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Abstract

Imaging the foveal cone mosaic with a MEMS-baseaptide optics scanning laser
ophthalmoscope

By

Yiang Li

Doctor of Philosophy in Vision Science
University of California, Berkeley

Professor Austin J. Roorda, Chair

Our knowledge of the structure of the human phatpeor mosaic is mostly based on
histological data. Imaging microscopic structurénitact eyes has traditionally been
difficult due to structural imperfections in theegy optics called aberrations. The
introduction of adaptive optics (AO) into visioniexace has allowed us to access the
living human retina at microscopic levels, openipgnew possibilities for both basic and
clinical research. This dissertation concerns theaacement of AO technology for
retinal imaging while emphasizing its applicationrmaging the foveal cone
photoreceptor mosaic in living human eyes. Foveaks provide a fundamental
challenge for today’s AO systems due to their sisiak (2 um diameter). As a result,
much of my effort has been put towards improving &&tem performance to resolve
these small cells consistently. | have improvedwhgefront correction capabilities of an
adaptive optics scanning laser ophthalmoscope (ADSising a single MEMS
deformable mirror, so that the smallest foveal sanesome eyes can now be resolved.
Specifically, many of the nonlinear characterist€she particular MEMS device used
have been negated in the new wavefront contralat,the wavefront reconstructor has
been optimized by incorporating measurement naigeaberration (Kolmogorov)
statistics. This contribution is significant becaugrior to this research, the capability to
image the entire foveal cone mosaiwivohad never been demonstrated using this
imaging modality.

Some basic scientific investigations were cariegarallel with the technical
developments. Specifically, | used this MEMS-ba&@&@S5L O to investigate how foveal
fixation is related to the cone density distribantend to determine the inter-subject
variability of foveal cone density in relation tgeelength. The foveae of 18 healthy eyes
(18 subjects) with axial lengths from 22.86 mm 831 mm were imaged and analyzed.
The entire foveal cone mosaic was resolved in éyass, but cones within 0.03 mm (
0.1°) from the foveal center remained unresolveah@st eyes. The preferred retinal



locus of fixation deviated significantly?(< 0.001) from the location of peak cone density
for all but one eye. Retinal cone density decreasguficantly @ < 0.05) with

increasing axial length 0.30 mm away from the féweater but not closer, so we can
conclude that the axial myopia progression caustasat stretch. However, how axial
length affects cone density within the central fpver foveola, is swamped by other
factors besides just cone density due to high $eokinter-subject variability observed
there.



| dedicate this work to my family,
my three best friends,
and my teachers

“The one who doesn't fall never stands up”
The Last Emperor
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1. Introduction

Adaptive optics (AO) refers to technology that reelsithe amount of aberrations in an
optical system in real-time. Originally developeccbmpensate for the wave aberrations
caused by fluctuations in the atmosphere, AO hesived considerable attention for
vision science applications since it was first &gapto the eye in 1997. It was that year
when Liang and colleagues presented the firstievages of single cone photoreceptors
in a living human eyé Analogous to how the earth’s atmosphere degrdgesnage
quality of ground-based telescopes, aberrationgaltiee eye’s optical imperfections
degrade retinal image quality making it difficudtr fclinicians and scientists to observe
the microscopic structures of the retina. Adaptipécs (AO) aims to remove these
degradations by correcting the eye’s wavefrontratiens in real-time and typically does
so in a closed-loop fashion. How this done is thaied in Figure 1.1, which is a
schematic of the original flood-illuminated AO syst at the University of Rochester.
Like most complex systems that operate in closegd,lthere is a sensor, the Shack-
Hartmann wavefront sensor; there are actuatorgribe that push and pull a reflective
membrane which we call the deformable mirror (DEYd there is a control computer
which is responsible for taking sensor data andutaling the appropriate voltage signals
to send to the actuators. Our ability to bypassifegs optics and observe the living
human retina at the microscopic level depends lgreathow well the aberrations are
corrected. Therefore, it is important to both dians and basic researchers that we
continue to push the performance of AO systemégorbutine imaging of both healthy
and diseased eyes can eventually become standard.

Wavefront

sensor Krypton
flash lamp
/\\/ 0 v. Cold
mirror
790 nm
B g p
Uncorrected
wavefront
Correcte %
Science wavefront inetics DM
camera

(97 actuators)

Figure 1.1: Schematic diagram of the AO flood-ilinated ophthalmoscope at the
University of Rochester.



Prior to the work presented in this dissertatibe, Rochester flood-illuminated
AO ophthalmoscope was the only system that has dstmaded the capability to resolve
the entire foveal cone mosaic. There are not vaagynexamples though. To my
knowledge, there are only four such foveal conegiesan the literatufe®. A cropped
version of one of these images acquired from almgalye is given in Figure 1.2
displaying that every single cone was resolved,thay were resolved with enough
contrast that they could probably all be identifigith minimal guesswork. Over the
years, AO has been successfully integrated intorsog laser ophthalmscopes (SEQ)
optical coherence tomography (O&+jand other flood-illuminated systefis*
Despite all these advances, none of these newnsystas shown complete images of the
healthy foveal cone mosaic. This could be duertaraber of factors such as the DM
used, imaging modality, optical system alignmeattml system performance, etc. For
example, the Rochester flood-illuminated AO systmploys traditional 97 channel
piezo-actuated DM (Xinetics) which has a provecknaecord in astronomical AO but is
not used in any other AO imager currently onlineould also be due to differences in
imaging modality, and that illuminating the retwéh a completely incoherent light
source results in a better quality image. Whatéweiactual reason may be, we know that
the 97 channel Xinetics offers similar spatial tegon as the Boston Micromachines
Corporation (BMC) Multi-DM MEMS device (140 chansealver a square grid minus the
four corners) but has a superior finish to theeatfi’e surface. Figure 1.3 is a
microscopic image of one of our BMC devices illasitrg this. These surface
imperfections will contribute to the quality of theflected beam, and the errors will
propagate to the wavefront measurements and uétlynatfect final wavefront correction
if the problem is not addressed at other stagéseofO control loop.

e e L
X

Figure 1.2: A1° by 1° imge of te o msaid@mni about he approximate foveal
center acquired by University of Rochester's AQf#ldlluminated ophthalmoscopé



Addressing the performance and robustness of du@mretinal imagers is
challenging because doing so in an unbiased maaqaires images of the same retina
acquired under nearly identical conditions at défé times. Pertaining to the correction
of the eye’s wave aberrations, there have beenaestadies that addressed the
properties and performance of different DMs as aelbandwidth requirements of a real-
time correction®*® However, the conclusions have been primarily hasemodeling
and wavefront error calculated from Shack-Hartmadaa, which | will show often
overestimates the quality of the actual waveframtexction. In this dissertation, | will
describe some of the improvements | made to the@mystem of an AO scanning laser
ophthalmoscope (AOSLQ)in particular,r the refinement of many requiredcalations
that exist throughout the AO control loop. The instent | worked on was the Berkeley
MEMS-based AOSLE which | will refer to as AOSLOII. These improvenis have
allowed us to image the smallest cone photoreceptear and sometimes at the very
center of the fovea, which led to some new scieitifnical findings concerning cone
density and axial myopia.

Figure 1.3: Image taken with a 2x microscope objeatf a corner of one of our BMC
MEMS devices (the same model used in AOSLOII) singwindesirable print-through
due how it is manufactured. Actuator pitch is ab&@@ pum.

1.1 Challenges

Figure 1.4 is a 1° by 1° image of a healthy foxeale mosaic acquired using AOSLOII
in 2008 illustrating exactly the problems we daite when imaging the fovea with an
AOSLO. | had already made some improvements t&MSLOII control system, but the
performance was in general not as robust as ientlyris. The nearly uniform hexagonal
packing structure of cone photoreceptors is cleddiyple immediately outside of the
central fovea (about 0.25° in this case but va®@sss individuals) but gradually fades
toward the foveal center forming a darker regiothvai speckle like appearance. We can
rule out these light spots in the center as commégpeceptors because they are noticeably
larger than those just outside the central foved,the overall appearance of the mosaic
is not in agreement with the retinal images acqlsvéh the Rochester flood-illuminated
AO system (Figure 1.2). There are several reasdrysmost AOSLO images have this
type of appearance in the foveal region. Lack ffigant lateral resolution is most likely
responsible for why the smallest foveal cones rarmaresolved, and this could be only
due to differences in the DM. The speckle-like apace of the center of the fovea may
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be a consequence of using a light source with eclaiverence length and may also have
to do with anatomical differences of foveal congsrany textbooks have depicted them
to be much thinner and longer than the ones outheléovea. The paragraphs below list
some of the issues that | have considered conggfoueal imaging with an AOSLO. In
any case, improving AO system performance in anywifl only improve how well we
can observe the foveal cone mosaic or any othieatdeature for that matter.

Figure 1.4: A 1° by 1° ige of the cone mosicemml about the approximate foveal
center acquired with AOSLOII. The central foveahes are clearly unresolved.

1.1.1 Visual and adaptive optics

To first approximation, the human eye is a reldyiwemple optical system made up of
only three primary components: the cornea, theainis the crystalline lens. The cornea
and lens provide the optical power needed to faotident light onto the retina with the
iris acting as the aperture stop of the systemla¢igg the amounting of light that makes
it to the retina. However, this optical systemas perfect; it suffers from optical
aberrations. Aberrations blur the image formedranretina which reduces visual acuity
and contrast sensitivity while also making it mohallenging for clinicians and vision
scientists to look inside the eye. Our understandirthe eye’s optical properties has
greatly increased due to fairly recent developmaentxular aberrometry and in
particular the Shack-Hartmann wavefront sensorl&@@berrations cause the measured
wavefront to depart from a plane. This departuitisn referred to as the wavefront
error or simply the wavefront. Since the first Skétartmann sensor for the eye was
demonstrateld, the representation of the aberration structuth®fye has almost been
exclusively based on Zernike polynomials whichl adl go into detail in Chapter 2, has
both merits and limitations. When the wavefrongxpressed as a linear combination of
Zernike polynomials, it becomes evident that thve twder modes explain most of the
wavefront error in the eye. As it is now widely kv the low order Zernike modes that
cause blur are the defocus and astigmatism temdsynast of that can be corrected by
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conventional means (i.e. spectacles and contase$nHigh order modes cannot be
corrected by conventional means, but they alsoad@ffiect visual quality significantly
when the puplil is less than 3 mm in diametddowever, if we were to image the retina
through a smaller diameter pupil, diffraction sigrantly limits lateral resolution.
Therefore, imaging through a large pupil is desea terms of reducing diffraction but
doing so is only beneficial if the high order alagions can be corrected.

Simple eye models are useful for assessing teealatesolution achievable with
AO. The following analysis, where the Gullstranddebeye with four refracting surfaces
(Table 1.1) is used, is oversimplified, unrealisticl completely ignores the temporal
fluctuations present in ocular aberrations, big ievertheless relevant for this
discussion. Given these basic optical parametees;drdinal points of the system can be
found by doing a first-order ray trace. They areveh schematically in Figure 1.5. The
eye model is quite simple except for perhaps tianbdal points, Nand N, are
displaced from the principal planes, &hd H, because the refractive indices of the
image space (vitreous) and object space (air) bdiffeyent. The Rayleigh criterion for
the resolution limit is given by:

1.22f
S=

d
whereA is the illumination wavelength in the vitreodiss the focal length of the eye
defined by the distance;Hb the retina (approximately 22.32 mm) ahid the diameter
of the pupil. AOSLOII is set up to image over a rdiameter pupil, so based on the
Rayleigh criterion, the smallest resolvable featmehe retina with 840 nm light is about
2.8 um. The Rochester flood-illuminated AO systen theoretically do a little better
because it uses 790 nm lighte(2.6 um). These calculations apply to a diffraction
limited eye which can only occur if the eye’s waleerrations are fully corrected with
AO. If any uncorrected residual aberrations remaimch is the case for all real AO
systems, the resolution will suffer. It is quitenwmon for authors to state that their AO
equipped retinal imager can achieve correctionlseewhich the root-mean-square
(RMS) of the residual wavefront error of about 100 or less over a dilated (> 6 mm
diameter) pupft **" 2! Assuming those are really their achievable redidavefront
errors, then the following expression for the Riiecriterion applies:

(1.1)

1224 f
s=—"= 1.2
WSS (1.2)
where <S> is the Strehl ratio which is related to the RM&vefront error by:
—(Z—ITRMS]
<S>z e‘’ (1.3)

as long as the wavefront error is “small” (i.e. Rl&ng less than a quarter of a wave).
Equations 1.2 and 1.3 are extremely useful beciduggeallow us to assess how the
resolution limit is related to the focal lengthtbé wavefront compensated eye, the
imaging wavelength and wavefront error in a verge manner. AOSLOII has two
wavelength options, 680 nm (red) and 840 nm (n&earied), but for convenience
(primarily due to subject comfort since the retimidess sensitive to infrared), the
preferred imaging wavelength is 840nm. We do netleny control over the size of the
eye being imaged, which can range from 22 mm t@ 28enm long. Assuming that the
eye’s focal length is about 2 mm shorter than i@l fength of the eyeball, it is possible
to graphically observe how the achievable resafuliimit will differ for different people
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(Figure 1.6). This simple exercise demonstratessthi@atheoretical resolution limit for
retinal imaging is worse for longer eyes than foorger eyes. So if AO retinal imagers
today are indeed operating near the diffractiont)ime would expect that a short eye
would yield higher quality images of foveal conesaigs.

Table 1.1: Gullstrand model eye

Front corneal Back corneal Frontlens Back lens

surface surface surface surface
Radius of 7.8 6.9 10.2 -6.0
curvature (mm)
Refractive index 1.38 1.3374 1.42 1.336
Thickness (mm) 0.535 3.1 4.0 24.18
Principle
planes H

Cornea

Nodal points

Optical axis

Figure 1.5: Schematic diagram of a four-surfaceragdel illustrating that the principle
planes do not coincide with the nodal points.

So far, | have not mentioned the temporal compoattite eye’s wave
aberrations. Since so many quality images of coogans have been acquired with
basically a static AO correctidr?’ " 7 it may seem that a static correction would be
sufficient. Although a tenfold improvement can liaoned with a good static correction,
it will still only be about halfway to diffractionmited performance based on the Strehl
ratic®®. Based on the assumption that the aberrationtateiof the eye can be completely
described by a linear combination of Zernike polyiais up to § order, Hoferet al*?
claim that a closed loop bandwidth of 1 to 2 Hallghat is needed to achieve diffraction
limited imaging performance. It should be clarifita@t closed loop bandwidth is not the
same as the system sampling rate. Roughly speakiadz bandwidth requirement
would require a sampling rate beyond 30 Hz. Itag/iknown that Zernike polynomials
up to 18" order still fail to capture the entire ocular whweet structuré* 25 so the actual
bandwidth requirement for diffraction-limited pemfioance is likely to be even greater.
Diaz-Santana&t al. also examined bandwidth requirements for ocularraition
compensation but did so with a much faster AO sysitbeit without retinal imaging
capabilities. They found that there is a lot of pow the fluctuation of the eye’s wave
aberrations above 30 Hz, so we can further imptbgeStrehl ratio by increasing the
bandwidth. However, they did not specify how theganstructed the wavefront from
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Shack-Hartmann sensor data, and they did not prasgrevidence based on actual
images of the retina.

&9 ; ; i Longer eyes

N

S

Shorter eyes

Resolution limit (microns)

0 20 40 60 80 100
RMS wavefront error {(nm)

Figure 1.6: Resolution limit based on the Raylaigterion as a function of the RMS

wavefront error for various eye lengths (22 to 28)mFocal length was taken to be 2

mm shorter than the total eye length

1.1.3 Foveal cone photoreceptors

The word fovea meanst in Latin. The fovea of the eye, called the foveatalis, is the
part of the retina responsible for fine spatialons The anatomical pit that characterizes
the fovea centralis, which | will refer to as tleeéa from now on, is about 1.5 mm wide
and contains the highest density of cone phototec#p According to the Gullstrand
eye model, 1.5 mm converts to about 5.1 degreeswoél angle which is more than five
times wider than the AOSLO image in Figure 1.4.a@ie we can resolve most of the
cone photoreceptors inside the fovea. The centtiredfovea is called the foveola. The
size of the foveola is somewhat arbitrarily defineulich like the fovea, and has been
reported to be 200 to 400 um in diameter in vartetbooks. Perhaps it is more sensible
to define the foveola as the region containingatbphotoreceptors as Yuodelis and
Hendricksof’ did. They reported a diameter of 683 pum. It ithie foveola that the
individual cone photoreceptors have continued @lehge the resolution limit of today’s
AO systems.

Sinceen vivoimaging of foveolar cones is still very challengimany
investigators still use cone density data fromdhiggical and/or psychophysical studies.
The most comprehensive histological investigatibhumman cone photoreceptor
distribution was undoubtedly conducted by Cueti@l?® Figure 1.7a is an image of the
foveal cone mosaic from their classic paper. Acowydo their work, foveal cone density
exhibited a great deal of inter-subject variabiégpecially at the fovea center. With the
exception of the two very high density foveas, Whicere mentioned by the investigators
to have been possibly affected by tissue shrinkidngesmallest foveal cones were at least
2 um in diameter which should be a good approxmndir minimum cone spacing in
the rod-free foved > Based on the Rayleigh criterion (Figure 1.6),weild not be able
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to resolve the smallest foveal cones in certaifviddals, but there were other
individuals in Curcio’s study with minimum cone spacing greater 3.5 um whichustho
guite easily be resolved.

(@) (b)

Figure 1.7: In vitro images of foveal cone mosaiuired usindifferential interference
contrast microscopy. (a) An image, about 30 pmsa;som Figure 1 in Curciet al?®
and (b) an image, about 200 um across, from FigimeWojitaset al®*

It is also possible that anatomical features oéfdar cones besides their size
make them difficult to resolve with an AOSLO. Asmtiened earlier, cone
photoreceptors have been depicted to be both thamtelonger as they are closer to the
foveal center. The fact that they become longersaseen in a high quality OCT scan
(Figure 1.8) where the distance between the twblhigflective interfaces of cones is
greater in the foveal center. Consider the simptéecal model of a cone of the left side of
Figure 1.8, the first reflection occurs at the junction between the inner and outer
segments, and the second reflectipnccurs at the interface of the outer segment laed t
retinal pigment epithelium (RPE). Assuming thataption is negligible, a field incident
on the retinay, results in two main fieldg/s and ¢, reflected from the cone
photoreceptors. The expressions that describ@tbiess are given by:

Y =1y
{41/2 = (1+ rl)r2¢/ (4)

where the 1 +; term for theys is the amplitude (not irradiance) transmittancéheffirst
interface. Immediately outside the very centeheffovea, the two reflections are about
the same in magnitude and they nearly do not ieterfelectric fields have zero
correlation) because the reflective interfacessaparated by a distance longer than the
coherence length of the imaging light source (10geoording to manufacturer Superlum
Ltd.). Therefore, it will be impossible for the ébteflected light from one cone to
completely interfere with that from an adjacenteoaducing interference artifacts
(speckle noise) in the final image. But from theTO@age in Figure 1.8, we can readily
observe that the top reflection) gets dimmer toward the fovea center which isequit
prominent considering that the image is on a l@jesdfr, goes to nearly zero, we are
effectively only left with:

W, =14 (1.5)
which will be free to interfere (correlate) withethis of its neighbors raising the speckle
noise in the retinal image and swamping the redlem® signals representing the actual
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cone photoreceptor locations. Whether or not trodehis of practical concern to
AOSLO imaging is completely based the lateral netsoh of the system. If we can focus
a smaller spot of light onto the retina with a 8eAO correction, then there will be less
opportunity for interference to occur between agijcones.

Figure 1.8: A cross section through the foveal @eatquired using an AO OCT system
from Figure 3 in Bigelovet al3? On the left is a model of a foveal cone photor&mep
with the arrows indicating approximately where the lines of high reflectivity takes
occur (see text for model description).

1.2 Adaptive optics scanning laser ophthalmoscope

Roordaet al. (2002) incorporated AO into an SLO for the first AOSLO@SLOI),
which successfully resolved individual cone photeggors in the living human retina but
only as close as 0.5% (150 um) away from the center of the fovea. The BO$itially
had the advantage over the conventional flood-ithated AO ophthalmoscope in being
able to perform optical slicing of different tissiagers of the retina and the ability to
record retinal videos as opposed to a single swapSiver the years, these advantages
have proved to be valuable tools in our lab as aglbthers for assessing retinal blood
flow®*3% Ganglion cells in the macadqiie¢’, and RPE celf§' *°

AOSLOII was designed differently from AOSLOI besauhe aim was to make
the system as small and compact as possible fgahleof deploying it in a clinical
setting®. This was made possible by employing a tiny MEM8 ®hose clear aperture
is about the same size as the pupil, making thesysuch smaller. The AO control
system operates over the optical path shown inr€ijl®a. The near-infrared beam is
provided by an 840 nm superluminescent diode (§SDperlum Ltd., Russia) and a
photomultiplier tube (Hamamatsu, Japan) is usedigbt detection. The DM (BMC,
USA) has a 12 by 12 actuator array minus the caotrators providing a total of 140
degrees of freedom. The current state of AOSLOMdse or less the same as how it was
originally described by Zhanet al® with the exception that | swapped out the old 8-bit
DM driver for a higher step resolution (14-bit)\dr that currently comes standard with
any Multi-DM purchase and also upgraded to a 5.5adwertised stroke DM.
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Figure 1.9: (a) Schematic diagram of AOSLOII angglbop view of the system with the
optical path overlaid in red.

1.3 Purpose and structure of dissertation

The goal for this dissertation is to provide thamanatical framework for wavefront
estimation and control specific to AO for visionesece and demonstrating how we have
benefited specifically from improving AO system foemance in this way. Since this
dissertation is for a Vision Science degree, soaschscience research on the topics of
foveal fixation and eye growth has also been cotetud he work carried out spans the
disciplines of optics, controls and vision scieriiee mathematics that complements
these fields, especially Fourier analysis and lirégebra, will often appear. Complex
numbers will also appear due to having to work weigctromagnetic waves. A lot of
effort has been put towards the implementatiomes$¢ ideas in a real AO system,
particularly AOSLOII. And it was primarily throughese efforts that | was able to
demonstrate that the smallest foveal cone photptexrsecan indeed be resolved using an
AOSLO. From these experiences, | hope to convejher scientists, engineers and
clinicians the simple necessity of a more rigorsaatment of wavefront sensing and
control. Even though the work here specificallyr@ddes an AO system for correcting
ocular wave aberration, the MEMS device | usedss$ s new to the applications in
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astronomy, so | hope AO developers from other disw@s can benefit from this research
as well.

In Chapter 2, a detailed explanation of Shack-Hanmwavefront sensing is
given beginning with a discussion on how an elestignetic wave propagates through
the eye’s optics and leading to each of the stepisa Shack-Hartmann sensing process
currently carried out on AOSLOII. | will then dewg the wavefront reconstruction
(estimation) problem with minimal assumptions. 8iZernike polynomials have become
almost synonymous with ocular wavefront sensing,fitoperties of Zernike polynomials
and how they are affected by the measurement damdagi®n procedure will be
addressed analytically and numerically. It will bee apparent that the standard
wavefront estimation procedure is valid for certapplications, but not others. Zonal and
Fourier methods for wavefront reconstruction aespnted and analyzed as well.

Chapter 3 discusses the second half of the proeich is to actively
compensate ocular wavefront error. The wavefrontrobproblem is presented from
mathematics to real-time software implementatigrecHically, four wavefront
reconstruction (control) algorithms were designed implemented on AOSLOII. Three
of the four algorithms are of the zonal type and @mbased on Zernike polynomials. The
details on each of the AO control strategies wellfbllowed by a discussion on stability
and comparisons based on both residual wavefroort @nd retinal image quality.

Finally, I will describe how | have implemented tatire AO control system as five
separate tasks with the detailed function for ¢ask described by a finite state machine.

While Chapters 2 and 3 focused on improving AOe&ysperformance to push
the lateral resolution limit of the AOSLO, | repart some of the first investigations on
the structure of the foveal cone mosaic in livingrfan retinas in Chapter 4. Using
AOSLOII, I have imaged the foveae of more than yseover the course of this work.
However, to avoid potential bias, only one eyequéiject (18 eyes, 18 subjects) was
used in the investigations described in Chaptéhdve written custom software to
identify the cone photoreceptors in an AOSLO image to generate topographic maps
representing cone density from the identified cloeations. Together with ocular
biometry, | looked at how foveal cone density varéeross individuals with different
sized eyes which typically corresponded to diffetenels of refractive error. The results
of this study have important implications regardivigether or not visual acuity is
fundamentally limited by the sampling rate of foMeanes. Furthermore, it is often
assumed that we fixate with the part of the retwth the highest cone density. But is this
assumption valid at the microscopic level? With tibsot all of the foveal cones
resolved for each retina, we can precisely lodag¢gobint of peak cone density for each
retina and compare it against the individual’s tiic@a points.
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2. Measuring monochromatic ocular aberrations

2.1 Introduction

A Shack-Hartmann type sensor is used for wavefroedsurement in AOSLCG1ITo my
knowledge, there are no AO equipped retinal imagalise using a different wavefront
sensing modality. Accurate wavefront measuremeatcistical component for effective
aberration compensation and robust closed-loop p&ation. In this chapter, | start by
presenting the principles of Shack-Hartmann wavefsensing for ocular aberrometry
including the basic components making up a tydsteck-Hartmann sensor. The
discussion will then be focused on my investigatiorio wavefront reconstruction
algorithms for estimating the wavefront (as oppasetthose for controlling the
wavefront which will be discussed in Chapter 3).

Shack-Hartmann wavefront sensors as standalonensys$tave become the norm
for measuring and analyzing ocular aberrationss&ltevices are now ubiquitous in both
research and clinical settings to a point whereaameeasily be mislead into believing
that most of the important fundamental principlesaziated with Shack-Hartmann
wavefront sensing are well understood. Although thivery much true in general, a
close inspection of the literature would reveas thot to be the case for measuring ocular
aberrations. In vision science and associatedcdlimisciplines (optometry and
ophthalmology), it is especially important to ur&tand the calculations required in the
wavefront measurement process. Consider wavefraded LASIK for example.
Improper interpretation of wavefront data may leagotentially disastrous results.

The design of ocular Shack-Hartmann sensors todaybt deviated significantly
from the very first designed given in Liargal*® The basic components that makes up
the sensor (minus the light delivery componentgpismuch more than an afocal
telescope formed by two lenses, a lenslet arrayaathetector (typically a charged-
coupled device (CCD)) as depicted in Figure 2.% Basic principle is that the eye’s
wave aberrations produces spatial variations irpttese component of the field located
at the pupil plane when observed from the outsidd,it is of our interest to recover this
guantity. At first, a telescope may not seem nengsas only a single lens is needed to
image the field at the pupil onto the lenslet artdgwever in order to get the maximal
signal level at the detector, the focal plane eflénslet array should also be conjugate to
the retina. Therefore, the telescope serves twpgses: 1) relaying the field at the pupll
plane onto the lenslet array, and 2) allowing thuninated spot on the retina to be
reasonably in focus on the CCD by the lenslet aassyming that the retina coincides
with the back focal plane of the eye (emmetropie)eyhe raw data outputted by the
Shack-Hartmann sensor is simply a digital imaga spot pattern produced by each of
the micro-lenses (subapertures) focusing the bgtd the CCD. If the incident
wavefront has local slope over a particular sultaperit will induce a shift in the
position of the focused spot proportional to thegps. The set of local wavefront slopes
within the pupil is all that is needed to recoves bcular wavefront error. Details on
obtaining wavefront slopes and methods for recanstrg the wavefront from the slopes
will be rigorously addressed in this chapter intigec2.2.

Light delivery into the eye is typically accompleshby some means of
collimation if the source is originally uncollimatéi.e. a diode) before it is introduced
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into the main optical path via a beamsplitter. lgaroriginal design employed a 532.8
nm He-Ne laser and a relatively low density lenaledy by today’s aberrometry
standards (7 subapertures across a 5.4 mm diamagi#y, but he and other colleagues
would immediate develop an improved device witletdy quality and denser lenslet
array as well as attempting to harness the polasizaf the bean to suppress corneal
reflection€’. Image quality, as depicted in these earlier papeere rather poor again by
today’s standards and only static wavefront measentés could be made most likely due
to the technology available at the time. Nevertbgléheir work established the fact that
the Shack-Hartman wavefront sensor as an objegéiveimple technique to measure
ocular wave aberrations.

i fa fa fa

Detecto

Figure 2.1: Schematic diagram of a Shack-Hartmaawefvont sensor. Lenses 1 and 2
are separated by their focal lengthsafid $). Focal length selection is based on the
desired lateral magnification of the eye’s entrapggil, located at P when imaged onto
the lenslet array. For the AOSLO, this magnificati® 0.889.

2.1.1 Shack-Hartmann sensor design
This section is intended to establish some gemaadground for ocular Shack-Hartmann
wavefront sensing. Hardware improvements to thikeealesigns mentioned above have
included changes in the light source, resolutipaijal and temporal) and dynamic range.
How each of these components affects the finaludutpage of Shack-Hartmann spot
pattern is important for guiding algorithm develagmhdown the line. For example, the
use of a polarizing beam-splitter to first bringfii into the eye and then separate
reflections from the retina from that of the cormess not particularly effective. Sticking
to this method would require one to rely on thegmaost-processing methods for
separating which would add unnecessary computatimesthead to the wavefront
sensing process.

Off-axis illumination, where the entry beam is dé&jed from the pupil center
(Figure 2.2a), is a simple and widely used solutithis problerff. The principle
behind the formation of a sharp image in a confevaber such as the AOSLO requires
both the entry exit beams to be pre-corrected ffsaxis illumination cannot be appli&d
2 Instead in AOSLOII, a manually adjustable apertsrplaced in a retinal conjugate
plane, as shown in Figure 2.2b, with the reasongo#tiat light reflected from the retina
will be better focused at this plane than lighteetied from the cornea. So most of the
light reflected off the retina passes through therture while that from the cornea is
mostly blocked. The critical assumption here ig tha eye’s wave aberrations are
relatively low. For example, if we had an infinitedmall aperture, the field at the
aperture plane becomes a point source. In this eggane wave will be created by lens
2 due to the point source at its primary focal pam matter how much aberrations are
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present in the eye (i.e. the wavefront sensormneilldetect any refractive error so no
control signals will be prescribed to the DM). T8iee of the aperture must be adjusted
with the tradeoff between corneal reflection ancgsugement accuracy in mind. It is
often the case when imaging individuals with rekly high refractive error that a trial
lens must be placed in front of the eye to corf@ctost of the refractive error before
the wavefront can even be properly measured.

Beam-splitter

(a)

"freeea..) Corneal
Reflection

Laser

Aperture stop

(b) !

Figure 2.2: Two methods for countering reflectifnasn the corneal front surface. (a)
Off-axis illumination forces corneal reflectiond & an angle, and (b) an aperture place
at a retinal conjugate blocks most of the lighteetked from the cornea because they are
not at a sharp focus at that plane.

Laser speckle adds undesirable correlated noigeet8hack-Hartmann image that
the accuracy to which the location of each focuseat can be identified may be
compromised. The coherence length of the He-Nedased in earlier wavefront sensors
were very long (> 1 m) which contaminated the sy image with this type of
correlated noise. This issue was addressed byademeestigators more recently (2001)
by switching to the less coherent superluminesdere (SLD) which is the type of light
source employed in AOSLGHt ** *4 Hoferet al?® also placed a high speed scanning
mirror at a plane conjugate to the pupil, whicleefively smoothes the Shack-Hartmann
image by rapidly scanning the laser spot acrossad patch of retina but also makes the
spots largér. SLD technology has steadily improved both in ®wofispectral band-
width and cost, so it is to no surprise that itdree rapidly adopted for wavefront
sensing. A scanning system, which is obviously nooraplicated and costly, may no
longer be necessary for most applications espgaidih the application of more
sophisticated image processing algorithms to Skéaakmann images

Finally, there are other components that haveddbeir way into research and/or
commercially available Shack-Hartmann sensorsrttezat or may not be beneficial for an
AOSLO. A well-known problem that arises when desigra Shack-Hartmann sensor is
the tug-of-war between dynamic range and sengitiMore often then not, the solution
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was influence mainly by the applications. Pantamelal*> constructed a wavefront

sensor with quadrature masking system where bisRalpercent of the subapertures
(even spaced out) are analyzed at a time allovangxtremely high dynamic range
without sacrificing sensitivity. This advancemepoiever does not really benefit AO
retinal imaging as having one will decrease theéesgydandwidth by a factor of four.
Another popular addition to the generic Shack-Hartmsensor design would be a badal
systemd®> *® 47 A badal system allows the distance between learsd12, as labeled in
Figures 2.1 and 2.2, to be adjustable which allfmwslefocus correction. A badal system
has been integrated into an AOSLO as Wellieving some of the stroke requirements of
the DM. Perhaps the most popular or profitable aggrto make is to opt for a denser
lenslet array. Several research groups have takeangage of the fine sampling
capabilities offered by denser arrays to measuegtarities due to tear filffi ***° To

no surprise, in addition to these laboratory-basmtlopments, many commercially
available Shack-Hartmann sensors, such as AbbatidelleOptics’ COAS-HD and
Imagine Eyes’ HASO 32, are now equipped with vaghldensity lenslet arrays.

2.1.2 Pupil function
Prior to discussing wavefront reconstruction, mésessary to establish the terminology
and the mathematical background associated witbgtieal wavefront including how it
affects retinal image quality. This section revigiws necessary fundamentals of wave
optics in order to derive an expression for thésepapil function because the phase
component of this function is what we are try toaswee using the Shack-Hartmann
sensor. Furthermore, | have come across some mesand/or inconsistencies in the
literature in which | would like to address durimgmy treatment of this topic. In these
discussions, scalar diffraction theory is validt{ca elements involved are much larger
than the imaging wavelength (840 nm)) and will bediexclusively, while the
polarization state of the laser, although importartgertain cases, will be ignored.
Although somewhat trivial, it should be first cled to avoid confusion that the
terms exit and entrance pupil depend on the doedif light propagation. When
describing image formation on the retina, the emegpupil is just the pupil of the eye.
But in retinal imaging, the object of interest bems the retina, so the definitions must
be swapped. For a perfect eye, this scenariaustifited in Figure 2.3 where a point on
the retina emanates a spherical wave which is girfeountered by the eye’s optical
power so that plane waves leave the eye.
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Figure 2.3: Schematic of a diffraction limited (f&t) eye illustrating that a point source
at the retinal plane (z = 0) creates a divergirtgegpal wave that is exactly canceled by
the eye’s optical power, and as a result, perfieatgpwaves leave the exit pupil.

The general expression for the electric field congya of an electromagnetic

wave is given by:
W(x,t) = E(x,t)ef ™ (2.1)

wherex = (x, y, 2) are pupil coordinates and optical axis gre (-1)* Units of the
electric field are electric potential (volts) dieid by distance which is completely defined
by the amplitude ternH) of equation 2.1 because the phase compoRgnivhich
contains the wavefront, is required to be unitl@$g spherical wave incident at the
entrance pupil plane can be described by:

wmmw=%éméf (2.2)

wherer is the radius of curvature of the wavefrdais the wavenumber andlis natural
frequency. It should be noted that since the figld,(r,t), is in the vitreous chamber,

the wavenumbelk(= 2n/A) is defined such that the waveleng#) is that of the
illumination (840 nm) divided by the refractive dof the vitreousy 1.33). Paraxial
approximation of the radius of curvature via fostler binomial expansion is:

2
r<z+ X ;—Zyz (2.3)

indicating that a sphere is well approximated Ipaeabola near the optical axis (paraxial
region). Substituting Equation 2.3 into Equatio? &nd evaluating it & = z,, we
obtain the desired approximation for a sphericalevia Cartesian coordinates:
. jk Zen(+xz+y2
) = Ev g5 (2.4)
nt
The quadratic term is omitted in the denominatahefamplitude since it is small with
respect t@n. This cannot be done in phase term because tlteajicaterm is not small
in comparison to the wavelength term that getsdéiiinto it (recalk = 2x/A). In simple
examples such as purely spherical and plane wwebgehavior of the amplitude term is

tractable and can be expressed analytica'%lgje(j“‘ and E,e’' for spherical and plane

waves respectively), but this would not be posdittenore complicated wavefronts. For
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this reason, | will proceed by representing the lgoge with just a generalized function
as in equation 2.1. This is clearly an over-singdifmodel of the actual physics involved
and is designed to hide certain mathematical caafxins. However, it is nevertheless
valid for what | am trying to convey. Doing so clhias the expression for the paraxial
approximation of a spherical wave into a more caarappearance:

jk[zent+xzzzeyzj
l//ent(x’t) = Eent(xit)e " (2'5)
The textbook definition for wavefront is a surfaafeconstant phase, which in the case for

the spherical wave would be any surface proportitmene quadratic phase component

of equation 2.5:

2 2
X*y =27”0PD(x ) (2.6)
nt

where OPD stands for the on optical path differénme the plane wave term in

Equation 2.5 ¢"*) which has become somewhat standard in recerdtiites on ocular
aberration when specifying or plotting the wavefremor across the pupil. The choice as
to whether wavefront is defined strictly as optiphhse shift (radians) or some form of
OPD (microns or number of waves) makes no fundaahéifference and should be
obvious given the context.

The Shack-Hartmann sensor measures the wavetrt axit pupil, not the
entrance pupil (pupils defined as in Figure 2.3)c8& the exit pupil is the image of the
iris formed by the cornea, and the entrance psghé image of the iris formed by the
crystalline lens, the pupils are images of eackrotdnder the assumption of linearity,
this allows for the field at the entrance pupibtrelated to that at the exit pupil by a
complex multiplicative factor called the systemmsger function. This transfer function,
which is completely characterized by the eye’sagtcomponents (cornea, iris and
crystalline lens), can be expressed in the famélaplitude and phase form:

T(xy)=T(x ye&™” 2.7)
Unlike expressions for the field, the system tran$finction is unitless, and it is specified
by the shape of the aperture (a circle in mostx)aaay transmission variation caused by
scatter and absorption throughout the system, hadepeffects of the optical system
(focus power and aberrations). Since the pupilsraages of each other, we have:

Yo X1 =T (X, YW (X, 1) (2.8)
wherex’ = (mpx, mpyy, ) with m, being pupil magnification since the exit pupibisout
10 percent larger than the entrance pupil.

The spatial profile of the amplitude term in thensfer function determines the
amount of light reaching each subaperture of thesfvant sensor since irradiance is just
the square amplitude. For a perfect eye (Figurg alBlight is transmitted inside the
entrance pupil and no light is transmitted outsitithe pupil, so the amplitude
transmittance term is simply:

F(x) =k

1 (x,y)OZ

T,(%Y) :{o (x.y)05 (2.9)

whereZ is the spatial domain defined by the entrancelpiijis trivial transmittance
model has become standard when performing retimadé quality related calculation
such as the eye’s point spread function (PSF). Meweven a healthy real eye will have
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some degree of absorption and scatter of lighuifinout its optical system. This
observation is illustrated in Figure 2.4 which gi\grayscale topographic map
representations of the amplitude (magnitude) dhistion across the pupil from Shack-
Hartmann data for a healthy emmetropic eye andfitbiat a model eye. The grayscale
values were normalized for comparison, and it caneladily observed that the irradiance
distribution is much more uniform in the model evleich is expected as it is only
representative of the light source. The irradiadis&ibution for the real eye tapers off
toward the edges of the pupil indicating that tingal transmittance model may not be a
particularly accurate choice. Interestingly, it h@asently been verified that this is
primarily due to the directional waveguide propestof photoreceptors although other
optical factors may play significant roles as wWelBimilarly, the phase term cannot be
expressed accurately in analytical form due to nigations in the eye’s optics. However
for a perfect eye, the phase effect should be eapabpposite of the phase of the field in
the entrance pupil. The transfer function for atiagh system with plus power can be
approximated by:

- i K0y
T(xY=T(xye” (2.10)
wheref is the focal length (positive) of the system. Bqrerfect eye, the focal length
must match the radius of curvature of the fielthatentrance pupif € r in general of
= Zent With paraxial approximation), so an expressiontfierfield immediately to the
right of the exit pupil can be obtained by subsitity Equation 2.10 into Equation 2.8.

wexit(x W)= T, (x,y) Eem()(’ ) dGeri

= Eexit(xl1t)ejkzexn
Equation 2.11 is a plane wave which is exactly whatxpected to emerge from the exit
pupil of a perfect eye. When the eye’s optics isperfect, an additional phase term must
be present in the system transfer function:

(2.11)

koo o
—jo 0Py
T N=T(xyer & (212)
where | will define the functiongXx, y), as the wavefront error which encompasses all
phase effects caused by the optical system natdirgj the focusing power that it is
supposed to have. As before, we can substitutetiogua 12 into Equation 2.8 to obtain
an expression for the field at the exit pupil.

Yo (X' 1) =To (X Y) €Y By (x, ) &%
— Ee _t(x"t)ej(kzexit+¢( X Y))
The pupil function is defined as:

P(x ¥)=T(x y & (2.14)
which is simply the system transfer function buthvthe phase component containing
only the effects due to wavefront error. Thereftine, system transfer function acting on
the diverging spherical wave in the entrance pispihathematically equivalent to the
pupil function applied to a plane wave. There hia@en instances in the literature where
the pupil function has been referred to as thetelemgnetic wave (field) at the pufil

%3 This is incorrect because the pupil function imiless quantity, and the actual field is
a function of both time and the direction of progton (z).

(2.13)
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Figure 2.4: (a) Shack-Hartmann image acquired ua@§LOII for a healthy
emmetropic eye. (b) Grayscale surface map of tseilolition of amplitude (magnitude)
at each subaperture across the pupil based oulaeesroot of the mean intensity count
of the spot. (c) - (d) Shack-Hartmann image arabtiance distribution for a model eye.
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2.1.3 Point spread function
We continue the discussion on wave optics withpttogpagation of light through the
eye’s optical system in order to determine thalfaiktribution on the retina. Consider
first the simplest case where the eye’s back fplzaie coincides with the retina as
illustrated in Figure 2.5. Light from a point objext infinity generates a plane wave at
the pupil plane P. Given the pupil function, howvde estimate the field distribution, and
more importantly the irradiance distribution, oe tietina? A complete treatment of
matter would require a rigorous discussion on ddfion theory which is beyond what |
have covered in my dissertation research. Howévisrnevertheless fundamentally
relevant for retinal imaging so it will be formaltgviewed.

The Fresnel number for the eye is the numbermiase shifts that occur inside
the exit pupil (defined as in Figure 2.5) as obsdrfrom the retina and is given by:

aZ
F T (2.15)

wherea is the exit pupil radius arfds the distance between the exit pupil and theagt
which is the wave optics (as opposed to geometoigtts) definition of focal length.
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Clearly the Fresnel number will differ between wnduals and between the two eyes of
the same individual, but we can still make a reabtmestimate on the range of values
using simple models such as the popular Gullsttan&rand schematic eye. AOSLO
imaging is typically done (limited to until receytlover a 6 mm diameter entrance pupil
using near-infrared (840 nm) light which convedasbout 630 nm in the vitreous
chamberif = 1.336). Furthermore, the length of the eye rarigam 20 to 29 mm, and
with the exit pupil located about 4 mm behind tbeneal apex, a reasonable rangef for
would be 16 to 25 mrfi Assuming that the exit pupil is 10 percent snatian the
entrance pupil, the Fresnel number for a humarsbgeld fall between 590 and 740.
According to scalar diffraction thedty the Fraunhofer approximation is only valid when
the Fresnel number for the system is much lessdhanso at the very least, a Fresnel
approximation should be used. Lettingy) and &, 77) be Cartesian coordinates in the
entrance pupil and across the retina respectivedydaopping the time-dependence term
for now, the integral for Fresnel propagation usedetermine the field at the retina
(amplitude PSF) is

Kexma-y7] [ X y
retlna(f 7, Z) - m J. j ‘/jexn( )é {_\J ({_\] (216)

e m) L
wherey,,, is the field in the exit pup|I and recall from afeathatm, is pupil

magnification £ 1.1) which is often overlooked when performingsthealculations. The
field in the exit pupil can be expressed in termthe system transfer function (Equation
2.10 and 2.12) and the field in the entrance pupil

X

Yo L D) = T(X P E( % 9 & (217)
m, m,
We can simplify the Fresnel diffraction integral &gsuming that the incident plane wave
has unit amplitude across the entire pupil. Sulistg Equation 2.17 into Equation 2.16

with some rearranging of terms we get:

kz o oo

wreﬁna(f,n,z):— j [T(x ye

—00 —00

K e-x2+7-y7] dxd (2.18)

By substituting the general form (mcludes phaserep of the system transfer function
(Equation 2.12) into Equation 2.18 and expandirgghadratic term in the argument of
the exponent, we get

_ Ik 2+ 2

wreﬁna(f,n,z):— j j L%y

—00 —00

2,02y K yss LN
é"(xy) éz(e’ %) (E ) ?é( +¥) dx((2.19)

This expression could be greatly simplified by oot thatz = f at the retinal plane. It
should be clarified thdtis the distance from the eye’s exit pupil to teemal plane, not
the paraxial focal length of the eye’s optical eyst In other words, we would ideally
want the back focal and retinal planes to coinditiégney do not, the difference must be
accounted for by adding the appropriate amouneédals on top of any other
aberrations represented in the phase error geEwaluating Equation 2.19 at=f, we
get the following for the amplitude PSF:

20



eka ¥ K (g2p2) —‘ Kxeeym)

Y€)= j [To(x e & dxd
2,2 o 2.20
je’e i Koery (220
= TI jT(x y) 7Y e dxdy
p — —00

which is proportional to the far-field (Fraunhoférjhe eye’s optical transfer function
did not have a focusing term. We can also writedfiqn 2.20 in terms of the pupil
function (Equation 2.14) where it can be observed the structure of the PSF is

completely characterized by the pupil function.
ek o 2f(<‘2+f72) . o

ret.na(fﬁ)‘— A [,[,P(X y)e +y)dxd3 (2.21)

When considering retinal image quallty, the irrade PSF is actually more relevant as it
represents the two-dimensional spatial impulseaesp of any imaging system. In Sl
unit (watts/m), irradiance is related to the field by:

S=% n(5£0<|z//|2>t (2.22)

where the refractive index of the vitreaus 1.336,¢; is the speed of light in vacuum
andgpis the permittivity of free space. However, the gibgl principle does not change if
we choose not to include these extra constant®irt bf the final expression for the
irradiance PSF.

SEM = e P rocye™” dx%y 223)

Consider the special with a perfect eye with autaicsymmetric pupil function. The
pupil function in this ideal case will be complgteal:

2 _\p2
P(x y) = cirg(x =4+ VX ~y <a (2.24)
0 otherwise
Substituting Equation 2.24 into Equation 2.23 aokverting into polar coordinates, the
integral can be solved analytically, and the resulirradiance PSF is the Airy pattern:
43, (kpal )’
S () = 2alkP2 1)
m (koa/ f)
wherelJ;(e) is the Bessel function of the first kingh,=/é* +1? anda s the radius of
the exit pupil. Figure 2.5 shows the PSF specifig@n Airy pattern.

(2.25)
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Light emission from a
point object at infinity Entrance
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g

I » 7 (opticd axis)
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Figure 2.5: Formation of an image of a point sodocated at infinity for a perfect
(diffraction limited) eye

When aberrations are present, the phase compohtm pupil function is not
zero, and the Equations for Fresnel diffractio2@2and 2.21) cannot be solved
analytically and therefore must be evaluated nuradyi. If phase is accurately estimated
from the wavefront sensor measurements and thetaadgktransmittance is either known
or modeled, the point spread function of the eyethan be computed via a Fourier
transformation by considering the following suhgtdns into Equation 2.21.:

(2.26)

whereu andv are horizontal and vertical spatial frequency dowtes defined such that
if £andn were specified in mm, thanandv will be in cycles per mm. The integral for
Fresnel propagation becomes

jejkfeJWH(UZWZ) i <j2m(xu+
Vel &) = =y [ [ PO y)e2meem dxay (2.27)
p

which is proportional to the standard expressiartie two-dimensional Fourier
transform:

H(u,v)= FT{h(x y} = j T i x y @770 dxc (2.28)

—00 —00

where the function being transformed for our agian is the pupil function. Initially,
the terms outside of the integrals in Equation 2ri2 appear to be problematic. Rest
assured that they are not and can be ignored sisagumerator becomes 1 after taking

the modulus square of amplitude PSF, and whattislgist the scalar terr(ﬂ fmf))_z.

These calculations can be carried out using tHeviaig Matlab (The MathWorks, Inc.,
Natick, MA) commands:

psi = (1/(lambda*f*mp”2))*fftshift(fft2 (fftshift(pyil_function))) % Field at the exit pupil plane
no_pixels = sum(sum(pupil_function(pupil_functior®y % Number of pixels
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S = psi.*conj(psi)./no_pixels; % Normalizedaidiance PSF

The “fftshift” function needs to be applied to thepil function prior to taking the Fourier
transform because the origin in Matlab is in the l&ft corner rather than the center.
Another “fftshift” must be applied after taking tReurier-transform so that the PSF can
be plotted correctly. The normalization step makee that the highest value in the
calculated irradiance PSF is the Strehl ratio.

Implementing the PSF calculations requires a twoettisional array of numbers
representing the wavefront departure from a pegkte. Processing the wavefront
sensor image to obtain the wavefront gradient andmnstructing the wavefront from its
gradient is discussed in the following two sectiohthis chapter. For estimating the
PSF, the reconstruction algorithms currently usedgsessing AOSLOII performance
are based on Zernike polynomials because theygean analytical representation of
the wavefront error (Figure 2.6a). The advantageawing an analytical expression is
that the wavefront can be evaluated at as manygasinecessary which is desirable to
bring out the details in the PSF (Figure 2.6b).iBaenal reconstruction algorithms,
which | will argue to be more accurate in the sewibelow, evaluates the wavefront
error at each subaperture (17 points across thieipuhOSLOII) although sensible
interpolation methods have been implemented outsigsion scienc®. Currently, the
PSF is only used to monitor the Strehl ratio in-teae, so proper modeling aimed at
determining the physical size of the computed P&~taken lower priority. More often
then not, a static value of 16.67 mm is used agftfieetive focal length of the eye and
used to estimate the size of the PSF. As the regeddre sophisticated image post-
processing techniques (i.e deconvoluifpincreases, we can expect more accurate
models for reconstructing and scaling the PSF tddweloped for AO retinal imaging.

um
(a

(b)

Figure 2.6: (a) Contour map representation of taeefront error for a healthy
emmetropic eye and (b) the corresponding irradi&@®€. The number of pixels across
the diameter of the wavefront map was chosen somieavbitrarily to be 129.

2.2 Wavefront sensing

Now that the physical principles behind the ocwarefront have been established, the
next step is to produce meaningful data, namelywdeefront gradient, from a raw
digital Shack-Hartmann image. Sharing similar higteith most technical developments
in AO (i.e. control systems, computationally eféict algorithms, turbulence modeling,
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etc.), nearly all the literature on algorithm fatimating wavefront slopes for Shack-
Hartmann sensors are written in the context obastnical AO systems. Therefore, a
thorough review of the literature on this topic foe purpose of identifying and testing
concepts that may apply to both sky and ocular Wamesensing would involve enough
research effort to warrant an entirely separateediation. However, based on what has
been described about AO retinal imagers that amewtly online, there seems be
surprisingly few advancements in the process dadiobitg wavefront gradient
measurements from the raw image beyond what wetsdifsscribed by Liangt al*® and
some practical improvements can be made withoutineffort. This is a pity considering
that the final wavefront measurement and contgialiare computed from the wavefront
gradient dictating the accuracy and precision efwtlavefront correction.

As illustrated earlier in Figure 2.1, if the eyeplaced along the optical axis such
that the pupil plane coincides axially with thenparily focal point of first telescope lens,
the field at the pupil will be relayed perfectlytorihe lenslet array. Positioning of the eye
in AOSLOII is carried out with a unit that contaiashin rest and temple mounts that is
attached to a three axis positioning stage. Cleaylg and head movements prevent the
actual pupil from being positioned exactly on-aatgl at the theoretical pupil plane, but
the system appears to be insensitive to small ifwvéttiew mm) lateral and axial
misalignments. At the other end of the telescdpe)énslet array samples the incoming
field which produces the two-dimensional grid obtspon the CCD as shown in Figure
2.4. How these spot locations are related to theefrant as well as the algorithm
currently used in AOSLOII to estimate spot locasi@ne discussed below. Since most of
the work done in ocular wavefront sensing invohegritke polynomials, | will begin with
a discussion on their basic properties before ¢ogehe details on what | have
implemented on AOSLOII for the purpose of improvthg robustness and accuracy of
the wavefront measurement process.

2.2.1 Zernike Polynomials
Describing the eye’s wave aberrations with Zermkl/nomials have become so
ubiquitous that a naive individual may be leaddbdve that they are intrinsically tied in
to the wavefront measurement process. This falpegssion is likely due to the fact that
most ophthalmic Shack-Hartmann sensors are nogheied in closed-loop AO systems
but are stand alone systems that do little more jinst recover and plot the wavefront
error. Since the measurement accuracy of theseatevannot be evaluate by any
absolute means such as the sharpness of an im#uefofzeal cone mosaic, making
objective conclusions regarding their performandebg extremely difficult if not
impossible. | will begin with an introduction regarg this popular set of basis functions
and will continue the discussion on how they am®rporated into wavefront
measurement and control in Sections 2.3 and 3.3.

An aberrated wavefront represented as a lineabowtion of Zernike
polynomials is described mathematically by:

AX, y)=2q;(x y (2.29)

whereN is the total number of Zernike modes (the fidshodes in this case) angs
called the mode number. The set of coefficiémﬁio determines the weight of each
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particular Zernike mode in terms of how much it trirutes to the structure of the
wavefront. Different authors have indexed thesgmahials in different ways, so to
avoid confusion the standard Optical Society of An#indexing schenéhas been
adopted. Zernike polynomials up t8 drder (first 14 modes not including piston, tfe 0

mode) are plotted in Figure 2.7 where each ZermikdeZ" is indexed wittm being the

angular frequency anadbeing the radial order (or simply “order”). Thealer is defined
as the highest degree in the set of polynomiaksgthwer ofx ory), so fundamentally it
determines the smoothness of the final reconstluegtvefront. The choice for the
highest radial order to fit can be somewhat subjecnd application dependent but is
ultimately limited by sampling density of the legtshrray. For example, if only refraction
(sphere and cylinder) is of interest, only a secomlkr representation is necessary. On
the other hand, if we were interested in how tlae tém affects the wavefront profile,
including Zernike modes up to T@rder may not even suffitk® Once the highest
radial order has been decided, the total numberaafes can be found by:

N = (N*D(n+2)

2

However, we must ignore the modes piston (not gdbith Figure 2.7), tiI(Zl‘l) and tip

(2.30)

(Zj) because they cannot actually be measured usihge$lartmann sensor, so the

actual number of modes estimated\is3. This is acceptable because these modes do not
affect the final retinal image quality. The indicesandn can be combined into a single
index called the mode index which | used in Equa8d9:

. n(n+2)+m

: 2
Especially in the computations steps involved iwefeont reconstruction, having
multiple indices is only redundant when the purpssanly to track the order of a set
functions or vectors.

(2.31)
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Figure 2.7 Surface map represéntations of Zerrtiikmﬁﬁiials up to*tﬁ order using the
OSA indexing schemé

Zernike polynomials come in different forms (tygdlgalistinguishable only by
the type of normalization used). The vision comrtyuhas more or less settled on using
the form recommended by ANSI which are normalizeduch a way that the set of
functions form a complete orthonormal (as opposeahty orthogonal) basis over a unit
circle. Since the area of a unit circletjghe inner product is defined as:

Al
(2.2)2-[.2(x 9 Z(x y dxdy g (2.32)
whereZ is the pupil domain and; is the Kronecker delta:
1 =i
J; ={ S (2.33)
0, i#]

The pupil coordinatex(y) clearly must be normalized by the pupil radius

(i.e.p=+/x*+ y* <1) prior to evaluating Equations 2.29 and 2.32. &bl gives

analytical expressions of Zernike polynomials ug't@rder in both the more common
polar coordinates as well as in Cartesian coordmathese equations can be
automatically generated in closed form using sonagéwbmplex formulae as explained
in Noll's classic paper on Zernike polynomials atohospheric turbulenc® But in
practical computer implementations, it will be memmputationally efficient to simply
hard code all the equations up to the maximum addsired. This way, each equation
will not have to be regenerated every time theynaeded.
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Table 2.1 Orthonormal Zernike polynomials up fbotder

j  Polar coordinates Cartesian coordinates

2 ;p cosd ;y

2 2psing 2X

3 Jep’sin® 2J6xy

4 (2071 (e + y2-1)

5>  6p*cos® x/g(xz—yz)

6  8p’sin® 2J2y(3¢ - y?)

7 J8(30°-20) sirg 2J2y(3¢ + 4y - 2

8  \8(30°-20) co® 2J2x(3¢ + 4y* - 2

9  8p*cos® 2\/§x( X — 3y2)

10 J10p*sin® 4J10xy( % - ¥)

11 «/E)(4,04 - 302) sin® 2\/1_0xy( 4y + 4% - C)

12 J5(6p* - 6% +1) V5(60¢ + y? )~ 6(x+ y?)+ ]
13 «/E(4,04 - 302) cos?@ \/1_0(X2 - yz)(4(x2+ V)- 3
14 \[10p" cos# V10(x* - 65y + v')

2.2.2 Wavefront gradient

It is more reasonable to define the wavefront gnailirather than the reconstructed
wavefront, as the variable measured by a Shackatdamt sensor because information is
lost during wavefront reconstruction (estimatidig¢vertheless, a significant amount of
computations are required just to get to that staje wavefront gradient is as:

o y) = [ 28X Y) 3p(x Y) (2.3
0x oy

For notation convenience throughout the rest af digsertation, | will denote the first
derivation of the wavefront by:

7 (x y) 2 2280

P (x,y) 2 2%
oy
Depending on the sensor model selected, most wantatconstructor designs make the
assumption of Equation 2.29 sampled over the @ifhe subaperture centers even
though the average gradient over each subapernuilwe a much more accurate
modef®®L How is the wavefront gradient related to the &mmlispot locations in the
Shack-Hartmann image? The answer is entirely toguatric.

(2.35)
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Table 2.2: AOSLOII wavefront sensor properties. Traene-rate is dependent on the
user’s chosen exposure time which general depertleoreflectivity of the retina
imaged.

Subaperture diameter 328 um

Subaperture focal length 24000 pm

CCD pixel pitch 12.9 um

Pupil magnification 0.889

Frame-rate <25Hz

Image dimensions 512 x 512 pixels (after 2 x 2 ipigh

Figure 2.8 illustrates how the spot pattern imag®eimed. A plane wave incident
on an array of micro-lenses will form a reguladgsi spots, which I will call the
reference spot pattern. The locations of thesesedispot images need not be measured
as they can be generated mathematically if pupgmi@ation and subaperture diameter
are known (Table 2.2).When the incident field ines an aberrated wavefront (Figure
2.8b), a particular spot location may depart frescorresponding reference point due to
the wavefront having non-zero slope (on averageysadhat particular subaperture.
Based on similar triangles, the relationship betwegch of these departures and the
corresponding average wavefront slopes is

opxy\_ 1 09(x, y) _m
< dx >_area(z)Iz dx dxdy——fo

OPXN\_ 1t 04X Y) 4o qu=T
< dy >_area(z)Iz dy dxdy——fAy

whereAx andAy are departures from the reference spot patters the pupil
magnificationf is subaperture focal length, ahds the domain for a particular
subaperture. These parameters for AOSLOII are givamable 2.1. Although not strictly
required, it is advisable to store wavefront gratigata in physical units (as opposed to
pixels) as wavefront calculation down the line e much more intuitive. Due to the
gradient field containing both x and y componetitsre will be twice as many
measurements as there are samples of the wavdftge®@SLOII, the field across a 6
mm diameter pupil is sampled by 213 subaperturesestoutput” of the wavefront
sensor is a 426 element vector.

(2.36)
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Figure 2.8: (a) Plane wave produces zero local fmaweslope across each subaperture
so the resultant pattern of focused spots fall peréect grid. The average slope of the
wavefront over a particular subaperture when toelent beam is aberrated (b) is
generally non-zero and the corresponding focusetlisage will displace from the
reference grid.

In the case where the wavefront is expressediasa combination of Zernike
polynomials, the wavefront gradient must be expregernike terms as well. By taking
the gradient of Equation 2.29, we get:

00t y) =3 607 (% Y (2.37)

This leads to separate expressionsxfandy components of the wavefront gradient as
indicated in Equation 2.34. Thxeandy wavefront slopes can be expressed as:
= 0Z,(%Y)
gxy)=2 ¢—-—

j=0 ox

o 0Zi(xY)
x,y)=Y ¢ 2%

@' (x,y) ]Z; oy
In Table 2.1, we saw that Zernike polynomials carekbpressed analytically in Cartesian
coordinates. This allows us express the partiavdigves in Equation 2.38 analytically as
well. Thex andy derivatives of individual Zernike modes up fbearder are given in
Table 2.3. Again, for the purpose of making th&ation more convenient, | will denote
Zernike polynomial derivatives with:

Z(x y) =

(2.38)

0Z,(x, y)
ox
A 0Z (X

z)(x e 2D
oy

(2.39)
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Table 2.3: Analytically generated Zernike polynohdierivatives up to % order

j Z" z?
1 O 2

2 2 0

3 2\/E3y 2\/6x

4 43 43y

5  2/6x -2\/6y

6 6/8xy V8By(3x - 3y?)

7 6J8xy J8y(3¢ +9y*- 2
8  B(9x*+3y*-2) 6+/8xy

9 8 (3x2 - 3y2) -6./8xy

10

J10(12¢y- 4y) V10( 4% - 12xy7)
J10(24¢y+ 8y - 6y)  V10(8¢ + 24xy* - 6¥)
J5(24¢ + 24xy* - 1) \/5(24xy+ 24y* - 12))
J10(16¢ - &) V10( 6y - 16y°)
V10( 4 - 12xy7) J10(4y* - 12¢y)

I ol
A W N

2.2.3 Shack-Hartmann image analysis

Raw Shack-Hartmann sensor data is a digital im&gespot array pattern with their
saliency depending on a number of factors includglegquality of the light source,
reflectivity of the retina, and the aberrationgtad eye. Since how the position each spot
in a Shack-Hartmann image displaces from its refagosition is proportional to the
local wavefront slope, the accuracy to which thegsats can be located is extremely
important as any error will affect all calculatithat will follow. The estimated spot
locations are called centroids. Many different g/pécentroid finding algorithms, some
of which can be quite compl&®? have been proposed, so the definition of centroid
used here is more of an umbrella term that gezexalnany different ways for
calculating spot locations rather than the formathrematical definition, which is just the
geometric center of a set of points. Sifigprovides a good description on AO software
for the flood-illuminated AO system at the Univéysaf Rochester where he breaks
down the major computations into three step thatl Iparallel: (1) setting regions of
interest, (2) preparing the (Shack-Hartmann) image (3) calculating centroids. These
steps together currently encompass more than htdEa@omputation overhead for real-
time control of AOSLOII taking typically more tha5 milliseconds (Figure 2.10).

Local regions of interest, or search boxes, as¢ flenerated from the reference
grid (where the spots would theoretically be lodatean aberration-free system). Search
boxes are initialized to be as large as possiblerggas adjacent boxes do not overlap.
This corresponds to be about 23 by 23 pixels (36896 um). The search boxes are also
drawn on top of the Shack-Hartmann image for thez tssee as shown in Figure 2.9b.

30



This step has become a popular feature due toigabtasons as often times with real
eyes, a spot may fall partially or completely odésof its corresponding search box.
Being able to visualize the location and size ef¢karch boxes quickly prompts the
operator to adjust the pupil location (regenerativegreference grid), adjust the subject’s
head position, and/or change the spectacle carreittthe individual being imaged has a
large amount of low order aberrations that caneatdrrected with the limited stroke of
the MEMS DM. The latter operations could potenyialbt be necessary for imagers that
employ badal optometers and high-stroke DMs for éoder wavefront correctigr
Preparing the Shack-Hartmann image prior to exegutiore sensitive
calculations is desirable as a clean high-congiast pattern, free from spurious
reflections and noise, insures that a spot locatitirbe found accurately. However as it
intended to push AO equipped retinal imagers taadl deployment, it is undesirable for
imaging requirements to be so stringent that tlenrmust be pitch dark and that only
“good subjects” (low aberrations, good fixationléj highly reflective retina, etc) can
be reliably imaged. With this in mind, we have umd#d additional calculation steps to
make the wavefront slope measurements more robusahy unforeseen circumstances
(spurious reflections, dim retinas, blurry spots,)e These include CCD exposure time
that can be adjusted through the user interfacgkgoaund image subtraction and an
iterative type centroid finding algorittth*’* ® These features were most likely not
coded into the software that operated the easietems *° ?Usince they are only
secondary when it comes to demonstrating the fonality of a Shack-Hartmann sensor
and that some of the computations may have beebua®nsome for the computers
available then. As mentioned by Sintjeegarding the software for the flood-illuminated
system in Rochester that it was more preferabileaattime to set up excellent imaging
condition rather than add more image processirmgutaions that may potentially lower
the system bandwidth.
(c)

(a) (b)

Figure 2.9: Steps in analyzing a Shack-Hartmanme(a) Close up view of the Shack-
Hartmann image from Figure 2.4a. (b) Same imagke thié search boxes displayed for
the user to see. (c) Estimated centroids which wareded to the nearest pixel for
display purposes.

The last step is the actual centroid calculatiorctvis done on the now processed

Shack-Hartmann image. The algorithm used by Lietrag 1° was the center of mass on
the intensity counts in each search box:

31



ijlj
><c(k)=—1le

Z yili

Ye(K) =-
>,
I

wherel is intensity count which is summed over the suppbthe search box of interest
andk is iteration number which was originally just ofiée accuracy of the centroid
finding algorithm can be improved by doing the eemf mass calculation iterativety.
47.83This process involves shrinking the search boxthed re-centering it around the
previously computed centroid location before cormmuthe center of mass again and
doing this over and over again. If a spot lied vepse to an edge of the search box, then
one side of the spot intensity distribution may faitside of the search box biasing the
initial center of mass estimate. In this situatian jterative center of mass algorithm will
clearly result in a more accurate estimate sineeséarch box will gradually become
better centered over the spot. However, it may &ake of iterations before the search
box becomes nearly centered and accurate estimpteduced. A practical fix that we
have adopted is to first find the location of tivegpwith the highest intensity count,
which we will refer to as the max-in-box operation:

(%@, y. @) ={ x.yf 1(x y)= max{ }) OjO3] (2.41)

wherej is used to index the pixels in search BoX he max-in-box operation only
replaces the first center of mass calculation sihisea lot less sensitive to misaligned
search boxes than the center of mass, but itasl@ds accurate when the search box is
well-centered as it completely ignores the irradedistribution of the spot and is only
sensitive to the nearest pixel. With this max-inxland iterative center of mass
combination, | have found empirically that the ragadility of the centroid measurement
does not really improve beyond three iterationar(fotal if including the first max-in-
box operation) as compared to the six or moretitera described in Hofest al?%. Each
newer, smaller box is formed by reducing all foenter-to-side distances by two pixels.
Hofer stated that centroid detection was most atewand repeatable when the final
search box was about the same width as the diffrapattern for a single subaperttire
By inspection of our Shack-Hartmann images, thediance distribution of the individual
spots seems to resemble more of a Gaussian digtnlihan that of a far-field pattern of
a square aperture (having lenslets over the subhapsreffectively brings the far-field
pattern to the near field). In any case, the diameftthe diffraction pattern of a single
lenslet is about 120m which spans across roughly 10 pixels, and thedipur last
search box is 11 by 11 pixels. Lastly, it is wartbntioning that we also employ a global
threshold condition whose value is made accessibbeigh the user interface. The
purpose of this threshold value is to roughly detee whether pixel values in a
particular subaperture are due to noise or naibtfenough pixels (default is less than
five pixels) meet the selected threshold critahian the centroid is considered not to be
found and the master list of stored centroid lasetiin the program will not get updated
for that particular entry. What this does is towerghat when a centroid cannot be

(2.40)
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computed, whatever measured value that was fromrihgous frame actually gets used.
| credit much of the current level of robustnesshef control loop for AOSLOII to this
modification as it is almost completely immune toopmeasurements caused by actions
such as blinking.
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Figure 2.10: Amount of time taken to measure theefrant gradient (subtract
background image, execute centroid finding algarjtand calculate wavefront slopes)
and all so plot the centroid locations on the usterface (Figure 2.9c).

2.3 Wavefront reconstruction (estimation)

In modern texts, wavefront reconstruction can redegither estimating the wavefront
profile from sensor measurement (wavefront graglientalculating the commands for
reproducing the wavefront profile with an activeiogl element such as a DM. Strictly
speaking, the former case is nothing more thamt@giation problem albeit over a
circular domain (pupil) and a finite sample of gead measurements. In some system
designs, the two cases may differ only by a scdletpr, so they become the same
problem (i.e. AO systems with matching subaperéung DM actuator arrays along with
zero crosstalk between actuators). As for otheish as all the AO retinal imagers
currently online which have many more subaperttivas actuators, the two cases
become quite distinct and therefore must be tresgpdrately. This section is dedicated
to only the wavefront estimation type of reconsiou@and their application in vision
science. Wavefront reconstruction for AO contratésered in Chapter 3.

The majority of the literature on wavefront recanstion was not written with
applications in visual optics in mind. In fact, vedrnont reconstructors in general have
received scant attention since the first ocularc&hdartmann sensor was developed by
Liang et al*® giving the impression that the first algorithm Beg to ocular wavefront
sensing is also the standard. However, Liang hiiysetording to his classic paper
recognized that there were many different appraathéhe wavefront reconstruction
problem, and that he simply chose to use the megtahation method developed by
Cubalchinf™. The lack of rigorous work on wavefront reconstiart associated with the
study of the eye’s optics provided the motivatioruhdertake this research. The rest of
this chapter lays out the mathematical foundatfonshree wavefront reconstruction
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(estimation) algorithms, loosely categorized anppdiased on either Zernike, zonal
and/or Fourier, which were implemented as parhisf dissertation. The discussions
below will begin with an analytical descriptiontbie problem before moving on to
constructing the equivalent discrete models thatbmimplemented on a computer and
solved numerically.

2.3.1 The classic Cubalchini method

Noll is usually credited with the first rigoroussteiption of wavefront correction and
Zernike polynomial®, but Cubalchini is very likely to have been thstfperson to
analyze the numerical problem on calculating Zexmm&efficients from Shack-Hartmann
type measuremerits For this reason, | will refer to the wavefronteastructor he
described as the Cubalchini method, which is a in@danstructor in the sense that the
guantities estimated are the individual Zernikeffowients. Once the coefficients are
determined, the estimated wavefront can then bergeed via Equation 2.29 using the
analytical expressions of the Zernike polynomidlahle 2.1). The Cubalchini method
was the reconstructor of choice for the very firstilar Shack-Hartmann sensor
developed by Liangt al®, and is to my knowledge still the most widelyhaligh not
always appropriately, used algorithm in vision sceeas well as in applications in related
disciplines.

Some basic properties of Zernike polynomials wéated earlier in Section 2.2.1,
and two different indexing schemes (a double agithgle) were introduced. For
estimation purposes, only a single index is necgssaonly the Zernike mode number
will be used. If the wavefront can be measuredctlyefitting Zernike polynomials to a
wavefront is a standard two-dimensional curvenfigtproblem. Given a function
representing the wavefrong)( thei™ Zernike coefficient is calculated by evaluating the
inner product (Equation 2.32) of the wavefront wihki™ Zernike polynomial:

_1 ‘
(9.2)=" [, )7 (x y dxch (2.42)
Substituting Equation 2.29 for functigmpwe get:
1 N-1
(92)=—26[,Z(x 9 2(xy dxd (2.43)
j=0

We can immediately see that the integral in Equaid3 vanishes due to the
orthonormality of Zernike polynomials except forevh = j. Therefore,

¢=(az) (2.44)
which can be generalized to calculating any nunolb&ernike coefficients by:
c (9.2,)
, Z
c=| % |= (¢: Y (2.45)
CN—l (@ ZN—l)

As mentioned earlier, the first three Zernike mofeston, tilt and tip) cannot be
properly measured with a Shack-Hartmann sensodanubt affect retinal image quality,
so they are always omitted during wavefront reqoiesibn.
Unfortunately, we cannot apply Equation 2.44 diyeto wavefront
reconstruction because the Shack-Hartmann senssrrai directly measure the
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wavefront but rather the wavefront gradient. Thauleobtained in Equation 2.45 is also
a special case for the solution to a linear leqsages problem where the cost functional
minimized is:

(2.46)

J(c)=% ﬂxy)-gqu y

:%sz(qa(x, V- 67 (% y} e
1 N-1 1N—1
=5(00)-2a(ez)r52 g

which is proportional to the variance of the wawefrfitting error. The argument of the
cost functional €) is the vector of Zernike coefficients. Considee estimation of an
arbitrary Zernike coefficient;, simply differentiate the cost function with respto c;
and set the resultant expression equal to zero:

a(c) __ _
. (#2)+c=0 (2.47)

which is the same as Equation 2.44. The same aupties when dealing with the
gradient of both the wavefront and the set of Zermiolynomials. The cost functional
can still be defined as the fitting error, butenns of the wavefront gradient:

3()=1 { (% y)} SH {zr(x, y)}
2|l @' (xY)] = ij(x’ y)
2G5 (% »J dxdyf—thLL(ﬂy( X )/—Z e A 'X)9 dxdy

=L(g.0)+(0.9)]- Zc[( z))+(07.2) ]+ ZZW[(ZVZ?( 4]

Clearly the residual Wavefront gradient versiomnhef cost functional is less appealing
than the just residual wavefront version. Thisrigngrily due to the fact that we now
need to minimize the fitting error for both thenday components of the wavefront
gradient. This task is further complicated by thet that higher orden(> 2) Zernike
modes lose their orthonormality if the derivatiseakefi* ®°

{(ZX ZX);tJ i>50rj>E

(2.48)

N-1

= L(@(x, -

o (2.49)
(z0.2')#24 i>50rj>¢
Nevertheless, we can still derive an expressiomffoarbitrary coefficient; in more or

less the same manner by differentiating Equatid8 @ith respect tg, and setting the
resultant equation equal to zero.

0\(1)((;) ~(7.2)-(¢"2)+ Z‘F[( 2)+(72.2)]=0 (250

This result is a system of linear equations thatlmexpressed in matrix form:
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(z.z)+(z.2) (zz2)+(z2) -~ (22)(22)|q7]| (0 3+
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(2.51)

(20 2)4(Z200 ) (2 Z)H (20 2) - (Z0 2+ (20 2) )15 [[(00200)+ (0 20)

which | will represent generically B¢ = dwhereBORM", cOR" andd OR*
whereNs is the number of subaperturdg € 213 for 6 mm diameter pupil). Each entry
of matrix B can be determined analyticaffyout the entries of vectat must be computed
numerically sinceg and ¢f are measured quantities. Once Equation 2.52 isepgopet
up, obtaining the best estimate of veatds just a matrix inversion:

¢=B"d (2.52)

The derivations thus far have been primarily amnedyt The Cubalchini method

bypasses these tedious analytical steps neededv® @ Equation 2.51 by setting up the
problem in discrete space from the beginning. Wikierking in the discrete domain,
functions, such as the Zernike polynomials, arerdized into vectors by evaluating
each function at the sampled locations in the panil vectorizing the result. When that
is done, we can express the sampled wavefrontegrifiiting error in the form:

ezy-Z'c (2.53)
where the measurement vecyazan be defined as the measured x- and y-slopes
vectorized and stacked one on top of the other:

A @ 2N
= OR“™s 2.54
Y M (259

The columns of matriX’ are the vectorized Zernike polynomial gradientgwit
derivatives stacked on top of the y-derivativeg @hder of stacking must be consistent
with the measurement vectpy.

A Zx 77X ... X_ i
Z|= 3 4 ZN 1 DRZSXN 3 (2.55)
Zy Z) - Ly,

The linear least squares problem can now be carsttioy minimizing the square of the

wavefront gradient fitting error:

30 :%eT e (2.56)
The result of from differentiating Equation 2.5&Rviespect to vectarand setting it to
zero is the best estimate of the Zernike coefficiettorc in the sense of least squares.

e=(z"z)"z"y (2.57)
where the columns ((fZ Tz ) are linearly independent, making the matrix inodet as

long as the number of estimated Zernike coefficg@ttes not exceed the number of
subaperturéd, By inspection, we can see that Equation 2.58cisnaenient

approximation of Equation 2.52:
B=(272)
(2.58)

d=2z"y
The matrix(Z 4 ')_12 T is the wavefront reconstructor which Cubalchirfiers to as

the least squares estimator. Cubalchini used gfigifterent notation in all his
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derivations, but the mathematics are identical. A¢tation we use is more
straightforward to implement in modern numericalgremming environments such as
Matlab. For most systems, the reconstructor ongdeeo be computed once and then
stored. The number of visual optics papers thali@ip state that they calculate Zernike
polynomial coefficients using Cubalchini's methedsurprisingly fed” " %8> while the
majority of visual optics studies only refer to hgget al® without elaborating further on
their choice of reconstruction method. Since nokwivision to my knowledge has
explicitly stated that the method implemented falcalating Zernike coefficients
differed from Liang’s original work, it is reasorlalio assume that Zernike coefficients
to date have been calculated using Cubalchini’saet

2.3.2 Zonal reconstruction

Zernike polynomials have been discussed in greaild® far, but looking back at the
original problem, what we have is a model stathmgt the measured quantity is equal to
the wavefront gradient plus noise, which can be etextias:

(ve(x W), ¥, (x W) =000% y+( v(x ¥ y( x Y (2.59)

wherevy andvy are measurement noise. Formally speaking, the @oyrmbnditions
imposed on Equation 2.59 are of the Neumann typee thnve circular boundary defined by
the pupil. Given this description, are Zernike pwignials, or any other set of
polynomials for that matter, required to solve Boqra2.59? Zonal wavefront
reconstruction describes a set of algorithms wttexavavefront is computed directly
from wavefront gradient measurements without aescst for any particular set of
analytical basis functions. Equation 2.59 cannadiberetized and solved directly
because the gradient operator is not self-adjdime. only property of interest is that self-
adjoint operators, when expressed in matrix foma,sgmmetric, so a rigorous discussion
on this subject is unnecessary. However, the Lapdgerator is self-adjoint. Taking the
divergence of both sides of Equation 2.59 allowtousssess the same problem but
involving a Laplacian instead of the gradient opara

D%A(x, y) = f(x Y) (2.60)
=0y, (% V), % (% 9) =0 w(x ¥, y( x Y

:(6yx(x, Y, 0 (% y)]_(a\&( Xy, 0%(X 9]
0x oy oXx oy
which is a Poisson’s equation which can be solyeddproximation via finite difference
methods and writing the result as a system of fiegaations:
By=d (2.61)
Matrix B OR**implements a discrete Laplaciap1RR® is the vector containing the
desired wavefront values (one value per subapé@rsteeked column by column across

the pupil, andd OR® is obtained by taking the divergence of the mesment vector.
Setting up Equation 2.61 before we can even consglaow to solve itB is ill-
conditioned) is not a trivial task because the ®yeipil is round. Classic pap&t$°on
zonal reconstruction and Off-the-shelf matrix maitation tools (i.e. relevant resources
include the Matlab functiononvmtx2.ma recent image deblurring book with Matlab
example&’, and a Matlab implementation for zonal wavefr@ttanstruction is given in a
recent book by D&f) both assume the data to be of rectangular suppioite real eyes
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involve data with circular support, we cannot dilease any of the available software.
Our task is complicated further by the fact that plupil can vary in size requiring the
software to include functions that appropriatelgntor augment the matrices and vectors
involved in the calculations based pupil size. Ehesallenges are what attracted my
interest in the zonal wavefront reconstruction pgobboth at the fundamental level and
software implementation.

§(mn)  S(m, n+l)

(a) (b)
¢m, n) @m,[n+1) ¢(m, n) ¢m, n+1)
S(m,n) — S(m, n+1)
S(m, n+0.5)
Y S(m+0.5,n)
@i, n) @mt1, n)
S(m+l,n) —e—» ° °
\ 4

S(m+1,n)
Figure 2.11: A patch of 2 by 2 subapertures (oetlim light gray) illustrating how

wavefront slopesS, andS,, are related to the sampled waveframtfor the (a) Southwell
and (b) Hudgin sensor configurations

In order to perform zonal wavefront reconstructioperators must be discretized
and modified to match the configuration of the wiawat slope measurements. For
Shack-Hartmann sensors, the default geometry lisccéile Southwell configuratih
which is characterized by the wavefront samplesading with the wavefront slope
measurements (Figure 2.11a). | consider this cardigon to be most intuitive because it
is designed to estimate the wavefront error at sablaperture. However, an indirect
computational route is required for the wavefrdapes to be related to the desired
wavefront values located at the subaperture centagefront slope data in the
Southwell configuration must be first convertedtte Hudgin configuratioff as
illustrated for a patch of four subapertures inuiFgy2.11b. Locally, the calculation is just
a simple average of adjacent slopes:

)= S(mntD)+ S(mh

S.(m 0.5 y
(2.62)
s, (m+0.5, =ML Z+ S(my

whereS, andS, are scalars representing the local wavefront slapem andn indexes

the subapertures. With some abuse of notatiorhatiendex step in Equation 2.62 and
Figure 2.11b is used to represent slopes thainféktween adjacent subapertures in the
Hudgin configuration. Under the Hudgin configuratioche slopes can be related directly
to the wavefront samples:
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S(m n+0.5)=
d (2.63)
s,(m+0.5, =AML n3+¢(m L

which becomes the standard definition of the dékreaf we the limit ofd as it
approaches zero. To estimate the entire waveftloaalculations must be applied
across the entire pupil. The original formulatidritds problem is in matrix fornf:

I =Dy (2.64)
where matrice® andl' implement Equations 2.62 and 2.63 respectivelysactioe entire

pupil and the measurement vecgds defined as before in Equation 2.54. Since matri
computes both the x- and y-derivatives, if impletedrsequentially, this matrix takes the

form:
—_ rx
M= L_ } (2.65)

where the interesting continuous-to-discrete spgacgparison can be made:
0pxY)
0x
0AXY)
oy
This also means that matiixhas almost twice many rows as it does columns (392
213 for a 6 mm pupil in AOSLOII), so like the Zeékaimodal reconstructor from the last
section, we have a least squares problem in owdshd estimate the wavefront,
multiply both size of Equation 2.64 Iy

N
(2.66)

y

Fre=r"Dy (2.67)
This is the same as Equation 2.61 by observing that
B=(rr)
(2.68)
d=T"Dy

Equation 2.64 (or 2.67) is not trivial to solve hasel™ 'T is singular. If we choose to
ignore why a singularity exists, the best soluttan be obtained by taking the singular
value decomposition (SVD) of.

r=ubpv’ (2.69)
where the columns of the unitary matri¢¢andV for orthnormal basis sets for the
wavefront gradient and the wavefront respectively matrixD is diagonal whose entries
are the singular values of this model. If the setipquation 2.64 is correct, then the
smallest singular value would correspond to pist@roing the smallest singular value
after invertingD, the least squares estimate of the wavefront besom

@=I"Dy
r=vb'u’
where the diagonal matrR" is obtained by taking the reciprocal of each nerezntry

in D while leaving the “near-zero” entries alone. Notcefar that the slopes from the
Hudgin configuration (Equations 2.62 and 2.63)a@rky used to formulate the problem

(2.70)
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and are actually never calculated. Equation 2.%@lisl, but a more sensible approach
would be to recognize that certain wavefront pegfi(i.e. piston) are in the nullspacd of
and preconditioning can be applied to solving Eiqua2.67. The set of wavefront
profiles that span the nullspaceloére called unobservable modes with the definition
being very much analogous to that in control the@urrently, the two modes we define
to be unobservable are piston and global wafflfrigyre 2.12), since any wavefront
formed by a linear combination of piston and waiél¢heoretically invisible to the
Shack-Hartmann sensor. Using preconditioning, ¢astlsquares solution takes the
following form:

o=(r"r+w) 'y (2.71)
where the columns of matrix (different from the one in Equations 2.69 and 2 &1@)

the vectorized unobservable modes. It is worthngptinat Equation 2.71 is the solution to
minimizing the linear quadratic (LQ) cost functidna

1 1
J(¢):E||Dy—rﬂ|§+—2¢T (VVT)qo (2.72)

which is analogous to the LQ problem in optimaltcolhwhere instead of designing a

matrix to penalize the input, thématrix in zonal reconstruction penalizes the wewaf
making sure that improbable wavefront shapes d@ppear in the final estimate. We

currently run Equation 2.71 in real-time on AOSLQihd to my knowledge, no other

AO retinal imager runs this type of reconstructor.

Figure 2.12: Piston (left) and global waffle (rigktavefront modes at subaperture
resolution for 6 mm diameter pupil
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Figure 2.13: From left to right, reconstructed wiawets for a 4, 5 and 6 mm diameter
pupils from the same Shack-Hartmann image (modelath a cylindrical trial lens)

In ocular wavefront sensing applications wherénlrgquency features in the
wavefront may be of interest (i.e tear film irregities, corneal scaring, refractive
surgery outcome assessment, etc.), fitting Zerpdégnomials to the wavefront may
result in undesirable levels of smoothing (FigukS¥* > 48 °- 87z0nal reconstruction
would be the more appropriate choice for theseiegibns. The use of Zernike
polynomials have been criticized as being respéa$ils poorer visual outcomes after
LASIK®%, and newer wavefront sensors used to guide rafesstirgery such as AMO's
WaveScan WavefroRf System no longer rely on Zernike polynomials. lany of these
studies, the algorithm used is actually of the Furansform type, but as discussed
below, zonal and Fourier-based reconstructorsiaréamentally the sarffe*®: 8
Perhaps the reason why zonal reconstruction isurogntly more widely used, at least in
basic research, is due to implementation diffiegltiin particularly, trimming or
augmenting matricels andD automatically in order to accommodate measurenees
a circular domain is anything but trivial task. Weve developed zonal reconstruction
code for variable circular pupils (Figure 2.13pmth Matlab and C with the Matlab
version provided in the Appendix B.1.

2.3.3 Fourier methods

Although considered to be a modal reconstructoonkider Fourier methods to be zonal
because they essentially solve the same problepu$tun the frequency domain. The
resultant reconstructed wavefronts using the twthaus are generally difficult to
differentiate, but the two are easily distinguidedbom Zernike polynomial based
reconstruction (Figure 2.13). As one might imagthe, purpose of developing Fourier
methods is so that the wavefront resconstructioblpm can be solved fas%gei And |

am quite certain this is why Fourier methods alaith other time saving modalities (i.e.
the conjugate gradient) have received more sesgtiastion in astronomy (as opposed to
vision science) where future systems are designedpport thousands of degrees of
freedom (subapertures and actuators). CurrentrviS® systems and wavefront sensors
in vision science will obviously not benefit to trextent because the difference in speed
between matrix and Fourier methods differ lesslassl with decreasing degrees of
freedom. However, the future may still be bright Fourier methods in vision science as
they are well suited for dealing with arbitrary gwgizes and shapes.
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Figure 2.14: Wavefront maps of a normal eye withesr breakup reconstructed using
(a) zonal, (b) Fourier and (c) Zernike methods. ¥fiaont maps of a different normal eye
after tear breakup reconstructed using (d) zoeal-¢urier and (f) Zernike methods.
Shack-Hartmann images from a very high density Wwawésensor used in an earlier
study is more appropriate for making qualitativenparisons between zonal and Zernike
polynomial based methods since evaluating Zerndtgnomials over a denser sampling
grid better represents there use in ocular wavefensing

My treatment of wavefront reconstruction methodsgoleon the Fourier transform
will be very cursory as many of the subtle dettilt have been developed over the years
were neither thoroughly investigated nor implemeérae part of this dissertation.
Therefore, a detail analysis on the underlying@ples of Fourier methods is currently
beyond my expertise. However, the idea behind Eotransform methods is very
simple: differential equations become algebraicatiqus in the frequency domain.
Recall ¢ and ¢/ being the x- and y- derivatives of the wavefrohg telationship between
spatial and frequency domain representations ofvnefront gradient is:

FT{¢} =uFT{a x v}
FT{¢'} = vFT{a(x Y}

whereFT denotes the two-dimensional Fourier transformwaaddy, like earlier, are the
spatial frequency coordinates. Like the zonal retrmictor, we then take the divergence
of Equation 2.73 to obtain the Laplacian of the gfeont:

D’@(x,y) - UFT{@}+ vF{@} =(d+ ¥) Fia x )} (2.74)

We can now isolate the wavefront, by dividing bsithes byu?+ v and take the inverse
Fourier transform of the result:

axw:FT{

DX, y) { (2.73)

(2.75)

uFT{¢} + vFT{(py}}
(7]
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Unlike zonal reconstruction, there are plenty dftbé shelf tools that can be directly
applied to the study of Fourier methods. In Maflabexamplefft2.mandifft2.m
implement the Fourier and inverse Fourier transgramd the frequency coordinate
space (, V) is automatically generated by callifrggspace.mHowever, | have found it
less “conversion friendly” when it comes to the monportant real-time implementation
in a high level language such as C.

Equation 2.75 may give the impression that we areedbut in fact the
reconstructed wavefront will likely contain largeas. The original proposed Fourier
method was designed for rectangular pupils sinealiscrete Fourier transform (DFT)
operates on a rectangular §ridSince most optical systems are circular, oneieally
forced to zero-pad the sampled wavefront gradieotder to form a square grid. The
new square pupil contains data within the pupilz®ros outside meaning that the
gradient across the pupil boundary will be incarr&bis assumption will undoubtedly
lead to significant errors when evaluating Equafiofb. There are several algorithms
that have been developed to solve this problem.vzxeis to estimate the slopes across
the boundary before taking the Fourier transf8rifihe other method is based on the
Gershberg algorithm which solves this boundary d@@rditeratively by recalculating the
wavefront gradient from the wavefront reconstruatedEquation 2.75, replace the
calculated gradient with the measured gradient lvban be done only inside the pupil
while leave everything be outside the pupil andegEquation 2.78. This Gershberg
based Fourier reconstructor was used to genergtedsi 2.13b and 2.13e. Gershberg
type algorithms are not as computationally effitieecause the reconstruction must be
done several times. Nevertheless, they are stiéfahan matrix inversion methods.
Recently, a unity frequency response reconstruidsed on the Gershberg algorithm has
been developéd Without considering sensitivity to measuremenbrefi.e. sensor
noise), this would be the most accurate wavefrecomstructor to date and is worth
exploring for ocular wavefront sensing applications

Direct metho

Wavefront Zernike
. Wavefront > .
gradient coefficients

A

\ 4

Indirect metho
Figure 2.15: Direct and indirect routes for compgtZernike polynomial coefficients

2.4 Discussion

2.4.1 Direct and indirect routes to fitting Zerngelynomials

I would like to discuss whether or not minimizirigetfollowing two cost functionals
(Equations 2.46 and 2.48) produces the same &&roifke polynomial coefficients:
2

L 3(0)=5|ex =X 53 (x Y

{(ﬂ*(x, y)}_ ‘10{2?(& y)}
Pxy| = '1Z/(xY)
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The first is the case of fitting Zernike polynonsiab a wavefront, which, as indicated in
Figure 2.15, is the direct method because we tigfiZernike polynomials directly to
the wavefront. In the second case (the basis tihalChini method), Zernike polynomials
are indirectly fitted to the wavefront by fittinge first derivatives of Zernike
polynomials to the wavefront gradient. If these fvocesses are equivalent, then they
should produce the same set of Zernike coefficidtigton, tilt and tip will be left inside
the expression for the sake of discussion. It igfbkto first state some important
mathematical proEerties of Zernike polynonfiaf:

Property 1: The 3" mode is piston (DC component of the wavefront) isrdefined to

be unity across the entire pupil.

Property 2: All modes except for piston have zero mean.

Property 3: If piston is removed from the wavefront, the squaa of the sum of
squares of the coefficients yields the RMS wavefasror.

Property 4: The value of each Zernike coefficient does not ddpen the number of
modes in the expansion.

Property 1 is by definition, and Property 2 is aseguence of Property 1. This can be
observed by taking an inner product of piston \aitiother mode:

(202) =], 25 9 7 (x ¥ dxd (2.76)

1
==[.Z,(x y) dxd

=0, j#0
where the second line is just the mean of/th@ernike mode, which vanishes due to

orthonormality. Property 3 can be directly derifexin standard formula for computing
the rms of an arbitrary waveform:

s = Jl [ #7(x y)dxcly 2.77)
T

where 7 is the area of the normalized pupil. If we subsgittquation 2.29 in fog(x, y),
the RMS becomes:

%S:\/%k[gcjzj(x y)] dxdly (2.78)

But since Zernike polynomials are mutually orthanal, we can remove all the cross
terms and obtain a much simpler expression foniénefront rms:

N-1
s = |2 €5 (2.79)
i=0

This is an important result because the RMS valgeamntinuous function can be
computed via a finite summation, but this resultald only if the chosen basis functions
are orthonormal. Property 4 was already derivelieedEquation 2.44) which was:

¢ =(0.2)=2[Ax V7 (x Y dxd

Notice that three of the four properties are cotghyeconsequences of orthonormality,
the exception being the Property 1 which is a ddim. Therefore, they are all if and
only if statements.
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In order to answer whether or not the direct awiiréct routes for calculating
Zernike coefficients are the same, Property 4 jgasficular interest because it has much
more implications than appearing to be just a mawnputational convenience. As
stated earlier, ocular Shack-Hartmann sensorshageitous and it is more likely than
not for different devices to use different numbarsnodes in their expansions.
According to Property 4, suppose a particular Zegmioefficient, call it;, was measured
for an individual using several different devict® results from each measurement
should be directly comparable assuming all othesupaters (i.e. noise level, sampling
density, pupil size, etc.) are reasonably simiawever, this frequently assumed
property does not hold if the indirect route (Cubati method) is taken. In Section 2.3.1,
a linear system of equations for computing the kernoefficients from the wavefront
gradient was analytically derived resulting in Edpa2.52 which we denoted iBc = d.
The solution (Equation 2.53) was simgy B™d which exists because the set of
Zernike gradient polynomials form a linearly indegent but non-orthogonal ba%i$®
Using this notation, the estimated valueddoecomes:

c :Zl[B_l]u d (2.80)
S5 [{9.22)+(2)]

Where[B‘llj is thei™ row andj™ column entry of matri>{B‘1]. By inspection, in order

for the value ot to be dependent only on th&Zernike gradient polynomial and thus
for Property 4 to hold, the entii& row of matrix[Bﬂ must be zero except for if&'

entry. This would requiréBﬂ] to be diagonal which is not the case because¢hake

gradient polynomial are non-orthonoriftat® Therefore, if we choose to indirectly
estimate the Zernike coefficients, we are in fathfy some non-orthonormal set of
polynomials to the wavefront proving that the diraed indirect routes for estimating
Zernike coefficients are indeed fundamentally défé. An immediate consequence of
this observation is that the convenient expresiionalculating the RMS wavefront
error (Equation 2.79) is no longer valid, so peghigis to no surprise that Cubalchini
actually did not included this expression in hisssic papét.

In a study conducted by Prie¢oal®’, the authors fitted different numbers of
Zernike polynomials to a single data set using@hbalchini (indirect) method and
showed that the number of modes estimated doesamagfect on the resultant Zernike
coefficient estimates. The same type of behavia emserved from a4 6", and 16
order Zernike fit (indirect) to wavefront slope a@dtom AOSLOII (Table 2, left half).
These results provide empirical evidence agairstv#hdity of Property 4 when Zernike
coefficients are estimated indirectly. Considerghmaple, but direct, alternative: first
estimate the wavefront using zonal constructiod, @mce that is done, we can fit Zernike
polynomials directly to the wavefront through stardicurve-fitting. Recall from Section
2.3.2 that if the proposed least squares zonahetagctor (Equation 2.71) is used, the
result is simply a vector of local wavefront estiega(one per subaperture).

o=(r'r+w’) 'y
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The reconstructed wavefront expressed as a lirabination of Zernike polynomials
can be express in matrix form as well by:

p=7c (2.81)
where if we choose to fit the firbt modes to the wavefront, matizxwill then haveN
columns with each column being the appropriatetrer=d) Zernike polynomial
sampled at each subaperture location:

Z2[zy z, -z (2.82)
The least squares solution is simply:
¢=(2'z)" 27 (2.81)

At this point, it is interesting to compare inneoguct definitions in the continuous and
discrete spatial domains. As one can see, the pnoeluct expression is much simpler in
the discrete spatial domain:

1 1
=] Z;(x Y Z (% Y dxdy- —2'7
”J N (2.82)

1 1 5
]—_[J'zqa(x, Y)Z (% y) dxdy- sz

The discrete case can be derived from the contsaase by replacing the integral with a
summation, recognizing thdkdy~ 77N, and rewriting the result in vector form.
Discretely sampled Zernike polynomials are onlyragpnately orthonormal:

1,28 (2.83)

and so the condition will only become weaker asattempt to estimate higher and
higher order terms due to aliasing. However, ifZleenike modes of interest were
appropriate for the sampling density of the wavetfisensor, then the approximation
made in Equation 2.83 is valid and the least sgs@itgion given in Equation 2.81
becomes:

6:(NI)_IZT&:%ZT(Z (2.84)

= —izT&
1 N 1

which is analogous to the continuous spatial dornase presented earlier (Equation
2.44) assuring that the value of each Zernike aoefft does not depend on the number
of modes used in the expansion (Property 4). Altitosomewhat trivial at this point, the
results from using the direct method are giverhanright half of Table 2.4 showing that
the coefficients are indeed independent of theragdkected for the expansion. The
estimated coefficients gradually become less assldecurate as the order of the mode of
interest gets higher because Equation 2.83 wilbect good approximation if we sample
a very high order mode too coarsely. Thereforagtienot a sharp cutoff where beyond
a specific mode we can start disregarding theafetste estimates, but the general vicinity
to where this would occur will clearly be basedtlb@ sampling density of the wavefront
sensor. As a guideline, | recommend up samplingiatoarr times the Nyquist limit

which is somewhat conservative. So for a 17 byub&aperture sensor, the estimated
Zernike coefficients up to™and %" order should be valid for all practical purposes.
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Table 2.4: Zernike polynomial coefficients computesihg both indirect (left half) and
direct (right half) modal reconstruction methodef@@us estimates (bold) seem to be the
only mode that remained reasonably unaffected éynthmber of terms used in the
expansion.

] Indirect (Cubalchini method) Direct

4"order @ order 18 order | 4" order @ order 10 order
3 0.0001 -0.0005 -0.0013 0.0055 0.0055 0.0055
4 -0.2215 -0.2213 -0.2214| -0.2178 -0.2178 -0.2178
5 0.0057 0.0052 0.0046| -0.0025 -0.0025 -0.0025
6 -0.0002 -0.0121 -0.0112 0.0098 0.0098 0.0098
7 0.0033 -0.0027 -0.0031 0.0018 0.0018 0.0018
8 -0.0116 0.0017 0.0014 0.0025 0.0025 0.0025
9 0.0113 0.0115 0.0110 0.0137 0.0137 0.0137
10 0.0045 -0.0061 -0.0061| -0.0029 -0.0029 -0.0029
11 -0.0071 -0.0095 -0.0099 0.0102 0.0102 0.0102
12 0.0225 0.0235 0.0234 0.0115 0.0115 0.0115
13 -0.0039 0.0120 0.0127 0.0052 0.0052 0.0052
14 0.0169 0.0046 0.0059| -0.0009 -0.0009 -0.0009

2.4.2 Zonal reconstruction noise propagation
According to paper on wavefront reconstructors bytBwelf°, modal estimation was
shown to be superior to zonal estimation. Thisest&nt may have caused some
misconceptions regarding zonal reconstructionjq@aerly for ocular wavefront sensing,
as some authors have gone as far as stating ebypiict modal reconstruction is better
than zonal reconstructigfhss' 891t should be mentioned that Southwell’s work Wwased
on Legendre polynomials over a rectangular grid, more importantly, his conclusion
was based on noise propagation. More specific8iythwell showed that a Legendre
modal reconstruction tended to have a lower naispggation coefficient than the
proposed zonal meth®4 This should not be surprising because the tataibver of
modal coefficients estimated is generally much lotlsan the number of local wavefront
values estimated via a zonal approach. For exam@#©SLOIl, we estimate Zernike
coefficients up to 1 order which is only 63 numbers as opposed to tiesibapertures
where zonal estimates are made (6 mm diameter)pupil

Characterizing the performance of different recarcdion algorithms based on
sensitivity to noise is important, but it does moany way help determine the accuracy of
the reconstructed wavefront. Since zonal reconstmudirectly seeks an optimal
wavefront profile rather than a linear combinatadrsome predetermined set of
functions, it is fundamentally more accurate thadat methods when measurement
noise is negligible. In fact, it is only possibteachieve band-limited performance using
zonal reconstructidi. If measurement noise cannot be neglected, dsaither
impossible or impractical to further optimize ther@oid finding algorithm, then modal
reconstruction may be more appropriate. Howevat,ithnot to say that the “standard”
zonal reconstructor cannot be improved in termsoide propagation. Consider first the
zonal reconstructor whose noise propagation prigsentere assessed by Southwell:

E=(rir,) (2.85)
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Thep term augmented to the bottom our original desigtrixl™ is just a vector of ones,
so a full row of ones has addedtoThe noise propagatidd,, of the reconstructdg,
derived from taking the SVD 6., is the sum of its inverse singular values squégd

Cp=2.07 (2.86)
j=1

wheres is the number of subapertures (number of columing.iThis makes sense
because if ¢ is poorly conditioned, then there will be at leasé very small singular
value which is all it takes to produce very largése propagation according to Equation
2.86. Since the square of the singular valuds afe just the eigenvalues of matrix

(rgre) , the noise propagation is also the sum of therge/eigenvalues c(ﬂ'lre) .
Furthermore, notice that:

(rers)=[r p][HﬂT“ppT

so the zonal reconstructor addressed in Soutffigihearly identical to that given by
Equation 2.71 with the exception that only pistphi¢ penalized. Since both piston and
waffle modes are explicitly penalized in Equatioil2 the zonal reconstructor currently
in use on AOSLOI! is better conditioned than the onnsidered in Southw&l The

noise propagation is simply the sum of the inveigenvalues of matrix 'T +VV . If
lower noise propagation is desired, regularizatemhniques can be used:

E=(r"r+wWT +al ) I'D (2.87)

wherel is the identity matrix and is ideally the noise-to-signal ratio. Equation 2i8a
Wiener filter solution. Since the noise variancaas known exactlyg must be
empirically tuned until the desired noise propawatevel is achieved. i is too small,
we end up with the original reconstructor, whil#igg it to be too large will cause the
reconstructor to converge closer toward a zeroiratnich has zero noise propagation
but will also be useless. Noise propagation doé¢s@em to be an issue for wavefront
reconstruction on AOSLOII, so no regularizatiomsed ¢ = 0).

2.5 Conclusions

To conclude, | have reviewed some of the physip#ts involved in the image
formation of the eye and verified that the stanqamtedure for calculating the eye’s
PSF is based on Fresnel approximation. Opting fall &ayleigh-Sommerfield
treatment of diffraction would probably not makey unactical difference. However, the
parameters used for the PSF calculation shoulck&mieed more closely. For example,
the location and size of the eye’s exit pupil camibre systematically estimated if
certain biometry data is available. Also, a Zerrpléynomial representation of the
wavefront may be an over-smoothed version of thashevavefront which will directly
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affect the PSF making it appear much better thasmsity is. A wavefront reconstructed
using a zonal reconstructor may aid in generatingee realistic PSF.

Estimating Zernike coefficients indirectly from thwavefront gradient (i.e.
Cubalchini metho¥f) has been analytically and numerical shown toifferdnt from
fitting Zernike polynomials directly to the wavefrio Two practical consequences result
from this observation: (1) the RMS wavefront eiigono longer simply the square root of
the sum of squares of the estimated coefficiends(anhindividual coefficients will be
different depending on the number of modes usélderexpansion making comparisons
between different studies more difficult.

Finally, when assessing wavefront reconstructiothows, reconstruction
accuracy and sensitivity to measurement error gparsate properties. In terms of
accuracy, zonal reconstructors (Fourier methodsded), if set up properly, are optimal.
If the errors in the wavefront slope measuremerg@sabstantial enough to warrant
consideration of noise propagation properties efwhvefront reconstructor, a modal
reconstruction will most likely be more accuratartta zonal estimate that has not been
regularized. However, a simple Wiener filter canas be included in zonal
reconstruction to match or exceed the noise prdmagproperties of a modal
reconstruction at the expense of accuracy.
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3. Controlling monochromatic ocular aberrations

3.1 Introduction

Controlling wavefront aberrations in real-time idifficult task. It is probably the most
complicated component of an AO system as it inv®ivany disciplines. In order to
implement an effective closed loop design, one s¢edonsider factors regarding
anatomy, optics, mechanics, electronics, real-toraputing, and most of all control
theory. Not properly addressing the significancemd particular topic will not lead to
any danger in the sense of injury or severe prgminage (although “snapped” DM
actuators do inevitably occur and are expensivetiamelconsuming to replace), but they
should nevertheless be respected if we are to duditer delays in bringing vision AO
systems into the next generation and closer towlanttal deployment. As the number of
AO applications in vision grows, we can expect @&ases in the number of users not
familiar with AO and in patients with more challémg optics (i.e. post-LASIK, dry eyes,
etc.). This reason alone motivates the need to nmaovements to current AO system
performance and robustness so that clinical arehsftic throughput (better quality
images from a larger pool of patients) can be impdo Some of the content presented in
this chapter are taken out of my conference papéth only trivial modifications.

Wavefront error

l Wavefront
Zero + gradient
e Controller — DM —0O— Wavefront sensor >

Figure 3.1: Descriptive block diagram representiregAO control loop. The reference
input is zero because the desired flat wavefroatehfirst derivative of zero.

Figure 3.1 is a typical block diagram for a closmap AO system in any
discipline. AO control is a multivariate problem erl the states are some kind
description of the wavefront error. Whether theseles are in terms of basis functions
(i.e. Zernike polynomial coefficients) or local wedxont heights seems to be based on the
preference of the engineer. AO control for retingging can be extremely simple from
a traditional control systems point of view andremtely difficult where principles
beyond the traditional control theory, particulanigive optics, are required to implement
a functional system. It is easy because the plamth is primarily the DM, is quasi-
static which means that its response is effectigeantaneous. This is due to most CCD
cameras used for ocular wavefront sensing havergdrrates between 10 and 100 Hz,
but the bandwidth of the DM is on the order of kiéotz". Therefore, the only dynamics
that the controller must deal with are those ofdhe (i.e. eye movement, tear file,
agueous, etc.) which are intrinsically stable aswbrst thing that can happen is the
subject blinks during feedback control. In any ¢élsese dynamics are never modeled in
practice but rather treated as a disturbance whigh for the most part can be rejected
with an integrator. The AO control problem is difflt because optical phase (wavefront)
is an infinite dimensional spatial process, sostiage, which | will denote witlg is
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theoretically an infinite dimensional vector. Howeevthere are only a finite number of
subapertures and actuators to sample and conérglale, so a serious component of the
AO control problem involves isolating only the ssthat affect retinal image quality the
most and that are both observable and controll&siether reason why AO control is
difficult is because different systems use difféf@Ms (Figure 3.2). There is not a single
control algorithm that can be applied to all DMglasy can deform through very
different mechanisms. For example, controllersgtesil to operate continuous facesheet
DMs would not be able to drive segmented pistgnatid tilt DMs because the actuators
are uncoupled and have three degrees of freeddime ilater case. Therefore, most AO
controllers tend to be at least partially systeec# making streamlining efforts to be
somewhat impractical.

Figure 3.2: Commercially available DMs that haverbapplied to AO retinal imaging.
(a) Piezo DM by Xinetics (both 37 and 97 actuatodeis have been used) used in the
earliest systems. MEMS devices include the (b) BMi@ti-DM (used in AOSLOII) and
the (c) PTT 111 by IRIS AO. High stroke magnetiéodmable mirrors include the (d)
mirao'™ from Imagine Eyes and (e) several different modekilable from ALPAO.
Cheaper, lower density piezo-based devices (3atmi) from (f) OKO Technologies
and (g) AOptix have also been used in retinal imggi *

The purpose of this chapter is to describe AO aodietrupgrades for AOSLOII
that have allowed us to resolve the smallest foweaés for the first time with an
AOSLO and a MEMS-based DM for that matter (no catefoveal cone mosaic images
exist from the Rochester flood illuminated AO syst@hen an alternative DM (including
the BMC MEMS device) was us&)l As one can imagine, the process of developimg an
implementing an AO system where a clinician or aesleer can simply place a patient in
AOSLOII and begin acquiring retinal images withyalfew key strokes extends beyond
just the mathematical equations for AO control. fEfiere, it is imperative to address all
practical aspects of the project especially therfate between the optics (see Chapter 2)
and the control system as well as the real-timairements. AOSLOII employs the
BMC Multi-DM (Figure 3.1b) which is a continuouscizsheet DM. As schematized in
Figure 3.2, these devices are arrays of capadhatompress due to electrostatic force
(Fe) wh;n;l voltage is applied. The relationship betweeand the applied voltag®)is
given by™
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" 2(g-w)
whereA is the area of an electrostatic actuator (0.16)namdg is the nominal size of the
gap between the faceshew} @nd the top surface of the actuators. This @tatiip is
nonlinear, but as long &= g —w (small deflections), electrostatic force behaveedrly
with the voltage square. Another subtlety exhibligdhese devices is that the actuators
can only be pulled down, so in order to achievditeectional actuation, the DM must
operate at a bias. These turned out to be minonweniences, but the modeling of the
restoring force imposed by the deformed faceshsetlze resultant nonlinear cross-
coupling between neighboring actuators for the BMEMS devices is a very
complicated problem and is an area of active rés&at Although I believe these
modeling efforts are important, the effectiveneissuorently available models are very
difficult to judge because they have only beeretésin simulations or highly constrained
situations (i.e. correcting a phase plate or produa lower order Zernike term such as
defocus). In other words, this research can grdmhefit from implementation and
testing on-site for either astronomical or visiareace AO systems. No AO retinal
imaging system currently online is running a typeantroller based on an actual
physical model of the DM, but the reason for theyrbe just due to the lack of a
concerted effort among researchers with properdrackds (i.e. MEMS, control
systems, optics and vision science).

The complications that have arisen by using the B¥ti-DM seem to have
encouraged many research groups to use more expatigrnative correctors. Even
though several instruments have been developedtatMulti-DM as its sole wavefront
correctof 213235 AOSLOII may be the only system remaining thatusrently online as
others have swapped for a different DM or have ebuilt to incorporate multiple
correctors. For example, several systems are tisenBMC device together with a
second higher stroke DM, typically one of the magneMs, in a woofer-tweeter
configuratiort ** °% 1% This is a pity because only MEMS-based devices laay
reasonable chance of achieving clinically accessibkts. But have these additions lead
to higher lateral resolution? Based on our resthts,does not seem to be the case.
Details on how we have updated the controllerg\fOELOII to improve lateral
resolution are given below. Since the eye contamisolated point sources, quantifying
the actual AO system performance can be problemagsomewhat qualitative but
clinically relevant benchmark for any AO retinalager is whether or not the smallest
foveal cone photoreceptors can be resolved. Exangbleesolved foveal cone mosaics
are provided.

(3.1)
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Figure 3.3: Cross-section schematic across thrteatacs for the BMC MEMS device.
The voltage applied to the center actuator is higfien those for the two on each side.

3.1.1 Background

Many articles and dissertations have been writteutAO controllers in other
disciplines (i.e. astronomy). This is not the cfsevision science. Improving AO
performance in vision science has typically invalaelding and upgrading components.
For example, the DM used in the Rochester floadrilhated system was switched from
a 37 channel to a 97 channel Xinetics device alitiy a faster (25 Hz) CCD camera for
wavefront sensirfg'” ° %! Furthermore, some AO retinal imagers that haveeco
online more recently have adopted a woofer-twessafiguration involving two DM¥"
102,103 and another group demonstrated multi-conjugate@tial imaging which
involved multiple DMs as well as wavefront senseaton’. The refinement of AO
system performance, particularly at the controtesyslevel, has rarely been addres8&d
1% Since the history of AO control in vision scierisaearly nonexistent, the task of
bringing controllers currently used in vision AGsgsms to comparable levels of
sophistication as those used in astronomical tefecwill surely be a challenge. The
work presented in this chapter marks the first steémproving the resolution of AO
retinal imagers by using more advanced controlEngmportant design component that
is often overlooked in vision science applications.

The first AO retinal imager, reported in 1997 bwahget al!”’, established that
the living human retina can be imaged at the mmpg level. As expected for any new
instrument developed for a completely new applacatthe methodology to which the
first AO retinal imager was realized was probabdy carried out as systematically as its
counterparts in astronomy. The first AO controllsed in retinal imaging was poorly
designed and resembled more of an active ratheratiaptive optics system by
definition. The Zernike coefficients were first calated using the Cubalchini metfibd
and a wavefront map was generated by evaluatingtieou2.29 (given again here) at
many points across the pupil:

Ax =Y GZ(x )

Voltages required to produce the height of the iran¢ at the actuator center locations
are then computed, typically from deflection vergakage curves provided by the
manufacturer, and prescribed to the DM. In closeg) the residual wavefront after the
previous frame is measured and the correspondiight®amples are added to those
from the previous frame, the result behaves likentagral action but a poorly designed
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one because spatial coupling between adjacenttactusere not modeled. Together
with the assumption that sampling the Zernike-bagaeefront profile only at the
discrete actuator points is sufficiently accurateved to have many consequences. One
of which is that the DM surface can oscillate witheventually converging to a
correction and actuator clipping (exceeding stn@kege in one direction only) may occur
after a certain number of loop iterations. In deglvith these effects, the sampled
residual wavefront heights are multiplied by a drgain (around 0.3 to 0.4) before
converting to voltages, and the system user haaataually stop the loop and hold the
last voltage sequence when the system was ateaveihatre the observed retinal image
quality was qualitatively optimal This was possible because convergence was on the
order of minutes. Since this type of system dogsantally track the changes in the
ocular wavefront, it is by definition an activethrar than adaptive, optics system.
Nevertheless, this type of control strategy wasstagting point for many later AO retinal
imager§ ’including AOSLOII.

Having to manually stop the AO control loop to al/eaturation and gradual
reduction in retinal image quality is clearly unidaisle. Eventually, better closed loop
performance was achieved via control algorithmemréging more closely to how AO
systems in vision science are operated today. Téré behind using influence functions
was soon recognized but was implemented in a watyittholved Zernike polynomiats
1% The basic idea was that the response of each @bi@r must first be measured, and
these measurements are used to construct a matdelfor the plant (DM plus
wavefront sensor) which is called the interacticatn®. Using the Cubalchini method
described in Chapter 2, each measurement resudtsector of Zernike coefficients
which we will denote by; for the case of thd" actuator response. The interaction matrix
B, which relates the DM input vectarto the “measured” Zernike coefficierdscan then
be generated column by column using these measoteme

u=Bc (3.2)

Bé[cl CZ CNa:|
whereN;, is the number of DM actuators. To make this intdoged loop control
algorithm, the matriB is inverted using some type of pseudoinveBs&s (not square)
and an integrator can be used to iteratively upthetdOM:

u(k) =u(k-1)-B*c(k) (3.3)
wherek indexes the control iteration aBd is the pseudoinverse of matix These
earlier studies may have had difficulties obtairemgaccurate interaction matrix model or
the wavefront sensor measurements may have beewi®pobecause the update term on
the right side of Equation 3.3 needed to be mudtipby a small gain in order to achieve
a more accurate convergence but only at the expdrsgeed. Both these procedures still
deviate from the current standard basis for cldseg AO control in both astronomy and
vision science, which involves modeling the g)lalithva static interaction matrix directly
from the wavefront gradient measureméitd*® The control algorithm is essentially an
integrator in series with some type of inversehef interaction matrix. To my knowledge,
all AO retinal imagers that use a continuous faeesBDM besides ours use this
approach, albeit the simplest version (either Md@earose pseudoinverse or Tikhonov
regularizatiorf" > 3239, | expanded upon the standard AO controller debig 1)
incorporating the static nonlinear actuator respant® an input linearization step and 2)
implementing three less trivial control algorithfos AOSLOII. Each algorithm
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optimizes a particular cost functional and usetmadard integrator law but with some
minor tunable features. A comparison of the cordtgbrithms was undertaken and the
results discussed at the end of this chapter.

3.1.2 AO control loop

The objective of a general AO control system id bkesstrated with a simple schematic
(Figure 3.4a) where the aberrated wavefronts enmgnaitbm either the turbulent
atmosphere or the eye falls on the surface of a &id,the reflected beam is ideally free
of aberrations. Mathematically, the aberrated wawrgfis added to the wavefront
induced by the DM surface, which is just twice thagnitude of the surface profile, and
in the ideal scenario, the reflected beam woulcetaplanar wavefront. As indicated in
the corresponding block diagram (Figure 3.4b) rdflected beam is measured by the
wavefront sensor and fed back to the controllehedM commands for the next cycle
can be computed. The expression for the measurediggiven by:

e(k) = H(Z")Gu(K + H( Z")¢ B (3.4)
where the descriptions for the filters and sigraésprovided in Figure 3.4b. The
measured error signglk) is actually the measured wavefront gradient etué&quation
2.54 if no correction is applied by the DM. The to@srection is achieved when the
residual wavefront is flat or the wavefront gradisrnzero. However, as mentioned in
Chapter 2, this is not always the case due tortesepce of unobservable wavefront
modes (i.e. waffle). Since the DM is quasi-statics modeled to have an instantaneous
reaction upon input, so the only plant dynamics jire delay element due to the CCD
exposure time of the wavefront sensor.
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Figure 3.4: (a) Schematic representation of wavefcorrection illustrating that the
incoming wave aberrations are added to the DM sarfa produce the resultant
corrected beam and (b) the corresponding closqulbtaxk diagram. Matrix is identity
whose dimensions depend on the length of the infiytand Z* is delay.

Based on the standard interaction matrix modelPileand wavefront sensor
combined are modeled by the maffixwhich is clearly a gross simplification but can
nevertheless be very effective if the wavefronbrestructor is carefully designed. Details
on generating matriX are provided in sections 3.1.3 and 3.1.4. It ghbel clarified at
this point that wavefront reconstruction in thispter refers to the estimation of the DM
commands rather than the actual wavefront. Thiéter a source of confusion in the
field as the two problems can often appear to iImai mathematically. Based on the
interaction matrix model, the measured wavefroatigmt produced by the actuated DM
surface when the incident beam is a plane wawe(Q) simplifies Equation 3.4 to:

e(k) = Tu(k-1) (3.5
where the one step delay is due to the exposureeagidut time of the wavefront sensor
CCD camera. When the input beam is aberrated, Emquat becomes:

e(k) = Tu(k-1)+y(K) (3.6)
wherey(Kk), defined by Equation 2.54, is the uncorrectedeflant gradient measured at
cyclek. In fact,y(k) can never explicitly determined when the optgset up in the
standard configuration (Figure 1.1) where the wanréfsensor is placed after the DM.
Therefore, only the residual wavefront is seenhigy$hack-Hartmann sensor, and the
residual wavefront gradierg(k), is measured.

The standard integrator law employed by most AQesys is given by:
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u(k) =u(k-1)+L[e(k) + V(K] (3.7)
where matriXL is the wavefront reconstructor am) includes both electronic and
photonic noise. One may wonder why simple highdeocontrollers, such as a PID type
control, are rarely used to control AO systems.dystems where the wavefront sensor
CCD frame rate is fast enough to capture the dyo@ehavior of the DM, one can most
definitely benefit from having a higher order catier. In AOSLOII, the response of the
MEMS DM is orders of magnitude faster than the viore sensor’s frame rate, so even
if there are undesirable properties such as a sk@itime or high oscillations in the DM
step response, the wavefront sensor will not see dédding a proportional or derivative
term will be useless. It is worth mentioning thatny authors have referred to Equation
3.7 as a proportional control 1aW *”**! This is incorrect and should be clarified to
avoid future confusion on the subject. The actoigrator implemented on AOSLOII
includes a scalar gain and a forgetting factor:

u(k) = A-mju(k-1)+«Le(K+Vv(K] (3.8)
where the user can tune the gaito any value between 0 and 1 and the led& any
value between 0 and 0.0l. | think this a sensitdg for defining the forgetting factor (1 —
mk) because for example, if the gak) (vere set to zero, the forgetting factor would not
be allowed to go below one. Assuming all aberratiare both observable and
controllable,0 < x <1 is all that is necessary for asymptotic stabaity a perfect
correction can be achieved by setting -T™, =1 andm= 0. But as we will see from a
stability analysis, the actual stability will degemore on how the wavefront
reconstructot. deals with unobservable and uncontrollable modesged as noise. In
any case, combining Equations 3.6 and 3.8 givesexpression for how the error
updates at each cycle:

e(k +1) =[(1- mk )l +KTL Je (K)+TLv (k) (3.9)

The objective is to design the reconstructor matrso that the error (residual wavefront
gradient) is eliminated in as few control cyclegpassible while remaining stable.

When the noisg(k) appears to be dominating the wavefront measurgmen
stability becomes an important issue. The exposme of the CCD camera can be
heuristically adjusted through the user interfamgaasing the light level and
subsequently the signal to noise ratio. The trédeofdoing this is a reduction in
temporal bandwidth which currently appears to Iss tgitical than the accuracy in
estimating(k).

3.2 Calibration and modeling

The use of an interaction matriX)(to model the plant implies linearity, so proper
linearization of the input signal is needed befweecan even generate an interaction
matrix. So far, | have only discussed what the iryaetoru(k) means physically. In the
control algorithm design, | conveniently assumeat the plant input is linearly related to
the wavefront sensor output (residual wavefrontligrat e(k)). However, the physical
inputs to the DM are voltages while the DM drivasshts own data number system. To
begin exploring the possibilities, we needed aalliveay to measure actuator influence
functions preferably represented by an accurateah#ige surface profile of the DM. An
influence function is essentially the impulse resmof the DM with the constraint that
the actuators are defined over a discrete gridf®iDM surface is for all practical
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purposes continuous. A Shack-Hartmann sensor canitally be used to visualize DM
influence functions, but the low sampling densitéa few subapertures per actuator is
just not ideal for certain measurements (i.e. heigistribution width, linearity, etc.).
Therefore, we resorted to interferometry to cautthis task.

3.2.1 Interferometer

| constructed an interferometer for characterizmgBMC MEMS device. The system is
a Twyman-Green modification of the Michelson inéedimetet'? where the reference
arm mirror is cemented onto the front of piezo-atuso that phase shifting can be
accomplished. Figures 3.5a and 3.5b are a photograhe interferometer with optical
path overlaid and a schematic diagram of the sysiém light source is a 635 nm diode
laser (OZ optics) where light is brought into thptical path via a fiber connector. The
field emitted from the end of the fiber is divergiand is collimated by lens 1. The
collimated beam is then split into reference an@galve arms via a cube beam splitter.
The objective arm beam reflects off the BMC MEM$ide, which is our test object,
and the reference arm beam reflects off a flataniptaced roughly the same distance
away from the beam splitter as the DM. A convergeoicthe Twyman-Green setup is
that the OPD between the objective and referenos aould be huge, and we would still
get high contrast irradiance interference fringete(ferogram) by recombining the two
beams. This is due to the coherence length ofatber Ibeing on the order of a meter.
What this means mathematically is that the fietisttie two beamsier and ¢y, are
correlated and the resultant irradiance, whichésinterferogram, will have an
oscillatory term. Recall from Chapter 2 that iraute is simply the modulus square of
the field (Equation 2.2 without the constants):

s={ur)

where the electric field is a function of both spand time, but the, y, andt arguments
were dropped for notational convenience. The bitaattenote the time average:

(W), =ymo%jw(t)dt

When we have the sum of two coherent fields, tkaltant irradiance distribution
specifying an interferogram is given by:

S = <(¢/ref +l//obj ) (l//:ef +¢/*obj)>t
=S+ Sy t2 Re<wref¢/;bj>t (3.10)

The wavefront is encoded in the cross-correlatomtin Equation 3.10 so its visibility is
especially important. Light detection was achieusihg a relatively old 8-bit CCD
camera (480 by 640 pixel device from The Imagingr8e) and digitized with a USB
framegrabber (Zarbeco, LLC, Randolph, NJ). Notiw tn the schematic diagram
(Figure 3.5b), the CCD is not placed at the focahpof lens 2. Whether the beam is in
focus on the CCD array or not does not affect thibnity of the interferogram.

However, if it was at focus focal point, the inesdgram would be shrunk to nearly a
point on the CCD making the acquired image uselastead, | placed the CCD
conjugate to the DM surface. This is obviously aoequirement, but the benefit of doing
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so is that the resultant image is the DM with ifgiegnce fringes overlaid on top (Figure
3.6a)
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Figure 3.5: (a) Top view of the PSI that | constedcwith the optical path overlaid in red
and (b) the corresponding schematic diagram ikistthe beam behavior.

An interferogram with a pulled actuator and theesponding surface profile is
given in Figure 3.6. A single interferogram, sustttze one in Figure 3.6, encodes the
wavefront in waves as a repetitive contour map wihiee height difference between a
dark contour and the next dark contour is an OPBnefwave (635 nm). The OPD
between adjacent pixels will clearly be much Iéssta wave. Since these differences
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can be converted to the wavefront gradient by kngwine laser wavelength and the pixel
size, the familiar zonal wavefront reconstructiest{mation) problem for Shack-
Hartmann sensor data comes to mind. In fact, amferometer is just an extremely high
resolution wavefront sensor that samples the wamefyradient in the Hudgin
configuration (Figure 2.11b). However, many pragtissues arise if we want to unwrap
a raw interferogram into a wavefront or surfaceghemap such as the one in Figure
3.6b. Examples include:

1. A bright pixel next to a dark pixel can mearheita phase lead or a phase lag
2. Noise level and fringe contrast

3. The 8-bit discretization of the interferogram

4. Computation time

The last issue is due to the large number of piz@fspared to subapertures in a Shack-
Hartmann sensor, the computational overhead indalvénverting a matrix equivalent
to the matrid™ (Equation 2.65) for zonal reconstruction (estimaiwill be orders of
magnitude greater. Volumes have been written ihirtpavith these issues, but a lot of
them can be avoided by implementing what is knosvplese shifting interferometry
(PSI). PSI exploits the wave nature of light toragt the phase (wavefront) from an
interferogram. The process is most easily explameceferring back to Equation 3.10.
Without any loss of generality, it can be assunmed the reference and objective fields
are completely coherent and the initial phase tadve. This way, an expression for the
detected irradiance can be very simple:

S(xY=dx ¥+ I x yeo{ep (x Y (3.11)
wherea is the DC term&.r + Sobj) and the cross-correlation term has been replatbd
a cosine. For notation simplicity, it will just lmaplied from now on that all the terms
have a spatial dependence as well &.e.a(x, y)). Equation 3.11 is consistent to what we
would expect for the irradiance detected an angiquéar pixel in that if there were no
phase errorgg= 0) or a phase error that is an integer multbl27z the irradiance would
bea + b making the pixel bright (constructive interferepand if the phase error were
an odd multiple ofz the irradiance would ke — bmaking the pixel dark (destructive
interference). Again, the phase error can easilydnverted into OPD by noting that
2mis one wave (530 nm). The fringe contrast of aarfetogram is defined by the
expression:

c- max{ S} mln{ g (3.12)
max{ S} + min{ §
which by inspection of Equation 3.11 can be sinmgddifto:
c=atb-(a-h_b (3.13)
atb+(a-b a
We generally operate at a contrast level of abfuiefcent which appears to be
sufficient for the required calculation for obtaigithe phase.

It may appear that obtainigfrom Equation 3.11 is trivial but is actually
impossible because we do not know the valuesasfdb, which effectively gives us
three unknowns but only one equation. A good es&rofaithe contrast only gives us how
a andb are related to each other but not their actualeslThe task is made even more
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difficult by the fact that the irradiance is distized into pixel values between 0 and 255
due to the 8-bit CCD used (the actual range isdesswould depend on the fringe
contrast). To generate the necessary minimum ohtee equations, a phase shifting
mechanism is required, and that is the role opibeo actuator (Low-Voltage Actuator,
Thorlabs) placed behind the reference mirror. Bylyipg a voltage to the piezo, the
entire interferogram will experience a constantgghshiftd. This is expressed
mathematically as:

S= a+ beos(@+9) (3.14)

In order to converdinto OPD, simply divide it by 2 and multiply by the wavelength.
The distance that the reference mirror had to trigvactually half the OPD as light
travels this distance on the way to the mirror tadels the same distance again coming
away from the mirror. In principle, only two phasfts (three equations) are needed,
but this bare minimum option can lead to significamors in the recovered phase if the
actual distance shifted deviated from what wasauitesd® For example, the 120°
three-step algorithi® requires an interferogram takendat 60°, 180° and 300°. A 60°
shift corresponds to only about 53 nm which is amesnely short distance to push a
piezo actuator accurately especially in open lo@j. not believe the current PSI is
capable of achieving this level of accuracy. Evesugh many improved three-step
algorithms have been developed, | opted for a glighore forgiving four-step algorithm
for practical reasons that will become apparene 3tandard four-step algorithm requires
four interferograms acquired sequentially with qemwave phase shifts:

S = a+ bcos(¢)
S, = a+ bcos(g+ 0.57)
S, = a+ bcos(g+ )
S, = a+ beos(g+ 1.57)

By applying some simple trigonometric identitidse phase can be extracted from the
four interferograms by the simple expression:

(3.15)

@=tan™ (ﬁ] +0 (3.16)
S-S
where the added phase constaistto make the range of the function be from 0 to
2m(see Table 3.1 for definitions). Equation 3.16 adrire evaluated for certain
conditions because the argument can be singukmbrguous at certain pixels. We must
have a sensible solution for dealing with situagiarnen we are forced to divide by zero
or to evaluate zero divided by zero. Table 3.1 gles the required logic applied at each
pixel before Equation 3.16 can be evaluated. Afiexis done, the resultant phase map
must be unwrapped since all the values are modul®Rase unwrapping over a
rectangular grid is a fairly straightforward prog@svolving basically just an integrator
equatior™

Ax+1Y)= (% )+ V[@, (% 1, Y- @(x )

V(X) 2 [ x=27mint(x/ 77)|

where the wrapped phase is now denotegyjgnd the initial condition was simply
selected to be the value of the top-left corneelpikquation 3.17 must be applied one

(3.17)
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row at a time where since the first row is scaneéido right, the second row must then
be scanned right to left to preserve phase comyimlong the edges. This zigzagging
scan pattern continues until the entire phasewgapped. It should be noted that due to
the setup of the Twyman-Green interferometer, thgitenevitably be some tilt fringes

in the raw interferograms, and tilt and tip mode exist in the unwrapped phase. The
magnitude of these modes were estimated via lirggessions in both the x- and y-
directions and subtracted from the unwrapped phdseresultant phase (wavefront) can
finally be converted to a high resolution topogriaphap of the DM surface (Figure
3.6b) by calculating the corresponding OPD.

Table 3.1: Logic implied in Equation 3.16

Condition Action o

S=SandS>S p=0 0
S=Sand§ =S @=0.51 0
S >SandS <SS Evaluate tafi(s) 77
S=Sand§ <SS Q=TT 0
S <SandS$ <SS Evaluate tan(s) 77
S<SandS =S @=1.51 0
S<SandS >SS Evaluate tar(t) 277
S=%and§5=S% O 0

Otherwise Evaluate té:) O

-400

-800

-1200

5’;4‘ ot _ -1600
Figure 3.6: (a) Raw interferogram produced by titerference of the reference and
objective beams. A differential voltage was apple@ single DM actuator pulling the
facesheet down. (b) The corresponding topograpfititeoDM surface obtained by phase
shifting, phase unwrapping, and proper scalingagelength of the beams (details given
throughout section 3.2.1).

3.2.2 Input linearization

We would like to define the control inpugk) in such a way so that its entries can take on
both positive and negative values and that thestearfunction from the control input to

the wavefront gradient output is approximately dineSince actuation is achieved by
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applying an electrostatic force, we can rule oatdbtual voltage applied to the DM as a
potential candidate. Many researchers have meagpeadddeflections as a function of
the applied voltage and fitted the measurements avgecond-order polynomial. They
then perform a linearization step (usually not dégd in detail but must involve solving
for the roots of the fitted polynomial), so tha¢yhcan treat their DM and wavefront
sensor combination as a linear systefl 6! All but one of these studies used an
interferometer for the DM characterization procé&ss.that one study, measurements
were made using a Shack-Hartmann sensor, so itdshotibe surprising that their
results were somewhat different from the otherthag used a third-order polynomial
model® It is difficult to gauge the effectiveness of thdimearization attempts based on
closed loop performance as they all required mamwies (> 5) to bring the RMS
wavefront error to about the optimal correctioneTact that these experiments were
from either correcting an artificial model eye eproducing a particular Zernike mode
on the DM is particularly surprising as | would expthat correcting purely static
aberrations should only take one or two cyclekefsystem was properly linearized.

A likely explanation for this observation is givaa follows. Recall that a bias
voltage needs be applied to the entire DM in otdexctuate in both directions. It seemed
very likely that the deflection versus voltage @ioould be different if the DM
characterization was done with respect to the fdation. This turned out to be indeed
the case, and with the resultant second-order patyad fits were used to linearize the
input, the AO correction converged much faster doemeal eye¥. But how is the bias
voltage determined? The biased position shouldrantadate a maximum positive and
negative single actuator deflection of equal maglat The corresponding voltage input
for the ideal biased position was verified with 81 to be about 190 volts. How this
was done was through a series of trial and errpexents involving the following
steps:

1. Pick a bias voltage and apply it to all the actrsato

2. Release the actuator of interest to 0 volts and a#teflection measurement.

3. Apply the maximum voltage to the same actuatortakd that deflection
measurement.

4. If the absolute values of these two measuremeatsearly equal, then the tested
bias voltage is optimal. Otherwise, increase orelese the bias voltage guess and
start over.

If we had selected our bias voltage based on tigenat deflection versus voltage curves
(i.e. driving one actuator with all the other at¢twra at zero voltage), we would have
grossly underestimated the ideal bias voltage.

Through these exercises, it became apparent tinatch more intuitive strategy
existed. The linearization strategies mentionethsdncluding that described in my
papet?, requires us to define the control inpifk) in units of deflection (typically in pm)
which is not intuitive. More importantly, it creatan inconvenience because no two
BMC MEMS devices have the same response, evemyfdhe of the same model. Thus,
each new DM must go through the same calibrationgss of measuring deflection
versus voltage curves and updating the fitted patyial coefficients in the control
software. Figure 3.7 plots deflection against sgdatoltage, and it is clear that the
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relationship is almost linear. This is consisteithviequation 3.1 in that electrostatic
force is proportional to the squared voltage. Femtiore, we can conveniently derive the
ideal bias voltage by looking at where the linesses a deflection of zero (DM bias
position) in Figure 3.7. The voltage range for oriyvthe current MEMS DM in
AOSLOIl is from 0 to 265 volts, so half way in thisnge in terms of the squared
voltage:
Vmax2

Vb|as 2 (318)
results to about 187.4 volts which is very closeuo empirically determined result of
190 volts. So the squared voltage is clearly atmaccandidate for the linearized input,
but in order to allow for bi-directional actuatidhge squared voltage must be offset by
the square of the bias voltage. Suppa@d is thei™ entry of the linearized input vector
u(k), its value is related to the actual voltage aptoi™ actuatovi(K) by:

U (K) = V(K -~ Vs (3.19)
Linearizing the input in this manner is much sinnghlean the methods mentioned above,

according to convergence rates that we typicalhyeae, it seems to also be superior (see
sections 3.2.2 and 3.3.3 for experimental evidence)

800
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0 .......... Sanosceaccs |deal deflection
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Squared Voltage 10"
Figure 3.7: Single actuator deflection plotted d&srection of the squared voltage. The
DM measured is the 5.5 um Multi-DM from BMC. Notitteat the peak-valley dynamic
range is more like 1.5 um.

3.2.3 Interaction matrix
Identification of the interaction matrik is done experimentally by introducing a flat
wavefront into the system with a model eye and theasuring the static response of all
the actuators one by offé *'% The DM is initially fixed at the biased positicand then
starting from the first actuator, the following iacts are executed:

1. Completely release the current actuator (O voltsjerkkeeping all the others at
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the bias voltage

Measure and record the wavefront gradient. Call¢saltant vectoa

Pull the current actuator completely (265 voltsjlevkeeping all the others at the
bias voltage

Measure and record the wavefront gradient. Caltekaltant vectob

Compute the appropriate column of the interactiatrix. Thei" actuator
corresponds to th&' column of the interaction matrix which is defineyt

1

t;=————[a-b] (3.20)
Uppax — Upni

where thax and uhin are the minimum and maximum values that the entiehe

linearized input vector u(k) can take:

{umax =V2 -V2 =355112F

w N

S

max

u. =V2 —V2 =-355112.¢

min min min

(3.21)

This procedure is repeated until the responsedf aetuator has been measured. The
interaction matrix can then generated by:

TE[t, t, ..ty ] (3.22)

whereN; is the number of actuators which is 140 for the Ddéd in AOSLOII. The
actuator indexing scheme does not really mattésragas it is kept consistent at every
calculation to follow that involves the input vectgk). For a 6 mm diameter pupil, the
dimensions of the interaction matrix are 426 by.1dQractice, | found that generating
several interaction matrices {0) and then taking the average as the finalaotem
matrix benefits system performance. The Shack-Hartmsensor measurement will
always contain some electronic and photon noiselwéts inserted into the interaction
matrix T. Averaging several interaction matrices incredlsesignal to noise ratio or its
entries just like how frame-average an images sespief a scene results in a better
signal-to-noise ratio in the final image.

3.3 Wavefront reconstruction (control)

Wavefront reconstruction for control differs frorstienation (Chapter 2) in that we are
interested in calculating the control signal, whiclour case is the linearized input vector
u(k). In other words, we are interested in physicedlyonstructing the wavefront from
wavefront gradient measurements using a DM. TheeWawt reconstructor was denoted
by the matrix_ in the figures and equations above, and this sedigcusses several
designs for this matrix. According to the only erboidget conducted for a vision AO
system, most of the uncorrected wavefront errorattguted to poor wavefront
reconstructor design, particularly aliasing, areltdmporal bandwidth which was limited
by the 16 Hz sampling rate of their Shack-Hartmsemsot®. The design of the
wavefront reconstructor has taken relatively loverty in the development of vision AO
systems so far. It should be clear from the evidgovided in this chapter that
wavefront reconstruction and AO control in genegal greatly benefit retinal image
quality and should probably be higher on the piydrst in future projects.

The AO control problem differs substantially franost applications given in
textbooks on control systems. One exception igtitex learning control (ILC) which to
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my surprise is nearly identical to the AO contradllem in many respects. A general
ILC update law takes the fofft:

U, =Qu, +Le, (3.23)
where the distinction from the AO control problesrthe fact that the entries of vectars
ande are comprised of input and error values over tiatker than space. Matrixis
also never square in AO control as it is generadisumed to be for ILC. In ILC, the
indexk is for tracking the number of iterations that aafic task is run rather than the
number of control loop cycles. The IL@andL matrices are referred to as filters.
Specifically, matrix_ is called the learning filter, which plays a simitale as the
wavefront reconstructor in AO control. Matigxis most often the identity matrix but is
sometimes a low pass filter aimed at make the legqorocess more robust. Both these
filters are temporal and generally one dimensidmaihe AO control case, matr@ has
almost always been either identity or a simple éttigg factor (Equation 3.8) that can be
adjusted heuristically. If it were designed aswa pass filter, it would be a two-
dimensional spatial filter rather than a one-dinnemel temporal filter as in the ILC case.
The one exception is the AO controller at the WiMck Observatory whose integrator
plus Smith-predictor compensator can be rearrangedhe following form:

u(k) =Q(zHu(k-1)+«Le(K (3.24)

Q(z) =((1-w) + wz*)I
wherew is set to 0.25 anbis the forgetting factor which they set to 0.988 liright stars
and 0.99 for not so bright st&f$ SoQ is also a two tap temporal low pass filter which
would be equivalent to a filter in the iteratiomaain for the ILC case. This added
temporal filter pushes the AO system’s bandwidtthatexpense of having more error in
rejecting the static and low frequency aberrati®hiesumably because most of the eye’s
wave aberrations are static while the rest are rslorgly varying compared to their
atmospheric counterparts, | have found that adtfirsgtemporal filter more often than
not actually reduces retinal image quality, so hdbrecommend applying it to vision
AO systems.

The question remains on how to best design thesfr@wt recontructor. The four
wavefront reconstructor designs implemented anédesn AOSLOII, which span from
basic plant inversion to more advanced quadragicgdtimal designs as well as a modal
reconstructor (Zernike polynomials), are coverethmfour subsections below. The
name | have given to each reconstructor desigg iolmeans official as different people
have used different names to refer to more ortlessame thing. Just to keep the
equations as compact as possible, I will assumgahex and leakmto be 1 and O
respectively as they do not contribute to the psepaf the discussion.

3.3.1 Pseudoinverse

This is the naive solution to the AO control prablehere the reconstructor is designed
to be the inverse of the interaction maffixSinceT is not square, we have to use the
pseudoinverse and the control law becomes:

u(k) =u(k-1)-T"e(k) (3.25)
where the negative sign before the pseudoinverseatix T is to the fact that our closed
loop system matrix is+ TL and we want to make that as close to the zero xresri
possible. Vision scientists refer to this algorits“direct-slope control” which is not
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really a term recognized in other AO communitigsisThas been the standard control
strategy (minus the input linearization steps) use8lO systems for vision science since
Hoferet al’ first reported using it in 2001. Although beingrswhat novel to the vision
science community, according to Wallner’s classipay in 198%, most astronomical
AO systems were already using this control methelll mefore 1980. Just to put this
matter in perspective, there are probably overralted publications that describe more
sophisticated AO control algorithms, and at leasvaof them would be applicable to
controlling AO systems for vision science.

Equation 3.25, implemented as it is, has beeri@drio be unstable, and the
reason is because the interaction mafris poorly conditioned. A widely used technique
to invertT is by taking the SVD and then ignoring the smaldasgular values during the
inversion. The number of singular modes to ignerund experimentally by
determining the minimum number of modes that mestiiopped while preserving
stability. This is typically done using a model elgeough trial and error. The truncated
SVD scheme turned out to be quite unreliable ictca in the sense that it often failed
to correct what seemed to be a perfectly healteyweyen all the other reconstructor
designs considered did fine. | believe this is nyadtue to the relatively high amount of
mismodeling error associated with using an intépaatatrix to model a MEMS DM
making the system more sensitive to high frequencge buildup like localized
waffling®2 Thus, in order to include this algorithm in afpemance comparison, we
would be limiting ourselves to testing only on miduals whose wave aberrations can be
effectively compensated via the SVD algorithm. Tihmstation is inconvenient and could
potentially bias our results. As an alternativephsidered a more stable version of the
pseudoinverse which comes from the limiting process

T =lim (T +dl ) T (3.26)
a-0
By making the regularization factareasily accessible from the user interface, we can
heuristically obtain a working reconstructor of foem:

L=—(TT+a )T’ (3.27)

wherea, like that of the zonal estimator described in Chag{ should ideally be the
noise to signal ratio of the system. The differebegveen regularization and the
truncated SVD is that instead of ignoring the seslkingular values, a constanis
added to every singular value prior to taking #a@procal. So even though we did not
explicitly solve the high frequency amplificatioroplem, at least the inversion is more
stable resulting in a more reliable AO controller.

3.3.2 Statistical weighting

The type of statistically weighted wavefront redomstor | describe here is more or less
what is also used at W.M. Keck Observatdfit is currently the default reconstructor
used in AOSLOII. Atmospheric turbulence is oftendaled to follow Kolmogorov
statistics, but there is evidence that the spptialer spectrum of the eye’s wave
aberrations also follow the Kolmogorov madél Even though evidence for this is
limited to just one short paper, the relevancénefwork warrants for some exploratory
efforts into how we may exploit ocular aberratidatistics for AO control systems in
vision science. Going back to our linear modelhef AO system (Equation 3.6):
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e(k) = Tu(k-1)+y(Kk)
wherey(Kk) contains the uncompensated wavefront gradiehighreot actually measured
during closed loop operation. We want to deterntiirecbest estimate of the inpuk)
given measuremem(k) under the assumption that the eye’s wave aberratie either
static or slowly varying. This assumption allowstasnake the critical approximation:

y(k) =y +v(Kk) (3.28)
wherev(Kk) is the measurement noise which is assumed taalbissgan and white. The
best estimate fan(k) in the least squares sense is given by the donditexpectation:

(k) = ~E[u(K)e(R] (3.29)

Assuming thag(k) andu(k) are stationary Gaussian random processes, tluiticoral
expectation can be express in the convenient form:

E[u(k]e(k |= m +A A& R- ] (3.30)
=m, + AN ek

wherem, andm are the means of vectaugk) ande(k) respectively, and\, and/\c are
covariance matrices involving the appropriate vecto

A, = <ueT>
N = <eeT>

The last equality in Equation 3.30 holds becaaikeis the measured wavefront gradient
with tilt and tip already removed sa. is zero. By expanding the covariance matrices
under the assumption thaik) ande(k) are uncorrelated with each other, we may rewrite
Equation 3.40 in the matrix form:

E[u(kle(] = m+A, T [TAT +A, ] e(B (3.31)

Assuming zero pistonr(, = 0) and substituting Equation 3.31 into EquaBdz®, we
arrive at the optimal estimate of the input vecifk) in the open loop case:

ak) = =N, TT[TATT +A,, [ e(k) (3.32)
where the wavefront reconstructor is given by:
L=-AT [TATT+A, ] (3.33)

Law and Lan¥? showed that this reconstructor is equivalent &“tptimal estimator”
(open loop) described in Wallner’s classic pafleThe same reconstructor has also been
referred to as Bayesi#t, maximuma posteriori® and a special case of the minimum-
variance desighi®. To avoid confusion, I will refer to this desigs the statistically
weighted reconstructor because it is nothing mioae the solution to a statistically
weighted least squares problem.

Wallner’s derivation was for an optimal open Io®P control scheme for a
Linear DM and wavefront sensor. According to hiadations, the statistically weighted
reconstructor in open loop performed similarlylie pseudoinverse reconstructor in
closed loop under good (low noise) conditions baswsuperior at low light (noisy)
conditions. The key assumption was the linear DMerEthough we linearized the
control input, that by no means accounted forhairionlinearities present in these BMC
MEMS devices. We still must rely on closed looptcohto deal with mismodeling
errors and iteratively reduce the residual wavefesror because we cannot obtain the
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best possible correction in just a single stemdlemented the statistically weighted
reconstructor (Equation 3.3) with the pure integrat

u(k) =u(k-1)+Le(k)
and its performance for correcting a model eye dhasethe RMS wavefront error is
given in Figure 3.8 (the trend labeled as “PenadjzZolmogorov statistics only”). What
we can immediately observe is that the AO systenoiglosed-loop stable as the RMS
wavefront error started to increase after justvvadgcles. This simple test also
demonstrates why closed loop control is still reegli The wavefront error present in a
model eye is completely static, but it requiredadditional measurement and correction
cycle to bring the RMS value below 100 nm. For oje&p control, the residual
wavefront gradient measurements would not be aail@ iteratively refine the control
signal, so the RMS wavefront error will remain neduere it was after the first cycle (
250 nm for the example given in Figure 3.8). But adl show, the statistically weighted
wavefront reconstructor is an optimal design arayidles a superior correction in
comparison to the standard pseudoinverse recotmtiuat only if we can come up with
a stable version.

0.a T T T T T T
+  Penalizing Kolmogoray statistics only
07k & Penalizing Kalmagaray statistics and unobservable mades ||

o
in
T
i

=

[
T

*
1

RMS wavefront error {um)

Time (second)
Figure 3.8: Performance of the statistically wesghteconstructor under integral control
based on the calculated RMS wavefront error foreming a static aberration profile
(model eye). Closed loop stability was only obsdmnwen unobservable modes were
explicitly penalized.

Recall that the piston terrm() was ignored in the derivation of the statistigall
weighted reconstructor. This would not affect ofmap because piston, or any other
unobservable DM mode (i.e. tilt and tip), cannatuanulate in open loop. In close loop
control, noise and mismodeling errors will inadeeatty produce unobservable modes on
the DM which will accumulate. In other words, if weep adding shapes on the DM that
are invisible to the wavefront sensor, we will eiedly run out of stroke and the
correction will actually start getting worse (iretbhase for piston buildup, the DM wiill
eventually be in a state where the actuators chnnoove in one direction). This is
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exactly what we see in Figure 3.8 for the case ehapbservable modes were not
penalized (black dots). To explicitly penalize usetvable modes, consider the following
identity pertaining to the statistically weighteztonstructor:

AT [TATT+A, T == [TTATT + AT TTA (3.34)

A proof of this is given in Appendix A. Notice thite right side of Equation 3.34 is the
solution to the LQ problem where the cost functlona

I (k) =§eT(k)/\;&e( k)+§ T(RAZU R (3.35)

is minimized with respect to inputk). The idea, as we will see, is very much analogous
to the frequency shaped LQR (linear quadratic iegu) design except that we are
dealing with two-dimensional spatial frequencied arsystem that is quasi-static.

Until this point, | have not mentioned how to gexte the covariance matrices.
Since we assumed that our measurement noise is, it simpler of the two is the
noise covariancé,, which is diagonal. Determining the actual varianakies that is the
diagonal entries oA\, is very difficult if not impossible because 1) ytere subject
dependent since different retinas have differeii¢cBvity and 2) the variance of the
measured wavefront gradient is due to both noideaatual fluctuation in the ocular
wavefront. A simple, but reasonable, estimatetierdiagonal entries would be values
that are inversely proportional to the irradianc#ribution across the pupil as discussed
in Chapter 2 (Figure 2.4). This way, darker subtapes get weighted less than the
brighter subapertures in the cost functional. Gatimey the inverse of matrik,, is much
more difficult. Assuming that the wavefront is appmately proportional to the
controller input, a sparse approximation for theense wavefront covariance matrix
corresponding to the Kolmogorov spectrum has beepgsed®®. According to Noft®
the Kolmogorov power spectral density (PSD) is gitg:

o(f,)=(0.0234,°) 1,7 (3.36)

wheref, is spatial frequency and is the Fried parameter which is used to describe
astronomical seeing. The constant, 0.623/ is derived from atmospheric turbulence
and has nothing to do with the structure of ocalarrations, so the absolute magnitude
of the PSD is not of interest. Given that the PSProportionaf, **® and then making

the not-so-subtle approximation:

f =gt (3.37)

we can derive a very convenient functional relagiop through a series of analytical
manipulation® that | will not repeat here. The functional resaship is given by:

_Uu( f)DL(£)v( f)df =ﬂ[mﬁ( R (3.38)

whereu(r) andv(r) are general square integrable functions. Whgried to our problem,
the following continuous and discrete spatial domamalogy can be made:

”[Dzu(r)][ﬂzu(r)]dr o UTASU (3.39)
and it becomes evident that penalizing the inptit @iweighting matrix based on

Kolmogorov statistics is approximately equivalempenalizing the Laplacian (curvature)
of the input. In matrix form, this approximationnche written as:

Al =aC'C (3.40)
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wherea is again made to be a tunable regularization faatd matrixC is the
convolution matrix form of the finite impulse resse (FIR) filter approximation of the
two-dimentional Laplacian operator. As specifiedrig papet’, | first implemented the
more common Laplacian filter which is specifiedtbg convolution mask:

. 0 1 0
gt 41 (3.41)
0 1 0

A better alternative can be obtained using condepts image processing. Consider the
standard one-dimensional Laplacian filter:

H(z):%(z"l—2+ 2 (3.42)

where the z-transform variable applies to the apdttmain here. Next, apply the
McClellan transformation to this one-dimensionadiga in order to get the two-
dimension equivalent. The resultant filter is spediby the convolution mask:

0.0625 0.125 0.062
0.125 -0.75 0.12 (3.43)
0.0625 0.125 0.062

The advantages afforded by this filter over theermmmon design (Equation 3.41) are
best illustrated by comparing the shape of theigdiency responses (Figure 3.9). The
alternative filter design clearly has much moreuiar uniform frequency response
which is a desirable property if we want the saitterfapplied in all directions: an
assumption that is implicit in the “turbulence” ned@Equation 3.36) assumes.

Figure 3.9: Frequency response of the (a) commordiwensional Laplacian filter
design (Equation 3.41) and (b) an alternative deslgained via a McClellan
transformation of the standard one-dimensional a@ph filter (Equation 3.43)

It is now more evident as to why the statisticallgighted wavefront
reconstructor, in its current form, is not closedd stable. Analogous to the LQR design,
while the weighting matrix for the sta&k), is only required to be positive semi-
definite, the weighting matrix on the input is r@ed to be strictly positive-definite to
keep the input bounded. Unfortunately, the weightiratrixC'C does not satisfy this
requirement because the nullspace of the LaplapanatorC is spanned by piston, tilt
and tip (Figure 3.10). This should be quite obvibasause differentiating any one of
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these three modes twice will result in zero. Thenefthese three unobservable modes
must be penalized explicitly by modifying our céastctional:

JU) =3¢ WAZLR+ U (R[AL+ W U (3.44)

where piston, tile and tip make up the columns afrmV. By minimizing this new cost
function with respect ta(k), we finally arrive at an implementation for thatsstically
weighted reconstructor that is also closed looplsta

L==[TTAZT +A W T T A (3.45)
Figure 3.8 clearly shows closed loop stability wiising this reconstructor which
penalizes both Kolmogorov statistics and the tlusabservable modes.

Figure 3.10: From left to right: piston, tilt ang tnodes in the control input domain.
Note the corner actuators are not included in tta d

3.3.3 Local waffle penalty
In Chapter 2, | talked about global waffle whichaisingle unobservable mode (Figure
2.12). Waffling patterns can also be of the logpkt and according to reports across a
variety of AO disciplines, their presence in AOtgyss is common producing
undesirable artifacts in the im&ge?’ % Waffle modes are created by driving adjacent
actuators in opposite directions producing a vata@p resembling a checkerboard
pattern. Patches of this pattern are often obsemesh the pseudoinverse reconstructor,
particularly the truncated SVD method, is usedc&ithey are not well sensed by the
wavefront sensor, they can slowly build up in tbhateol loop degrading retinal image
guality in the process. Some examples of local iwaffodes are given in Figure 3.11.
Penalizing local waffle modes is almost identicestatistical weighting. In the
original design, there is no weighting on the measent vectoe(k) and the weighting
on the inpuu(k) is the convolution matrix form of the FIR filfér

1 —
] s

which is proportional to the first derivative opena The cost functional | used to obtain
the local waffle penalty reconstructor is:

Iu(K) :%”e(k)”z +—;uT(k)[aFT F+ W Ju(K (3.47)

whereF is the convolution matrix form of local wafflet#r (Equation 3.46) andis a
tunable regularization factor. The correspondirapnstructor is given by:

L=-[TT+FF+W ] TTA] (3.48)
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Matrix V is the same as that used in the statistically wedjreconstructor. Strictly
speaking, since local waffle is proportional to finst derivative, piston is the only mode
that needs to be includedVh but empirical tests have revealed that tilt apdriodes
(Figure 3.10) still tend to accumulate if they aot penalized. Therefore, they are
included in the current local waffle penalty redoastor design.

_| | -
= l. | |
-.I .. |

Figure 3.11: Localized waffling structure in th@irt domain

3.3.4 Zernike polynomials
Lastly, if a finite number of Zernike polynomialarcaccurately represent the eye’s wave
aberrations, projecting the input vectdk) onto a Zernike spanned subspace could
potentially improve system robustness during lessHideal experimental conditions.
Furthermore, this approach, which is often refetceds modal reconstruction, provides a
convenient platform for designing custom recongtnscfor correcting only a particular
set of Zernike modes (i.e. defocus, astigmatism) and leaving all other modes intact.
This added flexibility would not benefit retinal aging but could prove to be a useful
tool in vision testing applications.

Recall the Zernike polynomial pyramid given in @tex 2 (Figure 2.7).An input
vector defined by the firdil Zernike modes (minus piston, tilt and tip) can\rgéten as:

N-1
u(k) :Zq(k)zj =Zc(K) (3.49)
j=3
wherec; andz; are thg™ Zernike coefficient and mode if vectorized formpestively:
Z=lz, z, ... z,,|OR™"
2. 2 § 1]T (3.50)
c=[c, ¢ ... G| OR™

It is worth noting that since we are currently watkin the input space, Equation 3.49 is
fundamentally different from Equation 2.29:

w5 )=3 G2 (x Y

By substituting Equation 3.49 into Equation 3.6:

e(k) = Tu(k-1)+y(k) (3.51)
the resultant expression can be interpreted aguaimaent AO system but with the input
vector being made up of Zernike coefficients:

e(k) = TZc(k-1)+ y(K) (3.52)
Under the same assumptions as the previous reootstdesigns, the Zernike
polynomial reconstructor is found by minimizing tledlowing cost functional with
respect to the Zernike coefficient vectgk):

I(c(K) =] e(R); +a?| dK[; (3.53)
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The optimal open loop estimate of the Zernike gokediit vector is given by:
e =-[(12)"(12)] (12 )"e ( (3.54)

Equation 3.54 is not particularly useful becauseaveenot interested in the Zernike
coefficients. In order to obtain the final reconstor, we need to left-multiply both sides
of Equation 3.54 by matriX since:

G(k) = Z¢(k) (3.55)
Therefore, the Zernike polynomial reconstructor is:

L=z|(1z)'(z)| tz ) (3.56)
It was stated in Chapter 2 regarding curve fitifiegnike polynomials to a sampled
wavefront that the Zernike polynomials lose thethonormality when evaluated over a
discrete grid. The same applies to this Zernikgrmpminial reconstructor. Since the DM
grid is even coarser than the wavefront sensotdeagay, matrixZ here is even more
ill-conditioned. | have experimentally verified titae Zernike polynomial reconstructor
in Equation 3.56 is not closed-loop stable in AOSL® matter how high the
regularization factor is set. But when the Grams8ich orthogonalization procedure was
applied to the columns of matr& prior to evaluating Equation 3.56, the resultant
reconstructor was verified to be closed-loop stable

3.4 Discussion

| have covered both the theory and implementatidhedifferent AO control algorithms
implemented on AOSLOII. In this section, | discgssne of the specific concerns and
limitations | have encountered in carrying out thisrk. A particular topic of interest is
how different AO controllers compare with each otineterms of performance, so | will
also discuss the stability and performance of the wavefront reconstruction algorithms
in the paragraphs below. The data presented heteda@lgorithm performance
comparison are from my paper

3.4.1 Interferometry concerns

Many important concepts and subtleties concermtayfierometry, especially PSI
techniques, are very much beyond my expertisewst mot be able to address my
concerns on this topic in detail like the othersirg the current interaction matrix model
of the AO system, the interferometric measurememt® not particularly critical besides
verifying the ideal bias position/voltage for th&DHowever, if we were to start
exploring the practical application of more advahoedel* °" 33'of these BMC

MEMS devices, a more accurate and precise PSI woaokt definitely be required.

As stated earlier, the standard four step phasetien algorithm was used
because there is a convenient way to test whethestahe phase shift induced by the
piezo is a quarter-wave (L59 nm). Since we already have one measuremembutit
performing a phase shift, only three quarter-wavéissare needed to obtain the four
required interferograms. Without much addition&ef a fourth and final shift can be
added to the routine and the fifth interferograrawt ideally be:

S = at+ bcog(p+ 1) (3.57)
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S0 S should equas, since cos@+ 27) = cosg, but in practice, two such measurements
would never be exactly equal due to noise and €imothe phase shift which leads to
what is referred to as detuning error. Since threect PSI setup has no position feedback
from the piezo actuator, | am particularly concermgth this type of error. My attempt at
managing detuning error are as follows:

1. Acquire five interferograms using the estimatedinal voltage applied to the piezo
actuator for phase shifting.
2. Use the following formula to calculate the aggrghase shift corresponding to the

nominal voltages applied:
J=cos"’ (lﬁj (3.58)
2S

3. If the angle is between 80° and 100°, execuss@lietection and unwrapping
calculations.

The criterion for calculating the phase in step&/rappear to be too tolerant, but the
success rate for achieving even that kind of pra@tism open loop is less than 50 percent.
Recall the deflection versus squared voltage plargin Figure 3.7, generating the
dataset for such an analysis extremely difficuthwvthis level of success rate. According
to Malacaraet al!* the standard four step algorithm is quite seresiid detuning error.

A slightly different algorithm, known simply as ‘fio steps in X*!* is not as sensitive
and may be worth testing, but it is not as stréayimard to implement. In any case, |
would recommend fitting a strain gauge to the pi@ztmator for position feedback before
investigating more advanced DM modeling techniques.

3.4.2 AO loop stability

The following discussion is mostly from my papetiwéome minor modifictiori&,

Stability for a closed loop AO system is primamiymerical because other than a single

time-delay element, the plant model has no tempmbnaamics. As mentioned earlier, this

is because the DM is quasi-static with respect@@rame-rate of the wavefront sensor.

The expression for the residual wavefront gradferor) dynamics is given by Equation

3.9 (assuming default values for the integral gend leak £ = 1 andm = 0)):
e(k+1)=[1+TL]e(k)+TLv (k)

The stability for the AO system depends on thereigkies of matrix + TL assuming

that it is static. The eigenvalueslof TL are less than or equal to one with at least one

eigenvalue being exactly one which correspondeé@tston mode. In practice, high

spatial frequency aberration modes that could eatdmsed or controlled will also

behave as if the corresponding closed-loop eigelgahre one. How the eigenvalues are

distributed depends of the reconstructor desigordier to investigate convergence and

steady state error, consider the Lyapunov funatenmdidate:

V(e(k) = € (K €K (3.59)
Assuming that the error and noise terms are unlede® substituting the error dynamics
expression above into Equation 3.59, we get:

V(e(k+1)) =& (W[ 1+ TL] [I +TL B (K +v " (K[TL ] TLv (K (3.60)
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Letting W be the weighting matrix on the inpugk), it can be shown that:
V(e(k+1)=€ (K K- €K II[ T T+ 2W] Le(K+ V (k)[ TL]T TLv (K (3.61)
Stability would require the difference along thajéctory to be non-positive, that is:
AV (e(k)) = V(e k+1))- V(€ K)< 0 (3.62)
By taking the difference between Equations 3.61&68, we arrive at the desired
stability criterion:

AV (e(K)) = vT(k)[TL]TTLv(k)—e(k)LT[TTT +V e (W<0 (3.63)
which implies that:
VIR[TL] TLY (e (KLTT T +2v e (K) (3.64)

Equation 3.64 is important because it completeigrearizes why closed loop AO
systems, at least how they currently operate, @tely never guaranteed to bring the
error to zero. The inequality in Equation 3.64 ireplthat for/(e(K)) to decrease if ' T
+ 2W is positive definite and that the quadratic forhe@) on the right of Equation 3.63
is dominating the quadratic form wfk) on the left of Equation 3.63. In other words,
Equation 3.64 specifies a region wh¥fe(k)) is assured to decrease. But we can do
ourselves a favor by designing a wavefront recaocstr () that does not 1) amplify
noise and 2) produce shapes on the DM surfacatbatifficult to sense. Therefore, in
less than ideal conditions (i.e. real eyes), weld/always expect the statistically
weighted reconstructor to outperform the othergtesconsidered.

If noise is “small”, the stability criterion sinifies to:

ek)L'[T'T +2W JLe (k)2 0

and the analysis becomes much more definitive. iM§ should be strictly positive
definite to keep the input bounded and avoid aotugipping. For our pseudoinverse and
Zernike polynomial reconstructor desigié,was proportional to the identity matrix
(Tikhonov regularization) so positive definitenéssrivial. For the other two
reconstructor designs, we manually identified dpemodes that needed to be explicitly
penalized in order to establish positive definismét follows immediately that:

[T'T+2w |>~0 (3.65)
which may lead us to believe thaV (e(k)) <0 guaranteeing asymptotic stability in the
absence of noisgk). However, the wavefront reconstructois a generalized inverse of

a non-square matrik that has more rows than columns, so it cannot hdveolumn
rank. Therefore, we can only guarantee that:

L'[TT+aw | -0
= AV(e(k)) <0
so the system is only stable in the sense of Lyapuror the Zernike polynomial
reconstructor, simply replace the input veat(k) with the Zernike coefficient vector
c(k) and the same stability analysis applies.
A more thorough stability analysis would requice@rate modeling of
electrostatic actuation coupled with the membraeferdhation properties of the DM. A
mathematical model of the type of MEMS device LUsetthis study has been asseséed

It was not adopted for this study because the nodetdicted membrane response did
not closely match the actual membrane responsaerdfil&MS device.
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Figure 3.12: Performance based on the estimated Wd@front error

3.4.2 Performance comparison

Performance evaluations based on actual retingleshare carried out by repeatedly
imaging the same eye but using a different algorith each session. This must all be
done in a single setting to ensure that the imagonglitions between sessions are nearly
identical. | kept individual imaging sessions si{e20 seconds) and administered them
only minutes apart to minimize subject fatigue vishicay bias the comparisons. The
center of the raster scan was placed approxim@télgegrees from the subjects’
preferred retinal locus (PRL), and the scan angle ¥. An obvious image quality
metric for assessing performance would simply leeRMS wavefront error. | used the
zonal reconstructor (Equation 2.71) for estimatimgresidual wavefront for reasons
given in Chapter 2. Figure 5 shows typical RMS weord error trends for correcting a
healthy eye. What we can immediately observe isahdour trends converges quickly

to near the best corrected state and more ordesained there until the end of each
imaging session. Does this mean that all four wawefreconstructors performed equally
well? The acquired images of the retina (Figur&Bdb not seem to support this claim.
Figure 3.13b is noticeably brighter and sharpen thigure 3.13a, but according to the
RMS wavefront error, they were acquired under nooress the same optical conditions.
Although not directly verifiable, | attribute thidservation to the presence of certain
aberration profiles from either the DM or the eya @ie beyond the sampling capabilities
of the Shack-Hartmann sensor.
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(b)

Figure 3.13: AOSLOII images for a healthy eye acepliat the exact same retinal
location using (a) the Zernike polynomial reconston and (b) the statistically weighted
reconstructor. Images are about 0.8° by 0.8° (tlh&bby 0.25 mm) with the foveal
center at approximately the bottom right corners.

The pixel values in an AOSLO image are more dimggicators of retinal image
quality for reasons tied to the image formationgess of a confocal system including
SLO. In an AOSLO, a spot of light is raster scanaedhe retina and the reflected light
gets descanned on the way back, since light trawet faster than the speed of the
scanning mirrors, and eventually reaching a pogtéctor (the PMT in Figure 1.9). So
only a small area on the retina is illuminated datkcted at a particular moment in time.
The final retinal image is actually constructedgbitay pixel from light detected at
different time points. Ignoring the uncommon patioes, the irradiance PSF of this
double-pass process evaluated at the plane obtifeaal pinhole is given by the
autocorrelation of the single-pass irradiance P$E

St el X W= [ [ T % ) &% xy Jydxe (3.67)

—00 —00

The PMT detects the total irradiance transmittethieypinhole, so a particular pixel
value of a retinal image is always proportionathte transmitted irradiance
corresponding point in the raster saMathematically, the value of th8 pixel in an
image is given by:

|y O], S s % 3 Sty (3.68)

where the actual temporal integration time of tMTRean be estimated from the support
of the retinal image (512 by 512) and the imagnagrfe-rate (30 Hz). Minimizing the
residual wavefront error using AO condenses théaspread of the double-pass PSF,
so more irradiance is transmitted through the omadfpinhole and increasing the pixel
value. In other words, a brighter image is a betterge and that was clearly illustrated in
Figure 3.13. Obviously, looking at individual pixellues would be mostly meaningless
as the eye is always moving, but the mean pixelevaf the image should be a robust
indicator of relative image brightness and quakigure 3.14 plots the mean pixel values
as functions of time for the same eye whose RMSefvawt error and retinal image were
given in Figures 3.12 and 3.13. Based on this intpgdity metric, it becomes clear that
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the statistically weighted reconstructor providegesior image quality. This result has
been verified to be consistent for two other eye® Subjects) tested.
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- Statistical weighting
30 - : * Local waffle penalty -
20 ; ® Zernike polynomials
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Figure 3.14: Performance based on the mean piketsaf the retinal images

| should mention that we have upgraded both soéwad hardware components
of the AO controller for AOSLOII since acquiringetidata presented in this subsection.
As stated in the introduction, we are now runnirigginer stroke MEMS DM with higher
step resolution driver electronics. These upgratiesild only improve AO performance
independent of the control algorithm, so therdtile Ireason to believe that the relative
performance among the different reconstructor aessipould change. Since the
statistically weighted reconstructor should theogdlty calculate a better correction, its
performance with respect to other reconstructoigdesshould only improve with these
system upgrades. Furthermore, the original impleatem of the statistically weighted
reconstructor is, in principle, inferior to the s@m currently implemented as the inverse
noise covariance matrix was assumed to be propaitio identity and the more
common Laplacian filter mask (Equation 3.41) wasdu® approximate the inverse input
convariance matrix. Based on the comparisons alreandducted and the increased
number of high quality images of the foveal conesaio that we have been able to
acquire, | believe it is not really necessary totcaie testing whether or not the
statistically weighted reconstructor design is sigpeo the other reconstructors
considered in this study. In my opinion, more dfirould probably be spent on
improving optimal reconstructor designs and thieixibility (i.e. changes in pupil size
and shape) as well as developing more sophistiéatédnodels.

3.5 Conclusions

Improving the AO control system has yielded quéattie improvements in retinal image
quality. The (near) linearity observed betweenDiM surface deflection and squared
voltage should be exploited for controlling BMC MBMlevices. Stability analysis of the
standard integrator AO control law revealed thatarrthe presence of noise, the
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wavefront reconstructor dictates system behavioces the statistically weighted
reconstructor is designed to respond less to mais@surements while penalizes high
frequency DM modes, it proved to be superior todamdard pseudoinverse
reconstructor (“direct-slope control”) and the tatber reconstructor designs tested (local
waffle penalty and Zernike polynomials).

Two quantitative image quality metrics were used\valuate the performance of
the control algorithms: 1) RMS residual wavefrombeand the 2) mean pixel value of
the acquired retinal image. Even though the foocomstructors under integral control
performed similarly according to the computed RM&sefront error, they did not all
produce retinal images of similar quality. The mpatel value is a more sensitive
indicator of retinal image quality because it isedtly related to the double-pass PSF.
This important limitation regarding the use of twemputed RMS wavefront error to
characterize AO system performance should be dy@myphasized.

These improvements have also allowed us to resbé/gighest density foveolar
cones in normal, healthy eyes. Figure 3.15 givearacular example of such, and several
more will be given in the following chapter. Althgluthe current lateral resolution of the
AOSLO is sufficient for resolving the smallest faveones, it is still unable to do so for
all eyes. This is most likely due to the amountesidual aberrations being subject
dependent. One reason why this might be the cdsecause the statistically weighted
reconstructor is currently optimized for only a diameter pupil. This poses a
problem when imaging certain high myopes when thefyng effect of a high minus
power lens is placed in front of the eye to bring initial aberration magnitude to within
correctable range. In addition, the assumed injatistics are that which approximates a
Kolmogorov power spectruttf. Therefore, AO performance will depend on how well
the aberration profile for a particular eye is apgmated by this model.
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Figure 3.15: (a) Image of the cone mosaic at tig eenter of the fovea of a young (23
yrs), healthy emmetrope and (b) its correspondorgeaensity topographic map
expressed in cones per square mm. The image i$ Abby 1° which for this particular

subject converts to 288 um by 288 pum.
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4. Retinal imaging applications: cone density, foveal
fixation and eye length

4.1 Introduction

The research described in the Chapters 2 and 3achsical but marks some of the first
work done on improving AO control systems for visgcience applications. This chapter
covers the scientific contributions of my dissedat 1) the relationship between foveal
fixation and cone density; and 2) inter-subjectatality of foveal cone density in

relation to axial length. Some basic but importafinements to estimating retinal
feature size and cone density, which were appbteatitiress these two goals, are also
described in this chapter. The experiments werdwucted in parallel with the
developments in wavefront measurement and conésidribed in the earlier chapters,
and this partially explains why our retinal imageabet was not particularly consistent in
guality. Nevertheless, | was able to image the &weene mosaics of more than 20 eyes
with AOSLOII. As | mentioned earlier, to avoid pot&l bias, only 18 eyes (18 subjects)
were included in the investigations detailed irs ttthapter. To my knowledge, this is the
largest sample size in any AO related study to.ddtest of the work in this chapter has
recently been accepted for publicatiorinmestigative Ophthalmology & Visual Science

4.1.1 Fixation

In an AOSLO, a live video of the retina is recordgoh laser raster scan (Figure 4.1a),
and the subject sees the raster scan pattern éMglip). Therefore, an arbitrary stimulus
pattern can be generated by turning the laser drotiflbetween frames at appropriate
moments of each raster st¥nin the Figure 4.1 example, this pattern was rkisiig
rectangle £ 0.1° wide) that served as a fixation stimulusmi@asuring fixation events, an
AOSLO has the advantage over other modalities, asdtood-illuminated cameragor
being able to isolate precise locations on thaaatised for fixation. Any potential
alignment or timing error is eliminated becauseftk&tion target is generated as part of
the image formation procée$s In fact, the only additional tool required isimple

image segmentation algorithm to extract the pasifaverage) of the black rectangle
from a series of raw frames.
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Figure 4.1: a Live imag of the n mosaic dmetihe observer and (b) the
corresponding laser scan pattern that the subjeatng through AOSLOII sees during
an imaging session

4.2.2 Myopia

Myopia is most often due to elongation of the \otre chamber rather than to changes in
the cornea and lens. This is evidence by high taioas between axial length and
refractive error reported in previous studiés*: Reported complications that have been
associated with myopia include lower best-correamaity>* 134 136 142raquced contrast
sensitivity*> **4 slower and/or inaccurate accommodatiért*> 1*° and object aspect
ratio misperceptioti’. Retinal stretch may be a plausible explanatiorsémne of these
observations because a longer eye would requirsaime number of photoreceptors in
the retina to tile over a larger surface areadea supported by cone density
measurements from 1 to 2 mm eccentritiyAlthough it may seem natural to
extrapolate such findings into the foveal centestualy based on experimentally induced
myopia in marmosets has shown that the oppositerees the longer, myopic eyes
actually had significantly higher retinal cone dgné&ones/mm) than emmetropic

eyes®® Therefore, the fact that the most dramatic chaimgeone density distribution
occur in the fovea begs for a more rigorous treatroéthe matter.

In studies where eye length is an important vagigéktra care needs to be taken
when reporting cone density or spacing as a funafaeccentricity because eye length
directly affects the conversion between angularratidal units. For example, a recent
study reported a decrease in retinal cone dengityimcreasing axial length at 2°
eccentricity>°. Whether or not their measurements supportedetireat stretch
hypothesis, however, remains unknown because Zhaadty corresponded to retinal
eccentricities of 0.56 and 0.72 mm away from thee& center for the shortest and
longest eyes included in that study. Accordingrtatamic measurements provided by
Curcioet al?®, cone density was about 34,000 and 24,000 consan®56 and 0.73
mm eccentricity respectively. In the extreme cabkere retinal cone density as a function
of retinal eccentricity is preserved during eyevgig one would still expect to find a
difference of about 10,000 cones/fmdue to how a particular angular eccentricity
converts to different retinal eccentricities wheme éengths are not equal. For clarity, we
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presented our results in both angular and retind$ @nd discussed the visual and
anatomical implications associated with each apgroa

4.1.3 Acuity

Since foveal cones are not easily accessible iliviimg human eye, investigations
concerning cone spacing and myopia have generadiy lmferred from visual acuity
measurements. A review of the main literature astibpic will reveal that myopes
perform similarly or a little worse than emmetropdsen refractive error is corrected
near the pupil (i.e. contact lenses, refractivgery, etc.), while they almost always
perform worse with a spectacle correction due #s®eiated minifying effect&® 134 13¢
142,149,130 gince myopes generally have higher retinal magatibn due to their eye
length, a likely explanation has been that myopag have increased cone spacing due
to retinal stretch. Alternatively, in studies wheeéractive error was corrected using
spectacles and contact lenses, performance maybeavecompromised by optical
factors such as scatter or high order aberratforig® Optical complications are
minimized when testing acuity with grating pattegemerated with laser interferente
151 Using this method, the level of myopia no longeemed to affect acuity at the fovea.
However, the higher retinal magnification factoMR) afforded by a longer eye would
predict that myopes should actually perform betian emmetropes if their retinal cone
densities were similar. Therefore, results fronséhvo studies still support the idea that
foveal cones become more widely spaced as myopgresses* ! More recently in
our lab, Rossgt al. used AOSLOI to test AO corrected visual acuitgmmetropes and
low myopes (less than 4 diopters of myopia) anahébthat the low myope group
performed significantly worse than the emmetromrigr However, there was still a
distinct possibility that the AO correction was werfor the low myope group than for
the emmetrope group because AOSLOI employs a 3meh®M and ran a static
correction at that time. Therefore, actual imadge®weal cone mosaics for a group of
individuals with different refractive errors (oriaklengths) are needed to help answer
whether or not cones become physically more widphced as myopia progresses.

4.2 Methods

Prior to each experiment, informed consent wasiodtafrom the subject after we
explained the nature and complications of the stiityhteen eyes from 18 healthy (not
including refractive error) subjects, between thesaof 23 to 43 years, participated in the
study (Table 4.1). A self-report questionnaire regey basic health history was part of
the subject recruitment process to ensure thatmeisons with no signs of ocular health
problems were included in the study. The distinctietween axial and refractive myopia
was not made. Subjects who have smaller natural gigps (< 6 mm diameter) were
administered with 2.5 percent phenylephrine andrtent tropicamide prior to AOSLO
imaging. Retinas were imaged from approximatelyptederred retinal locus (PRL) to
just beyond 1° eccentricity. Retinal imaging pragedand computations required to
obtain the measurements used in this study araieeol below.

4.2.1 Retinal imaging
All imaging was done using AOSLOII with 840 nm ligivost of the subjects were
imaged before | upgraded to the current DM which BMC MEMS device with a 5.5
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um advertised stroke. The previous DM was also a BWEMS device but the slightly
lower (3.5um) stroke model. | installed the high step resolu{i14-bit) driver for the

DM much earlier in the study (May, 2009), so almuaf of our subjects were imaged
using this new driver. The current default conepol the statistically weighted
reconstructor under integral control while the logaffle penalty reconstructor was used
in the earliest experiments. Eye alignment to thitcal path and head stabilization were
achieved via a chin rest and temple supports mdumea three-axis stage. The scan
field was about 0.9° by 0.9°. Since the fixatiorg#d is part of the acquired image,
fixation locations are recorded to simultaneousigk each subject’s fixation pattéh
The average fixation location on the retina wasnaéef as the PRL. The acquired retinal
videos were first manually reviewed frame-by-fraimepoor quality frames that may be
caused by several factors (i.e. inaccurate wavefrmasurement and/or correction, blink,
tear film breakup, etc.). These frames were delptext to image post-processing.

Table 4.1: Subjects

Eye Gender Age Axial length Spherical equivalent RMF

(yrs) (mm) refraction (D) (um/deg)
1 oD F 31 22.86 0 272.20
2* oD M 29 22.87 0.5 270.68
3 oD F 31 23.40 -1.5 278.75
4 oS M 42 23.50 0 280.47
5 oD M 30 23.51 0 281.47
6% oD F 24 24.08 0 288.41
* oS M 43 24.18 0 288.49
8 oD F 38 24.48 0 298.59
ot oS M 31 24.49 -0.75 298.61
10 oD F 23 24.54 -3.5 298.98
11 oS M 36 25.00 -2.5 305.06
12 oD M 43 25.37 -2.25 310.81
13Ff OD F 23 25.61 -5.5 316.58
14% OS F 23 25.73 -5.25 320.07
15F OD F 25 26.85 -6.75 335.61
16 oD M 24 27.05 -7 341.68
17t OD M 34 27.46 -4.5 348.84
18 OD M 23 28.31 -11 362.32

* No cycloplegia administered

T Inaccurate anterior chamber depth (ACD) measumneriiée ACD value from
Gullstrand model eye (3.585 mm) was used

T Entire cone mosaic resolved

4.2.2 Image processing and analysis

Due to eye movements during recording and the tiagesonant scanner for the
horizontal scanning mirror of AOSLOII, the raw redl videos contain distortions that
must be corrected. The sinusoidal and eye motitfiacs were corrected using custom
image registration software developed by collalmwsit* >3 | did not take any part in
the development of algorithms for registering AOSh@ges. The retinal features in the
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frames of registered videos are almost perfectggnall, so the co-registered frames can
be stacked and averaged to produce a high signadise image. These steps were then
repeated for each acquired video, and the resuiteages were stitched together in
Photoshop (Adobe Systems Inc., Mountain View, GAgreate a larger montage image
of the foveal cone mosaic.

In making noninvasive measurements of the humae awosaic, the task of
labeling individual cones is unavoidable We implatee custom software for
identifying individual cones in the AO retinal imegyin C++ with calls to several
MATLAB functions via the MATLAB Runtime Compiler. e interface allows the user
to manually select individual cones and/or speaifegion of interest for automated
identification™>* *> MATLAB code for the current automated cone idcdtion
algorithm is given in Appendix B. The automatedoaipm that this code implements is
from our paper” but has since been updated. A combination of bathual and
automated methods was employed for analyzing the omsaic at and near the foveal
center because the current version of the autonaddedthm still does not perform
adequately near the foveal center where the caeab@smaller and consequently have
lower contrast.

4.2.3 Retinal feature size estimation

The adjusted axial length method coined by Bereteit**°is often used to estimate the
RMF4% 158,157 This method assumes that the retina and the bgelsfocal plane
coincide, which is not the case in myopia. Sincai&i angle is defined with respect to
the nodal points of the eye, a more reasonableoapprwould be to locate the second
nodal point and the resultant retinal image sizgesuded by the nodal ray (Figure 4.2).
We specified a custom four surface model eye foheaabject to carry out this
calculation. The anterior radius of curvature @& tornear(), anterior chamber depth
(ACD) and axial length were measured using an 10&felia(Carl Zeiss Meditec, Jena,
Germany). For the cornea, we chose a fixed thickaesd refractive index of 0.535 mm
and 1.38 respectiveli *°° The corneal thickness was subtracted from thesured
ACD to obtain the anatomical ACD (distance from plosterior cornea to the anterior
lens). The posterior radius of curvature of thenear¢,) was taken to be 0.8881%. The
Gullstrand schematic eye was used to approximatettéckness and refractive indices
of the aqueous, lens and vitreous.

86



Nodal

Corneal int
apex points
A N:\ N,
6 I hn

Figure 4.2: Schematic eye illustrating the relaglip between visual anglé, and the
retinal image sizé

The location of the secondary nodal point wasrestied for each eye via a
paraxial ray trac&’. Once determined, retinal image size is relatedsioal angle by the
equation:

h=2tan(0.8 {x- AN,)8
R 4.1)
=0.0175x- AN, )8

whereh is retinal image sizex is axial length,AN, is the distance from the apex of the
cornea to the eye’s second nodal point @mslvisual angle. The MATLAB code for
calculating the RMF this way is given in AppendixAhother magnification factor must
be applied (multiplied) to Equation 4.1 when wawefrcorrection is aided with trial
lenses. For example, a negative powered lens pladeant of the eye decreases the
AOSLO’s scan angle so the resultant retinal image will be smaller. This
magnification factor is given by the thin lens farax

M=— L

1-P(d+y)

whereP is the power of the trial lend,is the spectacle vertex distance gnslthe
distance from the corneal apex to the entrancd.pipixed value of 14 mm was used

for d for all subjects. The location of the entranceilpwps estimated from the ACD and
the corneal radii of curvatures &ndr»).

(4.2)
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(b)

(c)

Figure 4.3: (a) A 0.5° x 1.0° (144n x 288um) section of a cone mosaic for subject 6
with identified cone locations. The foveal centeat the bottom right corner of the
image. (b) Result after taking the distance tramsfof the (x, y) cone locations. (c)
Voronoi tiles generated using the watershed transfo

4.2.4 Cone density estimation

Computations for estimating cone density were edraut using the MATLAB Image
Processing Toolbox (IPT). The procedure used fomasing density from a list of, y
locations was adapted from several earlier studhe=se a fixed sampling window with
an approximate area of 130’ is scanned across the image to compute the mean
density at each sampled locatfoff ***Using this window size, the peak cone density
averaged across the reported normal eye data ig 2bd,000 cones/miA 2 Due to
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relatively higher cone density gradients near theél center, a fixed window size will
result in erroneous density estimates due to aireganyer a variable number of cones at
different locations. We addressed this issue bytug an adaptive sampling window
where the window size is adjusted to contain ataoisiumber of cones instead. The
constant was set to 150, which is approximatelyettpeected number of cones in a 1300
um? sampling window based on published peak densitega® 2°

Cone density is often calculated by dividing tlhentver of cones recorded in the
sampling window area. This method assumes a uniflansity distribution within the
sampling window and will underestimate densityhé sampling window overlaps
regions of missing data (i.e. image border). THiesgations have motivated the
adoption of what is known as Voronoi local densitalysid®?*®* Figure 4.3 illustrates
several steps in this computation procedure. Aftentifying individual cones in an
image (Fig. 4.3a), the resultant coordinates aged trs construct a binary mosaic that is
all zeros except at pixels corresponding to theeamnters. The nearest-neighbor
distance calculations are applied to the resuliarary mosaic using the IPT function
bwdist.m Voronoi tiles (Fig. 4.3c) are generated from tbgultant “distance” image
(Fig. 4.3b) using the watershed transfomatershed.rp and tiles containing pixels on
the image border are removed. Finally, a raw dgnsilue is calculated at each cone
location by inverting the area of the correspondfiogonoi tile:

_ 1
A= AT )+ 05P(T(x ) 3

whereA(T(x,y)) andP(T(x,y)) are the area and perimeter of the VoronoiTiey).
Inclusion of the perimeter adjusts for the singbepwide boundary that separates all
adjacent Voronoi tiles. Raw density valuegi@fy) were first scaled by the calibrated
imaging field size to obtain angular density (cddeg) and then once more with the
appropriate RMF to obtain the retinal density (@maf). The cone density value
reported at each particular cone location is tadsethe mean of the local density
estimates within its associated sampling window.

We estimated the center of the anatomical fovefa tlue location of peak cone
photoreceptor density. The two-dimensional sequd(g) was linearly interpolated to
generate a cone density topography map for eachlégdocation of peak cone density
was determined from each topography map by a cehteass calculation: average of
the centroid locations for regions enclosed byfitlsé six iso-density contour lines
(contour levels are separated by 5,000 cone$)fniriThis method was adopted because
it provides a systematic approach for estimatimgpéak density location when it is
obviously located within the region where the cowese not resolved. This method was
also applied to images without such a region bexausrs due to cone mislabeling and
digital artifacts can produce spike-like protrusiomth artificially high values anywhere
across the topography map. Representative con@yareasurements at particular
eccentricities were computed by circular averagihdensity estimates around all
meridians. Center-to-center cone spadfxg) was calculated from density by assuming
that cones are arranged in a perfect hexagonadd¢tading to an exact relationship
between cone density and spacing:

) 5 12
S(x y) = K—\/:_gd x y)] (4.4)
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Figure 4.4: (a) Axial length plotted as a functafrthe spherical equivalent spectacle
refraction with the solid line being a linear reggi®n to the data. (b) Calculated retinal
magnification factor (RMF) plotted as a functiontloé spherical equivalent spectacle
refraction. Equation 4.1 was used directly to cotafRMF for the uncorrected case

(filled circles), while the spectacle corrected RNVHtues (open circles) were obtained by
multiplying the uncorrected RMF values by the csp@nding spectacle magnifications
calculated using Equation 4.2. Lines are linearaggjons to the data, and the decrease in
RMF with less refractive error was significaRt< .05) for both the corrected and
uncorrected cases.

4.3 Results

Axial length is plotted against the spherical eqlent refraction in Figure 4.4a
confirming once more that refractive error is prityadue to changes in the length of the
eye rather than the optics. Therefore, individuéth different eye lengths will have
different size retinal images even when viewinggame scene at the same distance
away. Quantitatively speaking, this is just dudiféerences in RMF (Equation 4.1)
which is also plotted against the spherical eqenttefraction (Figure 4.4b). The trend
observed for both the corrected and uncorrected RMé&lation refractive error are in
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close agreement with those reported in ColettaVslatsort**. Stable AO performance,
even in the cases without cycloplegia, was achisviftbut build-up of unobservable
deformable mirror modes (i.e. local wafflfify Referring to what | discussed in Chapter
3, a low computed wavefront error did not alwaysespond to similar retinal image
guality. Even though AO performance appeared texoellent most of the time, we only
successfully resolved the entire foveal cone mdsaifour eyes. Figure 4.5 is an
example such an image covering about 2° acroseveal center. For the other subjects,
the hexagonal packing structure of the cone mapgadually faded toward the foveal
center forming a region with an undesired spedkiedppearance which we do not
believe to correspond to individual cone photorémesp This region extended to at most
0.03 mm eccentricity for the majority of the eysmged but went out as far as 0.10 mm
eccentricity for one individual.
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Temporal
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Figure 4.5: 1° by 2° (32(m by 640um) foveal cone mosaic centered about the PRL
(white x) for subject 13 (see Table 4.1). Fixatiocations are represented by the small
black dots, and the white ellipses correspond wamd two standard deviations of the
fixation points. The PRL is displaced about 9.5@rc(50um) from the foveal center
(white spot).

4.3.1 Foveal fixation and cone density topography
Foveal fixation events were analyzed in much ofddume way as described by Putretm
al.? with the exception that the principal componeritsazh set of fixation points were
first computed to estimate the orientation of therbution. In some cases, the principal
components (semi-major and semi-minor axes) ardyngarallel to the coordinate axes
(Figure 4.5), but a distribution such as the oreshin Figure 4.6 is more accurately
described by a Gaussian function that is rotatetl43; from the horizontal axis. The
standard deviation of fixation along the semi-maiwis varied from 1.75 to 5.42 arcmin
(7.89 to 29.81um) with the mean at 3.61 arcmin (18 i#). Fixation along the semi-
minor axis had a significantly lower standard daeia (P < .01) ranging only from 1.19
to 3.88 arcmin (5.72 to 20.4um) indicating that angular distribution of foveaddtion is
generally not uniform. Both sets of standard dewnet are listed in Table 4.2. Fixation
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points along both axes were verified to be normdigributed (Kolmogorov-Smirnov
test,P > .05) for nearly all recordings; the exceptioeflg subjects 2 and 13 along the
semi-minor axes and subject 1 and 16 along the-s&jur axes. Interestingly, according
to Table 4.2, the PRL was located superior to thatmpf peak cone density in all but two
eyes (subjects 2 and 7).
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Figure 4.6: 1° by 1° (33pm by 336um) cone mosaic centered about the PRL (white x).
Fixation locations are represented by the smadliibtiots, and the white dot marks the
location of the anatomical foveal center. The semajer axis angle for the distribution of
fixations is about 143°. The PRL is displaced al®8tarcmin (22um) from the foveal
center.

Figure 4.7 displays several topography maps wsithdensity contour lines. PRLs
and foveal centers are denoted by the white datscarespectively. Zero contour levels
are regions where cones were not reliably ideutifieareas beyond the image support.
Displacements between PRLs and foveal centers ddinge 2.98um (0.58 arcmin) to
92.29um (18.55 arcmin) with an average displacement otiaB4um (5.62 arcmin)
which is on average lower than the estimates givétutnamet al* measured with a
flood-illuminated AO ophthalmoscope. Table 4.2digte measured displacements for all
subjects. A series of location tests on the PRaseb on our estimates of the fixation
variances described above, revealed that the PRhAtde significantly from the foveal
center for all but one individual{test, two-tailedP < .001). This can be qualitatively
appreciated in Figure 5 by observing that the PBrhegally deviates substantially from
the center of mass of the corresponding contour. map
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Table 4.2: Peak cone density and foveal fixatior (€mporal, S — superior, N — nasal
and | — inferior). Subjects are listed in the sawder as in Table 1. Standard deviations
are from Gaussian fits to each set of fixation lmees.

Peak density Semi-major  Semi-minor Deviation of PRL from the point of
(cones/mrf)  axis std. dev. axis std dev. peak cone density [arcmipr()]
[arcmin (@wm)] [arcmin @m)]

1 - 2.31 (10.5) 1.20 (5.4) 2.97 (13.5) N 6.94 (385
2 - 1.75 (7.9) 1.64 (7.4) 2.43(11.0) T 1.78 (8.0)
3 - 3.74 (17.4) 2.72 (12.6) 2.00 (9.3) N 7.51 346
4 - 2.11 (9.9) 1.28 (6.0) 5.81(27.2) N 6.08 (28.4
5 - 4.59 (21.5) 2.55 (12.0) 0.793B.7NT 5.62 (2&4
6 167,730 2.91 (14.0) 1.54 (7.4) 250 (12.0)T 1863) S
7 - 3.36 (16.2) 1.19 (5.7) 1.93(9.3) N 7.96 (38.3)
8 - 4.66 (23.2) 1.75 (8.7) 10.54 (52.5)T 15.26 97S.
9 - 4.00 (19.9) 2.25(11.2) 1.40 (7.0) N 6.51 (354
10 - 3.10 (15.5) 2.79 (13.9) 289(14.4) T 1.99) %
11 - 3.00 (15.3) 1.32 (6.7) 2.07 (10.5) N 0.94 &8
12* - 3.42 (17.8) 1.63 (8.4) 0.54 (2.8) N 0.21 j1s1
13 116,217 5.42 (28.6) 3.88 (20.5) 2.73 (145N 11474.5) S
14 167,984 4.83 (25.8) 2.51 (13.4) 3.16 (16.9) N 92847.6) S
15 149,719 5.33 (29.8) 1.95 (10.9) 271(152) T 76415.4) S
16 - 2.85 (16.2) 2.65 (15.1) 5.07(289) T 1.781)6
17 - 4.35 (25.3) 2.38 (13.8) 090(5.2)T 1.14 (6.6) S
18 - 3.19 (19.3) 2.23 (13.5) 1.62(9.8) T 9.37 &

* PRL was not significantly different from the ewtited foveal center
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Figure 4.7: Examples of cone density topographysmAp maps are oriented as
indicated on the top-left panel (T — temporal, Siperior, N — nasal and | — inferior).
Locations of the foveal center and the PRL arecaueid by the white dots and x’s
respectivity. The size of each map is 0.6 by 0.6 ameh consecutive contour lines are
separated by 5,000 cones/fffihe dark blue areas include both the centraldbregion
in some eyes where cones could not be resolvedegimhs outside of the support of the
acquired retinal images.

4.3.2 Inter-subject cone density variability

Retinal cone density is plotted against retinaketacity in Figure 4.8 with zero
eccentricity defined at the foveal center. In therfeyes where all the foveal cones were
resolved, the peak retinal cone density ranged k88842 to 167,730 cones/rhm
(Table 4.2) which all fall within reported valuesspite subtle differences in the
calculation procedure used in different stutlie$® The corresponding minimum center-
to-center cone spacing estimates are 2.62, 3.0%,ahd 2.7m. Individual cones were
resolved in most eyes beginning at about 0.03 nuarddcity. On average, retinal cone
density decreased from 151,008 to 57,312 cone$fnom 0.03 to 0.30 mm eccentricity.
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Variability across subjects was highest at 0.03 esoentricity and converged to a
similar range of values beyond 0.2 mm eccentricity.

In Figure 4.9, cone density is plotted againsalaeingth at three different retinal
eccentricities. At 0.10 mm eccentricity, retinaheadensity appears to decrease with
increasing axial length but the effect was notistiaally significant P > .05) . A root-
mean-squared error (RMSE) of 9,114 cones’risna clear indication that axial length
does not accurately describe retinal cone dengigrences near the foveal center. By
0.30 mm eccentricity however, retinal cone denddgreased significantly with
increasing axial lengttP(< .05), and the RMSE was reduced nearly threatotzhly
4,406 cones/mf Since RMF is higher in longer eyes, angular ademsity actually
increased significantly with axial length at altek retinal eccentricities despite the
RMSE of the fit being rather high toward the foveahter. As a result, the visual angle
subtended by an object along the line of sight getherally be sampled by more cones in
a longer eye despite evidence of myopia inducedaiestretch as close as 0.3 mm from
the foveal center.
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Figure 4.8: Retinal cone density as a functioretinal eccentricity. Representative cone
density measurements at particular eccentricitex®womputed by circular averaging of
density estimates around all meridians. The shaglgidn corresponds to the range of
foveal cone density values report by Cureial?®
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Figure 4.9: Retinal cone density (a, b & ¢) andudaigcone density (d, e &f) as a
function of axial length at three different retimacentricities. Error bars represent one
standard deviation in the spread of cone densityegaat the specified eccentricities.
Lines are weighted least squares linear regressiotine data.
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Figure 4.10: Retinal cone density (a, b & ¢) anduar cone density (d, e & f) as a

function of axial length at three different angudacentricities. Error bars represent one

standard deviation in the spread of cone densityegaat the specified eccentricities.
Lines are weighted least squares linear regressiotie data.
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4.3.3 Foveal cone density and visual acuity

For the purpose of facilitating a comparison betweear anatomical measurements and
visual acuity, we also analyzed the cone densitg daspecific angular eccentricities.
Figure 4.10 shows that retinal cone density deedtasth increasing axial length at a
higher rate than when eccentricity was specifieshin. However, retinal and angular
eccentricities away from the foveal center havesgp meanings when different eye
sizes are involved. For example, 1° eccentricityvents to a distance of 0.27 mm away
from the foveal center for our shortest eye andenoan 0.36 mm for our longest eye.
According to our measurements, we would expecina censity drop of 14,785
cones/mmdue to retinal eccentricity differences alone wahéxplains about 52 percent
of the estimated decrease in Figure 4.10c. Theirenged8 percent is presumably due to
retinal stretch. An increase in axial length did s®em to have any effect on angular
cone densityR > .05). In fact, the regression line was neady lily 1° eccentricity
assuring that the visual angle subtended by arcbajaving slightly off axis will be
sampled by similar numbers of cones independeaxiaf length. Since the PRL can
deviate substantially from the foveal center, weenactually able to determine cone
density at the PRL for 10 eyes despite some ointlagies containing a small region of
cones that were not resolved. Figure 4.11 plotsdtieal cone density against axial
length at the PRL. Retinal cone density appeadetoease with increasing axial length
primarily due to a fairly long eye in our study tiad particularly low cone density
values at and near the foveal center, but the atdretror was very high (RMSE =
22,154 cones/mf so this effect was statistically insignificaft$ .05).
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Figure 4.11: Retinal cone density as a functioaadl length at the PRL. Solid line is
linear regression to the data. Regression slopeignificant @ > .05).

4.4 Discussion

One of the main purposes of this work was to previdseline cone density
measurements from 0 to 0.3 mm eccentricity, a regfdhe retina that is most important
for spatial vision, but that has been rarely exgdiousingn vivoimaging methods. With
improved AO performance, most if not all cone pheteptors in this central part of the

97



fovea can be resolved. The cone density curveteplat Figure 4.8 are in close
agreement with 6 of the 8 retinas presented iniGetcal *® It was mentioned as a
possibility by the investigators that the two rasrwith much higher foveal cone density
than the rest may have been due to tissue shrinkagaonetheless encouraging to find
thatin vivo density measurements are in close agreement witbidgical data.

Recent work by Chugt al*® ®stated that diffraction may be the limiting factor
for the AOSLO for resolving cones near the fovesaiter. Their resolution assessment
was based on the Rayleigh criterion for a 6 mm diampupil (2.8um for an
emmetropic eye). For the subjects imaged in thidystthe Rayleigh criterion would
predict the resolution limit to be from 2.65 to 35n depending on eye length. With the
exception of the two high density foveas reportgchrcioet al?®, the smallest foveal
cones are at leastiin in diameter which is approximately equal to cepacing in the
rod-free fove& >° But cone size increases rapidly with eccentrjcitythat by 15@m
from the foveal center, the average cone spaciggester than 3.pm according to
measurements plotted in Figure 4.8. Since @hai > ***were only able to resolve
individual cones at retinal eccentricities greaiten 200um in emmetropes, it is unlikely
that diffraction was the limiting factor in theireasurements. Fundamentally, the more
accurate description of resolution limit is knowsithe Sparrow criterion which predicts
a resolving power that is about 22 percent highan the Rayleigh criterion for a circular
aperturé®®*®® |n our study, the predicted lateral resolutiomsthe four eyes were 2.41
um, 2.43um and 2.55um indicating that we were imaging close to therdfion limit.
Assuming that size is the only factor that make®#&b cones difficult to image, a
diffraction limited AOSLO should be able to resothe entire foveal cone mosaic for
most eyes. Since this was not the case in thertwstedy, a more robust AO system is
required to consistently achieve near diffractionied image quality.

4.4.1 Peak cone density and fixation

As mentioned already, the AOSLO has the advantageftood illuminated AO retinal
imager for being able to isolate precise locatiomshe retina used for fixation.
Nevertheless, our data are consistent with, adflightly lower than Putnaret al?, who
found that the PRL is displaced from the point @dlpcone density. Our measurements
serve to confirm that the PRL deviates significafitbm the foveal center and reinforces
the importance of clearly defining the locatioreefo eccentricity whenever one is
performing eccentricity-dependent measurementsh&umore, when the angular
distribution of foveal fixation is not approximagalniform, the horizontal and vertical
standard deviation or the mean would not accuratesgribe fixation variability.
Principal component analysis determines the orimtahat accounts for the most
variability in the data and thus provides a bettezrall metric for describing fixation
variability.

4.4.2 Cone density and axial length

Inside the approximate foveola (0 to 0.2 mm ecéeityf® 29, axial length induced

retinal stretch could not be verified by cone dgnsieasurements alone due to high
levels of inter-subject variability. Although we meeable to measure cone density only as
close as 0.1 mm eccentricity if all subjects werbé included, we would expect inter-
subject variability to be even greater at the fbweater based on histological ddta
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However with increasing retinal eccentricity, teadency for all cone mosaics to
converge to a state that can be characterizediblylargth becomes more apparent as
observed at 0.3 mm eccentricity (Figure 4.9c).regengly, despite the amount of inter-
subject variability near the foveal center, angulame density actually increased
significantly with axial length at all retinal ecaecities (Figures 4.9d, 4.9e and 4.9f). In
the interferometric acuity study by Coletta and ¥gat>, the investigators generated a
1° diameter circular grating patch to measure fbaeaity in a group of subjects with
various axial lengths. According to their resudtis,subjects performed similarly when
acuity limits were specified in angular units oaspl frequency (cycles/deg). But based
on their RMF estimates, the spatial frequency efgrating in retinal units (cycles/mm)
for their longest eye was only half the rate as thiatheir shortest eye. Based on our
measurements, if interferometric acuity at the #oigeindeed limited by cone spacing,
then one would expect individuals with longer etgeperform better than those with
shorter eyes in terms of acuity in angular uniy€lgs/deg) and perform similarly in
terms of acuity in retinal units (cycles/mm). Thias not the case according to two
separate studit¥' ! so we can rule out retinal stretch as a possiiéanation for why
foveal interferometric acuity does not improve withreasing level of axial myopia.
One rather extreme interpretation of our resslthat the density of the foveolar
cone mosaic is completely unaffected by myopiaeelaye growth. This seems unlikely
because the retinal surface expands globally inpiag/, and we have little reason to
believe that retinal tissue at the foveola is saomemore durable than the rest of the
retina. A more reasonable interpretation wouldHae tetinal stretch affects the foveolar
cone mosaic, but a number of other development&bifa primarily govern cone density
distribution there. A thorough analysis of foveahe density and packing structure in
emmetropic retinas, in tandem with other structoraasures (i.e. retinal thickness, size
of the foveal avascular zone and the shape ofotheaf depressidi?), will be necessary
to identify these potential factors. Nevertheléssause we were only able to estimate
the peak cone density for four eyes, we still camale out the possibility that peak cone
density increases with eye growth as seen in exeertally enlarged marmoset e¥&s

4.5 Conclusions

The lateral resolution achieved with AOSLO is stuiéfint for resolving the smallest cones
in the foveola in some eyes and most of the foeeaés in all normal eyes. As a result,
we are able to perform some of the first analysesrmages of foveal cone mosaics
acquired from the living human retina. AOSLO measuents of foveal fixation verified
that the PRL deviates significantly from the pahpeak cone density in normal eyes.
Based on cone density distribution alone, myopiluaed retinal stretch exists in the
fovea, but near the foveal center (< 0.3 mm) tliegeendencies are swamped by other
sources of inter-subject variability. As a restétationships between cone density and
axial length found outside this region cannot bigagolated to infer trends at the foveal
center or along the line of sight.
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Appendix A: Proof of Equation 3.3.4
Equation 3.3.4 is given by:

AT [TATT+A, T =[TTATT AT A
In order to verify that these two expressions adeed equivalent, we will make use of
analytical formulae for blockwise matrix inversiaich makes heavy use of the Schur
complement. For bookkeeping purposes, | will asstiraenatrix dimensions that

correspond to a 6 mm diameter pupil measured amgpensated with the Shack-
Hartmann sensor and BMC DM in AOSL&!I

T I:l R42®<144
/\ I:l Rl44><144
/\ I:l R42®< 426
| will also assume that the covariance matrisgsand/\,, are nonsingular (or Equation
3.3.4 would not make any sense) which is technjicail guaranteed in Wavefront

reconstruction but nevertheless reasonable focuhent purpose. First, consider the
block matrix:

T O-A
The corresponding Schur complements of the upgét-egnd lower-left partitions are
defined by:

v

M A |:/\;LJ; TT :||:|R56®<566 (Al)

A(AGE)E =N, =TA,TT

(A.2)
A(-N,) 2N +TTALT

We can obtain a different analytical expressiortiierinverse of matriM depending on

which Schur complement is used:

/\UU +/\UUTTA(/\;i )_lTAUU _/\UUT TA(/\;l::- )_l

M™= . . (A.3)

-A(AG) TA,, -A(AG)

uu

i -1 1T AL

A=A\ A=A TA

M -1 - ( vv) . ( vv) _v]\-/ (A4)
ANaTA(-N,)" ~Ag+ATA(-A,) TA,

Since Equations A.3 and A.4 are equal, their raspepartitions must also be equal.
Consider the upper-right partitions:

AW TTANE) = A(-A,) ' TTA
Substituting in the appropriate Schur complemegitgiation A.2), we get:
AT [Ny =TATT T =[AZ+TIAT AL
and with some trivial rearranging, we get:
AT [TAT A =[TTAT AT T A
which is exactly Equation 3.3.4 B
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Appendix B: Matlab code

B.1 Zonal reconstruction matrices for circular pupils

The following Matlab script generates matri@andl’, saving them in a mat file which
| called “DandG.mat”. Only when the wavefront slapeasurements are computed
(Equation 2.36), vectorized and stacked with tlstopes on top of the y-slopes can the
wavefront actually be computed using the Equatigi 2

o=(r'r+w’) oy
Generating matri¥ is trivial (see Figure 2.12) since it is just duron of ones and
another column of alternating ones and negative,asel will not waste space and time

to include code for that. The resultant estimatagtefront is a vector, so each entry must
be moved to the right location in the pupil in arteplot properly.

B.1.1 Main script
% Adjust these parameters as needed

PupilDiameter_mm = 6; % Eye's pupil diameter (mm)
LensletPitch_um = 328; % Diameter of subapertonerons)
magnification = 0.889; % Pupil to lenslet arraygnidication

%% Do not modify any code below this line

% Generate LensletMatrix

w = LensletPitch_um/1000;

MAXCOLS = 2*floor(ri_ratio) + 1; %Number of lefets across the pupil
limit = floor(ri_ratio);

LensletMatrix = zeros(MAXCOLS);

CounterinsidePupil = 1;  %lenslet ID number diespupil

col=0;

for x = -limit:1:limit
col = col + 1;
row = 0;

for y = limit:-1:-limit
row = row + 1;
rad = sqrt(x*x + y*y);
if rad <=ri_ratio
LensletMatrix(row, col) = Counterinsiigpil;
CounterlnsidePupil = CounterinsidePul;
end
end
end
cols = MAXCOLS;
clear CounterinsidePupil MAXCOLS x y rad row col

% GetDandGMatrices
N = max(max(LensletMatrix));
In = cell(1, cols); %cell of empty identity matre
for col =1: cols
n = GetNumLensletsInColumn(LensletMatrix, col);
if(n > 0)
In{n}=-eye(n, N);
if(n > 1)
In{ n-1} = eye(n-1, N);
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end
end
end

% x derivative operator (between columns: ¢1:1 M2 vs 3, c3:3 vs 4...)
NonEmptyCols =];
for col =1: cols
n = GetNumLensletsInColumn(LensletMatrix, col);
if(n > 0)
NonEmptyCols = [NonEmptyCols; [col n]];
end
end
Cn =cell(1, cols-1);
A=l
[firstID neighbourlD] = GetFirstLensletiIDAndNextNghbourlD(LensletMatrix, 1);
fori=1:length(Cn)
col = NonEmptyCols(i,1); %column nioen
n = min(NonEmptyCols(i,2),NonEmpty€6+1,2)); %number of lenslets in the column
[firstID neighbourlD] = GetFirstLensletiIDAndN#xeighbourlD(LensletMatrix, col);
CO0 = circshift(- In{ n },[0, firstID-1]);
C1 = circshift(In{ n },[0 , neighbourID-1]);
Cn{i}= CO+C1;
A=[A;Cn{i}];
end

% Y derivative operator
Dn =cell(1, cols);

B =1l
fori=1:length(Dn)
col = NonEmptyCols(i,1); %column noen
n = NonEmptyCols(i,2); %numbeilerislets in the column
firstiD = GetFirstLensletID(LensletMatrigpl);
Dn{i} = circshift(In{ n-1 }, [0 ,firstD-1]) - circshift(In{ n-1 }, [O, firstID]);
B =[B; -Dn{i}];
end

% Properly scale the matrices

G = [A;B]/(LensletPitch_um); %Gradient operator,dgin geometry
D = 0.5*abs(blkdiag(A,B)); %Southwell to Hudgin @mpolator
save('DandG.mat','D','G")

B.1.2 Supplementary functions
% GetFirstLensletID
function lensID = GetFirstLensletID(LensletMatrogl)
[rows cols] = size(LensletMatrix);
lensID = 0;
if(col <= cols)
forrow =1: rows
if( LensletMatrix(row,col) > 0)
lensID = LensletMatrix(row,col);
break;
end
end
end

% GetFirstLensletiDAndNextNeighbourlD
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function [firstlensID NeighbourID] = GetFirstLenslBAndNextNeighbourlD(LensletMatrix, col)
[rows cols] = size(LensletMatrix);

NeighbourID =0;
firstlensID = GetFirstLensletID(Leng¥trix, col);
firstlensindex = find(LensletMatrix == ditensID);

estimatedNeighbourindex = firstlensindex + rows;
if(estimatedNeighbourindex <= rows*cols)
estimatedNeighbourlD = LensletMatrix(estiggitleighbourlndex);
nextColFirstlensID = GetFirstLensletID(lstetMatrix, col+1);
NeighbourID = max(estimatedNeighthby nextColFirstlensID);
if(NeighbourlD ~= estimatedNeighbourID)
firstlensID = LensletMatrix(find(LensletMat == NeighbourID) - rows);
end
end

%GetListNumLensletsinColumnsinPupil
function NonEmptyCols = GetListNumLensletsInColutmizupil(LensletMatrix)
NonEmptyCols =];
[rows cols] = size(LensletMatrix);
for col =1: cols

n = GetNumLensletsInColumn(LensletMatrix, col);

if(n > 0)

NonEmptyCols = [NonEmptyCols; [col n]];

end

end

% GetNumLensletsinColumn
function numLens = GetNumLensletsInColumn(Lenslétiacol)
[rows cols] = size(LensletMatrix);
numLens = 0O;
if(col <= cols)
forrow = 1: rows
if( LensletMatrix(row,col) > 0)
numLens = numLens + 1;
end
end
end

B.2 Automated cone photoreceptor identification

This Matlab script originated from what was deseiito my paper published in the
Journal of the Optical Society of Americ&#which was mainly on an automated cone
identification algorithm for analyzing AO retinahages. My original routine did not
perform adequately near the foveal center wheredhe mosaic has lower contrast
(assuming the cones are resolved). Meja! > added background estimation and
subtraction steps to supposedly my method, andd banfirmed that these commands
do indeed result in more accurate cone locatiamagts. However, while they opted for
a 2 by 2 median filter, | found that a Gaussiateffiloes a better job in terms of the
number of wrongly identified pixels as cone cent&fee following function for
automated cone identification uses a 5 by 5 Ganssimel, generated by Matlab
functionfspecial.m with a standard deviation of 3 pixels which ipkeonstant for all
cases. Some Matlab IPT functions are called, sonéeded to run the function. The
input arguments are a hard threshold for the mimnmtensity count that will be
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considered a cone center and the original graystelge as a two-dimensional array.
The output is a binary image thatiige at each identified cone center and false
everywhere else. The total number of cones ideatiti outputted as well. The
performance of this simple routine is good oveaalbne can see in Figure B.1, but there
are always a few misidentified cones that | maryuadjust or remove as sort of a post-
inspection process.

Figure B.1: (a) Image of a healthy cone mosaidatial1® eccentricity and (b) the same
image with the cone locations identified completgdyng the automated routine.

function [I no_cones] = auto2(Threshold, im_orid)na

f = double(im_original);

[M N] = size(f);

gauss_filt = fspecial('gaussian’,5,3); lpass Gaussian filter

bg = imfilter(f,gauss_filt,'replicate’,'conv’);

f=f-bg; %Subtract background from the origimaage
h = ones(3)/9; %3 by 3 average filter

f = imfilter(f, h, 'replicate’, 'same’);

%Morphological markers generation

LocalMins = imregionalmax(f, 4); %binary: lsadtlocal minima

se = strel('disk’, 1, 0); %Group mukifinds 1 pixel apart
ConeMark = imdilate(LocalMins, se);

ConeMark = imclearborder(ConeMark); %Get rid offirtouching ROI border
[L no_cones] = bwlabel(ConeMark);

Y = zeros(no_cones,1);
X=Y;
forind = 1:no_cones;
[y x] = find(L == ind);
Y(ind) = sum(y)/length(y);
X(ind) = sum(x)/length(x);
end
Y = round(Y);
X = round(X);
index = sub2ind([M NJ, Y, X);
| = false(M,N);
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I(index) = true;

I(im_original < Threshold) = 0;
no_cones = sum(sum(double(l)));
% End of function auto2

B.3 Retinal magnification factor

The retinal magnification factor is the scalingtéadhat relates visual angle subtended

by some object in the world to the actual sizehefithage formed by the object on the
retina. The calculation | requires three argumaiitich are measurements given by an
IOLMaster (Carl Zeiss Meditec, Jena, Germany). Tareythe axial length, front radius

of curvature of the cornea, and the anterior chardbpth. These three parameters should
be updated for different eyes assessed. The spep@eer is generally kept at zero
because it affects the final positions of the nqubaihts, and the visual angle redefined by
the presence of spectacle lenses was less imptotast All the other parameters from
the Gullstrand four-surface eye model except ferdtrneal thickness and posterior
radius of curvature (see Chapter 4, section 4&.8édtails).

% Measurements from the IOLMaster in meters

X = 24.18e-3; % Axial length

rl =7.8e-3; % Front radius of curvature of cornea
acd = 3.585e-3; % Anterior chamber depth

P_spec =0; % Spectacle power

% Radii of Curvature of the lens specific to Gulisid mode
lens_roc_f=10.2e-3;
lens_roc_b = -6e-3;

% Refractive indices

n(l) =1; % air

n(2) = 1.38; % cornea (Patel et al. 1995)

n(3) = 1.3374; % aqueous (Gullstrand)

n(4) = 1.42; % lens (Gullstrand)

n(5) = 1.336; % vitreous (Gullstrand)

% Thicknesses

t(1) = 14e-3; % Distance from spectacle to apex

t(2) = .535e-3; % Cornea (Doughty and Zaman, 2000)
t(3) = acd - t(2); % Aqueous (Anatomical ACD)

t(4) = 4e-3; % Lens (Gullstrand)

t(5) = inf; % Vitreous and beyond

T =acd + t(4);

% Powers

phi(1) = P_spec; % Spectacle (placeholder, ke@p a
phi(2) = (n(2)-n(1))/r1; % Cornea front surfacenss

phi(3) = (n(3)-n(2))/(.8831*r1); % cornea back suodé power (Littmann)
phi(4) = (n(4)-n(3))/lens_roc_f;
phi(5) = (n(5)-n(4))/lens_roc_b;

% Forward ray trace

N =5; %number of surfaces
forind = 1:N-1
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nu = nu - y*phi(ind);

y =y + nu*t(ind)/n(ind);
end
nu = nu - y*phi(N);

bfl = -y*n(N)/nu; % back focal length (wrt lastidace) includes refractive index (n/V)
H2F2 = -n(N)/nu; % second focal length

F1H1 = H2F2/n(N); % = N2F2

N2 =T + bfl - F1H1; % uses relationship that F1HN2F2

N2_retina = 1000*(x - N2); % in mm

g = 1000*N2_retina*tand(1);
fprintf('Retinal magnification is %5.4f microns pgegree\n’,q);
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