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Statistical thermodynamics of strain hardening in polycrystalline solids

J. S. Langer
Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

(Received 26 June 2015; published 18 September 2015)

This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for
dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718
(2010)]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee
and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al.
A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the
strength of polycrystalline materials.
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I. INTRODUCTION

In an earlier publication [1], Bouchbinder, Lookman, and
Langer (LBL) proposed a statistical-thermodynamic frame-
work for studying dislocation-mediated plasticity in polycrys-
talline solids. Our purpose was to replace, or to find a firmer
basis for, the largely phenomenological equations of motion
that have been used for many decades in attempts to describe
the dynamic behavior of these materials. We succeeded in
computing the measured flow stress for Cu over 15 decades
of strain rate, and for temperatures between room temperature
and about one-third of the melting temperature, using just a
few plausible, physics-based parameters. We also computed
stress-strain, i.e., strain-hardening, curves as functions of
strain rate and temperature. The success of these efforts has
given some credibility to our first-principles reformulation of
dislocation theory. To test its limits of validity, we need next
to look at specific phenomena and, more generally, to make
closer contact with existing knowledge in this field.

The LBL analysis is based on fundamental principles of
statistical physics that, as pointed out in the introductory
sections of that paper, are almost completely ignored in
conventional dislocation theories. It seems obvious, however,
that complex behaviors involving chaotic motions of very
large numbers of entangled dislocations can be described
only in statistical terms. The equations of motion for these
systems must necessarily be consistent with the laws of
thermodynamics, especially the requirements of energy con-
servation and nondecreasing entropy. Thus, these equations
must describe the flow of energy and entropy through driven,
nonequilibrium systems. In LBL, they are expressed in terms
of two dynamical variables: the density of dislocations ρ and
an effective temperature χ that describes the system’s state
of configurational disorder. These two variables determine
responses to external driving forces and carry the memory
of earlier deformations.

At the next level of specificity, the LBL analysis assumes
that plastic deformation in polycrystalline solids is caused
by the motions of line defects, i.e., dislocations, and that
these motions are determined primarily by the rates at which
dislocation lines become unpinned from each other under the
influence of elastic stresses and thermal fluctuations. LBL
argued that pinning times are generally very much longer than
the times taken by dislocations to move from one pinning site
to another and therefore neglected viscous forces affecting

the motions of unpinned dislocations. Moreover, LBL paid
no attention to details such as the distinction between “edge”
and “screw” dislocations, or “cross-slip,” or “stacking faults,”
or the like. Instead, it was assumed that such details would
become relevant if and when it was necessary to make
first-principles estimates of quantities such as rate factors that
appear in the equations of motion for ρ and χ . The latter details
do not appear in this paper either. However, “grain boundaries”
appear in important ways.

In what follows, I use the LBL statistical-thermodynamic
framework to look at two long-standing puzzles in solid
mechanics, neither of which has proved amenable to the
conventional phenomenological analyses. First, I discuss the
abrupt upturn in stress that has been observed in Cu for small
values of the strain but at large values of the strain rate [2].
Second, I discuss what I believe is a related observation
that strain-hardening curves for Cu sharpen abruptly when
the grain size becomes sufficiently small [3]. Understanding
these phenomena illustrates how specific mechanisms can
be incorporated into the LBL theory where necessary. It
also illustrates how certain aspects of the thermodynamic
theory—not fully developed in LBL—become relevant to
practical applications. Therefore, in what follows, I start by
reviewing the thermodynamic basis of the LBL analysis.

II. THERMODYNAMIC EQUATIONS OF MOTION

This thermodynamic analysis has been discussed in detail in
earlier publications devoted primarily to theories of plasticity
in amorphous materials. For example, see Refs. [4,5]. For
both the amorphous and polycrystalline cases, the analy-
sis starts by dividing the system into configurational and
kinetic-vibrational subsystems. The configurational degrees
of freedom describe the relatively slow, i.e., infrequent,
atomic rearrangements that are associated with irreversible
plastic deformation; the kinetic-vibrational degrees of freedom
describe the fast thermal and vibrational motions of the atoms.

For the polycrystalline case, it is useful to think of a slab
of material lying in the plane of an applied shear stress. The
dislocations oriented perpendicular to this plane are driven by
the stress to move through a “forest” of dislocations lying
primarily in the plane, thus producing shear flow. Let the
macroscopic area of this slab be A, and let its thickness be
a characteristic dislocation length, say, L.
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The total internal energy of this system is

Utotal = UC(SC,ρ) + UR(SR). (2.1)

Here UC(SC,ρ) is the configurational energy of a polycrys-
talline material containing dislocations, grain boundaries,
and other structural irregularities. ρ is the areal density of
dislocations or, alternatively, the total length of dislocation
lines per unit volume. SC(UC,ρ) is the entropy of the
configurational subsystem computed by counting the number
of configurations at fixed values of UC and ρ. UR(SR) is the
kinetic-vibrational energy of this system, whose entropy is
SR . The kinetic-vibrational subsystem serves as a thermal
reservoir. Its temperature, kBT = θ = ∂UR/∂SR , is assumed
to be fixed. The effective temperature of the configurational
subsystem,

χ =
(

∂UC

∂SC

)
ρ

, (2.2)

plays a central role in this analysis.
Assume that we can write

UC(SC,ρ) = U0(ρ) + U1(S1) (2.3)

and, correspondingly,

SC(UC,ρ) = S0(ρ) + S1(U1), (2.4)

where U1 and S1 are, respectively, the energy and the entropy
of all the configurational degrees of freedom other than those
associated with the dislocations.

U0(ρ) is the dislocation energy which, for present purposes,
I write simply in the form

U0(ρ) = Aρ eD; eD = LγD, (2.5)

where eD is the energy per dislocation and γD is the dislocation
energy per unit length. An implicit assumption here is that
dislocations of opposite signs are present in equal numbers,
thus minimizing the elastic energy. I also assume that the
residual elastic energy, of the order of ρ ln(ρ), is included
approximately in eD , but is too slowly varying a function of ρ

to be needed for present purposes. It may eventually be needed
for studying spatially varying dislocation patterns. Finally, in
Eq. (2.4), the entropy of the dislocations, S0(ρ), can be written
approximately in the form

S0(ρ) ≈ −Aρ ln(a2 ρ) + Aρ for a2 ρ � 1, (2.6)

where a is a length of the order of the atomic spacing.
The usual thermodynamic analysis for this system goes as

follows. The first law is

U̇total = V σ ε̇pl = U̇C + U̇R

= χ ṠC +
(

∂UC

∂ρ

)
SC

ρ̇ + θ ṠR, (2.7)

where V = LA is the volume, σ is the shear stress, and ε̇pl

is the plastic shear rate. (Variations of the reversible elastic
energy cancel out of this equation. For example, see Ref. [5].)
Use Eq. (2.7) to evaluate ṠC , and write the second law in the
form

ṠC + ṠR = 1

χ
W +

(
1 − θ

χ

)
ṠR � 0, (2.8)

where

W = V σ ε̇pl −
(

∂UC

∂ρ

)
SC

ρ̇ (2.9)

is the difference between the power delivered to the system and
the rate at which energy is stored in the form of dislocations.

Equation (2.8) is the sum of independent inequalities that,
according to an argument originally due to Coleman and
Noll [6], must be satified separately. Non-negativity of the
term proportional to ṠR implies that the heat flux Q, defined
here to be positive when heat is flowing (as expected) from the
configurational subsystem into the thermal reservoir, is

Q = θṠR = K (χ − θ ), (2.10)

where K is a non-negative thermal transport coefficient.
For present purposes, assume that the mechanical power,

V σ ε̇pl, is always positive. Therefore, the remaining inequality
is (

∂UC

∂ρ

)
SC

ρ̇ � 0. (2.11)

Use Eqs. (2.3) and (2.4) to write UC = U0 + U1(SC − S0),
so that (

∂UC

∂ρ

)
SC

= ∂U0

∂ρ
− χ

∂S0

∂ρ
= ∂F

∂ρ
;

F (ρ) ≡ U0(ρ) − χ S0(ρ). (2.12)

Equation (2.11) is satisfied by writing an equation of motion
for ρ in the form

ρ̇ = −M ∂F

∂ρ
, (2.13)

whereM is a non-negative rate factor. Next note that Eqs. (2.5)
and (2.6) imply that ∂F/∂ρ = 0 when ρ = ρss(χ ), where

ρss(χ ) = 1

a2
e−eD/χ . (2.14)

It is simplest to rewrite Eq. (2.13) in the linearized form

ρ̇ = M̃
[

1 − ρ

ρss(χ )

]
. (2.15)

The factor M̃ must be proportional to the power per unit
volume σ ε̇pl, which is the only scalar rate in the problem. It
has the dimensions of energy per unit volume per unit time.
The left-hand side of Eq. (2.15) has the dimensions of length
(of dislocations) per unit volume per unit time. Thus, writing
this equation in the form

ρ̇ = κρ

σ ε̇pl

γD

[
1 − ρ

ρss(χ )

]
(2.16)

is dimensionally correct and identifies the dimensionless factor
κρ as the fraction of the input power that is converted
into dislocations. The second term on the right-hand side
of Eq. (2.16) then can be interpreted as the rate at which
dislocations are annihilated as required by the second law.

Having derived an equation of motion for ρ, return now to
Eq. (2.7) and rewrite this first-law equation in a form suitable
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for deriving an equation of motion for χ :

χ ṠC = V σ ε̇pl −
(

∂UC

∂ρ

)
SC

ρ̇ − Q. (2.17)

Use the decompositions in Eqs. (2.3) and (2.4) to write the
left-hand side as

χ ṠC = χ
∂S1

∂χ
χ̇ + χ

∂S0

∂ρ
ρ̇ ≡ V ceff χ̇ + χ

∂S0

∂ρ
ρ̇, (2.18)

which defines the effective specific heat ceff . Next, make a
similar expansion of the right-hand side of Eq. (2.17), and
note that the term proportional to ∂S0/∂ρ cancels out, leaving

V ceff χ̇ = V σ ε̇pl − ∂U0

∂ρ
ρ̇ − Q. (2.19)

In most shear-transformation-zone (STZ) papers on amor-
phous plasticity, e.g., Refs. [4,5], my colleagues and I have
neglected the analog of the term proportional to ρ̇ on the
right-hand side of Eq. (2.19), because the energy content of
STZ’s is negligible in comparison to that of all the other
configurational degrees of freedom. Here, however, it appears
that a non-negligible fraction of the configurational energy
may be stored in the dislocations.

As argued, for example, in Ref. [7] and more recently in
Ref. [8], the steady-state value of the effective temperature,
say, χss, must be a function of only the strain rate ε̇. (In steady
state, the total strain rate ε̇ is the same as the plastic strain rate
ε̇pl.) In other words, the steady state of disorder can depend
only on the rate at which the system is being “stirred” by
shearing. Moreover, we argued that χss must go to a non-
negative constant, say, χ0, in the limit of vanishing ε̇. If ε̇

is slower than internal relaxation rates, then the steady state
of disorder is determined only by the cumulative number of
atomic rearrangements that are driven by the external forces
and not by the rate at which they occur. In LBL, we pointed out
that the rapid rise in the stress seen at strain rates comparable
to atomic vibration frequencies can be interpreted as a rapid
rise in χ when the system is being driven too fast for it to
relax between rearrangement events. In the situations to be
considered here, however, the strain rates are not so large, and
therefore I consider only cases where χss = χ0.

To use this observation in Eq. (2.19), note that χ is
comparable to the mesoscopically large energy eD , so that
χ � θ and Q ≈ K χ in Eq. (2.10). The requirement that
χss = χ0 tells us that K = V σ ε̇pl/χ0, so that, with Eq. (2.5),
the equation of motion for χ becomes

ceff χ̇ = σ ε̇pl

[
1 − χ

χ0

]
− γD ρ̇. (2.20)

In summary, the equations of motion for ρ and χ ,
Eqs. (2.16) and (2.20), respectively, have been derived here
using only basic principles of statistical thermodynamics and
dimensional arguments. Equation (2.16) describes the flow of
energy through the system of dislocations, as constrained by
the second law of thermodynamics. Equation (2.20) describes
the flow of entropy; it is a restatement of the first law.

III. DYNAMICS

To complete this theory, we need relationships between the
plastic strain rate ε̇pl, the total strain rate ε̇, and the shear stress
σ . Start with the assumption that the elastic and plastic strain
rates are simply additive quantities, so that

σ̇ = μ (ε̇ − ε̇pl), (3.1)

where μ is the shear modulus. The expression for the plastic
strain rate is based on the Orowan relation:

ε̇pl = ρ b v, (3.2)

where b is the magnitude of the Burgers vector and v is the
average speed at which dislocations move across the system.
That is,

v = 


τP (σ )
, (3.3)

where 
 = 1/
√

ρ is the average spacing between dislocations
and 1/τP (σ ) is the depinning rate. As in LBL, assume that
depinning is a thermally activated process with a stress-
dependent barrier of the form

UP (σ ) = kBTP e−σ/σT . (3.4)

Here the the height of the unstressed barrier is defined to be
kBTP , and the characteristic depinning stress σT is the Taylor
stress,

σT = μT b
√

ρ, (3.5)

where μT is a reduced shear modulus of the order of μ/30.
There is nothing sacrosanct about the exponential function
in Eq. (3.4). A linear approximation would be satisfactory,
because the ratio σ/σT turns out to vary by not much more
than a factor of two in the experiments to be discussed here.

With these ingredients, the depinning rate is

1

τP (σ )
= 1

τ0
fP (σ ), (3.6)

where

fP (σ ) = exp

(
− TP

T
e−σ/σT

)
, (3.7)

and τ0 is an atomic time scale, set equal to 10−12 s throughout
this analysis. It is convenient to use τ0 to define a dimensionless
plastic strain rate, which, according to Eq. (3.2), is

q(σ,ρ̃) ≡ τ0 ε̇pl =
√

ρ̃ [fP (σ ) − fP (−σ )], (3.8)

where ρ̃ ≡ b2ρ. Antisymmetry on the right-hand side of this
equation is formally required; but the second term in the
square brackets is negligible for positive stresses in or above
the strain-hardening regime. Dropping that term, and setting
σT = μT

√
ρ̃, we can solve Eq. (3.8) explicitly for the stress

as a function of the strain rate:

σ

σT

= ln

(
TP

T

)
− ln

[
ln

(√
ρ̃

q

)]
≡ ν(T ,ρ̃,q). (3.9)

It is useful to nondimensionalize these equations and to
replace the time by the strain ε as the independent variable,
assuming a constant total strain rate ε̇. Let a = b in the
normalization of ρ given in Eq. (2.6) and in the definition of
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ρ̃ in Eq. (3.8). (As shown in LBL, this is equivalent to making
a small change in the time scale τ0.) Define χ̃ ≡ χ/eD . Also,
let τ0 ε̇ ≡ q0. Then, Eqs. (3.1), (2.16), and (2.20) become,
respectively,

dσ

dε
= μ

[
1 − q(σ,ρ̃)

q0

]
, (3.10)

dρ̃

dε
= κρb

2σ

γD

q(σ,ρ̃)

q0

(
1 − ρ̃

e−1/χ̃

)
, (3.11)

dχ̃

dε
= σ

ceffeD

q(σ,ρ̃)

q0

[
1 − χ̃

χ̃0
− κρ

(
1 − ρ̃

e−1/χ̃

)]
.

(3.12)

Finally, before looking at applications of this theory, note
that we can simplify it by assuming that we are interested only
in the plastic behavior during and after the onset of hardening.
Because μ is substantially larger than other stress scales in
the problem, Eq. (3.10) is a stiff differential equation that
is accurately solved by writing q(σ,ρ̃) ∼= q0. Thus, Eq. (3.9)
becomes an expression for the stress:

σ = μT

√
ρ̃ ν(T ,ρ̃,q0). (3.13)

Equations (3.11) and (3.12) become

dρ̃

dε
= κρ

μT b2

γD

√
ρ̃ ν(T ,ρ̃,q0)

(
1 − ρ̃

e−1/χ̃

)
(3.14)

and

dχ̃

dε
= κχ

√
ρ̃ ν(T ,ρ̃,q0)

[
1 − χ̃

χ̃0
− κρ

(
1 − ρ̃

e−1/χ̃

)]
,

(3.15)

where κχ ≡ μT /ceffeD is a dimensionless number very
roughly of the order of unity.

IV. APPLICATIONS

A. Onset of strain hardening

Strain hardening is the transient approach to steady-state
flow. The physical mechanisms that determine this transient
are contained in the prefactors on the right-hand sides
of Eqs. (3.14) and (3.15), especially in the dimensionless
conversion factor κρ . The steady-state behavior is trivially
independent of these prefactors. As shown in LBL, using ρ̃ =
e−1/χ̃0 —the steady-state solution of Eq. (3.14)—in Eq. (3.13)
produces temperature-dependent curves of stress versus strain
rate that are in excellent agreement with experiment. That
agreement is especially striking when χ̃0 becomes a function
of the strain rate in the strong-shock regime.

However, it is not entirely trivial to disentangle transient
from steady-state behaviors in evaluating κρ . To see this, look
again at the onset of hardening as discussed in LBL. Near
this onset, the dislocation density is relatively small, so that
the second term in the parentheses on the right-hand sides of
Eqs. (3.11) and (3.14) is negligible. It seems plausible that
the stress in this regime is simply the bare Taylor stress, i.e.,
μ multiplied by the strain required to move a dislocation a
small fraction of an atomic spacing away from a pinning point,
unmodified by the thermal effects implicit in ν(T ,ρ̃,q0). If this

conjecture is correct, then Eq. (3.11) becomes
(

dρ̃

dε

)
onset

∼= κρb
2σT

γD

= κρb
2 μT

γD

√
ρ̃. (4.1)

With no loss of generality, let γD = μb′2, where b′ is a
microscopic length, comparable to or perhaps smaller than
the Burgers vector. Then

1

μ

(
dσ

dε

)
onset

∼= 1

μ

(
dσT

dε

)
onset

∼= κρ μ2
T b2

2 μ2 b′2 , (4.2)

independent of ρ̃. According to Kocks and Mecking [9], the
hardening rate on the left-hand side of this equation is often
found experimentally to be about 0.05. If μT

∼= (b′/b) μ, i.e.,
if the length b′ associated with the energy per unit length of
a dislocation is the same as the displacement necessary to
dislodge a dislocation from a pinning site in the formula for
σT , then κρ is about 0.1. In any case, if κρ is a constant of
order unity or less, then the predicted value of the hardening
rate in Eq. (4.2) is independent of strain rate and temperature,
as observed.

Equation (4.2) is not exactly what emerges when we use the
full versions of Eqs. (3.13) and (3.14) to compute the onset rate.
Instead, there appears an extra factor ν(T ,ρ̃,q0)2 multiplying
κρ on the right-hand side of Eq. (4.2). Thus, as in LBL, I
conclude that κρ is proportional to ν(T ,ρ̃,q0)−2 in Eq. (3.14).
It seems to me that the physics leading to Eq. (4.2) is basically
correct, as was the physics leading to the full equations in
which κρ was an undetermined positive parameter.

B. The rate-hardening anomaly

Materials scientists have been puzzled for decades by the
sudden onset of rate hardening that is seen at strain rates
of the order of 104/s, when stresses are measured at small
strains. The phenomenon is illustrated in Fig. 1, where the
data points (taken from Refs. [2] and [10]) show stresses
measured in room-temperature copper at four different strains,
ε = 0.05, 0.10, 0.15, and 0.20, as functions of strain rate.

This behavior cannot be interpreted as an approach to some
kind of singularity, as sometimes has been assumed in the
literature. We know with fair certainty that the rate-hardening
anomaly disappears if measured at larger strains, where the
stresses must approach apparently unremarkable steady-state
values. Strain rates of 104/s are about four decades smaller
than those that induce rapidly growing, disorder-generated
hardening, as seen in the LBL analysis of the strong-shock
regime. These two qualitatively different kinds of behavior
should not be confused with each other.

If the rate-hardening anomaly is a transient phenomenon,
then its physical origin must be contained in the dimensionless
prefactor κρ . It was assumed implicitly, in the discussion
following Eq. (4.2), that κρ is a conversion factor that may
incorporate a wide range of physical mechanisms. One ingre-
dient of κρ must be a rate at which dislocations are created,
e.g., a density of Frank-Read sources or the like, multiplied by
a nucleation rate per source, presumably proportional to the
stress. To obtain a dimensionless conversion factor, multiply
this rate by some time and volume associated with the driving
forces. The beauty of this approach is that we do not need yet

032125-4



STATISTICAL THERMODYNAMICS OF STRAIN . . . PHYSICAL REVIEW E 92, 032125 (2015)

4 2 0 2 4 6

100

200

300

400

500

log10 Strain Rate s
1

St
re
ss
M
Pa

FIG. 1. (Color online) The rate-hardening anomaly as reported
in Refs. [2] and [10]. The four curves, from bottom to top,
show stresses as functions of strain rate for four different strains,
ε = 0.05, 0.10, 0.15, and 0.20. The dashed curve at the top is the
theoretical steady-state prediction.

to specify those details; we need only to know that κρ is a
dimensionless number of the order of unity or less.

The rate-hardening anomaly implies that κρ acquires a
strain-rate dependence. With the contents of the next subsec-
tion in mind, I propose that this is a grain-size effect. Suppose
that whenever a grain of linear size d is sheared by an amount
b/d, it emits a dislocation and then relaxes back toward its
original shape. Thus, the emission frequency, multiplied by
the areal density of grains, is proportional to ε̇/d b, in analogy
to the source strength discussed in the preceding paragraph.
This is an independent dislocation-creation mechanism that,
to a first approximation, should be added linearly to the
rate-independent term.

This analysis, combined with that in Sec. IV A, suggests
that we write

κρ = κ̃ρ

ν(T ,ρ̃,q0)2

(
1 + q0

q1

)
, (4.3)

where κ̃ρ is a constant of the order of unity and q1 is a
dimensionless strain rate, possibly proportional to the grain
size. By writing Eq. (4.3) in this way, q1/τ0 is approximately
the strain rate at which the upturn occurs. Then rewrite
Eq. (3.14) in the form

dρ̃

dε
= κ1

√
ρ̃

ν(T ,ρ̃,q0)

(
1 + q0

q1

) (
1 − ρ̃

e−1/χ̃

)
, (4.4)

where

κ1 ≡ κ̃ρ

b2 μT

γD

(4.5)

is a dimensionless number, again of the order of unity.
Equation (3.15) is unchanged, but the factor κρ inside the
square brackets is now the function of ρ̃ and q0 given by
Eq. (4.3).

Figure 1 shows comparisons between experiment and
theory for the rate-hardening anomaly. The dashed black line
is the theoretical steady-state curve. The parameters used for
plotting these graphs are almost the same as those used in LBL:
TP = 40 800 K, T = 298 K, μT = 1600 GPa, χ0 = 0.25,
κχ = 16, and κ1 = 3.1 (the “universal” Kocks-Mecking value
based on observed onset rates). This upturn analysis seems
to be insensitive to the storage term in Eq. (3.15); therefore I
have omitted it here by setting κρ = 0 in that equation. (That
term will be nonzero in the next subsection.) The rate defined
in Eq. (4.3) is q1/τ0 = 4 × 104 s−1, with τ0 = 10−12 s. The
initial values of ρ̃ and χ̃ used for integrating the differential
equations are ρ̃i = 10−7 and χ̃i = 0.18, again the same as in
LBL.

Note that q1 is the single new parameter that is needed to
explain the rate-hardening anomaly for all four values of the
strain shown here. The data for ε = 0.15 are the least noisy of
these data sets and show the cleanest upturn. It is this curve
that appears most often in the literature. The agreement for
the outlying cases, ε = 0.05 and 0.20, is somewhat less good,
especially at the upturns where the data are most noisy. But
the overall agreement between theory and experiment seems
excellent.

C. Effects of grain size

As a second example of the statistical thermodynamics
of dislocations, consider the effects of grain size in room-
temperature copper as observed by Meyers et al. [3]. That
paper is largely devoted to measurements of grain-size effects
in phenomena such as dynamic recrystallization and strain
localization. But it contains, in its Figs. 5 and 6, some data
that are directly related to the present investigation. These
figures show that the Kocks-Mecking rule of constant onset
rate is violated at small grain sizes. The initial slopes of the
stress-strain curves increase markedly with decreasing grain
size. Moreover, at the smaller grain sizes, these curves exhibit
narrow transitions between rapid onsets at small strains and
slower hardening at larger strains. The present theory can
account for most of this behavior.

Meyers et al. show stress-strain curves for materials with
four different grain diameters: d = 9.5, 25, 117, and 315 μm.
For each d, they show curves for strain rates 10−3 and 3 ×
103 s−1. To establish a baseline for the present analysis, start
with the largest grain size, d = 315 μm, where there should be
little, if any, anomalous strain-rate dependence. The theoretical
results are shown in Fig. 2 along with experimental points
taken from Ref. [3]. The theoretical parameters are essentially
the same as those used in Sec. IV B. The only differences
are that q1/τ0 = 3 × 104 s−1 (slightly smaller than before)
and that κχ = 12 and 8.5 for the smaller and larger strain
rates, respectively. Note that the onset rate is quantitatively as
predicted by Kocks and Mecking, i.e., κ1 = 3.1, so that both
curves have the same initial slope although their strain rates
differ by more than six orders of magnitude.
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FIG. 2. (Color online) Stress-strain curves for the largest grain
size, d = 315 μm. The strain rates are 10−3 and 3 × 103 s−1 for the
bottom and top curves, respectively. The data points are taken from
Ref. [3].

This situation changes dramatically when we look at the
smaller grain sizes as shown in Fig. 3. Here I have plotted
stress-strain curves for three grain sizes, d = 9.5, 117, and
315 μm, all at the lower strain rate, q0/τ0 = 10−3, where the
rate-dependent term q0/q1 in Eq. (4.3) should be negligible. (I
have omitted the intermediate curve for d = 25 μm for the sake
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FIG. 3. (Color online) Stress-strain curves at the strain rate
10−3 s−1 for different grain sizes: d = 9.5, 117, and 315 μm, from
top to bottom. The data points are taken from Ref. [3].
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FIG. 4. (Color online) Stress-strain curves at the strain rate 3 ×
103 s−1 for different grain sizes: d = 9.5, 25, 117, and 315 μm from
top to bottom. The data points are taken from Ref. [3].

of clarity.) The lower curve in this figure, for d = 315 μm, is
the same as the lower curve in Fig. 2. However, the upper
two curves have substantially greater onset slopes, which
means that the energy-conversion factor κρ or, equivalently,
κ1 must be a function of the grain size. The density of
ordinary dislocation sources—not only the strain-rate-driven
ones discussed earlier—apparently increases with the density
of grain boundaries. Accordingly, I have used the small
strain-rate data in Fig. 3 to evaluate κ1 as a function of d. I then
have used those values to compute the stress-strain curves at
the higher strain rate, q0/τ0 = 3 × 103 s−1, shown in Fig. 4.

The theoretical curves shown in Figs. 3 and 4 are uncertain
in many respects, none of which seem to be fatal to the main
concepts being tested here. In the first place, the data shown in
Ref. [3] are noisy, and my own ability to extract accurate points
from it is limited. Second, there are too many things happening
in this theory and, thus, too many parameters to evaluate. My
strategy has been to start by fixing a few parameters based
on prior experience with Cu data, e.g., in LBL and in the
upturn analysis reported here, despite the fact that the materials
used by Meyers et al. are not exactly the same as those used
elsewhere. Thus, I again use TP = 40 800 K, T = 298 K,
μT = 1600 GPa, and χ̃0 = 0.25. The initial values of ρ̃ and χ̃

are again ρ̃i = 10−7 and χ̃i
∼= 0.18, except that I have had to

make small adjustments of χ̃i as noted below.
The storage term, indicated by the factor κρ inside the

square brackets in Eq. (3.15), may be playing a role here.
This is a thermodynamically predicted softening effect. The
rate at which energy is stored in dislocations reduces the rate
at which the entropy of disorder is increasing, thus reducing
the rate at which the density of dislocations is increasing and,
in turn, reducing the hardening rate. That mechanism seems to
be playing a role here in reducing the slope of the stress-strain
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curves after the initial rise at small grain sizes. I have tentatively
accounted for it by letting κ̃ρ = 0.2 in the formula for κρ in
Eq. (4.3) for all grain sizes and strain rates.

The values of the onset parameter determined at small
strain rates, for d = 9.5, 25, 117, and 315 μm, are κ1 =
9.5, 7.5, 5.0, and 3.1, respectively. The corresponding values
of q1/τ0, needed for the high strain-rate analysis, are 2 ×
103, 6 × 103, 7 × 103, and 3 × 104 s−1. Thus, as expected,
both the ordinary conversion factor and the strain-rate-induced
one increase as the grain size decreases.

To fit the experimental data to the accuracy shown in the fig-
ures, I have had to make relatively small adjustments of other
parameters. For the same increasing sequence of grain sizes
listed in the preceding paragraph, I find κχ = 18, 17, 17, 12 for
the small strain rate and 13, 11.5, 11.5, 8.5 for the large one.
The corresponding values of χ̃i are 0.165, 0.165, 0.17, 0.18
and 0.16, 0.16, 0.16, 0.18. For d = 9.5 μm, the small strain-
rate curve shown in Fig. 3 uses κ̃ρ = 0.4 and χ̃0 = 0.253. So
far as I can tell, these final adjustments serve only cosmetic
purposes. Neither the experimental data nor the theoretical
analysis are accurate enough for us to draw more definite
conclusions from them.

V. CLOSING REMARKS

The analysis presented here contains several unconven-
tional predictions that might usefully be checked experimen-
tally. Specifically, it predicts that the anomalous rate-hardening

curves level off at higher strain rates and that the anomaly
disappears at larger strains. It also predicts that the upturn
should occur at smaller strain rates for smaller grain sizes,
and even speculates a simple power-law dependence for this
effect. In other words, it points toward extensions of earlier
experiments.

I close by repeating the plea from the conclusion of LBL.
The theory presented there, and here, should be useful as a basis
for studying dynamic, spatially heterogeneous instabilities
such as strain localization. If dislocation theory is to serve
as a realistic tool for predicting the strength of materials, then
it must move in that direction. The thermodyamic STZ theory
is developing successfully in that way as seen, for example,
in its prediction of the fracture toughness of bulk metallic
glasses [11]. I see no reason why the present dislocation theory
cannot be used similarly.
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