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Above we show these two functions for varying values of µ with
µ̃ = σ0(µ), the attacker’s best response to the SPRT(A(µ), B(µ)). 146

vi



Abstract

Non-zero-sum, Adversarial Detection Games in Network Security

by

Braden Cooper Soper

In this dissertation we propose two novel non-zero-sum, adversarial detection

games motivated by problems in network security. First we consider a local mean

field, interdependent detection game between a network of defenders and a strate-

gic attacker. Each defender chooses a detection threshold to test for the presence of

a botnet infection, which can propagate between defenders if undetected. In order

to avoid detection, the attacker balances stealth and aggression in his strategic

utilization of the compromised network. We compare selfish, decentralized de-

fenders to centrally planned defenders in order to examine the effects of network

externalities on detection strategies. It is found that for fixed attack strategies,

decentralized defenders choose thresholds that are either too low or too high than

is socially optimal. When the attacker is strategic and the defenders are homo-

geneous, we prove the existence of a pure Nash equilibrium in both decentralized

and centralized games. Through numerical approximations of the equilibria, we

find that decentralized defenders can outperform a central planner in such games.

It is observed that pure Nash equilibria often fail to exist when defenders are

heterogeneous in their cost functions. In this case sufficient conditions are given

to guarantee a Stackelberg equilibria.

Next a two-player, non-zero-sum, sequential detection game based on Wald’s

SPRT is presented. A defender seeks to sequentially detect the presence of an at-

tacker via the drift of a stochastic process. The detection process is complicated

by the attacker’s ability to strategically choose the drift of the observed stochastic

vii



process. We prove the existence of pure Nash equilibria and give sufficient condi-

tions for the existence of Stackelberg equilibria with the defender as leader. It is

shown that both low false positive costs and high prior probabilities of intrusion

lead to an infinite number of Nash equilibria in which the defender makes no ob-

servations. Conversely both high false positive costs and low prior probabilities

of intrusion lead to a finite number of non-trivial Nash equilibria. Through nu-

merical examples we see that it is possible for the defender to do better using a

Stackelberg equilibrium strategy than a Nash equilibrium strategy.
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Chapter 1

Introduction

This dissertation is concerned with the development and analysis of novel

non-zero-sum, adversarial detection games with applications to network security.

More precisely we model encounters between strategic adversaries, a defender (or

defenders) and a single network attacker, as non-zero-sum, intrusion detection

games. The dissertation is composed of two parts, each of which focusses on a

particular class of non-zero-sum, adversarial detection games which have not been

considered previously.

In the first part we propose a class of games we call interdependent detection

games. These games are related to the class of games known as interdependent se-

curity games (IDS) introduced by Heal and Kunreuther [42]. More specifically our

model is motivated by the local mean field, security investment games introduced

by Lelarge and Bolot [47,48]. The main difference being that we consider network

effects on epidemic detection, as opposed to the network effects on security invest-

ments as is most common in the IDS games literature. As our main motivating

example we model the strategic interactions between the decentralized, legitimate

users of a compromised network (defenders) and an adversary (bot master) who

illegitimately steals resources from the compromised computers.
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In the second part of this dissertation we analyze a non-zero-sum, sequen-

tial detection game. The model is based on a continuous time version of Wald’s

Sequential Probability Ratio Test (SPRT) [78]. For this game we focus on a

two-player game with a single defender and a single attacker.

We outline the two games, their applications to network security and our main

contributions below.

1.1 Interdependent Detection Games

An important development in the study of information security was the real-

ization that many of the difficulties with securing modern information systems are

not simply due to technological problems, but arise due to misaligned incentives.

One of the earliest observations of this fact was by Varian [75] in the context of

the prevalence and destructiveness of Distributed Denial of Service (DDoS) at-

tacks. A DDoS attack is often executed by a malicious individual, known as a bot

master or bot herder, using a botnet, a large number of compromised computers

under his control [25]. The bot master uses the botnet to send a large number of

access requests to a single computer or server connected to the internet. If the

number of requests is large enough they can overwhelm the targeted computer to

the point of making it inoperable, effectively shutting it down. While there are no

doubt technical failures which contribute to the prevalence of such attacks, it was

pointed out by Varian that a misalignment of incentives make the DDoS problem

much more difficult to deal with. In particular the owners of the compromised

computers are not the intended targets of the DDoS attack, nor are they held re-

sponsible for the consequences of the attack. As such they do not have the correct

incentives to invest in the high quality security measures that might prevent their

computers from being compromised in the first place.
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Anderson [10] elaborated on these observations and outlined more explicitly

the need to incorporate microeconomic theory into the study of information/cyber

security. Since then a growing body of literature has developed around the study

of the economics of information security [11]. Due to the highly interdependent

nature of modern information networks, a class of games known as interdepen-

dent security games (IDS) have become a rich research area within the scope of

the economics of information security. IDS games were first introduced by Heal

and Kunreuther [42] in a broader context not necessarily limited to information

security. In fact one of their prime examples is that of airline security [43]. The

main idea behind IDS games is that they extend the standard attacker-defender

dynamics that is typical in security games to the case where there are multiple

defenders who are subjected to interdependent security risks. In the case of airline

security, the fact that a single piece of checked luggage passes through multiple

airports when connecting flights are involved, results in a situation where the se-

curity level at each airport depends on the security efforts of all airports which

can be reached by connecting flights. Hence the security risk posed by a bomb in

a piece of luggage is an interdependent security risk for the airports. The resulting

IDS problem can be modeled and analyzed with tools from game theory to better

understand the motivations and expected behavior of the “players” involved.

Many important extensions to the IDS game framework have been proposed.

Most IDS models assume fixed or randomized attack strategies, however some

recent works have extended the IDS framework to include a strategic attacker.

Chan et al. [27] considers a strategic attacker coupled with an IDS game. The

model also considers the case that security investment reduces not only risk but

also risk transfer. They call their more general model an interdependent defense

(IDD) game. Bachrach et al. [14] considers an IDS game in which an attacker

3



chooses a single target in the network with the objective of destroying as many

of the players in the network. Acemoglu et al. [1] considers a similar game but

generalizes the results over various network topologies.

Another important extension to the IDS game framework was to consider prop-

agating security threats. Note that the airline security problem mentioned above

is one of risk transfer, not risk propagation. Extending security interdependence

to include network propagation allows one to consider large scale epidemic threats

such as computer or biological viruses. In a propagation IDS game individuals can

be in one of a discrete number of states. In its simplest form the states correspond

to susceptible and infected. A vast literature exists on modeling the dynamics and

control of epidemic processes [12,36]. The distinction here is that in propagation

based IDS games an epidemic model is coupled with a security investment model

at the individual level. Thus the problem becomes a multi-player game as opposed

to an optimal control problem.

Building on the the mathematical epidemiology literature many propagation

IDS games have been consider. [54] considered a N -intertwinded SIS model cou-

pled with a noncooperative IDS game. In [44] the author utilizes evolutionary

game models to study the effects of security and insurance investments on conta-

gion in network. [73] uses a mean field approach to study the effects of learning

about epidemic rates on security investment by selfish agents. The model in [1]

also considers contagion as a security threat.

One of the primary difficulties in dealing with propagation based IDS games

is that the models get incredibly complex [45]. Epidemic models themselves are

highly non-linear, and coupling a large population game with it can result in

intractable models. For this reason many of the propagation based IDS games

rely on mean field approximation models such as in [44,73].
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A mean field approach with a very distinct character was introduced by Lelarge

and Bolot [47,48]. They called their model a local mean field model and it allows

one to model the local correlation structure of the underlying network while also

explicitly modeling a single agent’s strategic behavior. By utilizing ideas from the

statistical physics literature and combinatorial optimization, the authors study

the network effects on security investments by selfish agents facing a propagating

security threat. By focussing on large networks and considering the limiting case

that the number of agents approaches infinity, one obtains a tractable model able

to deal with propagating security threats and selfish individual behavior over large

networks.

When one agent’s exposure to security risks depends on the actions of others,

then investment in security is not the only strategic decision that will be affected

by the presence of network effects. In particular, if an agent is interested in detect-

ing the presence of a security threat, then his chosen detection strategy should

depend on the detection strategies of others. While detection is not explicitly

an economic action, it can be understood in the context of the IDS literature.

In particular, approaching the detection problem as a Bayesian decision theoretic

problem [22], the defending agent can be given a utility function which determines

his optimal detection strategy. So instead of optimal investment strategies we are

interested in optimal detection strategies. In this context interdependent detec-

tion problems are subject to similar forces that arise in networked information

systems in general and interdependent security problems in particular.

We propose a novel network interdependent detection game which builds on

the probability based models for interdependent security initiated by Heal and

Kunreuther [42] and the propagation based models of Lelarge and Bolot [47, 48].

We utilize the local mean field framework of Lelarge and Bolot to model the local

5



correlation structure of large computer networks. Our model diverges from the

existing IDS framework in that we do not explicitly consider security investments.

Instead we model epidemic detection by interdependent agents subjected to the

same propagating security threat. In theory it is possible to model both security

investment and infection detection, but we do not consider security investment as

it has been studied extensively in the IDS literature. We are instead interested in

the network effects on the epidemic detection process.

We use botnets as our motivating example of an interdependent detection

game. A unique feature of the botnet security threat is the highly distributed,

decentralized network of victims whose compromised computers make up the bot-

net. These victims are not always the intended target of botnet attacks, yet they

play a critical role in the functionality of the botnet. We propose a game between

the operator of a botnet (bot master) and the decentralized, legitimate users of

the compromised network (defenders).

Computers become infected either directly by the bot master or indirectly from

neighboring computers via self-propagating malware. If an infection is successful,

then the bot master gains control of the compromised computer and can use it

for his own nefarious purposes. If the bot master is too aggressive in his uti-

lization of the compromised computers, then it is more likely that the defenders

will detect the infections. For example, if the bot master is continually using the

compromised computers to send large volumes of spam, then there may be a no-

ticeable degradation of each computer’s performance due to excessive bandwidth

consumption from the spamming. Some defenders may then decide to patch or

replace their computers, thus ridding themselves of the infection and reducing the

overall size of the botnet. Thus he must balance stealth and aggression in his

strategic utilization of the botnet.

6



It is assumed that each defender makes a single observation of some perfor-

mance metric which is corrupted by noise. Larger observed values are indicative

of infection. Thus we model the strategy of each defender as the choice of a binary

classification threshold which is used to classify their states as either infected or

susceptible. The defenders of the network must decide how vigilant they will be

in trying to detect the presence of a botnet infection while balancing the costs of

false alarms and missed detections.

We begin our study by examining a game in which the defenders in the net-

work are statistically homogeneous and we look for symmetric threshold detection

strategies. The bot master is explicitly modeled as a strategic agent pitted against

the legitimate users (or defenders) of a computer network targeted to become a

botnet. Two scenarios are considered, one in which the defenders are decentralized

and selfish, and one in which the defenders are coordinated by a central planner.

In this way we are able to examine the efficiency of equilibrium defense strategies.

We find that there are cases in which defenders tend to be overly vigilant and cases

in which defenders tend to be overly indifferent compared to the social optimum.

Our main theoretical results are proving the existence of a symmetric, pure

Nash equilibrium in the game with homogeneous defenders in both the decentral-

ized and centralized game. We then numerically approximate the equilibria in

order to study their qualitative features. We find that under certain parameter

regimes it can be socially optimal to have a higher infection rate throughout the

network. Furthermore we find that when the bot master is strategic the decen-

tralized defenders can do better than a central planner. While this may seem

contradictory it is a result of the fact that both the central planner and the de-

centralized defenders are playing a game with the strategic attacker. As such,

the attacker plays different strategies at the corresponding equilibria. Since the

7



defenders’ payoffs depend on the attacker’s strategy, it can happen that decen-

tralized equilibrium strategies result in smaller expected costs than centralized

equilibrium strategies.

We then extend the model to defenders which are heterogeneous in their cost

functions. For fixed attack strategies we prove the existence of decentralized popu-

lation best response functions. These are population strategies mapping defender

type to defender strategy from which no individual has an incentive to unilaterally

deviate. This is similar to the idea of a fulfilled expectations equilibrium used in the

economics literature [40]. Through numerical examples we observe two counter

intuitive results which demonstrate network effects on interdependent detection

games. 1. When the population tends to value missed detection over false alarms,

selfish defenders wind up being too indifferent. 2. When the population tends

to value false alarms over missed detections, selfish defenders wind up being too

vigilant. This happens because selfish agents do not account for the externality

of altering infection rates when they unilaterally change strategies. This result is

analogous to the problem of free-riding which can occur in games with network

externalities [40,76]. In the context of IDS games this means agents tend to under

invest in security. Thus we see that free-riding in interdependent detection games

is distinct from free-riding in IDS games. Free-riding in interdependent detection

games can go in two directions: under-vigilant and over-vigilant.

In contrast to the homogeneous game, it is observed that pure Nash equilib-

ria often fail to exist with heterogeneous defenders. The difficulty in establish-

ing the existence of Nash equilibria in the heterogeneous game stems from the

fact that when decentralized defenders play a population best response equilib-

rium strategy, we often find that the resulting expected utility function of the

attacker is not quasi-concave. As a result we cannot guarantee the continuity of

8



the attacker’s best response function, a condition typically needed for equilibrium

existence proofs in continuous strategy games.

When Nash equilibria do not exist other solution concepts may be of interest.

In this case a Stackelberg solution concept is adopted, and sufficient conditions

are given to guarantee such an equilibrium with the attacker as leader. Numerical

examples are given in order to examine the effects of heterogeneity and network

effects on defender strategies. Unfortunately, the same problems that plague Nash

equilibria also affect the Stackelberg equilibria with defenders as leaders. We

discuss some of these difficulties and show possible ways to circumvent them.

Finally we point out the non-zero-sum nature of our interdependent detection

game. Many network security games focus on an attacker’s strategy in compro-

mising a network, such as attack intensity [33], frequency [29] and location [23].

A unique feature of botnets is that the initial network intrusion is only the begin-

ning of a potentially long-term network control and command objective. Many

bot masters rent their botnets to customers wishing to perpetrate illicit activities

(spam, DDoS attacks, click-fraud, etc.) [49]. Thus a bot master must maintain

a sufficiently large network of infected computers to maintain a profitable en-

terprise. In the process scores of legitimate computer users become unwitting

participants in cyber-criminal activities [71]. It should be clear that such an in-

teraction between the legitimate computer users and the strategic bot master is

not a zero-sum game. The bot master is not interested in inflicting maximal dam-

age to the network. On the contrary, he is interested in the long term viability of

the network to maximize his profits. Thus we are interested in the bot master’s

strategic utilization of the compromised network, an important component of the

botnet security threat that has not been considered in theoretical models.

In summary our main contributions to the fields of adversarial detection games
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are as follows:

• To the best of our knowledge we present the first interdependent detection

game. The majority of the IDS literature has focussed on security investment

as a measure of security effort. We propose studying adversarial threat

detection in an interdependent environment.

• While strategic adversaries have been modeled in IDS games, most of theses

papers have focussed on zero-sum interactions. That is, the loss incurred by

the defenders is the direct gain by the attacker. To our knowledge we are

the first to consider the case of non-zero-sum interactions between attacker

and defenders in the IDS literature. Specifically we consider the case that

the attacker is not interested in destroying the defenders but in remaining

undetected while utilizing stolen resources.

• To the best of our knowledge non-cooperative distributed detection has not

been considered in the literature. Distributed detection usually refers to in-

terdependent sensors cooperatively trying to detect the presence of a signal.

As such distributed detection can be modeled as a cooperative (or coalition)

game and is usually approached as a design problem [4–6]. In our model the

sensors (defenders) are non-cooperative and are only interested in detecting

the presence of the infection individually.

1.2 Sequential Detection Games

The local mean field model we use to study interdependent detection is proba-

bilistic in nature and does not explicitly consider the dynamic nature of intrusion

detection. The focus of the model is on the interdependent nature of the defenders

while dynamic considerations are ignored. In the second part of the dissertation
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we shift focus away from the interdependent nature of intrusion detection and

focus on dynamic, real-time adversarial detection. Specifically, in contrast to the

previous model where defending agents made a single observation of their state

on which they based their decision, we now consider the case where a single agent

makes multiple observations over time, and must make a real-time detection de-

cision.

As such we consider the defender to be a type of intrusion detection system [7].

Such systems have become an integral components in securing modern computer

networks. In its simplest form intrusion detection can be thought of as a hypothe-

sis testing problem. The null hypothesis being that you are not compromised and

the alternative hypothesis being that you are compromised. While fixed sample

size hypothesis testing can be effective, the dynamic nature of computer networks

and the need for real-time detection suggests sequential hypothesis testing may be

more suitable [80]. That is one does not fix the number of observations ahead of

time. Instead after each observation a decision is made to either make another ob-

servation or to stop making observations and accept or reject the null hypothesis.

Such a procedure is useful when there is a fixed cost c > 0 per observation.

For example let X1, X2, X3, ... be i.i.d. observations from a parametric distri-

bution with density f(·|θ) where θ is a real valued parameter. We wish to test

the following simple hypothesis test:

H0 : θ = θ0,

H1 : θ = θ1,

for some specific values θ0 < θ1. We then seek a sequential decision rule (τ, δ)

where τ ∈ {1, 2, 3, ...} is a stopping time and δ ∈ {0, 1} a decision rule. Both

τ and δ are random variables such that at time τ you stop making observations
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and choose hypothesis δ. If there is a prior probability π ∈ [0, 1] that the null

hypothesis is correct and costs α > 0 and β > 0 associated with false positives

and false negatives, respectively, then the Bayes risk of the sequential decision

rule (τ, δ) is

Eπ[cτ + α1{δ=1,θ=θ0} + β1{δ=0,θ=θ1}]. (1.1)

One then seeks the sequential decision rule which minimizes the Bayes risk.

In the classic work of Wald [78,80] it was shown that optimal sequential deci-

sion rules can be found in the class of Sequential Probability Ratio Tests (SPRT).

An SPRT has two values A ∈ [0, 1] and B ≥ 1 associated with it and is defined

in terms of the likelihood ratio process,

Ln =
∏n
i=1 f(Xi|θ1)∏n
i=1 f(Xi|θ0) .

We write SPRT(A,B) for the SPRT associated with valuesA,B. The SPRT(A,B)

has the decision rule

δA,B =


0 if Ln ≤ A,

1 if , Ln ≥ B.

The SPRT(A,B) has the stopping time

τA,B = inf{n > 0 : Ln /∈ (A,B)}.

The optimality of the SPRT(A,B) can be considered from both a frequentist

and Bayesian perspective [64]. We will be concerned primarily with the Bayesian

approach and thus only state the relevant results. Namely that for any prior π

there will exist values (A∗, B∗) such that the SPRT(A∗, B∗) minimizes the Bayes

risk (1.1). While originally developed in the context of industrial quality control,
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the method is a classical example of real-time anomaly detection and has many

applications, including in network security [7].

Because we will be interested in the detection of a strategic adversary, it is nat-

ural to once again utilize game theory to better understand the incentives of both

defender (detector) and attacker (intruder). While the importance of game theory

in developing robust intrusion detection systems has been recognized [4–6], less

attention has been paid to applying game theory to sequential detection problems.

For the most part applications of game theory to sequential hypothesis testing have

typically been restricted to robust minimax solutions [13, 22, 80], which assumes

a zero-sum game between observer and nature. Given the vast array of security

threats and strategic adversaries in the cyber domain, one potential shortcoming

of the minimax approach is the fact that many non-cooperative, strategic encoun-

ters may not be zero-sum. If a defending agent has information about the type

of adversary, such as the attacker’s payoff function, then the defending agent may

be able to leverage this information to find superior sequential detection tests.

Motivated by these considerations we propose and analyze a two-player, non-

zero-sum, sequential detection game between a defender agent and an attacker

agent. We present the model as an abstract attacker-defender game, but botnets

(see Chapter 2) and electricity theft in the smart grid [26, 68] are two areas of

application that we have in mind.

The defender is in charge of protecting a secured resource. This could be a

single computer, a network of computers or some other cyber-physical infrastruc-

ture. The defender’s objective is to sequentially detect whether or not his secured

resource has been compromised by the attacker. The defender makes noisy ob-

servations of the system’s state which we model by a stochastic process Zt. We

assume that whether or not the system is compromised can be discerned through
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the drift of the process Zt. For example, the observed process could be cumula-

tive bandwidth usage, CPU load or energy consumption. It is his objective to do

so in such a way that minimizes a payoff function which takes into account the

expected observation time and both type I and type II detection errors. As such

the defender’s optimal sequential test is a version of Wald’s Sequential Probability

Ratio Test (SPRT) [80].

The attacker is interested in bypassing the defender’s security in order to

establish long-term, unrestricted access to the resources available on the system.

The attacker’s objective is not necessarily to destroy or damage the defender’s

system, but to utilize system resources. The attacker must then balance how

aggressive he should be in utilizing resources of the compromised system and how

stealthy he should be in order to avoid detection. The more the attacker utilizes

the system, the more utility he obtains. However, this also increases the drift of

the observed stochastic process, thus increasing the probability of detection.

The main theoretical result is a proof of the existence of pure Nash equilibria

in the special case that the attacker does not discount future expected utility.

Furthermore we give conditions for the existence of Stackelberg equilibria with

the defender as leader in the special case that the defender’s strategy is restricted

to Wald’s SPRT. Numerical examples are given to explore the qualitative features

of the equilibria. It is observed that both low false positive costs for the defender

and high prior probabilities of intrusion by the attacker lead to an infinite num-

ber of Nash equilibria in which the defender immediately classifies his system as

compromised and the attacker receives no utility. Conversely, we see that both

high false positive costs for the defender and low prior probabilities of intrusion by

the attacker lead to a finite number of non-trivial Nash equilibria. Finally we see

that it is possible for the defender to improve his outcome under the Stackelberg
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equilibrium strategy in relation to the Nash equilibrium strategy.

Previous examples of sequential detection games have largely been restricted

to discrete-time, zero-sum games. As mentioned above, minimax sequential detec-

tion assumes the form of a zero-sum game between observer and nature. Minimax

sequential detection was an attempt to develop more robust sequential statisti-

cal tests [13] rather than explicitly address interference by a strategic adversary.

Nevertheless, minimax sequential detection lends itself to an adversarial frame-

work and has been used in game-theoretic settings. Such an approach was taken

in [60] and [59] with applications to detecting access layer misbehavior in wireless

networks. A discrete-time, non-zero-sum, network security classification game in-

volving Wald’s SPRT can be found in [15]. This work was largely numerical as

the discrete-time SPRT in an adversarial setting is not amenable to analysis due

to the “overshoot” problem [65]. To our knowledge these are some of the only

attempts to apply game theoretic reasoning to sequential detection. A similar

fixed sample size detection game dealing with electricity theft in the smart grid

can be found in [26].

In summary our main contributions to the field of adversarial sequential de-

tection are the following:

• We present the first non-zero-sum, continuous-time, sequential detection

game.

• We provide the first analytical equilibrium results for non-zero-sum, sequen-

tial detection games based on Wald’s SPRT.

• To the best of our knowledge we are the first to use results from the theory

of optimal stopping and free-boundary problems [56, 64] to construct and

analyze sequential detection games.
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Chapter 2

A Local Mean Field Botnet

Detection Game

As one of the major security threats to users of the internet, botnets exemplify

the difficulties of network security: They are highly distributed, interconnected

and complex. Furthermore a single botnet can contain thousands of comput-

ers, making scores of legitimate computer users unwitting participants in cyber-

criminal activities [71]. Though the research community has taken an interest in

the botnet phenomenon, theoretical models of botnets are nascent.

A promising game-theoretic approach to modeling botnets is the local mean

field model of Lelarge and Bolot [47,48]. This approach contains many appealing

features for dealing with the complexities of the botnet phenomenon. However, the

strategic attacker, or bot master, is not explicitly considered as a strategic agent

in the game. Furthermore the network of agents are deciding whether or not to

invest in security rather than dealing directly with the threat of a botnet. We

propose a novel security game which extends the Lelarge-Bolot model by explicitly

modeling the bot master as a strategic agent pitted against the legitimate users

of a computer network targeted to become a botnet. In our game the bot master
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must consider the tradeoffs between stealth and aggressiveness in utilizing his

botnet. The legitimate users of the network (defenders) act as intrusion detection

systems and must consider the tradeoffs between botnet infections, false alarms

(false positives) and missed detections (false negatives).

Standard network security games dealing with an attacker-defender dynamic

often focus on the attacker’s strategy in initially compromising a network. Such

strategies include attack intensity [33], frequency [29] and location [23]. One

unique feature of botnets is that the initial network intrusion is only the beginning

of a potentially long-term network control and command objective. Many bot

masters rent out the services of their botnets to perpetrate illicit activities (spam,

DDoS attacks, click-fraud, etc.) on the behalf of paying customers [49]. Thus a

bot master must maintain a sufficiently large network of infected computers in

order to make a profit. To our knowledge the strategic behavior in maintaining a

botnet has not been considered in theoretical models.

We address this shortcoming in our botnet game by having the main strategic

variable of the bot master be the degree to which he utilizes his botnet. The bot

master tries to gain control of each computer directly with a fixed probability

of success. In addition compromised computers are capable of propagating the

vulnerability to other computers in the network. If an infection is successful

then the bot master gains control of the compromised computer and can use it

for his own nefarious purposes. If the bot master is too aggressive in his use

of the compromised computers, then it is more likely that the legitimate users

will detect the infection. For example, if the bot master is continually using the

compromised computers to send large volumes of spam, there may be a noticeable

degradation in computer performance due to excessive bandwidth consumption

from the spamming. Some defenders may then decide it is time to patch or replace
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their computers, thus ridding themselves of the infection and reducing the overall

size of the botnet.

In many network security games the defender is thought to be the intended

target of an attack. In the case of botnets this might be the security administrator

of a server under a DDoS attack or a network spam filter being bombarded by

a spambot. Missing from such models are the legitimate computer users whose

compromised computers make up the botnet. Understanding the strategic inter-

actions between the legitimate users and the bot master should contribute to a

better understanding of the botnet threat.

For simplicity we consider homogeneous defenders and look for pure, sym-

metric, mutual best responses among the legitimate users. We find sufficient

conditions for the existence of a pure, symmetric Nash equilibrium in a game

involving decentralized, selfish defenders as well as in a game with a central plan-

ner. Network effects are explored numerically. We find that the average number

of neighbors, infection transmission probability and cost of raising an alarm all

determine qualitatively distinct regimes of Nash equilibria.

Previous work on network security games have considered similar issues. In [77]

the incentives of ad-networks and ISPs to invest in detecting botnets are studied.

Interconnected agents, network externalities and security investments have been

considered in [8, 38, 39, 42, 48, 55]. Botnet dynamics have been considered in [21]

and [28], while botnet economics are considered in [62] and [49]. Two-player

resource control games applied to network security were considered in [57,74].

2.1 A Two-Player Botnet Detection Game

To motivate the large-population botnet detection game, we begin with a se-

curity game between a bot master (attacker) and the owner of a single targeted
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computer (defender). Bot masters are able to compromise computers by exploit-

ing flaws in the software and hardware of networked systems. A game-theoretic

model of software/hardware manufacturers and their incentives to invest in re-

ducing software system failures is presented in [37]. The authors classify software

failures into two categories: security failures (failures caused by malicious and

unauthorized access to a user’s system) and reliability failures (failures which are

not security failures). Two observations on which the authors base their game

are 1) the source of both security and reliability failures is the same (software

bugs), and 2) it is too costly for users to distinguish between the two types of

failures. We incorporate these points into our game by modeling the defender’s

inability to reliably detect the presence of a botnet infection by observing some

level of performance degradation in his computer. The performance degradation

is due to either natural performance variability (reliability failure), or it is due to

the cumulative effects of both natural performance variability and security issues

related to a botnet infection (security failure).

We assume the bot master tries to infect the targeted computer as aggressively

as possible and has an overall probability of success p. The bot master infects

computers in order to illegitimately utilize available computational resources, i.e.

CPU time, RAM, bandwidth, electrical power, etc. Specifically we wish to model

how aggressive the bot master should be in utilizing these resources. In what

follows we will not model a particular resource, instead we consider a general

measurable resource R taking values on R+. The strategic variable for the bot

master is A ∈ R+, a direct measurement of the amount of resource R the bot

master uses. We will often refer to the strategy A as the bot master’s aggressive-

ness, since larger values of A correspond to a more aggressive utilization of the

resource R.
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We model the natural performance variability associated with resource R as

a random variable S with support R+. We denote the cumulative distribution

function of S by FS(x) and the probability density function by fS(x). Let χ ∼

Bernoulli(p) where χ = 1 if the direct infection by the bot master is successful

and χ = 0 otherwise. We assume χ and S are independent. The observable

performance degradation is then modeled by the random variable Z = Aχ+ S ∈

R+.

The defender is thought to be a typical user of a computer connected to the

internet. Aware that there are potential security threats the defender must decide

how vigilant to be in detecting such threats. As in [37] we assume the defender

is unable to reliably distinguish between security failures and reliability failures.

The defender must then consider the potential costs from both false alarms (false

positives) and missed detections (false negatives).

Given the observation Z the defender wishes to determine whether or not his

computer is infected. Assuming the distributions of S and χ are known, this

becomes a simple hypothesis testing problem with hypotheses H0 : Z = S and

H1 : Z = A + S. Higher observed values of Z indicate a higher likelihood of

infection (H1), thus we take the strategic variable of the defender to be a threshold

T which takes values in the support of S, namely R+. The strategy T determines

a threshold classifier for the defender: If Z ≥ T the defender decides his computer

is infected and takes appropriate measures to remediate the potential infection.

If Z < T then the defender decides his computer is not infected and takes no

action.1
1More generally the defender is free to choose any decision rule mapping observations in R+

to the set {0, 1}. If C is the set of all such decision rules we assume the defender will choose a
g ∈ C that minimizes his expected posterior loss, i.e. he chooses a Bayes decision rule. Under the
conditions of our model there exists an optimal threshold classifier T ∗ which is a Bayes decision
rule.
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Define the detection indicator random variable D = 1{Z≥T}, i.e. D = 1 if

Z ≥ T and D = 0 otherwise. We can then define the following indicator random

variables corresponding to the possible outcomes of the defender’s observation and

decision:

WFP = D(1− χ),

WFN = (1−D)χ,

WTP = Dχ,

WTN = (1−D)(1− χ).

Thus WFP indicates a false positive, WFN a false negative, WTP a true positive,

and WTN a true negative. Taking expectations we have the following:

E[WFP] = [1− FS(T )](1− p),

E[WFN] = FS(T − A)p,

E[WTP] = [1− FS(T − A)]p,

E[WTN] = FS(T )(1− p).

We associate a cost with each of the possible detection outcomes: We let c ≥ 0

be the cost of a false positive, v ≥ 0 the cost of a false negative and k ≥ 0 the cost

of a true positive. The defender incurs no cost for correctly classifying his state

as not infected, i.e. for true negatives. The cost v includes the cost associated

with future lost resources when the detection is missed, hence it depends on how

aggressively the bot master utilizes the compromised computer. Thus v = v(A)

is a function of the bot master strategy A. We assume it is differentiable, non-

decreasing and unbounded in A. The cost c, on the other hand, is only experienced
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under the case that the defender is not infected. Thus it does not depend on the

strategy of the bot master and we assume it is a fixed constant. We interpret the

constant k ≥ 0 as the fixed cost associated with remediating a potential infection

such as reinstalling an operating system, updating software or purchasing a new

computer. In other words it is the cost of raising an alarm no matter the infection

state. Given this interpretation we necessarily have c ≥ k, the cost of a false

alarm is greater than or equal to the cost of raising an alarm. We furthermore

will assume v(A) ≥ k for all A, the cost of a missed detection is greater than the

cost of raising an alarm. Thus both type I and type II errors are more costly than

raising an alarm.

For each (A, T ) ∈ R+ × R+ the defender’s cost C(A, T ) is as follows:

C(A, T ) , cWFP + v(A)WFN + kWTP.

The expected cost of the defender is now

E[C(A, T )] = c[1− FS(T )](1− p) + [k + (v(A)− k)FS(T − A)]p.

A successful attack is the same as a false negative and has indicator random

variable WFN. Define the function g(A) to be the utility gained by the bot master

from a successful attack given the bot master strategy A. We assume g(A) ∈ C2

with dg
dA
> 0, d2g

dA2 ≤ 0 and g(0) = 0. We define the attacker utility as

U(A, T ) = g(A)WFN(A, T ).
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The expected utility is then

E[U(A, T )] = g(A)FS(T − A)p.

The best response correspondences for the defender and attacker, respectively,

are

σ1(A) = arg min
T

E[C(A, T )],

σ2(T ) = arg max
A

E[U(A, T )].

Throughout the remainder of the paper we will need several assumptions re-

garding the random variable S that will be pertinent to the proofs of many of our

results. We summarize them here for reference. Because the defender is ultimately

performing a hypothesis test (i.e. infected or not infected) we begin by defining

the likelihood ratio function L(A, T ) and its limiting values with regards to his

threshold strategy.

L(A, T ) , fS(T − A)
fS(T ) (2.1)

L0(A) , lim
T↓A

L(A, T ) (2.2)

L∞(A) , lim
T→∞

L(A, T ) (2.3)

Assumption 1. The following are sufficient conditions on the random variable

S needed in the remainder of the paper.

1. The support of S is R+.

2. FS(·) ∈ C2.
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3. fS(x) > 0 for all finite x > 0.

4. d
dx

[
FS(x)
fS(x)

]
> −1.

5. ∂L
∂T
≥ 0.

6. ∂L∞
∂A

> 0.

7. ∂L
∂T

> 0 =⇒ L0(A) ≡ 0. ∂L
∂T
≡ 0 =⇒ ∂L0

∂A
> 0.

The prototypical distribution satisfying the above conditions is S ∼ gamma(α, β)

with α ≥ 1 and β > 0. Note that α = 1 gives S ∼ exp (β), which is the case where

L(A, T ) is constant in T while α > 1 is the case L(A, T ) is strictly monotonically

increasing in T . With this in mind we restrict our proofs to two distinct cases:

either ∂L
∂T

> 0 or ∂L
∂T
≡ 0 for all T > A. The proofs hold with slight modifications

for the more general condition that L(A, T ) is non-decreasing in T . Note that if

L(A, T ) were decreasing in T then the implied threshold classifier is not necessar-

ily a Bayes decision rule, hence it would not necessarily be an optimal strategy.

As such we do not consider such cases at this time.

The following proposition characterizes the pure Nash equilibrium in the two-

player game for the case that S satisfies the conditions in Assumption 1. We state

the proposition without proof as it is a special case of Theorem 1. Recall a pure

Nash equilibrium is a strategy pair (A∗, T ∗) ∈ R+×R+ satisfying T ∗ ∈ σ1(A∗) and

A∗ ∈ σ2(T ∗).

Proposition 1. Suppose the random variable S satisfies Assumption 1. Then

there exists a pure Nash equilibrium (A∗, T ∗) ∈ R+ × R+ in the two-player botnet

detection game with T ∗ > A∗ > v−1(k).
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2.2 A Large Population Botnet Detection Game

We now extend the two-player botnet detection game to a game with a large

number of defenders in a network. In [48] network externalities in a security

investment game between a large number of interconnected agents are studied.

Their local mean field model focuses on the asymptotic properties of a security

investment game in the limit as the number of agents grows indefinitely. We

extend the model introduced in [48] by explicitly modeling the bot master as a

strategic agent while allowing the legitimate users of the network to detect and

remove infections. Following [48] we consider a sequence of rooted Erdős-Rényi

random graphs G(n, λ/n) and look for equilibria on the limiting graph as n→∞.

By rooted we mean for each n the graph G(n, λ/n) has a designated root node v(n)
ø

chosen uniformly at random from the set of n nodes. Because rooted Erdős-Rényi

graphs converge to a rooted Galton-Watson Poisson Branching Process, denoted

by T (λ), in the sense of local weak convergence [3], we restrict our analysis to

T (λ). Results obtained on T (λ) can then be extended to equivalent results for the

limiting process on G(n, λ/n) as n → ∞ using arguments similar to those found

in [48]. The relevant convergence results for our model can be found in appendix

A.8. For details on the objective method, local weak convergence and random

distributional equations readers are referred to [3] and [2].

2.2.1 Agents, Costs and Utilities

We associate a unique defender ai with each i ∈ T (λ). For simplicity we

assume all defenders are homogeneous. In particular they have the same cost

functions and each defender is equally likely to occupy any place in the network.

Furthermore defenders are assumed to not know their exact locations in the net-

work, but only have statistical knowledge of the network T (λ).
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The bot master, denoted by b, does not occupy a node in the network T (λ),

but instead wishes to gain control of the network by compromising defender nodes

in T (λ). He does so by attempting to directly infect each node in T (λ) with some

fixed probability of success. Furthermore infected nodes are capable of infecting

neighboring nodes in T (λ). Let Xi = 1 if defender ai is infected directly by the

bot master b or indirectly via contagion from a neighboring defender in T (λ), and

Xi = 0 otherwise.

Let A ∈ R+ be the strategic aggressiveness of the bot master. We again assume

defenders use a threshold decision rule to detect infections. Let Ti ∈ R+ be the

strategic threshold of defender ai, and Zi ∈ R+ the observation made by defender

ai. If Zi ≥ Ti then the defender concludes his system has been compromised and

takes measures to remediate the problem. If Zi < Ti then no infection is detected.

In our model we assume that if the defender detects the infection, then he stops

the infection and does not pass it on to his neighbors. The detection indicator

random variable for defender ai is Di = 1{Zi≥Ti}.

Let Si denote the natural performance variability observed by defender ai. We

assume the Si for all i ∈ T (λ) are i.i.d. copies of the random variable S which

satisfy the conditions in Assumption 1. We then have Zi = AXi + Si.

Because the observations Zi are unreliable, defenders will have to balance the

costs of false alarms (false positives) and missed detections (false negatives) in

addition to the fixed cost of infection. We define indicator random variables for

the outcomes of defender ai’s observation:

W i
FP = Di(1−Xi),

W i
FN = (1−Di)Xi,

W i
TP = DiXi,
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We associate the same costs for all defenders as in the two-player game, thus each

defender ai experiences a cost

Ci = cW i
FP + v(A)W i

FN + kW i
TP,

where c ≥ k ≥ 0 are constants and v(A) ∈ C1 is non-decreasing and non-negative.

Due to the homogeneity of defenders in T (λ) our analysis we will focus on

symmetric equilibria among the networked defenders. Let T denote a network-

wide threshold played by all defenders. If defender ai unilaterally deviates from

the population threshold, i.e. Ti 6= T , then the expected cost of defender ai,

denoted by C̄i, will be a function of the strategy profile (A, T, Ti) ∈ R+×R+×R+.

Specifically

C̄i(A, T, Ti) = cE[W i
FP] + v(A)E[W i

FN] + kE[W i
TP].

The best response correspondence for defender ai is then

σi(A, T) = arg min
Ti

{C̄i(A, T, Ti)}.

The bot master maximizes his expected utility by maximizing the cumulative

computational resources stolen from across the compromised network. His util-

ity will then depend on the fraction of defenders that are infected and miss the

detection, as well as the degree to which he utilizes these infected computers. In

the limit of a large population the expected proportion of agents experiencing a

missed detection is equal to the probability of a false negative for a defender cho-

sen uniformly at random from the network. Let defender aø be chosen uniformly

at random from T (λ). Assuming a symmetric, network-wide threshold T , the bot
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master’s expected utility is

U(A, T ) = g(A)E[Wø
FN]. (2.4)

As before we assume g(A) ∈ C2 with dg
dA

> 0, d2g
dA2 ≤ 0 and g(0) = 0. The bet

response correspondence for the bot master is then

σb(T ) = arg max
A
{g(A)E[Wø

FN]}.

2.2.2 Epidemic and Detection Processes

Our model on T (λ) is characterized by the following stochastic processes fol-

lowing [48]. Let χi i.i.d.∼ Bernoulli(p) indicate a direct infection of defender ai by

the bot master b, and let Bkj
i.i.d.∼ Bernoulli(q) indicate possible contagion between

defenders ak and aj for all k 6= j ∈ T (λ). Furthermore we assume Bkj = Bjk for

all k 6= j ∈ T (λ). To take advantage of the structure of T (λ) we introduce the

following Recursive Tree Process (RTP) [3]: For each i ∈ T (λ) let X̃i = 1 if the

infection reaches defender ai either from a direct descendant in the rooted tree

T (λ) or directly from the bot master, and X̃i = 0 otherwise. Let D̃i be the in-

dicator random variable indicating whether defender ai detects such an infection.

The defining equations for X̃i and D̃i are

X̃i = 1− (1− χi)
∏
k→i

(1−Bki(1− D̃k)X̃k), (2.5)

D̃i = 1{Ti≤Si+X̃iA}. (2.6)

Here k → i denotes that defender ak is a direct descendant of defender ai in the

rooted tree. We also define the detection outcome indicator random variables
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associated with the process {X̃i}i∈T (λ):

W̃ i
FP = D̃i(1− X̃i), (2.7)

W̃ i
FN = (1− D̃i)X̃i, (2.8)

W̃ i
TP = D̃iX̃i. (2.9)

The introduction of the processes X̃i and D̃i is done to take advantage of the

structure of T (λ). Note that X̃i and X̃j are independent of one another when

ai and aj are the same distance away from the root node, while X̃i depends only

on the children of ai. Because of this structure we will be able to find analytical

solutions for the distributions on X̃i and D̃i. Moreover if aø is a root defender

associated with a distinguished root node of T (λ), the distributions of X̃ø and

D̃ø will corresponds exactly with the distributions of Xø and Dø, respectively.

As such we will be able to analytically derive the expected cost function of a root

defender aø, allowing a mean field analysis of the game.

As mentioned we focus our analysis on finding symmetric strategies for de-

fenders in the network. Letting T ∈ R+ be a network-wide threshold we look

for invariant processes satisfying (2.5)-(2.6). The fundamental Recursive Distri-

butional Equations (RDEs) [2] which define the invariant process on T (λ) are as

follows:

X̃
d= 1− (1− χ)

N∏
k=1

(1−Bk(1− D̃k)X̃k), (2.10)

D̃k = 1{T≤Sk+X̃kA}. (2.11)

The random variables χ ∼ Bernoulli(p), Sk i.i.d.∼ FS, Bk
i.i.d.∼ Bernoulli(q), and

N ∼ Poisson(λ) are random variables independent of everything in the model.
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The random variables X̃ and X̃k, k = 1, 2, ..., N are i.i.d. copies satisfying (2.10).

Provided a distribution exists that satisfies (2.10) we can define the invariant

decision outcome random variable

D̃
d= 1{T≤S+X̃A}, (2.12)

as well as the invariant detection outcome indicator random variables:

W̃FP
d= D̃(1− X̃), (2.13)

W̃FN
d= (1− D̃)X̃, (2.14)

W̃TP
d= D̃X̃. (2.15)

Equations (2.10)-(2.15) are the fundamental distributional equations describ-

ing all invariant solutions to equations (2.5)-(2.9). Because the propagation of the

epidemic depends on missed detections, the distribution for W̃FN is of fundamen-

tal importance for finding solutions to the above distributional equations. The

following result is analogous to Proposition 2 in [48].

Proposition 2. For fixed T ≥ A ≥ 0, 0 < p ≤ 1 and 0 < q ≤ 1 the distributional

equation for W̃FN has a unique solution: P(W̃FN = 1) = 1 − P(W̃FN = 0) = h,

where h = h(A, T, p, q, λ, FS(·)) is the unique solution in [0, 1] of the fixed point

equation

h = FS(T − A)[1− (1− p)e−λqh]. (2.16)

Proof. Let h = P(W̃FN = 1). Since P (W̃FN = 1|X̃ = 0) = 0 we have h = P(W̃FN =

1|X̃ = 1)P (X̃ = 1). Conditioned on X̃ = 1 the distributional equation reduces to

W̃FN
d= 1{T>S+A}, giving us P(W̃FN = 1|X̃ = 1) = P(T > S + A) = FS(T − A).
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The distributional equation for X̃ satisfies

P(X̃ = 0) = P((1− χ)
N∏
k=1

(1−Bk(1− D̃k)X̃k) = 1)

= (1− p)
∞∑
n=0

(
P
(
B1W̃FN = 0

))n
P(N = n)

= (1− p)
∞∑
n=0

(1− qh)n λ
ne−λ

n!

= (1− p)e−λqh.

Thus P(X̃ = 1) = 1− (1− p)e−λqh, giving us (2.16).

Let f(x, T,A) = FS(T −A)[1− (1−p)e−λqx]. Then f is continuous, increasing

and concave in x. Since f(0, T, A) > 0 and f(1, T, A) ≤ 1 there must be a unique

fixed point of f which depends on A, T, p, q, λ, FS(·).

With Proposition 2 the distributions of the remaining detection indicator ran-

dom variables can be obtained in a similar manner.

Corollary 1. Let S ∼ FS(·) with T ≥ A ≥ 0, 0 < p ≤ 1 and 0 < q ≤ 1. Then the

distributional equations for W̃FP and W̃TP have unique solutions which depend on

the distribution of W̃FN. In particular if E[W̃FN] = h(A, T ) then

E[W̃FP] = [1− FS(T )](1− p)e−λqh(A,T ),

E[W̃TP] = [1− FS(T − A)][1− (1− p)e−λqh(A,T )].

It is important to keep in mind that h depends on all parameters and choice

variables of the model. In particular we will be interested in h(A, T ). We will often

suppress this dependence in the notation for the sake of brevity. By the implicit

function theorem h is differentiable in A and T provided that fS(T − A) 6= 0. A
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direct computation of the derivative of h with respect to A gives

∂h

∂A
= − fS(T − A)[1− (1− p)e−λqh]

1− FS(T − A)λq(1− p)e−λqh . (2.17)

The following lemma guarantees the existence of the derivatives of h. It will

also be useful in further analysis.

Lemma 1. Define θ(A, T ) = 1 − λqFS(T − A)(1 − p)e−λqh where h is defined

as in Proposition 2. For any λq > 0, 0 ≤ p < 1 and T ≥ A ≥ 0, we have

0 < θ(A, T ) ≤ 1.

Proof. See Appendix A.1.

From (2.17) we have ∂h
∂A
≤ 0. Notice that ∂h

∂T
= − ∂h

∂A
, thus the same analysis

above gives us ∂h
∂T
≥ 0. Also note that the dependence on A and T appears only

in the form T − A as arguments in FS(·). Thus h(A, T ) = 0 for all (A, T ) pair

with A ≥ T . Furthermore for any finite A the limiting value of h(A, T ) as T →∞

is the same since for fixed finite A we have

lim
T→∞

h(A, T ) = lim
T→∞

FS(T − A)[1− (1− p)e−λqh(A,T )]

= 1− (1− p)e−λq limT→∞ h(A,T ).

We will denote this limiting value by h∞ , limT→∞ h(A, T ) and observe that it

satisfies the fixed point equation

h∞ = 1− (1− p)e−λqh∞ . (2.18)

Note that in this limit we recover the probability of infection in [48].
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2.2.3 Equilibrium Analysis

In this section we derive the best response correspondences for the decen-

tralized network of defenders and the bot master. We then state and prove the

existence of a pure Nash equilibria in the decentralized botnet detection game.

Defender Population Best Response

To determine a decentralized network’s best response, we investigate what hap-

pens when a single selfish defender deviates from a population threshold T that

all other defenders in the network are playing. Because the root of the network

T (λ) is chosen uniformly at random, we consider the associated root defender aø

to be a “typical” deviant defender. Thus for a fixed strategy A and a fixed sym-

metric network-wide strategy T , we can define a deviant defender’s strategy Tø,

expected cost function C̄ø(A, T, Tø) and best response correspondence σø(A, T ).

For a fixed strategy A we are interested in finding an equilibrium network strategy

T ∗ such that T ∗ ∈ σø(A, T ∗). That is, if the entire network is playing the strategy

T ∗, then a single deviant node has no incentive to deviate from that threshold.

From the distributional equations (2.10)-(3.4) it is clear that if the root de-

fender aø changes his threshold Tø 6= T , this will change his detection outcome,

but it will not change his probability of infection. For the root we need to intro-

duce new distributional equations:

D̃ø
d= 1{S+X̃A≥Tø},

W̃ø
FP

d= D̃ø(1− X̃),

W̃ø
FN

d= (1− D̃ø)X̃,

W̃ø
TP

d= D̃øX̃.
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As mentioned, due to the tree structure of T (λ) the distributions for X̃ø and D̃ø

are equal to the distributions for Xø and Dø. We thus arrive at the following

proposition whose proof is analogous to Proposition 2 and Corollary 1.

Proposition 3. Let S ∼ FS(·) with T, Tø ≥ A ≥ 0, 0 < p ≤ 1 and 0 <

q ≤ 1. Then the distributional equations for Wø
FP,W

ø
FN and Wø

TP have unique

solutions which depend on the distribution of WFN. If E[WFN] = h(A, T ) then the

distributions are given by the following:

E[Wø
FP] = [1− FS(Tø)](1− p)e−λqh(A,T ),

E[Wø
FN] = FS(Tø − A)[1− (1− p)e−λqh(A,T )],

E[Wø
TP] = [1− FS(Tø − A)][1− (1− p)e−λqh(A,T )].

With the above proposition we can determine a root defender’s expected cost

function:

C̄ø(A, T, Tø) = c[1− FS(Tø)](1− p)e−λqh

+ (k + (v(A)− k)FS(Tø − A))[1− (1− p)e−λqh].

To simplify the notation we introduce the function `(A) ≡ v(A) − k. If v(A)

is constant on any interval, all subsequent results hold with slight modification.

Thus without loss of generality we assume `(A) to be differentiable and strictly

monotonically increasing. We furthermore assume `(0) = 0. This gives us

C̄ø(A, T, Tø) = c[1− FS(Tø)](1− p)e−λqh

+ (k + `(A)FS(Tø − A))[1− (1− p)e−λqh]. (2.19)

It is important to notice that h depends on A and T only, not on Tø. In particular
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we have ∂h
∂Tø
≡ 0. Thus the best response for a deviant root defender is

σø(A, T ) = argmin
Tø
{c[1− FS(Tø)](1− p)e−λqh

+ `(A)FS(Tø − A)[1− (1− p)e−λqh]}.

Taking the first derivative we then have

∂C̄ø

∂Tø
= −cfS(Tø)(1− p)e−λqh + `(A)fS(Tø − A)[1− (1− p)e−λqh]. (2.20)

Since fS(Tø − A) = 0 for all Tø < A we have ∂C
∂Tø

< 0 for all Tø ∈ (0, A).

Thus any global minima will be in the interval [A,∞). Recall the likelihood ratio

function:

L(A, Tø) , fS(Tø − A)
fS(Tø) .

Using (2.20) we define the following function:

V (A, T ) , c

`(A)
(1− p)e−λqh

1− (1− p)e−λqh . (2.21)

From (2.20) we see that the single function V (A, T )−L(A, Tø) has the same sign

as ∂C̄ø
∂Tø

. As such we have the relations

∂C̄ø

∂Tø

<
>= 0 ⇐⇒ L(A, Tø)

<
>= V (A, T ). (2.22)

Note that L(A, Tø) depends on A and Tø only, while V (A, T ) depends on A

and T only. Thus for fixed A and T the functional form of L(A, Tø) alone will

determine the optimal response of a deviant defender. In particular if L(A, Tø)

is non-decreasing then C̄ø(A, T, Tø) will be quasi-convex in Tø. However as the

network threshold T varies so too will the optimal response of a deviant defender.
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To better understand how the functions V (A, T ) and L(A, Tø) affect a deviant

defender’s best response, consider the following:

∂V

∂T
= − c

`(A)
λq(1− p)e−λqh ∂h

∂T

[1− (1− p)e−λqh]2
≤ 0.

Thus V (A, T ) is a non-increasing function of T and strictly monotonically de-

creasing for T > A > 0. We wish to show there exists a unique, pure, symmetric

Nash equilibrium among defenders in the network in response to the bot master

aggressiveness A, i.e. there exists a unique T ∗ such that T ∗ ∈ σø(A, T ∗). It turns

out the monotonicity of L(A, Tø) is sufficient to guarantee this.

Proposition 4. For fixed A ∈ R+ if L(A, Tø) is non-decreasing then there exists a

unique network threshold T ∗ ∈ R+ such that T ∗ ∈ σø(A, T ∗), i.e. there is a unique,

pure, symmetric Nash equilibrium among defenders in the network in response to

the bot master strategy A.

Proof. Fix A ∈ R+. Since V (A, T ) is strictly monotonically decreasing for T > A

and L(A, Tø) is non-decreasing, then three possibilities exist: 1) there exists a

unique value T̃ ∈ [A,∞) such that L(A, T̃ ) = V (A, T̃ ), 2) L(A, Tø) < V (A, T ) for

all Tø, T ≥ A, and 3) L(A, Tø) > V (A, T ) for all Tø, T ≥ A. Suppose the first case

is true. Then there exists some values ε1, ε2 ≥ 0 such that L(A, Tø) < V (A, T̃ )

for Tø < T̃ − ε1, L(A, Tø) = V (A, T̃ ) for T̃ − ε1 ≤ Tø ≤ T̃ + ε2, and L(A, Tø) >

V (A, T̃ ) for Tø > T̃ + ε2. By (2.22) we have σø(A, T̃ ) = [T̃ − ε1, T̃ + ε2]. Clearly

T̃ ∈ σø(A, T̃ ). Furthermore, by the uniqueness of T̃ satisfying L(A, T̃ ) = V (A, T̃ ),

it is the only value satisfying T̃ ∈ σø(A, T̃ ).

Now suppose L(A, Tø) < V (A, T ) for all Tø, T > A. Then (2.22) implies

that C̄ø(A, T, Tø) is monotonically decreasing in Tø for all T, Tø > A. Thus

σø(A, T ) = +∞ for all A > 0 and T > A. In particular σø(A,∞) = ∞ and
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T ∗ =∞.

Finally suppose L(A, Tø) > V (A, T ) for all Tø, T > A. Now (2.22) implies

that C̄ø(A, T, Tø) is monotonically increasing in Tø for all T, Tø > A. Thus

σø(A, T ) = A for all A > 0 and T > A. In particular σø(A,A) = A and

T ∗ = A.

We can now define a network population best response correspondence σp :

R+ → R+ which maps a strategy A to the symmetric, mutual best response among

defenders in the network for which no individual has an incentive to unilaterally

deviate. Proposition 4 gives sufficient conditions under which σp(A) is a single

valued function, which can then be written as follows:

σp(A) =



A if L(A, T ) > V (A, T ) for all T,

+∞ if L(A, T ) < V (A, T ) for all T,

T ∗ o.w., where T ∗ is the unique solution to L(A, T ∗) = V (A, T ∗).

Bot Master Best Response

Because we are interested in finding pure Nash equilibria we wish to find under

which conditions U(A, T ) is strictly quasi-concave and σb(T ) is single valued.

Using (2.16) and (2.17) a first order optimality condition for a strategy A∗ ∈ R+

can be expressed as

g(A∗)
g′(A∗) = FS(T − A∗)

fS(T − A∗) θ(A
∗, T ). (2.23)

Notice we have used the definition for θ(A, T ) from Lemma 1. The following

proposition gives a sufficient condition for the strict quasi-concavity of the bot

master’s expected utility function.
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Proposition 5. For T > 0, if there exists a unique A∗ ∈ R+ satisfying (2.23),

then U(A, T ) is strictly quasi-concave with a maximum at A∗ and σb(T ) = A∗. If

T = 0 then U(A, T ) = 0 for all A ∈ R+ and σb(0) ≡ R+.

Proof. Let T > 0. Since g(0) = 0 we have U(0, T ) = 0. Furthermore U(A, T ) = 0

for all A ≥ T and U(A, T ) > 0 for A ∈ (0, T ). Since h(A, T ) is a differentiable

function in A, so too is U(A, T ). Thus by Rolle’s Theorem there exists at least

one A∗ in the open interval (0, T ) such that ∂U
∂A

∣∣∣
A=A∗

= 0. In addition since

U(0, T ) = U(T, T ) = 0 and U(A, T ) > 0 for A ∈ (0, T ), there must be at least

one global maximum in the open interval (0, T ). Clearly if (2.23) has a unique

solution A∗ we must have U(A∗, T ) as a global maximum. Consequently A∗ is the

unique optimal response to the strategy T giving σb(T ) = A∗. Now let T = 0.

Since h(A, T ) = 0 when A ≥ T we get U(A, T ) = 0 for all A. Consequently

A ∈ σb(0) for all A ∈ R+.

We now state a sufficient condition on FS(·) to guarantee the strict quasicon-

cavity of the bot master’s expected utility function for T > 0.

Proposition 6. For fixed T > 0, if ∂
∂A

[
FS(T−A)
fS(T−A)

]
< 1 for all A < T then (2.23)

has a unique solution A∗ ∈ (0, T ).

Proof. We begin by establishing the following facts:

d

dA

[
g(A)
g′(A)

]
≥ 1, (2.24)

∂

∂A

[
FS(T − A)
fS(T − A) θ(A, T )

]
< 1. (2.25)

Directly differentiating gives d
dA

[
g(A)
g′(A)

]
= 1−g(A)g′′(A)

g(A)2 ≥ 1.Differentiating FS(T−A)
fS(T−A) θ(A, T )
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we obtain

∂

∂A

[
FS(T − A)
fS(T − A) θ(A, T )

]
= ∂

∂A

[
FS(T − A)
fS(T − A)

]
θ(A, T )

+
[

1− λqFS(T − A)
θ(A, T )

]
(1− θ(A, T )).

By assumption ∂
∂A

[
FS(T−A)
fS(T−A)

]
< 1 and by Lemma 1 we have 0 < θ(A, T ) ≤ 1. It

remains to be shown
[

1−λqFS(T−A)
θ(A,T )

]
≤ 1. If FS(T −A) ≥ 1

λq
then this is clearly the

case. On the other hand if FS(T − A) < 1
λq

then

1− λqFS(T − A) < 1− FS(T − A)(1− p)λqe−λqh = θ(A, T ),

giving us
[

1−λqFS(T−A)
θ(A,T )

]
< 1 from which we obtain ∂

∂A

[
FS(T−A)
fS(T−A) θ(A, T )

]
< 1. Since

g(0)
g′(0) = 0 and FS(T )

fS(T ) θ(0, T ) > 0, properties (2.24) and (2.25) guarantee that (2.23)

has a unique solution. By Proposition 5 the result follows.

Nash Equilibrium

We are now ready to prove the existence of a pure Nash equilibria in the large-

population botnet detection game between the network of decentralized defenders

and the bot master. As we have seen the function V (A, T ) = c
`(A)

(1−p)e−λqh(A,T )

1−(1−p)e−λqh(A,T )

played an important role in determining the response functions of the defenders.

In the proceeding analysis we will need the limiting values of this function. For

ease of exposition we define the following functions:

V0(A) , lim
T↓A

V (A, T ) = c

`(A)
1− p
p

, (2.26)

V∞(A) , lim
T→∞

V (A, T ) = c

`(A)
(1− p)e−λqh∞

1− (1− p)e−λqh∞ , (2.27)
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where h∞ is the unique solution to (2.18). Note that by the monotonicity of `(A)

we obtain dV0
dA
, dV∞
dA

< 0. Furthermore the monotonicity of V (A, T ) in T gives us

V∞(A) < V0(A) for all A ∈ (0,∞).

Finally, to establish our result we will need the following lemmas which give

us important properties of the best response correspondences σb(T ) and σp(A).

For the next lemma we define the values A0 and A∞ as solutions to the following

equations, provided unique, non-negative solutions exist:

L∞(A∞) = V∞(A∞), (2.28)

L0(A0) = V0(A0). (2.29)

Given our assumption that `(0) = 0 and limA→∞ `(A) = +∞ we see from

(2.27) that limA↓0 V∞(A) = +∞ and limA→∞ V∞(A) = +∞. By the monotonicity

of `(A) we obtain the monotonicity of V∞(A). Given the monotonicity of L∞(A)

we are guaranteed for (2.28) to have a unique, non-negative solution. Under the

assumptions of our model (2.29) is guaranteed to have a unique, non-negative

solution only when ∂L
∂T
≡ 0. When ∂L

∂T
> 0 we have L0(A) ≡ 0 < V0(A) for all

finite A, in which case A0 = +∞ and is not needed in the subsequent proofs.

Lemma 2. Given the expected cost function C̄ø(A, T, Tø) in (2.19), the following

properties of σp(A) hold.

1. For A ≥ 0, σp(A) ≥ A.

2. For 0 ≤ A ≤ A∞, σp(A) =∞.

3. For A > A∞, σp(A) is continuously differentiable with limA↓A∞ σp(A) =∞.

4. lim supA→∞ σp(A)− A = 0. If ∂L
∂T
≡ 0 then for A ≥ A0, σp(A) = A.

Proof. See appendix A.2

40



Lemma 3. Given the expected utility function U(A, T ) in (2.4) with FS(·) satis-

fying the properties of Lemma 6, the following properties of σb(T ) hold.

1. For T > 0, 0 < σb(T ) < T .

2. For T > 0, σb(T ) is continuously differentiable.

3. lim supT→∞ σb(T ) =∞ with

lim supT→∞ (T − σb(T )) > 0.

4. For all A ∈ (0,∞) there exists a finite T̃ > 0 such that σb(T̃ ) = A.

Proof. See Appendix A.3

We now state and prove the existence of a pure Nash equilibrium in the large-

population botnet game on T (λ).

Theorem 1. Let S ∼ FS as in Assumption 1. Then in the large-population,

botnet detection game on T (λ) with homogeneous defenders, there exists a pure

Nash equilibrium (A∗, T ∗) ∈ R+ × R+ with all defenders playing the symmetric

strategy T ∗.

Proof. First consider the case where ∂L
∂T
≡ 0. Suppose A ≤ A∞. It follows

from Lemma 2 property 2 that for all A ≤ A∞ we have σp(A) = ∞, hence

U(A, σp(A)) = limT→∞Ah(A, T ) = Ah∞. But for any finite M > 0 we have

U(A+M,T ∗) = (A+M)h∞ > Ah∞ = U(A, T ∗) for all such A. It follows that A

is not a best response and there are no pure Nash equilibrium with A∗ ∈ [0, A∞].

On the other hand suppose A ≥ A0. By Lemma 2 property 4 σp(A) = A. Then

we have U(A, σp(A)) = U(A,A) = Ah(A,A) = 0, and for sufficiently small ε > 0

we have U(A − ε, A) = (A − ε)h(A − ε, A) > 0 and the bot master will benefit

from decreasing his aggressiveness . Clearly such an A is not a best response, and

any strategy set (A∗, T ∗) with A∗ ≥ A0 is not a Nash equilibrium.
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We thus restrict our attention to A ∈ (A∞, A0). By property 4 of Lemma 3

there exists a finite value T∞ such that σb(T∞) = A∞ and a finite value T0 > 0

such that σb(T0) = A0. By Lemma 2 we have σp(σb(T∞)) = ∞ > T∞ and

σp(σb(T0)) = σb(T0) < T0. In other words when looking along the T axis at T∞

the function σp(·) is above the function σb(·) while at T0 the function σp(·) is below

the function σb(·). By the continuity of both σp(·) and σb(·) the functions must

cross at some point (A∗, T ∗) giving us σb(T ∗) = A∗ and σp(A∗) = T ∗.

The proof for ∂L
∂T

> 0 is similar to the above with one exception. In this case

we have σp(A) > A for all A with limA→∞ σp(A) = A. Thus the continuity of

σp(A) and σb(T ) is not enough to guarantee the response functions cross.

Suppose σb(·) and σp(·) do not cross. From property 1 of Lemma 3 we have

limT↓0 σb(T ) = 0. Thus there must exist some finite T∞ such that 0 < σb(T∞) <

A∞. Since σp(A) = ∞ for all A ≤ A∞ we then have σp(σb(T∞)) = ∞. Thus

σp(σb(T∞)) > T∞. By our assumption that σb(·) and σp(·) do not cross we must

have σp(σb(T )) > T for all T > 0. From Lemma 3 we have T > σb(T ) for all

T > 0. Together this gives us the following:

σp(σb(T )) > T > σb(T ). (2.30)

From Lemmas 2 and 3 we have lim supT→∞ σb(T ) =∞ and limA→∞ σp(A)−A = 0.

It follows that

lim sup
T→∞

[σp(σb(T ))− σb(T )] = lim
A→∞

[σp(A)− A] = 0.

Then by (2.30) lim supT→∞[T − σb(T )] = 0. But this contradicts lim supT→∞[T −

σb(T )] > 0 from Lemma 3. Hence σb(·) and σp(·) must cross at least once.
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2.3 A Centralized, Large-Population Botnet Game

2.3.1 Centralized Expected Cost and Best Response

Another approach to the large-population botnet detection game is to consider

the effects of a centralized planner on the game. Suppose there is a single player

P0 whose strategy space is R+ and chooses a threshold T ∈ R+ for all defenders to

follow. We keep the same expected cost function and best response correspondence

as for an individual defender. As such we define the centralized expected cost

function and best response correspondence, respectively, as follows:

C̄c(A, T ) , c[1− FS(T )](1− p)e−λqh(A,T )

+ (k + `(A)FS(T − A))[1− (1− p)e−λqh(A,T )],

σc(A) , arg min
T

{C̄c(A, T )}.

The difference is that now ∂h
∂T

> 0, since a central planner chooses a threshold

for the entire population. As such the results from the decentralized case do not

apply. In order to obtain equilibrium results for the centralized case we first need

to establish the strict quasi-concavity of the central planner’s expected utility in

the symmetric threshold strategy T .

For ease of exposition we use the function ρ(A, T ) as defined in (A.1) in the

proof of Lemma 2 in appendix A.2. With this new notation we can rewrite h(A, T )

and θ(A, T ).

h(A, T ) = FS(T − A)(1− ρ(A, T )) (2.31)

ρ(A, T ) = (1− p)e−λqh(A,T ) (2.32)

θ(A, T ) = 1− FS(T − A)λqρ(A, T ) (2.33)
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To prove the strict quasi-concavity of the central planner’s expected utility we

will need the function

h∞(φ) = 1− (1− p)e−φh∞(φ)

as well as the following technical lemmas.

Lemma 4. Let h∞(φ) be defined as above. Then

1. limφ→0 h∞(φ) = p.

2. limφ→∞ h∞(φ) = 1.

3. limφ→0 φe
−φh∞(φ) = 0.

4. limφ→∞ φe
−φh∞(φ) = 0.

Proof. The proofs follow directly from the definition of h∞(φ).

Lemma 5. For any φ ≥ 0, and p ∈ [0, 1] we have

φe−φh∞(φ)
<
>= 1

2(1− p) ⇐⇒ φe−φ
<
>= e−

1
2

2(1− p) .

Proof. See appendix A.4.

Lemma 6. For any φ ≥ 0, and p ∈ [0, 1] we have

1− 2(1− p)φe−φh∞(φ) + (1− p)e−φh∞(φ) ≥ 0.

Proof. See appendix A.5
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Lemma 7. For any T ≥ A, λq > 0 and p ∈ [0, 1], if fS(T−A)
fS(T ) is non-decreasing in

T then

1− 2FS(T − A)λqρ(A, T ) + ρ(A, T ) ≥ 0.

Proof. See appendix A.6

We are now ready to prove the strict quasi-concavity of the Centralized Plan-

ner’s expected cost function.

Proposition 7. Fix A > 0, λq > 0 and p ∈ [0, 1]. If fS(T−A)
fS(T ) is non-decreasing in

T , then the Central Planner’s expected cost is strictly quasi-convex in T .

Proof. Fix A ≥ 0. First observe that ∂C
∂T
≤ 0 for T ∈ [0, A]. We thus consider

T > A. Taking derivatives of (2.31) - (2.33) we obtain

∂h

∂T
= fS(T − A)(1− ρ)

θ
,

∂ρ

∂T
= −fS(T − A)λqρ(1− ρ)

θ
,

∂θ

∂T
= −fS(T − A)λqρ

θ
[1− FS(T − A)λq] .

Taking first derivatives of C̄c(A, T ) we obtain

∂C̄c
∂T

= −cfS(T )ρ− c[1− FS(T )]λqρfS(T − A)(1− ρ)
θ

+ `(A)fS(T − A)(1− ρ) + (k + `(A)FS(T − A))λqρfS(T − A)(1− ρ)
θ

.

45



By assumptions on FS(·) we have fS(T − A)(1− ρ) > 0, and we can write

∂C̄c
∂T

θ

`(A)fS(T − A)ρ(1− ρ) = − c

`(A)
fS(T )

fS(T − A)
θ

1− ρ

− c

`(A) [1− FS(T )]λq + 1
ρ

+ k

`(A)λq.

Define the function

M(A, T ) , − c

`(A)
fS(T )

fS(T − A)
θ

1− ρ −
c

`(A) [1− FS(T )]λq + 1
ρ

+ k

`(A)λq. (2.34)

Since θ
`(A)fS(T−A)(1−ρ) > 0 for all T > A we have sign (M) = sign

(
∂C̄c
∂T

)
for all

T > A, so for fixed A the first order condition of optimality of C̄c(A, T ) in T

is M(A, T ) = 0. We proceed to show that M(A, T ) is strictly monotonically

increasing for T > A, from which it follows that C̄c(A, T ) is strictly quasi-convex

for T > A.
∂M
∂T

> 0 if and only if

fS(T − A)λq1− ρ
θρ

+ c

`(A)fS(T )λq >

c

`(A)
∂

∂T

[
fS(T )

fS(T − A)

]
θ

1− ρ −
c

`(A)
fS(T )λqρ
θ(1− ρ) [2− FS(T − A)λq(1 + ρ)] ,

if and only if

c

`(A)
fS(T )λq
θ(1− ρ) [1− 2FS(T − A)λqρ+ ρ] >

c

`(A)
∂

∂T

[
fS(T )

fS(T − A)

]
θ

1− ρ − fS(T − A)λq1− ρ
θρ

.
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For notational convenience we introduce the following functions:

u(A, T ) , c

`(A)
fS(T )λq
θ(1− ρ) [1− 2FS(T − A)λqρ+ ρ] ,

v(A, T ) , c

`(A)
∂

∂T

[
fS(T )

fS(T − A)

]
θ

1− ρ − fS(T − A)λq1− ρ
θρ

.

Thus ∂M
∂T

> 0 if and only if u(A, T ) > v(A, T ). By assumption ∂
∂T

[
fS(T )

fS(T−A)

]
≤ 0

for all A, T ≥ 0 which gives us v(A, T ) ≤ 0. Furthermore it was assumed that

fS(x) > 0 for x > 0 which implies v(A, T ) < 0 for T > A. On the other hand

by Lemma 7 it follows that u(A, T ) ≥ 0. Hence u(A, T ) > v(A, T ) and the result

follows.

2.3.2 Centralized Nash Equilibrium

We are now ready to establish the existence of a pure, symmetric (among

defenders) Nash equilibrium for the centralized botnet game on T (λ). As we

have seen the function M(A, T ) in (2.34) was crucial in determining the best

responses for the central planner. In the proceeding analysis we will need the

limiting values of this function. First note the following: limT↓A ρ(A, T ) = 1 − p

and limT↓A θ(A, T ) = 1. For ease of exposition we use the value ρ∞ = (1−p)eλqh∞

defined in (A.2) in the proof of Lemma 2. Similarly we define θ∞ as the limiting

value of θ(A, T ) as T →∞:

θ∞ , lim
T→∞

θ(A, T ) = 1− (1− p)λqe−λqh∞ .
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We define the limiting values of the function M(A, T ) as follows:

M0(A) , lim
T↓A

M(A, T ), (2.35)

M∞(A) , lim
T→∞

M(A, T ). (2.36)

From the definition we have

M∞(A) = − c

`(A)
1

L∞(A)
θ∞

1− ρ∞
+ 1
ρ∞

+ k

`(A)λq.

For the case ∂L
∂T

> 0 we have limT↓A L(A, T ) ≡ 0 for all A. It follows that

M0(A) = −∞ for all A. For the case ∂L
∂T
≡ 0 we have

M0(A) = − c

`(A)
1

L0(A)
1
p
− c

`(A)(1− FS(A))λq + 1
1− p + k

`(A)λq.

Similar to the decentralized case we use these functions to restrict the strategy

space in which we look for equilibria. To do so we seek non-negative solutions to

the following equations:

M0(A) = 0, (2.37)

M∞(A) = 0. (2.38)

Unlike the decentralized case we cannot guarantee the strict monotonicity of (2.35)

and (2.36), as such we cannot guarantee the existence or uniqueness of solutions

to (2.37) and (2.38). If solutions to (2.37) and (2.38) exist we define Ac
0 and Ac

∞
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as follows:

Ac
0 , inf {x : M0(x) = 0}, (2.39)

Ac
∞ , sup {x : M∞(x) = 0}. (2.40)

Under the assumptions of our model equation (2.37) is guaranteed to have

a non-negative solution only when ∂L
∂T
≡ 0. When ∂L

∂T
> 0 we have M0(A) =

−∞ for all A, in which case Ac
0 is not defined, nor needed in subsequent proofs.

Equation (2.38) is guaranteed to have a non-negative solution when λq < c
k

θ∞
1−ρ∞ .

In what follows we assume (2.38) has a non-negative solution, however this is not

a necessary assumption to arrive at the existence of a Nash equilibrium. The

existence proof is nearly identical for the case that (2.38) has no solution. We

focus on a single case for brevity.

To establish our result we will need the following lemmas, analogous to Lemmas

2 and 3, which give us important properties of the best response correspondences

σc(A) and σb(T ).

Lemma 8. The following properties of σc(A) hold.

1. For A ≥ 0, σc(A) ≥ A.

2. For A > Ac
∞, σc(A) is continuously differentiable with limA↓Ac

∞ σc(A) =∞.

3. lim supA→∞ σc(A)− A = 0. If ∂L
∂T
≡ 0 then for lim supA↑Ac

0
σc(A)− A = 0.

Proof. See Appendix A.7.

Lemma 9. The following properties of σb(T ) hold.

1. For T > 0, 0 < σb(T ) < T .

2. For T > 0, σb(T ) is continuously differentiable.
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3. lim supT→∞ σb(T ) =∞ with lim supT→∞ (T − σb(T )) > 0.

4. For all A ∈ (0,∞) there exists a finite T̃ > 0 such that σb(T̃ ) = A.

Proof. The proof is unchanged from the decentralized case, as σb(T ) is indepen-

dent of σc(A).

We are now ready to prove the existence of a pure Nash equilibrium in the

centralized botnet detection game.

Theorem 2. Let S ∼ FS as in Assumption 1. Then in the centrally-planned,

large-population, botnet detection game on T (λ) with homogeneous defenders,

there exists a pure, symmetric (among defenders) Nash equilibrium.

Proof. Given Lemmas 9 and 8 the proof is analogous to the decentralized case.

2.4 Numerical Examples

In this section we examine numerical results to study network effects on de-

fender threshold strategies. We will consider both the non-adversarial and adver-

sarial setting. That is we consider two scenarios for the signal strength/aggressiveness

A: fixed and strategic. When we consider A to be fixed we will be interested in

computing the Price of Anarchy for the decentralized defenders in relation to the

central planner. When we consider a strategic adversary and A is not fixed we

will compute the pure, defender-symmetric Nash equilibria in the botnet detection

game for both the decentralized and centralized games.

Recall that λ is the average number of neighbors in the underlying random

graph while q is the probability of contagion between neighbors given the pres-

ence of the infection. Thus λq represents the defining parameter for the underlying
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infection graph. Our parameter study involves numerically solving for Nash equi-

libria for the values λq ∈ [1, 15].

Recall that k is the cost of raising an alarm regardless of its outcome, c is

the cost of a false alarm and v(A) is the cost of a false negative given a bot

master strategy of A. By necessity c > k. Thus we introduce the difference

r , c − k so that we can write c = r + k. Throughout we have assumed that

v(A) ≥ k. This means the cost of a missed detection is at least as great as the

cost of raising an alarm, no matter the aggressiveness of the bot master. In our

numerical examples we have made the further assumption that v(A) = mA + k

for some positive value m. We fix k = 1 and consider varying the values of r and

m to understand the effects of the defender cost function on the best response

strategies. Other parameter values used in the numerical examples are p = 0.01

and S ∼ gamma(2, 2).

We begin by pointing out why decentralized and centralized defenders arrive at

different strategies in the first place. A decentralized, selfish individual will seek to

minimize his own costs by unilaterally deviating from the current network strategy.

Furthermore because the network population is large, a deviant decentralized

defender assumes that changing his own strategy has a negligible effect on the

network population as a whole. As such he assumes the probability of infection is

fixed in relation to his own choice of strategy. He only has control over his own

probability of a false alarm or missed detection conditioned on the probability of

infection. The decentralized network threshold is then chosen via Nash equilibria:

a threshold in which no individual has an incentive to deviate. On the other hand

the central planner takes into account the fact that when he changes the thresholds

across the network, this will change the unconditioned probability of false alarms

and missed detections. Thus the central planner does a proper optimization which
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takes the network effects into account. We then have two distinct methods for

determining best responses to an attack value A: Nash equilibrium and differential

calculus. There is no reason a priori why these two methods should arrive at the

same solution, and as we will see below they almost surely do not. We numerically

study these differences and their effects on the social welfare of the networked

population.

2.4.1 Non-strategic attacker

We first examine the case of non-adversarial interdependent detection, i.e. the

attack/signal strength A is fixed. This way we can explore network effects with-

out the complications associated with equilibrium solutions between the attacker

and defenders. Recall that for any fixed A ≥ 0 there exists a unique symmetric,

Nash equilibrium population response T ∗d (A) = σp(A) as well as a unique cen-

trally planned, symmetric population best response T ∗c (A) = σc(A). We will be

interested in the effects that the model parameters have on these best responses.

In particular we will vary the network contagion potential parameter λq as well

as the attack strength A. We will fix the cost of raising an alarm at k = 1 and

consider various values for the detection costs r and m.

Threshold Comparison

Figure 2.1 shows us where in the λq-A plane T ∗c > T ∗d and T ∗c < T ∗d for four

different combinations of r and m. The parameter r (cost of false alarm minus

cost of raising an alarm) appears to determine the qualitative features of the plots

in Figure 2.1: For “small” false alarm values (r = 0.1) we see T ∗c < T ∗d for all

computed values of (λq,A). For “large” false alarm values (r = 5) we see two

distinct regimes, one in which T ∗c < T ∗d and one in which T ∗c < T ∗d .
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To understand why the parameter r controls this qualitative feature it is helpful

to consider what a selfish, individual defender will want to do when the entire

population plays the central planner’s optimal threshold. First consider the case

that r is small as in Figures 2.1a and 2.1c. In these cases r is small in relation

to k which means the cost of a false alarm is relatively small in relation to the

cost of raising an alarm. In this case T ∗c < T ∗d , i.e. the decentralized defenders are

less vigilant (more tolerant of observed disturbances). When the cost of raising

an alarm is high it stands to reason that a central planner will take this into

account and raise fewer alarms. This is accomplished by choosing a relatively

high threshold. However the central planner cannot choose too high a threshold

since this will increase the missed detection rate and hence increase the rate

of infection in the network, and higher infection rates will increase the number

of alarms raised, which are costly! In contrast a selfish decentralized defender

does not take the change in infection probability into account when choosing his

threshold. Thus the temptation to choose high thresholds to avoid raising alarms

is not tempered by a fear of increasing the infection rate which itself leads to more

alarms. So if the network is playing the central planner’s best response threshold,

a selfish individual defender will want to unilaterally lower his own threshold to

reduce alarms raised. This can be thought of as a free-rider-like effect. The cost

of raising an alarm dominates the decision process and defenders are reluctant to

raise alarms at all. Thus they tend to free-ride on the vigilance of the rest of the

population. Since this line of reasoning is independent of λq or A we see the same

phenomenon (T ∗c < T ∗d ) throughout the λq-A plane.

The case when r is small as in Figures 2.1b and 2.1d is more interesting as

we see the two distinct regimes. In these cases r is large relative to k which

means that false alarms are costly compared to raising an alarm. Thus the central
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planner counteracts this by choosing relatively higher threshold. This lowers the

false alarm rate. But why do the decentralized agents settle on a lower threshold

(which will result in more false alarms) at all when the cost of false alarms is high?

If A is sufficiently small and λq is sufficiently large, then the epidemic spreads

more and infections are harder to detect. Thus the red regions in Figures 2.1b and

2.1d correspond to the cases where there is a high potential for contagion and the

attacker is stealthy. This would suggest that the potential for missed detection is

high. (High contagion potential + stealthy attacker = missed detection!) When

considering a threshold to choose, one may be tempted to select a low threshold

to mitigate this potentially high number of missed detections. But this is not the

optimal strategy. Why not? Precisely for two reasons. The first reason is that

the red regions appear only when r is high relative to k. That means the cost of

a false alarm is high, and most of the cost is coming from the penalty for making

a wrong decision and not the cost of raising the alarm. Thus a lower threshold

will increase the number of false alarms, especially when we take the network

effects into account: Lower thresholds mean more detections, which means fewer

contagions which means a lower probability of infection. So you are raising more

alarms even though the probability of infection has gone down. The net effect

will be a high probability of false alarm (which are costly). The second factor

is the stealthiness of the attacker. Not only does this make the attacker harder

to detect, but it also makes missed detections less costly. For sufficiently small

A, the decrease in missed detections that result from choosing a small threshold

does not compensate for the increase in false alarms, because the low A means the

missed detections were not costly to begin with. So by choosing low thresholds

across the entire network you have increased the number of false alarms (which

are costly) and decreased the number of missed detections (which are not costly)!
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This reasoning shows us why the central planner does not choose a low thresh-

old in this region. But why does a selfish individual not do the same? Why does a

selfish individual lower his threshold in the face of costly false alarms? This seems

counter intuitive. The reason is due to network externalities. An individual agent

in a large network assumes (somewhat justifiably) that if he unilaterally changes

his threshold then this will not affect the overall probability of infection in the

network. Thus in the red region, if he lowers his threshold from the centrally

planned threshold, it does not decrease the probability of infection, it only in-

creases his probability of false alarms. Similarly the lower threshold decreases his

probability of missed detection but it does not make infections less likely. Because

λq is relatively large, as mentioned before, the epidemic is more likely to reach the

individual, thus his reasoning leads him to conclude that he will benefit by lower-

ing his threshold to counter the high probability of infection. But this reasoning,

when applied to each selfish individual in the network puts a downward pressure

on the network wide threshold relative to the central planner’s optimal thresh-

old. The Nash equilibrium response then winds up being lower than the central

planner’s optimal threshold, thus reducing the probability of infection across the

network. This results in more false positives (which are costly). Thus by ignoring

the network effect of choosing a lower threshold, a selfish individual overestimates

the benefit from the reduction in missed detections.

Conversely we may ask, why doesn’t the central planner lower his threshold

to match the decentralized defenders? It is because he takes network effects into

account. He sees that if he were to lower his threshold, then this would decrease

the spread of the infection, which is a good thing, but this would also result in an

increase in false alarms. And since false alarms are costly, the net effect would be

that he is worse off than if he played a higher threshold.
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(a) r = 0.1,m = 0.1, k = 1 (b) r = 5,m = 0.1, k = 1

(c) r = 0.1,m = 5, k = 1 (d) r = 5,m = 5, k = 1

Figure 2.1: Threshold comparison. Red: T ∗c > T ∗d , Blue: T ∗c < T ∗d .

Note that we do not see the above phenomenon for low values of λq or large

values of A. Why is this? Since the cost of a missed detection increase with A,

when A is sufficiently large then the cost of a missed detection will dominate the

cost of a false alarm and the central planner will take this into account, i.e. he

lowers his threshold. This reduces the spread of the epidemic enough that selfish

individual defenders will think they can free ride on the vigilance of the network.

Similarly when λ is sufficiently small the probability of infection is low, and when

this probability is small enough, selfish individual defenders will reason that they

can reduce false alarm costs by raising their threshold from the central planner’s

optimal threshold. In both cases this is again similar to a free-rider-like effect in

which selfish individuals free-ride off the vigilance of the network.
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Price of Anarchy

For a fixed (λq,A) point we define the Price of Anarchy (PoA) as the ra-

tio of decentralized cost to the centralized cost at their respective best response

strategies:

PoA(λq,A) , C(λq,A, T ∗d (A))
C(λq,A, T ∗c (A)) .

Figure 2.6 shows the Price of Anarchy at each computed point in the λq-A plane.

The parameter m (multiplicative component of missed detection cost) appears to

determine the qualitative features of the plots in Figure 2.6. For “small” values,

i.e. m = 0.1, we see a greater range in the Price of Anarchy. In particular the

value of PoA takes on larger values and takes higher values over a larger range of

the parameter space. For “large” values, i.e. m = 5 we see less variation in the

Price of Anarchy.

First consider the case where m is “small”, i.e. m = 0.1, shown in Figures 2.2a

and 2.2b. We first observe that for values of A that are either very large or very

small the PoA ≈ 1. When A is very large then there are two factors which lead

to this observation: First, the infection is easier to detect with thresholds close to

A, and second, the cost of a missed detection is relatively high. The first point

leads to low false alarm costs. Combining this with the second point it can be

seen that choosing a threshold close to A will minimize the expected cost. Thus

a central planner will choose a threshold close to A and a selfish defender cannot

free-ride on this vigilance without risking the missed detection costs. This can

also be seen from the results of Lemmas 2 and 8: T ∗c (A)−A ↓ 0 and T ∗d (A)−A ↓ 0

as A→∞. Thus we have |T ∗c (A)− T ∗d (A)| ↓ 0 as A→∞. As a consequence we

will have PoA(λq,A) = C(λq,A,T ∗d (A))
C(λq,A,T ∗c (A)) → 1 as A → ∞. On the other hand when

A is sufficiently small there is virtually no cost from missed detections. Thus

expected costs are minimized by choosing large thresholds for both centralized
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and decentralized defenders.

Now consider the case where again m = 0.1 but A is not too high or too low.

When A is not too high a selfish individual defender will not suffer a great deal

from missed detections (provided the rest of the network is playing a threshold

that is not too high). Thus he will free ride and choose a higher than socially

optimal threshold. If A is not too high and not too low and λq is relatively large,

then this tendency to free ride winds up being more costly to the decentralized

agents in terms of missed detections. Why? Because the high value of λq increases

the spread of the infection so defenders are more likely to get infected. Since A

is not too large, many of these infections will be harder to detect. Since A is not

too small, the penalty for a missed detection is not trivial. The net effect is that

the Price of Anarchy is greater in this regime. This explains the large hot spots

in the graph for larger values of λq.

Suppose λq is large and A is not too high nor too low, so that the above

reasoning does not apply. This means that the infection potential is high while

the strength of the attack is high enough to generate a non-trivial cost of missed

detection but low enough so that it is non-trivial to detect the presence of the

infection. Now suppose m is low. This reduces the cost of missed detections

for a given A when compared to high m. The central planner takes account

of these factors and picks an optimal threshold T ∗c (A, λq). Because A is larger,

selfish decentralized defenders tend to free-ride off of this strategy, i.e. they select

higher thresholds than the central planner. Because m is low and because they

do not take the network effects into account, they only consider reducing false

alarms. They are free-riding on the vigilance of the network and raise fewer

alarms. As a result decentralized defenders increase the spread of the infection in

the network relative to the centrally planned network. Moreover the lowerm leads
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decentralized defenders to believing they can benefit from raising less alarms by

raising their thresholds more than they would with higher m. So the lower missed

detection cost induces them to free ride more (play higher thresholds) than they

would were missed detection costs higher. These higher thresholds lead to higher

infection rates. While this does in fact reduce false alarms it increases the missed

detection cost more than they anticipated due to the higher infection rates.

On the other hand whenm is larger decentralized defenders are not tempted to

free ride as much. Thus when they raise their thresholds the subsequent increase

in infection rates is not as severe and they do not deviate as far from the central

planner’s expected cost. This potentially explains why we see the large “hot spots”

for the PoA when λq is large and A takes on medium values (Figures 2.2a and

2.2b).

The high POA that occur for low values of λq occur in all plots, thus we

suspect that they do not depend on the parameters studied here. One possibility

is that they are related to the epidemic threshold λq = 1 where the infection

graph has a fully connected large component. Because we have assumed an Erdős-

Rényi random graph we know there exists an epidemic threshold at λq = 1 [24].

Perhaps for a range of A values when the giant connected component appears the

central planner is able to leverage the connectivity of the graph by controlling the

spread of the infection in the network. After all this ability is his main advantage

in selecting strategies. When there is no giant connected component he cannot

utilize this ability.
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Price of Anarchy

(a) r = 0.1,m = 0.1, k = 1 (b) r = 5,m = 0.1, k = 1

(c) r = 0.1,m = 5, k = 1 (d) r = 5,m = 5, k = 1

Figure 2.2: Price of Anarchy: PoA(λq,A) = Cd(A, T ∗d (A), λq)/Cc(A, T ∗c (A), λq).

2.4.2 Adversarial Interdependent Detection

Using the Nash equilibrium results from the previous section we can nu-

merically estimate Nash equilibria for both decentralized and centralized games.

Though we are not guaranteed of the uniqueness of a pure, symmetric Nash equi-

librium in either the centralized or decentralized game, visual inspection of the

best response functions in the strategy space suggests uniqueness of the equilib-

ria in the examples considered. Figure 2.7 shows an example plot of the best

response functions in the strategy space R+ × R+ where the single crossings of

the best response functions can be clearly seen. Given such a plot one can esti-
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False Negative Rate

(a) Centralized (b) Decentralized

Figure 2.3: False negative rate h(λq,A) for centralized and decentralized de-
fenders as a function of A and λq. This can be interpreted as the relative size of
the botnet after defenders have performed their detection and removal processes.
Parameters are r = 5,m = 0.1, k = 1.

Bot master utility

(a) Centralized (b) Decentralized

Figure 2.4: Bot master utility U(A, T ∗(A)) for centralized and decentralized
defenders as a function A and λq. Parameters are r = 5,m = 0.1, k = 1.

mate a bounded region in the strategy space where the Nash equilibrium exists.

Given these bounds one can numerically solve for the equilibrium strategies by
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Defender Cost

(a) Centralized (b) Decentralized

Figure 2.5: Defender cost C(A, T ∗(A)) for centralized and decentralized defend-
ers as a function A and λq. Parameters are r = 5,m = 0.1, k = 1.

Probability of Infection

(a) Centralized (b) Decentralized

Figure 2.6: Probability of infection for centralized and decentralized defenders
as a function A and λq. Parameters are r = 5,m = 0.1, k = 1.

minimizing a regret function R(A, T ) defined by

R(A, T ) , (T − σ(A))2 + (A− σa(T ))2,

where σ(A) is either the decentralized or centralized best response function de-

pending on which Nash equilibria you are solving for. This optimization problem
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Figure 2.7: Best response functions in strategy space R+ × R+. Parameters are
λq = 5, k = 5, c = 1 + k, v(A) = A+ k, p = 0.01.

can be solved relatively efficiently with standard numerical solvers. The Nash

equilibrium results in previous sections guarantee the existence of solutions for

the numerical schemes.

For a given parameter set let (A∗c , T ∗c ) and (A∗d, T ∗d ) denote pure, symmetric

Nash equilibria in the centralized and decentralized games, respectively. For the

same parameter set let X̃∗c and X̃∗d denote indicator random variables for infection

at equilibrium in the centralized and decentralized games, respectively. We denote

the expected costs for a root defender at equilibrium by C̄∗c = C̄c(A∗c , T ∗c ) and

C̄∗ø = C̄ø(A∗d, T ∗d ) in the centralized and decentralized botnet detection games

respectively. Similarly we denote the bot master expected cost at equilibrium by

U∗c = U(A∗c , T ∗c ) and U∗d = U(A∗d, T ∗d ). Finally we let p∗c and p∗d be the probability

of infection at equilibrium, i.e. P (X̃∗c = 1) = p∗c and P (X̃∗d = 1) = p∗d, in the

centralized and decentralized games respectively.

We explore two parameter sets in solving for Nash equilibria in each game.

In both cases we fix the cost of raising an alarm, k = 1, and set the cost of

missed detections to be v(A) = 5A + 1, i.e. m = 5. We again vary the network

contagion parameter λq ∈ (0, 15). Finally we consider two values for the cost of
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a false alarm: c = 0.1 + k = 1.1 and c = 5 + k = 6. Recall this is equivalent

to the parameter r taking on values 0.1 and 5 respectively. For comparison these

parameter sets correspond to those used in Figures 2.1c and 2.1d.

When analyzing the defender strategies at equilibrium with an attacker, it is

important to point out the main difference from the previous numerical results,

which analyzed defender strategies for fixed A. Because the attacker is strategic,

for any fixed set of parameters the decentralized defenders and central planner

will select different thresholds. These different thresholds will result in the strate-

gic attacker playing different attack strategies. This will be of importance in

understanding some of the more counterintuitive results.

First consider the case that r = 0.1. As we saw from Figure 2.1c this parame-

ter set is characterized by the decentralized defenders free-riding on the vigilance

of the central planner. This results in the decentralized defenders choosing higher

thresholds than the central planner for any fixed A. When we consider a strategic

attacker and solve for the Nash equilibria we see that again, decentralized defend-

ers choose higher thresholds than the central planner, as can be seen in Figure 2.9a.

Consequently the attacker plays higher aggressiveness strategies against the decen-

tralized defenders than against the central planner at equilibrium, as can be seen

in Figure 2.9b. Moreover the attacker is able raise his aggressiveness in equilibrium

in such a way that T ∗d −A∗d > T ∗c −A∗c , as can be seen in Figure 2.10a. As a result

infection rates and missed detection rates go up (Figures 2.10b and 2.10d), as does

the cost of a missed detection, since A∗d > A∗c =⇒ v(A∗d) > v(A∗c). Because false

positive costs are low the central planner is able to fair better while experienc-

ing higher false positive rates at equilibrium. Furthermore since v(A∗d) > v(A∗c)

the missed detection costs the central planner experiences are lower as well. The

overall effect is that the central planner is able to fair better in equilibrium for all
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observed values of λq, as can be seen in Figure 2.9.

As in the non-adversarial setting, the case of higher false alarm costs is more

interesting due to the different qualitative parameter regimes seen in Figure 2.1d.

As we saw when r = 5 there are two distinct network externalities present among

decentralized defenders. One is the same as when r = 0.1, namely that decentral-

ized defenders free-ride on the vigilance of the central planner and choose higher

thresholds. When the Nash equilibrium settles in this parameter regime we ob-

serve similar outcomes as described in the preceding paragraph: Decentralized

defenders play higher thresholds at equilibrium compared to the central planner,

and the attacker in turn is more aggressive in equilibrium against the decentral-

ized defenders than against the central planner. This results in higher infection

rates, missed detection rates, missed detection costs and overall expected costs

for the decentralized defenders.

The second network externality occurs in the high-network-contagion-potential,

stealthy-attacker parameter regime. In this regime the decentralized defenders

choose higher thresholds than the central planner. When the Nash equilibria

settle in this parameter regime we observe similar outcomes: Decentralized de-

fenders choose lower thresholds than the central planner, as can be seen in Fig-

ure 2.11a and the attacker is less aggressive against the decentralized defenders

than against the central planner at equilibrium, as can be seen in Figure 2.11b.

Moreover the attacker lowers his aggressiveness at equilibrium in such a way that

T ∗d − A∗d < T ∗c − A∗c , as can be seen in Figure 2.12a. As a result infection rates

and missed detection rates go down (Figures 2.12b and 2.12d), as does the cost

of a missed detection, since A∗d < A∗c =⇒ v(A∗d) < v(A∗c).

When we examine the overall effect on the expected cost of the defenders

in both the decentralized and centralized games, we see something very strik-
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ing: For a certain range of λq we observe the decentralized defenders obtain-

ing a lower expected cost at equilibrium compared to the central planner, i.e.

C̄ø(A∗d, T ∗d ) < C̄c(A∗c , T ∗c ), as can be seen in Figure 2.11c. This may seem counter-

intuitive because if both the central planner and the decentralized defenders faced

the same aggressiveness A, the centralized planner would by definition have to do

at least as well or better than the decentralized defenders. However, as mentioned

earlier the equilibrium aggressiveness played against a centralized planner is not

necessarily the same as the equilibrium aggressiveness played against decentralized

defenders, i.e. A∗c 6= A∗d.

The following intuition explains how the difference between A∗c and A∗d tends

to work against the central planner and for the decentralized defenders in this

particular parameter regime. Consider the centralized equilibrium (A∗c , T ∗c ) and

think about the natural dynamic of response and counter response between de-

fenders and bot master that would follow if we replaced the centralized defenders

with decentralized defenders. In this regime decentralized defenders play lower

thresholds than a central planner prescribes, leading to a lower missed detection

rate for the decentralized defenders. In response to lower thresholds, the bot

master plays a lower aggressiveness than it would against a central planner, i.e.

A∗d < A∗c . The lower A∗d decreases the missed detection rate as well as the cost of

a missed detection v(A) that the decentralized defenders take on for playing the

lower threshold T ∗d . The net effect is that the overall expected cost resulting from

the decentralized defenders playing a lower threshold looks better when we take

into account the accompanying change in the attacker’s strategy.

Figure 2.8 shows iterated best response updates between the central planner

and the bot master when starting at a decentralized Nash equilibrium profile. In

figure 2.8a it can be seen that when false positive costs are relatively low (r = 0.1)
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(a) r = 0.1,m = 1, k = 1 (b) r = 5,m = 1, k = 1

Figure 2.8: Iterated best response updates between central planner and bot
master when starting at a decentralized Nash equilibrium profile.

the iterated best response updates converge to a centralized Nash equilibrium in

which the central planner plays a lower threshold than decentralized defender

play. On the other hand, in figure 2.8b it can be seen that when false positive

costs are relatively high (r = 5) the iterated best response updates converge to a

centralized Nash equilibrium in which the central planner plays a higher threshold

than decentralized defenders play.
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(a) (b)

(c) (d)

Figure 2.9: Strategies and payoffs at Nash equilibrium. Parameters are r =
0.1,m = 5, k = 1.

2.5 Conclusion

We have examined a novel interdependent detection game motivated by the

botnet security threat. Both decentralized and centrally planned defenders were

considered. Furthermore a single strategic adversarial attacker was included in

the game. The existence of a pure, defender-symmetric Nash equilibrium was

proved for both decentralized and centralized games. Network effects on defender

strategy were explored via numerical approximation of the equilibria. It was seen

that for fixed attack strategies decentralized defenders choose threshold strategies

that either too high or too low. Furthermore when the attacker is strategic certain

regimes of model parameters give rise to counterintuitive results, such as a central
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(a) (b)

(c) (d)

Figure 2.10: Strategy difference, probability of infection, and error probabilities
at Nash equilibrium. Parameters are r = 0.1,m = 5, k = 1.
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(a) (b)

(c) (d)

Figure 2.11: Strategies and payoffs at Nash equilibrium. Parameters are r =
5,m = 5, k = 1.

planner allowing higher infections rates than decentralized defenders, or decen-

tralized defenders being able to outperform the central planner. Up to this point

we have made simplifying assumptions in order to obtain a tractable model. In

particular the assumption of defender homogeneity is restrictive, especially when

dealing with social networks and internet topology. In the next chapter we extend

the model to account for heterogeneous defenders.
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(a) (b)

(c) (d)

Figure 2.12: Strategy difference, probability of infection, and error probabilities
at Nash equilibrium. Parameters are r = 5,m = 5, k = 1.
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Chapter 3

A Heterogeneous Botnet

Detection Game

3.1 Introduction

This chapter extends the results of the previous chapter by considering het-

erogeneous defenders. The specific heterogeneity is in the costs each defender

attributes to false negatives and false positives when attempting to detect infec-

tions. We find that for any fixed bot master strategy there exists an equilibrium

population response strategy in which no single defender has an incentive to devi-

ate. However in many cases when a heterogeneous population responds with such

an equilibrium strategy, the bot master will always have an incentive to deviate.

In such cases there can be no pure Nash equilibria. However, if the bot master

signals his strategy and the population responds optimally, then under some mild

assumptions there will always exist an optimal signaling strategy for the bot mas-

ter. As such we adopt a Stackelberg equilibrium concept for the heterogeneous

botnet detection game with the bot master as leader. Sufficient conditions are
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given to guarantee the existence of a Stackelberg equilibrium. We numerically

compare these decentralized equilibrium strategies to a similar class of centrally

planned strategies to explore network effects. The effects of agent heterogeneity

on the equilibria are explored numerically as well.

3.2 The Botnet Detection Game

3.2.1 Agents

As in the homogeneous case we begin by considering a graph Gn = 〈E, V 〉

with edge set E and vertex set V . We assume |V | = n and with each vertex

i ∈ V we associate a computer mi along with an independent defender di. With

each edge eij ∈ E we associate a network connection between computers mi

and mj. Denote the malicious network attacker, or bot master, by b. The bot

master does not exist in the graph Gn, but wishes to gain control of the mi in

order to utilize available computational resources. We assume the bot master is

able to infiltrate the network by direct infection of some positive fraction of the

mi. Furthermore the infection can spread between the mi via self-propagating

malware. Once a machine mi is infected (directly or indirectly) the bot master

can use it for his own nefarious purposes. To model the epidemic process we will

use a percolation model on the graph Gn. As such we assume the existence of an

underlying probability space (Ω,F , P ) which all random variables in the model

are defined on.

3.2.2 Strategic Variables

The bot master infects computers in order to illegitimately utilize available

computational resources, for example CPU time, RAM, bandwidth or electrical
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power. Specifically we wish to model how aggressive the bot master should be in

utilizing these resources. We don’t model a specific computational resource, but

instead consider a general measurable resourceR taking values on R+. The strate-

gic variable for the bot master is A ∈ A ⊆ R+, a measure of his aggressiveness

in utilizing the resources of his botnet. We take A to be the directly observable

amount of resource R the bot master uses.

The defenders are typical users of computers connected to the internet. Aware

that there are potential security threats each defender must decide how vigilant

he will be in detecting such threats. As in [37] we assume the defender is unable

to reliably distinguish between security failures and natural variation in system

performance. Thus defenders must consider the potential costs from both false

positives and false negatives. We model the natural variation in system perfor-

mance associated with mi as a random variable Si having support R+, cumulative

distribution function FS(·) and probability density function fS(·). Let Xi = 1 if

machinemi is infected either directly by b or by contagion via anothermj (eij ∈ E)

and Xi = 0 otherwise. Then the total observed variation in the performance of

mi is Zi = AXi + Si.

Given the observation Zi, the defender wishes to determine whether or not

his computer is infected. Assuming the distributions of Si and Xi are known

this is a simple hypothesis testing problem with hypotheses H0 : Xi = 0 and

H1 : Xi = 1. Higher observed values of Zi indicate a higher likelihood of infection,

thus we take the strategic variable of defender di to be a threshold Ti in a strategy

space T ⊆ R+. We interpret this as a measure of the defender’s tolerance for

software failures. If Zi ≥ Ti, the defender decides his computer is infected and

takes appropriate measures to remediate the potential infection. If Zi < Ti, then

the defender takes no action. Define the detection indicator random variable
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Di = 1{Zi≥Ti}. We can then define indicator random variables for the detection

outcomes: W i
FP = (1−Xi)Di andW i

FN = Xi(1−Di) whereW i
FP indicates a false

positive and W i
FN a false negative for defender di.

3.2.3 Expected Cost/Utility and Best Responses

In the homogeneous game we assumed the cost of false positive c and false

negative v(A) were the same for all defenders in the network. In the heterogeneous

game we drop this assumption. With each defender di we associate a cost of false

positives, ci ≥ 0, and a cost of false negatives, vi ≥ 0. Cost ci is the loss associated

with a false positive. In this case the defender’s computer is not infected, thus

the loss incurred cannot depend on the strategy of the bot master. As such we

assume ci is constant. Cost vi is the loss associated with false negatives. In this

case the defender’s computer is infected, and the loss incurred will include the

resources stolen by the bot master. As such the loss will depend on the strategy

of the bot master and we take vi(A) to be a non-decreasing function of A. Notice

that neither ci nor vi(A) depend on Tj for any j ∈ V . This is justified by the fact

that a defender’s tolerance for software failures will not alter the potential losses

from an incorrect detection, it will only alter the probability of experiencing the

loss.

In order to fully analyze the effects of defender heterogeneity in the game we

make a further assumption regarding the function vi(A). In particular we assume

that for each i ∈ V we have vi(A) = `iv(A) for some constant `i > 0 and some

common, non-decreasing function v(A). As will become evident the cost ratio ci
`i

is critical in determining a defender’s threshold strategy. In fact, if defenders di

and dj have identical cost ratios ci
`i

= cj
`j
, then their best response strategies will

be the same. For this reason we treat the cost ratio ci
`i
as the type of the defender.
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We assume all defenders are equally likely to occupy any place in the network,

and there exists a distribution from which agent types are drawn i.i.d. Let θi be

the random variable which returns the type of defender di, i.e. θi ≡ ci
`i
. We assume

θi ∈ Θ ⊆ R+ for some locally compact set Θ. Denote the cumulative distribution

function of θi by Fθ and its probability density function by fθ.

It is the objective of each defender to minimize the expected costs associated

with false positives and false negatives. Recall that W i
FP indicates a false positive

and W i
FN a false negative for defender di. Thus the realized cost for defender di

is

Ci = ciW
i
FP + `iv(A)W i

FN .

Note that we have dropped the cost of raising and alarm k in this model that

appears in the homogeneous game. This is done for simplicity. We could easily

include it in this model if needed. The results will not change significantly.

A population strategy is any function T : Θ→ T which maps a defender type to

an individual threshold strategy. Note that if a population strategy T is measur-

able (using standard σ-algebras generated by all Lebesgue measurable sets) then

given θ ∼ Fθ the function T (θ) is a random variable describing the distribution

of thresholds across the network. We assume that the only global information

available to each agent in the game is statistical in nature. For example, each

agent has knowledge of the distributions FS and Fθ, but not the realized values

of Si and θi. Thus the probabilities that defender di assigns to the events W i
FP

and W i
FN will depend on his own strategy Ti, the bot master strategy A and the

distribution of defender strategies T (θ). The best response correspondence σi for
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defender di is then

σi(A, T ) = arg min
Ti

{ciE[W i
FP ] + `iv(A)E[W i

FN ]}.

The bot master maximizes his expected utility by maximizing the cumulative

computational resources stolen from the compromised network. His utility will

then depend on the fraction of machines that are infected, say ζ, as well as the

degree to which he utilizes the bots, which we measure by his aggressiveness, A.

In the limit of a large population the expected proportion of infected machines

is equal to the probability of a false negative of a defender chosen uniformly at

random from the network. Letting ø be chosen uniformly at random from V we

have ζ = E[Wø
FN ]. The bot master’s expected utility is then U(A, T ) = g(A)ζ =

g(A)E[Wø
FN ] and the set of bet responses, σb(T ), for the bot master is given by

σb(T ) = arg max
A
{g(A)E[Wø

FN ]}.

3.3 Epidemic Process and Detection Model

In order to finish the construction of our game between the network of defend-

ing agents {di}i∈V and the bot master b, we need to define an epidemic process on

Gn initiated by the bot master b. To model the epidemic process in the network

we use a percolation model on the graph Gn, that is each eij ∈ E admits contagion

independently with probability q ∈ (0, 1]. In order to initialize the epidemic we

assume the bot master attempts to directly infect each mi independently with

probability of success p ∈ (0, 1]. Following [48] and the previous chapter we can
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define the following random variables for i, j = 1, 2, 3, ..., n:

χi ∼ Bern(p),

Bij ∼ Bern(q),

Xi = 1{mi is infected},

Di = 1{di decides mi is infected}.

The random variables χi indicate direct infection of defender di from the bot

master b. The random variables Bij indicate sufficient contact to admit contagion

between di and dj. We assume the χi and Bij are independent of all random

variables in the model and Bij = Bji for all i, j ∈ V . As in the previous chapter

we assume that if Di = 1 then defender di takes immediate action and prevents

the spread of any potential infection to his neighbors. The fundamental recursion

which defines the epidemic/detection process on the graph Gn is then

Xi = 1− (1− χi)
∏
k∼i

(1−Bki(1−Dk)Xk) , (3.1)

where k ∼ i indicates eki ∈ V .

For large n this model on a general graph Gn is not amenable to analysis

in the context of our game. In order to derive a tractable model we follow [48]

and consider the asymptotic properties of locally tree like graphs. Specifically we

restrict our attention to the limit of rooted Erdős-Rényi random graphs G(n, λ/n)

as n → ∞. By rooted we mean that for each n the graph G(n, λ/n) has a

designated root vertex v(n)
ø chosen uniformly at random from the set of n vertices.

In the sense of local weak convergence [3] the limiting object of a sequence of

rooted Erdős-Rényi random graphs is a rooted Galton-Watson Poisson Branching

process, T∞(λ).
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The advantage of working with T∞(λ) is that we can analytically derive the

expected cost function of the root defender dø associated with the distinguished

root vertex of T∞(λ). Because the root is chosen uniformly at random we can treat

dø as a randomly selected defender then perform a mean field analysis of the game.

As such we restrict our analysis to T∞(λ) and refer the readers to [3, 47, 48] for

details on how to extend the subsequent results to limn→∞G(n, λ/n). Convergence

results for the homogeneous game can be found in appendix A.8.

When working with T∞(λ) we take advantage of the tree structure and define

an alternative sequence of random variables, rather than the Xi above. If dj is a

direct descendant of di in T∞(λ) we write j → i. Let Oi = {k ∈ T∞(λ)|k → i}.

For each i ∈ T∞(λ) define X̃i and D̃i as follows:

X̃i =



1 if mi is infected by b

or by some mj s.t. j ∈ Oi,

0 otherwise,

D̃i = 1{Si+X̃iA≥Ti}.

The equations for the X̃i can then be expressed as

X̃i = 1− (1− χi)
∏
k→i

(1−Bki(1− D̃k)X̃k). (3.2)

We also introduce the alternate detection outcome indicator random variables

W̃ i
FP = (1− X̃i)D̃i and W̃ i

FN = X̃i(1− D̃i).

The introduction of the processes X̃i and D̃i are done to take advantage of the

structure of T∞(λ). Note that X̃i and X̃j are independent random variables when

di and dj are the same distance away from the root node. Furthermore because X̃i
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and D̃i depend only on the children of di, the process {X̃i}i∈T∞(λ) is a Recursive

Tree Process [3]. As we will show this allows the distributions of the alternate

processes {X̃i}i∈T∞(λ), {D̃i}i∈T∞(λ), {W̃ i
FP}i∈T∞(λ), and {W̃ i

FN}i∈T∞(λ) to be solved

explicitly. Moreover, on T∞(λ) the distributions of the random variables associ-

ated with a root defender and defined by (3.2) will coincide with the distributions

of the random variables associated with a root defender and defined by (3.1), i.e.

(X̃ø, D̃ø, W̃
ø
FP, W̃

ø
FN) d= (Xø, Dø,W

ø
FP,W

ø
FN).

Because each root defender is chosen uniformly at random, and all agent’s

prior knowledge of the network is the same, we assume all other agent’s would

act similarly had they been chosen as the root defender. Specifically we assume

each defender does not know his position in the graph nor who his neighbors are,

but he does know the statistical properties of the network and the population.

As such we expect there to be an invariant process [2] which solves (3.2). The

fundamental Recursive Distributional Equation [2] which defines the invariant

process on T∞(λ) is

X̃
d= 1− (1− χ)

N∏
k=1

(1−Bk(1− D̃k)X̃k), (3.3)

D̃k = 1{T≤S+X̃kA}. (3.4)

X̃ and X̃k are i.i.d. random variables satisfying (3.3) while the random variables

χ ∼ Bernoulli(p), S ∼ Gamma(α, β), Bk
iid∼ Bernoulli(q) and N ∼ Poisson(λ)

are independent of everything in the model. The random variable T is R+-valued

with distribution function FT , which is the distribution of threshold strategies

across the network. The exact nature of this distribution will be addressed in the

following section. Provided solutions exist for equations (3.3)-(3.4), the detection
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outcome indicator random variables for the invariant process are

W̃FP = (1− X̃)D̃, (3.5)

W̃FN = X̃(1− D̃), (3.6)

where D̃ = 1{T≤S+X̃A} is analogous to (3.4). We now find the distribution for

the detection random variables. The proof follows from a slight generalization of

Proposition 2 in Chapter 2.

Proposition 8. Let S ∼ FS(·), T ∼ FT (·), A ∈ A, p ∈ (0, 1] and q ∈ (0, 1]. Then

the distributions for W̃FP and W̃FN are given as follows:

E[W̃FP] = E[1− FS(T )](1− p)e−λqh,

E[W̃FN] = h,

where h = h(A, p, q, λ, FS(·), FT (·)) is the unique solution in [0, 1] of the fixed point

equation

h = E[FS(T − A)][1− (1− p)e−λqh].

From equations (3.3)-(3.6) it is clear that if the root defender dø alters his

threshold Tø, this will change his decision rule, but it will not change what he

observes. In other words the probabilities of a false positive and false negative

will change, but the probability of the infection reaching him will not. So if the

root defender unilaterally deviates from the population strategy T , then equations

(3.3)-(3.6) are still valid for all defenders in the tree except the root. For the root
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we need to introduce new equations:

Dø = 1{Tø<S+X̃A},

Wø
FP = (1− X̃)Dø,

Wø
FN = X̃(1−Dø).

The corresponding distributions are computed analogously as in Proposition 8.

Proposition 9. Let S ∼ FS(·), T ∼ FT (·), A ∈ A, Tø ∈ T with Tø ≥ A,

p ∈ (0, 1] and q ∈ (0, 1]. Then the distributions for Wø
FN and Wø

FP have unique

solutions which depend on the distribution of W̃FN. If E[W̃FN] = h then the

distributions are given by

E[Wø
FP] = [1− FS(Tø)](1− p)e−λqh,

E[Wø
FN] = FS(Tø − A)[1− (1− p)e−λqh].
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Summary of Notation:

• A ∈ A: Strategy of bot master b.

• Ti ∈ T : Strategy of defender di.

• Si ∼ FS: Software reliability failure.

• Di = 1{di decides mi is infected}.

• p = P (χi = 1): Probability b infects mi.

• q = P (Bij = 1): Probability of contagion.

• Xi = 1{mi is infected}.

• Xi = 1− (1− χi)
∏
k∼i (1−Bki(1−Dk)Xk) .

• Zi = AXi + Si: Observation made by di.

• W i
FP = 1{di False Positive}.

• W i
FN = 1{di False Negative}.

• ci and vi: Costs to di from FP and FN, respectively.

• θi: Type of defender di.

• g: Utility gained by b from FN.
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3.4 Equilibrium Analysis

To analyze the above game we first look for population strategies which are

mutual best responses for all defenders in the network. We call a mapping σp :

A × Θ → T a population best response correspondence if for fixed A ∈ A the

following relation holds:

σp(A, θø) ∈ σø(A, σp(A, ·)). (3.7)

That is, if the population strategy is σp(A, ·), then a deviant root defender can do

no better than to follow the population strategy and play σp(A, θø). Note that

this defines a type of mean field Nash equilibrium among the defenders, i.e. a root

defender has no incentive to deviate from the population strategy. If a population

best response correspondence σp is found for each A ∈ A, we can then look for

equilibrium strategies between the defender population and the bot master.

3.4.1 Defender Equilibria

In this section we investigate the selfish behavior of heterogeneous defenders

in response to a fixed bot master strategy A ≥ 0. We show the existence of a

population best response correspondence for each A ∈ A. We begin by using the

results of Sec. 3.3 to write down explicitly the expected cost and best response of

a root defender. Let T = T (A, θ) denote a population response to the bot master

strategy A. The realized cost experienced by root defender dø is

Cø = cøW
ø
FP + `øv(A)Wø

FN.
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The expected cost C̄ø is then

C̄ø(Tø, T, A) = cø[1−FS(Tø)](1−p)e−λqh+ `øv(A)FS(Tø−A))[1− (1−p)e−λqh],

where h is defined by the fixed point equation

h =
∫

Θ
[FS(T (A, θ)− A)]dFθ[1− (1− p)e−λqh]. (3.8)

It is important to notice that h does not depend on Tø, but only T . In particular

we have ∂h
∂Tø
≡ 0. The best response for a deviant root defender is then

σø(A, T ) = arg min
Tø

{cø[1−FS(Tø)](1−p)e−λqh+`øv(A)FS(Tø−A)[1−(1−p)e−λqh]}.

Arguments similar to those in the homogeneous game guarantee the strict

quasi-convexity of C̄ø in Tø. For ease of exposition we define the function

L(Tø, T, A) = v(A)fS(Tø − A)
fS(Tø)

1− (1− p)e−λqh
(1− p)e−λqh .

First order optimality implies the optimal response T ∗ø = σø(A, T ) is determined

by solutions to the equation cø
`ø

= L(Tø, T, A). By the continuity and monotonicity

of fS(Tø−A)
fS(Tø) (Assumption 1), if a solution exists then it is unique, while if no solution

exists, then for all Tø we have one of the following: cø
`ø

≷ L(Tø, T, A). In the <

case T ∗ø = +∞, while in the > case T ∗ø = A. Thus for any A ∈ A and any T ∼ FT

85



we can define a best response function for a deviant defender:

σø(A, T ) =



A if ∀ Tø,
cø
`ø
< L(Tø, T, A),

T ∗ø if ∃ T ∗ø s.t. cø
`ø

= L(T ∗ø, T, A),

+∞ if ∀ Tø,
cø
`ø
> L(Tø, T, A).

If defenders act selfishly, they will all follow a similar strategy. Thus we should

look for population strategies of the above form that satisfy (3.7). The next

proposition establishes, for a fixed A, the existence of such a population strategy.

Proposition 10. Suppose the Si have c.d.f. FS(·) ∈ C1 and p.d.f. fS(·) while θi ∼

Fθ(·) ∈ C1 with support Θ ⊆ R+. If for any A ∈ A the ratio fS(z−A)
fS(z) is continuous

and non-decreasing in z ≥ A, then there exists a mapping T ∗ : A×Θ→ T which

for each A ∈ A is a population best response correspondence. Moreover any such

mapping T ∗ is of the following form:

T ∗ (A, θi) =



A if θi < κ,

Ti if θi ∈ [κ, ω],

+∞ if θi > ω.

Here κ = limt↓A L(t, T ∗, A) and ω = limt→+∞ L(t, T ∗, A) while Ti is a solution to

θi = L(Ti, T ∗, A).

Proof. Fix A ∈ A. We suppress the dependence on A for notational clarity. The

preceding discussion which lead to a deviant defender’s best response function

σø makes clear the form of the desired equilibrium population strategy T ∗. Let

x ∈ [0, 1], t ∈ R̄+, θ ∈ R+ and define the maps L̃ : R̄+ × [0, 1] → R+ and σ :
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[0, 1]× R+ → R̄+ as

L̃(z, x) = v(A)fS(z − A)
fS(z)

1− (1− p)e−λqx
(1− p)e−λqx ,

and

σ(x, θ) =



A if θ < κ(x),

t(x, θ) if θ ∈ [κ(x), ω(x)],

+∞ if θ > ω(x).

where t(θ, x) is a solution to θ = L̃(t, x) while κ(x) = limz→∞ L̃(z, x) and ω(x) =

limz↓A L̃(z, x).

We prove the case when fS(z−A)
fS(z) is strictly increasing in z. The proof can

then be adapted to the more general non-decreasing case. The continuity and

monotonicity of fS(z−A)
fS(z) in z guarantees both the existence of κ(x) and ω(x) and

the existence and uniqueness of t(x, θ) ∈ R̄+ whenever θ ∈ [κ(x), ω(x)]. Define the

map G(x, t, θ) = L̃(t, x)− θ. Then the implicit function theorem implies t(x, θ) is

continuous and differentiable in both x and θ in open regions where G(x, t, θ) = 0

has solutions, i.e. θ ∈ (κ(x), ω(x)). Since FS(·) is differentiable it follows that

FS(t(x, θ)− A) is continuously differentiable in x and θ. Thus by Leibniz’s rule

E[FS(σ(x, θ)− A)] =
∫ ∞

0
FS(σ(x, θ)− A)dFθ

=
∫ ω(x)

κ(x)
FS(t(x, θ)− A)dFθ +

∫ ∞
ω(x)

dFθ

=
∫ ω(x)

κ(x)
FS(t(x, θ)− A)dFθ + 1−

∫ ω(x)

0
dFθ

=
∫ ω(x)

κ(x)
FS(t(x, θ)− A)dFθ + 1− Fθ(ω(x))

is differentiable in x. Now define M(x) = E[FS(t(x, θ) − A)][1 − (1 − p)e−λqx].

Since M(x) is continuous and maps the unit interval into itself, Brouwer’s fixed
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point theorem guarantees the existence of a fixed point h satisfying h = M(h).

Define T ∗(θ) = σ(h, θ). Then given a type distribution Fθ we can define the

random variable T ∗(θ). With Propositions 8 and 9 we can construct a botnet

detection game with heterogeneous defenders as above and obtain P (Wø
FN = 1) =

h. The analysis above regarding a deviant defender’s optimal response to arbitrary

population strategies guarantees that the threshold T ∗(θø) will be optimal for the

root defender. In other words T ∗(θø) = σø(A, T ∗). Since A ∈ A was arbitrary

the mapping T ∗(A, θ) is a population best response for each A ∈ A.

3.4.2 Example Population Best Response Function

We now look at a specific population best response function T ∗(A, θ) and

discuss how one can compute it. The first difficulty in determining the function

T ∗(A, θ) is that it is defined in reference to itself. This is a result of the self

fulfilling nature of the strategy. If all agents assume the other agents are playing

T ∗, then they can do no better than to join them and follow the strategy T ∗. This

self referencing definition can be seen in the statement of Proposition 10 where

the function T ∗(A, θ) appears on the left hand side and the right side. Notice that

the values κ and ω are both functionals of T ∗(A, ·).

This dependence comes in the form of the functional h(A, T ∗(A, ·)), the false

negative rate. Recall h is defined by the fixed point equation

h =
∫

Θ
[FS(T ∗(A, θ)− A)]dFθ[1− (1− p)e−λqh]. (3.9)

The proof of Proposition 10 guarantees this equation has a solution. Furthermore

if the likelihood ratio fS(z−A)
FS(z) is monotonically increasing in z then we can solve

for T ∗(A, θ) more explicitly in terms of h. Plugging this back into the fixed point

equation gives us an equation that can be solved numerically.
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Let us look at a concrete example to understand this procedure. Suppose

S ∼ gamma(α, β) with α > 1. Assume that the value h which solves (3.9) is

known. This implies the values κ and ω are known too. Then using the definition

of T ∗ from Proposition 10, for any θ ∈ [κ, ω] we can write

θ = v(A)
(

1− A

T ∗(A, θ)

)α−1

eβA
1− (1− p)e−λqh

(1− p)e−λqh .

Solving for T ∗(A, θ) we arrive at

T ∗(A, θ) = A

1−
(
θ e
−βA

v(A)
(1−p)e−λqh

1−(1−p)e−λqh
) 1
α−1

.

We then have an expression for T ∗(A, θ) explicitly in terms of h. We can then

plug this expression into (3.9) and we arrive at

h =
∫

Θ

FS
 A

1−
(
θ e
−βA

v(A)
(1−p)e−λqh

1−(1−p)e−λqh
) 1
α−1
− A


 dFθ[1− (1− p)e−λqh]. (3.10)

While there is no hope of solving this equation for h, there is hope of solving

it numerically. In this case care must be taken as the proof in Proposition 10

does not guarantee uniqueness. In certain cases uniqueness can be established

depending on the distributions of S and θ.

Once a value for h is found that solves (3.10) we can explicitly write down the

function T ∗(A, θ). By solving the fixed point equation (3.10) we have “closed the

loop” and can then numerically find the function T ∗(A, θ). Figure 3.2 shows the

best response function T ∗(A, θ) for various values of A when θ ∼ uniform(0.1, 10)

and S ∼ gamma(2, 2). Figure 3.1 shows corresponding histograms estimating

the distribution of thresholds across the network. Notice that while the attack

intensity A decreases more agents become indifferent and choose higher thresholds.
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(a) A = 0.65 (b) A = 0.75

(c) A = 1

(d) A = 2 (e) A = 5

Figure 3.1: Histograms of T ∗(A, θ) for 10,000 draws of θ ∼ uniform(0.1, 10),
S ∼ gamma(2, 2) and various values of A.

On the other hand when the attack intensity A increase more and more agents

become vigilant and choose thresholds close to the attack value A.
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Figure 3.2: The best response function T ∗(A, θ) for θ ∼ uniform(0.1, 10), S ∼
gamma(2, 2) and various values of A.

3.4.3 Price of Anarchy

Just as we did for the homogeneous game, we can compute the Price of Anarchy

for each attack strategy A. Instead of examining the relationship between PoA and

the network contagion parameter λq we will examine varying the variance of the

population. In this way we can examine the effect that population heterogeneity

has on expected social cost. For simplicity we consider the case S ∼ exp (β).

To complete such an analysis we must introduce a central planner as in the

homogeneous case. We assume the central planner wishes to minimize the ex-

pected cost over the entire network of defenders. For each fixed strategy A ∈ A

the central planner seeks a measurable function Tc : Θ→ R̄+ which minimizes the

91



functional

I(A, Tc) =
∫
θ
c(θ)[1− FS(Tc(θ))](1− p)e−λqh(A,Tc)

+ `(θ)v(A)FS(Tc(θ)− A)[1− (1− p)e−λqh(A,Tc)]dFθ.

Because h(A, Tc) is a functional of Tc itself, standard variational techniques are

not available and a general optimal solution is difficult to find. Instead, we restrict

the central planner to choose a function which is of the same functional form as

that of the decentralized population best response T ∗. In the case S ∼ exp (β),

for a fixed A ∈ A the function T ∗ is an unbounded step function which is uniquely

determined by the location of the step. If we restrict the central planner to play

functions of this form, we have a single parameter to optimize over. Specifically

Tc (θ, x) =


A if θ < x,

+∞ if θ ≥ x.

We can then define the expected social cost as

I(A, x) =
∫ x

0
c(θ)[1− FS(A)](1− p)e−λqh(A,x)dFθ

+
∫ ∞
x

`(θ)v(A)[1− (1− p)e−λqh(A,x)]dFθ.

Since 0 ≤ I(A, x), there exists a value θ∗(A) ∈ arg minx≥0 I(A, x). We can then

define the centralized expected social cost I(A, θ∗c ) and the decentralized expected
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social cost Ic(A, θ∗d) where

θ∗c ∈ arg min
x≥0

I(A, x)

θ∗d = v(A) exp (βA)1− (1− p)e−λqh(A,θ∗d)

(1− p)e−λqh(A,θ∗
d
) .

Note that we have written h(A, θ∗d) to stress the fact that the value h in this case

depends on both A and θ∗d. As stated before the proof of Proposition 10 guarantees

us that such an h exists and it is not difficult to prove it is unique. The same

methods as were used in the homogeneous case apply, with more algebra due to

the complexity of the terms involved. As we saw in the previous section we have

a means of computing this h and can thus compute θ∗d.

Computing θ∗c is less straight forward since we are not guaranteed that the

function I(A, x) is convex in x. However if we use a minimization algorithm

which starts at the point θ∗d, then even if we do not find a global minimum we

are at least guaranteed to find a solution that is better than or equal to the

decentralized solution. This will then provide us with a measure of efficiency of

the decentralized best response strategy T ∗(A, θ). We thus define the Price of

Anarchy as

PoA ,
I(A, θ∗d)
I(A, θ∗c )

.

We will assume θ ∼ gamma(φ, γ). We then fix φ = mγ for some m > 0 so that

E[θ] = φ
γ

= mγ
γ

= m and var[θ] = φ
γ2 = mγ

γ2 = m
γ
. In this way we can fix the mean

of the population’s distribution and vary the variance. In particular we see that

limγ→∞ var[θ] = 0 and limγ↓0 var[θ] = ∞. Letting D = var[θ]
E[θ] denote the index of
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dispersion we have the following interpretation of the parameter γ in this context:

1
D

= E[θ]
var[θ] = m

m
γ

= γ.

That is, γ is the inverse of the index of dispersion. Thus large values of γ corre-

spond to low dispersion, i.e. the population is more homogeneous. Small values

of γ correspond to high dispersion, i.e. the population is more heterogeneous.

Alternatively letting SNR = E[θ]√
var[θ]

be the signal-to-noise ratio of θ we have

SNR = E[θ]√
var[θ]

= m√
m
γ

= √mγ.

This interpretation will be helpful in characterizing the qualitative features of

the Price or Anarchy. In particular we see two distinct regions of high PoA, one

corresponding to SNR < 1 and the other to SNR > 1.

Figure 3.3 shows the Price of Anarchy for mean m = 0.1, 0.5, 1 and 10. To

understand the qualitative features of these plots it helps to examine the case

m = 1 more closely. Figure 3.4a shows this case on its own. It can be seen that

there are two distinct regions where the PoA is relatively large. Relating γ to the

SNR we see that these two regions roughly correspond to the cases SNR < 1

and the other to SNR > 1, or equivalently γ < 1
m

and γ > 1
m

respectively. The

existence of these two regions can be explained by the following reasoning.

When γ >> 1
m

= 1 the variance in the population is relatively low. That means

most types are concentrated around the mean m = 1, i.e. θi = ci
`i
≈ 1 =⇒ ci ≈ `i.

Because v(A) = A, when A < 1 we have ci > `iv(A). In words, most of the agents

value false alarms more than missed detections when both the population variance

and attack strength are low. Notice from Figure 3.4b that in this regime we have

θ∗d > θ∗c , which means more decentralized agents are vigilant (Ti = A) and fewer
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are indifferent (Ti =∞) compared to the centralized defenders.

If most decentralized defenders value false alarms over missed detections, why

are too many of them vigilant? Recall that vigilant defenders will raise more

alarms, and more alarms raised will result in more false alarms. To understand

what is going on here, it is necessary to consider what strategies the central planner

prescribes. Because we are in a regime where most agents value false alarms

more than missed detections, the central planner prescribes more defenders to be

indifferent as a means of reducing false alarms across the network. Prescribing

more indifferent defenders means fewer alarms raised and hence less false alarms.

But there is a secondary effect of increasing the infection rate across the network:

The missed detection rate increases while false alarm rate decreases.

The central planner is able to account for this in his choice of optimal strate-

gies. The decentralized defenders do not consider this externality on their choice

of threshold strategies. That is because the population best response which de-

termines the strategies of decentralized defenders does not take into account the

externality of altered infection rates that is associated with changes to individual

strategies. As a result, when the population is playing a centralized best response

strategy, there exists a subset of the population of which each member believes

he can unilaterally decrease his threshold (from Ti =∞ to Ti = A) in such a way

that reduces his over all cost. The problem with this reasoning is that it does

not take into account the associated change in infection rates across the network.

As a result infection rates go down as the deviant agents become more vigilant,

thus raising the number of false alarms experienced across the network! Notice

that the larger γ is for A < 1 the PoA increase. That is because more defenders

are concentrated around ci
`i

= 1 and hence we have more defenders who value

false alarms more than missed detection (ci > `iA). As such the central planner
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prescribes more defenders to be indifferent (Ti = ∞). This leads to a high rate

of infection and more of the decentralized defenders will incorrectly reason that

they can decrease their thresholds and decrease their missed detection rates. This

leads to a relatively higher PoA.

A similar explanation can explain the high PoA when γ << 1. In this case we

have a high variance. Because θ ∼ gamma(γ, γ) as γ ↓ 0 most of the population

is concentrated close to θi ≈ 0 =⇒ ci << `i. This means for a larger range of A

values we have ci < `iA, i.e. most agents value missed detection over false alarms.

Thus by similar reasoning as before (but in reverse) we can see why θ∗d < θ∗c with

high PoA for a larger range of A values when γ << 1. We again arrive at a

somewhat counter intuitive result that when more agents value missed detection

over false alarms, by ignoring the externality of altered infection rates associated

with individual strategy changes, decentralized agents are not vigilant enough!

Finally we observe that changing the mean of the population changes which

of the two regimes described above dominate to numerical results. As can be seen

in Figure 3.3, for E[θ] < 1 we tend to see the region corresponding to γ << 1,

whereas when E[θ] > 1 we tend to see the region corresponding to γ >> 1.

We conjecture that the two regions described above, which roughly correspond

to “low” variance and “high” variance, are differentiated by γ < 1
m

and γ > 1
m

respectively. Recall this corresponds to the signal-to-noise ratio SNR < 1 and

SNR > 1 respectively.

3.5 Game Equilibria with Strategic Bot master

Given the above population best response T ∗, it is natural to look for pure

Nash equilibria as were found in the homogeneous botnet game. Letting PΘ→T

be the class of all population strategies, a pure Nash equilibrium is any pair
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Price of Anarchy

(a) E[θ] = 0.1 (b) E[θ] = 0.5

(c) E[θ] = 1 (d) E[θ] = 10

Figure 3.3: Price of Anarchy (PoA) in the heterogeneous botnet detection game.

(a) Price of Anarchy (b) Red: θ∗d < θ∗c . Blue: θ∗d > θ∗c .

Figure 3.4: Price of Anarchy (PoA) and strategy comparison in the heteroge-
neous botnet detection game: S ∼ exp(1), θ ∼ gamma(γ, γ), E[θ] = 1, var(θ) = 1

γ
.

97



(A∗, T ∗) ∈ A×PΘ→T such that A∗ ∈ σb(T ∗) and T ∗(θø) ∈ σø(A∗, T ∗(·)). However

what we find is that in many cases no such Nash equilibrium exists.

For example, suppose Θ = R+ and S ∼ exp(β). Assume that such a Nash

equilibrium (A∗, T ∗) does exist. Then T ∗ must be a population best response.

Let κ and ω be as in Proposition 10 for this A∗ and T ∗. Let h∗ be a value that

satisfies (3.8) with A = A∗ and T (θ) = T ∗(θ). Note that κ = ω when S ∼ exp(β).

First note that if A∗ = 0 we have κ = ω = 0 and T ∗ (θi) = +∞ for all types θi.

However h∗ > 0, so for any A > 0 we have U(A, h∗) = Ah∗ > A∗h∗ = 0. Thus the

attacker can increase his expected utility by deviating from A∗. It follows that

(A∗, T ∗) is not a Nash equilibrium.

Now suppose A∗ > 0. Since S ∼ exp(β) the population best response T ∗ must

have the form

T ∗ (θi) =


A∗ if θi ≤ κ,

+∞ if θi > κ.

For A ∈ [0, A∗) we can define h(A) as a solution to

h =
∫

Θ
FS(T ∗(θ)− A)dFθ

(
1− (1− p)e−λqh

)
.

Using arguments similar to those in the homogeneous game we see that ∂h
∂A

< 0

and the bot master’s utility function is strictly quasi-concave for A ∈ [0, A∗]. Thus

there exists a value Ã ∈ (0, A∗) such that U(Ã, h) > U(A∗, h∗). Again it follows

that (A∗, T ∗) is not a Nash equilibrium. Thus by contradiction no such Nash

equilibrium can exist.

In the above scenario if a heterogeneous population responds in equilibrium to

a particular strategy A∗, then the attacker will always have an incentive to deviate

from this attack strategy. One may then look for mixed attack strategies that lead
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to Nash equilibria. That is we seek a distribution FA over the strategy space A

which the bot master can use to randomize his strategy. The problem with this

approach is the fact that the defender type space is infinite and the defenders are

decentralized. As a result if the attacker chooses a mixed strategy FA, then he can

only ever make a set of the population having measure zero indifferent to their

strategies.

As an example consider the above case with S ∼ exp (β) and Θ a locally

compact subset of the real line. Suppose the bot master plays a mixed strategy

FA over the set of strategies A. Assume further that the network of defenders

is playing a population strategy T (θ). Now consider what a single decentralized

defender will do in response the the strategy profile (FA, T ). Using arguments

similar to those above, the probability of a false negative can be shown to be the

solution, h, of the fixed point equation

h =
∫
A

∫
Θ
FS(T (θ)− A)dFΘdFA[1− (1− p)e−λqh].

With this it can be seen that a deviant root defender’s expected cost function is

as follows:

C̄ø(Tø, T, FA) = cø[1− FS(Tø)](1− p)e−λqh

+ `ø

∫
A
v(A)FS(Tø − A)dFA[1− (1− p)e−λqh].

We then have the best response for a deviant root agent as

σø(FA, T ) = argmin
Tø
{cø[1− FS(Tø)](1− p)e−λqh

+ `ø

∫
A
v(A)FS(Tø − A)dFA[1− (1− p)e−λqh]}.
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Because of the decentralized nature of the defender population, an individual

selfish agent will always have an incentive to play a pure strategy. This is a result of

the strict quasi convexity of his expected cost function regardless of the strategies

of the population and the bot master. In order for the population strategy to be

an equilibrium best response strategy we require that

T ∗ (θi) =


minA if θi < κ,

+∞ if θi > κ

where

κ =
∫
A
v(A)eβAdFA

1− (1− p)e−λqh
(1− p)e−λqh .

Thus the only subset of the population that will be indifferent to their choice of

strategy will be all defenders with type θi = κ. But this is a set of measure zero

and thus will have no impact on the equilibrium in the game. As such there will

be no mixed strategy Nash equilibria in the heterogeneous botnet detection game.

3.5.1 Stackelberg Equilibria

Because there are cases where pure and mixed Nash equilibria do not exist,

we may wish to consider alternative equilibrium solution concepts. In this section

we examine Stackelberg equilibrium as a solution concept for the heterogeneous

botnet detection game.

A Stackelberg equilibrium is one in which there is an explicit order to the

game and one player is designated as a leader and the other players are followers.

Moreover there is an implicit assumption that the leader has the authority or

ability to guarantee that the followers do in fact follow. We will consider both

attacker-as-leader and defenders-as-leader Stackelberg games. Numerical exam-
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ples for attacker-as-leader Stackelberg games are given.

Defenders as Leader

When considering Stackelberg games with the defenders as leader we should

take care to make explicit what we mean. When we consider the central planner,

then it is clear that there is a single player who moves first. But when we consider

decentralized defenders it is not clear what is meant by leader since there are an

infinite number of self interested defenders in this case. Moreover we have only

defined decentralized population strategies in terms of population best response

functions. Thus we need an initial value for the decentralized defenders to “best

respond” to.

For example let t0 ≥ 0. Then we can define the best response function T ∗(θ, t0)

in the same way as in the previous section. By restricting the decentralized defend-

ers to play best response type functions, we have essentially reduced the strategy

space of the decentralized defenders to a single parameter with the mapping

t0 7→ T ∗(·, t0).

Note that in general this mapping is not unique. We will restrict attention to the

cases in which it is unique to avoid complications. Further analysis is required for

cases in which the mapping is not unique. Assuming T ∗(·, t0) can be identifies by

t0 ≥ 0, we can then ask, how will the attacker best respond to this strategy? We

have already defined the attacker’s utility function:

U(A, T ∗(·, t0)) = g(A)h(A, T ∗(·, t0))
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where h satisfies

h =
∫

Θ
FS(T ∗(θ, t0)− A)dFθ

(
1− (1− p)e−λqh

)
.

One of the main difficulties with analyzing equilibria with heterogeneous defend-

ers is that the attacker’s utility function is not guaranteed to be quasi-concave,

and as a result we cannot guarantee the continuity of the best response corre-

spondence when it is single valued. This creates theoretical difficulties for proving

existence of Nash equilibria and also numerical difficulties for computing approx-

imate Stackelberg equilibria. Nevertheless by the continuity of U(A, T ∗(·, t0)) in

A we can define the attacker’s best response correspondence as

σa(t0) = arg max
A

U(A, T ∗(·, t0)).

Thus if the attacker best responds to the strategy t0, the missed detection prob-

ability becomes h(σa(t0), T ∗(·, t0)), where h satisfies

h =
∫

Θ
FS(T ∗(θ, t0)− σa(t0))dFθ

(
1− (1− p)e−λqh

)
. (3.11)

To simplify notation we will define for each t0 the value h∗(t0) to be the value

satisfying (3.11).

Once the best response of the attacker is taken into consideration we need a

mechanism for the decentralized defenders to agree upon a particular strategy t0

to use. One option is to simply minimize the expected social cost as the central

planner does. However one may object to the fact that decentralized defenders

will not be able to agree on this strategy, as it may result in a large percentage of

the population playing strategies which they are not happy with, i.e. they want

102



to unilaterally deviate from. An alternative mechanism by which to choose a t0

value is to minimize a function which measures the degree to which the population

wishes to deviate from the resulting strategy profile once the attacker has chosen

a best response. For example define the functions Dm : t0 7→ R+ as follows:

Dm(t0) ,
∫

Θ
|FS(T ∗(θ, t0))− FS(T ∗(θ, σa(t0)))|mdθ.

For m > 0 this function is a metric on R which measures the regret across

the population of defenders. Since Dm is a metric we have Dm(t0) ≥ 0 for all

t0. Note that if there existed a value t∗0 such that σa(t∗0) = t∗0 then the strategy

profile (t∗0, T ∗(·, t∗0)) is a Nash equilibrium and we have Dm(t∗0) = 0. Absent a

Nash equilibrium it stands to reason that the population would be interested in

minimizing the regret across the network, as this will minimize the degree to which

they want to unilaterally deviate from the resulting strategy profile. Because

Dm(t0) is bounded below, if it were continuous in t0 then we could guarantee the

existence of a global minimum. We could then define a Decentralized Stackelberg

equilibrium as any strategy ts that satisfies

ts ∈ arg min
t0

Dm(t0).

However we are not guaranteed that Dm(t0) is continuous in t0, because we

are not guaranteed that σa(t0) is continuous in t0. Further consideration of the

attacker’s best response correspondence is needed. One way to deal with this is to

consider only sufficiently large t0. Notice that as t0 → +∞ we have T ∗(θ, t0)−t0 →

0 for all θ. Thus for large enough t0 the population will be highly concentrated

around a single strategy and we can approximate the attacker’s best response

correspondence as if it is responding to the single strategy t0. In this case we are
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guaranteed for σa(t0) to be single valued and continuous. Let

tm , inf{x ≥ 0 : σa(t0) ∈ C for all t0 ∈ (x,∞)}.

Then σa(t0) ∈ C for all t0 > tm. then we can define the Decentralized Stackelberg

equilibrium as any strategy ts that satisfies

ts ∈ arg min
t0≥tm

Dm(t0).

If

tm ∈ {x ≥ 0 : σa(t0) ∈ C for all t0 ∈ (x,∞)}

then we are guaranteed for such an equilibrium to exist.

Alternatively one might consider minimizing the surprise of the decentralized

agents. Define the surprise as

Sm(t0) , |t0 − σa(t0)|m

This is a metric when σa(t0) is single valued and Sm(t0) = 0 implies (t0, T ∗(, t0))

is a Nash equilibrium.

Unfortunately, because of the attacker’s discontinuous and possibly set val-

ued best response correspondence, it is very difficult to guarantee that such a

Stackelberg equilibria will exist under any of the above definitions. The best one

could hope for is to numerically search for ε-Stackelberg equilibria given one of the

above mechanisms for coordinating the decentralized defenders. When defenders

best respond we always have T ∗(θ, t0) ≥ t0 for all θ. Thus if we require that the

defenders choose a strategy that forces the attacker to play at most the minimum

threshold played by all defenders, i.e. σa(t0) ≤ t0, we can define decentralized

104



Stackelberg equilibria given any of the mechanisms discussed here. This could

also give us a way of numerically computing the optimal response of the attacker

more efficiently. If we can restrict our attention to search between 0 and t0 we can

use standard optimization tools, as the attacker’s utility function is guaranteed to

be quasi-concave in this region.

Finally we note that one can always trivially define a centralized Stackelberg

equilibrium by forcing the centralized planner to prescribe a single strategy for the

entire network of defenders. This of course reduces to the homogeneous game con-

sidered in the previous chapter. But since decentralized heterogeneous defenders

will never settle on a single strategy as a population best response, it is not clear

how to define a decentralized Stackelberg strategy which can be used to compare

to this centralized Stackelberg strategy.

Attacker as Leader

Given the situation in which no pure or mixed Nash equilibria exist, the at-

tacker may consider signaling his intended strategy knowing that the networked

population will respond with an optimal equilibrium strategy. The bot master

would then seek a strategy

A∗ = arg max
A

U(A, T ∗(A, ·)),

where T ∗(A, ·) is the population best response to strategy A. The next theorem

states the existence of such an optimal signaling strategy, i.e. there exists a Stack-

elberg equilibrium. For simplicity we restrict our attention to the case fS(z−A)
fS(z) is

constant in z, i.e. S ∼ exp (β). Furthermore we require Θ = R+ and Fθ to be
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continuously differentiable with density fθ such that

(1− Fθ(x))2

fθ(x) = O(x). (3.12)

Many parametric distributions on R+ satisfy (3.12) such as Gamma, Log-Normal

and Pareto distributions.

Theorem 3. There exists a Stackelberg equilibrium in the heterogeneous popula-

tion botnet detection game when S ∼ exp(β) and Fθ satisfies (3.12).

Proof. To determine the existence of a Stackelberg equilibrium we consider the

heterogeneous population best response as a function of the attacker strategy

A. In particular the optimal population response T ∗ depends on A so we write

T ∗(A, θ). We write h∗ for a value satisfying

h∗ =
∫

Θ
FS(T ∗(A, θ)− A)dFθ[1− (1− p)e−λqh∗ ],

= (1− Fθ (L(A)))
[
1− (1− p)e−λqh∗

]
,

where L(A) = v(A)eβA 1−(1−p)e−λqh∗(A)

(1−p)e−λqh∗(A) . We then have the expected utility of the

bot master as U(A, T ∗(A, ·)) = g(A)h∗(A).

If A = 0 we have U(0, T ∗(0, ·)) = 0. On the other hand limA→∞ L(A) = +∞

which implies limA→∞ h
∗(A) = 0. Furthermore the properties of g(·) imply g(A) ≤

A which give us g(A)h∗(A) ≤ Ah∗(A) for all A. For notational convenience define

ρ = (1− p)e−λqh∗(A). We then have

0 ≤ lim
A→∞

g(A)h∗ ≤ lim
A→∞

Ah∗ = lim
A→∞

A

1/h∗ = lim
A→∞

−h
∗2

∂h∗

∂A

,

where the last equality follows from l’Hopital’s rule. After computing ∂h∗

∂A
the last
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term becomes

lim
A→∞

(1− Fθ(L(A)))2(1− ρ)[1 + λqfθ(L(A))L(A)]
fθ(L(A))βeβA 1−ρ

ρ
[k′(A)/β + v(A)]

≤ lim
A→∞

(1− Fθ(L(A)))2(1− ρ)[1 + λqfθ(L(A))L(A)]
βfθ(L(A))L(A) .

Notice that if limx→∞ xfθ(x) > 0 then the last limit is exactly zero and we

are done. However if limx→∞ xfθ(x) = 0 then condition (3.12) guarantees the

limit goes to zero. Since limA→∞ U(A, T ∗(A, ·)) = limA→0 U(A, T ∗(A, ·)) = 0 and

U(A, T ∗(A, ·)) < ∞, there must exist a global maximum for some A∗ ∈ (0,∞).

The strategy profile (A∗, T ∗(A∗, ·)) is a Stackelberg equilibrium.

3.5.2 Attacker as Leader Numerical Results and Discus-

sion

Similar arguments as above guarantee the existence of a Stackelberg equilib-

rium in a game between the bot master and a centrally planned network. Note

that the central planner and decentralized defenders do not necessarily choose the

same step location θ∗ in response to a given A. Thus we let θc(A) and θd(A) be

the optimal step locations chosen by the central planner and decentralized de-

fenders, respectively, in response to the strategy A. The Stackelberg equilibrium

is uniquely determined by the bot master strategy A∗ and the location of the

step θ∗. Thus we let (A∗c , θ∗c ) and (A∗d, θ∗d) denote the Stackelberg equilibria in the

centralized network and decentralized network, respectively.

We numerically investigate the Stackelberg equilibria of the following model:

Si ∼ exp(1), θi = εi + γ−1
γ
, with εi ∼ exp(γ), γ ≥ 1, ci = sin(arctan(θi)), `i =

cos(arctan(θi)), g(A) = v(A) = A , p = 0.1, and λq = 5. Notice that E[θi] = 1

and V ar[θi] = 1
γ2 . Thus as γ →∞ we have V ar[θi]→ 0. We compare the effects
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(a) Defender social cost I(A∗, θ∗). (b) Bot master strategy A∗.

(c) Defender step location θ∗. (d) Missed detection rate h∗.

Figure 3.5: Values at Stackelberg equilibrium with attacker as leader for varying
values of γ. Larger values of γ correspond to less heterogeneity in the population.

of increasing the relative heterogeneity by decreasing γ ↓ 1. Figures 3.5a, 3.5b,

3.5c and 3.5d show expected social cost, A∗, θ∗ and h∗, respectively, for both the

centralized and decentralized games. We note the following qualitative features

from the numerical results:

• The equilibrium strategies θ∗c , θ∗d, A∗c and A∗d tend to decrease in γ. Thus

increasing population heterogeneity results in the bot master stealing more

resources from fewer defenders.

• For larger γ (lower heterogeneity) the central planner prescribes the min-

imum threshold to more defenders, i.e. θc(A) > θd(A). In return the bot

108



master is forced to play lower values of A at equilibrium against the central

planner. The result is θ∗c < θ∗d and A∗c < A∗d, which has the effect of more

false negatives and less false positives for the central planner. However the

lower v(A∗c) offsets the costs associated with more false negatives. The net

effect is that a centrally planned network admits a larger, less aggressive

botnet and has lower expected social cost than the decentralized defenders,

i.e. I(A∗c , θ∗c ) < I(A∗d, θ∗d).

• For γ ≈ 1 (higher heterogeneity) the central planner prescribes the minimum

threshold to fewer defenders, i.e. θc(A) < θd(A). In return the bot master

plays higher values of A at equilibrium against the central planner. The

result is θ∗c < θ∗d and A∗c > A∗d. The lower θ∗c again results in more false

negatives and fewer false positives for the central planner. The higher A∗c ,

on the other hand, reduces the false negative rate enough to counter the

increase in v(A∗c). The net effect is that a centrally planned network admits

a larger, more aggressive botnet than the decentralized defenders, but still

achieves a lower expected social cost, i.e. I(A∗c , θ∗c ) < I(A∗d, θ∗d). This may

seem counterintuitive, but the lower false positive rate is enough to guarantee

a lower expected social cost for the centrally planned network. We speculate

that if defenders incur a fixed cost for raising an alarm this effect may

diminish.

A possible criticism of the current model is that network attackers are often

able to respond to the strategies of network defenders with relative ease. Thus it is

not clear that a bot master would have an incentive to communicate his strategy

if he can easily adapt to new defense strategies. While this is a valid point, such

asymmetric advantages are usually more relevant for the initial intrusion of the

network, which is not the focus of our model. After a network is compromised a
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strategic decision must be made on how to utilize the compromised network. It

is not clear that the network attacker can rely solely on technical skills in this

capacity.

There exist several avenues for future research. Investigating the effects of

different heterogeneities, such as heterogeneity in the resource R, is of interest.

In this case the bot master may then adopt different strategies Ai for each type

of resource Ri. One could also explore the effects of different distributions placed

on types, Fθ. For example, a Pareto distribution exhibits qualitatively different

equilibria than observed in the present model while other distributions may allow

for non-unique population best response strategies.
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Chapter 4

A Two-Player Adversarial

Sequential Detection Game

4.1 Introduction

Intrusion detection systems (IDS) have become an integral component in se-

curing modern computer networks. The most basic underlying statistical model

used by an IDS is a simple hypothesis testing procedure. While fixed sample

size hypothesis testing can be effective, the dynamic nature of computer networks

and the need for real time detection suggests sequential hypothesis testing may

be more suitable. As the classic work by Wald [80] showed, if the observation

process is costly, sequential hypothesis testing can result in a significant decrease

in costs, both in terms of observation time and detection error rates.

While the importance of game theory in developing robust intrusion detection

systems has been recognized [4–6], less attention has been paid to applying game

theory to sequential detection problems. For the most part applications of game

theory to sequential hypothesis testing have typically been restricted to robust
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minimax solutions [13,80], which assumes a zero-sum game between observer and

nature. Given the vast array of security threats and strategic adversaries in the

cyber domain, one potential shortcoming of the minimax approach is the fact that

many non-cooperative, strategic encounters may not be zero-sum. If a defending

agent has information about the type of adversary, such as the attacker’s payoff

function, then the defending agent may be able to leverage this information to

find superior sequential detection tests.

This paper examines a two-player, non-zero-sum, sequential detection game

between a defender agent and an attacker agent. The game is motivated by

problems arising in the cyber-security domain. Botnets [67] or electricity theft in

the smart grid [26] are examples of such scenarios we have in mind. The defender’s

objective is to sequentially detect whether or not his secured cyber infrastructure

has been compromised by the attacker. It is his objective to do so in such a way

that minimizes a payoff function which takes into account the expected observation

time and both type I and type II detection errors. As such the defender’s optimal

sequential test is a version of Wald’s Sequential Probability Ratio Test (SPRT)

[80]. The attacker is interested in bypassing the defender’s security in order to

establish long-term, unrestricted access to the resources available on the system.

The attacker’s objective is not necessarily to destroy or damage the defender’s

system, but to utilize system resources. The attacker must then balance how

aggressive he should be in utilizing resources of the compromised system and how

stealthy he should be in order to avoid detection.

The main theoretical result is a proof of the existence of pure Nash equilibria

in the special case that the attacker does not discount future expected utility.

Furthermore we give conditions for the existence of Stackelberg equilibria with

the defender as leader in the special case that the defender’s strategy is restricted
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to Wald’s SPRT. Numerical examples are given to explore the qualitative features

of the equilibria. It is observed that both low false positive costs for the defender

and high prior probabilities of intrusion by the attacker lead to an infinite number

of Nash equilibria in which the defender immediately classifies his system as com-

promised and the attacker receives no utility. Conversely we see that both high

false positive costs for the defender and low prior probabilities of intrusion by the

attacker lead to non-trivial Nash equilibria. Finally we see that it is possible for

the defender to improve his outcome under the Stackelberg equilibrium strategy

in relation to the Nash equilibrium strategy.

Previous examples of sequential detection games have largely been restricted

to discrete-time, zero-sum games. As mentioned above minimax sequential detec-

tion assumes the form of a zero-sum game between observer and nature. Minimax

sequential detection was an attempt to develop more robust sequential statisti-

cal tests [13] rather than explicitly address interference by a strategic adversary.

Nevertheless, minimax sequential detection lends itself to an adversarial frame-

work and has been used in game-theoretic settings. Such an approach was taken

in [60] and [59] with applications to detecting access layer misbehavior in wireless

networks. A discrete-time, non-zero-sum, network security classification game in-

volving Wald’s SPRT can be found in [15]. This work was largely numerical as the

intractability of the discrete-time SPRT in an adversarial setting is not amenable

to analysis. To our knowledge these are some of the only attempts to apply game

theoretic reasoning to sequential detection. A similar fixed sample size detection

game dealing with electricity theft in the smart grid can be found in [26].
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4.2 Sequential Detection

The theory of sequential hypothesis testing was initiated by Wald [78]. The

asymptotic analysis used to obtain approximate solutions to error probabilities

and expected stopping times is related to detecting the drift of a brownian motion.

The continuous sample paths of standard Brownian motion avoid the problem of

over shoot encountered in the discrete-time case. In addition, when considering a

large number of i.i.d. sequential observations, one can approximate the cumulative

sum of the observations, appropriately scaled in time and space, by a Brownian

motion. As such we will focus on the continuous-time case of sequentially detecting

the drift of a Brownian motion. Furthermore our model focuses on the Bayesian

point of view of this problem. We first give a brief overview of some standard

results on the optimal sequential detection of the drift of a Brownian motion from

the Bayesian point of view. For a detailed treatment the reader is referred to the

texts [56, 58,64].

Let (Ω,F , Pπ) be a probability space with π ∈ [0, 1]. We assume there exists

a random variable θ ∈ {0, 1} such that

Pπ(θ = 1) = 1− Pπ(θ = 0) = π.

Let Zt be a stochastic process of the form

Zt = θµt+Wt,

where µ 6= 0 and Wt is a standard Brownian motion under Pπ. Let Pi be the

distribution of the observed process Zt assuming θ = i for i = 0, 1. Then we can

write Pπ = (1 − π)P0 + πP1. Similarly let Ei be the expectation operator under

Pi for i = 0, 1, π.
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It is assumed that the process Zt is observed in order to test the following

hypothesis:

H0 : Zt = Wt, t ≥ 0, (4.1)

H1 : Zt = µt+Wt, t ≥ 0. (4.2)

The observer seeks a sequential decision rule (τ, δ), where τ ∈ R is a stopping time

and δ ∈ {0, 1} a final decision. Note both τ and δ are random variables under Pπ

which depend on the stochastic process Zt. We define the cost associated with

the observer’s detection as

C(τ, δ) , τ + α1{θ=0,δ=1} + β1{θ=1,δ=0},

where α, β > 0 are the costs associated with false positives and false negatives,

respectively, and 1{·} is the indicator random variable defined on (Ω,F , Pπ). The

observer wishes to minimize the overall expected value of this cost with respect

to Pπ. We thus define the value function

V (π) , inf
τ,δ
Eπ [C(τ, δ)] . (4.3)

As in the classical, discrete-time case considered by Wald, solving (4.3) involves

reducing it to an optimal stopping problem [64]. Specifically (4.3) can be reduced

to

V (π) = inf
τ
Eπ [τ + min {α(1− πτ ), βπτ}] , (4.4)
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where πt is the posterior probability process,

πt ,
(

π

1− πΛt

)/(
1 + π

1− πΛt

)
,

and Λt is the likelihood ratio process,

Λt , exp
{
µ
(
Zt −

1
2µt

)}
.

The optimal decision δ∗ for any stopping time τ is given by δ∗ = 1 if πτ ≥ α
α+β

and δ∗ = 0 if πτ ≤ α
α+β . All that is needed is to determine the optimal stopping

time τ ∗ satisfying (4.4). By reducing the optimal stopping problem (4.4) to a

free-boundary problem [56] one can find an explicit formula for V (π) and the

optimal stopping time τ ∗. The following theorem gives us this main result due

to Shiryaev [64]. For ease of notation we define the functions ψ : [0, 1] → R and

ν : [0, 1]3 → R as follows:

ψ(x) , (1− 2x) log
(

x

1− x

)
,

ν(x, y, z) , 2
z2 (ψ(x)− ψ(y)) +

(
β − 2

z2ψ
′(y)

)
(x− y) + βy.

Theorem 4 (Shiryaev [64]). For π ∈ (0, 1) the value function V (π) in (4.4) is

given by

V (π) =


ν(π, π`, µ) if π ∈ (π`, πu),

min {α(1− π), βπ} if π /∈ (π`, πu),

where the values π` and πu satisfy π` ∈
(
0, α

α+β

)
and πu ∈

(
α

α+β , 1
)
and are the
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unique solutions to the following transcendental equations:

ν(πu, π`, µ) = α(1− πu), (4.5)
∂ν(x, π`, µ)

∂x

∣∣∣∣∣
x=πu

= −α. (4.6)

The optimal stopping time is

τ ∗ = inf {t ≥ 0 : πt /∈ (π`, πu)}.

In what follows it will be convenient to express the stopping time in terms of

the likelihood ratio process Λt. As such we define the values A and B as

A , min
{1− π

π

π`
1− π`

, 1
}
, (4.7)

B , max
{1− π

π

πu
1− πu

, 1
}
. (4.8)

The optimal stopping time is then

τ ∗ = inf{t ≥ 0 : Λt /∈ (A,B)}.

Note the restriction A ≤ 1 ≤ B. The case A = 1 corresponds to the observer

immediately accepting H0, i.e. τ ∗ = 0 and δ∗ = 0 a.s. The case B = 1 corresponds

to the defender immediately accepting H1, i.e. τ ∗ = 0 and δ∗ = 1 a.s.

4.3 Adversarial Sequential Detection

We now consider a two-player, non-zero-sum, sequential detection game moti-

vated by problems arising in the cyber-security domain. A defender is in charge

of protecting a secured cyber-system. This could be a single computer, a network
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of computers or some other cyber-physical infrastructure like the smart grid. The

defender’s objective is to detect whether or not this system has been compro-

mised by the attacker. The defender makes noisy observations of the system’s

state which we model by a stochastic process Zt. We assume that whether or not

the system is compromised can be discerned through the drift of the process Zt.

For example, the observed process could be cumulative bandwidth usage, CPU

load or energy consumption.

An attacker is interested in infiltrating the defender’s system in order to es-

tablish long-term, unrestricted access to the resources available on the system.

The attacker’s objective is not necessarily to destroy or damage the defender’s

system. In fact he may be interested in the long-term viability of the system’s

resources so that he may benefit by illicitly using them. The more the attacker

utilizes the system the more utility he obtains. However this also increases the

drift of the observed stochastic process, thus increasing the probability of detec-

tion. The attacker must then balance how aggressively he utilizes the resources

of the compromised system and how stealthy he should be to avoid detection.

As in the previous section we assume Zt = θµt + Wt on the same probability

space (Ω,F , Pπ) for some fixed π ∈ [0, 1]. In the context of our game the random

variable θ has the interpretation of whether or not the attacker’s attempts at by-

passing the defender’s security were successful. This is not a strategic variable for

the attacker. It is assumed that θ is independent of Wt and all strategic actions.

Instead we are interested in analyzing the attacker’s strategic utilization of the

compromised system given a successful intrusion. Since the attacker’s aggressive-

ness in utilizing system resources is reflected in the drift of the stochastic process

Zt, we take the drift µ > 0 to be the strategic variable of the attacker.
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4.3.1 Defender Expected Cost and Best Response

In this section we focus on finding the defender’s best response to an attacker’s

strategy µ > 0. If µ is known by the defender we assume he seeks a sequential

decision rule (τ, δ) that minimizes the expected cost associated with the observa-

tion and detection process. We furthermore assume the defender uses the same

expected cost function as in the classical SPRT case. However in the context of

our game we expect the cost of a false negative β to increase with µ. This follows

from the interpretation of µ as a measure of stolen resources from the defender’s

system. The higher µ is, the more the defender loses. Thus we assume β(µ)

is a monotonically increasing function with β(0) = 0. Furthermore we assume

limµ→∞ β(µ) = ∞. On the other hand the cost of a false positive α should not

depend on the value of µ since under H0 the attacker fails to bypass the defender’s

security and is unable to utilize any resources. Thus we assume α is constant in

µ. Also note that without loss of generality we are assuming a per unit time

observation cost of 1.

The expected cost to the defender under the prior Pπ is then

Eπ [C(τ, δ)] = Eπ[τ ] + αP0(δ = 1)(1− π) + β(µ)P1(δ = 0)π.

The defender wishes to minimize this expected cost, thus the value function is

defined as

Vπ(µ) = inf
τ,δ
Eπ [C(τ, δ)] . (4.9)

Note that we consider the value to be a function of the drift µ as opposed to the

parameter π as in (4.3). This is because we assume π ∈ [0, 1] is fixed throughout

while the equilibrium analysis depends on variations in µ. Despite this difference,
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(4.9) is equivalent to the classical sequential detection of the drift of a Brownian

motion for fixed µ > 0. By modifying Theorem 4 to include β(µ) we can de-

fine functions πu(µ) and π`(µ) as the unique solutions to (4.5) and (4.6). Then

(4.7) and (4.8) give us functions A(µ) and B(µ). For each µ > 0 we will re-

fer to the associated sequential probability ratio test for testing H0 versus H1 as

SPRT(A(µ), B(µ)). We then have the following.

Proposition 11. If the attacker chooses a drift µ > 0, then a best response for

the defender is the SPRT(A(µ), B(µ)).

4.3.2 Adversarial Sequential Detection Statistics

Suppose now that the defender plays the SPRT(A(µ), B(µ)) in response to

the attacker strategy µ. In order to determine the attacker’s best response to

the strategy SPRT(A(µ), B(µ)) we will need to consider what happens when the

defender keeps his statistical test fixed while the attacker unilaterally deviates

from the value µ and chooses a value µ̃. In this case we can no longer rely on

standard results from Bayesian sequential detection theory to derive the SPRT

statistics. Recall that the stopping time and error probabilities are determined

by the likelihood ratio process Λt, which is a function of the observed data Zt.

The defender derives Λt from the hypotheses H0 and H1. However, when the

attacker chooses a drift µ̃ 6= µ there is a corresponding hypothesis, H̃1, conditional

distribution P̃1 and prior distribution P̃π, which are all distinct from H1, P1 and

Pπ, respectively:

H̃1 : Zt = µ̃t+Wt, t ≥ 0,

P̃1(·) = P̃π(·|θ = 1),

P̃π = (1− π)P0 + πP̃1.
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When the defender evaluates Λt at the observed data, it will no longer be a

true likelihood ratio process under P̃π, but a corrupted likelihood ratio process.

In this case the expected stopping times and error probabilities under prior P̃π

and hypotheses H0 and H̃1 will diverge from those anticipated by the defender

under prior Pπ and hypotheses H0 and H1.

In the next two propositions we state standard results regarding error rates

and expected stopping times under the assumption that the defender chooses the

SPRT(A(µ), B(µ)) for testing H0 versus H1, while the attacker chooses the drift

µ̃ with alternative hypothesis H̃1.

We still assume θ ∼ Bern(π) and Wt is a standard Brownian motion, but we

define the following stochastic processes to account for the discrepancy in drifts:

Z̃t , µ̃θt+Wt,

Λ̃t , exp
{
µ
(
Z̃t −

1
2µt

)}
,

T , inf {t ≥ 0 : Λ̃t /∈ (A,B)},

TA , inf {t ≥ 0 : Λ̃t ≤ A},

TB , inf {t ≥ 0 : Λ̃t ≥ B}.

Proposition 12. Suppose given the prior Pπ and hypotheses H0 and H1 a se-

quential detection procedure SPRT(A,B) is used to test the hypothesis H0 versus

H1 as in (4.1) and (4.2), respectively. Given the process Z̃t, the error probabilities

under the prior P̃π and hypotheses H0 and H̃1, respectively, are

P0(δ = 1) = 1− A
B − A

,

P̃1(δ = 0) = 1−B1−2 µ̃
µ

A1−2 µ̃
µ −B1−2 µ̃

µ

.
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Proof. Given the definitions above we have

Λ̃t = exp
{
µ
(

(µ̃θ − 1
2µ)t+Wt

)}
.

Under H0 we have Λ̃t = exp
{
−1

2µ
2t+ µWt

}
while under H̃1 we have Λ̃t =

exp
{

(µµ̃− 1
2µ

2)t+ µWt

}
. Recall that a stochastic process of the form

exp
{
−1

2ξ
2t+ ξWt

}

is a martingale for any ξ ∈ R. Setting ξ = µ we see that exp
{
−1

2µ
2t+ µWt

}
is

a martingale. Since T is a bounded stopping time it follows from the optional

stopping theorem that E0[Λ̃T ] = E
[
exp

{
µWT − 1

2µ
2T
}]

= 1.

Setting ξ = 1− 2 µ̃
µ
we have

exp
{
−1

2ξ
2t+ ξWt

}
= exp

{
−1

2(1− 2 µ̃
µ

)2µ2t+ (1− 2 µ̃
µ

)µWt

}

=
(

exp
{

(µµ̃− 1
2µ

2)t+ µWt

})1−2 µ̃
µ

.

It follows that
(
exp

{
(µµ̃− 1

2µ
2)t+ µWt

})1−2 µ̃
µ is a martingale, and the optional

stopping theorem gives us

Ẽ1

[
Λ̃

1−2 µ̃
µ

T

]
= E

(exp
{

(µµ̃− 1
2µ

2)t+ µWt

})1−2 µ̃
µ

 = 1.

We now have

E0
[
Λ̃T

]
= Ẽ1

[
Λ̃

1−2 µ̃
µ

T

]
= 1. (4.10)
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Furthermore we can write

E0
[
Λ̃T

]
= E0

[
Λ̃T |TA < TB

]
P0(δ = 0) + E0

[
Λ̃T |TB < TA

]
P0(δ = 1),

Ẽ1

[
Λ̃

1−2 µ̃
µ

T

]
= Ẽ1

[
Λ̃

1−2 µ̃
µ

T |TA < TB

]
P̃1(δ = 0) + Ẽ1

[
Λ̃

1−2 µ̃
µ

T |TB < TA

]
P̃1(δ = 1).

Also note the following:

E0
[
Λ̃T |TA < TB

]
= A,

E0
[
Λ̃T |TB < TA

]
= B,

Ẽ1

[
Λ̃

1−2 µ̃
µ

T |TA < TB

]
= A1−2 µ̃

µ ,

Ẽ1

[
Λ̃

1−2 µ̃
µ

T |TB < TA

]
= B1−2 µ̃

µ .

This then gives us

E0
[
Λ̃T

]
= AP0(δ = 0) +BP0(δ = 1),

Ẽ1

[
Λ̃

1−2 µ̃
µ

T

]
= A1−2 µ̃

µ P̃1(δ = 0) +B1−2 µ̃
µ P̃1(δ = 1).

Combing the above with (4.10) we have

AP0(δ = 0) +BP0(δ = 1) = 1, (4.11)

A1−2 µ̃
µ P̃1(δ = 0) +B1−2 µ̃

µ P̃1(δ = 1) = 1. (4.12)

Note also that

P0(δ = 0) + P0(δ = 1) = 1, (4.13)

P̃1(δ = 0) + P̃1(δ = 1) = 1. (4.14)

123



Using equations (4.11)-(4.14) to solve for P0(δ = 1) and P̃1(δ = 0) gives us the

desired result.

Proposition 13. Suppose given the prior Pπ a sequential detection procedure

SPRT(A,B) is used to test the hypothesis H0 versus H1 as in (4.1) and (4.2),

respectively. Given the process Z̃t, the expected stopping times under the prior P̃π

and hypotheses H0 and H̃1, respectively, are

E0 [T ] = − 2
µ2

(B − 1) logA+ (1− A) logB
B − A

,

Ẽ1 [T ] = (B1−2 µ̃
µ − 1) logA+ (1− A1−2 µ̃

µ ) logB
µ(µ̃− 1

2µ)(B1−2 µ̃
µ − A1−2 µ̃

µ )
.

Proof. Given Proposition 12, the proof is analogous to the classical SPRT case.

See, for example, [58].

4.3.3 Attacker Expected Utility and Best Response

In order to determine which alternate drift µ̃ the attacker will choose in re-

sponse to a given defender strategy SPRT(A(µ), B(µ)), we will need to determine

an expected utility function for the attacker. Under H0 the system is not com-

promised, in which case the attacker gets no utility. Under H̃1 there are two

possibilities. Either Λ̃T = A, in which case the defender decides (incorrectly) that

the system is not compromised, or Λ̃T = B, in which case the defender decides

(correctly) that the system is compromised. Let Tc be the amount of time the

attacker controls the compromised system. Under H0 we have Tc = 0, while under

H̃1 we have

Tc =


T if Λ̃T = B,

+∞ if Λ̃T = A.
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It follows that Ẽ1[Tc] = +∞. For this reason we introduce a discount function

e−rt over an infinite time horizon. Let f(µ̃) be the instantaneous utility gained by

the attacker given the strategy µ̃ and define the attacker’s expected utility as

Ur(µ̃, µ, A,B) , Ẽ1

[∫ Tc

0
f(µ̃)e−rtdt

]
.

For any realized time t we can write the utility of the attacker as f(µ̃)
r

(1− e−rt).

Thus we write the expected utility as

Ur(µ̃, µ, A,B) = Ẽ1

[
f(µ̃)
r

(
1− e−rTc

)]

= f(µ̃)
r

(
1− Ẽ1

[
e−rTc

])
.

In order to determine Ẽ1
[
e−rTc

]
, we define the following stopping times and some

corresponding lemmas:

τxc , inf{t ≥ 0 : Wt = c− xt},

τxa,b , inf{t ≥ 0 : Wt /∈ (a− xt, b− xt)}.

It is assumed throughout that W0 = 0 with probability one.

Lemma 10. For constants x, c ∈ R and r > 0

Ẽ1[e−rτxc ] =


ec(x+

√
x2+2r) if c ≤ 0,

e−c(−x+
√
x2+2r) if c > 0.

Proof. (See [30] Chapter 7, Exercise 5.4 for a similar problem.) We use the fact

that exp (ξWt − 1
2ξ

2t) is a martingale for any ξ ∈ R. By the optional stopping
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theorem we have

Ẽ1

[
exp (ξWτxc −

1
2ξ

2τxc )
]

= Ẽ1

[
exp (ξW0 −

1
2ξ

20)
]

= 1.

Furthermore Wτxc = c− xτxc so

Ẽ1

[
exp (ξWτxc −

1
2ξ

2τxc )
]

= Ẽ1

[
exp (ξ(c− xτxc )− 1

2ξ
2τxc )

]
= Ẽ1

[
exp (ξc− (xξ + 1

2ξ
2)τxc )

]
.

Combing the results gives us

Ẽ1

[
exp (−(xξ + 1

2ξ
2)τxc )

]
= exp (−ξc).

Setting r = xξ + 1
2ξ

2 and solving for ξ gives ξ = −x±
√
x2 + 2r. If c > 0 choose

ξ = −x+
√
x2 + 2r and if c < 0 choose ξ = −x−

√
x2 + 2r. The result follows.

Lemma 11. If a < 0 < b, then

Ẽ1[e−rτxa,b|τxa < τxb ]P̃1(τxa < τxb ) =
ea(x+

√
x2+2r)

(
1− e−2b

√
x2+2r

)
1− e−2(b−a)

√
x2+2r

,

Ẽ1[e−rτxa,b |τxb < τxa ]P̃1(τxb < τxa ) =
eb(x−

√
x2+2r)

(
1− e2a

√
x2+2r

)
1− e−2(b−a)

√
x2+2r

.
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Proof. By the strong Markov property we have

Ẽ1
[
e−rτ

x
a

]
= Ẽ1[e−rτxa,b|τxa < τxb ]P̃1(τxa < τxb )

+ Ẽ1[e−rτxa,b|τxb < τxa ]P̃1(τxb < τxa )Ẽ1[e−rτxa−b ],

Ẽ1
[
e−rτ

x
b

]
= Ẽ1[e−rτxa,b|τxb < τxa ]P̃1(τxb < τxa )

+ Ẽ1[e−rτxa,b|τxa < τxb ]P̃1(τxa < τxb )Ẽ1[e−rτxb−a ].

By Lemma 10 this gives

ea(x+
√
x2+2r) = Ẽ1[e−rτxa,b |τxa < τxb ]P̃1(τxa < τxb )

+ Ẽ1[e−rτxa,b|τxb < τxa ]P̃1(τxb < τxa )e(a−b)(x+
√
x2+2r),

e−b(−x+
√
x2+2r) = Ẽ1[e−rτxa,b |τxb < τxa ]P̃1(τxb < τxa )

+ Ẽ1[e−rτxa,b|τxa < τxb ]P̃1(τxa < τxb )e(a−b)(−x+
√
x2+2r).

Solving for the unknown terms gives us the desired result.

Given the above lemmas we can obtain the attacker’s discounted expected

utility in closed form. Note that the following result is valid for any µ > 0, A ∈

[0, 1], B ≥ 1, but in the equilibrium analysis to come later we will assume that

A(µ) and B(µ) are the optimal SPRT choices associated with µ.

Proposition 14. The attacker’s discounted expected utility is

Ur(µ̃, µ, A,B) = f(µ̃)
r

1−
B

1
µ

(x+y)
(
1− A

2
µ
y
)

B
2
µ
y − A

2
µ
y

 ,

where x = µ̃− 1
2µ and y =

√
(µ̃− 1

2µ)2 + 2r.
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Proof. By definition we have

Ur(µ̃, µ, A,B) = 1
r
f(µ̃)(1− Ẽ1

[
e−rTc

]
),

thus it is enough to determine Ẽ1
[
e−rTc

]
. Because Tc = +∞ whenever TA < TB

we have Ẽ1
[
e−rTc |TA < TB

]
= 0 and we can write

Ẽ1
[
e−rTc

]
= Ẽ1

[
e−rTB |TB < TA

]
P̃1(TB < TA).

For fixed µ,A,B using the change of variables x = µ̃− 1
2µ and setting a = 1

µ
logA

and b = 1
µ

logB, we see that TB d= τxb and TA d= τxa . Thus

Ẽ1
[
e−rTc

]
= Ẽ1

[
e−rτ

x
b |τxb < τxa

]
P1(τxb < τxa ).

Using lemma 11 this gives us

Ẽ1
[
e−rTc

]
=
eb(x−

√
x2+2r) (1− e2a

√
x2+2r

)
1− e2(a−b)

√
x2+2r

,

or equivalently

Ẽ1
[
e−rTc

]
=
B

1
µ(x+

√
x2+2r)

(
1− A

2
µ

√
x2+2r

)
B

2
µ

√
x2+2r − A

2
µ

√
x2+2r

.

4.3.4 Approximate Utility Function

We assume that the intruder is interested in establishing long-term, unre-

stricted access to the defender’s system. As such we will be interested in the case
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that the discount factor r is small. At this time a general analysis of the utility

function Ur for arbitrary r > 0 is unavailable due to its intractability. However

if we consider the limit r ↓ 0, then we obtain a tractable utility function which

approximates the case r ≈ 0.

Define the attacker’s asymptotic expected utility function and asymptotic best

response correspondence, respectively, as follows:

U0(µ̃, µ, A,B) , lim
r↓0

rUr(µ̃, µ, A,B),

σ0(µ,A,B) , arg max
µ̃≥0

U0(µ̃, µ, A,B).

Proposition 15. For µ̃ ≥ 0, µ > 0, A ∈ [0, 1] and B ≥ 1 with A < B we have

U0(µ̃, µ, A,B) = f(µ̃)P̃1(δ = 0).

Proof. We again use the notation x = µ̃− 1
2µ and y =

√
x2 + 2r as in Proposition

14. We consider three cases. First assume µ̃ > 1
2µ, i.e. x > 0. Then

lim
r↓0

B
1
µ

(x+y)
(
1− A

2
µ
y
)

B
2
µ
y − A

2
µ
y

=
B

1
µ

2x
(
1− A

2
µ
x
)

B
2
µ
x − A

2
µ
x

=
B2 µ̃

µ
−1
(

1− A2 µ̃
µ
−1
)

B2 µ̃
µ
−1 − A2 µ̃

µ
−1

= 1− A1−2 µ̃
µ

B1−2 µ̃
µ − A1−2 µ̃

µ

.

Now assume µ̃ < 1
2µ, i.e. x < 0. In this case limr↓0 x+y = 0 and limr↓0 y = |x|.
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Thus we have

lim
r↓0

B
1
µ

(x+y)
(
1− A

2
µ
y
)

B
2
µ
y − A

2
µ
y

= 1− A
2
µ
|x|

B
2
µ
|x| − A

2
µ
|x|

= 1− A1−2 µ̃
µ

B1−2 µ̃
µ − A1−2 µ̃

µ

.

Finally we consider the case µ̃ = 1
2µ, where we have x = 0 and y =

√
2r:

B
1
µ

(x+y)
(
1− A

2
µ
y
)

B
2
µ
y − A

2
µ
y

=
B

1
µ

√
2r
(
1− A

2
µ

√
2r
)

B
2
µ

√
2r − A

2
µ

√
2r

.

Taking limits we have

lim
r↓0

B
1
µ

√
2r
(
1− A

2
µ

√
2r
)

B
2
µ

√
2r − A

2
µ

√
2r

= − logA
logB − logA

= lim
µ̃→ 1

2µ
P̃1(δ = 0).

From this analysis we see that limr↓0 rU(µ̃, µ, r) = f(µ̃)P̃1(δ = 0).

In order to prove the existence of pure Nash equilibria we will need the strict

quasi-concavity of the attacker’s expected utility function U0 in his strategy µ̃.

The required analysis will be easier if the expected utility is written in terms

of the natural exponential function, ex. We thus introduce the following change

of variables: x = µ̃ − 1
2µ, a = 1

µ
logA and b = 1

µ
logB. We can then rewrite the

probability of a false negative as P̃1(δ = 0) = 1− e2bx(1−e2ax)
e2bx−e2ax .With this observation

we define the function

g(x, a, b) , e2bx (1− e2ax)
e2bx − e2ax .

The following lemma regarding the function g will help us establish the strict

quasi-concavity of the attacker’s expected utility U0 in his strategy µ̃.
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Lemma 12. For a < 0 < b, ∂
∂x

[
1−g(x,a,b)

∂g
∂x

]
≤ 0 for all x ∈ R.

Proof. Since

∂g

∂x
= −2ae2ax(1− e−2bx)− 2be2(a−b)x(1− e2ax)

(1− e2(a−b)x)2 ,

we have

1− g(x)
∂g
∂x

= e2bx − 1− e2ax + e2(a−b)x

−2ae2bx + 2a− 2b+ 2be2ax .

Define the functions

h(x) , e2bx − 1− e2ax + e2(a−b)x,

`(x) , −2ae2bx + 2a− 2b+ 2be2ax,

F (x) , h(x)
`(x) .

Clearly F (x) = 1−g(x)
∂g
∂x

. We will show that F ′(x) < 0 for all x. First note that

F ′(x) = h′(x)`(x)− h(x)`′(x)
`(x)2 ,

h′(x) = 2be2bx − 2ae2ax + 2(a− b)e2(a−b)x,

`′(x) = −4ab(e2bx − e2ax).

One then arrives at

1
8F
′(x)`(x)2e−2ax = (b− a)2 cosh(2bx)− b2 cosh(2(b− a)x) + 2a(2b− a).
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Define the right hand side as

R(x) , (b− a)2 cosh(2bx)− b2 cosh(2(b− a)x) + 2a(2b− a).

We then have

R′′(x) = 4(b− a)2b2(cosh(2bx)− cosh(2(b− a)x)) ≤ 0.

Furthermore R(0) = 0 and R′(x) = 0 if and only if x = 0. Since R(x) is concave,

R(0) = 0 is a global maximum giving us R(x) ≤ 0 for all x. It follows that

F ′(x) ≤ 0, establishing our result.

Proposition 16. Fix µ > 0, A ∈ [0, 1] and B ≥ 1. If A < 1 < B, then the

intruder expected utility U0(µ̃, µ, A,B) is strictly quasi-concave in µ̃. If A = 1 < B

then U0(µ̃, µ, A,B) = f(µ̃). If A < 1 = B then U0(µ̃, µ, A,B) ≡ 0.

Proof. The first order condition (FOC) of optimality, ∂U0
∂µ̃

= 0, can be written
∂f
∂µ̃

(
1− g

(
µ̃− 1

2µ,
1
µ

logA, 1
µ

logB
))

= f(µ̃) ∂g
∂µ̃
. Fixing µ > 0, A ∈ [0, 1] and B ≥ 1

and abusing notation we write g(µ̃) = g
(
µ̃− 1

2µ,
1
µ

logA, 1
µ

logB
)
.

First consider the case that A < 1 < B. Since ∂x
∂µ̃

= 1 we have ∂g
∂µ̃
≡ ∂g

∂x
. Then

by definition of the function g we have ∂g
∂µ̃
> 0, while by assumption ∂f

∂µ̃
> 0. The

first order condition for optimality is then

1− g(µ̃)
∂g
∂µ̃

= f(µ̃)
∂f
∂µ̃

. (4.15)

By assumption the function f(µ̃) is concave, thus giving us ∂
∂µ̃

[
f(µ̃)
∂f
∂µ̃

]
> 0. By

Lemma 12 we have ∂
∂µ̃

[
1−g
∂g
∂µ̃

]
≤ 0. It follows that there is at most one solution

satisfying the FOC.
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Furthermore we see that limµ̃↓0 f(µ̃) = 0 and

lim
µ̃↓0

1− g(µ̃)
∂g
∂µ̃

= lim
x↓−µ/2

e2bx − 1− e2ax + e2(a−b)x

−2ae2bx + 2a− 2b+ 2be2ax

= µ

2
(B − A)(B − 1)

AlogA(B − 1)−B logB(A− 1) > 0.

By monotonicity and continuity either 1−g(µ̃)
∂g
∂µ̃

> f(µ̃)
∂f
∂µ̃

for all µ̃ ≥ 0 or there exists a

unique µ̃ satisfying (4.15). Furthermore

lim
µ̃→∞

1− g(µ̃)
∂g
∂µ̃

= lim
x→∞

1− g(x, a, b)
∂g
∂x

= − 1
2a <∞.

Since f(µ̃) ≥ 0, f ′(µ̃) > 0 and f ′′(µ̃) ≤ 0 we must have limµ̃→∞
f(µ̃)
∂f
∂µ̃

= ∞. Thus

we are guaranteed that there exists a unique µ̃ satisfying (4.15), and the intruder

expected utility U0(µ̃, µ, A,B) is strictly quasi-concave in µ̃.

If A = 1 < B then P̃1(δ = 0) = 1 for all µ̃ ≥ 0 giving us U0(µ̃, µ, A,B) = f(µ̃).

Finally if A < 1 = B then P̃1(δ = 0) = 0 for all µ̃ ≥ 0, giving us U0(µ̃, µ, A,B) ≡

0.

In what follows we will assume that for a given µ > 0 the defender plays the

associated SPRT(A(µ), B(µ)). Because the values of A(µ) and B(µ) are uniquely

determined by the optimality of the SPRT, we can consider the attacker’s best

response strategy to be a best response to the single variable µ. Abusing notation

we will write the attacker’s best response correspondence as σ0(µ) where it is

understood that µ 7→ SPRT(A(µ), B(µ)).

Proposition 17. Fix µ > 0 and assume the defender plays the SPRT(A(µ), B(µ)).

If A(µ) < 1 < B(µ) then the best response correspondence σ0(µ) is single valued

and differentiable at µ. If A(µ) = 1 < B(µ) then σ0(µ) = +∞. If A(µ) < 1 =

B(µ) then σ0(µ) ≡ R+.
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Proof. Define the function

M(u, v) ,
1−B(v)1−2uv

A(v)1−2uv −B(v)1−2uv

∂
∂µ̃

[
1−B(v)1−2 µ̃v

A(v)1−2 µ̃v −B(v)1−2 µ̃v

]
µ̃=u

+ f(u)
∂f
∂µ̃

∣∣∣
µ̃=u

.

Then the attacker’s first order condition of optimality can be written asM(µ̃, µ) =

0. Given (4.5) and (4.6) the implicit function theorem implies that πu(µ) and

π`(µ) are differentiable functions of µ. Then by (4.7) and (4.8), A(µ) and B(µ)

are differentiable functions in µ in open neighborhoods where A(µ) < 1 < B(µ).

Furthermore f(µ̃) is twice differentiable in µ̃ by assumption. It follows that the

function M(u, v) is differentiable in both u and v.

Suppose for some µ0 > 0 the associated SPRT(A(µ0), B(µ0)) satisfies A(µ0) <

1 < B(µ0). Furthermore suppose there exists a value µ̃0 such that the first

order condition (4.15) is satisfied, i.e. M(µ̃0, µ0) = 0. By the implicit function

theorem there exists a differentiable function y : R→ R such that y(µ0) = µ̃0 and

M(y(µ), µ) = 0 for all µ in some open neighborhood of µ0 . By definition σ0(µ)

is the set of best responses to the strategy SPRT(A(µ), B(µ)). Since the pairs

(y(µ), µ) solve the FOC the strict quasi-concavity of U0 implies σ0(µ) = y(µ) for

all µ in some open neighborhood of µ0. Thus σ0(µ) is differentiable at µ0.

From Proposition 16 we see that if A = 1 < B then U0(µ̃, µ, A,B) = f(µ̃),

which is monotonically increasing in µ̃. Thus σ0(µ) = +∞. Again from Propo-

sition 16 we see that A < 1 = B implies U0(µ̃, µ, A,B) ≡ 0, which means all

strategies are equally valid, i.e. σ0(µ) ≡ R+.
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4.4 Equilibrium Analysis

We now establish the existence of Nash equilibria in the adversarial sequential

detection game in the limiting case r ↓ 0. More specifically we will show the

existence of a value µ∗ such that

U0(µ, µ∗, A(µ∗), B(µ∗)) ≤ U0(µ∗, µ∗, A(µ∗), B(µ∗))

for all µ ≥ 0.

Note that this implies the attacker has no incentive to unilaterally deviate from

the strategy µ∗. Furthermore since the defender is playing a best response to the

strategy µ∗, namely the SPRT(A(µ∗), B(µ∗)), he too has no incentive to unilater-

ally deviate from his strategy. As such the strategy profile (µ∗, µ∗, A(µ∗), B(µ∗))

is a Nash equilibrium. In our analysis we have restricted attention to the case

where the defender plays an SPRT. However, the existence of a value µ∗ implies

the existence of a Nash equilibrium in the more general case in which the defender

is free to choose any sequential decision rule. Since the value µ∗ is non-random

we refer to this as a pure Nash equilibirum.

For the Nash equilibrium existence proof, we will need to understand the

asymptotic behavior of the functions A(µ) and B(µ), which we establish in the

following lemma.

Lemma 13. Let SPRT(A(µ), B(µ)) be the sequential probability ratio tetst as-

sociated with the drift µ > 0. Then limµ↓0B(µ) = ∞, limµ↓0A(µ) = 1 and

limµ→∞A(µ) = 0. Furthermore there exists a value µ′ > 0 such that limµ↓µ′ A(µ) =

1 and A(µ) < 1 for all µ > µ′.

Proof. Recall from Theorem 4 that π`(µ) and πu(µ) are guaranteed to satisfy

0 < π`(µ) < α
α+β(µ) < πu(µ) < 1. Since β(µ) is monotonically increasing in µ with
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β(0) = 0 and limµ→∞ β(µ) = ∞ we must have α
α+β(µ) monotonically decreasing

with limµ↓0
α

α+β(µ) = 1 and limµ→∞
α

α+β(µ) = 0. With these limits the bounds

on π`(µ) and πu(µ) immediately give us limµ↓0 πu(µ) = 1 and limµ→∞ π`(µ) = 0.

Hence (4.7) and (4.8) give us limµ↓0B(µ) =∞ and limµ→∞A(µ) = 0.

From Theorem 4 we have ∂ν(π,π`,µ)
∂π

∣∣∣
π=πu(µ)

= β(µ) + 2
µ2 (ψ′(πu(µ))−ψ′(π`(µ))).

Taking µ ↓ 0 on both sides of (4.6) we arrive at

lim
µ↓0

2
µ2 (ψ′(πu)− ψ′(π`)) = −α. (4.16)

Since limµ↓0
1
µ2 = ∞ we must have limµ↓0(ψ′(πu) − ψ′(π`)) = 0, otherwise (4.16)

would not hold. Since ψ′(x) = −2 log x
1−x + 1−2x

x
it is easily verified that the only

possibility is limµ↓0 π`(µ) = 1, for otherwise limµ↓0(ψ′(πu)− ψ′(π`)) 6= 0.

By the continuity of π`(µ) along with its limiting values, there must exist a

value µ′ > 0 such that limµ↓µ′ π`(µ) = π and π`(µ) < π for all µ > µ′. Thus as

µ ↓ µ′ we have A(µ) ↑ 1 and A(µ) < 1 for all µ > µ′.

For the final lemma define the functions φ : R × R → R, L : R → R and

R : R× R→ R as φ(x, y) , 2 y
x
− 1, L(x) , f(x)

f ′(x) and

R(x, y) , − B(y)−φ(x,y)(B(y)φ(x,y) − 1)(B(y)φ(x,y) − A(y)φ(x,y))
(B(y)φ(x,y) − 1) logA(y) + (1− A(y)φ(x,y)) logB(y) .

The attacker’s FOC can then be written as

L(µ̃) = R(µ̃, µ). (4.17)

The next lemma establishes the limiting values of these functions which will be

needed in the proof of the main existence theorem.
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Lemma 14. For µ > 0 such that A(µ) < 1 < B(µ) we have the following:

lim
µ̃↓0

L(µ̃) = 0,

lim
µ̃→+∞

L(µ̃) = +∞,

lim
µ̃→ 1

2µ
R(µ̃, µ) = − µ

logA(µ) ,

lim
µ̃→∞

R(µ̃, µ) = −1
2

µ

logA(µ) .

Proof. The limiting values of L are obtained directly from the assumptions on the

function f , namely that f(x) ≥ 0, f ′(x) > 0 and f ′′(x) ≤ 0. The limiting values

of R are obtained via L’Hôpital’s rule.

Theorem 5. There exists a pure Nash equilibrium in the non-zero-sum, sequential

detection game in the limiting case r ↓ 0.

Proof. Suppose the defender is testing for the strategy µ and has chosen the

associated optimal sequential test SPRT(A(µ), B(µ)). Assuming µ is fixed with

A(µ) < 1 < B(µ), the monotonicity properties of L and R in µ̃ give us bounds

on the unique value µ̃ witch satisfies (4.17). Define the values µ̃ 1
2
, µ̃`, µ̃

∗ as the

unique solutions to the following equations:

L(µ̃ 1
2
) = lim

µ̃→ 1
2µ
R(µ̃, µ) = − µ

logA(µ) ,

L(µ̃`) = lim
µ̃→∞

R(µ̃, µ) = −1
2

µ

logA(µ) ,

L(µ̃∗) = R(µ̃∗, µ).

Given the assumptions on the function f , namely f(x) ≥ 0, f ′(x) > 0, f ′′(x) ≤ 0,

we must have L′(x) > 0. If y = L(x) then there exists an inverse function L−1 such

that L−1(y) = x. As such we have µ̃ 1
2

= L−1
(
− µ

logA(µ)

)
and µ̃` = L−1

(
−1

2
µ

logA(µ)

)
.
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By the monotonicity of L and R in µ̃ we have µ̃` < µ̃∗, i.e. L−1
(
−1

2
µ

logA(µ)

)
< µ̃∗.

For any µ satisfying A(µ) < 1 < B(µ) the value µ̃∗ is the unique best response of

the attacker, i.e. σ0(µ) = µ̃∗. Thus we have the lower bound L−1
(
−1

2
µ

logA(µ)

)
<

σ0(µ).

We first consider what happens as µ ↓ 0. By Lemma 13 there exists a value

µ′ > 0 such that as limµ↓µ′ A(µ) = 1 and A(µ) < 1 for all µ > µ′. Thus we have

limµ↓µ′ L
−1
(
−1

2
µ

logA(µ)

)
= +∞. Since this is a lower bound on σ0(µ) it follows that

limµ↓µ′ σ0(µ) = +∞.

We now consider what happens as µ → ∞. First observe that as µ → ∞ we

have α
α+β(µ) ↓ 0. Thus we must have π` ↓ 0 as well as A ↓ 0. Thus for large enough

µ we must have A(µ) < 1. Suppose at some point µ∗ we have B(µ∗) = 1. Then

σ0(µ∗) ≡ R+ and we have µ∗ ∈ σ0(µ∗), i.e. µ∗ is a pure Nash equilibrium.

Suppose there are no values satisfying B(µ) = 1. We consider two cases. First

suppose σ0(µ) ≤ 1
2µ as µ → ∞. As we already showed limµ↓µ′ σ0(µ) = +∞ and

σ0(µ) < +∞ for all µ > µ′. We thus have that σ0(µ) − µ > 0 for small enough

µ while σ0(µ)− µ < 0 for large enough µ. By the continuity of σ0(µ) there must

exist a value µ∗ satisfying σ0(µ∗)− µ∗ = 0, i.e. there exists a Nash equilibrium.

Now suppose σ0(µ) > 1
2µ as µ → ∞. For all µ satisfying this condition we

must have L(1
2µ) < R(1

2µ, µ) = − µ
logA(µ) . Otherwise the monotonicity properties

of L and R in µ̃ would violate our assumption that σ0(µ) > 1
2µ. As such we

can obtain a tighter upper bound on σ0(µ). Specifically we must have σ0(µ) <

L−1
(
− µ

logA(µ)

)
. Suppose lim supµ→∞− µ

logA(µ) < ∞. Then for large enough µ we

will have σ0(µ) < µ. Again by the continuity of σ0(µ) there must exist a value

µ∗ satisfying σ0(µ∗) − µ∗ = 0, i.e. there exists a Nash equilibrium. Now suppose

lim supµ→∞− µ
logA(µ) = ∞. Note that L′(x) = 1 − f(x)f ′′(x)

(f ′(x))2 ≥ 1 with equality if

and only if x = 0. Thus the inverse function satisfies d
dy

[L−1] = 1
L′(y) ≤ 1 with
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equality if and only if y = L(0). As such the inverse function has a unique fixed

point y0 satisfying y0 = L−1(y0). Furthermore we must have L−1(y) < y for all

y > y0. It follows that σ0(µ) < µ as µ→ +∞. Again by continuity of σ0(µ) there

must exist a value µ∗ satisfying σ0(µ∗) − µ∗ = 0, i.e. there exists a pure Nash

equilibrium. This exhausts all possibilities and completes the proof.

When facing a strategic attacker, there is no guarantee that he will choose

the strategy µ the defender is testing for. The above theorem suggests that the

defender can find a pure Nash equilibrium µ∗ that satisfies µ∗ ∈ σ0(µ∗). Assuming

the defender is rational and strategic, playing such a strategy guarantees that the

SPRT(A(µ∗), B(µ∗)) is optimal for detecting the drift µ∗ and insures that the

attacker has no incentive to deviate from the strategy µ∗.

An alternative approach is for the defender to anticipate the best response of

the attacker. The defender may then seek to find a strategy that is optimal given

that the attacker will himself play a best response to the defender’s strategy. In

other words the defender may seek a Stackelberg equilibrium solution. We restrict

the strategy space of the defender to be the set of all SPRTs. Thus we assume

that for a given µ > 0 the defender chooses the optimal SPRT(A(µ), B(µ)) with

respect to the measure Pπ as in Theorem 4. In this way the defender’s strategy is

simply to choose a drift µ > 0 to test against the null hypothesis of zero drift, and

it is understood that µ 7→ SPRT(A(µ), B(µ)). If the attacker plays a strategy µ̃

in response, we can then define the corrupted random cost w.r.t. the measure P̃π:

C̃(µ, µ̃) , T + α1{θ=0,Λ̃T=B(µ)} + β(µ̃)1{θ=1,Λ̃T=A(µ)}.

We then define the corrupted value function as

Ṽπ(µ, µ̃) , Ẽπ
[
C̃(µ, µ̃)

]
.
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Note that in the special case µ̃ = µ we have Ṽπ(µ, µ) = Vπ(µ). This follows

from the optimality of the SPRT and the fact that P̃π = Pπ whenever µ̃ = µ. If

the attacker best responds we have µ̃ = σ0(µ). The Stackelberg value w.r.t. the

measure P̃π is then Ṽ ∗π , infµ>0 Ṽπ(µ, σ0(µ)). The Stackelberg equilibrium, if it

exists, is any µs ∈ arg minµ>0 Ṽπ(µ, σ0(µ)).

In the next theorem we give sufficient conditions on (A(µ), B(µ)) to guarantee

the existence of a Stackelberg equilbirium with the defender as leader under the

restriction that he play only SPRTs. The first assumption states that for larger

values of µ, the defender requires more evidence to acceptH0. The second assump-

tion states that the defender will never accept H1 without making observations,

regardless of the value of µ.

Theorem 6. For µ > 0 suppose the defender restricts his sequential tests to the

optimal SPRT(A(µ), B(µ)). If A(µ) is monotonically decreasing in µ and if there

exists a constant c > 1 such that B(µ) > c for all µ > 0, then there exists a

Stackelberg equilibrium in the limiting case r ↓ 0.

Proof. Assume that A(µ) is monotonically decreasing in µ and that there exists

a constant c > 1 such that B(µ) > 1 for all µ > 0. Let µ′′ be the unique solution

to π`(µ′′) = π. By Proposition 17 we must have σ0(µ) = +∞ for all µ ≤ µ′′ and

σ0(µ) < +∞ for all finite µ > µ′′. Furthermore we have limµ↓µ′′ σ0(µ) = +∞. We

wish to show limµ→+∞ σ0(µ) = +∞. Since B(µ) > c > 1 for all µ > 0 we must

limµ→+∞B(µ) > 1. Thus

lim
µ→+∞

P1(δ = 0) = lim
µ→+∞

1−B(µ)
A(µ)−B(µ) = 1− lim

µ→+∞

1
B(µ) ≥ 1− 1

c
> 0.
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Suppose limµ→+∞ σ0(µ) = µ∗ < +∞. Then for any ε > 0

lim
µ→+∞

U0(σ0(µ) + ε, µ)
U0(σ0(µ), µ) = f(µ∗ + ε)

f(µ∗) > 1,

where the equality follows from the continuity of f and the inequality follows from

the monotonicity of f . But then for large enough µ we have U0(σ0(µ) + ε, µ) >

U0(σ0(µ) + ε, µ) which contradicts the optimality of σ0(µ). Thus our assumption

was incorrect and we can conclude that limµ→+∞ σ0(µ) = +∞.

We now have limµ→+∞ σ0(µ) = limµ↓µ′′ σ0(µ) = +∞ with σ0(µ) < +∞ and

differentiable for all µ > µ′′ and σ0(µ) = +∞ for all µ ≤ µ′′. Now consider the de-

fender’s expected corrupted value function Ṽπ(µ, µ̃) evaluated at (µ, σ0(µ)). Since

Ṽπ(µ, σ0(µ)) > 0 and β(x)→ +∞ as x→ +∞, we must have limµ↓µ′′ Ṽπ(µ, σ0(µ)) =

limµ→+∞ Ṽπ(µ, σ0(µ)) = +∞. The continuity of Ṽπ(µ, µ̃) in µ follows from Propo-

sitions 12 and 13. Then the continuity of σ0(µ) for µ > µ′′ gives us the continuity

of Ṽπ(µ, σ0(µ)) in µ > µ′′. From this continuity there must exist a global minimum

in the open interval (µ′′,+∞). Thus any value µs ∈ arg minµ∈(µ′′,+∞) Ṽπ(µ, σ0(µ))

is a Stackelberg equilibrium.

4.5 Numerical Examples

Unless otherwise noted, the following values were used in the numerical results:

α = 1, β(µ) = µ, f(µ̃) = µ̃ and π = 0.25, 0.6. Figure 4.1 shows the attacker’s best

response correspondence σ0(µ) for π = 0.25 and varying µ, as well as the identity

line. Any point µ∗ at which σ0(µ) cross the identity line satisfies µ∗ ∈ σ0(µ∗) and is

thus a Nash equilibrium. In this particular example it appears that the equilibrium

is unique. Figure 4.2 shows the attacker’s best response correspondence σ0(µ) for

π = 0.6 and varying µ, as well as the identity line. Notice in this example the best
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response correspondence is set valued on an interval I. As discussed in Theorem

5 we have σ0(µ) ≡ R+ for all µ ∈ I, thus we are guaranteed that µ ∈ σ0(µ) for

all µ ∈ I. The interval I corresponds to the set {µ ≥ 0 : B(µ) = 1}. As such,

we have an infinite number of Nash equilibria in which the defender makes no

observations and immediately accepts hypothesis H1 while the attacker gets zero

utility.

To understand how the infinite Nash equilibria can arise, we numerically com-

pute the Nash equilibria for various parameter values. In particular figure 4.3

shows Nash equilibria for varying false positive cost α ∈ [0, 6] and figure 4.4 shows

Nash equilibria for varying prior π ∈ [0, 1]. Notice in figure 4.3 that for small

false positive values we see infinite Nash equilibria. This can be explained by the

following reasoning: When the defender’s penalty for a false positive is sufficiently

low, then the majority of his expected costs come from observation time and false

negatives. As such for a large range of µ values he can minimize his expected costs

by making no observations and making the probability of a false negative zero, i.e.

immediately choose H1. As we saw in figure 4.2 it is exactly this situation which

leads to the attacker having set-valued best responses and consequently infinite

Nash equilibria. As one would expect, as the cost of a false positive increases, this

reasoning applies to a smaller and smaller range of µ, and for large enough false

positive costs the above reasoning does not apply. We point out that for larger

false positive costs, the Nash equilibria are relatively robust to increases in the

cost of a false positive.

A similar line of reasoning applies to figure 4.4, but in reverse. Since π is the

prior probability that the system is compromised, higher values of π lead to the

probability of a false positive being lower and the probability of a false negative

being higher. Thus for large values of π there is a range of µ values for which
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the defender minimizes his expected cost by immediately classifying his system as

compromised. An interesting observation is that a high probability of a successful

intrusion by the attacker, i.e. high values of π, leads to Nash equilibria in which

the attacker receives no utility. Thus what may at first appear to be an advantage

for the attacker leads to a worst-case outcome for him at the Nash equilibria. It is

in fact better for the attacker to have a lower probability of successful intrusion.

Note that in contrast to varying false positive costs, Nash equilibria vary much

more with variations in the prior π.

Using Theorem 5 we can numerically compute the values A(µ) and B(µ) in

order to compare the functions Vπ(µ) and Ṽπ(µ, σ0(µ)). Figure 4.5 shows these

functions for the value π = 0.25 and varying µ. As one might expect, for values µ

that are far away from the Nash equilibrium µ∗ we have Vπ(µ) < Ṽπ(µ, σ0(µ)). In

fact it appears that Ṽπ(µ, σ0(µ)) − Vπ(µ) → +∞ as µ ↓ 0 and µ → +∞. Notice

however that for some values near the Nash equilibrium the defender’s outcome

is improved by the attacker’s best response. While this may appear to contradict

the optimality of the SPRT test, it in fact does not. Recall that Ṽπ(µ, σ0(µ)) is

computed w.r.t. the measure P̃π while Vπ(µ) is computer w.r.t. the measure Pπ.

As such all SPRT optimality results do not apply. To guarantee optimality the

defender would need to update his test to reflect the change in the distribution

caused by the attacker, i.e. choose the test SPRT(A(σ0(µ), B(σ0(µ))).

Figure 4.5 also appears to show the existence of a Stackelberg equilibrium. The

function Ṽπ(µ, σ0(µ)) appears to have a unique minimum at a point µs which is

distinct from µ∗, the Nash equilibrium. Thus by signaling an appropriately chosen

sequential test to the attacker, the defender can improve his expected outcome

relative to the Nash equilibrium.
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Figure 4.1: Attacker best response and the identity line for the case π = 0.25.
The point at which they cross, µ∗, satisfies µ∗ ∈ σ0(µ∗), i.e. µ∗ is a Nash equilib-
rium.

Figure 4.2: Attacker best response and the identity line for the case π = 0.6.
All points at which they cross satisfy µ∗ ∈ σ0(µ∗), i.e. µ∗ is a Nash equilibrium.

4.6 Conclusion

In summary, we have presented a novel two-player, non-zero-sum, sequential

detection game motivated by problems in the cyber-security domain. We proved

that in the special case that the attacker’s discount rate approaches zero the game

admits Nash equilibria in which the defender plays Wald’s sequential probability

ratio test (SPRT). Furthermore we gave sufficient conditions for the existence

of a Stackelberg equilibrium with the defender as leader. Through numerical
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Figure 4.3: Nash equilibria for varying false positive cost, α, for the case π = 0.5.

Figure 4.4: Nash equilibria for varying prior, π, for the case α = 1.

examples we showed that it is possible for the defender to do better under the

Stackelberg equilibrium than the Nash equilibrium. We also showed through

numerical examples that both low false positive costs and high prior probabilities

of intrusion lead to an infinite number of Nash equilibria in which the attacker

receives no utility.

Several avenues for future research exist in adversarial sequential detection.

First, we would like to consider the more general discount factor r > 0. Second,

considering different payoff functions for various adversaries should give rise to

qualitatively distinct equilibria. For example, in the context of network security a
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Figure 4.5: Defender’s value function Vπ(µ) w.r.t. the measure Pπ and the
defender’s corrupted value function Ṽπ(µ, µ̃) w.r.t. the measure P̃π. Above we
show these two functions for varying values of µ with µ̃ = σ0(µ), the attacker’s
best response to the SPRT(A(µ), B(µ)).

strategic spy in search of information has very different objectives than a strategic

bot master stealing computational resources.

We have assumed that the data is generated by exactly one of two possible

distributions, and it is the objective of the defender to detect which of the two

distributions is generating the data. Alternatively we may assume that the prob-

ability distribution changes at some point during the observation process, and the

goal of the defender is to detect such a change as quickly as possible. This type

of sequential analysis is known as quickest (or change-point) detection [58], and

it too has many security applications. Thus it would be of interest to consider

the the same type of non-zero-sum, game-theoretic analysis for Bayesian quickest

detection as was done here for Bayesian sequential detection.

Simple hypothesis testing might be too limited a test in practice. One response

to this is to use composite hypothesis tests. One may test the hypothesis θ ∈ Θ0
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versus θ ∈ Θ1 where Θ0 and Θ1 are two disjoint subsets of the parameter space

Θ. Even with a more robust test such as this, the decision of how to formulate Θ0

and Θ1 may depend on the actions of the attacker, thus a similar game-theoretic

analysis may lend insight into this problem as well.
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Chapter 5

Conclusion

To summarize this dissertation we briefly outline our main contributions to

the field of adversarial detection games.

Interdependent detection games and botnet modeling

• To the best of our knowledge we present the first network interdependent

detection game. The vast majority of the literature has focussed on security

investment as a measure of effort. We contend that the modeling tools of

IDS games can be enriched by considering other types of effort. In this

vain we propose studying adversarial threat detection in an interdependent

environment. While detection is not strictly a type of investment, it can be

understood in the larger context of IDS games.

• While strategic adversaries have been modeled in interdependent security

games, most of the literature has focussed on zero-sum interactions. That

is, the loss incurred by the defenders is the direct gain by the attacker. To our

knowledge we are the first to consider the case of non-zero-sum interactions

between attacker and defenders in the IDS literature.
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• To the best of our knowledge non-cooperative distributed detection has not

been considered in the literature. Distributed detection usually refers to in-

terdependent sensors cooperatively trying to detect the presence of a signal.

As such distributed detection can be modeled as a cooperative (or coali-

tion) game and is usually approached as a design problem. In our model

the sensors are the defenders and they are non-cooperative. They are only

interested in detecting the presence of the infection individually. Thus our

work does not fit entirely into the distributed detection literature, but is

nonetheless related.

Sequential detection games

• We present the first non-zero-sum, continuous-time, sequential detection

game. Most sequential games have been restricted to discrete-time, zero-

sum games.

• To the best of our knowledge we are the first to use results from the theory of

optimal stopping and free-boundary problems [56,64] to construct sequential

detection games.

Open Problems

There are several avenues for potential future research. We outline several

below.

• We have restricted our attention to Erdős-Rényi random graphs in the epi-

demic detection games considered here. One criticism of Erdős-Rényi ran-

dom graphs is that they are not realistic models of some real-world networks.

In particular if one is modeling technological networks such as the internet

would like to consider other networks that have node degree distributions
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with heavier tails. The local mean field models of Lelarge and Bolot [47,48]

are not restricted to these graphs. The only requirement is that the un-

derlying graphs be “locally tree-like”. This includes graphs with arbitrary

node degree distributions. It would thus be of interest to study the same

types of games but on different network topologies to see how the results

would differ. One of the main difficulties with this approach is analytical

tractability.

• Incorporating security investments directly into our detection game could

be accomplished by coupling our LMF model with the original LMF model

of Lelarge and Bolot. In Appendix A.9 we generalize the infection dynamics

and show how this might help one start to connect the two LMF models.

• Incorporating the intended target of a DDoS attack in the epidemic detection

game would help better understand the misaligned incentives of the DDoS

problem.

• Nash equilibrium results of the heterogeneous game were shown to be very

hard to come by. Further understanding of the effects of defender hetero-

geneity on the existence of Nash equilibria in a game with a strategic attacker

is needed.

• The epidemic detection games considered here are static one shot games. It

would be of interest to incorporate dynamics into the model. One straight

forward way of doing this is to considered repeated epidemic detection games

and allow players to update their strategies after each round. One could

study convergence properties of the resulting dynamic game. Alternatively

it may interesting to combine the sequential detection games and epidemic

detection games considered here.
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• The sequential detection game, though dynamic in principle, reduces to a

static one-shot game as well. The attacker is limited to choosing a single drift

for the stochastic process. It would be of interest to consider allowing the

attacker to change his strategy over time. This is a much more difficult prob-

lem, but may be approachable utilizing results from optimal stopping and

free-boundary problems and other dynamic programming type arguments.

Alternatively it may be easier to reformulate the problem as a stochastic

game [32].
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Appendix A

Appendix

A.1 Proof of Lemma 1

To prove the lemma we fix T ≥ A ≥ 0 and show that for any value of λq >

0 the inequality holds. First note that if T = A then θ(A, T, λq) = 1 for all

λq > 0. Thus we fix T > A. We begin by noting that for fixed A and T

the implicit function theorem gives us that h(λq) is a differentiable function of

the joint parameter λq. Furthermore we can show that h(λq) is monotonically

increasing in λq as in [48].From the definition of h(λq) in Prop. 2 it suffices to

prove that λq(FS(T − A)− h(λq)) < 1, or equivalently FS(T − A)− 1
λq
< h(λq),

for all λq > 0. The definition in Prop. 2 gives us FS(T − A)p ≤ h(λq). Now, if

0 < λq < 1
FS(T−A)(1−p) , then

h(λq) ≥ FS(T − A)p

= FS(T − A)− FS(T − A)(1− p)

> FS(T − A)− 1
λq
.
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It follows that the claim is true for all λq ∈ (0, 1
FS(T−A)(1−p)). Now suppose there

exists a value y∗ ≥ 1
FS(T−A)(1−p) such that FS(T − A) − 1

y∗
= h(y∗). Using the

definition of h we have

FS(T − A)− 1
y∗

= FS(T − A)[1− (1− p)e1−y∗FS(T−A)],

which gives

1 = y∗FS(T − A)(1− p)e1−y∗FS(T−A).

It is straightforward to show that for values 0 < α, β < 1 we must have

αβxe1−αx < 1 for all x > 0. But this contradicts our result. Hence no such

y∗ exists. By the continuity of h in λq there are also no values of λq such that

FS(T −A)− 1
λq
> h(λq). This establishes our result for fixed A and T . Since the

choice of A and T was arbitrary this establishes the proposition.

A.2 Proof of Lemma 2

Property 1) is evident from the proof of Prop. 4. To prove property 2) let

0 ≤ A ≤ A∞. From the monotonicity properties of of L(A, Tø) in (2.1) and L∞(A)

in (2.3) we have for all Tø ∈ [A,∞),

L(A, Tø) ≤ L∞(A) ≤ L∞(A∞).

On the other hand using the monotonicity properties of V (A, T ) in T and V∞(A)

in A we have for all T ∈ [A,∞),

V∞(A∞) ≤ V∞(A) ≤ V (A, T ).

153



By the definition of A∞ we have L∞(A∞) = V∞(A∞). It follows that L(A, Tø) ≤

V(A, T ), which corresponds to case 2) in the proof of Prop. 4 impling σp(A) =∞.

To prove property 3) fix A > A∞. That σp(A) is single-valued is established in

Prop. 4. For any (a, t) ∈ R2 define the function G(a, t) , L(a, t)−V (a, t). For any

point (a′, t′) ∈ R2 satisfying G(a′, t′) = 0 the implicit function theorem gives us

the existence of a continuously differentiable function t(a) such that t(a′) = t′ and

G(a, t(a)) = 0 for all a in some open neighborhood of a′. Since σp(A) is the unique

value satisfying G(A, σp(A)) = 0 for all A > A∞, we must have t(A) = σp(A) for

all A > A∞. Thus σp(A) is continuously differentiable for all A > A∞.

To show limA↓A∞ σp(A) = ∞ it suffices to show that for any M > 0 there

exists an ε > 0 such that σp(A) > M whenever 0 < A − A∞ < ε. From the

definition of σp(A) and the monotonicity and continuity of L(A, T ) and V (A, T )

in T , it suffices to show that for any M > 0 there exists ε̃ > 0 such that for

any ε < ε̃ there exists δ > 0 such that L(A∞ + ε,M) > V (A∞ + ε,M) and

L(A∞ + ε,M + δ) < V (A∞ + ε,M + δ).

Since V (A, T ) is decreasing in T we must have V (A,M) > limT→∞ V (A, T ) =

V∞(A) for all finite A ≥ 0 and M > A. To simplify notation we use the following

definitions:

ρ(A, T ) , (1− p)e−λqh(A,T−k), (A.1)

ρ∞ , (1− p)e−λqh∞ . (A.2)

Notice that since h(A, T ) depends on A and T only through the difference T −A
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we have for any T > A > 0 and any constant m the following:

V (A, T −m)
V∞(A) = ρ(A, T −m)

1− ρ(A, T −m)
1− ρ∞
ρ∞

= ρ(A+m,T )
1− ρ(A+m,T )

1− ρ∞
ρ∞

= V (A+m,T )
V∞(A+m) .

Furthermore V∞(A+m) = `(A)
`(A+m)V∞(A) finally giving us

`(A)
`(A +m)V (A, T −m) = V (A+m,T ).

Now fix M > A∞ and choose some ε > 0. Then

V (A∞ + ε,M)
L(A∞ + ε,M) >

V (A∞ + ε,M)
L∞(A∞ + ε)

= V (A∞ + ε,M)
L∞(A∞ + ε)

V∞(A∞ + ε)
V∞(A∞ + ε)

= V (A∞ + ε,M)
V∞(A∞ + ε)

`(A∞)
`(A∞+ε)V∞(A∞)
L∞(A∞ + ε)

Taking the limit as ε ↓ 0 of the right hand side we have

lim
ε↓0

V (A∞ + ε,M)
V∞(A∞ + ε)

`(A∞)
`(A∞+ε)V∞(A∞)
L∞(A∞ + ε) = V (A∞,M)

V∞(A∞) > 1

Thus we arrive at

lim
ε↓0

V (A∞ + ε,M)
L(A∞ + ε,M) > 1.

Therefore there exists a ε′ > 0 such that V (A∞ + ε,M) > L(A∞ + ε,M) for all
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ε < ε′. The definition of A∞ and the monotonicity properties of L(A∞ + ε, T )

and V (A∞ + ε, T ) in T guarantee the existence of a value Tε > M such that

V (A∞ + ε, Tε) = L(A∞ + ε, Tε). This implies σp(A∞ + ε) = Tε > M .

Now fix A ≥ A0. Consider the case where L(A, T ) is constant in T . Then

L(A, T ) ≡ L0(A) ≡ L∞(A). By the monotonicity of L∞(A) we have for any

Tø ≥ A

L(A, Tø) = L∞(A) ≥ L∞(A0).

On the other hand the monotonicity of V (A, T ) in T and of V0(A) in A give us

for any T > A

V (A, T ) < V0(A) ≤ V0(A0).

By definition L∞(A0) = V0(A0) which implies L(A, Tø) < V (A, T ) for all Tø, T >

A. This corresponds to case 1) with T̃ = A or case 3) in the proof of Prop. 4,

which implies σp(A) = A in either case.

Now consider the case where L(A, T ) is strictly monotonically increasing in T .

For the sake of contradiction suppose limA→∞ σp(A) − A > 0. For all T ≥ A we

have the following.

L0(A) = 0 ≤ V∞(A) < V (A, T )

L∞(A) ≥ L∞(A0) = V0(A0) ≥ V0(A) ≥ V (A, T )

Since L(A, Tø) is strictly monotonically increasing and V (A, T ) is monotonically

decreasing there must exist a T̃ (A) such that L(A, T̃ ) = V (A, T̃ ) and by the

proof of Prop. 4 we must have σp(A) = T̃ (A). Similarly there must exist a
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T0(A) such that L(A, T0(A)) = V0(A). By the monotonicity of L(A, Tø) and

V (A, T ) we must have A ≤ T̃ (A) = σp(A) ≤ T0(A) for all A ≥ A0. Taking the

limit as A → ∞ we have limA→∞ V0(A) = 0. Since L(A, T0(A)) = V0(A) we

have limA→∞ L(A, T0(A)) = 0. Since A ≤ T0(A) for all A > A0, we must have

limA→∞ T0(A) = ∞. Since fS(·) is a pdf we must have limA→∞ fS(T0(A)) = 0.

But limA→∞
fS(T0(A)−A)
fS(T0(A)) = limA→∞ L(A, T0(A)) = 0. Notice that this implies

limA→∞ fS(T0(A)− A) = 0, for otherwise limA→∞ L(A, T0(A)) =∞. By assump-

tion the only possibility is limA→∞ T0(A) − A = ∞. Moreover we must have

fS(T0(A)−A) converge to 0 faster than fS(T0(A)). However, since limx→∞ fS(x) =

0, fS(x) > 0 for x > 0 and fS(·) ∈ C1 there must exist a value x0 such that fS(x)

is monotonically decreasing for all x > x0. This implies that for all large enough

A we will have fS(T0(A)−A) > fS(T0(A)). It follows that for all large enough A

we will have L(A, T0(A)) > 1. But this contradicts the convergence of L(A, T0(A)

to 0, implying our initial assumption was incorrect, thus establishing the final

property.

A.3 Proof of Lemma 3

That σb(T ) < T for T > 0 is apparent in the proof of Prop. 5. To prove

property 2) for any (A, T ) ∈ R2 define

y(A, T ) , g(A)
g′(A) −

FS(T − A)
fS(T − A) θ(A, T ).

For any values A′ < T ′ satisfying y(A′, T ′) = 0 the implicit function theorem

gives us the existence of a continuously differentiable function A(T ) such that

A(T ′) = A′ and y(A(T ), T ) = 0 for all T in some open neighborhood of T ′. By

the strict quasi-concavity of U(A, T ) established in Prop. 5 we have σb(T ) as the
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unique value satisfying y(σb(T ), T ) = 0 for any T > 0. Therefore A(T ) = σb(T )

for all T > 0 and σb(T ) is continuously differentiable for all T > 0.

Suppose 3) is false, i.e. assume lim supT→∞ σb(T ) < ∞. Then there exists

some value N > 0 such that σb(T ) < N for all T . By the optimality of σb(T ) we

should have U(σb(T ), T ) ≥ U(A, T ) for all A, T . However,

lim sup
T→∞

U(σb(T ), T ) = lim sup
T→∞

g(σb(T ))h(σb(T ), T )

< g(N)h∞.

But for any ε > 0 we have

lim
T→∞

U(N + ε, T ) = g(N + ε) lim
T→∞

h(N + ε, T )

= g(N + ε)h∞ > g(N)h∞.

It follows that there exists some T0 such that U(σb(T0), T0) < U(N + ε, T0). This

violates the optimality of σb(T ), hence lim supT→∞ σb(T ) =∞. Now suppose

lim sup
T→∞

(T − σb(T )) = 0.

Then lim supT→∞ T
σb(T ) = 1 which implies lim supT→∞ T−1

σb(T ) = 1. Therefore there

exists a function δ(T ) such that lim supT→∞ δ(T ) = 0 and T−1
σb(T ) = 1 + δ(T ).

Recall that h(A, T ) only depends on the difference T−A and limT↓A h(A, T ) =

0. It follows that h(T −1, T ) = h(0, 1) > 0 for all T . Furthermore by our assump-

tion that lim supT→∞(T − σb(T )) = 0 we must have lim supT→∞ h(σb(T ), T ) = 0.

158



It follows that limT→∞
h(σb(T ),T )
h(T−1,T ) = 0. But

h(σb(T ), T )
h(T − 1, T ) = U(σb(T ), T )

U(T − 1, T )
g(T − 1)
g(σb(T ))

= U(σb(T ), T )
U(T − 1, T )

g((1 + δ(T ))σb(T ))
g(σb(T )) .

The concavity of g(·) guarantees us that lim supT→∞
g((1+δ(T ))σb(T ))

g(σb(T )) = 1. Therefore

we must have

lim sup
T→∞

U(σb(T ), T )
U(T − 1, T ) = 0.

It follows that there exists a T0 such that U(σb(T0),T0)
U(T0−1,T0) < 1 which violates the opti-

mality of σb(T ) and establishes property 3). Property 4) follows from Properties

1)-3).

A.4 Proof of Lemma 5

Note that the result is trivial for φ = 0. Thus we assume φ > 0. Define the

functions

f∞(φ) = 2(1− p)φe−φh∞(φ),

y(φ) = 2(1− p)φe−φ+ 1
2 .

To establish our result it suffices to prove that

f∞(φ)
<
>= 1 ⇐⇒ y(φ)

<
>= 1. (A.3)

By the implicit function theorem both f∞(φ) and y(φ) are differentiable in

φ. It is then straight forward to show that both f∞(φ) and y(φ) are strictly
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quasi-concave with unique global maxima at φ = 1. Furthermore

f∞(φ) < y(φ) ⇐⇒ 2(1− p)φe−φh∞(φ) < 2(1− p)φe−φ+ 1
2

⇐⇒ −φh∞(φ) < −φ+ 1
2

⇐⇒ h∞(φ) > 1− 1
2φ

⇐⇒ f∞(φ) < 1.

By similar reasoning we arrive at

f∞(φ)
<
>= y(φ) ⇐⇒ f∞(φ)

<
>= 1. (A.4)

First consider the case p ≥ 1− 1
2e

1
2 . It follows that for all φ > 0

y(φ) ≤ max
φ>0

y(φ) = y(1) = 2(1− p)e− 1
2 ≤ 1,

with y(φ) = 1 if and only if p = 1− 1
2e

1
2 and φ = 1. Suppose there exists a φ0 > 0

such that f∞(φ0) > 1. By Lemma 4

lim
φ→0

f∞(φ) = lim
φ→0

2(1− p)φe−φh∞(φ) = 0.

By the continuity of f∞(φ) there must exist a value φ1 ∈ (0, φ0) such that f∞(φ1) =

1. By (A.4) this implies y(φ1) = 1. On the other hand, by Lemma 4

lim
φ→∞

f∞(φ) = lim
φ→∞

2(1− p)φe−φh∞(φ) = 0.

Again by the continuity of f∞(φ) there must exist a value φ2 > φ0 > φ1 such

that f∞(φ2) = 1. By (A.4) this implies y(φ2) = 1. But by our assumption
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y(φ) = 1 if and only if p = 1 − 1
2e

1
2 and φ = 1. This contradicts the result

that y(φ1) = y(φ2) = 1 and φ2 > φ1. Thus no such φ0 exists and we must have

f∞(φ0) ≤ 1. It is not hard to see that if p > 1 − 1
2e

1
2 then both y(φ) and f∞(φ)

are strictly less than one and (A.3) holds. Similarly if p = 1− 1
2e

1
2 then y(φ) and

f∞(φ) are strictly less than one if and only if φ 6= 1 and y(1) = f∞(1) = 1. Again

(A.3) holds.

Now consider the case p < 1− 1
2e

1
2 . In this case there exist two values φ1 and

φ2 with 0 < φ1 < 1 < φ2 that are solutions to y(φ) = 1. Furthermore by the

continuity and strict quasi-concavity of y(φ) we must have

y(φ) > 1 ⇐⇒ φ ∈ (φ1, φ2),

y(φ) < 1 ⇐⇒ φ /∈ [φ1, φ2],

y(φ) = 1 ⇐⇒ φ ∈ {φ1, φ2}.

For φ /∈ (φ1, φ2) the same contradiction arguments used in the case p ≤ 1 − 1
2e

1
2

can be used to establish condition (A.3). Thus we need only establish the result

for φ ∈ (φ1, φ2).

Let φ ∈ (φ1, φ2). Then it must be that y(φ) > 1. Recall that both y(φ) and

f∞(φ) take their maximum values at φ = 1. We claim that for p < 1 − 1
2e

1
2 we

have f∞(1) > y(1). Let p̃ = 1− 1
2e

1
2 . By the implicit function theorem h∞(1) and

y(1) are differentiable functions in p. Furthermore that h∞(1) is monotonically

increasing in p and limp→0 h∞(1) = 0. By the continuity and monotonicity of

h∞(1) in p there exists some value p0 ∈ [0, 1] such that h∞(1) = 1
2 when p = p0,

h∞(1) < 1
2 when p < p0 and h∞(1) > 1

2 when p > p0. It is straight forward to also
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show that

f∞(1)
>
<= y(1) ⇐⇒ h∞

<
>= 1

2 .

Suppose p0 > p̃. Then for p = p0 we would have f∞(1) = y(1). By (A.4)

this implies f∞(1) = y(1) = 1, but this contradicts the fact that y(φ) < 1 for all

p > p̃. Suppose on the other hand that p0 < p̃. Then at p = p0 we would have

f∞(1) = y(1). By (A.4) this implies f∞(1) = y(1) = 1, but this contradicts the

fact that y(φ) > 1 for all φ ∈ (φ1, φ2) when p < p̃. It follows that p0 = p̃ and

f∞(1) > y(1) for all p < p̃.

Now suppose there exists a value φ0 ∈ (φ1, 1) such that f∞(φ0) < y(φ0).

Since f∞(φ) < y(φ) for φ < φ1 the continuity of f∞(φ) and y(φ) imply the

existence of a point φ3 > φ0 such that f∞(φ3) = y(φ3). Again by (A.4) this

implies f∞(φ3) = y(φ3) = 1. This contradicts the fact that y(φ) > 1 for all

φ ∈ (φ1, φ2). A similar arguments shows there is no such point in (1, φ2). It

follows that f∞(φ) > y(φ) for all φ ∈ (φ1, φ2). Since y(φ) > 1 for all φ ∈ (φ1, φ2)

we have f∞(φ) > 1. Thus y(φ) > 1 =⇒ f∞(φ) > 1. The other direction is trivial

since y(φ) > 1 for all φ ∈ (φ1, φ2).

A.5 Proof of Lemma 6

It follows from Lemma 5 that

1− 2(1− p)φe−φh∞(φ) > 0 ⇐⇒ 1− 2φe−φ+ 1
2 > 0.

Thus if p ≥ 1− 1
2e

1
2 then 1− 2(1− p)φe−φh∞(φ) + (1− p)e−φh∞(φ) > 0 and we are

done. Now let p < 1− 1
2e

1
2 . Again let φ1 and φ2 be solutions to 2φe−φ+ 1

2 = 1 with
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0 < φ1 < 1 < φ2. By Lemma 5 if φ /∈ (φ1, φ2) then 1 − 2(1 − p)φe−φh∞(φ) > 0

again giving us the result. Now let φ ∈ (φ1, φ2). Then 1− 2(1− p)φe−φh∞(φ) < 0.

Suppose φ ∈ (φ1, 1]. It follows that (1− p)e−φh∞(φ)− (1− p)φe−φh∞(φ) ≥ 0. At

the same time 1 − (1 − p)φe−φh∞(φ) > 0. Combining these inequalities we arrive

at 1− 2(1− p)φe−φh∞(φ) + (1− p)e−φh∞(φ) > 0. Now suppose φ ∈ (1, φ2). Define

the function

u(φ) , (2φ− 1)(1− p)e−φh∞(φ),

which is clearly differentiable in φ. It suffices to show that u(φ) ≤ 1 for φ ∈ (1, φ2).

Notice that u(1) = (1− p)e−h∞(1) < 1. Suppose there exists a value φ0 such that

u(φ0) > 1. By continuity there must exist a value φc ∈ (1, φ0) such that u(φc) = 1,

or equivalently

(2φc − 1)(1− p)e−φch∞(φc) = 1,

from which it follows that

h∞(φc) = 1− 1
2φc − 1 .

Plugging this into the definition of h∞(φ) gives

1 = (2φc − 1)(1− p)e−φc+
φc

2φc−1 .

Define the function v(φ) , (2φ− 1)(1− p)e−φ+ φ
2φ−1 . Differentiating we obtain

∂v

∂φ
= −4(1− p)e−φ+ φ

2φ−1

2φ− 1 (φ− 1)2.
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Notice that for φ > 1 we have ∂v
∂φ

< 0. Thus maxφ∈(1,φ2) v(φ) = v(1) = (1 −

p)e−1+ 1
2−1 = 1− p < 1. But this contradicts our assumption that u(φc) = 1. Thus

there is no such φ0 such that u(φ0) > 1 and we conclude that u(φ) ≤ 1. This

establishes our result.

A.6 Proof of Lemma 7

Define the function

g(A, T ) , 1− 2FS(T − A)λqρ(A, T ) + ρ(A, T ).

First note that g(A,A) = 1 + ρ(A,A) = p > 0. Furthermore

∂g

∂T
= −λqfS(T − A)ρ

θ
(2(1− λqFS(T − A)) + (1− ρ)) .

Notice that ∂g
∂T

= 0 if and only if 2(1−λqFS(T −A))+(1−ρ) = 0, or equivalently

if and only if ρ(3− ρ) = 2λqFS(T −A)ρ. Suppose ∂g
∂T

= 0 at some point T0. Then

g(A, T0) = 1− 2FS(T0 − A)λqρ(A, T0) + ρ(A, T0)

= (1− ρ(A, T0))2 ≥ 0.

It follows that if g(T ) < 0 for some value T ′ then g(T ) < 0 for all T > T ′.

Otherwise by the mean value theorem there would exist a value Tc such that

g(Tc) < 0 and ∂g
∂T

∣∣∣
T=Tc

= 0 which is a contradiction. Specifically if there exists a

T ′ such that g(T ′) < 0 then it must be that limT→∞ g(T ) < 0. We will show that

this is not possible.

Recall from (2.18) that h∞ satisfies h∞ = 1 − (1 − p)e−λqh∞ and ρinf = (1 −
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p)e−λqh∞ . Defining g∞ ≡ limT→∞ g(T ) we have

g∞ = lim
T→∞

[1− 2FS(T − A)λqρ(A, T ) + ρ(A, T )]

= 1− 2λqρ∞ + ρ∞

It suffices to show that g∞ ≥ 0. But this is exactly the result in Lemma 6, giving

us our result.

A.7 Proof of Lemma 8

Property 1) follows from the fact that ∂C̄c
∂T

< 0 for T < A. To prove the

remaining properties we use the function M(A, T ) in (2.34). Recall that M(A, T )

is monotonically increasing and differentiable in T and sign (M) = sign
(
∂C̄c
∂T

)
for

all T > A.

Let A > Ac
∞. That σc(A) is single-valued follows from the strict quasi-

concavity of C̄c(A, T ) in T . For any (A′, T ′) ∈ R2 satisfying M(A′, T ′) = 0 the

implicit function theorem gives us the existence of a continuously differentiable

function T (A) such that T (A′) = T ′ and M(A, T (A)) = 0 for all A in some open

neighborhood of A′. Since σp(A) is the unique value satisfying M(A, σp(A)) = 0

for all A > Ac
∞ , we must have T (A) = σp(A) for all A > Ac

∞. Thus σp(A) is

continuously differentiable for all A > Ac
∞.

The strict monotonicity of M(A, T ) in T and the definition of Ac
∞ imply that

for any ε > 0 we must have M∞(Ac
∞ + ε) > 0. Furthermore there must exist a

value T ∗ > Ac
∞ + ε such that M(Ac

∞ + ε, T ∗) = 0. This is precisely the definition

of σc(A), i.e. T ∗ = σc(Ac
∞ + ε). We wish to show that limε↓0 σc(Ac

∞ + ε) =∞.

To do so we will show that for any N > 0 there exists an ε > 0 such that

M(Ac
∞ + ε,N) < 0. Notice that the strict monotonicity of M(A, T ) in T and the
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definition of Ac
∞ then imply σc(Ac

∞+ε) > N , giving us the desired result. Suppose

there exists some N0 < ∞ such that for all ε > 0 we have M(Ac
∞ + ε,N0) ≥ 0.

By the continuity of M(A, T ) in A we must then have limε↓0M(Ac
∞ + ε,N0) ≥ 0.

But the definition of Ac
∞ implies limε↓0M∞(Ac

∞ + ε) = 0. This violates the strict

monotonicity of M(A, T ) in T , thus no such N0 exists and property 3) is proved.

To prove property 4) we begin with the special case that ∂L
∂T
≡ 0. In this case

M0(A) > −∞ for all A. Moreover the monotonicity of M0(A) in A implies that

M0(A) ≥ 0 for all A > Ac
0. Then for any A > Ac

0 the strict monotonicity of

M(A, T ) in T then implies M(A, T ) > 0 for all T > A. It follows that ∂C
∂T

> 0 for

all T > A, hence σc(A) = A.

Now consider the case ∂L
∂T

> 0. In this case M0(A) = −∞ for all A. For

any A > Ac
∞ we have M∞(A) > 0 and σc(A) is the unique value satisfying

M(A, σc(A)) = 0. Furthermore by the continuity of σc(A) we have

lim
A→∞

M(A, σ(A)) = 0.

We also have σc(A) > A so limA→∞ σc(A) =∞. By assumption `(A)→∞, thus

we have the following:

lim
A→∞

M(A, σc(A))ρ(A, σc(A)) = lim
A→∞

[
1− c

`(A)
θ(A, σc(A))
L(A, σc(A))

ρ(A, σc(A))
1− ρ(A, σc(A))

]
.

Since 0 < ρ(A, T ) < 1 for allA, T we must have limA→∞M(A, σc(A))ρ(A, σc(A)) =

0, from which it follows that

lim
A→∞

c

`(A)
θ(A, σc(A))
L(A, σc(A))

ρ(A, σc(A))
1− ρ(A, σc(A)) = 1.
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Furthermore, we have the bounds

0 < θ(A, σc(A)) ρ(A, σc(A))
1− ρ(A, σc(A)) <∞,

while limA→∞
c

`(A) = 0. It follows that limA→∞ L(A, σc(A)) = 0. At this point

the same considerations apply as in the decentralized case and the property 4)

follows.

A.8 Extension of Equilibrium Results to G(n, λ/n)

A.8.1 Convergence Results for the Centralized Botnet Game

The preceding analysis is applicable to the limiting object of a sequence of

random rooted Poisson Branching Process Tn(λ)→ T (λ). In this section we show

that Nash equilibria on T (λ) are also Nash equilibria in the same game played on

the limiting graph of a sequence of Erdős-Rényi random graphs G(n, λ/n), which

we denote by G∞(λ). The proof relies on the objective method [3] and follows the

proof in [48].

Notice that for a given A and T a defender’s cost and the botmaster’s utility

are random variables. Fixing A ∈ R+ and T ∈ R+ let C(n)
i (A, T ) be the random

cost of defender i, (i = 1, 2, ..., n) and U
(n)
b (A, T ) the random utility of the bot

master on G(n, λ/n). Let X(n)
i (A, T ) be the indicator random variable for a false

alarm and Y
(n)
i (A, T ) be the indicator random variable for a missed detection

for defender i on G(n, λ/n). Furthermore let W (n)
i (A, T ) be the indicator random

variable for infection of defender i on G(n, λ/n) and letD(n)
i (A, T ) be the indicator

random variable for a detection event by defender i on G(n, λ/n). If defender i

and defender j are neighbors in G(n, λ/n) then we write i ∼ j. We will suppress
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the A, T dependence notation from here on. With the above notation we have the

following relations.

W
(n)
i = 1− (1− χ(n)

i )
∏
i∼j

(1−B(n)
ki Y

(n)
i ) (A.5)

D
(n)
i = 1{T<W (n)

i +S(n)
i A} (A.6)

X
(n)
i = (1−W (n)

i )D(n)
i (A.7)

Y
(n)
i = W

(n)
i (1−D(n)

i ) (A.8)

Let

C
(n)
i = cX

(n)
i + `Y

(n)
i ,

C(n) = 1
n

n∑
i=1

C
(n)
i = c

1
n

n∑
i=1

X
(n)
i + `

1
n

n∑
i=1

Y
(n)
i

U
(n)
b = A

1
n

n∑
i=1

Y
(n)
i .

The expected cost and utilities are then

E[C(n)
i ] = cE[X(n)

i ] + `E[Y (n)
i ],

E[C(n)] = c
1
n

n∑
i=1

E[X(n)
i ] + `

1
n

n∑
i=1

E[Y (n)
i ]

E[U (n)
b ] = A

1
n

n∑
i=1

E[Y (n)
i ].

Because the underlying graph G(n, λ/n) is random the labeling of nodes is inter-

changeable and by exchangeability we have for all i 6= j

E[X(n)
i ] = E[X(n)

j ],

E[Y (n)
i ] = E[Y (n)

j ].
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In particular the root node of G(n, λ/n), say node i = 0 is chosen uniformly at

random, thus we have for all i = 0, 1, 2, 3..., n− 1

E[C(n)
i ] = cE[X(n)

0 ] + `E[Y (n)
0 ], (A.9)

E[C(n)] = c
1
n

n∑
i=1

E[X(n)
0 ] + `

1
n

n∑
i=1

E[Y (n)
0 ] = cE[X(n)

0 ] + `E[Y (n)
0 ] (A.10)

E[U (n)
b ] = A

1
n

n∑
i=1

E[Y (n)
0 ] = AE[Y (n)

0 ]. (A.11)

Proposition 18. For any (A, T ) ∈ R+×R+ if the processes
{
X

(n)
i (A, T )

}n−1

i=0
and{

Y
(n)
i (A, T )

}n−1

i=0
satisfy (A.5) - (A.8) on G(n, λ/n), then

lim
n→∞

E
[
X

(n)
i (A, T )

]
= [1− FS(T )](1− p)e−λqh(A,T )

lim
n→∞

E
[
Y

(n)
i (A, T )

]
= h(A, T ).

Proof. For d > 0 let Nd(1, G(n, λ/n)) be a neighborhood of radius d about the

root node i = 1 of G(n, λ/n). For fixed d we have G(n, λ/n) D→ T (λ, d) as n→∞.

By the Skorohod Representation Theorem we can consider the two random graphs

to be defined on the same probability space and with probability one, there is a

finite random variable N such that Nd(0, G(n, λ/n)) = T (λ, d) for all n ≥ N . Fix

d > 0 and denote the leaves of T (λ, d) by ∂T (λ, d). We now construct two depth-d

recursive tree processes, L(d)
i and U (d)

i . For i ∈ ∂T (λ, d) let

L
(d)
i = χi1(T ≤ Si + χiA)

U
(d)
i = 1.

For any recursive tree process (RTP) Ri defined for each i ∈ T (λ) define the
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functionals W (·) and D(·) as follows.

W (Ri) = 1− (1− χi)
∏
j→i

(
1−BjiRj

)
D (Ri) = 1{T<Si+W(Ri)A}

Thus the functional W (·) and D(·) are actually functionals of all children of the

argument Ri. For all i /∈ ∂T (λ, d) we define

L
(d)
i = W

(
L

(n)
i

)
D
(
L

(n)
i

)
U

(d)
i = W

(
U

(n)
i

)
D
(
U

(n)
i

)
.

For n > N we can consider Nd(0, G(n, λ/n)) = T (λ). We can then define the

corresponding RTP
{
Ỹ

(n)
i (A, T )

}n−1

i=0
for n > N by

Ỹ
(n)
i (A, T ) =


Y

(n)
i (A, T ) if i ∈ ∂T (λ, d)

W
(
Ỹ

(n)
i (A, T )

)
D
(
Ỹ

(n)
i (A, T )

)
o.w.

Observe that for n > N we have E[Y (n)
0 ] = E[Ỹ (n)

0 ]. This is not necessarily true

for i 6= 0, but we are only concerned about the root here.

First observe that for all n ≥ N and for all i ∈ ∂T (λ, d) we have L(d)
i ≤ Ỹ

(n)
i ≤

U
(d)
i . We will show that in fact L(d)

i ≤ Ỹ
(n)
i ≤ U

(d)
i holds for all i of equal depth

in the tree, in particular

L
(d)
ø ≤ Ỹ

(n)
0 ≤ U

(d)
ø . (A.12)

We prove (A.12) by showing that the functionals W (·) and D(·) are monotonic,

i.e. for any indicator random variables Qi, Ri defined for each i ∈ T (λ), if Qj ≤

170



Rj for each j such that j → i, then W (Qi) ≤ W (Ri) and D(Qi) ≤ D(Ri).

To prove this we consider the different cases. First note that if χi = 1 then

W (Qi) = W (Ri) = 1. Suppose χi = 0. If ∏j→i (1−BjiQj) = ∏
j→i (1−BjiRj)

then W (Qi) = W (Ri) = 1. Suppose ∏j→i (1−BjiQj) 6=
∏
j→i (1−BjiRj). Then

there are two possibilities. Either

0 =
∏
j→i

(1−BjiQj) <
∏
j→i

(1−BjiRj) = 1 (A.13)

or

1 =
∏
j→i

(1−BjiQj) >
∏
j→i

(1−BjiRj) = 0. (A.14)

Suppose (A.13) is true. Then BjiRj = 0 for all j such that (i, j) ∈ E while at

the same time BjiQj = 1 for some j such that (i, j) ∈ E. Let j∗ be such that

Bj∗iQj∗ = 1. Then we must have Bj∗i = Qj∗ = 1. But then Rj∗ = 0 giving

us Rj∗ < Qj∗ . This contradicts our assumption that Qj ≤ Rj. It follows that

(A.14) must hold, which implies 0 = W (Qj) < W (Rj) = 1. This exhausts all

possibilities.

The proof for the monotonicity of the functional D(·) follows directly from the

monotonicity of W (·). Specifically if W (Qi) ≤ W (Ri) then we need only consider

the two cases. If W (Qi) = W (Ri) then D(Qi) = D(Ri). If W (Qi) 6= W (Ri)

then we have W (Qi) = 0 and W (Ri) = 1, in which case D(Qi) = 1{Ti<Si} and

D(Ri) = 1{Ti<Si+A}. If Ti < Si then D(Qi) = D(Ri) = 1. If Si ≤ Ti < Si + A

then 0 = D(Qi) < D(Ri) = 1. Finally if Ti ≥ Si + A then D(Qi) = D(Ri) = 0.

Hence D(Qi) ≤ D(Ri).

By the monotonicity of both W (·) and D(·) we have the monotonicity of

W (·)D(·). Thus for all i at depth d− 1 from the root we must have L(d)
i ≤ Ỹ

(n)
i ≤
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U
(d)
i . If d = 1 we then have (A.12) trivially. By induction on d we obtain the

result for any finite d.

We now have

E[L(d)
ø ] ≤ E[Ỹ (n)

0 ] = E[Y (n)
0 ] ≤ E[U (d)

ø ]. (A.15)

In order to finish the proof we show that L(d)
ø and U (d)

ø both converge in dis-

tribution to Bernoulli random variables with parameter h(A, T ) as d→∞.

Define h(d)
i = P

(
L

(d)
i = 1

)
. For d = 1 we have

L
(1)
ø = 1−max

{
1−W

(
L

(1)
ø

)
,1{Tø ≤ Sø +W

(
L

(1)
ø

)
A}
}
,

W
(
L

(1)
ø

)
= 1− (1− χi)

∏
j→i

(
1−BjiL

(1)
j

)
.

By definition for j ∈ ∂T (λ, 1)

h
(1)
j = P

(
L

(1)
j = 1

)
= P (χj = 1, Tj > Sj + χjA)

= FS(Tj − A)p.

It is then possible to show by a similar derivation as we did to get h(A, T ) that

h
(1)
ø = FS(Tø − A)[1− (1− p)e−λqh

(1)
1 ],

= FS(Tø − A)[1− (1− p)e−λqFS(Tø−A)p].

Define the function g(x,A, T ) = FS(T − A)[1 − (1 − p)e−λqx]. The above gives

h
(1)
ø = g(h(1)

1 , A, T ). By induction on d it is straight forward to show that h(d+1)
ø =

g(h(d+1)
1 , A, T ) = gd(FS(T −A)p,A, T ) where superscript d represents composition
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in x. Thus as d→∞ repeated composition of the function g(·, A, T ) will converge

to the unique fixed point solution h(A, T ). The proof for U (d)
ø is analogous.

With the above we have limd→∞E[L(d)
ø ] = h(A, T ) and limd→∞E[U (d)

ø ] =

h(A, T ). Then in the limit as d→∞ we must have E[Y (n)
0 ] = h(A, T ) for n ≥ N .

With these results a similar argument shows that in the limit as d→∞ for n ≥ N

we must have

E[X(n)
0 ] = [1− FS(Tø)](1− p)e−λqh(A,T ).

Applying the above proposition to (A.10) and (A.11) we get the following

corollary.

Corollary 2. For any (A, T ) ∈ R+×R+ and corresponding processes {X(n)
i (A, T )}n−1

i=0

and {Y (n)
i (A, T )}n−1

i=0 satisfying (A.5) - (A.8) on G(n, λ/n) we have

lim
n→∞

E[C(n)(A, T )] = c[1− FS(T )](1− p)e−λqh(A,T ) + `h(A, T ) = C(A, T ),

lim
n→∞

E[U (n)
b (A, T )] = Ah(A, T ) = U(A, T ).

Given the above proposition and corollary we have the following.

Proposition 19. Any pure, symmetric Nash equilibrium (A∗, T ∗) in the central-

ized botnet game on T (λ) is a pure, symmetric Nash equilibrium in the centralized

botnet game on G∞(λ).

A.8.2 Convergence Results for the Decentralized Botnet

Game

Now consider the case for the decentralized game. We still work in the same

probability space but our strategy space is now R+ × R+ × R+.
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As before for a given (A, T, Tø) ∈ R+ × R+ × R+ a root defender’s cost and

the botmaster’s utility are random variables. Let C(n)
0 (A, T, Tø) be the random

cost of a root defender and U
(n)
b (A, T ) the random utility of the bot master on

G(n, λ/n). As before let X(n)
i (A, T ) be the indicator random variable for a false

alarm and Y (n)
i (A, T ) be the indicator random variable for a missed detection for

defender i > 0 on G(n, λ/n) and denote by X(n)
0 (A, T, Tø) and Y (n)

0 (A, T, Tø) the

indicator random variables for false alarm and missed detection, respectively, for

a root defender. The defining relations analogous to (A.5)-(A.8) are as follows.

W
(n)
i = 1− (1− χ(n)

i )
∏
i∼j

(1−B(n)
ki Y

(n)
i ) (A.16)

D
(n)
i =


1{Tø<W

(n)
0 +S(n)

i A} if i = 0

1{T<W (n)
i +S(n)

i A} if i > 0
(A.17)

X
(n)
i = (1−W (n)

i )D(n)
i (A.18)

Y
(n)
i = W

(n)
i (1−D(n)

i ) (A.19)

The random cost to the root defender and the random utility to the bot master

are then

C
(n)
0 (A, T, Tø) = cX

(n)
0 (A, T, Tø) + `Y

(n)
0 (A, T, Tø),

U
(n)
b (A, T, Tø) = A

1
n

n−1∑
i=0

Y
(n)
i

= A
1
n
Y

(n)
0 (A, T, Tø) + A

1
n

n−1∑
i=1

Y
(n)
i (A, T ).
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The expected cost and utilities become

E[C(n)
0 (A, T, Tø)] = cE[X(n)

0 (A, T, Tø)] + `E[Y (n)
0 (A, T, Tø)], (A.20)

E[U (n)
b (A, T, Tø)] = A

1
n
E[Y (n)

0 (A, T, Tø)] + A
1
n

n−1∑
i=1

E[Y (n)
i (A, T )]. (A.21)

Since a root node is chosen uniformly at random we have by exchangeability for

all i, j 6= 0

E[X(n)
i ] = E[X(n)

j ],

E[Y (n)
i ] = E[Y (n)

j ].

Thus we can write E[U (n)
b (A, T, Tø)] = A 1

n
E[Y (n)

0 (A, T, Tø)]+An−1
n
E[Y (n)

1 (A, T )].

Then limn→∞E[U (n)
b (A, T, Tø)] = limn→∞AE[Y (n)

1 (A, T )] provided this limit ex-

ists. Thus we can consider the limiting expected utility of the bot master as a func-

tion of A and T only. In addition if we can show that limn→∞E[C(n)
0 (A, T, Tø)] =

Cø(A, T, Tø), then by our previous equilibrium results there will exist an optimal

population strategy T ∗(A). In this case all defenders will play the same strategy,

i.e. T = Tø = T ∗(A) and by exchangeability we will have for all i 6= j

E[X(n)
i ] = E[X(n)

j ],

E[Y (n)
i ] = E[Y (n)

j ].

In particular we have

E[U (n)
b (A, T )] = A

1
n

n−1∑
i=0

E[Y (n)
0 ] = AE[Y (n)

0 ].
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Thus it suffices to prove the that

lim
n→∞

E[X(n)
0 (A, T, Tø)] = E[Xø(A, T, Tø)],

lim
n→∞

E[Y (n)
0 (A, T, Tø)] = E[Yø(A, T, Tø)].

The proof of this convergence is exactly as in the centralized case. Thus we

state the corresponding propositions for the decentralized game without proof.

Proposition 20. For any (A, T, Tø) ∈ R+ × R+ × R+ if the processes
{
X

(n)
i

}n−1

i=0

and
{
Y

(n)
i

}n−1

i=0
satisfy (A.16) - (A.19) on G(n, λ/n), then

lim
n→∞

E
[
X

(n)
0

]
= [1− FS(Tø)](1− p)e−λqh(A,T ),

lim
n→∞

E
[
Y

(n)
0

]
= FS(Tø − A)[1− (1− p)e−λqh(A,T )].

Applying the above proposition to (A.20) and (A.21) we get the following

corollary.

Corollary 3. For any (A, T, Tø) ∈ R+ × R+ × R+ and corresponding processes

{X(n)
i (A, T )}n−1

i=0 and {Y (n)
i (A, T )}n−1

i=0 satisfying (A.16) - (A.19) on G(n, λ/n) we

have

lim
n→∞

E[C(n)(A, T )] = c[1− FS(T )](1− p)e−λqh(A,T )

+ `FS(Tø − A)[1− (1− p)e−λqh(A,T )]

= Cø(A, T, Tø),

lim
n→∞

E[U (n)
b (A, T )] = Ah(A, T )

= U(A, T ).

Given the above proposition and corollary we have the following.
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Proposition 21. Any pure, symmetric Nash equilibrium (A∗, T ∗) in the decen-

tralized botnet game on T (λ) is a pure, symmetric Nash equilibrium in the decen-

tralized botnet game on G∞(λ).

A.9 Generalized Infection Dynamics

One assumption in our LMF model is that if a defender detects and removes

the bot infection then he cannot infect any of his neighbors. Clearly this is not

going to always be the case. For example, if the virus is particularly fast then it

is likely it will infect the entire network before any defender detects it. We can

generalize our model to include an entire range of propagation scenarios of which

our original model is simply an extreme case.

A.9.1 Detection

In our model each defender is an intrusion detection system. Taking this into

account we can put our variables in the traditional detection framework. As we

have it now

Yi : False Negative,

Xi : False Positive.

We introduce a new indicator random variable, Di, indicating a True Positive, i.e.

Di = 1 iff Wi = 1 and Zi ≥ Ti. Otherwise Di = 0. For completeness we introduce

Ri = (1−Yi)(1−Xi)(1−Di) as the indicator random variable for True Negative.

Recall Bki is an indicator random variable for the event that a propagating virus or

worm on host k successfully infects the neighboring defender i. Because our model

is not dynamic we must deal with the issue of the ordering of events that take
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place. Consider the case where defender i is infected and successfully detects the

infection, subsequently removing it, i.e. the case Di = 1. It is realistic to assume

that in this case defender i may still transmit the virus before he is able to detect

and remove it. We introduce the indicator random variable ηki to indicate that

defender k was not able to remove the infection before transmitting it to defender

i. Since Bki indicates there was a successful attempt to transmit the virus we can

think of ηki as indicating when the attempt took place. We have P (Bki = 1) = q

and P (ηki = 1) = q̂. The new equations of our model are

Wi = 1− (1− χi)
∏
k→i

(1−BkiYk)(1−BkiηkiDk),

Di = 1−max {1−Wi,1(Ti > Si +WiA), }

Yi = 1−max {1−Wi,1(Ti ≤ Si +WiA)} .

The new Random Distributional Equations are

W
d= 1− (1− χ)

N∏
k=1

(1−BkYk)(1−BkηkDk),

D
d= 1−max {1−W,1(T > S +WA), }

Y
d= 1−max {1−W,1(T ≤ S +WA)} .

Again let P (Y = 1) = h and also P (W = 1) = γ. Notice that

P (D = 1) = 1− P (Y = 1)− P (W = 0) = γ − h.

Proposition 22. For fixed A, T, p, q, q̂ the random variables Y andW are Bernoulli

178



with parameters h and γ, respectively, that satisfy

γ = 1− (1− p)e−λqγ[q̂+FS(T−A)(1−q̂)],

h = FS(T − A)γ.

Proof. As before we can derive the equation for the value h and obtain

h = FS(T − A)P (W = 1) = FS(T − A)γ.

In a similar manner we can also derive an equation for γ.

1− γ = P (W = 0)

= P

(
(1− χ)

N∏
k=1

(1−BkY )(1−BkηkD) = 1
)

= P (χ = 0)
∞∑
n=0

[P (BkY = 0, BkηkD = 0)]n P (N = n)

= (1− p)
∞∑
n=0

[P (BkY = 0, BkηkD = 0)]n e
−λλn

n!

We obtain P (BkY = 0, BkηkD = 0) using the fact that

P (BkY = 0, BkηkD = 0) = P (BkY = 0, BkηkD = 0|Bk = 1)P (Bk = 1)

+ P (BkY = 0, BkηkD = 0|Bk = 0)P (Bk = 0).
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We then have

P (BkY = 0, BkηkD = 0) = P (Y = 0, ηkD = 0|Bk = 1)P (Bk = 1) + P (Bk = 0)

= P (Y = 0, ηkD = 0|Bk = 1)q + 1− q.

Similarly

P (Y = 0, ηkD = 0|Bk = 1) = P (Y = 0, ηkD = 0|ηk = 1, Bk = 1)P (ηk = 1)

+ P (Y = 0, ηkD = 0|ηk = 0, Bk = 1)P (ηk = 0).

Our assumption of independence leads us to

P (Y = 0, ηkD = 0|Bk = 1) = P (Y = 0, ηkD = 0)

= P (Y = 0, D = 0)q̂ + (1− h)(1− q̂).

Notice that P (Y = 0, D = 0) = P (W = 0) = 1 − γ. Combining these results we

obtain

1− γ = (1− p)
∞∑
n=0

[1− q(1− ((1− γ)q̂ + (1− h)(1− q̂)))]n e
−λλn

n!

= (1− p)e[λ−qλ(1−(1−γ)q̂−(1−h)(1−q̂))]e−λ

= (1− p)e−λq[1−(1−γ)q̂−(1−h)(1−q̂)]

= (1− p)e−λq[h+q̂(γ−h)].

Plugging in h = FS(T − A)γ gives us the result.
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A.9.2 Relating our LMF to the Lelarge LMF

Notice if q̂ = 0 then we arrive at

γ = 1− (1− p)e−λqh,

h = FS(T − A)γ,

which is equivalent to our LMF. On the other hand q̂ = 1 leads to

γ = 1− (1− p)e−λqγ,

h = FS(T − A)γ.

This is in some sense equivalent to the Lelarge-Bolot LMF model without in-

vestment and our detection model played after the epidemic process is complete.

Thus we see that the probability that the infection reaches a typical defender,

γ, does not depend on T or A. The only dependence on the strategies is in h,

the probability of a missed detection. If all players are homogeneous in their cost

functions this case is equivalent to the 2 player game with a probability γ of being

infected. This would provide an easy way to connect our two models. Including

the Lelarge-Bolot investment model in the case q̂ = 0 would be a first step in cou-

pling the two distinct LMG models. In this case the models are not truly coupled

but are are independent of one another. Selecting q̂ > 0 would truly couple them.

This problem would be much harder, but the case q̂ = 1 may be tractable.

A.9.3 Open Problem

We have the existence of pure Nash equilibria for the case q̂ = 0 but we would

like to establish similar results for 0 ≤ q̂ < 1. For q̂ = 0 the situation is equivalent
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to the two-player game. For 0 < q̂ < 1 the situation is more complicated. Due to

the coupling of γ and h a different approach is needed to obtain such a result.
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