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Abstract 
 
 

Imaging the foveal cone mosaic with a MEMS-based adaptive optics scanning laser 
ophthalmoscope 

 
By 

 
Yiang Li 

 
 

Doctor of Philosophy in Vision Science 
 

University of California, Berkeley 
 

Professor Austin J. Roorda, Chair 
 
 
 
 

Our knowledge of the structure of the human photoreceptor mosaic is mostly based on 
histological data. Imaging microscopic structure in intact eyes has traditionally been 
difficult due to structural imperfections in the eye’s optics called aberrations. The 
introduction of adaptive optics (AO) into vision science has allowed us to access the 
living human retina at microscopic levels, opening up new possibilities for both basic and 
clinical research. This dissertation concerns the advancement of AO technology for 
retinal imaging while emphasizing its application to imaging the foveal cone 
photoreceptor mosaic in living human eyes. Foveal cones provide a fundamental 
challenge for today’s AO systems due to their small size (2 µm diameter). As a result, 
much of my effort has been put towards improving AO system performance to resolve 
these small cells consistently. I have improved the wavefront correction capabilities of an 
adaptive optics scanning laser ophthalmoscope (AOSLO) using a single MEMS 
deformable mirror, so that the smallest foveal cones in some eyes can now be resolved. 
Specifically, many of the nonlinear characteristics of the particular MEMS device used 
have been negated in the new wavefront controller, and the wavefront reconstructor has 
been optimized by incorporating measurement noise and aberration (Kolmogorov) 
statistics. This contribution is significant because, prior to this research, the capability to 
image the entire foveal cone mosaic in vivo had never been demonstrated using this 
imaging modality. 
 Some basic scientific investigations were carried in parallel with the technical 
developments. Specifically, I used this MEMS-based AOSLO to investigate how foveal 
fixation is related to the cone density distribution and to determine the inter-subject 
variability of foveal cone density in relation to eye length. The foveae of 18 healthy eyes 
(18 subjects) with axial lengths from 22.86 mm to 28.31 mm were imaged and analyzed. 
The entire foveal cone mosaic was resolved in four eyes, but cones within 0.03 mm (≈ 
0.1°) from the foveal center remained unresolved in most eyes. The preferred retinal 
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locus of fixation deviated significantly (P < 0.001) from the location of peak cone density 
for all but one eye. Retinal cone density decreased significantly (P < 0.05) with 
increasing axial length 0.30 mm away from the foveal center but not closer, so we can 
conclude that the axial myopia progression causes retinal stretch. However, how axial 
length affects cone density within the central fovea, or foveola, is swamped by other 
factors besides just cone density due to high levels of inter-subject variability observed 
there. 
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1. Introduction 
 
Adaptive optics (AO) refers to technology that reduces the amount of aberrations in an 
optical system in real-time. Originally developed to compensate for the wave aberrations 
caused by fluctuations in the atmosphere, AO has received considerable attention for 
vision science applications since it was first applied to the eye in 1997. It was that year 
when Liang and colleagues presented the first ever images of single cone photoreceptors 
in a living human eye.1 Analogous to how the earth’s atmosphere degrades the image 
quality of ground-based telescopes, aberrations due to the eye’s optical imperfections 
degrade retinal image quality making it difficult for clinicians and scientists to observe 
the microscopic structures of the retina. Adaptive optics (AO) aims to remove these 
degradations by correcting the eye’s wavefront aberrations in real-time and typically does 
so in a closed-loop fashion. How this done is illustrated in Figure 1.1, which is a 
schematic of the original flood-illuminated AO system at the University of Rochester. 
Like most complex systems that operate in closed loop, there is a sensor, the Shack-
Hartmann wavefront sensor; there are actuators, the ones that push and pull a reflective 
membrane which we call the deformable mirror (DM); and there is a control computer 
which is responsible for taking sensor data and calculating the appropriate voltage signals 
to send to the actuators. Our ability to bypass the eye’s optics and observe the living 
human retina at the microscopic level depends greatly on how well the aberrations are 
corrected. Therefore, it is important to both clinicians and basic researchers that we 
continue to push the performance of AO systems so that routine imaging of both healthy 
and diseased eyes can eventually become standard. 
 

 
Figure 1.1: Schematic diagram of the AO flood-illuminated ophthalmoscope at the 
University of Rochester. 
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Prior to the work presented in this dissertation, the Rochester flood-illuminated 
AO ophthalmoscope was the only system that has demonstrated the capability to resolve 
the entire foveal cone mosaic. There are not very many examples though. To my 
knowledge, there are only four such foveal cone images in the literature2, 3. A cropped 
version of one of these images acquired from a healthy eye is given in Figure 1.2 
displaying that every single cone was resolved, and they were resolved with enough 
contrast that they could probably all be identified with minimal guesswork. Over the 
years, AO has been successfully integrated into scanning laser ophthalmscopes (SLO)4-7, 
optical coherence tomography (OCT)8-12 and other flood-illuminated systems13, 14. 
Despite all these advances, none of these new systems has shown complete images of the 
healthy foveal cone mosaic. This could be due to a number of factors such as the DM 
used, imaging modality, optical system alignment, control system performance, etc. For 
example, the Rochester flood-illuminated AO system employs traditional 97 channel 
piezo-actuated DM (Xinetics) which has a proven track record in astronomical AO but is 
not used in any other AO imager currently online. It could also be due to differences in 
imaging modality, and that illuminating the retina with a completely incoherent light 
source results in a better quality image. Whatever the actual reason may be, we know that 
the 97 channel Xinetics offers similar spatial resolution as the Boston Micromachines 
Corporation (BMC) Multi-DM MEMS device (140 channels over a square grid minus the 
four corners) but has a superior finish to the reflective surface. Figure 1.3 is a 
microscopic image of one of our BMC devices illustrating this. These surface 
imperfections will contribute to the quality of the reflected beam, and the errors will 
propagate to the wavefront measurements and ultimately affect final wavefront correction 
if the problem is not addressed at other stages of the AO control loop. 

 

 
Figure 1.2: A 1° by 1° image of the cone mosaic centered about the approximate foveal 
center acquired by University of Rochester’s AO flood-illuminated ophthalmoscope2, 3 
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Addressing the performance and robustness of current AO retinal imagers is 
challenging because doing so in an unbiased manner requires images of the same retina 
acquired under nearly identical conditions at different times. Pertaining to the correction 
of the eye’s wave aberrations, there have been several studies that addressed the 
properties and performance of different DMs as well as bandwidth requirements of a real-
time correction15-18. However, the conclusions have been primarily based on modeling 
and wavefront error calculated from Shack-Hartmann data, which I will show often 
overestimates the quality of the actual wavefront correction. In this dissertation, I will 
describe some of the improvements I made to the control system of an AO scanning laser 
ophthalmoscope (AOSLO)7; in particular,r the refinement of many required calculations 
that exist throughout the AO control loop. The instrument I worked on was the Berkeley 
MEMS-based AOSLO6, which I will refer to as AOSLOII. These improvements have 
allowed us to image the smallest cone photoreceptors near and sometimes at the very 
center of the fovea, which led to some new scientific/clinical findings concerning cone 
density and axial myopia. 
 

. 
Figure 1.3: Image taken with a 2× microscope objective of a corner of one of our BMC 
MEMS devices (the same model used in AOSLOII) showing undesirable print-through 
due how it is manufactured. Actuator pitch is about 400 µm. 

1.1 Challenges 
Figure 1.4 is a 1° by 1° image of a healthy foveal cone mosaic acquired using AOSLOII 
in 2008 illustrating exactly the problems we still face when imaging the fovea with an 
AOSLO. I had already made some improvements to the AOSLOII control system, but the 
performance was in general not as robust as it currently is. The nearly uniform hexagonal 
packing structure of cone photoreceptors is clearly visible immediately outside of the 
central fovea (about 0.25° in this case but varies across individuals) but gradually fades 
toward the foveal center forming a darker region with a speckle like appearance. We can 
rule out these light spots in the center as cone photoreceptors because they are noticeably 
larger than those just outside the central fovea, and the overall appearance of the mosaic 
is not in agreement with the retinal images acquired with the Rochester flood-illuminated 
AO system (Figure 1.2). There are several reasons why most AOSLO images have this 
type of appearance in the foveal region. Lack of sufficient lateral resolution is most likely 
responsible for why the smallest foveal cones remain unresolved, and this could be only 
due to differences in the DM. The speckle-like appearance of the center of the fovea may 
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be a consequence of using a light source with a low coherence length and may also have 
to do with anatomical differences of foveal cones as many textbooks have depicted them 
to be much thinner and longer than the ones outside the fovea. The paragraphs below list 
some of the issues that I have considered concerning foveal imaging with an AOSLO. In 
any case, improving AO system performance in any way will only improve how well we 
can observe the foveal cone mosaic or any other retinal feature for that matter. 
 

 
Figure 1.4: A 1° by 1° image of the cone mosaic centered about the approximate foveal 
center acquired with AOSLOII. The central foveal cones are clearly unresolved. 
 
1.1.1 Visual and adaptive optics 
To first approximation, the human eye is a relatively simple optical system made up of 
only three primary components: the cornea, the iris and the crystalline lens. The cornea 
and lens provide the optical power needed to focus incident light onto the retina with the 
iris acting as the aperture stop of the system regulating the amounting of light that makes 
it to the retina. However, this optical system is not perfect; it suffers from optical 
aberrations. Aberrations blur the image formed on the retina which reduces visual acuity 
and contrast sensitivity while also making it more challenging for clinicians and vision 
scientists to look inside the eye. Our understanding of the eye’s optical properties has 
greatly increased due to fairly recent developments in ocular aberrometry and in 
particular the Shack-Hartmann wavefront sensor. Ocular aberrations cause the measured 
wavefront to depart from a plane. This departure is often referred to as the wavefront 
error or simply the wavefront. Since the first Shack-Hartmann sensor for the eye was 
demonstrated19, the representation of the aberration structure of the eye has almost been 
exclusively based on Zernike polynomials which, as I will go into detail in Chapter 2, has 
both merits and limitations. When the wavefront is expressed as a linear combination of 
Zernike polynomials, it becomes evident that the low order modes explain most of the 
wavefront error in the eye. As it is now widely known, the low order Zernike modes that 
cause blur are the defocus and astigmatism terms, and most of that can be corrected by 
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conventional means (i.e. spectacles and contact lenses). High order modes cannot be 
corrected by conventional means, but they also do not affect visual quality significantly 
when the pupil is less than 3 mm in diameter20. However, if we were to image the retina 
through a smaller diameter pupil, diffraction significantly limits lateral resolution. 
Therefore, imaging through a large pupil is desirable in terms of reducing diffraction but 
doing so is only beneficial if the high order aberrations can be corrected.  
 Simple eye models are useful for assessing the lateral resolution achievable with 
AO. The following analysis, where the Gullstrand model eye with four refracting surfaces 
(Table 1.1) is used, is oversimplified, unrealistic and completely ignores the temporal 
fluctuations present in ocular aberrations, but it is nevertheless relevant for this 
discussion. Given these basic optical parameters, the cardinal points of the system can be 
found by doing a first-order ray trace. They are shown schematically in Figure 1.5. The 
eye model is quite simple except for perhaps that the nodal points, N1 and N2, are 
displaced from the principal planes, H1 and H2, because the refractive indices of the 
image space (vitreous) and object space (air) being different. The Rayleigh criterion for 
the resolution limit is given by: 

     
1.22 f

s
d

λ=      (1.1) 

where λ is the illumination wavelength in the vitreous, f is the focal length of the eye 
defined by the distance H2 to the retina (approximately 22.32 mm) and d is the diameter 
of the pupil. AOSLOII is set up to image over a 6 mm diameter pupil, so based on the 
Rayleigh criterion, the smallest resolvable feature on the retina with 840 nm light is about 
2.8 µm. The Rochester flood-illuminated AO system can theoretically do a little better 
because it uses 790 nm light (s ≈ 2.6 µm). These calculations apply to a diffraction 
limited eye which can only occur if the eye’s wave aberrations are fully corrected with 
AO. If any uncorrected residual aberrations remain, which is the case for all real AO 
systems, the resolution will suffer. It is quite common for authors to state that their AO 
equipped retinal imager can achieve correction levels at which the root-mean-square 
(RMS) of the residual wavefront error of about 100 nm or less over a dilated (> 6 mm 
diameter) pupil6, 7, 17, 21. Assuming those are really their achievable residual wavefront 
errors, then the following expression for the Rayleigh criterion applies22: 

     
1.22 f

s
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     (1.2) 

where <S> is the Strehl ratio which is related to the RMS wavefront error by: 
2

RMS

S e
π
λ

 − 
 < >≈     (1.3) 

as long as the wavefront error is “small” (i.e. RMS being less than a quarter of a wave). 
Equations 1.2 and 1.3 are extremely useful because they allow us to assess how the 
resolution limit is related to the focal length of the wavefront compensated eye, the 
imaging wavelength and wavefront error in a very simple manner. AOSLOII has two 
wavelength options, 680 nm (red) and 840 nm (near infrared), but for convenience 
(primarily due to subject comfort since the retina is less sensitive to infrared), the 
preferred imaging wavelength is 840nm. We do not have any control over the size of the 
eye being imaged, which can range from 22 mm to over 28 mm long. Assuming that the 
eye’s focal length is about 2 mm shorter than the total length of the eyeball, it is possible 
to graphically observe how the achievable resolution limit will differ for different people 
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(Figure 1.6). This simple exercise demonstrates that the theoretical resolution limit for 
retinal imaging is worse for longer eyes than for shorter eyes. So if AO retinal imagers 
today are indeed operating near the diffraction limit, we would expect that a short eye 
would yield higher quality images of foveal cone mosaics. 
 
Table 1.1: Gullstrand model eye 
 Front corneal 

surface 
Back corneal 

surface 
Front lens 

surface 
Back lens 
surface 

 

Radius of 
curvature (mm) 

7.8 6.9 10.2 -6.0  

Refractive index  1.38 1.3374 1.42 1.336 
Thickness (mm)  0.535 3.1 4.0 24.18 
  

 
Figure 1.5: Schematic diagram of a four-surface eye model illustrating that the principle 
planes do not coincide with the nodal points. 
 

So far, I have not mentioned the temporal component of the eye’s wave 
aberrations. Since so many quality images of cone mosaics have been acquired with 
basically a static AO correction1, 6, 7, 17, it may seem that a static correction would be 
sufficient. Although a tenfold improvement can be obtained with a good static correction, 
it will still only be about halfway to diffraction limited performance based on the Strehl 
ratio23. Based on the assumption that the aberration structure of the eye can be completely 
described by a linear combination of Zernike polynomials up to 5th order, Hofer et al.23 
claim that a closed loop bandwidth of 1 to 2 Hz is all that is needed to achieve diffraction 
limited imaging performance. It should be clarified that closed loop bandwidth is not the 
same as the system sampling rate. Roughly speaking, a 2 Hz bandwidth requirement 
would require a sampling rate beyond 30 Hz. It is now known that Zernike polynomials 
up to 10th order still fail to capture the entire ocular wavefront structure24, 25, so the actual 
bandwidth requirement for diffraction-limited performance is likely to be even greater. 
Diaz-Santana et al. also examined bandwidth requirements for ocular aberration 
compensation but did so with a much faster AO system albeit without retinal imaging 
capabilities. They found that there is a lot of power in the fluctuation of the eye’s wave 
aberrations above 30 Hz, so we can further improve the Strehl ratio by increasing the 
bandwidth. However, they did not specify how they reconstructed the wavefront from 
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Shack-Hartmann sensor data, and they did not present any evidence based on actual 
images of the retina.  

 
Figure 1.6: Resolution limit based on the Rayleigh criterion as a function of the RMS 
wavefront error for various eye lengths (22 to 28 mm). Focal length was taken to be 2 
mm shorter than the total eye length 
 
1.1.3 Foveal cone photoreceptors 
The word fovea means pit in Latin. The fovea of the eye, called the fovea centralis, is the 
part of the retina responsible for fine spatial vision. The anatomical pit that characterizes 
the fovea centralis, which I will refer to as the fovea from now on, is about 1.5 mm wide 
and contains the highest density of cone photoreceptors26. According to the Gullstrand 
eye model, 1.5 mm converts to about 5.1 degrees of visual angle which is more than five 
times wider than the AOSLO image in Figure 1.4. Clearly, we can resolve most of the 
cone photoreceptors inside the fovea. The center of the fovea is called the foveola. The 
size of the foveola is somewhat arbitrarily defined, much like the fovea, and has been 
reported to be 200 to 400 µm in diameter in various textbooks. Perhaps it is more sensible 
to define the foveola as the region containing no rod photoreceptors as Yuodelis and 
Hendrickson27 did. They reported a diameter of 683 µm. It is in the foveola that the 
individual cone photoreceptors have continued to challenge the resolution limit of today’s 
AO systems. 

Since en vivo imaging of foveolar cones is still very challenging, many 
investigators still use cone density data from histological and/or psychophysical studies. 
The most comprehensive histological investigation of human cone photoreceptor 
distribution was undoubtedly conducted by Curcio et al.28 Figure 1.7a is an image of the 
foveal cone mosaic from their classic paper. According to their work, foveal cone density 
exhibited a great deal of inter-subject variability especially at the fovea center. With the 
exception of the two very high density foveas, which were mentioned by the investigators 
to have been possibly affected by tissue shrinkage, the smallest foveal cones were at least 
2 µm in diameter which should be a good approximation for minimum cone spacing in 
the rod-free fovea27-30. Based on the Rayleigh criterion (Figure 1.6), we would not be able 

Longer eyes 

Shorter eyes 
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to resolve the smallest foveal cones in certain individuals, but there were other 
individuals in Curcio’s study28 with minimum cone spacing greater 3.5 µm which should 
quite easily be resolved. 
 

 
Figure 1.7: In vitro images of foveal cone mosaics acquired using differential interference 
contrast microscopy. (a) An image, about 30 µm across, from Figure 1 in Curcio et al.28 
and (b) an image, about 200 µm across, from Figure 1 in Wojitas et al.31 
 

It is also possible that anatomical features of foveolar cones besides their size 
make them difficult to resolve with an AOSLO. As mentioned earlier, cone 
photoreceptors have been depicted to be both thinner and longer as they are closer to the 
foveal center. The fact that they become longer can be seen in a high quality OCT scan 
(Figure 1.8) where the distance between the two highly reflective interfaces of cones is 
greater in the foveal center. Consider the simple optical model of a cone of the left side of 
Figure 1.8, the first reflection r1 occurs at the junction between the inner and outer 
segments, and the second reflection r2 occurs at the interface of the outer segment and the 
retinal pigment epithelium (RPE). Assuming that absorption is negligible, a field incident 
on the retina, ψ, results in two main fields, ψ1 and ψ2, reflected from the cone 
photoreceptors. The expressions that describe this process are given by: 

( )
1 1

2 1 21

r

r r

ψ ψ
ψ ψ

=
 = +

    (1.4) 

where the 1 + r1 term for the ψ2 is the amplitude (not irradiance) transmittance of the first 
interface. Immediately outside the very center of the fovea, the two reflections are about 
the same in magnitude and they nearly do not interfere (electric fields have zero 
correlation) because the reflective interfaces are separated by a distance longer than the 
coherence length of the imaging light source (10 µm according to manufacturer Superlum 
Ltd.). Therefore, it will be impossible for the total reflected light from one cone to 
completely interfere with that from an adjacent cone reducing interference artifacts 
(speckle noise) in the final image. But from the OCT image in Figure 1.8, we can readily 
observe that the top reflection (r1) gets dimmer toward the fovea center which is quite 
prominent considering that the image is on a log scale. If r1 goes to nearly zero, we are 
effectively only left with: 
     2 2rψ ψ=      (1.5) 
which will be free to interfere (correlate) with the ψ2 of its neighbors raising the speckle 
noise in the retinal image and swamping the reflectance signals representing the actual 
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cone photoreceptor locations. Whether or not this model is of practical concern to 
AOSLO imaging is completely based the lateral resolution of the system. If we can focus 
a smaller spot of light onto the retina with a better AO correction, then there will be less 
opportunity for interference to occur between adjacent cones. 
 

 
Figure 1.8: A cross section through the foveal center acquired using an AO OCT system 
from Figure 3 in Bigelow et al.32 On the left is a model of a foveal cone photoreceptor 
with the arrows indicating approximately where the two lines of high reflectivity takes 
occur (see text for model description). 

1.2 Adaptive optics scanning laser ophthalmoscope 
Roorda et al. (2002)7 incorporated AO into an SLO for the first AOSLO (AOSLOI), 
which successfully resolved individual cone photoreceptors in the living human retina but 
only as close as 0.5° (≈ 150 µm) away from the center of the fovea. The AOSLO initially 
had the advantage over the conventional flood-illuminated AO ophthalmoscope in being 
able to perform optical slicing of different tissue layers of the retina and the ability to 
record retinal videos as opposed to a single snapshot. Over the years, these advantages 
have proved to be valuable tools in our lab as well as others for assessing retinal blood 
flow33-35, Ganglion cells in the macaque36, 37, and RPE cells38, 39. 
 AOSLOII was designed differently from AOSLOI because the aim was to make 
the system as small and compact as possible for the goal of deploying it in a clinical 
setting40. This was made possible by employing a tiny MEMS DM whose clear aperture 
is about the same size as the pupil, making the system much smaller. The AO control 
system operates over the optical path shown in Figure 1.9a. The near-infrared beam is 
provided by an 840 nm superluminescent diode (SLD) (Superlum Ltd., Russia) and a 
photomultiplier tube (Hamamatsu, Japan) is used for light detection. The DM (BMC, 
USA) has a 12 by 12 actuator array minus the corner actuators providing a total of 140 
degrees of freedom. The current state of AOSLOII is more or less the same as how it was 
originally described by Zhang et al.6 with the exception that I swapped out the old 8-bit 
DM driver for a higher step resolution (14-bit) driver that currently comes standard with 
any Multi-DM purchase and also upgraded to a 5.5 µm advertised stroke DM. 
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r1 

r2 



 10 

 
Figure 1.9: (a) Schematic diagram of AOSLOII and (b) a top view of the system with the 
optical path overlaid in red. 

1.3 Purpose and structure of dissertation 
The goal for this dissertation is to provide the mathematical framework for wavefront 
estimation and control specific to AO for vision science and demonstrating how we have 
benefited specifically from improving AO system performance in this way. Since this 
dissertation is for a Vision Science degree, some basic science research on the topics of 
foveal fixation and eye growth has also been conducted. The work carried out spans the 
disciplines of optics, controls and vision science. The mathematics that complements 
these fields, especially Fourier analysis and linear algebra, will often appear. Complex 
numbers will also appear due to having to work with electromagnetic waves. A lot of 
effort has been put towards the implementation of these ideas in a real AO system, 
particularly AOSLOII. And it was primarily through these efforts that I was able to 
demonstrate that the smallest foveal cone photoreceptors can indeed be resolved using an 
AOSLO. From these experiences, I hope to convey to other scientists, engineers and 
clinicians the simple necessity of a more rigorous treatment of wavefront sensing and 
control. Even though the work here specifically addresses an AO system for correcting 
ocular wave aberration, the MEMS device I used is just as new to the applications in 
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astronomy, so I hope AO developers from other disciplines can benefit from this research 
as well. 

In Chapter 2, a detailed explanation of Shack-Hartmann wavefront sensing is 
given beginning with a discussion on how an electromagnetic wave propagates through 
the eye’s optics and leading to each of the steps in the Shack-Hartmann sensing process 
currently carried out on AOSLOII. I will then develop the wavefront reconstruction 
(estimation) problem with minimal assumptions. Since Zernike polynomials have become 
almost synonymous with ocular wavefront sensing, the properties of Zernike polynomials 
and how they are affected by the measurement and estimation procedure will be 
addressed analytically and numerically. It will become apparent that the standard 
wavefront estimation procedure is valid for certain applications, but not others. Zonal and 
Fourier methods for wavefront reconstruction are presented and analyzed as well. 

Chapter 3 discusses the second half of the problem which is to actively 
compensate ocular wavefront error. The wavefront control problem is presented from 
mathematics to real-time software implementation. Specifically, four wavefront 
reconstruction (control) algorithms were designed and implemented on AOSLOII. Three 
of the four algorithms are of the zonal type and one is based on Zernike polynomials. The 
details on each of the AO control strategies will be followed by a discussion on stability 
and comparisons based on both residual wavefront error and retinal image quality. 
Finally, I will describe how I have implemented the entire AO control system as five 
separate tasks with the detailed function for each task described by a finite state machine. 

While Chapters 2 and 3 focused on improving AO system performance to push 
the lateral resolution limit of the AOSLO, I report on some of the first investigations on 
the structure of the foveal cone mosaic in living human retinas in Chapter 4. Using 
AOSLOII, I have imaged the foveae of more than 20 eyes over the course of this work. 
However, to avoid potential bias, only one eye per subject (18 eyes, 18 subjects) was 
used in the investigations described in Chapter 4. I have written custom software to 
identify the cone photoreceptors in an AOSLO image and to generate topographic maps 
representing cone density from the identified cone locations. Together with ocular 
biometry, I looked at how foveal cone density varied across individuals with different 
sized eyes which typically corresponded to different levels of refractive error. The results 
of this study have important implications regarding whether or not visual acuity is 
fundamentally limited by the sampling rate of foveal cones. Furthermore, it is often 
assumed that we fixate with the part of the retina with the highest cone density. But is this 
assumption valid at the microscopic level? With most if not all of the foveal cones 
resolved for each retina, we can precisely locate the point of peak cone density for each 
retina and compare it against the individual’s fixation points.  
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2. Measuring monochromatic ocular aberrations 

2.1 Introduction 
A Shack-Hartmann type sensor is used for wavefront measurement in AOSLOII6. To my 
knowledge, there are no AO equipped retinal imagers online using a different wavefront 
sensing modality. Accurate wavefront measurement is a critical component for effective 
aberration compensation and robust closed-loop AO operation. In this chapter, I start by 
presenting the principles of Shack-Hartmann wavefront sensing for ocular aberrometry 
including the basic components making up a typical Shack-Hartmann sensor. The 
discussion will then be focused on my investigations into wavefront reconstruction 
algorithms for estimating the wavefront (as opposed to those for controlling the 
wavefront which will be discussed in Chapter 3). 

Shack-Hartmann wavefront sensors as standalone systems have become the norm 
for measuring and analyzing ocular aberrations. These devices are now ubiquitous in both 
research and clinical settings to a point where one can easily be mislead into believing 
that most of the important fundamental principles associated with Shack-Hartmann 
wavefront sensing are well understood. Although this is very much true in general, a 
close inspection of the literature would reveal this not to be the case for measuring ocular 
aberrations. In vision science and associated clinical disciplines (optometry and 
ophthalmology), it is especially important to understand the calculations required in the 
wavefront measurement process. Consider wavefront guided LASIK for example. 
Improper interpretation of wavefront data may lead to potentially disastrous results.  

The design of ocular Shack-Hartmann sensors today has not deviated significantly 
from the very first designed given in Liang et al.19 The basic components that makes up 
the sensor (minus the light delivery components) is not much more than an afocal 
telescope formed by two lenses, a lenslet array and a detector (typically a charged-
coupled device (CCD)) as depicted in Figure 2.1. The basic principle is that the eye’s 
wave aberrations produces spatial variations in the phase component of the field located 
at the pupil plane when observed from the outside, and it is of our interest to recover this 
quantity. At first, a telescope may not seem necessary as only a single lens is needed to 
image the field at the pupil onto the lenslet array. However in order to get the maximal 
signal level at the detector, the focal plane of the lenslet array should also be conjugate to 
the retina. Therefore, the telescope serves two purposes: 1) relaying the field at the pupil 
plane onto the lenslet array, and 2) allowing the illuminated spot on the retina to be 
reasonably in focus on the CCD by the lenslet array assuming that the retina coincides 
with the back focal plane of the eye (emmetropic eye). The raw data outputted by the 
Shack-Hartmann sensor is simply a digital image of a spot pattern produced by each of 
the micro-lenses (subapertures) focusing the light onto the CCD. If the incident 
wavefront has local slope over a particular subaperture, it will induce a shift in the 
position of the focused spot proportional to this slope. The set of local wavefront slopes 
within the pupil is all that is needed to recover the ocular wavefront error. Details on 
obtaining wavefront slopes and methods for reconstructing the wavefront from the slopes 
will be rigorously addressed in this chapter in section 2.2. 

Light delivery into the eye is typically accomplished by some means of 
collimation if the source is originally uncollimated (i.e. a diode) before it is introduced 
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into the main optical path via a beamsplitter. Liang’s original design employed a 532.8 
nm He-Ne laser and a relatively low density lenslet array by today’s aberrometry 
standards (7 subapertures across a 5.4 mm diameter pupil), but he and other colleagues 
would immediate develop an improved device with a better quality and denser lenslet 
array as well as attempting to harness the polarization of the bean to suppress corneal 
reflections20. Image quality, as depicted in these earlier papers, were rather poor again by 
today’s standards and only static wavefront measurements could be made most likely due 
to the technology available at the time. Nevertheless, their work established the fact that 
the Shack-Hartman wavefront sensor as an objective yet simple technique to measure 
ocular wave aberrations. 
 

 
Figure 2.1: Schematic diagram of a Shack-Hartmann wavefront sensor. Lenses 1 and 2 
are separated by their focal lengths (f1 and f2). Focal length selection is based on the 
desired lateral magnification of the eye’s entrance pupil, located at P when imaged onto 
the lenslet array. For the AOSLO, this magnification is 0.889. 
 
2.1.1 Shack-Hartmann sensor design 
This section is intended to establish some general background for ocular Shack-Hartmann 
wavefront sensing. Hardware improvements to the earlier designs mentioned above have 
included changes in the light source, resolution (spatial and temporal) and dynamic range. 
How each of these components affects the final output image of Shack-Hartmann spot 
pattern is important for guiding algorithm development down the line. For example, the 
use of a polarizing beam-splitter to first bring light into the eye and then separate 
reflections from the retina from that of the cornea was not particularly effective. Sticking 
to this method would require one to rely on the image post-processing methods for 
separating which would add unnecessary computational overhead to the wavefront 
sensing process.  

Off-axis illumination, where the entry beam is displaced from the pupil center 
(Figure 2.2a), is a simple and widely used solution to this problem41. The principle 
behind the formation of a sharp image in a confocal imager such as the AOSLO requires 
both the entry exit beams to be pre-corrected, so off-axis illumination cannot be applied22, 

42. Instead in AOSLOII, a manually adjustable aperture is placed in a retinal conjugate 
plane, as shown in Figure 2.2b, with the reason being that light reflected from the retina 
will be better focused at this plane than light reflected from the cornea. So most of the 
light reflected off the retina passes through the aperture while that from the cornea is 
mostly blocked. The critical assumption here is that the eye’s wave aberrations are 
relatively low. For example, if we had an infinitely small aperture, the field at the 
aperture plane becomes a point source. In this case, a plane wave will be created by lens 
2 due to the point source at its primary focal point no matter how much aberrations are 
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present in the eye (i.e. the wavefront sensor will not detect any refractive error so no 
control signals will be prescribed to the DM). The size of the aperture must be adjusted 
with the tradeoff between corneal reflection and measurement accuracy in mind. It is 
often the case when imaging individuals with relatively high refractive error that a trial 
lens must be placed in front of the eye to correct for most of the refractive error before 
the wavefront can even be properly measured. 

 
Figure 2.2: Two methods for countering reflections from the corneal front surface. (a) 
Off-axis illumination forces corneal reflections off to an angle, and (b) an aperture place 
at a retinal conjugate blocks most of the light reflected from the cornea because they are 
not at a sharp focus at that plane. 
 

Laser speckle adds undesirable correlated noise to the Shack-Hartmann image that 
the accuracy to which the location of each focused spot can be identified may be 
compromised. The coherence length of the He-Ne lasers used in earlier wavefront sensors 
were very long (> 1 m) which contaminated the spot array image with this type of 
correlated noise. This issue was addressed by several investigators more recently (2001) 
by switching to the less coherent superluminescent diode (SLD) which is the type of light 
source employed in AOSLOII23, 43, 44. Hofer et al.23 also placed a high speed scanning 
mirror at a plane conjugate to the pupil, which effectively smoothes the Shack-Hartmann 
image by rapidly scanning the laser spot across a small patch of retina but also makes the 
spots larger23. SLD technology has steadily improved both in terms of spectral band-
width and cost, so it is to no surprise that it became rapidly adopted for wavefront 
sensing. A scanning system, which is obviously more complicated and costly, may no 
longer be necessary for most applications especially with the application of more 
sophisticated image processing algorithms to Shack-Hartmann images 
 Finally, there are other components that have found their way into research and/or 
commercially available Shack-Hartmann sensors that may or may not be beneficial for an 
AOSLO. A well-known problem that arises when designing a Shack-Hartmann sensor is 
the tug-of-war between dynamic range and sensitivity. More often then not, the solution 
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was influence mainly by the applications. Pantanelli et al.45 constructed a wavefront 
sensor with quadrature masking system where basically 25 percent of the subapertures 
(even spaced out) are analyzed at a time allowing for extremely high dynamic range 
without sacrificing sensitivity. This advancement however does not really benefit AO 
retinal imaging as having one will decrease the system bandwidth by a factor of four. 
Another popular addition to the generic Shack-Hartmann sensor design would be a badal 
system23, 46, 47. A badal system allows the distance between lens 1 and 2, as labeled in 
Figures 2.1 and 2.2, to be adjustable which allows for defocus correction. A badal system 
has been integrated into an AOSLO as well5 relieving some of the stroke requirements of 
the DM. Perhaps the most popular or profitable upgrade to make is to opt for a denser 
lenslet array. Several research groups have taken advantage of the fine sampling 
capabilities offered by denser arrays to measure irregularities due to tear film24, 48, 49. To 
no surprise, in addition to these laboratory-based developments, many commercially 
available Shack-Hartmann sensors, such as Abbott Medical Optics’ COAS-HD and 
Imagine Eyes’ HASO 32, are now equipped with very high density lenslet arrays. 
 
2.1.2 Pupil function 
Prior to discussing wavefront reconstruction, it is necessary to establish the terminology 
and the mathematical background associated with the optical wavefront including how it 
affects retinal image quality. This section reviews the necessary fundamentals of wave 
optics in order to derive an expression for the eye’s pupil function because the phase 
component of this function is what we are try to measure using the Shack-Hartmann 
sensor. Furthermore, I have come across some misnomers and/or inconsistencies in the 
literature in which I would like to address during in my treatment of this topic. In these 
discussions, scalar diffraction theory is valid (optical elements involved are much larger 
than the imaging wavelength (840 nm)) and will be used exclusively, while the 
polarization state of the laser, although important in certain cases, will be ignored. 

Although somewhat trivial, it should be first clarified to avoid confusion that the 
terms exit and entrance pupil depend on the direction of light propagation. When 
describing image formation on the retina, the entrance pupil is just the pupil of the eye. 
But in retinal imaging, the object of interest becomes the retina, so the definitions must 
be swapped. For a perfect eye, this scenario is illustrated in Figure 2.3 where a point on 
the retina emanates a spherical wave which is perfectly countered by the eye’s optical 
power so that plane waves leave the eye. 
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Figure 2.3: Schematic of a diffraction limited (perfect) eye illustrating that a point source 
at the retinal plane (z = 0) creates a diverging spherical wave that is exactly canceled by 
the eye’s optical power, and as a result, perfect plane waves leave the exit pupil. 

 
The general expression for the electric field component of an electromagnetic 

wave is given by: 
    ( )( , ) ( , ) jFt E t eψ = xx x     (2.1) 

where x = (x, y, z) are pupil coordinates and optical axis and  j = (-1)½. Units of the 
electric field are electric potential (volts) divided by distance which is completely defined 
by the amplitude term (E) of equation 2.1 because the phase component (F), which 
contains the wavefront, is required to be unitless. The spherical wave incident at the 
entrance pupil plane can be described by: 

     0( , ) j t jkr
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E
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r
ωψ −=    (2.2) 

where r is the radius of curvature of the wavefront, k is the wavenumber and ω is natural 
frequency. It should be noted that since the field, ( , )ent r tψ , is in the vitreous chamber, 

the wavenumber (k = 2π/λ) is defined such that the wavelength (λ) is that of the 
illumination (840 nm) divided by the refractive index of the vitreous (≈ 1.33). Paraxial 
approximation of the radius of curvature via first order binomial expansion is: 
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indicating that a sphere is well approximated by a parabola near the optical axis (paraxial 
region). Substituting Equation 2.3 into Equation 2.2 and evaluating it at z = zent, we 
obtain the desired approximation for a spherical wave in Cartesian coordinates: 
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The quadratic term is omitted in the denominator of the amplitude since it is small with 
respect to zent. This cannot be done in phase term because the quadratic term is not small 
in comparison to the wavelength term that gets divided into it (recall k = 2π/λ). In simple 
examples such as purely spherical and plane waves, the behavior of the amplitude term is 

tractable and can be expressed analytically (0 j tE
e

r
ω−  and 0

j tE e ω−  for spherical and plane 

waves respectively), but this would not be possible for more complicated wavefronts. For 
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this reason, I will proceed by representing the amplitude with just a generalized function 
as in equation 2.1. This is clearly an over-simplified model of the actual physics involved 
and is designed to hide certain mathematical complications. However, it is nevertheless 
valid for what I am trying to convey. Doing so changes the expression for the paraxial 
approximation of a spherical wave into a more canonical appearance: 

    

2 2

2( , ) ( , )
ent

ent

x y
jk z

z

ent entt E t eψ
 ++  
 =x x    (2.5) 

The textbook definition for wavefront is a surface of constant phase, which in the case for 
the spherical wave would be any surface proportional to the quadratic phase component 
of equation 2.5: 
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where OPD stands for the on optical path difference from the plane wave term in 
Equation 2.5 ( entjkze ) which has become somewhat standard in recent literature on ocular 
aberration when specifying or plotting the wavefront error across the pupil. The choice as 
to whether wavefront is defined strictly as optical phase shift (radians) or some form of 
OPD (microns or number of waves) makes no fundamental difference and should be 
obvious given the context. 
 The Shack-Hartmann sensor measures the wavefront at the exit pupil, not the 
entrance pupil (pupils defined as in Figure 2.3). Since the exit pupil is the image of the 
iris formed by the cornea, and the entrance pupil is the image of the iris formed by the 
crystalline lens, the pupils are images of each other. Under the assumption of linearity, 
this allows for the field at the entrance pupil to be related to that at the exit pupil by a 
complex multiplicative factor called the system transfer function. This transfer function, 
which is completely characterized by the eye’s optical components (cornea, iris and 
crystalline lens), can be expressed in the familiar amplitude and phase form: 
    ( , )

0( , ) ( , ) jU x yT x y T x y e=     (2.7) 

Unlike expressions for the field, the system transfer function is unitless, and it is specified 
by the shape of the aperture (a circle in most cases), any transmission variation caused by 
scatter and absorption throughout the system, and phase effects of the optical system 
(focus power and aberrations). Since the pupils are images of each other, we have: 
    ( ', ) ( , ) ( , )exit entt T x y tψ ψ=x x     (2.8) 

where x’ = (mpx, mpy, z) with mp being pupil magnification since the exit pupil is about 
10 percent larger than the entrance pupil. 

The spatial profile of the amplitude term in the transfer function determines the 
amount of light reaching each subaperture of the wavefront sensor since irradiance is just 
the square amplitude. For a perfect eye (Figure 2.3), all light is transmitted inside the 
entrance pupil and no light is transmitted outside of the pupil, so the amplitude 
transmittance term is simply: 

    0

1 ( , )
( , )

0 ( , )

x y
T x y

x y

∈Σ
=  ∉Σ

    (2.9) 

where Σ is the spatial domain defined by the entrance pupil. This trivial transmittance 
model has become standard when performing retinal image quality related calculation 
such as the eye’s point spread function (PSF). However, even a healthy real eye will have 
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some degree of absorption and scatter of light throughout its optical system. This 
observation is illustrated in Figure 2.4 which gives grayscale topographic map 
representations of the amplitude (magnitude) distribution across the pupil from Shack-
Hartmann data for a healthy emmetropic eye and that from a model eye. The grayscale 
values were normalized for comparison, and it can be readily observed that the irradiance 
distribution is much more uniform in the model eye which is expected as it is only 
representative of the light source. The irradiance distribution for the real eye tapers off 
toward the edges of the pupil indicating that the trivial transmittance model may not be a 
particularly accurate choice. Interestingly, it has recently been verified that this is 
primarily due to the directional waveguide properties of photoreceptors although other 
optical factors may play significant roles as well50. Similarly, the phase term cannot be 
expressed accurately in analytical form due to imperfections in the eye’s optics. However 
for a perfect eye, the phase effect should be equal and opposite of the phase of the field in 
the entrance pupil. The transfer function for an optical system with plus power can be 
approximated by51:  

    
2 2( )

2
0( , ) ( , )

k
j x y

fT x y T x y e
− +

=     (2.10) 

where f is the focal length (positive) of the system. For a perfect eye, the focal length 
must match the radius of curvature of the field at the entrance pupil (f = r in general or f 
= zent with paraxial approximation), so an expression for the field immediately to the 
right of the exit pupil can be obtained by substituting Equation 2.10 into Equation 2.8. 
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Equation 2.11 is a plane wave which is exactly what is expected to emerge from the exit 
pupil of a perfect eye. When the eye’s optics is not perfect, an additional phase term must 
be present in the system transfer function: 
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=    (2.12) 

where I will define the function, φ(x, y), as the wavefront error which encompasses all 
phase effects caused by the optical system not including the focusing power that it is 
supposed to have. As before, we can substitute Equation 2.12 into Equation 2.8 to obtain 
an expression for the field at the exit pupil. 
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The pupil function is defined as: 
    ( , )

0( , ) ( , ) j x yP x y T x y eφ=     (2.14) 

which is simply the system transfer function but with the phase component containing 
only the effects due to wavefront error. Therefore, the system transfer function acting on 
the diverging spherical wave in the entrance pupil is mathematically equivalent to the 
pupil function applied to a plane wave. There have been instances in the literature where 
the pupil function has been referred to as the electromagnetic wave (field) at the pupil52, 

53. This is incorrect because the pupil function is a unitless quantity, and the actual field is 
a function of both time and the direction of propagation (z). 
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Figure 2.4: (a) Shack-Hartmann image acquired using AOSLOII for a healthy 
emmetropic eye. (b) Grayscale surface map of the distribution of amplitude (magnitude) 
at each subaperture across the pupil based on the square root of the mean intensity count 
of the spot. (c) - (d) Shack-Hartmann image and irradiance distribution for a model eye. 
 
2.1.3 Point spread function 
We continue the discussion on wave optics with the propagation of light through the 
eye’s optical system in order to determine the field distribution on the retina. Consider 
first the simplest case where the eye’s back focal plane coincides with the retina as 
illustrated in Figure 2.5. Light from a point object at infinity generates a plane wave at 
the pupil plane P. Given the pupil function, how do we estimate the field distribution, and 
more importantly the irradiance distribution, on the retina? A complete treatment of 
matter would require a rigorous discussion on diffraction theory which is beyond what I 
have covered in my dissertation research. However, it is nevertheless fundamentally 
relevant for retinal imaging so it will be formally reviewed. 

The Fresnel number for the eye is the number of π phase shifts that occur inside 
the exit pupil (defined as in Figure 2.5) as observed from the retina and is given by: 

    
2a

F
fλ

=      (2.15) 

where a is the exit pupil radius and f is the distance between the exit pupil and the retina, 
which is the wave optics (as opposed to geometrical optics) definition of focal length. 
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Clearly the Fresnel number will differ between individuals and between the two eyes of 
the same individual, but we can still make a reasonable estimate on the range of values 
using simple models such as the popular Gullstrand-Le Grand schematic eye. AOSLO 
imaging is typically done (limited to until recently) over a 6 mm diameter entrance pupil 
using near-infrared (840 nm) light which converts to about 630 nm in the vitreous 
chamber (n = 1.336). Furthermore, the length of the eye ranges from 20 to 29 mm, and 
with the exit pupil located about 4 mm behind the corneal apex, a reasonable range for f 
would be 16 to 25 mm54. Assuming that the exit pupil is 10 percent smaller than the 
entrance pupil, the Fresnel number for a human eye should fall between 590 and 740. 
According to scalar diffraction theory51, the Fraunhofer approximation is only valid when 
the Fresnel number for the system is much less than one, so at the very least, a Fresnel 
approximation should be used. Letting (x, y) and (ξ, η) be Cartesian coordinates in the 
entrance pupil and across the retina respectively and dropping the time-dependence term 
for now, the integral for Fresnel propagation uses to determine the field at the retina 
(amplitude PSF) is 
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where exitψ  is the field in the exit pupil and recall from above that mp is pupil 

magnification (≈ 1.1) which is often overlooked when performing these calculations. The 
field in the exit pupil can be expressed in terms of the system transfer function (Equation 
2.10 and 2.12) and the field in the entrance pupil 

( , , ) ( , ) ( , ) jkz
exit ent
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x y
z T x y E x y e

m m
ψ =    (2.17) 

We can simplify the Fresnel diffraction integral by assuming that the incident plane wave 
has unit amplitude across the entire pupil. Substituting Equation 2.17 into Equation 2.16 
with some rearranging of terms, we get: 
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By substituting the general form (includes phase error φ) of the system transfer function 
(Equation 2.12) into Equation 2.18 and expanding the quadratic term in the argument of 
the exponent, we get. 
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This expression could be greatly simplified by noticing that z = f at the retinal plane. It 
should be clarified that f is the distance from the eye’s exit pupil to the retinal plane, not 
the paraxial focal length of the eye’s optical system. In other words, we would ideally 
want the back focal and retinal planes to coincide. If they do not, the difference must be 
accounted for by adding the appropriate amount of defocus on top of any other 
aberrations represented in the phase error term φ. Evaluating Equation 2.19 at z = f, we 
get the following for the amplitude PSF: 
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which is proportional to the far-field (Fraunhofer) if the eye’s optical transfer function 
did not have a focusing term. We can also write Equation 2.20 in terms of the pupil 
function (Equation 2.14) where it can be observed that the structure of the PSF is 
completely characterized by the pupil function. 
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When considering retinal image quality, the irradiance PSF is actually more relevant as it 
represents the two-dimensional spatial impulse response of any imaging system. In SI 
unit (watts/m2), irradiance is related to the field by: 
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where the refractive index of the vitreous n ≈ 1.336, c0 is the speed of light in vacuum 
and ε0 is the permittivity of free space. However, the physical principle does not change if 
we choose not to include these extra constants in front of the final expression for the 
irradiance PSF. 
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Consider the special with a perfect eye with a circular symmetric pupil function. The 
pupil function in this ideal case will be completely real: 
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Substituting Equation 2.24 into Equation 2.23 and converting into polar coordinates, the 
integral can be solved analytically, and the resultant irradiance PSF is the Airy pattern: 
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where J1(●) is the Bessel function of the first kind, 2 2ρ ξ η= +  and a is the radius of 

the exit pupil. Figure 2.5 shows the PSF specified by an Airy pattern. 
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Figure 2.5: Formation of an image of a point source located at infinity for a perfect 
(diffraction limited) eye 
 
 When aberrations are present, the phase component of the pupil function is not 
zero, and the Equations for Fresnel diffraction (2.20 and 2.21) cannot be solved 
analytically and therefore must be evaluated numerically. If phase is accurately estimated 
from the wavefront sensor measurements and the amplitude transmittance is either known 
or modeled, the point spread function of the eye can than be computed via a Fourier 
transformation by considering the following substitutions into Equation 2.21: 
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     (2.26) 

where u and v are horizontal and vertical spatial frequency coordinates defined such that 
if ξ and η were specified in mm, then u and v will be in cycles per mm. The integral for 
Fresnel propagation becomes 

  
2 2( )

2 ( )
2

( , ) ( , )
jkf j f u v

j xu yv
retina

p

je e
P x y e dxdy

fm

πλ
πψ ξ η

λ

∞ ∞+
− +

−∞ −∞

= − ∫ ∫   (2.27) 

which is proportional to the standard expression for the two-dimensional Fourier 
transform: 
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where the function being transformed for our application is the pupil function. Initially, 
the terms outside of the integrals in Equation 2.27 may appear to be problematic. Rest 
assured that they are not and can be ignored since the numerator becomes 1 after taking 

the modulus square of amplitude PSF, and what is left is just the scalar term ( ) 22
pfmλ

−
. 

These calculations can be carried out using the following Matlab (The MathWorks, Inc., 
Natick, MA) commands: 
 
psi = (1/(lambda*f*mp^2))*fftshift(fft2(fftshift(pupil_function))) % Field at the exit pupil plane 
no_pixels = sum(sum(pupil_function(pupil_function~=0)))  % Number of pixels 

Exit pupil 
Entrance 

pupil 

Light emission from a 
point object at infinity 

PSF 

z (optical axis) 

z = 0 
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S = psi.*conj(psi)./no_pixels;     % Normalized irradiance PSF 
 
The “fftshift” function needs to be applied to the pupil function prior to taking the Fourier 
transform because the origin in Matlab is in the top-left corner rather than the center. 
Another “fftshift” must be applied after taking the Fourier-transform so that the PSF can 
be plotted correctly. The normalization step makes it so that the highest value in the 
calculated irradiance PSF is the Strehl ratio. 

Implementing the PSF calculations requires a two-dimensional array of numbers 
representing the wavefront departure from a perfect plane. Processing the wavefront 
sensor image to obtain the wavefront gradient and reconstructing the wavefront from its 
gradient is discussed in the following two sections of this chapter. For estimating the 
PSF, the reconstruction algorithms currently used for assessing AOSLOII performance 
are based on Zernike polynomials because they provide an analytical representation of 
the wavefront error (Figure 2.6a). The advantage of having an analytical expression is 
that the wavefront can be evaluated at as many points as necessary which is desirable to 
bring out the details in the PSF (Figure 2.6b). Basic zonal reconstruction algorithms, 
which I will argue to be more accurate in the sections below, evaluates the wavefront 
error at each subaperture (17 points across the pupil in AOSLOII) although sensible 
interpolation methods have been implemented outside of vision science55. Currently, the 
PSF is only used to monitor the Strehl ratio in real-time, so proper modeling aimed at 
determining the physical size of the computed PSF has taken lower priority. More often 
then not, a static value of 16.67 mm is used as the effective focal length of the eye and 
used to estimate the size of the PSF. As the need for more sophisticated image post-
processing techniques (i.e deconvolution56) increases, we can expect more accurate 
models for reconstructing and scaling the PSF to be developed for AO retinal imaging. 

 
Figure 2.6: (a) Contour map representation of the wavefront error for a healthy 
emmetropic eye and (b) the corresponding irradiance PSF. The number of pixels across 
the diameter of the wavefront map was chosen somewhat arbitrarily to be 129. 

2.2 Wavefront sensing 
Now that the physical principles behind the ocular wavefront have been established, the 
next step is to produce meaningful data, namely the wavefront gradient, from a raw 
digital Shack-Hartmann image. Sharing similar history with most technical developments 
in AO (i.e. control systems, computationally efficient algorithms, turbulence modeling, 

(a) (b) 

µm 
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etc.), nearly all the literature on algorithm for estimating wavefront slopes for Shack-
Hartmann sensors are written in the context of astronomical AO systems. Therefore, a 
thorough review of the literature on this topic for the purpose of identifying and testing 
concepts that may apply to both sky and ocular wavefront sensing would involve enough 
research effort to warrant an entirely separate dissertation. However, based on what has 
been described about AO retinal imagers that are currently online, there seems be 
surprisingly few advancements in the process of obtaining wavefront gradient 
measurements from the raw image beyond what was first described by Liang et al.19 and 
some practical improvements can be made without much effort. This is a pity considering 
that the final wavefront measurement and control signal are computed from the wavefront 
gradient dictating the accuracy and precision of the wavefront correction. 

As illustrated earlier in Figure 2.1, if the eye is placed along the optical axis such 
that the pupil plane coincides axially with the primarily focal point of first telescope lens, 
the field at the pupil will be relayed perfectly onto the lenslet array. Positioning of the eye 
in AOSLOII is carried out with a unit that contains a chin rest and temple mounts that is 
attached to a three axis positioning stage. Clearly, eye and head movements prevent the 
actual pupil from being positioned exactly on-axis and at the theoretical pupil plane, but 
the system appears to be insensitive to small (within a few mm) lateral and axial 
misalignments. At the other end of the telescope, the lenslet array samples the incoming 
field which produces the two-dimensional grid of spots on the CCD as shown in Figure 
2.4. How these spot locations are related to the wavefront as well as the algorithm 
currently used in AOSLOII to estimate spot locations are discussed below. Since most of 
the work done in ocular wavefront sensing involve Zernike polynomials, I will begin with 
a discussion on their basic properties before covering the details on what I have 
implemented on AOSLOII for the purpose of improving the robustness and accuracy of 
the wavefront measurement process. 

 
2.2.1 Zernike Polynomials 
Describing the eye’s wave aberrations with Zernike polynomials have become so 
ubiquitous that a naïve individual may be lead to believe that they are intrinsically tied in 
to the wavefront measurement process. This false impression is likely due to the fact that 
most ophthalmic Shack-Hartmann sensors are not being used in closed-loop AO systems 
but are stand alone systems that do little more than just recover and plot the wavefront 
error. Since the measurement accuracy of these devices cannot be evaluate by any 
absolute means such as the sharpness of an image of the foveal cone mosaic, making 
objective conclusions regarding their performance will be extremely difficult if not 
impossible. I will begin with an introduction regarding this popular set of basis functions 
and will continue the discussion on how they are incorporated into wavefront 
measurement and control in Sections 2.3 and 3.3. 
 An aberrated wavefront represented as a linear combination of Zernike 
polynomials is described mathematically by: 
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where N is the total number of Zernike modes (the first N modes in this case) and j is 
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particular Zernike mode in terms of how much it contributes to the structure of the 
wavefront. Different authors have indexed these polynomials in different ways, so to 
avoid confusion the standard Optical Society of America indexing scheme57 has been 
adopted. Zernike polynomials up to 4th order (first 14 modes not including piston, the 0th 
mode) are plotted in Figure 2.7 where each Zernike mode m

nZ  is indexed with m being the 

angular frequency and n being the radial order (or simply “order”). The order is defined 
as the highest degree in the set of polynomials (the power of x or y), so fundamentally it 
determines the smoothness of the final reconstructed wavefront. The choice for the 
highest radial order to fit can be somewhat subjective and application dependent but is 
ultimately limited by sampling density of the lenslet array. For example, if only refraction 
(sphere and cylinder) is of interest, only a second order representation is necessary. On 
the other hand, if we were interested in how the tear film affects the wavefront profile, 
including Zernike modes up to 10th order may not even suffice24, 25. Once the highest 
radial order has been decided, the total number of modes can be found by: 

     
( 1)( 2)

2

n n
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+ +=     (2.30) 

However, we must ignore the modes piston (not plotted in Figure 2.7), tilt ( )1
1Z−  and tip 

( )1
1Z  because they cannot actually be measured using a Shack Hartmann sensor, so the 

actual number of modes estimated is N - 3. This is acceptable because these modes do not 
affect the final retinal image quality. The indices m and n can be combined into a single 
index called the mode index which I used in Equation 2.29: 
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Especially in the computations steps involved in wavefront reconstruction, having 
multiple indices is only redundant when the purpose is only to track the order of a set 
functions or vectors. 
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Figure 2.7 Surface map representations of Zernike polynomials up to 4th order using the 
OSA indexing scheme57. 
 

Zernike polynomials come in different forms (typically distinguishable only by 
the type of normalization used). The vision community has more or less settled on using 
the form recommended by ANSI which are normalized in such a way that the set of 
functions form a complete orthonormal (as opposed to only orthogonal) basis over a unit 
circle. Since the area of a unit circle is π, the inner product is defined as: 

    ( ) 1
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π Σ
=∫≜   (2.32) 

where Σ is the pupil domain and δij is the Kronecker delta: 
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The pupil coordinates (x, y) clearly must be normalized by the pupil radius 

(i.e. 2 2 1x yρ = + ≤ ) prior to evaluating Equations 2.29 and 2.32. Table 2.1 gives 

analytical expressions of Zernike polynomials up to 4th order in both the more common 
polar coordinates as well as in Cartesian coordinates. These equations can be 
automatically generated in closed form using somewhat complex formulae as explained 
in Noll’s classic paper on Zernike polynomials and atmospheric turbulence58. But in 
practical computer implementations, it will be more computationally efficient to simply 
hard code all the equations up to the maximum order desired. This way, each equation 
will not have to be regenerated every time they are needed. 
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Table 2.1 Orthonormal Zernike polynomials up to 4th order 
j Polar coordinates Cartesian coordinates 
0 1 1 
1 2 cosρ θ  2y  
2 2 sinρ θ  2x  
3 26 sin 2ρ θ  2 6xy  
4 ( )23 2 1ρ −  ( )2 23 1x y+ −  

5 26 cos 2ρ θ  ( )2 26 x y−  

6 38 sin 3ρ θ  ( )2 22 2 3y x y−  

7 ( )38 3 2 sinρ ρ θ−  ( )2 22 2 3 4 2y x y+ −  

8 ( )38 3 2 cosρ ρ θ−  ( )2 22 2 3 4 2x x y+ −  

9 38 cos3ρ θ  ( )2 22 2 3x x y−  

10 410 sin 4ρ θ  ( )2 24 10xy x y−  

11 ( )4 210 4 3 sin 2ρ ρ θ−  ( )2 22 10 4 4 3xy y x+ −  

12 ( )4 25 6 6 1ρ ρ− +  ( )2 2 2 2 25 6( ) 6( ) 1x y x y+ − + +  

13 ( )4 210 4 3 cos 2ρ ρ θ−  ( ) ( )2 2 2 210 4( ) 3x y x y− + −  

14 410 cos 4ρ θ  ( )4 2 2 410 6x x y y− +  

 
2.2.2 Wavefront gradient 
It is more reasonable to define the wavefront gradient, rather than the reconstructed 
wavefront, as the variable measured by a Shack-Hartmann sensor because information is 
lost during wavefront reconstruction (estimation). Nevertheless, a significant amount of 
computations are required just to get to that stage. The wavefront gradient is as: 
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For notation convenience throughout the rest of this dissertation, I will denote the first 
derivation of the wavefront by: 
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Depending on the sensor model selected, most wavefront reconstructor designs make the 
assumption of Equation 2.29 sampled over the pupil at the subaperture centers even 
though the average gradient over each subaperture would be a much more accurate 
model59-61. How is the wavefront gradient related to the focused spot locations in the 
Shack-Hartmann image? The answer is entirely trigonometric. 
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Table 2.2: AOSLOII wavefront sensor properties. The frame-rate is dependent on the 
user’s chosen exposure time which general depend on the reflectivity of the retina 
imaged. 
Subaperture diameter 328 µm 
Subaperture focal length 24000 µm 
CCD pixel pitch 12.9 µm 
Pupil magnification 0.889 
Frame-rate < 25 Hz 
Image dimensions 512 × 512 pixels (after 2 × 2 binning) 
 

Figure 2.8 illustrates how the spot pattern image is formed. A plane wave incident 
on an array of micro-lenses will form a regular grid of spots, which I will call the 
reference spot pattern. The locations of these focused spot images need not be measured 
as they can be generated mathematically if pupil magnification and subaperture diameter 
are known (Table 2.2).When the incident field involves an aberrated wavefront (Figure 
2.8b), a particular spot location may depart from its corresponding reference point due to 
the wavefront having non-zero slope (on average) across that particular subaperture. 
Based on similar triangles, the relationship between each of these departures and the 
corresponding average wavefront slopes is 

( )

( )

( , ) 1 ( , )

( , ) 1 ( , )

x y x y m
dxdy x

dx area dx f

x y x y m
dxdy y

dy area dy f

φ φ
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Σ

Σ

 ∂ ∂= = ∆ Σ


∂ ∂ = = ∆
 Σ

∫

∫
  (2.36) 

where ∆x and ∆y are departures from the reference spot pattern, m is the pupil 
magnification, f is subaperture focal length, and Σ is the domain for a particular 
subaperture. These parameters for AOSLOII are given in Table 2.1. Although not strictly 
required, it is advisable to store wavefront gradient data in physical units (as opposed to 
pixels) as wavefront calculation down the line will be much more intuitive. Due to the 
gradient field containing both x and y components, there will be twice as many 
measurements as there are samples of the wavefront. In AOSLOII, the field across a 6 
mm diameter pupil is sampled by 213 subapertures so the “output” of the wavefront 
sensor is a 426 element vector. 
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Figure 2.8: (a) Plane wave produces zero local wavefront slope across each subaperture 
so the resultant pattern of focused spots fall on a perfect grid. The average slope of the 
wavefront over a particular subaperture when the incident beam is aberrated (b) is 
generally non-zero and the corresponding focused spot image will displace from the 
reference grid. 
 
 In the case where the wavefront is expressed as a linear combination of Zernike 
polynomials, the wavefront gradient must be express in Zernike terms as well. By taking 
the gradient of Equation 2.29, we get: 
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This leads to separate expressions for x and y components of the wavefront gradient as 
indicated in Equation 2.34. The x and y wavefront slopes can be expressed as: 
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In Table 2.1, we saw that Zernike polynomials can be expressed analytically in Cartesian 
coordinates. This allows us express the partial derivatives in Equation 2.38 analytically as 
well. The x and y derivatives of individual Zernike modes up to 4th order are given in 
Table 2.3.  Again, for the purpose of making the notation more convenient, I will denote 
Zernike polynomial derivatives with: 
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Table 2.3: Analytically generated Zernike polynomial derivatives up to 4th order 
j x

jZ  y
jZ  

1 0 2 
2 2 0 
3 2 6y  2 6x  
4 4 3x  4 3y  
5 2 6x  2 6y−  
6 6 8xy  ( )2 28 3 3y x y−  

7 6 8xy  ( )2 28 3 9 2y x y+ −  

8 ( )2 28 9 3 2x y+ −  6 8xy 

9 ( )2 28 3 3x y−  6 8xy−  

10 ( )2 310 12 4x y y−  ( )3 210 4 12x xy−  

11 ( )2 310 24 8 6x y y y+ −  ( )3 210 8 24 6x xy x+ −  

12 ( )3 25 24 24 12x xy x+ −  ( )2 35 24 24 12x y y y+ −  

13 ( )310 16 6x x−  ( )310 6 16y y−  

14 ( )3 210 4 12x xy−  ( )3 210 4 12y x y−  

 
2.2.3 Shack-Hartmann image analysis 
Raw Shack-Hartmann sensor data is a digital image of a spot array pattern with their 
saliency depending on a number of factors including the quality of the light source, 
reflectivity of the retina, and the aberrations of the eye. Since how the position each spot 
in a Shack-Hartmann image displaces from its reference position is proportional to the 
local wavefront slope, the accuracy to which these spots can be located is extremely 
important as any error will affect all calculation that will follow. The estimated spot 
locations are called centroids. Many different types of centroid finding algorithms, some 
of which can be quite complex52, 62, have been proposed, so the definition of centroid 
used here is more of an umbrella term that generalizes many different ways for 
calculating spot locations rather than the formal mathematical definition, which is just the 
geometric center of a set of points. Singer63 provides a good description on AO software 
for the flood-illuminated AO system at the University of Rochester where he breaks 
down the major computations into three step that I will parallel: (1) setting regions of 
interest, (2) preparing the (Shack-Hartmann) image and (3) calculating centroids. These 
steps together currently encompass more than half of the computation overhead for real-
time control of AOSLOII taking typically more than 4.5 milliseconds (Figure 2.10). 
 Local regions of interest, or search boxes, are first generated from the reference 
grid (where the spots would theoretically be located in an aberration-free system). Search 
boxes are initialized to be as large as possible as long as adjacent boxes do not overlap. 
This corresponds to be about 23 by 23 pixels (296 by 296 µm). The search boxes are also 
drawn on top of the Shack-Hartmann image for the user to see as shown in Figure 2.9b. 
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This step has become a popular feature due to practical reasons as often times with real 
eyes, a spot may fall partially or completely outside of its corresponding search box. 
Being able to visualize the location and size of the search boxes quickly prompts the 
operator to adjust the pupil location (regenerating the reference grid), adjust the subject’s 
head position, and/or change the spectacle correction if the individual being imaged has a 
large amount of low order aberrations that cannot be corrected with the limited stroke of 
the MEMS DM. The latter operations could potentially not be necessary for imagers that 
employ badal optometers and high-stroke DMs for low order wavefront correction5, 64. 

Preparing the Shack-Hartmann image prior to executing more sensitive 
calculations is desirable as a clean high-contrast spot pattern, free from spurious 
reflections and noise, insures that a spot location will be found accurately. However as it 
intended to push AO equipped retinal imagers to clinical deployment, it is undesirable for 
imaging requirements to be so stringent that the room must be pitch dark and that only 
“good subjects” (low aberrations, good fixation ability, highly reflective retina, etc) can 
be reliably imaged. With this in mind, we have included additional calculation steps to 
make the wavefront slope measurements more robust to many unforeseen circumstances 
(spurious reflections, dim retinas, blurry spots, etc.). These include CCD exposure time 
that can be adjusted through the user interface, background image subtraction and an 
iterative type centroid finding algorithm23, 47, 65. These features were most likely not 
coded into the software that operated the earliest systems1, 19, 20 since they are only 
secondary when it comes to demonstrating the functionality of a Shack-Hartmann sensor 
and that some of the computations may have been too burdensome for the computers 
available then. As mentioned by Singer63 regarding the software for the flood-illuminated 
system in Rochester that it was more preferable at that time to set up excellent imaging 
condition rather than add more image processing calculations that may potentially lower 
the system bandwidth. 
 

 
Figure 2.9: Steps in analyzing a Shack-Hartmann image (a) Close up view of the Shack-
Hartmann image from Figure 2.4a. (b) Same image with the search boxes displayed for 
the user to see. (c) Estimated centroids which were rounded to the nearest pixel for 
display purposes. 
 

The last step is the actual centroid calculation which is done on the now processed 
Shack-Hartmann image. The algorithm used by Liang et al.19 was the center of mass on 
the intensity counts in each search box: 

(a) (b) (c) 
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where I is intensity count which is summed over the support of the search box of interest 
and k is iteration number which was originally just one. The accuracy of the centroid 
finding algorithm can be improved by doing the center of mass calculation iteratively.23, 

47, 63 This process involves shrinking the search box and then re-centering it around the 
previously computed centroid location before computing the center of mass again and 
doing this over and over again. If a spot lied very close to an edge of the search box, then 
one side of the spot intensity distribution may fall outside of the search box biasing the 
initial center of mass estimate. In this situation, an iterative center of mass algorithm will 
clearly result in a more accurate estimate since the search box will gradually become 
better centered over the spot. However, it may take a lot of iterations before the search 
box becomes nearly centered and accurate estimate is produced. A practical fix that we 
have adopted is to first find the location of the pixel with the highest intensity count, 
which we will refer to as the max-in-box operation: 

( ) ( ){ }(1), (1) , ( , ) max ,c c jx y x y I x y I j= = ∀ ∈Σ   (2.41) 

where j is used to index the pixels in search box Σ. The max-in-box operation only 
replaces the first center of mass calculation since it is a lot less sensitive to misaligned 
search boxes than the center of mass, but it is also less accurate when the search box is 
well-centered as it completely ignores the irradiance distribution of the spot and is only 
sensitive to the nearest pixel. With this max-in-box and iterative center of mass 
combination, I have found empirically that the repeatability of the centroid measurement 
does not really improve beyond three iterations (four total if including the first max-in-
box operation) as compared to the six or more iterations described in Hofer et al.23. Each 
newer, smaller box is formed by reducing all four center-to-side distances by two pixels. 
Hofer stated that centroid detection was most accurate and repeatable when the final 
search box was about the same width as the diffraction pattern for a single subaperture23. 
By inspection of our Shack-Hartmann images, the irradiance distribution of the individual 
spots seems to resemble more of a Gaussian distribution than that of a far-field pattern of 
a square aperture (having lenslets over the subapertures effectively brings the far-field 
pattern to the near field). In any case, the diameter of the diffraction pattern of a single 
lenslet is about 120 µm which spans across roughly 10 pixels, and the size of our last 
search box is 11 by 11 pixels. Lastly, it is worth mentioning that we also employ a global 
threshold condition whose value is made accessible through the user interface. The 
purpose of this threshold value is to roughly determine whether pixel values in a 
particular subaperture are due to noise or not. If not enough pixels (default is less than 
five pixels) meet the selected threshold criteria, then the centroid is considered not to be 
found and the master list of stored centroid locations in the program will not get updated 
for that particular entry. What this does is to ensure that when a centroid cannot be 
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computed, whatever measured value that was from the previous frame actually gets used. 
I credit much of the current level of robustness of the control loop for AOSLOII to this 
modification as it is almost completely immune to poor measurements caused by actions 
such as blinking. 

 
Figure 2.10: Amount of time taken to measure the wavefront gradient (subtract 
background image, execute centroid finding algorithm, and calculate wavefront slopes) 
and all so plot the centroid locations on the user interface (Figure 2.9c). 

2.3 Wavefront reconstruction (estimation) 
In modern texts, wavefront reconstruction can refer to either estimating the wavefront 
profile from sensor measurement (wavefront gradient) or calculating the commands for 
reproducing the wavefront profile with an active optical element such as a DM. Strictly 
speaking, the former case is nothing more than an integration problem albeit over a 
circular domain (pupil) and a finite sample of gradient measurements. In some system 
designs, the two cases may differ only by a scaling factor, so they become the same 
problem (i.e. AO systems with matching subaperture and DM actuator arrays along with 
zero crosstalk between actuators). As for others, such as all the AO retinal imagers 
currently online which have many more subapertures than actuators, the two cases 
become quite distinct and therefore must be treated separately. This section is dedicated 
to only the wavefront estimation type of reconstructor and their application in vision 
science. Wavefront reconstruction for AO control is covered in Chapter 3. 

The majority of the literature on wavefront reconstruction was not written with 
applications in visual optics in mind. In fact, wavefront reconstructors in general have 
received scant attention since the first ocular Shack-Hartmann sensor was developed by 
Liang et al.19 giving the impression that the first algorithm applied to ocular wavefront 
sensing is also the standard. However, Liang himself, according to his classic paper19, 
recognized that there were many different approaches to the wavefront reconstruction 
problem, and that he simply chose to use the modal estimation method developed by 
Cubalchini61. The lack of rigorous work on wavefront reconstruction associated with the 
study of the eye’s optics provided the motivation to undertake this research. The rest of 
this chapter lays out the mathematical foundations for three wavefront reconstruction 
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(estimation) algorithms, loosely categorized as being based on either Zernike, zonal 
and/or Fourier, which were implemented as part of this dissertation. The discussions 
below will begin with an analytical description of the problem before moving on to 
constructing the equivalent discrete models that can be implemented on a computer and 
solved numerically. 
 
2.3.1 The classic Cubalchini method 
Noll is usually credited with the first rigorous description of wavefront correction and 
Zernike polynomials58, but Cubalchini is very likely to have been the first person to 
analyze the numerical problem on calculating Zernike coefficients from Shack-Hartmann 
type measurements61. For this reason, I will refer to the wavefront reconstructor he 
described as the Cubalchini method, which is a modal reconstructor in the sense that the 
quantities estimated are the individual Zernike coefficients. Once the coefficients are 
determined, the estimated wavefront can then be generated via Equation 2.29 using the 
analytical expressions of the Zernike polynomials (Table 2.1). The Cubalchini method 
was the reconstructor of choice for the very first ocular Shack-Hartmann sensor 
developed by Liang et al.19, and is to my knowledge still the most widely, although not 
always appropriately, used algorithm in vision science as well as in applications in related 
disciplines. 

Some basic properties of Zernike polynomials were stated earlier in Section 2.2.1, 
and two different indexing schemes (a double and a single) were introduced. For 
estimation purposes, only a single index is necessary so only the Zernike mode number 
will be used. If the wavefront can be measured directly, fitting Zernike polynomials to a 
wavefront is a standard two-dimensional curve fitting problem. Given a function 
representing the wavefront (φ), the i th Zernike coefficient is calculated by evaluating the 
inner product (Equation 2.32) of the wavefront with the ith Zernike polynomial: 

    ( ) 1
, ( , ) ( , )i jZ x y Z x y dxdyφ φ

π Σ
= ∫    (2.42) 

Substituting Equation 2.29 for function φ, we get: 
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We can immediately see that the integral in Equation 2.43 vanishes due to the 
orthonormality of Zernike polynomials except for when i = j . Therefore, 
     ( ),i ic Zφ=      (2.44) 

which can be generalized to calculating any number of Zernike coefficients by: 
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As mentioned earlier, the first three Zernike modes (piston, tilt and tip) cannot be 
properly measured with a Shack-Hartmann sensor and do not affect retinal image quality, 
so they are always omitted during wavefront reconstruction. 
 Unfortunately, we cannot apply Equation 2.44 directly to wavefront 
reconstruction because the Shack-Hartmann sensor does not directly measure the 
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wavefront but rather the wavefront gradient. The result obtained in Equation 2.45 is also 
a special case for the solution to a linear least squares problem where the cost functional 
minimized is: 
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which is proportional to the variance of the wavefront fitting error. The argument of the 
cost functional (c) is the vector of Zernike coefficients. Consider the estimation of an 
arbitrary Zernike coefficient ci, simply differentiate the cost function with respect to ci 
and set the resultant expression equal to zero: 

    
( ) ( ), 0i i

i

J
Z c

c
φ

∂
= − + =

∂
c

    (2.47) 

which is the same as Equation 2.44. The same logic applies when dealing with the 
gradient of both the wavefront and the set of Zernike polynomials. The cost functional 
can still be defined as the fitting error, but in terms of the wavefront gradient: 
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Clearly the residual wavefront gradient version of the cost functional is less appealing 
than the just residual wavefront version. This is primarily due to the fact that we now 
need to minimize the fitting error for both the x and y components of the wavefront 
gradient. This task is further complicated by the fact that higher order (n > 2) Zernike 
modes lose their orthonormality if the derivative is taken61, 66. 

( )
( )

, 5 or 5

, 5 or 5

x x
i j ij

y y
i j ij

Z Z i j

Z Z i j

δ

δ

 ≠ > >


≠ > >

   (2.49) 

Nevertheless, we can still derive an expression for an arbitrary coefficient ci in more or 
less the same manner by differentiating Equation 2.48 with respect to ci and setting the 
resultant equation equal to zero. 
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This result is a system of linear equations that can be expressed in matrix form: 
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which I will represent generically by Bc = d where N N×∈B ℝ , N∈c ℝ  and 2 sN∈d ℝ  
where Ns is the number of subapertures (Ns = 213 for 6 mm diameter pupil). Each entry 
of matrix B can be determined analytically58 but the entries of vector d must be computed 
numerically since φx and φy are measured quantities. Once Equation 2.52 is properly set 
up, obtaining the best estimate of vector c is just a matrix inversion: 

1ˆ −=c B d      (2.52) 
The derivations thus far have been primarily analytical. The Cubalchini method 

bypasses these tedious analytical steps needed to arrive at Equation 2.51 by setting up the 
problem in discrete space from the beginning. When working in the discrete domain, 
functions, such as the Zernike polynomials, are discretized into vectors by evaluating 
each function at the sampled locations in the pupil and vectorizing the result. When that 
is done, we can express the sampled wavefront gradient fitting error in the form: 

'= −e y Z c     (2.53) 
where the measurement vector y can be defined as the measured x- and y-slopes 
vectorized and stacked one on top of the other: 
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The columns of matrix Z’ are the vectorized Zernike polynomial gradients with x-
derivatives stacked on top of the y-derivatives (the order of stacking must be consistent 
with the measurement vector y): 
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The linear least squares problem can now be constructed by minimizing the square of the 
wavefront gradient fitting error: 

1
( )

2
J = Tc e e     (2.56) 

The result of from differentiating Equation 2.56 with respect to vector c and setting it to 
zero is the best estimate of the Zernike coefficient vector c in the sense of least squares. 

( ) 1
ˆ ' ' '

−
= T Tc Z Z Z y     (2.57) 

where the columns of ( )' 'TZ Z  are linearly independent, making the matrix invertible, as 

long as the number of estimated Zernike coefficients does not exceed the number of 
subapertures67. By inspection, we can see that Equation 2.58 is a convenient 
approximation of Equation 2.52: 
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The matrix ( ) 1
' ' '

−T TZ Z Z  is the wavefront reconstructor which Cubalchini refers to as 

the least squares estimator. Cubalchini used slightly different notation in all his 
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derivations, but the mathematics are identical. The notation we use is more 
straightforward to implement in modern numerical programming environments such as 
Matlab. For most systems, the reconstructor only needs to be computed once and then 
stored. The number of visual optics papers that explicitly state that they calculate Zernike 
polynomial coefficients using Cubalchini’s method is surprisingly few19, 47, 68-75, while the 
majority of visual optics studies only refer to Liang et al.19 without elaborating further on 
their choice of reconstruction method. Since no work in vision to my knowledge has 
explicitly stated that the method implemented for calculating Zernike coefficients 
differed from Liang’s original work, it is reasonable to assume that Zernike coefficients 
to date have been calculated using Cubalchini’s method. 
 
2.3.2 Zonal reconstruction 
Zernike polynomials have been discussed in great detail so far, but looking back at the 
original problem, what we have is a model stating that the measured quantity is equal to 
the wavefront gradient plus noise, which can be modeled as: 

( ) ( )( , ), ( , ) ( , ) ( , ), ( , )x y x yy x y y x y x y v x y v x yφ= ∇ +   (2.59) 

where vx and vy are measurement noise. Formally speaking, the boundary conditions 
imposed on Equation 2.59 are of the Neumann type over the circular boundary defined by 
the pupil. Given this description, are Zernike polynomials, or any other set of 
polynomials for that matter, required to solve Equation 2.59? Zonal wavefront 
reconstruction describes a set of algorithms where the wavefront is computed directly 
from wavefront gradient measurements without assistance for any particular set of 
analytical basis functions. Equation 2.59 cannot be discretized and solved directly 
because the gradient operator is not self-adjoint. The only property of interest is that self-
adjoint operators, when expressed in matrix form, are symmetric, so a rigorous discussion 
on this subject is unnecessary. However, the Laplace operator is self-adjoint. Taking the 
divergence of both sides of Equation 2.59 allows us to assess the same problem but 
involving a Laplacian instead of the gradient operator: 
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which is a Poisson’s equation which can be solved by approximation via finite difference 
methods and writing the result as a system of linear equations: 

φ =B d      (2.61) 

Matrix s s×∈B ℝ implements a discrete Laplacian, sφ ∈ℝ  is the vector containing the 
desired wavefront values (one value per subaperture) stacked column by column across 
the pupil, and s∈d ℝ  is obtained by taking the divergence of the measurement vector. 
Setting up Equation 2.61 before we can even considering how to solve it (B is ill-
conditioned) is not a trivial task because the eye’s pupil is round. Classic papers59, 60 on 
zonal reconstruction and Off-the-shelf matrix manipulation tools (i.e. relevant resources 
include the Matlab function convmtx2.m, a recent image deblurring book with Matlab 
examples76, and a Matlab implementation for zonal wavefront reconstruction is given in a 
recent book by Dai77) both assume the data to be of rectangular support. Since real eyes 
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involve data with circular support, we cannot directly use any of the available software. 
Our task is complicated further by the fact that the pupil can vary in size requiring the 
software to include functions that appropriately trim or augment the matrices and vectors 
involved in the calculations based pupil size. These challenges are what attracted my 
interest in the zonal wavefront reconstruction problem both at the fundamental level and 
software implementation. 
 

 
Figure 2.11: A patch of 2 by 2 subapertures (outlined in light gray) illustrating how 
wavefront slopes, Sx and Sy, are related to the sampled wavefront, φ, for the (a) Southwell 
and (b) Hudgin sensor configurations 
 
 In order to perform zonal wavefront reconstruction, operators must be discretized 
and modified to match the configuration of the wavefront slope measurements. For 
Shack-Hartmann sensors, the default geometry is called the Southwell configuration60 
which is characterized by the wavefront samples coinciding with the wavefront slope 
measurements (Figure 2.11a). I consider this configuration to be most intuitive because it 
is designed to estimate the wavefront error at each subaperture. However, an indirect 
computational route is required for the wavefront slopes to be related to the desired 
wavefront values located at the subaperture centers. Wavefront slope data in the 
Southwell configuration must be first converted to the Hudgin configuration78 as 
illustrated for a patch of four subapertures in Figure 2.11b. Locally, the calculation is just 
a simple average of adjacent slopes: 
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  (2.62)  

where Sx and Sy are scalars representing the local wavefront slopes and m and n indexes 
the subapertures. With some abuse of notation, the half index step in Equation 2.62 and 
Figure 2.11b is used to represent slopes that fall in between adjacent subapertures in the 
Hudgin configuration. Under the Hudgin configuration, the slopes can be related directly 
to the wavefront samples: 

φ(m, n) φ(m, n+1) 

φ(m+1, n) 

Sy(m, n) Sy(m, n+1) 

Sx(m+1, n) 

Sx(m, n) 
φ(m, n) φ(m, n+1) 

φ(m+1, n) 

Sx(m, n+0.5) 

Sy(m+0.5, n) 

(a) (b) 

Sx(m, n+1) 

Sy(m+1, n) 
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which becomes the standard definition of the derivative if we the limit of d as it 
approaches zero. To estimate the entire wavefront, the calculations must be applied 
across the entire pupil. The original formulation of this problem is in matrix form59: 

φΓ = Dy      (2.64) 

where matrices D and Γ implement Equations 2.62 and 2.63 respectively across the entire 
pupil and the measurement vector y is defined as before in Equation 2.54. Since matrix Γ 
computes both the x- and y-derivatives, if implemented sequentially, this matrix takes the 
form: 

x

y

Γ 
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     (2.65) 

where the interesting continuous-to-discrete space comparison can be made: 
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This also means that matrix Γ has almost twice many rows as it does columns (392 by 
213 for a 6 mm pupil in AOSLOII), so like the Zernike modal reconstructor from the last 
section, we have a least squares problem in our hands. To estimate the wavefront, 
multiply both size of Equation 2.64 by ΓT: 
     φΓ Γ = ΓT T Dy      (2.67) 
This is the same as Equation 2.61 by observing that: 

( ) = Γ Γ


= Γ

T

T

B

d Dy
     (2.68) 

Equation 2.64 (or 2.67) is not trivial to solve because ΓTΓ is singular. If we choose to 
ignore why a singularity exists, the best solution can be obtained by taking the singular 
value decomposition (SVD) of Γ: 
     Γ = TUDV      (2.69) 
where the columns of the unitary matrices U and V for orthnormal basis sets for the 
wavefront gradient and the wavefront respectively and matrix D is diagonal whose entries 
are the singular values of this model. If the setup of Equation 2.64 is correct, then the 
smallest singular value would correspond to piston. Zeroing the smallest singular value 
after inverting D, the least squares estimate of the wavefront becomes: 

     
φ̂ +

+ +

= Γ
Γ = T

Dy

VD U
     (2.70) 

where the diagonal matrix D+ is obtained by taking the reciprocal of each non-zero entry 
in D while leaving the “near-zero” entries alone. Notice so far that the slopes from the 
Hudgin configuration (Equations 2.62 and 2.63) are only used to formulate the problem 
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and are actually never calculated. Equation 2.70 is valid, but a more sensible approach 
would be to recognize that certain wavefront profiles (i.e. piston) are in the nullspace of Γ 
and preconditioning can be applied to solving Equation 2.67. The set of wavefront 
profiles that span the nullspace of Γ are called unobservable modes with the definition 
being very much analogous to that in control theory. Currently, the two modes we define 
to be unobservable are piston and global waffling (Figure 2.12), since any wavefront 
formed by a linear combination of piston and waffle is theoretically invisible to the 
Shack-Hartmann sensor. Using preconditioning, the least squares solution takes the 
following form: 

( ) 1
φ̂

−
= Γ Γ + ΓT T TVV Dy    (2.71) 

where the columns of matrix V (different from the one in Equations 2.69 and 2.70) are 
the vectorized unobservable modes. It is worth noting that Equation 2.71 is the solution to 
minimizing the linear quadratic (LQ) cost functional: 

( ) ( )2

2

1 1

2 2
J φ φ φ φ= − Γ + T TDy VV    (2.72) 

which is analogous to the LQ problem in optimal control where instead of designing a 
matrix to penalize the input, the V matrix in zonal reconstruction penalizes the wavefront 
making sure that improbable wavefront shapes do not appear in the final estimate. We 
currently run Equation 2.71 in real-time on AOSLOII, and to my knowledge, no other 
AO retinal imager runs this type of reconstructor. 

 

 
Figure 2.12: Piston (left) and global waffle (right) wavefront modes at subaperture 
resolution for 6 mm diameter pupil 
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Figure 2.13: From left to right, reconstructed wavefronts for a 4, 5 and 6 mm diameter 
pupils from the same Shack-Hartmann image (model eye with a cylindrical trial lens) 
 
 In ocular wavefront sensing applications where high frequency features in the 
wavefront may be of interest (i.e tear film irregularities, corneal scaring, refractive 
surgery outcome assessment, etc.), fitting Zernike polynomials to the wavefront may 
result in undesirable levels of smoothing (Figure 2.13)24, 25, 48, 79, 80. Zonal reconstruction 
would be the more appropriate choice for these applications. The use of Zernike 
polynomials have been criticized as being responsible for poorer visual outcomes after 
LASIK81, and newer wavefront sensors used to guide refractive surgery such as AMO’s 
WaveScan WavefrontTM System no longer rely on Zernike polynomials. In many of these 
studies, the algorithm used is actually of the Fourier transform type, but as discussed 
below, zonal and Fourier-based reconstructors are fundamentally the same24, 49, 80. 
Perhaps the reason why zonal reconstruction is not currently more widely used, at least in 
basic research, is due to implementation difficulties. In particularly, trimming or 
augmenting matrices Γ and D automatically in order to accommodate measurements over 
a circular domain is anything but trivial task. We have developed zonal reconstruction 
code for variable circular pupils (Figure 2.13) in both Matlab and C with the Matlab 
version provided in the Appendix B.1.  
 
2.3.3 Fourier methods 
Although considered to be a modal reconstructor, I consider Fourier methods to be zonal 
because they essentially solve the same problem but just in the frequency domain. The 
resultant reconstructed wavefronts using the two methods are generally difficult to 
differentiate, but the two are easily distinguishable from Zernike polynomial based 
reconstruction (Figure 2.13). As one might imagine, the purpose of developing Fourier 
methods is so that the wavefront resconstruction problem can be solved faster82, 83. And I 
am quite certain this is why Fourier methods along with other time saving modalities (i.e. 
the conjugate gradient) have received more serious attention in astronomy (as opposed to 
vision science) where future systems are designed to support thousands of degrees of 
freedom (subapertures and actuators). Current vision AO systems and wavefront sensors 
in vision science will obviously not benefit to that extent because the difference in speed 
between matrix and Fourier methods differ less and less with decreasing degrees of 
freedom. However, the future may still be bright for Fourier methods in vision science as 
they are well suited for dealing with arbitrary pupil sizes and shapes. 
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Figure 2.14: Wavefront maps of a normal eye with no tear breakup reconstructed using 
(a) zonal, (b) Fourier and (c) Zernike methods. Wavefront maps of a different normal eye 
after tear breakup reconstructed using (d) zonal, (e) Fourier and (f) Zernike methods. 
Shack-Hartmann images from a very high density wavefront sensor used in an earlier 
study is more appropriate for making qualitative comparisons between zonal and Zernike 
polynomial based methods since evaluating Zernike polynomials over a denser sampling 
grid better represents there use in ocular wavefront sensing 
 

My treatment of wavefront reconstruction methods based on the Fourier transform 
will be very cursory as many of the subtle details that have been developed over the years 
were neither thoroughly investigated nor implemented as part of this dissertation. 
Therefore, a detail analysis on the underlying principles of Fourier methods is currently 
beyond my expertise. However, the idea behind Fourier transform methods is very 
simple: differential equations become algebraic equations in the frequency domain. 
Recall φx and φy being the x- and y- derivatives of the wavefront, the relationship between 
spatial and frequency domain representations of the wavefront gradient is: 
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   (2.73) 

where FT denotes the two-dimensional Fourier transform and u and v, like earlier, are the 
spatial frequency coordinates. Like the zonal reconstructor, we then take the divergence 
of Equation 2.73 to obtain the Laplacian of the wavefront: 

{ } { } ( ) { }2 2 2( , ) ( , )x yx y uFT vFT u v FT x yφ φ φ φ∇ ↔ + = +   (2.74) 

We can now isolate the wavefront, by dividing both sides by u2
 + v2 and take the inverse 

Fourier transform of the result: 
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Unlike zonal reconstruction, there are plenty of off the shelf tools that can be directly 
applied to the study of Fourier methods. In Matlab for example, fft2.m and ifft2.m 
implement the Fourier and inverse Fourier transforms, and the frequency coordinate 
space (u, v) is automatically generated by calling freqspace.m. However, I have found it 
less “conversion friendly” when it comes to the more important real-time implementation 
in a high level language such as C. 

Equation 2.75 may give the impression that we are done, but in fact the 
reconstructed wavefront will likely contain large errors. The original proposed Fourier 
method was designed for rectangular pupils since the discrete Fourier transform (DFT) 
operates on a rectangular grid83. Since most optical systems are circular, one is generally 
forced to zero-pad the sampled wavefront gradient in order to form a square grid. The 
new square pupil contains data within the pupil but zeros outside meaning that the 
gradient across the pupil boundary will be incorrect. This assumption will undoubtedly 
lead to significant errors when evaluating Equation 2.75. There are several algorithms 
that have been developed to solve this problem. One way is to estimate the slopes across 
the boundary before taking the Fourier transform82. The other method is based on the 
Gershberg algorithm which solves this boundary condition iteratively by recalculating the 
wavefront gradient from the wavefront reconstructed via Equation 2.75, replace the 
calculated gradient with the measured gradient which can be done only inside the pupil 
while leave everything be outside the pupil and repeat Equation 2.7584. This Gershberg 
based Fourier reconstructor was used to generate Figures 2.13b and 2.13e. Gershberg 
type algorithms are not as computationally efficient because the reconstruction must be 
done several times. Nevertheless, they are still faster than matrix inversion methods. 
Recently, a unity frequency response reconstructor based on the Gershberg algorithm has 
been developed85. Without considering sensitivity to measurement error (i.e. sensor 
noise), this would be the most accurate wavefront reconstructor to date and is worth 
exploring for ocular wavefront sensing applications. 
 

 
Figure 2.15: Direct and indirect routes for computing Zernike polynomial coefficients 

2.4 Discussion 
2.4.1 Direct and indirect routes to fitting Zernike polynomials 
I would like to discuss whether or not minimizing the following two cost functionals 
(Equations 2.46 and 2.48) produces the same set of Zernike polynomial coefficients: 
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The first is the case of fitting Zernike polynomials to a wavefront, which, as indicated in 
Figure 2.15, is the direct method because we are fitting Zernike polynomials directly to 
the wavefront. In the second case (the basis the Cubalchini method), Zernike polynomials 
are indirectly fitted to the wavefront by fitting the first derivatives of Zernike 
polynomials to the wavefront gradient. If these two processes are equivalent, then they 
should produce the same set of Zernike coefficients. Piston, tilt and tip will be left inside 
the expression for the sake of discussion. It is helpful to first state some important 
mathematical properties of Zernike polynomials86, 87: 
Property 1: The 0th mode is piston (DC component of the wavefront) and is defined to 
be unity across the entire pupil. 
Property 2: All modes except for piston have zero mean. 
Property 3: If piston is removed from the wavefront, the square root of the sum of 
squares of the coefficients yields the RMS wavefront error. 
Property 4: The value of each Zernike coefficient does not depend on the number of 
modes in the expansion. 
Property 1 is by definition, and Property 2 is a consequence of Property 1. This can be 
observed by taking an inner product of piston with another mode: 
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where the second line is just the mean of the jth Zernike mode, which vanishes due to 
orthonormality. Property 3 can be directly derived from standard formula for computing 
the rms of an arbitrary waveform: 
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where π  is the area of the normalized pupil. If we substitute Equation 2.29 in for φ(x, y), 
the RMS becomes: 
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But since Zernike polynomials are mutually orthonormal, we can remove all the cross 
terms and obtain a much simpler expression for the wavefront rms: 
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This is an important result because the RMS value of a continuous function can be 
computed via a finite summation, but this result is valid only if the chosen basis functions 
are orthonormal. Property 4 was already derived earlier (Equation 2.44) which was: 
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Notice that three of the four properties are completely consequences of orthonormality, 
the exception being the Property 1 which is a definition. Therefore, they are all if and 
only if statements. 
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In order to answer whether or not the direct and indirect routes for calculating 
Zernike coefficients are the same, Property 4 is of particular interest because it has much 
more implications than appearing to be just a minor computational convenience. As 
stated earlier, ocular Shack-Hartmann sensors are ubiquitous and it is more likely than 
not for different devices to use different numbers of modes in their expansions. 
According to Property 4, suppose a particular Zernike coefficient, call it ci, was measured 
for an individual using several different devices, the results from each measurement 
should be directly comparable assuming all other parameters (i.e. noise level, sampling 
density, pupil size, etc.) are reasonably similar. However, this frequently assumed 
property does not hold if the indirect route (Cubalchini method) is taken. In Section 2.3.1, 
a linear system of equations for computing the Zernike coefficients from the wavefront 
gradient was analytically derived resulting in Equation 2.52 which we denoted by Bc = d. 
The solution (Equation 2.53) was simply 1ˆ −=c B d  which exists because the set of 
Zernike gradient polynomials form a linearly independent but non-orthogonal basis61, 66. 
Using this notation, the estimated value for ci becomes: 
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ij

−  B  is the ith row and j th column entry of matrix 1−  B . By inspection, in order 

for the value of ci to be dependent only on the i th Zernike gradient polynomial and thus 

for Property 4 to hold, the entire ith row of matrix 1−  B  must be zero except for its ij th 

entry. This would require 1−  B  to be diagonal which is not the case because the Zernike 

gradient polynomial are non-orthonormal61, 66. Therefore, if we choose to indirectly 
estimate the Zernike coefficients, we are in fact fitting some non-orthonormal set of 
polynomials to the wavefront proving that the direct and indirect routes for estimating 
Zernike coefficients are indeed fundamentally different. An immediate consequence of 
this observation is that the convenient expression for calculating the RMS wavefront 
error (Equation 2.79) is no longer valid, so perhaps it is to no surprise that Cubalchini 
actually did not included this expression in his classic paper61. 

In a study conducted by Prieto et al.47, the authors fitted different numbers of 
Zernike polynomials to a single data set using the Cubalchini (indirect) method and 
showed that the number of modes estimated does have an effect on the resultant Zernike 
coefficient estimates. The same type of behavior was observed from a 4th, 6th, and 10th 
order Zernike fit (indirect) to wavefront slope data from AOSLOII (Table 2, left half). 
These results provide empirical evidence against the validity of Property 4 when Zernike 
coefficients are estimated indirectly. Consider the simple, but direct, alternative: first 
estimate the wavefront using zonal construction, and once that is done, we can fit Zernike 
polynomials directly to the wavefront through standard curve-fitting. Recall from Section 
2.3.2 that if the proposed least squares zonal reconstructor (Equation 2.71) is used, the 
result is simply a vector of local wavefront estimates (one per subaperture). 
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The reconstructed wavefront expressed as a linear combination of Zernike polynomials 
can be express in matrix form as well by: 

      φ̂ = Zc     (2.81) 
where if we choose to fit the first N modes to the wavefront, matrix Z will then have N 
columns with each column being the appropriate (vectorized) Zernike polynomial 
sampled at each subaperture location: 

[ ]0 2 1N−Z z z z≜ ⋯    (2.82) 

The least squares solution is simply: 
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At this point, it is interesting to compare inner product definitions in the continuous and 
discrete spatial domains. As one can see, the inner product expression is much simpler in 
the discrete spatial domain: 
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The discrete case can be derived from the continuous case by replacing the integral with a 
summation, recognizing that dxdy ≈ π/N, and rewriting the result in vector form. 
Discretely sampled Zernike polynomials are only approximately orthonormal: 

1
i j ijN

δ≈Tz z     (2.83) 

and so the condition will only become weaker as we attempt to estimate higher and 
higher order terms due to aliasing. However, if the Zernike modes of interest were 
appropriate for the sampling density of the wavefront sensor, then the approximation 
made in Equation 2.83 is valid and the least square solution given in Equation 2.81 
becomes: 

     ( ) 1 1ˆ ˆˆ N
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which is analogous to the continuous spatial domain case presented earlier (Equation 
2.44) assuring that the value of each Zernike coefficient does not depend on the number 
of modes used in the expansion (Property 4). Although somewhat trivial at this point, the 
results from using the direct method are given in the right half of Table 2.4 showing that 
the coefficients are indeed independent of the order selected for the expansion. The 
estimated coefficients gradually become less and less accurate as the order of the mode of 
interest gets higher because Equation 2.83 will not be a good approximation if we sample 
a very high order mode too coarsely. Therefore, there is not a sharp cutoff where beyond 
a specific mode we can start disregarding the rest of the estimates, but the general vicinity 
to where this would occur will clearly be based on the sampling density of the wavefront 
sensor. As a guideline, I recommend up sampling about four times the Nyquist limit 
which is somewhat conservative. So for a 17 by 17 subaperture sensor, the estimated 
Zernike coefficients up to 4th and 5th order should be valid for all practical purposes. 
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Table 2.4: Zernike polynomial coefficients computed using both indirect (left half) and 
direct (right half) modal reconstruction methods. Defocus estimates (bold) seem to be the 
only mode that remained reasonably unaffected by the number of terms used in the 
expansion. 
j Indirect (Cubalchini method) Direct 
 4th order 6th order 10th order 4th order 6th order 10th order 
3 0.0001 -0.0005 -0.0013 0.0055 0.0055 0.0055 
4 -0.2215 -0.2213 -0.2214 -0.2178 -0.2178 -0.2178 
5 0.0057 0.0052 0.0046 -0.0025 -0.0025 -0.0025 
6 -0.0002 -0.0121 -0.0112 0.0098 0.0098 0.0098 
7 0.0033 -0.0027 -0.0031 0.0018 0.0018 0.0018 
8 -0.0116 0.0017 0.0014 0.0025 0.0025 0.0025 
9 0.0113 0.0115 0.0110 0.0137 0.0137 0.0137 

10 0.0045 -0.0061 -0.0061 -0.0029 -0.0029 -0.0029 
11 -0.0071 -0.0095 -0.0099 0.0102 0.0102 0.0102 
12 0.0225 0.0235 0.0234 0.0115 0.0115 0.0115 
13 -0.0039 0.0120 0.0127 0.0052 0.0052 0.0052 
14 0.0169 0.0046 0.0059 -0.0009 -0.0009 -0.0009 
    
2.4.2 Zonal reconstruction noise propagation 
According to paper on wavefront reconstructors by Southwell60, modal estimation was 
shown to be superior to zonal estimation. This statement may have caused some 
misconceptions regarding zonal reconstruction, particularly for ocular wavefront sensing, 
as some authors have gone as far as stating explicitly that modal reconstruction is better 
than zonal reconstruction68, 88, 89. It should be mentioned that Southwell’s work was based 
on Legendre polynomials over a rectangular grid, and more importantly, his conclusion 
was based on noise propagation. More specifically, Southwell showed that a Legendre 
modal reconstruction tended to have a lower noise propagation coefficient than the 
proposed zonal method60. This should not be surprising because the total number of 
modal coefficients estimated is generally much lower than the number of local wavefront 
values estimated via a zonal approach. For example in AOSLOII, we estimate Zernike 
coefficients up to 10th order which is only 63 numbers as opposed to the 213 subapertures 
where zonal estimates are made (6 mm diameter pupil). 

Characterizing the performance of different reconstruction algorithms based on 
sensitivity to noise is important, but it does not in any way help determine the accuracy of 
the reconstructed wavefront. Since zonal reconstruction directly seeks an optimal 
wavefront profile rather than a linear combination of some predetermined set of 
functions, it is fundamentally more accurate than modal methods when measurement 
noise is negligible. In fact, it is only possible to achieve band-limited performance using 
zonal reconstruction85. If measurement noise cannot be neglected, and it is either 
impossible or impractical to further optimize the Centroid finding algorithm, then modal 
reconstruction may be more appropriate. However, that is not to say that the “standard” 
zonal reconstructor cannot be improved in terms of noise propagation. Consider first the 
zonal reconstructor whose noise propagation properties were assessed by Southwell: 
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The p term augmented to the bottom our original design matrix Γ is just a vector of ones, 
so a full row of ones has added to Γ. The noise propagation Cnp of the reconstructor E, 
derived from taking the SVD of Γe, is the sum of its inverse singular values squared (σj): 
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where s is the number of subapertures (number of columns in Γ). This makes sense 
because if Γe is poorly conditioned, then there will be at least one very small singular 
value which is all it takes to produce very large noise propagation according to Equation 
2.86. Since the square of the singular values of Γe are just the eigenvalues of matrix 

( )e eΓ ΓT , the noise propagation is also the sum of the inverse eigenvalues of ( )e eΓ ΓT . 

Furthermore, notice that: 
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so the zonal reconstructor addressed in Southwell60 is nearly identical to that given by 
Equation 2.71 with the exception that only piston (p) is penalized. Since both piston and 
waffle modes are explicitly penalized in Equation 2.71, the zonal reconstructor currently 
in use on AOSLOII is better conditioned than the one considered in Southwell60. The 
noise propagation is simply the sum of the inverse eigenvalues of matrix Γ Γ +T TVV . If 
lower noise propagation is desired, regularization techniques can be used: 

    ( ) 1
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−
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where I is the identity matrix and α is ideally the noise-to-signal ratio. Equation 2.87 is a 
Wiener filter solution. Since the noise variance is not known exactly, α must be 
empirically tuned until the desired noise propagation level is achieved. If α is too small, 
we end up with the original reconstructor, while setting it to be too large will cause the 
reconstructor to converge closer toward a zero matrix which has zero noise propagation 
but will also be useless. Noise propagation does not seem to be an issue for wavefront 
reconstruction on AOSLOII, so no regularization is used (α = 0).  

2.5 Conclusions 
To conclude, I have reviewed some of the physical optics involved in the image 
formation of the eye and verified that the standard procedure for calculating the eye’s 
PSF is based on Fresnel approximation. Opting for a full Rayleigh-Sommerfield 
treatment of diffraction would probably not make any practical difference. However, the 
parameters used for the PSF calculation should be examined more closely. For example, 
the location and size of the eye’s exit pupil can be more systematically estimated if 
certain biometry data is available. Also, a Zernike polynomial representation of the 
wavefront may be an over-smoothed version of the actual wavefront which will directly 
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affect the PSF making it appear much better than it really is. A wavefront reconstructed 
using a zonal reconstructor may aid in generating a more realistic PSF. 

Estimating Zernike coefficients indirectly from the wavefront gradient (i.e. 
Cubalchini method61) has been analytically and numerical shown to be different from 
fitting Zernike polynomials directly to the wavefront. Two practical consequences result 
from this observation: (1) the RMS wavefront error is no longer simply the square root of 
the sum of squares of the estimated coefficients and (2) individual coefficients will be 
different depending on the number of modes used in the expansion making comparisons 
between different studies more difficult.  

Finally, when assessing wavefront reconstruction methods, reconstruction 
accuracy and sensitivity to measurement error are separate properties. In terms of 
accuracy, zonal reconstructors (Fourier methods included), if set up properly, are optimal. 
If the errors in the wavefront slope measurements are substantial enough to warrant 
consideration of noise propagation properties of the wavefront reconstructor, a modal 
reconstruction will most likely be more accurate than a zonal estimate that has not been 
regularized. However, a simple Wiener filter can always be included in zonal 
reconstruction to match or exceed the noise propagation properties of a modal 
reconstruction at the expense of accuracy. 
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3. Controlling monochromatic ocular aberrations 

3.1 Introduction 
Controlling wavefront aberrations in real-time is a difficult task. It is probably the most 
complicated component of an AO system as it involves many disciplines. In order to 
implement an effective closed loop design, one needs to consider factors regarding 
anatomy, optics, mechanics, electronics, real-time computing, and most of all control 
theory. Not properly addressing the significance of one particular topic will not lead to 
any danger in the sense of injury or severe property damage (although “snapped” DM 
actuators do inevitably occur and are expensive and time consuming to replace), but they 
should nevertheless be respected if we are to avoid further delays in bringing vision AO 
systems into the next generation and closer toward clinical deployment. As the number of 
AO applications in vision grows, we can expect increases in the number of users not 
familiar with AO and in patients with more challenging optics (i.e. post-LASIK, dry eyes, 
etc.). This reason alone motivates the need to make improvements to current AO system 
performance and robustness so that clinical and scientific throughput (better quality 
images from a larger pool of patients) can be improved. Some of the content presented in 
this chapter are taken out of my conference paper90 with only trivial modifications. 
 

 
Figure 3.1: Descriptive block diagram representing the AO control loop. The reference 
input is zero because the desired flat wavefront has a first derivative of zero. 
 

Figure 3.1 is a typical block diagram for a closed loop AO system in any 
discipline. AO control is a multivariate problem where the states are some kind 
description of the wavefront error. Whether these modes are in terms of basis functions 
(i.e. Zernike polynomial coefficients) or local wavefront heights seems to be based on the 
preference of the engineer. AO control for retinal imaging can be extremely simple from 
a traditional control systems point of view and extremely difficult where principles 
beyond the traditional control theory, particularly wave optics, are required to implement 
a functional system. It is easy because the plant, which is primarily the DM, is quasi-
static which means that its response is effective instantaneous. This is due to most CCD 
cameras used for ocular wavefront sensing having frame rates between 10 and 100 Hz, 
but the bandwidth of the DM is on the order of kilohertz91. Therefore, the only dynamics 
that the controller must deal with are those of the eye (i.e. eye movement, tear file, 
aqueous, etc.) which are intrinsically stable as the worst thing that can happen is the 
subject blinks during feedback control. In any case, these dynamics are never modeled in 
practice but rather treated as a disturbance input which for the most part can be rejected 
with an integrator. The AO control problem is difficult because optical phase (wavefront) 
is an infinite dimensional spatial process, so the state, which I will denote with φ, is 
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theoretically an infinite dimensional vector. However, there are only a finite number of 
subapertures and actuators to sample and control the state, so a serious component of the 
AO control problem involves isolating only the states that affect retinal image quality the 
most and that are both observable and controllable. Another reason why AO control is 
difficult is because different systems use different DMs (Figure 3.2). There is not a single 
control algorithm that can be applied to all DMs as they can deform through very 
different mechanisms. For example, controllers designed to operate continuous facesheet 
DMs would not be able to drive segmented piston, tip and tilt DMs because the actuators 
are uncoupled and have three degrees of freedom in the later case. Therefore, most AO 
controllers tend to be at least partially system specific making streamlining efforts to be 
somewhat impractical.  

 
Figure 3.2: Commercially available DMs that have been applied to AO retinal imaging. 
(a) Piezo DM by Xinetics (both 37 and 97 actuator models have been used) used in the 
earliest systems. MEMS devices include the (b) BMC Multi-DM (used in AOSLOII) and 
the (c) PTT 111 by IRIS AO. High stroke magnetic deformable mirrors include the (d) 
miraoTM from Imagine Eyes and (e) several different models available from ALPAO. 
Cheaper, lower density piezo-based devices (37 actuators) from (f) OKO Technologies 
and (g) AOptix have also been used in retinal imaging10, 92. 
 

The purpose of this chapter is to describe AO controller upgrades for AOSLOII 
that have allowed us to resolve the smallest foveal cones for the first time with an 
AOSLO and a MEMS-based DM for that matter (no complete foveal cone mosaic images 
exist from the Rochester flood illuminated AO system when an alternative DM (including 
the BMC MEMS device) was used93). As one can imagine, the process of developing and 
implementing an AO system where a clinician or researcher can simply place a patient in 
AOSLOII and begin acquiring retinal images with only a few key strokes extends beyond 
just the mathematical equations for AO control. Therefore, it is imperative to address all 
practical aspects of the project especially the interface between the optics (see Chapter 2) 
and the control system as well as the real-time requirements. AOSLOII employs the 
BMC Multi-DM (Figure 3.1b) which is a continuous facesheet DM. As schematized in 
Figure 3.2, these devices are arrays of capacitors that compress due to electrostatic force 
(FE) when voltage is applied. The relationship between FE and the applied voltage (V) is 
given by94: 

(a) (b) 

(e) 

(f) 

(g) (c) 

(d) 
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where A is the area of an electrostatic actuator (0.16 mm2) and g is the nominal size of the 
gap between the facesheet (w) and the top surface of the actuators. This relationship is 
nonlinear, but as long as g ≈ g – w (small deflections), electrostatic force behaves linearly 
with the voltage square. Another subtlety exhibited by these devices is that the actuators 
can only be pulled down, so in order to achieve bi-directional actuation, the DM must 
operate at a bias. These turned out to be minor inconveniences, but the modeling of the 
restoring force imposed by the deformed facesheet and the resultant nonlinear cross-
coupling between neighboring actuators for the BMC MEMS devices is a very 
complicated problem and is an area of active reseach94-98. Although I believe these 
modeling efforts are important, the effectiveness of currently available models are very 
difficult to judge because they have only been tested on simulations or highly constrained 
situations (i.e. correcting a phase plate or producing a lower order Zernike term such as 
defocus). In other words, this research can greatly benefit from implementation and 
testing on-site for either astronomical or vision science AO systems. No AO retinal 
imaging system currently online is running a type of controller based on an actual 
physical model of the DM, but the reason for this may be just due to the lack of a 
concerted effort among researchers with proper backgrounds (i.e. MEMS, control 
systems, optics and vision science). 

The complications that have arisen by using the BMC Multi-DM seem to have 
encouraged many research groups to use more expensive alternative correctors. Even 
though several instruments have been developed with the Multi-DM as its sole wavefront 
corrector6, 21, 32, 36, AOSLOII may be the only system remaining that is currently online as 
others have swapped for a different DM or have been rebuilt to incorporate multiple 
correctors. For example, several systems are using the BMC device together with a 
second higher stroke DM, typically one of the magnetic DMs, in a woofer-tweeter 
configuration4, 64, 99, 100. This is a pity because only MEMS-based devices have any 
reasonable chance of achieving clinically accessible costs. But have these additions lead 
to higher lateral resolution? Based on our results, this does not seem to be the case. 
Details on how we have updated the controllers for AOSLOII to improve lateral 
resolution are given below. Since the eye contains no isolated point sources, quantifying 
the actual AO system performance can be problematic. A somewhat qualitative but 
clinically relevant benchmark for any AO retinal imager is whether or not the smallest 
foveal cone photoreceptors can be resolved. Examples of resolved foveal cone mosaics 
are provided. 
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Figure 3.3: Cross-section schematic across three actuators for the BMC MEMS device. 
The voltage applied to the center actuator is higher than those for the two on each side. 
 
3.1.1 Background 
Many articles and dissertations have been written about AO controllers in other 
disciplines (i.e. astronomy). This is not the case for vision science. Improving AO 
performance in vision science has typically involved adding and upgrading components. 
For example, the DM used in the Rochester flood illuminated system was switched from 
a 37 channel to a 97 channel Xinetics device along with a faster (25 Hz) CCD camera for 
wavefront sensing2, 17, 63, 101. Furthermore, some AO retinal imagers that have come 
online more recently have adopted a woofer-tweeter configuration involving two DMs64, 

102, 103, and another group demonstrated multi-conjugate AO retinal imaging which 
involved multiple DMs as well as wavefront sensor beacons14. The refinement of AO 
system performance, particularly at the control system level, has rarely been addressed104-

106. Since the history of AO control in vision science is nearly nonexistent, the task of 
bringing controllers currently used in vision AO systems to comparable levels of 
sophistication as those used in astronomical telescopes will surely be a challenge. The 
work presented in this chapter marks the first step to improving the resolution of AO 
retinal imagers by using more advanced controllers; an important design component that 
is often overlooked in vision science applications. 

The first AO retinal imager, reported in 1997 by Liang et al.107, established that 
the living human retina can be imaged at the microscopic level. As expected for any new 
instrument developed for a completely new application, the methodology to which the 
first AO retinal imager was realized was probably not carried out as systematically as its 
counterparts in astronomy. The first AO controller used in retinal imaging was poorly 
designed and resembled more of an active rather than adaptive optics system by 
definition. The Zernike coefficients were first calculated using the Cubalchini method61 
and a wavefront map was generated by evaluating Equation 2.29 (given again here) at 
many points across the pupil: 
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Voltages required to produce the height of the wavefront at the actuator center locations 
are then computed, typically from deflection versus voltage curves provided by the 
manufacturer, and prescribed to the DM. In closed loop, the residual wavefront after the 
previous frame is measured and the corresponding height samples are added to those 
from the previous frame, the result behaves like an integral action but a poorly designed 
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one because spatial coupling between adjacent actuators were not modeled. Together 
with the assumption that sampling the Zernike-based wavefront profile only at the 
discrete actuator points is sufficiently accurate proved to have many consequences. One 
of which is that the DM surface can oscillate without eventually converging to a 
correction and actuator clipping (exceeding stroke range in one direction only) may occur 
after a certain number of loop iterations. In dealing with these effects, the sampled 
residual wavefront heights are multiplied by a small gain (around 0.3 to 0.4) before 
converting to voltages, and the system user had to manually stop the loop and hold the 
last voltage sequence when the system was at a state where the observed retinal image 
quality was qualitatively optimal1. This was possible because convergence was on the 
order of minutes. Since this type of system does not actually track the changes in the 
ocular wavefront, it is by definition an active, rather than adaptive, optics system. 
Nevertheless, this type of control strategy was the starting point for many later AO retinal 
imagers6, 7 including AOSLOII. 

Having to manually stop the AO control loop to avoid saturation and gradual 
reduction in retinal image quality is clearly undesirable. Eventually, better closed loop 
performance was achieved via control algorithms resembling more closely to how AO 
systems in vision science are operated today. The merit behind using influence functions 
was soon recognized but was implemented in a way that involved Zernike polynomials43, 

108. The basic idea was that the response of each DM actuator must first be measured, and 
these measurements are used to construct a matrix model for the plant (DM plus 
wavefront sensor) which is called the interaction matrix. Using the Cubalchini method 
described in Chapter 2, each measurement results in a vector of Zernike coefficients 
which we will denote by ci for the case of the i th actuator response. The interaction matrix 
B, which relates the DM input vector u to the “measured” Zernike coefficients c, can then 
be generated column by column using these measurements: 

    =u Bc      (3.2) 

1 2 aN  B c c c≜ ⋯  

where Na is the number of DM actuators. To make this into a closed loop control 
algorithm, the matrix B is inverted using some type of pseudoinverse (B is not square) 
and an integrator can be used to iteratively update the DM: 

( ) ( 1) ( )k k k+= − −u u B c    (3.3) 
where k indexes the control iteration and B+ is the pseudoinverse of matrix B. These 
earlier studies may have had difficulties obtaining an accurate interaction matrix model or 
the wavefront sensor measurements may have been too noisy because the update term on 
the right side of Equation 3.3 needed to be multiplied by a small gain in order to achieve 
a more accurate convergence but only at the expense of speed. Both these procedures still 
deviate from the current standard basis for closed loop AO control in both astronomy and 
vision science, which involves modeling the plant with a static interaction matrix directly 
from the wavefront gradient measurements109, 110. The control algorithm is essentially an 
integrator in series with some type of inverse of the interaction matrix. To my knowledge, 
all AO retinal imagers that use a continuous facesheet DM besides ours use this 
approach, albeit the simplest version (either Moore-Penrose pseudoinverse or Tikhonov 
regularization 4, 5, 32, 36). I expanded upon the standard AO controller design by: 1) 
incorporating the static nonlinear actuator response into an input linearization step and 2) 
implementing three less trivial control algorithms for AOSLOII. Each algorithm 
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optimizes a particular cost functional and uses a standard integrator law but with some 
minor tunable features. A comparison of the control algorithms was undertaken and the 
results discussed at the end of this chapter. 
 
3.1.2 AO control loop 
The objective of a general AO control system is best illustrated with a simple schematic 
(Figure 3.4a) where the aberrated wavefronts emanating from either the turbulent 
atmosphere or the eye falls on the surface of a DM, and the reflected beam is ideally free 
of aberrations. Mathematically, the aberrated wavefront is added to the wavefront 
induced by the DM surface, which is just twice the magnitude of the surface profile, and 
in the ideal scenario, the reflected beam would have a planar wavefront. As indicated in 
the corresponding block diagram (Figure 3.4b), the reflected beam is measured by the 
wavefront sensor and fed back to the controller so the DM commands for the next cycle 
can be computed. The expression for the measured error is given by: 

1 1( ) ( ) ( ) ( ) ( )k z k z kφ− −= +e H Gu H    (3.4) 
where the descriptions for the filters and signals are provided in Figure 3.4b. The 
measured error signal e(k) is actually the measured wavefront gradient equal to Equation 
2.54 if no correction is applied by the DM. The best correction is achieved when the 
residual wavefront is flat or the wavefront gradient is zero. However, as mentioned in 
Chapter 2, this is not always the case due to the presence of unobservable wavefront 
modes (i.e. waffle). Since the DM is quasi-static, it is modeled to have an instantaneous 
reaction upon input, so the only plant dynamics is a pure delay element due to the CCD 
exposure time of the wavefront sensor. 
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Figure 3.4: (a) Schematic representation of wavefront correction illustrating that the 
incoming wave aberrations are added to the DM surface to produce the resultant 
corrected beam and (b) the corresponding closed loop block diagram. Matrix I  is identity 
whose dimensions depend on the length of the input u(k) and z-1 is delay. 
 

Based on the standard interaction matrix model, the DM and wavefront sensor 
combined are modeled by the matrix T, which is clearly a gross simplification but can 
nevertheless be very effective if the wavefront reconstructor is carefully designed. Details 
on generating matrix T are provided in sections 3.1.3 and 3.1.4. It should be clarified at 
this point that wavefront reconstruction in this chapter refers to the estimation of the DM 
commands rather than the actual wavefront. This is often a source of confusion in the 
field as the two problems can often appear to be similar mathematically. Based on the 
interaction matrix model, the measured wavefront gradient produced by the actuated DM 
surface when the incident beam is a plane wave (y = 0) simplifies Equation 3.4 to: 

( ) ( 1)k k= −e Tu     (3.5) 
where the one step delay is due to the exposure and readout time of the wavefront sensor 
CCD camera. When the input beam is aberrated, Equation 3.5 becomes: 

( ) ( 1) ( )k k k= − +e Tu y    (3.6) 
where y(k), defined by Equation 2.54, is the uncorrected wavefront gradient measured at 
cycle k. In fact, y(k) can never explicitly determined when the optics is set up in the 
standard configuration (Figure 1.1) where the wavefront sensor is placed after the DM. 
Therefore, only the residual wavefront is seen by the Shack-Hartmann sensor, and the 
residual wavefront gradient, e(k), is measured. 
 The standard integrator law employed by most AO systems is given by: 
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( ) ( 1) [ ( ) ( )]k k k k= − + +u u L e v    (3.7) 
where matrix L  is the wavefront reconstructor and v(k) includes both electronic and 
photonic noise. One may wonder why simple higher order controllers, such as a PID type 
control, are rarely used to control AO systems. For systems where the wavefront sensor 
CCD frame rate is fast enough to capture the dynamic behavior of the DM, one can most 
definitely benefit from having a higher order controller. In AOSLOII, the response of the 
MEMS DM is orders of magnitude faster than the wavefront sensor’s frame rate, so even 
if there are undesirable properties such as a slow rise time or high oscillations in the DM 
step response, the wavefront sensor will not see it so adding a proportional or derivative 
term will be useless. It is worth mentioning that many authors have referred to Equation 
3.7 as a proportional control law5, 6, 17, 111. This is incorrect and should be clarified to 
avoid future confusion on the subject. The actual integrator implemented on AOSLOII 
includes a scalar gain and a forgetting factor: 

( ) (1 ) ( 1) [ ( ) ( )]k m k k kκ κ= − − + +u u L e v   (3.8) 
where the user can tune the gain κ to any value between 0 and 1 and the leak m to any 
value between 0 and 0.0l. I think this a sensible way for defining the forgetting factor (1 – 
mκ) because for example, if the gain (κ) were set to zero, the forgetting factor would not 
be allowed to go below one. Assuming all aberrations are both observable and 
controllable, 0 1κ< ≤  is all that is necessary for asymptotic stability and a perfect 
correction can be achieved by setting L = -T -1, κ = 1 and m = 0. But as we will see from a 
stability analysis, the actual stability will depend more on how the wavefront 
reconstructor L  deals with unobservable and uncontrollable modes as well as noise. In 
any case, combining Equations 3.6 and 3.8 gives us an expression for how the error 
updates at each cycle: 
    [ ]( 1) (1 ) ( ) ( )k m k kκ κ κ+ = − + +e I TL e TLv   (3.9) 

The objective is to design the reconstructor matrix L  so that the error (residual wavefront 
gradient) is eliminated in as few control cycles as possible while remaining stable. 
 When the noise v(k) appears to be dominating the wavefront measurement, 
stability becomes an important issue. The exposure time of the CCD camera can be 
heuristically adjusted through the user interface increasing the light level and 
subsequently the signal to noise ratio. The tradeoff for doing this is a reduction in 
temporal bandwidth which currently appears to be less critical than the accuracy in 
estimating e(k). 

3.2 Calibration and modeling 
The use of an interaction matrix (T) to model the plant implies linearity, so proper 
linearization of the input signal is needed before we can even generate an interaction 
matrix. So far, I have only discussed what the input vector u(k) means physically. In the 
control algorithm design, I conveniently assumed that the plant input is linearly related to 
the wavefront sensor output (residual wavefront gradient e(k)). However, the physical 
inputs to the DM are voltages while the DM driver has its own data number system. To 
begin exploring the possibilities, we needed a direct way to measure actuator influence 
functions preferably represented by an accurate map of the surface profile of the DM. An 
influence function is essentially the impulse response of the DM with the constraint that 
the actuators are defined over a discrete grid but the DM surface is for all practical 
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purposes continuous. A Shack-Hartmann sensor can technically be used to visualize DM 
influence functions, but the low sampling densities of a few subapertures per actuator is 
just not ideal for certain measurements (i.e. height, distribution width, linearity, etc.). 
Therefore, we resorted to interferometry to carry out this task. 
 
3.2.1 Interferometer 
I constructed an interferometer for characterizing the BMC MEMS device. The system is 
a Twyman-Green modification of the Michelson interferometer112 where the reference 
arm mirror is cemented onto the front of piezo-actuator so that phase shifting can be 
accomplished. Figures 3.5a and 3.5b are a photograph of the interferometer with optical 
path overlaid and a schematic diagram of the system. The light source is a 635 nm diode 
laser (OZ optics) where light is brought into the optical path via a fiber connector. The 
field emitted from the end of the fiber is diverging and is collimated by lens 1. The 
collimated beam is then split into reference and objective arms via a cube beam splitter. 
The objective arm beam reflects off the BMC MEMS device, which is our test object, 
and the reference arm beam reflects off a flat mirror placed roughly the same distance 
away from the beam splitter as the DM. A convenience of the Twyman-Green setup is 
that the OPD between the objective and reference arms could be huge, and we would still 
get high contrast irradiance interference fringes (interferogram) by recombining the two 
beams. This is due to the coherence length of the laser being on the order of a meter. 
What this means mathematically is that the fields for the two beams (ψref and ψobj) are 
correlated and the resultant irradiance, which is the interferogram, will have an 
oscillatory term. Recall from Chapter 2 that irradiance is simply the modulus square of 
the field (Equation 2.2 without the constants): 

2

t
S ψ=  

where the electric field is a function of both space and time, but the x, y, and t arguments 
were dropped for notational convenience. The brackets denote the time average: 
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When we have the sum of two coherent fields, the resultant irradiance distribution 
specifying an interferogram is given by: 

( )( )* *
ref obj ref obj

t
S ψ ψ ψ ψ= + +     

*2Reref obj ref obj t
S S ψ ψ= + +     (3.10) 

The wavefront is encoded in the cross-correlation term in Equation 3.10 so its visibility is 
especially important. Light detection was achieved using a relatively old 8-bit CCD 
camera (480 by 640 pixel device from The Imaging Source) and digitized with a USB 
framegrabber (Zarbeco, LLC, Randolph, NJ). Notice that in the schematic diagram 
(Figure 3.5b), the CCD is not placed at the focal point of lens 2. Whether the beam is in 
focus on the CCD array or not does not affect the visibility of the interferogram. 
However, if it was at focus focal point, the interferogram would be shrunk to nearly a 
point on the CCD making the acquired image useless. Instead, I placed the CCD 
conjugate to the DM surface. This is obviously not a requirement, but the benefit of doing 
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so is that the resultant image is the DM with interference fringes overlaid on top (Figure 
3.6a) 
 

 
Figure 3.5: (a) Top view of the PSI that I constructed with the optical path overlaid in red 
and (b) the corresponding schematic diagram illustrate the beam behavior. 
 
 An interferogram with a pulled actuator and the corresponding surface profile is 
given in Figure 3.6. A single interferogram, such as the one in Figure 3.6, encodes the 
wavefront in waves as a repetitive contour map where the height difference between a 
dark contour and the next dark contour is an OPD of one wave (635 nm). The OPD 
between adjacent pixels will clearly be much less than a wave. Since these differences 
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can be converted to the wavefront gradient by knowing the laser wavelength and the pixel 
size, the familiar zonal wavefront reconstruction (estimation) problem for Shack-
Hartmann sensor data comes to mind. In fact, an interferometer is just an extremely high 
resolution wavefront sensor that samples the wavefront gradient in the Hudgin 
configuration (Figure 2.11b). However, many practical issues arise if we want to unwrap 
a raw interferogram into a wavefront or surface height map such as the one in Figure 
3.6b. Examples include: 
 
1. A bright pixel next to a dark pixel can mean either a phase lead or a phase lag 
2. Noise level and fringe contrast 
3. The 8-bit discretization of the interferogram 
4. Computation time 
 
The last issue is due to the large number of pixels compared to subapertures in a Shack-
Hartmann sensor, the computational overhead involved in inverting a matrix equivalent 
to the matrix Γ (Equation 2.65) for zonal reconstruction (estimation) will be orders of 
magnitude greater. Volumes have been written in dealing with these issues, but a lot of 
them can be avoided by implementing what is known as phase shifting interferometry 
(PSI). PSI exploits the wave nature of light to extract the phase (wavefront) from an 
interferogram. The process is most easily explained by referring back to Equation 3.10. 
Without any loss of generality, it can be assumed that the reference and objective fields 
are completely coherent and the initial phase to be zero. This way, an expression for the 
detected irradiance can be very simple: 

( )( , ) ( , ) ( , )cos ( , )S x y a x y b x y x yφ= +   (3.11) 

where a is the DC term (Sref + Sobj) and the cross-correlation term has been replaced with 
a cosine. For notation simplicity, it will just be implied from now on that all the terms 
have a spatial dependence as well (i.e. a = a(x, y)). Equation 3.11 is consistent to what we 
would expect for the irradiance detected an any particular pixel in that if there were no 
phase error (φ = 0) or a phase error that is an integer multiple of 2π, the irradiance would 
be a + b making the pixel bright (constructive interference), and if the phase error were 
an odd multiple of π, the irradiance would be a – b making the pixel dark (destructive 
interference). Again, the phase error can easily be converted into OPD by noting that 
2π is one wave (530 nm). The fringe contrast of an interferogram is defined by the 
expression: 
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which by inspection of Equation 3.11 can be simplified to: 
( )

( )

a b a b b
C

a b a b a

+ − −= =
+ + −

   (3.13) 

We generally operate at a contrast level of about 70 percent which appears to be 
sufficient for the required calculation for obtaining the phase. 
 It may appear that obtaining φ from Equation 3.11 is trivial but is actually 
impossible because we do not know the values of a and b, which effectively gives us 
three unknowns but only one equation. A good estimate of the contrast only gives us how 
a and b are related to each other but not their actual values. The task is made even more 
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difficult by the fact that the irradiance is discretized into pixel values between 0 and 255 
due to the 8-bit CCD used (the actual range is less as it would depend on the fringe 
contrast). To generate the necessary minimum of two more equations, a phase shifting 
mechanism is required, and that is the role of the piezo actuator (Low-Voltage Actuator, 
Thorlabs) placed behind the reference mirror. By applying a voltage to the piezo, the 
entire interferogram will experience a constant phase shift δ. This is expressed 
mathematically as: 

( )cosS a b φ δ= + +     (3.14) 

In order to convert δ into OPD, simply divide it by 2π  and multiply by the wavelength. 
The distance that the reference mirror had to travel is actually half the OPD as light 
travels this distance on the way to the mirror and travels the same distance again coming 
away from the mirror. In principle, only two phase shifts (three equations) are needed, 
but this bare minimum option can lead to significant errors in the recovered phase if the 
actual distance shifted deviated from what was prescribed113. For example, the 120° 
three-step algorithm113 requires an interferogram taken at δ = 60°, 180° and 300°. A 60° 
shift corresponds to only about 53 nm which is an extremely short distance to push a 
piezo actuator accurately especially in open loop. I do not believe the current PSI is 
capable of achieving this level of accuracy. Even though many improved three-step 
algorithms have been developed, I opted for a slightly more forgiving four-step algorithm 
for practical reasons that will become apparent. The standard four-step algorithm requires 
four interferograms acquired sequentially with quarter-wave phase shifts114:  
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   (3.15) 

By applying some simple trigonometric identities, the phase can be extracted from the 
four interferograms by the simple expression: 

     1 4 2

1 3

tan
S S

S S
φ δ−  −= + − 

   (3.16) 

where the added phase constant δ is to make the range of the function be from 0 to 
2π (see Table 3.1 for definitions). Equation 3.16 cannot be evaluated for certain 
conditions because the argument can be singular or ambiguous at certain pixels. We must 
have a sensible solution for dealing with situations when we are forced to divide by zero 
or to evaluate zero divided by zero. Table 3.1 provides the required logic applied at each 
pixel before Equation 3.16 can be evaluated. After this is done, the resultant phase map 
must be unwrapped since all the values are modulo 2π. Phase unwrapping over a 
rectangular grid is a fairly straightforward process involving basically just an integrator 
equation115: 

[ ]
[ ]

( 1, ) ( , ) ( 1, ) ( , )

( ) 2 int( / )

wx y x y V x y x y
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φ φ φ φ
π π

+ = + + −

−≜
  (3.17) 

where the wrapped phase is now denoted by φw and the initial condition was simply 
selected to be the value of the top-left corner pixel. Equation 3.17 must be applied one 
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row at a time where since the first row is scanned left to right, the second row must then 
be scanned right to left to preserve phase continuity along the edges. This zigzagging 
scan pattern continues until the entire phase is unwrapped. It should be noted that due to 
the setup of the Twyman-Green interferometer, there will inevitably be some tilt fringes 
in the raw interferograms, and tilt and tip modes will exist in the unwrapped phase. The 
magnitude of these modes were estimated via linear regressions in both the x- and y-
directions and subtracted from the unwrapped phase. The resultant phase (wavefront) can 
finally be converted to a high resolution topographic map of the DM surface (Figure 
3.6b) by calculating the corresponding OPD. 
 
Table 3.1: Logic implied in Equation 3.16 

Condition Action δ 
S4 = S2 and S1 > S3 φ = 0 0 
S4 = S2 and S1 = S3 φ = 0.5π 0 
S4 > S2 and S1 < S3 Evaluate tan-1(·) π 
S4 = S2 and S1 < S3 φ = π 0 
S4 < S2 and S1 < S3 Evaluate tan-1(·) π 
S4 < S2 and S1 = S3 φ = 1.5π 0 
S4 < S2 and S1 > S3 Evaluate tan-1(·) 2π 
S4 = S2 and S1 = S3 0 0 
Otherwise Evaluate tan-1(·) 0 
 

 
Figure 3.6: (a) Raw interferogram produced by the interference of the reference and 
objective beams. A differential voltage was applied to a single DM actuator pulling the 
facesheet down. (b) The corresponding topographic of the DM surface obtained by phase 
shifting, phase unwrapping, and proper scaling to wavelength of the beams (details given 
throughout section 3.2.1). 
 
3.2.2 Input linearization 
We would like to define the control input u(k) in such a way so that its entries can take on 
both positive and negative values and that the transfer function from the control input to 
the wavefront gradient output is approximately linear. Since actuation is achieved by 
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applying an electrostatic force, we can rule out the actual voltage applied to the DM as a 
potential candidate. Many researchers have measured peak deflections as a function of 
the applied voltage and fitted the measurements with a second-order polynomial. They 
then perform a linearization step (usually not described in detail but must involve solving 
for the roots of the fitted polynomial), so that they can treat their DM and wavefront 
sensor combination as a linear system91, 99, 116-118. All but one of these studies used an 
interferometer for the DM characterization process. For that one study, measurements 
were made using a Shack-Hartmann sensor, so it should not be surprising that their 
results were somewhat different from the others as they used a third-order polynomial 
model.99 It is difficult to gauge the effectiveness of these linearization attempts based on 
closed loop performance as they all required many cycles (> 5) to bring the RMS 
wavefront error to about the optimal correction. The fact that these experiments were 
from either correcting an artificial model eye or reproducing a particular Zernike mode 
on the DM is particularly surprising as I would expect that correcting purely static 
aberrations should only take one or two cycles if the system was properly linearized. 
 A likely explanation for this observation is given as follows. Recall that a bias 
voltage needs be applied to the entire DM in order to actuate in both directions. It seemed 
very likely that the deflection versus voltage curve could be different if the DM 
characterization was done with respect to the bias position. This turned out to be indeed 
the case, and with the resultant second-order polynomial fits were used to linearize the 
input, the AO correction converged much faster even for real eyes90. But how is the bias 
voltage determined? The biased position should accommodate a maximum positive and 
negative single actuator deflection of equal magnitude. The corresponding voltage input 
for the ideal biased position was verified with our PSI to be about 190 volts. How this 
was done was through a series of trial and error experiments involving the following 
steps: 
 

1. Pick a bias voltage and apply it to all the actuators 
2. Release the actuator of interest to 0 volts and take a deflection measurement. 
3. Apply the maximum voltage to the same actuator and take that deflection 

measurement. 
4. If the absolute values of these two measurements are nearly equal, then the tested 

bias voltage is optimal. Otherwise, increase or decrease the bias voltage guess and 
start over. 

 
If we had selected our bias voltage based on the original deflection versus voltage curves 
(i.e. driving one actuator with all the other actuators at zero voltage), we would have 
grossly underestimated the ideal bias voltage. 

Through these exercises, it became apparent that a much more intuitive strategy 
existed. The linearization strategies mentioned so far, including that described in my 
paper90, requires us to define the control input u(k) in units of deflection (typically in µm) 
which is not intuitive. More importantly, it creates an inconvenience because no two 
BMC MEMS devices have the same response, even if they are of the same model. Thus, 
each new DM must go through the same calibration process of measuring deflection 
versus voltage curves and updating the fitted polynomial coefficients in the control 
software. Figure 3.7 plots deflection against squared voltage, and it is clear that the 
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relationship is almost linear. This is consistent with Equation 3.1 in that electrostatic 
force is proportional to the squared voltage. Furthermore, we can conveniently derive the 
ideal bias voltage by looking at where the line crosses a deflection of zero (DM bias 
position) in Figure 3.7. The voltage range for driving the current MEMS DM in 
AOSLOII is from 0 to 265 volts, so half way in this range in terms of the squared 
voltage: 

    
2

max

2bias

V
V =      (3.18) 

results to about 187.4 volts which is very close to our empirically determined result of 
190 volts. So the squared voltage is clearly a practical candidate for the linearized input, 
but in order to allow for bi-directional actuation, the squared voltage must be offset by 
the square of the bias voltage. Suppose ui(k) is the ith entry of the linearized input vector 
u(k), its value is related to the actual voltage applied to ith actuator Vi(k) by: 

2 2( ) ( )i i biasu k V k V= −     (3.19) 

Linearizing the input in this manner is much simpler than the methods mentioned above, 
according to convergence rates that we typically achieve, it seems to also be superior (see 
sections 3.2.2 and 3.3.3 for experimental evidence). 
 

 
Figure 3.7: Single actuator deflection plotted as a function of the squared voltage. The 
DM measured is the 5.5 µm Multi-DM from BMC. Notice that the peak-valley dynamic 
range is more like 1.5 µm. 
 
3.2.3 Interaction matrix 
Identification of the interaction matrix T is done experimentally by introducing a flat 
wavefront into the system with a model eye and then measuring the static response of all 
the actuators one by one109, 110. The DM is initially fixed at the biased position, and then 
starting from the first actuator, the following actions are executed: 

1. Completely release the current actuator (0 volts) while keeping all the others at 
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the bias voltage 
2. Measure and record the wavefront gradient. Call the resultant vector a 
3. Pull the current actuator completely (265 volts) while keeping all the others at the 

bias voltage 
4. Measure and record the wavefront gradient. Call the resultant vector b 
5. Compute the appropriate column of the interaction matrix. The ith actuator 

corresponds to the i th column of the interaction matrix which is defined by: 

     [ ]
max min

1

u u
= −

−it a b     (3.20) 

where umax and umin are the minimum and maximum values that the entries of the 
linearized input vector u(k) can take: 
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   (3.21) 

This procedure is repeated until the response of each actuator has been measured. The 
interaction matrix can then generated by: 

     
aN  1 2T t t t≜ …    (3.22) 

where Na is the number of actuators which is 140 for the DM used in AOSLOII. The 
actuator indexing scheme does not really matter as long as it is kept consistent at every 
calculation to follow that involves the input vector u(k). For a 6 mm diameter pupil, the 
dimensions of the interaction matrix are 426 by 140. In practice, I found that generating 
several interaction matrices (≈ 10) and then taking the average as the final interaction 
matrix benefits system performance. The Shack-Hartmann sensor measurement will 
always contain some electronic and photon noise which gets inserted into the interaction 
matrix T. Averaging several interaction matrices increases the signal to noise ratio or its 
entries just like how frame-average an images sequence of a scene results in a better 
signal-to-noise ratio in the final image. 

3.3 Wavefront reconstruction (control) 
Wavefront reconstruction for control differs from estimation (Chapter 2) in that we are 
interested in calculating the control signal, which in our case is the linearized input vector 
u(k). In other words, we are interested in physically reconstructing the wavefront from 
wavefront gradient measurements using a DM. The wavefront reconstructor was denoted 
by the matrix L in the figures and equations above, and this section discusses several 
designs for this matrix. According to the only error budget conducted for a vision AO 
system, most of the uncorrected wavefront error was attributed to poor wavefront 
reconstructor design, particularly aliasing, and the temporal bandwidth which was limited 
by the 16 Hz sampling rate of their Shack-Hartmann sensor105. The design of the 
wavefront reconstructor has taken relatively low priority in the development of vision AO 
systems so far. It should be clear from the evidence provided in this chapter that 
wavefront reconstruction and AO control in general can greatly benefit retinal image 
quality and should probably be higher on the priority list in future projects. 
 The AO control problem differs substantially from most applications given in 
textbooks on control systems. One exception is iterative learning control (ILC) which to 
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my surprise is nearly identical to the AO control problem in many respects. A general 
ILC update law takes the form119: 
     1k k k+ = +u Qu Le     (3.23) 

where the distinction from the AO control problem is the fact that the entries of vectors u 
and e are comprised of input and error values over time rather than space. Matrix L  is 
also never square in AO control as it is generally assumed to be for ILC. In ILC, the 
index k is for tracking the number of iterations that a specific task is run rather than the 
number of control loop cycles. The ILC Q and L  matrices are referred to as filters. 
Specifically, matrix L is called the learning filter, which plays a similar role as the 
wavefront reconstructor in AO control. Matrix Q is most often the identity matrix but is 
sometimes a low pass filter aimed at make the learning process more robust. Both these 
filters are temporal and generally one dimensional. In the AO control case, matrix Q has 
almost always been either identity or a simple forgetting factor (Equation 3.8) that can be 
adjusted heuristically. If it were designed as a low pass filter, it would be a two-
dimensional spatial filter rather than a one-dimensional temporal filter as in the ILC case. 
The one exception is the AO controller at the W.M. Keck Observatory whose integrator 
plus Smith-predictor compensator can be rearranged into the following form: 
    1( ) ( ) ( 1) ( )k z k kκ−= − +u Q u Le    (3.24) 

    ( )1 1( ) ( )z l w lwz− −= − +Q I  

where w is set to 0.25 and l is the forgetting factor which they set to 0.999 for bright stars 
and 0.99 for not so bright stars120. So Q is also a two tap temporal low pass filter which 
would be equivalent to a filter in the iteration domain for the ILC case. This added 
temporal filter pushes the AO system’s bandwidth at the expense of having more error in 
rejecting the static and low frequency aberrations. Presumably because most of the eye’s 
wave aberrations are static while the rest are more slowly varying compared to their 
atmospheric counterparts, I have found that adding this temporal filter more often than 
not actually reduces retinal image quality, so I do not recommend applying it to vision 
AO systems. 
 The question remains on how to best design the wavefront recontructor. The four 
wavefront reconstructor designs implemented and tested on AOSLOII, which span from 
basic plant inversion to more advanced quadratically optimal designs as well as a modal 
reconstructor (Zernike polynomials), are covered in the four subsections below. The 
name I have given to each reconstructor design is by no means official as different people 
have used different names to refer to more or less the same thing. Just to keep the 
equations as compact as possible, I will assume the gain κ and leak m to be 1 and 0 
respectively as they do not contribute to the purpose of the discussion. 
 
3.3.1 Pseudoinverse 
This is the naïve solution to the AO control problem where the reconstructor is designed 
to be the inverse of the interaction matrix T. Since T is not square, we have to use the 
pseudoinverse and the control law becomes: 
     ( ) ( 1) ( )k k k+= − −u u T e    (3.25) 
where the negative sign before the pseudoinverse of matrix T is to the fact that our closed 
loop system matrix is I + TL and we want to make that as close to the zero matrix as 
possible. Vision scientists refer to this algorithm as “direct-slope control” which is not 
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really a term recognized in other AO communities. This has been the standard control 
strategy (minus the input linearization steps) used in AO systems for vision science since 
Hofer et al.17 first reported using it in 2001. Although being somewhat novel to the vision 
science community, according to Wallner’s classic paper in 1983121, most astronomical 
AO systems were already using this control method well before 1980. Just to put this 
matter in perspective, there are probably over a hundred publications that describe more 
sophisticated AO control algorithms, and at least a few of them would be applicable to 
controlling AO systems for vision science. 
 Equation 3.25, implemented as it is, has been verified to be unstable, and the 
reason is because the interaction matrix T is poorly conditioned. A widely used technique 
to invert T is by taking the SVD and then ignoring the smallest singular values during the 
inversion. The number of singular modes to ignore is found experimentally by 
determining the minimum number of modes that must be dropped while preserving 
stability. This is typically done using a model eye through trial and error. The truncated 
SVD scheme turned out to be quite unreliable in practice in the sense that it often failed 
to correct what seemed to be a perfectly healthy eye when all the other reconstructor 
designs considered did fine. I believe this is mainly due to the relatively high amount of 
mismodeling error associated with using an interaction matrix to model a MEMS DM 
making the system more sensitive to high frequency mode buildup like localized 
waffling82. Thus, in order to include this algorithm in a performance comparison, we 
would be limiting ourselves to testing only on individuals whose wave aberrations can be 
effectively compensated via the SVD algorithm. This limitation is inconvenient and could 
potentially bias our results. As an alternative, I considered a more stable version of the 
pseudoinverse which comes from the limiting process:  

     ( ) 1

0
lim
α

α
−+

→
= +T TT T T I T    (3.26) 

By making the regularization factor α easily accessible from the user interface, we can 
heuristically obtain a working reconstructor of the form: 

     ( ) 1
α

−
= − +T TL T T I T    (3.27) 

where α, like that of the zonal estimator described in Chapter 2, should ideally be the 
noise to signal ratio of the system. The difference between regularization and the 
truncated SVD is that instead of ignoring the smallest singular values, a constant α is 
added to every singular value prior to taking the reciprocal. So even though we did not 
explicitly solve the high frequency amplification problem, at least the inversion is more 
stable resulting in a more reliable AO controller. 
 
3.3.2 Statistical weighting 
The type of statistically weighted wavefront reconstructor I describe here is more or less 
what is also used at W.M. Keck Observatory.120 It is currently the default reconstructor 
used in AOSLOII. Atmospheric turbulence is often modeled to follow Kolmogorov 
statistics, but there is evidence that the spatial power spectrum of the eye’s wave 
aberrations also follow the Kolmogorov model122.  Even though evidence for this is 
limited to just one short paper, the relevance of the work warrants for some exploratory 
efforts into how we may exploit ocular aberration statistics for AO control systems in 
vision science. Going back to our linear model of the AO system (Equation 3.6): 
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( ) ( 1) ( )k k k= − +e Tu y  
where y(k) contains the uncompensated wavefront gradient that is not actually measured 
during closed loop operation. We want to determine the best estimate of the input u(k) 
given measurement e(k) under the assumption that the eye’s wave aberration are either 
static or slowly varying. This assumption allows us to make the critical approximation: 
     ( ) ( )k k≈ +y y v     (3.28) 
where v(k) is the measurement noise which is assumed to be Gaussian and white. The 
best estimate for u(k) in the least squares sense is given by the conditional expectation: 

     ˆ ( ) ( ) ( )k E k k = −  u u e    (3.29) 

Assuming that e(k) and u(k) are stationary Gaussian random processes, the conditional 
expectation can be express in the convenient form: 

    [ ]1( ) ( ) ( )E k k m k m−  = + Λ Λ −  u ue ee eu e e   (3.30) 

     1 ( )m k−= + Λ Λu ue eee  

where mu and me are the means of vectors u(k) and e(k) respectively, and Λue and Λee are 
covariance matrices involving the appropriate vectors: 
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The last equality in Equation 3.30 holds because e(k) is the measured wavefront gradient 
with tilt and tip already removed so me is zero. By expanding the covariance matrices 
under the assumption that u(k) and e(k) are uncorrelated with each other, we may rewrite 
Equation 3.40 in the matrix form: 

   
1

( ) ( ) ( )E k k m k
−

   = + Λ Λ + Λ   
T T

u uu uu vvu e T T T e   (3.31) 

Assuming zero piston (mu = 0) and substituting Equation 3.31 into Equation 3.29, we 
arrive at the optimal estimate of the input vector u(k) in the open loop case: 

    
1

ˆ ( ) ( )k k
−

 = −Λ Λ + Λ 
T T

uu uu vvu T T T e   (3.32) 

where the wavefront reconstructor is given by: 

    
1−

 = −Λ Λ + Λ 
T T

uu uu vvL T T T    (3.33) 

Law and Lane123 showed that this reconstructor is equivalent to the “optimal estimator” 
(open loop) described in Wallner’s classic paper121. The same reconstructor has also been 
referred to as Bayesian121, maximum a posteriori124, and a special case of the minimum-
variance design125. To avoid confusion, I will refer to this design as the statistically 
weighted reconstructor because it is nothing more than the solution to a statistically 
weighted least squares problem. 
 Wallner’s derivation was for an optimal open loop AO control scheme for a 
Linear DM and wavefront sensor. According to his simulations, the statistically weighted 
reconstructor in open loop performed similarly to the pseudoinverse reconstructor in 
closed loop under good (low noise) conditions but was superior at low light (noisy) 
conditions. The key assumption was the linear DM. Even though we linearized the 
control input, that by no means accounted for all the nonlinearities present in these BMC 
MEMS devices. We still must rely on closed loop control to deal with mismodeling 
errors and iteratively reduce the residual wavefront error because we cannot obtain the 
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best possible correction in just a single step. I implemented the statistically weighted 
reconstructor (Equation 3.3) with the pure integrator: 
     ( ) ( 1) ( )k k k= − +u u Le  
and its performance for correcting a model eye based on the RMS wavefront error is 
given in Figure 3.8 (the trend labeled as “Penalizing Kolmogorov statistics only”). What 
we can immediately observe is that the AO system is not closed-loop stable as the RMS 
wavefront error started to increase after just a few cycles. This simple test also 
demonstrates why closed loop control is still required. The wavefront error present in a 
model eye is completely static, but it required an additional measurement and correction 
cycle to bring the RMS value below 100 nm. For open loop control, the residual 
wavefront gradient measurements would not be available to iteratively refine the control 
signal, so the RMS wavefront error will remain near where it was after the first cycle (≈ 
250 nm for the example given in Figure 3.8). But as I will show, the statistically weighted 
wavefront reconstructor is an optimal design and provides a superior correction in 
comparison to the standard pseudoinverse reconstructor but only if we can come up with 
a stable version. 
 

 
Figure 3.8: Performance of the statistically weighted reconstructor under integral control 
based on the calculated RMS wavefront error for correcting a static aberration profile 
(model eye). Closed loop stability was only observed when unobservable modes were 
explicitly penalized. 
 
 Recall that the piston term (mu) was ignored in the derivation of the statistically 
weighted reconstructor. This would not affect open loop because piston, or any other 
unobservable DM mode (i.e. tilt and tip), cannot accumulate in open loop. In close loop 
control, noise and mismodeling errors will inadvertently produce unobservable modes on 
the DM which will accumulate. In other words, if we keep adding shapes on the DM that 
are invisible to the wavefront sensor, we will eventually run out of stroke and the 
correction will actually start getting worse (in the case for piston buildup, the DM will 
eventually be in a state where the actuators can only move in one direction). This is 



 70 

exactly what we see in Figure 3.8 for the case where unobservable modes were not 
penalized (black dots). To explicitly penalize unobservable modes, consider the following 
identity pertaining to the statistically weighted reconstructor: 

  
1 11 1 1− −− − −   −Λ Λ + Λ = − Λ + Λ Λ   

T T T T
uu uu vv vv uu vvT T T T T T   (3.34) 

A proof of this is given in Appendix A. Notice that the right side of Equation 3.34 is the 
solution to the LQ problem where the cost functional: 

   1 11 1
( ( )) ( ) ( ) ( ) ( )

2 2
J k k k k k− −= Λ + ΛT T

vv uuu e e u u    (3.35) 

is minimized with respect to input u(k). The idea, as we will see, is very much analogous 
to the frequency shaped LQR (linear quadratic regulator) design except that we are 
dealing with two-dimensional spatial frequencies and a system that is quasi-static. 
 Until this point, I have not mentioned how to generate the covariance matrices. 
Since we assumed that our measurement noise is white, the simpler of the two is the 
noise covariance Λvv which is diagonal. Determining the actual variance values that is the 
diagonal entries of Λvv is very difficult if not impossible because 1) they are subject 
dependent since different retinas have different reflectivity and 2) the variance of the 
measured wavefront gradient is due to both noise and actual fluctuation in the ocular 
wavefront. A simple, but reasonable, estimate for the diagonal entries would be values 
that are inversely proportional to the irradiance distribution across the pupil as discussed 
in Chapter 2 (Figure 2.4). This way, darker subapertures get weighted less than the 
brighter subapertures in the cost functional. Generating the inverse of matrix Λuu is much 
more difficult. Assuming that the wavefront is approximately proportional to the 
controller input, a sparse approximation for the inverse wavefront covariance matrix 
corresponding to the Kolmogorov spectrum has been proposed126. According to Noll58, 
the Kolmogorov power spectral density (PSD) is given by: 

    ( ) 11/35/3
0( ) 0.023/r rf r f −Φ =     (3.36) 

where fr is spatial frequency and r0 is the Fried parameter which is used to describe 
astronomical seeing. The constant, 0.023/r0

5/3, is derived from atmospheric turbulence 
and has nothing to do with the structure of ocular aberrations, so the absolute magnitude 
of the PSD is not of interest. Given that the PSD is proportional fr

-11/3 and then making 
the not-so-subtle approximation: 

     11/3 4
r rf f− −≈      (3.37) 

we can derive a very convenient functional relationship through a series of analytical 
manipulations55 that I will not repeat here. The functional relationship is given by: 

   1 2 2( ) ( ) ( ) ( ) ( )r r r ru f f v f df u r v r dr−    Φ = ∇ ∇   ∫∫ ∫∫   (3.38) 

where u(r) and v(r) are general square integrable functions. When applied to our problem, 
the following continuous and discrete spatial domain analogy can be made: 

    2 2 1( ) ( )u r u r dr −   ∇ ∇ ↔ Λ   ∫∫
T

uuu u    (3.39) 

and it becomes evident that penalizing the input with a weighting matrix based on 
Kolmogorov statistics is approximately equivalent to penalizing the Laplacian (curvature) 
of the input. In matrix form, this approximation can be written as: 
     1 α−Λ ≈ T

uu C C      (3.40) 
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where α is again made to be a tunable regularization factor and matrix C is the 
convolution matrix form of the finite impulse response (FIR) filter approximation of the 
two-dimentional Laplacian operator. As specified in my paper90, I first implemented the 
more common Laplacian filter which is specified by the convolution mask: 

     

0 1 0
1

1 4 1
8

0 1 0

 
 − 
  

     (3.41) 

A better alternative can be obtained using concepts from image processing. Consider the 
standard one-dimensional Laplacian filter: 

     ( )11
( ) 2

4
H z z z−= − +     (3.42) 

where the z-transform variable applies to the spatial domain here. Next, apply the 
McClellan transformation to this one-dimensional design in order to get the two-
dimension equivalent. The resultant filter is specified by the convolution mask: 

     

0.0625 0.125 0.0625

0.125 0.75 0.125

0.0625 0.125 0.0625

 
 − 
  

   (3.43) 

The advantages afforded by this filter over the more common design (Equation 3.41) are 
best illustrated by comparing the shape of their frequency responses (Figure 3.9). The 
alternative filter design clearly has much more circular uniform frequency response 
which is a desirable property if we want the same filter applied in all directions: an 
assumption that is implicit in the “turbulence” model (Equation 3.36) assumes. 
 

 
Figure 3.9: Frequency response of the (a) common two-dimensional Laplacian filter 
design (Equation 3.41) and (b) an alternative design obtained via a McClellan 
transformation of the standard one-dimensional Laplacian filter (Equation 3.43) 
 
 It is now more evident as to why the statistically weighted wavefront 
reconstructor, in its current form, is not closed loop stable. Analogous to the LQR design, 
while the weighting matrix for the state, e(k), is only required to be positive semi-
definite, the weighting matrix on the input is required to be strictly positive-definite to 
keep the input bounded. Unfortunately, the weighting matrix CTC does not satisfy this 
requirement because the nullspace of the Laplacian operator C is spanned by piston, tilt 
and tip (Figure 3.10). This should be quite obvious because differentiating any one of 

(a) (b) 
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these three modes twice will result in zero. Therefore, these three unobservable modes 
must be penalized explicitly by modifying our cost functional: 

   1 11 1
( ( )) ( ) ( ) ( ) ( )

2 2
J k k k k k− − = Λ + Λ + 

T T T
vv uuu e e u VV u  (3.44) 

where piston, tile and tip make up the columns of matrix V. By minimizing this new cost 
function with respect to u(k), we finally arrive at an implementation for the statistically 
weighted reconstructor that is also closed loop stable: 

    
11 1 1−− − − = − Λ + Λ + Λ 

T T T
vv uu vvL T T VV T   (3.45) 

Figure 3.8 clearly shows closed loop stability when using this reconstructor which 
penalizes both Kolmogorov statistics and the three unobservable modes. 
 

 
Figure 3.10: From left to right: piston, tilt and tip modes in the control input domain. 
Note the corner actuators are not included in the data 
 
3.3.3 Local waffle penalty 
In Chapter 2, I talked about global waffle which is a single unobservable mode (Figure 
2.12). Waffling patterns can also be of the local type, and according to reports across a 
variety of AO disciplines, their presence in AO systems is common producing 
undesirable artifacts in the image82, 127-130. Waffle modes are created by driving adjacent 
actuators in opposite directions producing a voltage map resembling a checkerboard 
pattern. Patches of this pattern are often observed when the pseudoinverse reconstructor, 
particularly the truncated SVD method, is used. Since they are not well sensed by the 
wavefront sensor, they can slowly build up in the control loop degrading retinal image 
quality in the process. Some examples of local waffle modes are given in Figure 3.11. 
 Penalizing local waffle modes is almost identical to statistical weighting82. In the 
original design, there is no weighting on the measurement vector e(k) and the weighting 
on the input u(k) is the convolution matrix form of the FIR filter82: 

     
1 1

1 1

− 
 − 

     (3.46) 

which is proportional to the first derivative operator. The cost functional I used to obtain 
the local waffle penalty reconstructor is: 

   
2

2

1 1
( ( )) ( ) ( ) ( )

2 2
J k k k kα = + + 

T T Tu e u F F VV u   (3.47) 

where F is the convolution matrix form of local waffle filter (Equation 3.46) and α is a 
tunable regularization factor. The corresponding reconstructor is given by: 

    
1 1α

− − = − + + Λ 
T T T T

vvL T T F F VV T    (3.48) 
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Matrix V is the same as that used in the statistically weighted reconstructor. Strictly 
speaking, since local waffle is proportional to the first derivative, piston is the only mode 
that needs to be included in V, but empirical tests have revealed that tilt and tip modes 
(Figure 3.10) still tend to accumulate if they are not penalized. Therefore, they are 
included in the current local waffle penalty reconstructor design.  
 

 
Figure 3.11: Localized waffling structure in the input domain 
 
3.3.4 Zernike polynomials 
Lastly, if a finite number of Zernike polynomials can accurately represent the eye’s wave 
aberrations, projecting the input vector u(k) onto a Zernike spanned subspace could 
potentially improve system robustness during less-than-ideal experimental conditions. 
Furthermore, this approach, which is often referred to as modal reconstruction, provides a 
convenient platform for designing custom reconstructors for correcting only a particular 
set of Zernike modes (i.e. defocus, astigmatism, etc.) and leaving all other modes intact. 
This added flexibility would not benefit retinal imaging but could prove to be a useful 
tool in vision testing applications. 
 Recall the Zernike polynomial pyramid given in Chapter 2 (Figure 2.7).An input 
vector defined by the first N Zernike modes (minus piston, tilt and tip) can be written as: 

     
1

3

( ) ( ) ( )
N

i j
j

k c k k
−

=

= =∑u z Zc    (3.49) 

where cj and zj are the jth Zernike coefficient and mode if vectorized form respectively: 
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  (3.50) 

It is worth noting that since we are currently working in the input space, Equation 3.49 is 
fundamentally different from Equation 2.29: 

     
1

0

( , ) ( , )
N

j j
j

x y c Z x yφ
−

=

=∑  

By substituting Equation 3.49 into Equation 3.6: 
     ( ) ( 1) ( )k k k= − +e Tu y    (3.51) 
the resultant expression can be interpreted as an equivalent AO system but with the input 
vector being made up of Zernike coefficients: 
     ( ) ( 1) ( )k k k= − +e TZc y    (3.52) 
Under the same assumptions as the previous reconstructor designs, the Zernike 
polynomial reconstructor is found by minimizing the following cost functional with 
respect to the Zernike coefficient vector c(k): 

     
2 22

2 2
( ( )) ( ) ( )J k k kα= +c e c    (3.53) 



 74 

The optimal open loop estimate of the Zernike coefficient vector is given by: 

    ( ) ( ) ( )ˆ( ) ( )k k
+

 = −
 

T T
c TZ TZ TZ e    (3.54) 

Equation 3.54 is not particularly useful because we are not interested in the Zernike 
coefficients. In order to obtain the final reconstructor, we need to left-multiply both sides 
of Equation 3.54 by matrix Z since: 
     ˆˆ ( ) ( )k k=u Zc      (3.55) 
Therefore, the Zernike polynomial reconstructor is: 

     ( ) ( ) ( )
+

 = −
 

T T
L Z TZ TZ TZ   (3.56) 

It was stated in Chapter 2 regarding curve fitting Zernike polynomials to a sampled 
wavefront that the Zernike polynomials lose their orthonormality when evaluated over a 
discrete grid. The same applies to this Zernike polynomial reconstructor. Since the DM 
grid is even coarser than the wavefront sensor lenslet array, matrix Z here is even more 
ill-conditioned. I have experimentally verified that the Zernike polynomial reconstructor 
in Equation 3.56 is not closed-loop stable in AOSLOII no matter how high the 
regularization factor is set. But when the Gram-Schmidt orthogonalization procedure was 
applied to the columns of matrix Z prior to evaluating Equation 3.56, the resultant 
reconstructor was verified to be closed-loop stable. 

3.4 Discussion 
I have covered both the theory and implementation of the different AO control algorithms 
implemented on AOSLOII. In this section, I discuss some of the specific concerns and 
limitations I have encountered in carrying out this work. A particular topic of interest is 
how different AO controllers compare with each other in terms of performance, so I will 
also discuss the stability and performance of the four wavefront reconstruction algorithms 
in the paragraphs below. The data presented here for the algorithm performance 
comparison are from my paper90.  
 
3.4.1 Interferometry concerns 
Many important concepts and subtleties concerning interferometry, especially PSI 
techniques, are very much beyond my expertise, so I will not be able to address my 
concerns on this topic in detail like the others. Using the current interaction matrix model 
of the AO system, the interferometric measurements were not particularly critical besides 
verifying the ideal bias position/voltage for the DM. However, if we were to start 
exploring the practical application of more advanced models94, 97, 131 of these BMC 
MEMS devices, a more accurate and precise PSI would most definitely be required. 
 As stated earlier, the standard four step phase detection algorithm was used 
because there is a convenient way to test whether or not the phase shift induced by the 
piezo is a quarter-wave (≈ 159 nm). Since we already have one measurement without 
performing a phase shift, only three quarter-wave shifts are needed to obtain the four 
required interferograms. Without much additional effort, a fourth and final shift can be 
added to the routine and the fifth interferogram should ideally be: 

 ( )5 cos 2S a b φ π= + +    (3.57) 
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So S5 should equal S1 since cos(φ + 2π) = cos(φ), but in practice, two such measurements 
would never be exactly equal due to noise and errors in the phase shift which leads to 
what is referred to as detuning error. Since the current PSI setup has no position feedback 
from the piezo actuator, I am particularly concerned with this type of error. My attempt at 
managing detuning error are as follows: 
 
1. Acquire five interferograms using the estimated nominal voltage applied to the piezo 
actuator for phase shifting. 
2. Use the following formula to calculate the average phase shift corresponding to the 
nominal voltages applied: 

     1 5 1

4 2

1
cos

2

S S

S S
δ −  −=  − 

    (3.58) 

3. If the angle is between 80° and 100°, execute phase detection and unwrapping 
calculations. 
 
The criterion for calculating the phase in step 3 may appear to be too tolerant, but the 
success rate for achieving even that kind of precision in open loop is less than 50 percent. 
Recall the deflection versus squared voltage plot given in Figure 3.7, generating the 
dataset for such an analysis extremely difficult with this level of success rate. According 
to Malacara et al.114, the standard four step algorithm is quite sensitive to detuning error. 
A slightly different algorithm, known simply as “four steps in X”114, is not as sensitive 
and may be worth testing, but it is not as straightforward to implement. In any case, I 
would recommend fitting a strain gauge to the piezo actuator for position feedback before 
investigating more advanced DM modeling techniques. 
 
3.4.2 AO loop stability 
The following discussion is mostly from my paper with some minor modifictions90. 
Stability for a closed loop AO system is primarily numerical because other than a single 
time-delay element, the plant model has no temporal dynamics. As mentioned earlier, this 
is because the DM is quasi-static with respect to CCD frame-rate of the wavefront sensor. 
The expression for the residual wavefront gradient (error) dynamics is given by Equation 
3.9 (assuming default values for the integral gain and leak (κ = 1 and m = 0)): 
    [ ]( 1) ( ) ( )k k k+ = + +e I TL e TLv  

The stability for the AO system depends on the eigenvalues of matrix I + TL  assuming 
that it is static. The eigenvalues of I + TL  are less than or equal to one with at least one 
eigenvalue being exactly one which corresponds to the piston mode. In practice, high 
spatial frequency aberration modes that could not be sensed or controlled will also 
behave as if the corresponding closed-loop eigenvalues are one. How the eigenvalues are 
distributed depends of the reconstructor design. In order to investigate convergence and 
steady state error, consider the Lyapunov function candidate: 
     ( ( )) ( ) ( )V k k k= Te e e     (3.59) 
Assuming that the error and noise terms are uncorrelated, substituting the error dynamics 
expression above into Equation 3.59, we get: 

  [ ] [ ] [ ]( ( 1)) ( ) ( ) ( ) ( )V k k k k k+ = + + +T TT Te e I TL I TL e v TL TLv  (3.60) 
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Letting W be the weighting matrix on the input u(k), it can be shown that: 

 [ ]( ( 1)) ( ) ( ) ( ) 2 ( ) ( ) ( )V k k k k k k k + = − + + 
TT T T Te e e e L T T W Le v TL TLv  (3.61) 

Stability would require the difference along the trajectory to be non-positive, that is: 
    ( ( )) ( ( 1)) ( ( )) 0V k V k V k∆ = + − ≤e e e    (3.62) 
By taking the difference between Equations 3.61 and 3.59, we arrive at the desired 
stability criterion: 

  [ ]( ( )) ( ) ( ) ( ) 2 ( ) 0V k k k k k ∆ = − + ≤ 
TT T Te v TL TLv e L T T W Le  (3.63) 

which implies that: 

   [ ]( ) ( ) ( ) 2 ( )k k k k ≤ + 
TT T Tv TL TLv e L T T W Le   (3.64) 

Equation 3.64 is important because it completely summarizes why closed loop AO 
systems, at least how they currently operate, are actually never guaranteed to bring the 
error to zero. The inequality in Equation 3.64 implies that for V(e(k)) to decrease if TTT 
+ 2W is positive definite and that the quadratic form of e(k) on the right of Equation 3.63 
is dominating the quadratic form of v(k) on the left of Equation 3.63. In other words, 
Equation 3.64 specifies a region where V(e(k)) is assured to decrease. But we can do 
ourselves a favor by designing a wavefront reconstructor (L ) that does not 1) amplify 
noise and 2) produce shapes on the DM surface that are difficult to sense. Therefore, in 
less than ideal conditions (i.e. real eyes), we would always expect the statistically 
weighted reconstructor to outperform the other designs considered. 
 If noise is “small”, the stability criterion simplifies to: 
    ( ) 2 ( ) 0k k + ≥ 

T Te L T T W Le  

and the analysis becomes much more definitive. Matrix W should be strictly positive 
definite to keep the input bounded and avoid actuator clipping. For our pseudoinverse and 
Zernike polynomial reconstructor designs, W was proportional to the identity matrix 
(Tikhonov regularization) so positive definiteness is trivial. For the other two 
reconstructor designs, we manually identified specific modes that needed to be explicitly 
penalized in order to establish positive definiteness. It follows immediately that: 

     2 0 + 
TT T W ≻     (3.65) 

which may lead us to believe that ( ( )) 0V k∆ <e  guaranteeing asymptotic stability in the 
absence of noise v(k). However, the wavefront reconstructor L  is a generalized inverse of 
a non-square matrix T that has more rows than columns, so it cannot have full column 
rank. Therefore, we can only guarantee that: 

     
2 0

( ( )) 0V k

 + 

⇒ ∆ ≤

T TL T T W L

e

≻
   (3.66) 

so the system is only stable in the sense of Lyapunov. For the Zernike polynomial 
reconstructor, simply replace the input vector u(k) with the Zernike coefficient vector 
c(k) and the same stability analysis applies. 
 A more thorough stability analysis would require accurate modeling of 
electrostatic actuation coupled with the membrane deformation properties of the DM. A 
mathematical model of the type of MEMS device used in this study has been assessed97. 
It was not adopted for this study because the model’s predicted membrane response did 
not closely match the actual membrane response of our MEMS device. 
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Figure 3.12: Performance based on the estimated RMS wavefront error 
 
3.4.2 Performance comparison 
Performance evaluations based on actual retinal images are carried out by repeatedly 
imaging the same eye but using a different algorithm in each session. This must all be 
done in a single setting to ensure that the imaging conditions between sessions are nearly 
identical. I kept individual imaging sessions short (~20 seconds) and administered them 
only minutes apart to minimize subject fatigue which may bias the comparisons. The 
center of the raster scan was placed approximately 0.4 degrees from the subjects’ 
preferred retinal locus (PRL), and the scan angle was 1°. An obvious image quality 
metric for assessing performance would simply be the RMS wavefront error. I used the 
zonal reconstructor (Equation 2.71) for estimating the residual wavefront for reasons 
given in Chapter 2. Figure 5 shows typical RMS wavefront error trends for correcting a 
healthy eye. What we can immediately observe is that all four trends converges quickly 
to near the best corrected state and more or less remained there until the end of each 
imaging session. Does this mean that all four wavefront reconstructors performed equally 
well? The acquired images of the retina (Figure 3.13) do not seem to support this claim. 
Figure 3.13b is noticeably brighter and sharper than Figure 3.13a, but according to the 
RMS wavefront error, they were acquired under more or less the same optical conditions. 
Although not directly verifiable, I attribute this observation to the presence of certain 
aberration profiles from either the DM or the eye can lie beyond the sampling capabilities 
of the Shack-Hartmann sensor. 
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• Local waffle penalty 
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Figure 3.13: AOSLOII images for a healthy eye acquired at the exact same retinal 
location using (a) the Zernike polynomial reconstructor and (b) the statistically weighted 
reconstructor. Images are about 0.8° by 0.8° (0.25 mm by 0.25 mm) with the foveal 
center at approximately the bottom right corners. 
 
 The pixel values in an AOSLO image are more direct indicators of retinal image 
quality for reasons tied to the image formation process of a confocal system including 
SLO. In an AOSLO, a spot of light is raster scanned on the retina and the reflected light 
gets descanned on the way back, since light travels much faster than the speed of the 
scanning mirrors, and eventually reaching a point detector (the PMT in Figure 1.9). So 
only a small area on the retina is illuminated and detected at a particular moment in time. 
The final retinal image is actually constructed pixel by pixel from light detected at 
different time points. Ignoring the uncommon path errors, the irradiance PSF of this 
double-pass process evaluated at the plane of the confocal pinhole is given by the 
autocorrelation of the single-pass irradiance PSF22, 42: 

   ( , ) ( ', ') ( ' , ' ) ' 'double passS x y S x y S x x y y dx dy
∞ ∞

−
−∞ −∞

= + +∫ ∫   (3.67) 

The PMT detects the total irradiance transmitted by the pinhole, so a particular pixel 
value of a retinal image is always proportional to the transmitted irradiance 
corresponding point in the raster scan42. Mathematically, the value of the j th pixel in an 
image is given by: 

    ( , )j double pass
t

I S x y dxdy−Σ
∝ ∫    (3.68) 

where the actual temporal integration time of the PMT can be estimated from the support 
of the retinal image (512 by 512) and the imaging frame-rate (30 Hz). Minimizing the 
residual wavefront error using AO condenses the spatial spread of the double-pass PSF, 
so more irradiance is transmitted through the confocal pinhole and increasing the pixel 
value. In other words, a brighter image is a better image and that was clearly illustrated in 
Figure 3.13. Obviously, looking at individual pixel values would be mostly meaningless 
as the eye is always moving, but the mean pixel value of the image should be a robust 
indicator of relative image brightness and quality. Figure 3.14 plots the mean pixel values 
as functions of time for the same eye whose RMS wavefront error and retinal image were 
given in Figures 3.12 and 3.13. Based on this image quality metric, it becomes clear that 

(a) (b) 
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the statistically weighted reconstructor provides superior image quality. This result has 
been verified to be consistent for two other eyes (two subjects) tested. 

 
Figure 3.14: Performance based on the mean pixel values of the retinal images 
 
 I should mention that we have upgraded both software and hardware components 
of the AO controller for AOSLOII since acquiring the data presented in this subsection. 
As stated in the introduction, we are now running a higher stroke MEMS DM with higher 
step resolution driver electronics. These upgrades should only improve AO performance 
independent of the control algorithm, so there is little reason to believe that the relative 
performance among the different reconstructor designs should change. Since the 
statistically weighted reconstructor should theoretically calculate a better correction, its 
performance with respect to other reconstructor designs should only improve with these 
system upgrades. Furthermore, the original implementation of the statistically weighted 
reconstructor is, in principle, inferior to the version currently implemented as the inverse 
noise covariance matrix was assumed to be proportional to identity and the more 
common Laplacian filter mask (Equation 3.41) was used to approximate the inverse input 
convariance matrix. Based on the comparisons already conducted and the increased 
number of high quality images of the foveal cone mosaic that we have been able to 
acquire, I believe it is not really necessary to continue testing whether or not the 
statistically weighted reconstructor design is superior to the other reconstructors 
considered in this study. In my opinion, more effort should probably be spent on 
improving optimal reconstructor designs and their flexibility (i.e. changes in pupil size 
and shape) as well as developing more sophisticated DM models. 

3.5 Conclusions 
Improving the AO control system has yielded quantifiable improvements in retinal image 
quality. The (near) linearity observed between the DM surface deflection and squared 
voltage should be exploited for controlling BMC MEMS devices. Stability analysis of the 
standard integrator AO control law revealed that under the presence of noise, the 
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wavefront reconstructor dictates system behavior. Since, the statistically weighted 
reconstructor is designed to respond less to noisier measurements while penalizes high 
frequency DM modes, it proved to be superior to the standard pseudoinverse 
reconstructor (“direct-slope control”) and the two other reconstructor designs tested (local 
waffle penalty and Zernike polynomials). 
 Two quantitative image quality metrics were used to evaluate the performance of 
the control algorithms: 1) RMS residual wavefront error and the 2) mean pixel value of 
the acquired retinal image. Even though the four reconstructors under integral control 
performed similarly according to the computed RMS wavefront error, they did not all 
produce retinal images of similar quality. The mean pixel value is a more sensitive 
indicator of retinal image quality because it is directly related to the double-pass PSF. 
This important limitation regarding the use of the computed RMS wavefront error to 
characterize AO system performance should be strongly emphasized. 
 These improvements have also allowed us to resolve the highest density foveolar 
cones in normal, healthy eyes. Figure 3.15 gives a particular example of such, and several 
more will be given in the following chapter. Although the current lateral resolution of the 
AOSLO is sufficient for resolving the smallest foveal cones, it is still unable to do so for 
all eyes. This is most likely due to the amount of residual aberrations being subject 
dependent. One reason why this might be the case is because the statistically weighted 
reconstructor is currently optimized for only a 6 mm diameter pupil. This poses a 
problem when imaging certain high myopes when the minifying effect of a high minus 
power lens is placed in front of the eye to bring the initial aberration magnitude to within 
correctable range. In addition, the assumed input statistics are that which approximates a 
Kolmogorov power spectrum122. Therefore, AO performance will depend on how well 
the aberration profile for a particular eye is approximated by this model.  
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Figure 3.15: (a) Image of the cone mosaic at the very center of the fovea of a young (23 
yrs), healthy emmetrope and (b) its corresponding cone density topographic map 
expressed in cones per square mm. The image is about 1° by 1° which for this particular 
subject converts to 288 µm by 288 µm. 
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4. Retinal imaging applications: cone density, foveal 
fixation and eye length 

4.1 Introduction 
The research described in the Chapters 2 and 3 was technical but marks some of the first 
work done on improving AO control systems for vision science applications. This chapter 
covers the scientific contributions of my dissertation: 1) the relationship between foveal 
fixation and cone density; and 2) inter-subject variability of foveal cone density in 
relation to axial length. Some basic but important refinements to estimating retinal 
feature size and cone density, which were applied to address these two goals, are also 
described in this chapter. The experiments were conducted in parallel with the 
developments in wavefront measurement and control described in the earlier chapters, 
and this partially explains why our retinal image dataset was not particularly consistent in 
quality. Nevertheless, I was able to image the foveal cone mosaics of more than 20 eyes 
with AOSLOII. As I mentioned earlier, to avoid potential bias, only 18 eyes (18 subjects) 
were included in the investigations detailed in this chapter. To my knowledge, this is the 
largest sample size in any AO related study to date. Most of the work in this chapter has 
recently been accepted for publication in Investigative Ophthalmology & Visual Science. 
 
4.1.1 Fixation 
In an AOSLO, a live video of the retina is recorded by a laser raster scan (Figure 4.1a), 
and the subject sees the raster scan pattern (Figure 4.1b). Therefore, an arbitrary stimulus 
pattern can be generated by turning the laser on and off between frames at appropriate 
moments of each raster scan132. In the Figure 4.1 example, this pattern was a blinking 
rectangle (≈ 0.1° wide) that served as a fixation stimulus. In measuring fixation events, an 
AOSLO has the advantage over other modalities, such as flood-illuminated cameras2, for 
being able to isolate precise locations on the retina used for fixation. Any potential 
alignment or timing error is eliminated because the fixation target is generated as part of 
the image formation process132. In fact, the only additional tool required is a simple 
image segmentation algorithm to extract the position (average) of the black rectangle 
from a series of raw frames. 
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Figure 4.1: (a) Live image of the cone mosaic seen by the observer and (b) the 
corresponding laser scan pattern that the subject viewing through AOSLOII sees during 
an imaging session 
 
4.2.2 Myopia 
Myopia is most often due to elongation of the vitreous chamber rather than to changes in 
the cornea and lens. This is evidence by high correlations between axial length and 
refractive error reported in previous studies133-141. Reported complications that have been 
associated with myopia include lower best-corrected acuity133, 134, 136, 142, reduced contrast 
sensitivity143, 144, slower and/or inaccurate accommodation137, 145, 146, and object aspect 
ratio misperception147. Retinal stretch may be a plausible explanation for some of these 
observations because a longer eye would require the same number of photoreceptors in 
the retina to tile over a larger surface area, an idea supported by cone density 
measurements from 1 to 2 mm eccentricity.135 Although it may seem natural to 
extrapolate such findings into the foveal center, a study based on experimentally induced 
myopia in marmosets has shown that the opposite occurs as the longer, myopic eyes 
actually had significantly higher retinal cone density (cones/mm2) than emmetropic 
eyes148. Therefore, the fact that the most dramatic changes in cone density distribution 
occur in the fovea begs for a more rigorous treatment of the matter. 

In studies where eye length is an important variable, extra care needs to be taken 
when reporting cone density or spacing as a function of eccentricity because eye length 
directly affects the conversion between angular and retinal units. For example, a recent 
study reported a decrease in retinal cone density with increasing axial length at 2° 
eccentricity139. Whether or not their measurements supported the retinal stretch 
hypothesis, however, remains unknown because 2° eccentricity corresponded to retinal 
eccentricities of 0.56 and 0.72 mm away from the foveal center for the shortest and 
longest eyes included in that study. According to anatomic measurements provided by 
Curcio et al.28, cone density was about 34,000 and 24,000 cones/mm2 at 0.56 and 0.73 
mm eccentricity respectively. In the extreme case where retinal cone density as a function 
of retinal eccentricity is preserved during eye growth, one would still expect to find a 
difference of about 10,000 cones/mm2 due to how a particular angular eccentricity 
converts to different retinal eccentricities when eye lengths are not equal. For clarity, we 

(a) (b) 
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presented our results in both angular and retinal units and discussed the visual and 
anatomical implications associated with each approach. 

 
4.1.3 Acuity 
Since foveal cones are not easily accessible in the living human eye, investigations 
concerning cone spacing and myopia have generally been inferred from visual acuity 
measurements. A review of the main literature on this topic will reveal that myopes 
perform similarly or a little worse than emmetropes when refractive error is corrected 
near the pupil (i.e. contact lenses, refractive surgery, etc.), while they almost always 
perform worse with a spectacle correction due the associated minifying effects133, 134, 136, 

142, 149, 150. Since myopes generally have higher retinal magnification due to their eye 
length, a likely explanation has been that myopes may have increased cone spacing due 
to retinal stretch. Alternatively, in studies where refractive error was corrected using 
spectacles and contact lenses, performance may have been compromised by optical 
factors such as scatter or high order aberrations133, 136. Optical complications are 
minimized when testing acuity with grating patterns generated with laser interference134, 

151. Using this method, the level of myopia no longer seemed to affect acuity at the fovea. 
However, the higher retinal magnification factor (RMF) afforded by a longer eye would 
predict that myopes should actually perform better than emmetropes if their retinal cone 
densities were similar. Therefore, results from these two studies still support the idea that 
foveal cones become more widely spaced as myopia progresses134, 151. More recently in 
our lab, Rossi et al. used AOSLOI to test AO corrected visual acuity in emmetropes and 
low myopes (less than 4 diopters of myopia) and found that the low myope group 
performed significantly worse than the emmetrope group. However, there was still a 
distinct possibility that the AO correction was worse for the low myope group than for 
the emmetrope group because AOSLOI employs a 37 channel DM and ran a static 
correction at that time. Therefore, actual images of foveal cone mosaics for a group of 
individuals with different refractive errors (or axial lengths) are needed to help answer 
whether or not cones become physically more widely spaced as myopia progresses. 

4.2 Methods 
Prior to each experiment, informed consent was obtained from the subject after we 
explained the nature and complications of the study. Eighteen eyes from 18 healthy (not 
including refractive error) subjects, between the ages of 23 to 43 years, participated in the 
study (Table 4.1). A self-report questionnaire regarding basic health history was part of 
the subject recruitment process to ensure that only persons with no signs of ocular health 
problems were included in the study. The distinction between axial and refractive myopia 
was not made. Subjects who have smaller natural pupil sizes (< 6 mm diameter) were 
administered with 2.5 percent phenylephrine and 1 percent tropicamide prior to AOSLO 
imaging. Retinas were imaged from approximately the preferred retinal locus (PRL) to 
just beyond 1° eccentricity. Retinal imaging procedure and computations required to 
obtain the measurements used in this study are explained below. 
 
4.2.1 Retinal imaging 
All imaging was done using AOSLOII with 840 nm light. Most of the subjects were 
imaged before I upgraded to the current DM which is a BMC MEMS device with a 5.5 
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µm advertised stroke. The previous DM was also a BMC MEMS device but the slightly 
lower (3.5 µm) stroke model. I installed the high step resolution (14-bit) driver for the 
DM much earlier in the study (May, 2009), so almost half of our subjects were imaged 
using this new driver. The current default controller is the statistically weighted 
reconstructor under integral control while the local waffle penalty reconstructor was used 
in the earliest experiments. Eye alignment to the optical path and head stabilization were 
achieved via a chin rest and temple supports mounted on a three-axis stage. The scan 
field was about 0.9° by 0.9°. Since the fixation target is part of the acquired image, 
fixation locations are recorded to simultaneously track each subject’s fixation pattern132. 
The average fixation location on the retina was defined as the PRL. The acquired retinal 
videos were first manually reviewed frame-by-frame for poor quality frames that may be 
caused by several factors (i.e. inaccurate wavefront measurement and/or correction, blink, 
tear film breakup, etc.). These frames were deleted prior to image post-processing. 
 
Table 4.1: Subjects 
 Eye Gender Age 

(yrs) 
Axial length 

(mm) 
Spherical equivalent 

refraction (D) 
RMF 

(µm/deg) 
1 OD F 31 22.86 0 272.20 
2* OD M 29 22.87 0.5 270.68 
3 OD F 31 23.40 -1.5 278.75 
4 OS M 42 23.50 0 280.47 
5 OD M 30 23.51 0 281.47 
6‡ OD F 24 24.08 0 288.41 
7* OS M 43 24.18 0 288.49 
8 OD F 38 24.48 0 298.59 
9† OS M 31 24.49 -0.75 298.61 
10 OD F 23 24.54 -3.5 298.98 
11 OS M 36 25.00 -2.5 305.06 
12 OD M 43 25.37 -2.25 310.81 
13‡ OD F 23 25.61 -5.5 316.58 
14‡ OS F 23 25.73 -5.25 320.07 
15‡ OD F 25 26.85 -6.75 335.61 
16 OD M 24 27.05 -7 341.68 
17† OD M 34 27.46 -4.5 348.84 
18 OD M 23 28.31 -11 362.32 
* No cycloplegia administered 
† Inaccurate anterior chamber depth (ACD) measurement. The ACD value from 
Gullstrand model eye (3.585 mm) was used 
‡ Entire cone mosaic resolved 
 
4.2.2 Image processing and analysis 
Due to eye movements during recording and the use of a resonant scanner for the 
horizontal scanning mirror of AOSLOII, the raw retinal videos contain distortions that 
must be corrected. The sinusoidal and eye motion artifacts were corrected using custom 
image registration software developed by collaborators152, 153. I did not take any part in 
the development of algorithms for registering AOSLO images. The retinal features in the 
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frames of registered videos are almost perfectly aligned, so the co-registered frames can 
be stacked and averaged to produce a high signal-to-noise image. These steps were then 
repeated for each acquired video, and the resultant images were stitched together in 
Photoshop (Adobe Systems Inc., Mountain View, CA) to create a larger montage image 
of the foveal cone mosaic. 
 In making noninvasive measurements of the human cone mosaic, the task of 
labeling individual cones is unavoidable We implemented custom software for 
identifying individual cones in the AO retinal images in C++ with calls to several 
MATLAB functions via the MATLAB Runtime Compiler. The interface allows the user 
to manually select individual cones and/or specify a region of interest for automated 
identification154, 155. MATLAB code for the current automated cone identification 
algorithm is given in Appendix B. The automated algorithm that this code implements is 
from our paper154 but has since been updated. A combination of both manual and 
automated methods was employed for analyzing the cone mosaic at and near the foveal 
center because the current version of the automated algorithm still does not perform 
adequately near the foveal center where the cones are the smaller and consequently have 
lower contrast. 
 
4.2.3 Retinal feature size estimation 
The adjusted axial length method coined by Bennett et al.156 is often used to estimate the 
RMF142, 156, 157. This method assumes that the retina and the eye’s back focal plane 
coincide, which is not the case in myopia. Since visual angle is defined with respect to 
the nodal points of the eye, a more reasonable approach would be to locate the second 
nodal point and the resultant retinal image size subtended by the nodal ray (Figure 4.2). 
We specified a custom four surface model eye for each subject to carry out this 
calculation. The anterior radius of curvature of the cornea (r1), anterior chamber depth 
(ACD) and axial length were measured using an IOLMaster (Carl Zeiss Meditec, Jena, 
Germany). For the cornea, we chose a fixed thickness and refractive index of 0.535 mm 
and 1.38 respectively158, 159. The corneal thickness was subtracted from the measured 
ACD to obtain the anatomical ACD (distance from the posterior cornea to the anterior 
lens). The posterior radius of curvature of the cornea (r2) was taken to be 0.8831r1

160. The 
Gullstrand schematic eye was used to approximate lens thickness and refractive indices 
of the aqueous, lens and vitreous. 
 

 



 87 

 
Figure 4.2: Schematic eye illustrating the relationship between visual angle, θ, and the 
retinal image size h 
 
 The location of the secondary nodal point was estimated for each eye via a 
paraxial ray trace161. Once determined, retinal image size is related to visual angle by the 
equation: 
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where h is retinal image size, x is axial length, 2AN  is the distance from the apex of the 
cornea to the eye’s second nodal point and θ is visual angle. The MATLAB code for 
calculating the RMF this way is given in Appendix B. Another magnification factor must 
be applied (multiplied) to Equation 4.1 when wavefront correction is aided with trial 
lenses. For example, a negative powered lens placed in front of the eye decreases the 
AOSLO’s scan angle so the resultant retinal image size will be smaller. This 
magnification factor is given by the thin lens formula: 
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where P is the power of the trial lens, d is the spectacle vertex distance and y is the 
distance from the corneal apex to the entrance pupil. A fixed value of 14 mm was used 
for d for all subjects. The location of the entrance pupil was estimated from the ACD and 
the corneal radii of curvatures (r1 and r2). 
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Figure 4.3: (a) A 0.5° × 1.0° (144 µm × 288 µm) section of a cone mosaic for subject 6 
with identified cone locations. The foveal center is at the bottom right corner of the 
image. (b) Result after taking the distance transform of the (x, y) cone locations. (c) 
Voronoi tiles generated using the watershed transform. 
 
4.2.4 Cone density estimation 
Computations for estimating cone density were carried out using the MATLAB Image 
Processing Toolbox (IPT). The procedure used for estimating density from a list of x, y 
locations was adapted from several earlier studies where a fixed sampling window with 
an approximate area of 1300 µm2 is scanned across the image to compute the mean 
density at each sampled location.2, 28, 154 Using this window size, the peak cone density 
averaged across the reported normal eye data is about 201,000 cones/mm2.2, 28 Due to 

(a) 

(b) 

(c) 
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relatively higher cone density gradients near the foveal center, a fixed window size will 
result in erroneous density estimates due to averaging over a variable number of cones at 
different locations. We addressed this issue by adopting an adaptive sampling window 
where the window size is adjusted to contain a constant number of cones instead. The 
constant was set to 150, which is approximately the expected number of cones in a 1300 
µm2 sampling window based on published peak density values2, 3, 29. 
 Cone density is often calculated by dividing the number of cones recorded in the 
sampling window area. This method assumes a uniform density distribution within the 
sampling window and will underestimate density if the sampling window overlaps 
regions of missing data (i.e. image border). These limitations have motivated the 
adoption of what is known as Voronoi local density analysis162-164. Figure 4.3 illustrates 
several steps in this computation procedure. After identifying individual cones in an 
image (Fig. 4.3a), the resultant coordinates are used to construct a binary mosaic that is 
all zeros except at pixels corresponding to the cone centers. The nearest-neighbor 
distance calculations are applied to the resultant binary mosaic using the IPT function 
bwdist.m. Voronoi tiles (Fig. 4.3c) are generated from the resultant “distance” image 
(Fig. 4.3b) using the watershed transform (watershed.m), and tiles containing pixels on 
the image border are removed. Finally, a raw density value is calculated at each cone 
location by inverting the area of the corresponding Voronoi tile: 
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where A(T(x,y)) and P(T(x,y)) are the area and perimeter of the Voronoi tile T(x,y). 
Inclusion of the perimeter adjusts for the single pixel wide boundary that separates all 
adjacent Voronoi tiles. Raw density values of d(x,y) were first scaled by the calibrated 
imaging field size to obtain angular density (cones/deg2) and then once more with the 
appropriate RMF to obtain the retinal density (cones/mm2). The cone density value 
reported at each particular cone location is taken as the mean of the local density 
estimates within its associated sampling window. 
 We estimated the center of the anatomical fovea with the location of peak cone 
photoreceptor density. The two-dimensional sequence d(x,y) was linearly interpolated to 
generate a cone density topography map for each eye. The location of peak cone density 
was determined from each topography map by a center of mass calculation: average of 
the centroid locations for regions enclosed by the first six iso-density contour lines 
(contour levels are separated by 5,000 cones/mm2)2, 3. This method was adopted because 
it provides a systematic approach for estimating the peak density location when it is 
obviously located within the region where the cones were not resolved. This method was 
also applied to images without such a region because errors due to cone mislabeling and 
digital artifacts can produce spike-like protrusions with artificially high values anywhere 
across the topography map. Representative cone density measurements at particular 
eccentricities were computed by circular averaging of density estimates around all 
meridians. Center-to-center cone spacing s(x,y) was calculated from density by assuming 
that cones are arranged in a perfect hexagonal lattice leading to an exact relationship 
between cone density and spacing: 
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Figure 4.4: (a) Axial length plotted as a function of the spherical equivalent spectacle 
refraction with the solid line being a linear regression to the data. (b) Calculated retinal 
magnification factor (RMF) plotted as a function of the spherical equivalent spectacle 
refraction. Equation 4.1 was used directly to compute RMF for the uncorrected case 
(filled circles), while the spectacle corrected RMF values (open circles) were obtained by 
multiplying the uncorrected RMF values by the corresponding spectacle magnifications 
calculated using Equation 4.2. Lines are linear regressions to the data, and the decrease in 
RMF with less refractive error was significant (P < .05) for both the corrected and 
uncorrected cases. 

4.3 Results  
Axial length is plotted against the spherical equivalent refraction in Figure 4.4a 
confirming once more that refractive error is primarily due to changes in the length of the 
eye rather than the optics. Therefore, individuals with different eye lengths will have 
different size retinal images even when viewing the same scene at the same distance 
away. Quantitatively speaking, this is just due to differences in RMF (Equation 4.1) 
which is also plotted against the spherical equivalent refraction (Figure 4.4b). The trend 
observed for both the corrected and uncorrected RMF in relation refractive error are in 
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close agreement with those reported in Coletta and Watson134. Stable AO performance, 
even in the cases without cycloplegia, was achieved without build-up of unobservable 
deformable mirror modes (i.e. local waffling82). Referring to what I discussed in Chapter 
3, a low computed wavefront error did not always correspond to similar retinal image 
quality. Even though AO performance appeared to be excellent most of the time, we only 
successfully resolved the entire foveal cone mosaic for four eyes. Figure 4.5 is an 
example such an image covering about 2° across the foveal center. For the other subjects, 
the hexagonal packing structure of the cone mosaic gradually faded toward the foveal 
center forming a region with an undesired speckle-like appearance which we do not 
believe to correspond to individual cone photoreceptors. This region extended to at most 
0.03 mm eccentricity for the majority of the eyes imaged but went out as far as 0.10 mm 
eccentricity for one individual. 
 

 
Figure 4.5: 1° by 2° (320 µm by 640 µm) foveal cone mosaic centered about the PRL 
(white x) for subject 13 (see Table 4.1). Fixation locations are represented by the small 
black dots, and the white ellipses correspond to one and two standard deviations of the 
fixation points. The PRL is displaced about 9.5 arcmin (50 µm) from the foveal center 
(white spot). 
 
4.3.1 Foveal fixation and cone density topography 
Foveal fixation events were analyzed in much of the same way as described by Putnam et 
al.2 with the exception that the principal components of each set of fixation points were 
first computed to estimate the orientation of the distribution. In some cases, the principal 
components (semi-major and semi-minor axes) are nearly parallel to the coordinate axes 
(Figure 4.5), but a distribution such as the one shown in Figure 4.6 is more accurately 
described by a Gaussian function that is rotated by 143° from the horizontal axis. The 
standard deviation of fixation along the semi-major axis varied from 1.75 to 5.42 arcmin 
(7.89 to 29.81 µm) with the mean at 3.61 arcmin (18.74 µm). Fixation along the semi-
minor axis had a significantly lower standard deviation (P < .01) ranging only from 1.19 
to 3.88 arcmin (5.72 to 20.47 µm) indicating that angular distribution of foveal fixation is 
generally not uniform. Both sets of standard deviations are listed in Table 4.2. Fixation 
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points along both axes were verified to be normally distributed (Kolmogorov-Smirnov 
test, P > .05) for nearly all recordings; the exceptions being subjects 2 and 13 along the 
semi-minor axes and subject 1 and 16 along the semi-major axes. Interestingly, according 
to Table 4.2, the PRL was located superior to the point of peak cone density in all but two 
eyes (subjects 2 and 7). 
 

 
Figure 4.6: 1° by 1° (336 µm by 336 µm) cone mosaic centered about the PRL (white x). 
Fixation locations are represented by the small black dots, and the white dot marks the 
location of the anatomical foveal center. The semi-major axis angle for the distribution of 
fixations is about 143°. The PRL is displaced about 3.9 arcmin (22 µm) from the foveal 
center. 
 
 Figure 4.7 displays several topography maps with iso-density contour lines. PRLs 
and foveal centers are denoted by the white dots and x’s respectively. Zero contour levels 
are regions where cones were not reliably identified or areas beyond the image support. 
Displacements between PRLs and foveal centers ranged from 2.98 µm (0.58 arcmin) to 
92.29 µm (18.55 arcmin) with an average displacement of about 34 µm (5.62 arcmin) 
which is on average lower than the estimates given in Putnam et al 2 measured with a 
flood-illuminated AO ophthalmoscope. Table 4.2 lists the measured displacements for all 
subjects. A series of location tests on the PRLs, based on our estimates of the fixation 
variances described above, revealed that the PRL deviates significantly from the foveal 
center for all but one individual (T-test, two-tailed, P < .001). This can be qualitatively 
appreciated in Figure 5 by observing that the PRL generally deviates substantially from 
the center of mass of the corresponding contour map. 
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Table 4.2: Peak cone density and foveal fixation (T – temporal, S – superior, N – nasal 
and I – inferior). Subjects are listed in the same order as in Table 1. Standard deviations 
are from Gaussian fits to each set of fixation locations. 
 Peak density 

(cones/mm2) 
Semi-major 
axis std. dev. 
[arcmin (µm)] 

Semi-minor 
axis std dev. 

[arcmin (µm)] 

Deviation of PRL from the point of 
peak cone density [arcmin (µm)] 

1 - 2.31 (10.5) 1.20 (5.4) 2.97 (13.5) N 6.94 (31.5) S 
2 - 1.75 (7.9) 1.64 (7.4) 2.43 (11.0) T 1.78 (8.0) I 
3 - 3.74 (17.4) 2.72 (12.6) 2.00 (9.3) N  7.51 (34.9) S 
4 - 2.11 (9.9) 1.28 (6.0) 5.81 (27.2) N 6.08 (28.4 S 
5 - 4.59 (21.5) 2.55 (12.0) 0.79 (3.7) T 5.62 (26.4) S 
6 167,730 2.91 (14.0) 1.54 (7.4) 2.50 (12.0) T 1.62 (7.8) S 
7 - 3.36 (16.2) 1.19 (5.7) 1.93 (9.3) N 7.96 (38.3) I 
8 - 4.66 (23.2) 1.75 (8.7) 10.54 (52.5)T 15.26 (75.9)S 
9 - 4.00 (19.9) 2.25 (11.2) 1.40 (7.0) N 6.51 (32.4) S 
10 - 3.10 (15.5) 2.79 (13.9) 2.89 (14.4) T 1.98 (9.9) S 
11 - 3.00 (15.3) 1.32 (6.7) 2.07 (10.5) N 0.94 (4.8) S 
12* - 3.42 (17.8) 1.63 (8.4) 0.54 (2.8) N 0.21 (1.1) S 
13 116,217 5.42 (28.6) 3.88 (20.5) 2.73 (14.5) N 14.11 (74.5) S 
14 167,984 4.83 (25.8) 2.51 (13.4) 3.16 (16.9) N 8.92 (47.6) S 
15 149,719 5.33 (29.8) 1.95 (10.9) 2.71 (15.2) T 2.76 (15.4) S 
16 - 2.85 (16.2) 2.65 (15.1) 5.07 (28.9) T 1.78 (10.1) S 
17 - 4.35 (25.3) 2.38 (13.8) 0.90 (5.2) T 1.14 (6.6) S 
18 - 3.19 (19.3) 2.23 (13.5) 1.62 (9.8) T 9.37 (56.6) S 
* PRL was not significantly different from the estimated foveal center 
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Figure 4.7: Examples of cone density topography maps. All maps are oriented as 
indicated on the top-left panel (T – temporal, S – superior, N – nasal and I – inferior). 
Locations of the foveal center and the PRL are indicated by the white dots and x’s 
respectivity. The size of each map is 0.6 by 0.6 mm and consecutive contour lines are 
separated by 5,000 cones/mm2. The dark blue areas include both the central foveal region 
in some eyes where cones could not be resolved and regions outside of the support of the 
acquired retinal images. 
 
4.3.2 Inter-subject cone density variability 
Retinal cone density is plotted against retinal eccentricity in Figure 4.8 with zero 
eccentricity defined at the foveal center. In the four eyes where all the foveal cones were 
resolved, the peak retinal cone density ranged from 123,842 to 167,730 cones/mm2 
(Table 4.2) which all fall within reported values despite subtle differences in the 
calculation procedure used in different studies2, 3, 28. The corresponding minimum center-
to-center cone spacing estimates are 2.62, 3.05, 2.77 and 2.79 µm. Individual cones were 
resolved in most eyes beginning at about 0.03 mm eccentricity. On average, retinal cone 
density decreased from 151,008 to 57,312 cones/mm2 from 0.03 to 0.30 mm eccentricity. 
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Variability across subjects was highest at 0.03 mm eccentricity and converged to a 
similar range of values beyond 0.2 mm eccentricity. 
 In Figure 4.9, cone density is plotted against axial length at three different retinal 
eccentricities. At 0.10 mm eccentricity, retinal cone density appears to decrease with 
increasing axial length but the effect was not statistically significant (P > .05) . A root-
mean-squared error (RMSE) of 9,114 cones/mm2 is a clear indication that axial length 
does not accurately describe retinal cone density differences near the foveal center. By 
0.30 mm eccentricity however, retinal cone density decreased significantly with 
increasing axial length (P < .05), and the RMSE was reduced nearly threefold to only 
4,406 cones/mm2. Since RMF is higher in longer eyes, angular cone density actually 
increased significantly with axial length at all three retinal eccentricities despite the 
RMSE of the fit being rather high toward the foveal center. As a result, the visual angle 
subtended by an object along the line of sight will generally be sampled by more cones in 
a longer eye despite evidence of myopia induced retinal stretch as close as 0.3 mm from 
the foveal center. 
 

 
Figure 4.8: Retinal cone density as a function of retinal eccentricity. Representative cone 
density measurements at particular eccentricities were computed by circular averaging of 
density estimates around all meridians. The shaded region corresponds to the range of 
foveal cone density values report by Curcio et al.28 
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Figure 4.9: Retinal cone density (a, b & c) and angular cone density (d, e & f) as a 
function of axial length at three different retinal eccentricities. Error bars represent one 
standard deviation in the spread of cone density values at the specified eccentricities. 
Lines are weighted least squares linear regressions to the data. 
 

 
Figure 4.10: Retinal cone density (a, b & c) and angular cone density (d, e & f) as a 
function of axial length at three different angular eccentricities. Error bars represent one 
standard deviation in the spread of cone density values at the specified eccentricities. 
Lines are weighted least squares linear regressions to the data. 
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4.3.3 Foveal cone density and visual acuity 
For the purpose of facilitating a comparison between our anatomical measurements and 
visual acuity, we also analyzed the cone density data at specific angular eccentricities. 
Figure 4.10 shows that retinal cone density decreased with increasing axial length at a 
higher rate than when eccentricity was specified in mm. However, retinal and angular 
eccentricities away from the foveal center have separate meanings when different eye 
sizes are involved. For example, 1° eccentricity converts to a distance of 0.27 mm away 
from the foveal center for our shortest eye and more than 0.36 mm for our longest eye. 
According to our measurements, we would expect a cone density drop of 14,785 
cones/mm2 due to retinal eccentricity differences alone which explains about 52 percent 
of the estimated decrease in Figure 4.10c. The remaining 48 percent is presumably due to 
retinal stretch. An increase in axial length did not seem to have any effect on angular 
cone density (P > .05). In fact, the regression line was nearly flat by 1° eccentricity 
assuring that the visual angle subtended by an object arriving slightly off axis will be 
sampled by similar numbers of cones independent of axial length. Since the PRL can 
deviate substantially from the foveal center, we were actually able to determine cone 
density at the PRL for 10 eyes despite some of the images containing a small region of 
cones that were not resolved. Figure 4.11 plots the retinal cone density against axial 
length at the PRL. Retinal cone density appears to decrease with increasing axial length 
primarily due to a fairly long eye in our study that had particularly low cone density 
values at and near the foveal center, but the standard error was very high (RMSE = 
22,154 cones/mm2), so this effect was statistically insignificant (P > .05). 
 

 

Figure 4.11: Retinal cone density as a function of axial length at the PRL. Solid line is 
linear regression to the data. Regression slope is insignificant (P > .05). 
 
4.4 Discussion 
One of the main purposes of this work was to provide baseline cone density 
measurements from 0 to 0.3 mm eccentricity, a region of the retina that is most important 
for spatial vision, but that has been rarely explored using in vivo imaging methods. With 
improved AO performance, most if not all cone photoreceptors in this central part of the 
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fovea can be resolved. The cone density curves plotted in Figure 4.8 are in close 
agreement with 6 of the 8 retinas presented in Curcio et al.28 It was mentioned as a 
possibility by the investigators that the two retinas with much higher foveal cone density 
than the rest may have been due to tissue shrinkage. It is nonetheless encouraging to find 
that in vivo density measurements are in close agreement with histological data. 
 Recent work by Chui et al.135, 165 stated that diffraction may be the limiting factor 
for the AOSLO for resolving cones near the foveal center. Their resolution assessment 
was based on the Rayleigh criterion for a 6 mm diameter pupil (2.8 µm for an 
emmetropic eye). For the subjects imaged in this study, the Rayleigh criterion would 
predict the resolution limit to be from 2.65 to 3.55 µm depending on eye length. With the 
exception of the two high density foveas reported by Curcio et al.28, the smallest foveal 
cones are at least 2 µm in diameter which is approximately equal to cone spacing in the 
rod-free fovea27-30. But cone size increases rapidly with eccentricity, so that by 150 µm 
from the foveal center, the average cone spacing is greater than 3.5 µm according to 
measurements plotted in Figure 4.8. Since Chui et al.135, 165 were only able to resolve 
individual cones at retinal eccentricities greater than 200 µm in emmetropes, it is unlikely 
that diffraction was the limiting factor in their measurements. Fundamentally, the more 
accurate description of resolution limit is known as the Sparrow criterion which predicts 
a resolving power that is about 22 percent higher than the Rayleigh criterion for a circular 
aperture166-168. In our study, the predicted lateral resolutions for the four eyes were 2.41 
µm, 2.43 µm and 2.55 µm indicating that we were imaging close to the diffraction limit. 
Assuming that size is the only factor that makes foveal cones difficult to image, a 
diffraction limited AOSLO should be able to resolve the entire foveal cone mosaic for 
most eyes. Since this was not the case in the current study, a more robust AO system is 
required to consistently achieve near diffraction-limited image quality. 
 
4.4.1 Peak cone density and fixation 
As mentioned already, the AOSLO has the advantage over flood illuminated AO retinal 
imager for being able to isolate precise locations on the retina used for fixation. 
Nevertheless, our data are consistent with, albeit slightly lower than Putnam et al.2, who 
found that the PRL is displaced from the point of peak cone density. Our measurements 
serve to confirm that the PRL deviates significantly from the foveal center and reinforces 
the importance of clearly defining the location of zero eccentricity whenever one is 
performing eccentricity-dependent measurements. Furthermore, when the angular 
distribution of foveal fixation is not approximately uniform, the horizontal and vertical 
standard deviation or the mean would not accurately describe fixation variability. 
Principal component analysis determines the orientation that accounts for the most 
variability in the data and thus provides a better overall metric for describing fixation 
variability. 
 
4.4.2 Cone density and axial length 
Inside the approximate foveola (0 to 0.2 mm eccentricity26, 28), axial length induced 
retinal stretch could not be verified by cone density measurements alone due to high 
levels of inter-subject variability. Although we were able to measure cone density only as 
close as 0.1 mm eccentricity if all subjects were to be included, we would expect inter-
subject variability to be even greater at the foveal center based on histological data29. 
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However with increasing retinal eccentricity, the tendency for all cone mosaics to 
converge to a state that can be characterized by axial length becomes more apparent as 
observed at 0.3 mm eccentricity (Figure 4.9c). Interestingly, despite the amount of inter-
subject variability near the foveal center, angular cone density actually increased 
significantly with axial length at all retinal eccentricities (Figures 4.9d, 4.9e and 4.9f). In 
the interferometric acuity study by Coletta and Watson134, the investigators generated a 
1° diameter circular grating patch to measure foveal acuity in a group of subjects with 
various axial lengths. According to their results, all subjects performed similarly when 
acuity limits were specified in angular units of spatial frequency (cycles/deg). But based 
on their RMF estimates, the spatial frequency of the grating in retinal units (cycles/mm) 
for their longest eye was only half the rate as that for their shortest eye. Based on our 
measurements, if interferometric acuity at the fovea is indeed limited by cone spacing, 
then one would expect individuals with longer eyes to perform better than those with 
shorter eyes in terms of acuity in angular units (cycles/deg) and perform similarly in 
terms of acuity in retinal units (cycles/mm). This was not the case according to two 
separate studies134, 151, so we can rule out retinal stretch as a possible explanation for why 
foveal interferometric acuity does not improve with increasing level of axial myopia. 
 One rather extreme interpretation of our results is that the density of the foveolar 
cone mosaic is completely unaffected by myopia related eye growth. This seems unlikely 
because the retinal surface expands globally in myopia169, and we have little reason to 
believe that retinal tissue at the foveola is somehow more durable than the rest of the 
retina. A more reasonable interpretation would be that retinal stretch affects the foveolar 
cone mosaic, but a number of other developmental factors primarily govern cone density 
distribution there. A thorough analysis of foveal cone density and packing structure in 
emmetropic retinas, in tandem with other structural measures (i.e. retinal thickness, size 
of the foveal avascular zone and the shape of the foveal depression170), will be necessary 
to identify these potential factors. Nevertheless, because we were only able to estimate 
the peak cone density for four eyes, we still cannot rule out the possibility that peak cone 
density increases with eye growth as seen in experimentally enlarged marmoset eyes148. 
 
4.5 Conclusions 
The lateral resolution achieved with AOSLO is sufficient for resolving the smallest cones 
in the foveola in some eyes and most of the foveal cones in all normal eyes. As a result, 
we are able to perform some of the first analyses on images of foveal cone mosaics 
acquired from the living human retina. AOSLO measurements of foveal fixation verified 
that the PRL deviates significantly from the point of peak cone density in normal eyes. 
Based on cone density distribution alone, myopia induced retinal stretch exists in the 
fovea, but near the foveal center (< 0.3 mm) these dependencies are swamped by other 
sources of inter-subject variability. As a result, relationships between cone density and 
axial length found outside this region cannot be extrapolated to infer trends at the foveal 
center or along the line of sight.  
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Appendix A: Proof of Equation 3.3.4 
Equation 3.3.4 is given by: 

   
1 11 1 1− −− − −   Λ Λ + Λ = Λ + Λ Λ   

T T T T
uu uu vv vv uu vvT T T T T T  

In order to verify that these two expressions are indeed equivalent, we will make use of 
analytical formulae for blockwise matrix inversion which makes heavy use of the Schur 
complement. For bookkeeping purposes, I will assume the matrix dimensions that 
correspond to a 6 mm diameter pupil measured and compensated with the Shack-
Hartmann sensor and BMC DM in AOSLOII6: 
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I will also assume that the covariance matrices Λuu and Λvv are nonsingular (or Equation 
3.3.4 would not make any sense) which is technically not guaranteed in Wavefront 
reconstruction but nevertheless reasonable for the current purpose. First, consider the 
block matrix: 
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The corresponding Schur complements of the upper-right and lower-left partitions are 
defined by: 
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We can obtain a different analytical expression for the inverse of matrix M  depending on 
which Schur complement is used: 
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Since Equations A.3 and A.4 are equal, their respective partitions must also be equal. 
Consider the upper-right partitions: 

   ( ) ( )1 11 1− −− −−Λ ∆ Λ = ∆ −Λ ΛT T
uu uu vv vvT T  

Substituting in the appropriate Schur complements (Equation A.2), we get: 
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and with some trivial rearranging, we get: 
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which is exactly Equation 3.3.4       █ 



 112 

Appendix B: Matlab code 

B.1 Zonal reconstruction matrices for circular pupils 
The following Matlab script generates matrices D and Γ, saving them in a mat file which 
I called “DandG.mat”. Only when the wavefront slope measurements are computed 
(Equation 2.36), vectorized and stacked with the x-slopes on top of the y-slopes can the 
wavefront actually be computed using the Equation 2.71: 

( ) 1
φ̂

−
= Γ Γ + ΓT T TVV Dy  

Generating matrix V is trivial (see Figure 2.12) since it is just a column of ones and 
another column of alternating ones and negative ones, so I will not waste space and time 
to include code for that. The resultant estimated wavefront is a vector, so each entry must 
be moved to the right location in the pupil in order to plot properly. 
 
B.1.1 Main script 
% Adjust these parameters as needed 
PupilDiameter_mm = 6;  % Eye's pupil diameter (mm) 
LensletPitch_um = 328;  % Diameter of subaperture (microns) 
magnification = 0.889;  % Pupil to lenslet array magnification 
 
%% Do not modify any code below this line 
% Generate LensletMatrix 
w = LensletPitch_um/1000; 
MAXCOLS = 2*floor(ri_ratio) + 1;    %Number of lenslets across the pupil 
limit = floor(ri_ratio); 
LensletMatrix = zeros(MAXCOLS); 
CounterInsidePupil = 1;     %lenslet ID number inside pupil 
col=0; 
for x = -limit:1:limit 
    col = col + 1; 
    row = 0; 
    for y = limit:-1:-limit 
        row = row + 1; 
        rad = sqrt(x*x + y*y); 
        if rad <= ri_ratio 
            LensletMatrix(row, col) = CounterInsidePupil; 
            CounterInsidePupil = CounterInsidePupil + 1; 
        end 
    end     
end 
cols = MAXCOLS; 
clear CounterInsidePupil MAXCOLS x y rad row col 
 
% GetDandGMatrices 
N = max(max(LensletMatrix)); 
In = cell(1, cols); %cell of empty identity matrices 
for col = 1 : cols 
    n = GetNumLensletsInColumn(LensletMatrix, col); 
    if(n > 0) 
        In{ n } = eye(n, N); 
        if(n > 1) 
            In{ n-1} = eye(n-1, N); 
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        end 
    end 
end 
 
% x derivative operator (between columns: c1:1 vs 2, c2:2 vs 3, c3:3 vs 4...) 
NonEmptyCols = []; 
for col = 1 : cols 
    n = GetNumLensletsInColumn(LensletMatrix, col); 
    if(n > 0) 
        NonEmptyCols = [NonEmptyCols; [col n]]; 
    end 
end 
Cn    = cell(1, cols-1); 
A = []; 
[firstID neighbourID] = GetFirstLensletIDAndNextNeighbourID(LensletMatrix, 1); 
for i = 1 : length(Cn) 
    col         = NonEmptyCols(i,1);    %column number 
    n           = min(NonEmptyCols(i,2),NonEmptyCols(i+1,2));    %number of lenslets in the column 
    [firstID neighbourID] = GetFirstLensletIDAndNextNeighbourID(LensletMatrix, col); 
    C0 = circshift(- In{ n },[0 , firstID-1]); 
    C1 = circshift(In{ n },[0 , neighbourID-1]);     
    Cn{ i } =  C0 + C1; 
    A = [A; Cn{ i }]; 
end 
 
% Y derivative operator  
Dn    = cell(1, cols); 
B     = []; 
for i = 1 : length(Dn) 
    col         = NonEmptyCols(i,1);    %column number 
    n           = NonEmptyCols(i,2);    %number of lenslets in the column 
    firstID     = GetFirstLensletID(LensletMatrix, col); 
    Dn{ i }       = circshift(In{ n-1 }, [0 ,firstID-1]) - circshift(In{ n-1 }, [0, firstID]);    
    B           = [B; - Dn{ i }]; 
end 
 
% Properly scale the matrices 
G = [A;B]/(LensletPitch_um); %Gradient operator, Hudgin geometry 
D = 0.5*abs(blkdiag(A,B)); %Southwell to Hudgin interpolator 
save('DandG.mat','D','G') 
 
B.1.2 Supplementary functions 
% GetFirstLensletID 
function lensID = GetFirstLensletID(LensletMatrix, col) 
[rows cols] = size(LensletMatrix); 
lensID = 0; 
if(col <= cols)     
    for row = 1 : rows 
       if( LensletMatrix(row,col) > 0) 
           lensID = LensletMatrix(row,col); 
           break; 
       end 
    end 
end 
 
% GetFirstLensletIDAndNextNeighbourID 
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function [firstlensID NeighbourID] = GetFirstLensletIDAndNextNeighbourID(LensletMatrix, col) 
[rows cols] = size(LensletMatrix); 
NeighbourID             = 0; 
firstlensID             = GetFirstLensletID(LensletMatrix, col); 
firstlensIndex          = find(LensletMatrix == firstlensID); 
estimatedNeighbourIndex = firstlensIndex + rows; 
if(estimatedNeighbourIndex <= rows*cols) 
    estimatedNeighbourID    = LensletMatrix(estimatedNeighbourIndex);  
    nextColFirstlensID      = GetFirstLensletID(LensletMatrix, col+1); 
    NeighbourID             = max(estimatedNeighbourID, nextColFirstlensID); 
    if(NeighbourID ~= estimatedNeighbourID) 
        firstlensID = LensletMatrix(find(LensletMatrix == NeighbourID) - rows); 
    end 
end 
 
%GetListNumLensletsInColumnsInPupil 
function NonEmptyCols = GetListNumLensletsInColumnsInPupil(LensletMatrix) 
NonEmptyCols = []; 
[rows cols]     = size(LensletMatrix); 
for col = 1 : cols 
    n = GetNumLensletsInColumn(LensletMatrix, col); 
    if(n > 0) 
        NonEmptyCols = [NonEmptyCols; [col n]]; 
    end 
end 
 
% GetNumLensletsInColumn 
function numLens = GetNumLensletsInColumn(LensletMatrix, col) 
[rows cols] = size(LensletMatrix); 
numLens = 0; 
if(col <= cols)     
    for row = 1 : rows 
       if( LensletMatrix(row,col) > 0) 
           numLens = numLens + 1; 
       end 
    end 
end 

B.2 Automated cone photoreceptor identification 
This Matlab script originated from what was describe in my paper published in the 
Journal of the Optical Society of America A154 which was mainly on an automated cone 
identification algorithm for analyzing AO retinal images. My original routine did not 
perform adequately near the foveal center where the cone mosaic has lower contrast 
(assuming the cones are resolved). Mujat et al.155 added background estimation and 
subtraction steps to supposedly my method, and I have confirmed that these commands 
do indeed result in more accurate cone location estimates. However, while they opted for 
a 2 by 2 median filter, I found that a Gaussian filter does a better job in terms of the 
number of wrongly identified pixels as cone centers. The following function for 
automated cone identification uses a 5 by 5 Gaussian kernel, generated by Matlab 
function fspecial.m, with a standard deviation of 3 pixels which is kept constant for all 
cases. Some Matlab IPT functions are called, so it is needed to run the function. The 
input arguments are a hard threshold for the minimum intensity count that will be 
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considered a cone center and the original grayscale image as a two-dimensional array. 
The output is a binary image that is true at each identified cone center and false 
everywhere else. The total number of cones identified it outputted as well. The 
performance of this simple routine is good overall as one can see in Figure B.1, but there 
are always a few misidentified cones that I manually adjust or remove as sort of a post-
inspection process. 
 

 
Figure B.1: (a) Image of a healthy cone mosaic at about 1° eccentricity and (b) the same 
image with the cone locations identified completely using the automated routine. 
 
function [I no_cones] = auto2(Threshold, im_original) 
 
f = double(im_original); 
[M N] = size(f); 
gauss_filt = fspecial('gaussian',5,3);           %Low pass Gaussian filter 
bg = imfilter(f,gauss_filt,'replicate','conv'); 
f = f - bg;   %Subtract background from the original image 
h = ones(3)/9;   %3 by 3 average filter 
f = imfilter(f, h, 'replicate', 'same'); 
 
%Morphological markers generation 
LocalMins = imregionalmax(f, 4);    %binary: 1s at all local minima 
se = strel('disk', 1, 0);            %Group multiple finds 1 pixel apart 
ConeMark = imdilate(LocalMins, se); 
ConeMark = imclearborder(ConeMark); %Get rid of finds touching ROI border 
[L no_cones] = bwlabel(ConeMark); 
 
Y = zeros(no_cones,1); 
X = Y; 
for ind = 1:no_cones; 
    [y x] = find(L == ind); 
    Y(ind) = sum(y)/length(y); 
    X(ind) = sum(x)/length(x); 
end 
Y = round(Y); 
X = round(X); 
index = sub2ind([M N], Y, X); 
I = false(M,N); 

(a) (b) 
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I(index) = true; 
I(im_original < Threshold) = 0; 
no_cones = sum(sum(double(I))); 
% End of function auto2 

B.3 Retinal magnification factor 
The retinal magnification factor is the scaling factor that relates visual angle subtended 
by some object in the world to the actual size of the image formed by the object on the 
retina. The calculation I requires three arguments which are measurements given by an 
IOLMaster (Carl Zeiss Meditec, Jena, Germany). They are the axial length, front radius 
of curvature of the cornea, and the anterior chamber depth. These three parameters should 
be updated for different eyes assessed. The spectacle power is generally kept at zero 
because it affects the final positions of the nodal points, and the visual angle redefined by 
the presence of spectacle lenses was less important to us. All the other parameters from 
the Gullstrand four-surface eye model except for the corneal thickness and posterior 
radius of curvature (see Chapter 4, section 4.2.3 for details). 
 
% Measurements from the IOLMaster in meters 
x = 24.18e-3;  % Axial length 
r1 = 7.8e-3;  % Front radius of curvature of cornea 
acd = 3.585e-3;  % Anterior chamber depth 
 
P_spec = 0;  % Spectacle power 
 
% Radii of Curvature of the lens specific to Gullstrand mode 
lens_roc_f = 10.2e-3; 
lens_roc_b = -6e-3; 
 
% Refractive indices 
n(1) = 1;   % air 
n(2) = 1.38;  % cornea (Patel et al. 1995) 
n(3) = 1.3374;  % aqueous (Gullstrand) 
n(4) = 1.42;  % lens (Gullstrand) 
n(5) = 1.336;  % vitreous (Gullstrand) 
 
% Thicknesses 
t(1) = 14e-3;  % Distance from spectacle to apex 
t(2) = .535e-3;  % Cornea (Doughty and Zaman, 2000) 
t(3) = acd - t(2);  % Aqueous (Anatomical ACD) 
t(4) = 4e-3;  % Lens (Gullstrand) 
t(5) = inf;  % Vitreous and beyond 
T = acd + t(4); 
 
% Powers 
phi(1) = P_spec;   % Spectacle (placeholder, keep at 0) 
phi(2) = (n(2)-n(1))/r1;  % Cornea front surface power 
phi(3) = (n(3)-n(2))/(.8831*r1); % cornea back surface power (Littmann) 
phi(4) = (n(4)-n(3))/lens_roc_f; 
phi(5) = (n(5)-n(4))/lens_roc_b; 
 
% Forward ray trace 
N = 5;   %number of surfaces 
for ind = 1:N-1 
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    nu = nu - y*phi(ind); 
    y = y + nu*t(ind)/n(ind); 
end 
nu = nu - y*phi(N); 
 
bfl = -y*n(N)/nu;   % back focal length (wrt last surface) includes refractive index (n/V) 
H2F2 = -n(N)/nu;   % second focal length 
F1H1 = H2F2/n(N);  % = N2F2 
N2 = T + bfl - F1H1;  % uses relationship that F1H1 = N2F2 
N2_retina = 1000*(x - N2); % in mm 
q = 1000*N2_retina*tand(1); 
fprintf('Retinal magnification is %5.4f microns per degree\n',q); 
 




