceps (Figure 4D), gastrocnemius (Figure 4—figure supplement 2), 
soleus (Figure 4—figure supplement 2), as well as tibialis (Figure 4—figure supplement 2) muscles 
were harvested from mice under fed or fasted states and analyzed for muscle fiber size. Muscle tissue 
morphology was similar between the genotypes, but the muscle fiber size was notably smaller in the 
Ism1- KO quadriceps muscles (Figure 4D). Remarkably, fiber size area quantifications showed that the 
Ism1- KO quadriceps muscles demonstrate a robust shift in distribution to smaller muscle fiber size 
areas under both fed and fasted conditions (Figure 4E). On average, loss of Ism1 significantly reduces 
the cross- sectional area by 40% in the fed state and >20% in the fasted state (Figure 4F). Given 
that the Ism1 phenotype was more pronounced under the fed state, we next evaluated the effect of 
Ism1 ablation on muscle function. While the heart weights (Figure 4—figure supplement 2), muscle 
weights (Figure 4—figure supplement 2), femur length (Figure 4—figure supplement 2), or total 
body weights (Figure 4B) of Ism1- KO mice were not significantly different from WT, the Ism1- KO mice 
had impaired muscle force (Figure 4G). In conclusion, these results show that Ism1 ablation leads to 
smaller skeletal muscle fiber size and loss of muscle strength.

Ism1 ablation does not impair movement or mitochondrial biogenesis, 
or normal muscle development
Since Ism1 ablation causes severe myofiber atrophy, we next investigated whether loss of Ism1 is 
associated with a reduction in movement or muscle mitochondrial complex- dependent mitochondrial 
bioenergetics, as has been demonstrated for IR and IGF- 1R (Bhardwaj et  al., 2021). Ambulatory 
activity (Figure 5A), respiratory exchange ratio (RER) (Figure 5B), energy expenditure as measured 
by VO2 consumption (Figure 5C), or food intake (Figure 5D) are indistinguishable between WT and 
Ism1- KO mice when measured over a 48 hr period. Furthermore, protein levels of the mitochondrial 
complexes under fed and fasted conditions show no significant differences in any of the mitochondrial 
OXPHOS complexes I, II, III, IV, or V (Figure 5E and F). These data are consistent with the notion that 
the expression of the canonical regulator of mitochondrial biogenesis, Ppargc1a (Pgc1α) (Lin et al., 
2002; Wu et al., 1999), is unchanged in quadriceps muscle tissues from the Ism1- KO mice (Figure 5G). 
General muscle markers, including the myosin heavy chain proteins Myh1, Myh2, Myh4, and Myh7, 
were not altered under fed conditions, and only Myh4 was reduced in the Ism1- KO mice under fasted 
conditions, suggesting that muscle fiber type is largely unaffected by Ism1 ablation (Figure  5H). 
Taken together, these data suggest that Ism1 regulates muscle fiber size and muscle strength without 
affecting the expression of mitochondrial complexes or whole- body energy expenditure.

Ism1-KO mice have defective skeletal muscle Akt and mTOR signaling 
and protein synthesis
To understand the underlying mechanism by which Ism1- KO mice develop smaller muscle fiber size, 
we next asked whether Ism1 directly controls protein content in mice. Quadriceps muscles from 
8- week- old mice were harvested and analyzed for total protein content, demonstrating a significant 
reduction in total protein content in the Ism1- KO mice compared with WT mice (Figure 6A). Because 
muscle proteostasis is balanced by protein synthesis and degradation (Glass, 2011; Jackman and 
Kandarian, 2004), we next tested the hypothesis that Ism1 is required for efficient protein synthesis 
in mice by measuring in vivo [35S]-methionine incorporation into proteins isolated from quadriceps 
muscles (Figure  6B). WT and Ism1- KO mice were i.p. administered with [35S]-methionine for 2  hr, 
followed by protein precipitation, which demonstrates that loss of Ism1 results in a significant reduc-
tion in muscle protein synthesis in mice (Figure 6C). Furthermore, under either fed or fasted condi-
tions, muscles isolated from Ism1- KO mice have significantly increased transcript levels of atrophy 
genes FoxO1 (Figure 6D), the FoxO target genes Cdkn1b, Eif4ebp1, and Ctsl (Figure 6E), and ubiq-
uitin ligase Fbxo30 compared with WT mice (Figure 6—figure supplement 1), and increased protein 
levels of the FoxO target p27 (Cdkn1b) (Zhang et al., 2011; Figure 6F). These data suggest that Ism1 
controls protein synthesis, and its loss is associated with elevated protein degradation gene expres-
sion. Given that Ism1 activates the Akt pathway in myocytes in vitro, and that loss of muscle- specific 
Akt1 and Akt2 leads to muscle atrophy (Jaiswal et al., 2019), we next hypothesized that the mecha-
nism behind the smaller muscle fiber size in the Ism1- KO mice is due to reduced Akt pathway activity. 

https://doi.org/10.7554/eLife.80014
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Figure 5. Ism1 ablation does not impair movement, mitochondrial biogenesis, or normal muscle development. (A) Ambulatory activity (WT, n = 4; Ism1- 
KO, n = 4, ANOVA, *p<0.05). (B) Respiratory exchange ratio (RER) (WT, n = 4; Ism1- KO, n = 4, ANOVA, *p<0.05). (C) Oxygen consumption (WT, n = 4; 
Ism1- KO, n = 4, ANCOVA, *p<0.05). (D) Food intake (WT, n = 4; Ism1- KO, n = 4, ANCOVA, *p<0.05) in WT and Ism1- KO mice. Mice were habituated for 
24 hr followed by 48 hr recordings of metabolic parameters. (E) Levels of mitochondrial oxidative phosphorylation proteins in ETC complexes (OXPHOS) 
from quadriceps muscles (WT fed, n = 3; Ism1- KO fed, n = 3; WT fasted, n = 3; Ism1- KO fasted, n = 3) analyzed by Western blot. (F) Quantification of 
OXPHOS complexes (two- way ANOVA, *p<0.05, **p<0.01, ***p<0.001). (G) Relative gene expression analysis of Pgc1α in quadriceps muscle from WT (n 
= 6) or Ism1- KO (n = 5) mice (two- tailed Student’s t- test, *p<0.05, **p<0.01, ***p<0.001). (H) Relative gene expression analysis of Myh1, Myh2, Myh4, and 
Myh7 in quadriceps muscle from WT fed (n = 6) or Ism1- KO fed (n = 5) vs. WT fasted (n = 5) or Ism1- KO fasted (n = 5) mice (two- way ANOVA, *p<0.05, 
**p<0.01, ***p<0.001). Bar graphs show mean ± SEM. See also Figure 5—source data 1 and Figure 5—source data 2.

The online version of this article includes the following source data for figure 5:

Source data 1. Raw data related to Figure 5A–D,F–H.

Source data 2. Uncropped Western blot images with relevant bands labeled.
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Figure 6. Ism1- KO mice have defective skeletal muscle protein synthesis and AKT- mTOR signaling. (A) Total protein content measured in WT and Ism1- 
KO quadriceps muscle expressed as mg protein/wet tissue weight in grams. (WT, n = 12; Ism1- KO, n = 9, two- tailed Student’s t- test, *p<0.05, **p<0.01, 
***p<0.001). (B) Schematic description of the in vivo [35S]-methionine incorporation protocol. (C) In vivo protein synthesis measured by [35S]-methionine 
incorporation in WT and Ism1- KO mice (WT, n = 12; Ism1- KO, n = 9, two- tailed Student’s t- test, *p<0.05, **p<0.01, ***p<0.001). Relative gene 

Figure 6 continued on next page
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Indeed, we found that phosphorylation of AktS473, mTOR2448, and ribosomal S6S235/S236 are markedly 
decreased in Ism1- KO muscle compared with WT mice under both fed and fast conditions, providing 
an explanation for the lower protein synthesis rate (Figure 6G). Ism1- KO mice are indistinguishable 
from WT mice in the phosphorylation of IRS1 at S307 (Figure 6—figure supplement 1), a canonical 
IRS phosphorylation site (Rui et al., 2001). Taken together, these results demonstrate that Ism1 is 
an anabolic regulator of protein synthesis and muscle strength by maintaining high Akt activity and 
protein synthesis in skeletal muscle.

Discussion
Akt has an established role in enhancing muscle hypertrophy and function (Bodine et  al., 2001; 
Glass, 2011; Jaiswal et al., 2022; Jaiswal et al., 2019; Lai et al., 2004; Mammucari et al., 2007; 
Wilson and Rotwein, 2007). However, there is still a need to identify other hormonal and physiolog-
ical insulin/IGF- 1 independent activators of Akt to avoid associated side effects such as hypoglycemia 
when used therapeutically. We previously identified Ism1 as a secreted protein that activates Akt in 
multiple cell types, including human skeletal muscle cells. Using radiolabeled glucose, we also showed 
that Ism1 increases glucose transport into both adipose tissue and skeletal muscle (Jiang et al., 2021). 
Several lines of evidence from this study suggest that Ism1 also has an important anabolic role in 
promoting skeletal muscle growth. Most importantly, Ism1 acts directly on muscle cells to induce 
protein synthesis. Conversely, Ism1 ablation leads to lower skeletal muscle fiber size and atrophy 
associated with lower Akt signaling and protein synthesis. Ism1- KO mice have elevated levels of 
FoxO1 target genes consistent with increased protein degradation. Therefore, Ism1 appears to be an 
important protein regulating metabolism during fed and fasted conditions.

Ism1- induced signaling is not simply an activation of the identical insulin/IGF- 1- induced PI3K- Akt 
pathway. Across multiple cell types, Ism1 and insulin share the pAkt and pS6 network but are seem-
ingly segregated by the more robust activation of pAktS473 seen with insulin, whereas Ism1 induces 
only a subset of shared Akt- induced insulin targets. Interestingly, while Ism1 does not directly phos-
phorylate the IR/IGFRs, Ism1 does induce phosphorylation of the IR substrate proteins (Irs), a feature 
that is shared with other endocrine hormones. This phosphospecific regulation by distinct hormones 
can result in a diverse range of functional outcomes (Yenush and White, 1997). For example, Irs1 
phosphorylation at S302, S307, S522, and S636/639 have been linked to insulin resistance (Um et al., 
2004), but not all hormones that phosphorylate those Irs sites induce insulin resistance, including 
FGF21 (Minard et al., 2016). These overlapping but distinct pathways may account for the Ism1’s cell 
type- specific functional outcomes and downstream transcriptional effects unique to Ism1. Addition-
ally, the phosphoproteomic mapping shows a distinct muscle signature specifically induced by Ism1 
and not by insulin. Among Ism1 downstream targets, we find phosphorylation of proteins related to 
the mTOR pathway, ribosomal and muscle function, targets not previously identified downstream of 
Ism1.

In this work, we observe a 60% decrease in pAktS473 levels in the muscles of Ism1- KO mice, which 
leads to an ~10% reduction in muscle protein content. Our data is consistent with previous reports 
using muscle- specific Akt- KO mice that demonstrate a 40% reduction in protein synthesis upon 

expression analysis of (D) FoxO and (E) FoxO target genes Cdkn1b, Eif4ebp1, and Ctsl in quadriceps muscle from WT fed (n = 6) or Ism1- KO fed (n = 5) 
vs. WT fasted (n = 5) or Ism1- KO fasted (n = 5) mice (two- way ANOVA, *p<0.05, **p<0.01, ***p<0.001). (F) Western blot analysis and quantification of the 
levels of p27 and tubulin in the cytosolic fraction of quadriceps muscles of WT and Ism1- KO mice under fed and fasted conditions (WT fed, n = 3; Ism1- 
KO fed, n = 3, WT fasted, n = 3; Ism1- KO fasted, n = 3, two- way ANOVA, *p<0.05, **p<0.01, ***p<0.001). (G) Western blot analysis and quantification 
of the levels of pAKTS473, total AKT, p- mTORS2448, total mTOR, pS6S235/236, total S6, and β-actin in quadriceps muscles of WT and Ism1- KO mice under fed 
and fasted conditions (WT fed, n = 3; Ism1- KO fed, n = 3, WT fasted, n = 3; Ism1- KO fasted, n = 3, two- way ANOVA, *p<0.05, **p<0.01, ***p<0.001). Bar 
graphs show mean ± SEM. See also Figure 6—figure supplement 1, Figure 6—source data 1, and Figure 6—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Raw data related to Figure 6A,C–G.

Source data 2. Uncropped Western blot images with relevant bands labeled.

Figure supplement 1. Ubiquitin expression and insulin receptor substrate- 1 (Irs1/2) phosphorylation status in quadriceps muscles of WT and Ism1- KO 
mice.

Figure 6 continued
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complete ablation of Akt (Jaiswal et al., 2022). Furthermore, reduced Akt is associated with skeletal 
muscle insulin resistance, in line with our previous observation that Ism1- KO mice fed a high- fat diet 
are more insulin resistant (Jiang et al., 2021). To what extent the insulin resistance in the Ism1- KO 
mice contributes to muscle function in obesity or during aging is an intriguing question that remains to 
be answered in future work. Moreover, increasing protein synthesis while suppressing protein degra-
dation is important in a physiological setting, based on the findings that only a combination of FoxO1 
inhibition and mTORC1 activation can restore Akt- mediated muscle loss (Jaiswal et al., 2022). This 
suggests that hormonal regulators of Akt activity could have important biological functions because 
of Akt’s dual role in regulating mTORC1 and the FoxO genes. Here, we used genetic and pharma-
cological approaches to determine the role of Ism1 in regulating protein synthesis, but it remains 
to be explored whether pharmacological Ism1 administration prevents protein degradation in the 
skeletal muscle. Additionally, upon muscle hypertrophy, activated muscle precursors or satellite cells 
provide an additional mechanism for muscle expansion (Hawke and Garry, 2001). A limitation of 
this study is that we did not investigate whether Ism1 affects muscle regeneration. As IGF- 1 induces 
the growth and differentiation of satellite cells (Musarò et al., 1999), and HGF induces activation of 
cell cycle GAlert (Rodgers et al., 2017), it will be interesting to determine whether Ism1 also activates 
skeletal muscle stem cells. Identifying all physiological mechanisms that distinguish Ism1 from IGF- 1 
will aid in understanding whether other yet unidentified pathways distinct from Akt and FoxO regulate 
proteostasis.

The physiological function of Ism1 in regulating muscle growth is expected given that Ism1 stim-
ulates Akt, but it was somewhat unexpected that the lower muscle protein content and fiber size 
did not lead to a significant loss of muscle mass. Femur length is a basic biometric parameter used 
to assess longitudinal growth. Femur length and total body weights did not differ between WT and 
Ism1- KO mice, suggesting that the decrease in muscle fiber size is likely not due to growth reduction. 
It remains to be determined what replaces protein mass in the muscle of Ism1- KO mice, including 
water, glycogen stores, or lipids, which could be regulated by Ism1. Further studies using larger 
sample sizes are needed to determine whether the effects of Ism1 on muscle proteostasis are specific 
to fiber types and locations. Notably, Ism1 itself is not expressed in muscle cells but only in other cells, 
including adipocytes and immune cells. Circulating levels of human Ism1 using immunoreactive ELISAs 
have been reported to be in the range of 1–50 ng/ml (Jiang et al., 2021; Ruiz- Ojeda et al., 2022), 
consistent with mass spectrometry peptide analysis that estimates a circulating Ism1 concentration 
of 17 ng/ml (Uhlén et al., 2019). The necessary circulating and local Ism1 levels to maintain muscle 
fiber size or prevent fasting- induced muscle loss remain to be determined. It is plausible that Ism1 
levels are altered in response to fasting and feeding, insulin resistance, or aging – conditions associ-
ated with temporary or chronic muscle loss (Laurens et al., 2021; Perry et al., 2016; Roubenoff and 
Castaneda, 2001). As this study was conducted in male mice only, it is unknown whether Ism1 defi-
ciency results in any muscle phenotype in female mice. Further studies are required to test whether 
Ism1 regulates muscle proteostasis in a sex- specific manner. A limitation of this study is that fasting 
but not more severe atrophy conditions were studied. Long- term studies ought to explore whether 
pharmacological administration of Ism1 systemically or locally into the muscle is sufficient to induce 
muscle hypertrophy or prevent muscle loss in more severe models of muscle loss. Nevertheless, as 
aging impairs skeletal muscle protein synthesis and leads to muscle weakness and atrophy, this work 
has implications for multiple conditions, including diabetes- and age- induced muscle atrophy.

Materials and methods
Animal studies
Animal experiments were performed per procedures approved by the Institutional Animal Care and 
Use Committee of the Stanford Animal Care and Use Committee (APLAC) protocol number #32982. 
C57BL/6J mice were purchased from the Jackson Laboratory (#000664). The Ism1- KO mice (C57BL/6J- 
Ism1em1Kajs/J strain #036776, JAX) were generated using the Ism1 floxed allele as described previously 
(Jiang et al., 2021). Unless otherwise stated, mice were maintained on a chow diet (Envigo Teklad 
Global 18% Protein Rodent Diet 2018) and housed in a temperature- controlled (20–22°C) room on a 
12 hr light/dark cycle. All experiments were performed with age- matched male mice housed in groups 
of five unless stated otherwise.

https://doi.org/10.7554/eLife.80014
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Sample preparation for phosphoproteomics analysis
The phosphoproteomics analysis was performed using 3T3- F442A cells. The 3T3- F442A cell line 
is mycoplasma negative and has been authenticated with STR. Cells were cultured in DMEM/F12 
medium with 10% FBS/1% pen/strep until 80–100% confluent. Following a 16 hr starvation in serum- 
free DMEM/F12 medium, cells were treated with PBS, 100 nM Ism1 or 100 nM insulin for 5 min (N = 6 
per treatment group, 10M cells/treatment). Following treatment, the medium was aspirated, and cells 
were washed three times with ice- cold PBS while kept on ice. Then, 1 ml ice- cold PBS supplemented 
with cOmplete Mini Protease Inhibitors (#4693124001, Sigma- Aldrich, St. Louis, MO) and phosSTOP 
phosphatase inhibitors (#4906845001, Sigma- Aldrich) were added to the cells that were immediately 
scraped down, pelleted at 14,000 × g for 10 min followed by snap freezing. Cell pellets were kept at 
–80°C until analysis. Aliquots of the samples were used to verify AKTS473 signaling induction by Ism1 
and insulin by Western blot. For each treatment group, six biological replicates were pooled into 
two technical replicates for the phosphoproteomics analysis. The phosphoproteomics analysis was 
performed at Northwestern University Proteomics core as described previously (Dephoure et  al., 
2013). Briefly, protein extracts were alkylated with iodoacetamide and digested with trypsin at a ratio 
of 1:50 (w/w) trypsin to protein. Tryptic phosphopeptides were enriched by TiO2- immobilized metal 
affinity chromatography, washed with 70% (v/v) EtOH, and equilibrated in 1% NH4OH and three times 
in 1 M glycolic acid in 80% (v/v) acetonitrile, 5% (v/v) trifluoroacetic acid. Peptides were eluted and 
dried in a SpeedVac concentrator. Peptides were resuspended in 3% (v/v) acetonitrile, 0.1% trifluoro-
acetic acid, and twice in 0.1% trifluoroacetic acid. Dried peptides were dissolved in LC- MS/MS solvent 
(3% acetonitrile and 0.1% fluoroacetic acid) prior to LC- MS/MS analysis using a dual- pressure linear 
ion trap (Velos Pro) with a high- field Orbitrap mass analyzer as described previously (Yue et al., 2015; 
Zhou et al., 2008) using MaxQuant to analyze raw spectrometry data (Tyanova et al., 2016).

Phosphoproteomic analysis
Data acquired on the Orbitrap were searched against a UniProt Mus musculus protein database using 
TDPortal as previously described (Fornelli et  al., 2017; Tyanova et  al., 2016). Annotations were 
extracted from UniProtKB, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG). Bioinformatics analyses including hierarchical clustering, pathway analysis, and annotation 
enrichment were performed with R v4.1.1 using the DEP package (Zhang et al., 2018) employing 
filtering of phosphopeptides identified in less than one- third of samples, variance stabilization for 
normalization, and maximal reduction of variation between replicates (Huber et al., 2002) and impu-
tation. Tests for significance were based on limma, which have a higher sensitivity compared to other 
algorithms (van Ooijen et  al., 2018). To achieve a normal distribution, we log2 transformed data 
after normalization. Missing data, which due to matrix effects are common to proteomics data, were 
not missing at random; we therefore tested conclusions using the MinProb, man, and QRILC impu-
tation methods appropriate for left censored data (Lazar et al., 2016). For all analyses, we used the 
MinProb algorithm as it yielded the lowest number of significant phosphopeptides while retaining 
large overlap with the two other methods. Since imputation is non- deterministic, in a minority of cases 
the IR would not be significantly phosphorylated by insulin. To minimize random effects of imputation, 
we performed 200 permutations of imputations and testing for significance followed by calculation 
of the median p- value. Using this algorithm, the IR was consistently found to be phosphorylated by 
insulin versus BSA, and running the algorithm repeatedly only results in changes to conclusions for 
2–3 phosphosites. Pathway enrichment was analyzed using the TopGO package using the classic 
Kolmogorov–Smirnov test (Alexa and Rahnenfuhrer, 2010, topGO: Enrichment Analysis for Gene 
Ontology. R package version 2.48.0). To calculate the significance between proteomic samples with a 
sample size of 2, we used the DEP package. The DEP package employs limma for statistical testing. 
This package uses the t- test except that the standard errors have been moderated across genes, that 
is, shrunk toward a common value, using a simple Bayesian model (van Ooijen et al., 2018). The 
assumptions for limma are that the data are normally distributed and equal variance between repli-
cates. These assumptions were met after normalization and log2 transformation. For the proteomics 
analysis, we calculated the significance based on imputed values. Zeros were more abundant for 
phosphopeptides with an overall low intensity across the samples. Therefore, the choice of imputation 
method was based on data missing not at random (MNAR). We tested three imputation methods and 
continued with the one resulting in the lowest number of significant phosphopeptides retaining a 
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relatively large overlap with other imputation methods. In cases where phosphorylation was displayed 
as zero, the intensity was zero in the raw dataset. We applied semantic similarity analysis between GO 
terms followed by principal coordinates analysis to cluster and visualize enrichments. Unless otherwise 
stated, individual comparisons between conditions across phosphopeptides were performed using 
empirical Bayes statistics followed by adjustment for multiple testing with p- values of *<0.05, **<0.01, 
and ***<0.001  to be considered significant. The minimum normalized intensity across the dataset 
was subtracted from each normalized data point, and phosphorylation was calculated as a fraction of 
the maximum value of all samples for each phosphopeptide. Plotted GO terms have p- values <0.01 
calculated using the classic Kolmogorov–Smirnov test. The distribution diagram of shared and unique 
phosphosites was obtained by retrieving the selected GO pathways for peptides detected in at least 
one sample between treatments. Specific details on the significance of each test are described in the 
figure legends. The raw data for this analysis is presented in Source data 2.

Immunohistochemistry and muscle fiber size quantification
Tissues were snap- frozen in liquid nitrogen- cooled isopentane and cross- sectioned at 10 μm (Brett 
et al., 2020). Sections from muscles were fixed using 4% PFA, permeabilized using 0.2% Triton X- 100 
in PBS, blocked using 1% BSA in PBS, and incubated with anti- laminin antibody (Millipore, clone A5, 
Cat# 05- 206, 1:200) and then with Alexa Fluor secondary antibodies (#A11007, Invitrogen, 1:1000). 
Nuclei were counterstained with Hoechst (#33342, Thermo Fisher, 1:1000). Images were acquired 
using a confocal microscope (Leica TCS SP8) at 63×. For hematoxylin and eosin (H&E) staining, slides 
were stained with hematoxylin for 3 min, washed with water and 95% ethanol, and stained with eosin 
for 30 min. Sections were then washed with ethanol and xylene, and mounted with mounting medium. 
The tissue slides were observed with a Nikon 80i upright light microscope using a ×20 objective lens. 
Digital images were captured with a Nikon Digital Sight DS- Fi1 color camera and NIS- Elements acqui-
sition software. Muscle fiber sizes for the pectoralis, quadriceps, soleus, gastrocnemius, and tibialis 
muscle tissues were determined by measuring cross- sectional area (μm2) using the Image J (version 
1.53e) software. The muscle fibers were manually outlined to obtain their measurement data. Blind 
scoring by two independent investigators of the muscle tissues was done to unbiasedly collect data 
for all categories of mice. The quantification of the average muscle fiber area was performed using 
n = 3 independent muscle tissues from each genotype, with 2–4 photos taken from each muscle 
tissue. Approximately 60–100 myofibers were quantified per image, and average area values were 
calculated for each image. Statistically significant differences were determined using two- way ANOVA.

Indirect calorimetry, food intake, and physiological measurements
Oxygen consumption (VO2), RER, movement, and food intake in 8- to- 12- week- old WT and Ism1- KO 
mice were measured using the environment- controlled home- cage CLAMS system (Columbus Instru-
ments, Columbus, OH) at the Stanford Diabetes Research Center. Mice were maintained on a chow 
diet (Envigo Teklad Global 18% Protein Rodent Diet 2018) and housed at 20–22°C in the cages for 
24 hr prior to the recording. Energy expenditure calculations were not normalized for body weight. 
RER and locomotion were analyzed using ANOVA. All other calorimetry measurements in mice were 
analyzed using ANCOVA using the CalR version 1.3 without the remove outliers feature (Mina et al., 
2018). The two- paw grip strength was measured on a grid with a grip meter. The mice were trained to 
grasp a horizontal bar while being pulled by their tail. The force (expressed in Newton) was recorded 
by a sensor. Three trials were combined for analysis.

Femur length measurement
Both left and right femurs from each mouse were carefully dissected, and the length between the 
distal and proximal ends of the bone was measured with a ruler. The average value of the left and 
right femurs of each individual mouse was used for data analysis. Statistical significance was calculated 
using a two- tailed Student’s t- test.

Single-cell RNA sequencing of skeletal muscle in mice
Single- cell RNA sequencing data was reanalyzed from a previously published dataset performed on 
single- cell suspension from murine tibialis anterior skeletal muscles (Baht et al., 2020). Briefly, tibialis 
anterior muscles from three injured mice were pooled as well as three uninjured mice to generate 
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two samples used for scRNA- Seq. Three thousand single cells from each of the two samples were 
barcoded and cDNA generated using 10X Genomics Chromium Drop- seq platform and sequencing 
on Illumina 2500 platform. 10X Genomics Cell Ranger software was used to demultiplex and align 
reads. Seurat (V4.2) package was used to perform quality control, sample normalization, and clus-
tering for cell type identification. Downstream analyses included gene analysis of the genes of inter-
ests associated with cell clusters.

Expression and purification of recombinant proteins
The Ism1 proteins were generated by transient transfection of mouse Ism1 with C- terminal Myc- 6X- his 
tag DNA plasmids Addgene (#173046) into Expi293F cells. The Expi293F cell line is mycoplasma 
negative and has been authenticated with STR. Recombinant proteins were produced in mammalian 
Expi293F cells using large- scale transient DNA transfection and purified using Cobalt columns and 
buffer exchanged to PBS. Protein purity and integrity were assessed with SDS- PAGE, Superdex200 
size- exclusion column and endotoxin assay. Every protein batch produced was tested for bioactivity 
by measuring the induction of pAKTS473 signaling in 3T3- F442A cells as described previously (Jiang 
et  al., 2021). All proteins were aliquoted and stored at –80°C and not used for more than three 
freeze- thaws.

Culture and differentiation of C2C12 cells
C2C12 cells (#CRL- 1772, ATCC) were cultured in DMEM with 10% FBS. The C2C12 cell line is myco-
plasma negative and has been authenticated with STR. Cells were passaged every 2 days and were 
not allowed to reach more than 70% confluency. C2C12 cells were used in the state of myotubes or 
myoblasts as indicated in figure legends. To differentiate C2C12 cells from myoblasts to myotubes, 
cells were cultured in differentiation medium (Risson et al., 2009; Sandri et al., 2004). Cells with 
passage numbers 6–11 were used for all experiments.

In vivo and in vitro protein synthesis
In vivo protein synthesis was measured by incorporation of [35S]-methionine into proteins isolated 
from skeletal muscle in mice. Briefly, mice fasted for 1 hr were i.p. injected with 2.5 μCi/g [35S]-me-
thionine diluted in saline. Then, 2 hr after injection, the quadriceps muscles were removed, weighed, 
and snap- frozen in liquid nitrogen. The tissues were homogenized using a hand- held homogenizer 
in RIPA buffer containing protease inhibitor cocktail (Roche) and centrifuged at 4°C to remove cell 
debris. Protein concentration in the supernatant was determined by BCA assay (Thermo Fisher Scien-
tific, Waltham, MA), and total protein content was calculated by multiplying the protein concentration 
by the supernatant volume. Proteins were extracted using TCA precipitation and the radioactivity 
was counted on a scintillation counter. Protein synthesis in C2C12 myotubes was measured by incor-
poration of [35S]-methionine into proteins using a modified protocol developed for skeletal myotubes 
(Hong- Brown et  al., 2007; Kazi and Lang, 2010; Méchin et  al., 2007) as described previously 
(Schmidt et al., 2009). For [35S]-methionine incorporation, C2C12 cells were treated with BSA, recom-
binant Ism1 or Igf1 with the addition of 0.5 μCi [35S]-methionine (#NEG009L005MC, PerkinElmer, 
Waltham, MA) for 48 hr. For [35S]-methionine incorporation in the presence or absence of inhibitors, 
C2C12 cells were treated with DMSO or 100 nM rapamycin for 2 hr, followed by treatments with 
BSA, recombinant Ism1 or Igf1 for 1 hr. Subsequently, 0.5 μCi [35S]-methionine (#NEG009L005MC, 
PerkinElmer) was added for another 1 hr. To stop the incubation, cells were washed in ice- cold PBS 
three times. Proteins were extracted using TCA precipitation, and the radioactivity was counted on 
a scintillation counter.

Gene expression analysis
Total RNA from cultured cells or tissues was isolated using TRIzol (Thermo Fisher Scientific) and RNeasy 
mini kits (QIAGEN, Hilden, Germany). RNA was reverse transcribed using the ABI high- capacity cDNA 
synthesis kit. For q- RT- pcr analysis, cDNA, primers, and SYBR- green fluorescent dye (Bimake, Houston, 
TX) were used. Relative mRNA expression was determined by normalization to cyclophilin levels using 
the ΔΔCt method.
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Western blots and molecular analyses
For Western blotting, homogenized tissues or whole- cell lysates were lysed in RIPA buffer containing 
protease inhibitor cocktail (Roche, Basel, Switzerland) and phosphatase inhibitor cocktail (Roche), 
prepared in 4X LDS Sample Buffer (Invitrogen, Waltham, MA) and separated by SDS- PAGE and trans-
ferred to Immobilon 0.45 µm membranes (Millipore, Burlington, MA). The cytoplasmic fraction was 
isolated using a Nuclear Cytoplasmic Extraction Reagent kit (78833, Pierce, Rockford, IL) according to 
the manufacturer’s instructions. The antibodies used are as follows: rabbit monoclonal anti- p- AKT1/2 
(Ser473) (#4060), AKT1 (pan) (#4691 CST), rabbit monoclonal anti- p- mTOR (Ser2448) (D9C2), rabbit 
polyclonal anti- p- S6 ribosomal protein (Ser235/236) (Cat# 2211 CST), and ribosomal protein S6 (#2217 
CST) from Cell Signaling. Mouse monoclonal anti- beta actin AC- 15 HRP (#AB49900) and OXPHOS 
rodent antibody (#ab110413) were from Abcam. Donkey anti- rabbit IgG (HRP) (#NA934) and sheep 
anti- mouse IgG (HRP) (#NA931) were from Cytiva (GE). Recombinant Igf1 (#791- MG- 050) was from 
R&D Systems. The mammalian expression plasmid for Ism1 with C- terminal myc- 6xhis tag plasmid for 
recombinant Ism1 protein production was from Addgene (#173046). The raw Western blot images are 
presented in Source data 1.

Statistical analyses
Values for N represent biological replicates for cultured cell experiments or individual animals for in 
vivo experiments. Group- housed mice within 8 weeks of age were used for comparative studies. Mice 
were randomly assigned to treatment groups for in vivo studies. Significant differences between the 
two groups (*p<0.05, **p<0.01, ***p<0.001) were evaluated using a two- tailed, unpaired Student’s 
t- test as the sample groups displayed a normal distribution and comparable variance (Prism9 soft-
ware; GraphPad). Two- way ANOVA with repeated measures was used for body weight and repeated 
measurements (*p<0.05, **p<0.01, ***p<0.001). All data are presented as the standard error of mean 
(SEM) or as described in the figure legends. Specific details for N values are noted in each figure 
legend.
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PXD031719 (JPST001484) (Okuda et al., 2017). The code for all analysis related to phosphoproteomic 
data is available at https://github.com/Svensson-Lab/Isthmin-1 (copy archived at swh:1:rev:8d60d65f-
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are included in the manuscript and supporting files.
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain, strain 
background 
(Mus musculus) C57BL/6J Jackson Laboratory

Cat# 000664; RRID:IMSR_
JAX:000664

Strain, strain 
background (M. 
musculus)

C57BL/6J Ism1 whole- body 
knockout Jiang et al., 2021 Cat# 036776

Generated from C57BL/6J- 
Ism1em1Kajs/J

Cell line (M. 
musculus) C2C12 ATCC

CRL- 1772; 
RRID:CVCL_0188

Cell line (M. 
musculus) 3T3- F442A MilliporeSigma

Cat# 00070654; 
RRID:CVCL_0122

Cell line (Homo 
sapiens) Expi293F Thermo Fisher

Cat#: A14527; 
RRID:CVCL_D615

Antibody
Anti- p- AKT (Ser473) (rabbit 
monoclonal)

Cell Signaling 
Technology

Cat# 4060; 
RRID:AB_2315049 (1:2000)

Antibody
Anti- Akt (pan) (rabbit 
monoclonal)

Cell Signaling 
Technology

Cat# 4691; 
RRID:AB_915783 (1:1000)

Antibody

Anti- p- S6 ribosomal 
protein (Ser235/236) (rabbit 
polyclonal)

Cell Signaling 
Technology

Cat# 2211; 
RRID:AB_331679 (1:1000)

Antibody
Anti- S6 ribosomal protein 
(rabbit monoclonal)

Cell Signaling 
Technology

Cat# 2217, 
RRID:AB_331355 (1:1000)

Antibody
Anti- p- mTOR (Ser2448) (rabbit 
monoclonal)

Cell Signaling 
Technology

Cat# 5536; 
RRID:AB_10691552 (1:1000)

Antibody
Anti- mTOR (rabbit 
monoclonal)

Cell Signaling 
Technology

Cat# 2983; 
RRID:AB_2105622 (1:1000)

Antibody
Anti- beta actin [AC- 15] (HRP) 
(mouse monoclonal) Abcam

Cat# AB49900; 
RRID:AB_867494 (1:25,000)

Antibody

Antibody cocktail:
OXPHOS Rodent WB 
Antibody Cocktail (mouse 
monoclonal) Thermo Fisher

Cat# 45- 8099; 
RRID:AB_2533835 (1:1000)

Antibody
Anti- phospho- IRS- 1 (Ser307) 
antibody (rabbit polyclonal)

Cell Signaling 
Technology

Cat# 2381; 
RRID:AB_330342 (1:1000)

Antibody
Anti- IRS- 1 antibody (rabbit 
monoclonal)

Cell Signaling 
Technology

Cat# 3407; 
RRID:AB_2127860 (1:1000)

Antibody
Anti- alpha tubulin antibody 
(rabbit polyclonal) Abcam

Cat# ab4074; 
RRID:AB_2288001 (1:1000)

Antibody

Anti- p27 Kip1 antibody 
(SX53G8.5) (mouse 
monoclonal)

Cell Signaling 
Technology

Cat# 3698; 
RRID:AB_2077832 (1:1000)

Antibody
IgG HRP linked Ab (rabbit 
polyclonal) MilliporeSigma

Cat# NA934; 
RRID:AB_2722659 (1:1000)

Antibody
IgG HRP linked Ab (mouse 
monoclonal) MilliporeSigma

Cat# NA931; 
RRID:AB_772210 (1:1000)

Antibody
Anti- laminin B2 antibody, 
clone A5 (rat monoclonal) MilliporeSigma

Cat# 05- 206; 
RRID:AB_309655 (1:200)

Antibody

Anti- rat IgG secondary 
antibody, Alexa Fluor 594 
(goat polyclonal)

Thermo Fisher 
Scientific

Cat# A11007; 
RRID:AB_10561522 (1:1000)
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence- based 
reagent Myh1_F This paper PCR primer  GCGA  ATCG  AGGC  TCAG  AACA A

Sequence- based 
reagent Myh1_R This paper PCR primer  GTAG  TTCC  GCCT  TCGG  TCTT G

Sequence- based 
reagent Myh2_F This paper PCR primer

 AAGT  GACT  GTGA  AAAC  AGAA  
GCA

Sequence- based 
reagent Myh2_R This paper PCR primer

 GCAG  CCAT  TTGT  AAGG  GTTG  
AC

Sequence- based 
reagent Myh4_F This paper PCR primer

 TTGA  AAAG  ACGA  AGCA  GCGA 
C

Sequence- based 
reagent Myh4_R This paper PCR primer  AGAG  AGCG  GGAC  TCCT  TCTG 

Sequence- based 
reagent Myh7_F This paper PCR primer

 ACTG  TCAA  CACT  AAGA  GGGT  
CA

Sequence- based 
reagent Myh7_R This paper PCR primer

 TTGG  ATGA  TTTG  ATCT  TCCA  
GGG

Sequence- based 
reagent Ppargc1a_F This paper PCR primer

 TATG  GAGT  GACA  TAGA  GTGT  
GCT

Sequence- based 
reagent Ppargc1a_R This paper PCR primer

 CCAC  TTCA  ATCC  ACCC  AGAA  
AG

Sequence- based 
reagent Foxo1_F This paper PCR primer CCCA GGCC GGAG TTTA ACC

Sequence- based 
reagent Foxo1_R This paper PCR primer  GTTG  CTCA  TAAA  GTCG  GTGC T

Sequence- based 
reagent Foxo3_F This paper PCR primer  CTGG  GGGA  ACCT  GTCC  TATG 

Sequence- based 
reagent Foxo3_R This paper PCR primer  TCAT  TCTG  AACG  CGCA  TGAA G

Sequence- based 
reagent Foxo4_F This paper PCR primer  GGTG  CCCT  ACTT  CAAG  GACA 

Sequence- based 
reagent Foxo4_R This paper PCR primer  AGCT  TGCT  GCTG  CTAT  CCAT 

Sequence- based 
reagent Cdkn1b_F This paper PCR primer

 TCAA  ACGT  GAGA  GTGT  CTAA  
CG

Sequence- based 
reagent Cdkn1b_R This paper PCR primer  CCGG  GCCG  AAGA  GATT  TCTG 

Sequence- based 
reagent Eif4ebp1_F This paper PCR primer GGGG ACTA CAGC ACCA CTC

Sequence- based 
reagent Eif4ebp1_R This paper PCR primer CTCA TCGC TGGT AGGG CTA

Sequence- based 
reagent Ctsl_F This paper PCR primer

 TATC  CCTC  AGCA  AGAG  AAAG  
CCCT 

Sequence- based 
reagent Ctsl_R This paper PCR primer

 TCCT  TCAT  AGCC  ATAG  CCCA  
CCAA 

Sequence- based 
reagent Fbxo30_F This paper PCR primer  TCGT  GGAA  TGGT  AATC  TTGC 

Sequence- based 
reagent Fbxo30_R This paper PCR primer  CCTC  CCGT  TTCT  CTAT  CACG 

Sequence- based 
reagent UbC_F This paper PCR primer

 CGTC  GAGC  CCAG  TGTT  ACCA  
CC
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence- based 
reagent UbC_R This paper PCR primer

 ACCT  CCCC  CATC  ACAC  CCAA  
GA

Peptide, 
recombinant 
protein

Mouse recombinant Ism1- his 
protein

This paper and 
PMID:34348115 N/A

Peptide, 
recombinant 
protein

Recombinant mouse IGF- I/
IGF- 1 protein R&D Systems Cat# 791- MG- 050

Recombinant 
DNA reagent

Mouse Ism1 with C- terminal 
Myc- 6X- his tag

Addgene and 
PMID:34348115

Cat# 173046; 
RRID:Addgene_173046

Commercial 
assay or kit Pierce BCA Protein Assay Kit

Thermo Fisher 
Scientific Cat# 23225

Commercial 
assay or kit

Nuclear Cytoplasmic 
Extraction Reagent kit Pierce Cat# 78833

Chemical 
compound, drug Bovine serum albumin MilliporeSigma

Cat# A7906; CAS:9048- 
46- 8

Chemical 
compound, drug Rapamycin

Cell Signaling 
Technology Cat# 9904

Chemical 
compound, drug

2× SYBR Green qPCR master 
mix Bimake Cat# B21203

Chemical 
compound, drug Trizol Thermo Fisher Cat# 15- 596- 026

Chemical 
compound, drug

High- capacity cDNA reverse 
transcription kit Biosystems Cat# 4368814

Chemical 
compound, drug DMEM/F12 + GlutaMAX Thermo Fisher Cat# 10565- 042

Chemical 
compound, drug DMEM high glucose Sigma Cat# D6429

Chemical 
compound, drug Trypsin/EDTA 0.25% Gibco Cat# 25200- 056

Chemical 
compound, drug Penicillin/streptomycin Gibco Cat# 15140- 122

Chemical 
compound, drug PBS Gibco Cat# 10010- 023

Chemical 
compound, drug Trypan Blue Stain (0.4%) Invitrogen Cat# T10282

Chemical 
compound, drug Hoechst Thermo Fisher Cat# 33342

Chemical 
compound, drug

Immobilon Crescendo 
Western HRP substrate MilliporeSigma Catt# WBLUR0500

Chemical 
compound, drug

SuperSignal West Femto HRP 
substrate Thermo Scientific Cat# 34095

Chemical 
compound, drug

SeeBlue Plus2 prestained 
standard Invitrogen Cat# LC5925

Chemical 
compound, drug RIPA buffer (10×) Cell Signaling Cat# 9806S

Chemical 
compound, drug

NuPAGE LDS sample buffer 
(4×) Invitrogen Cat# NP0007

Chemical 
compound, drug 2- Mercaptoethanol Fisher Chemical Cat# O3446I
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Chemical 
compound, drug PhosSTOP Roche Cat# 04906837001

Chemical 
compound, drug cOmplete Tablets Roche Cat# 04693124001

Chemical 
compound, drug L-[35S]-Methionine PerkinElmer NEG009L005MC

Software, 
algorithm ImageJ

Schneider et al., 
2012

https://imagej.nih.gov/ij/; 
RRID:SCR_003070

Software, 
algorithm GraphPad Prism version 8.0

GraphPad 
Software, San 
Diego, CA

http://www.graphpad. 
com/; RRID:SCR_002798

Software, 
algorithm Adobe Illustrator Adobe Systems RRID:SCR_010279

Software, 
algorithm RStudio

https://rstudio. 
com/ RRID:SCR_000432
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