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Abstract

Essays on Delegated Portfolio Management and Optimal Contracting

by

Raymond Chi Wai Leung

Doctor of Philosophy in Business Administration

University of California, Berkeley

Associate Professor Gustavo Manso, Chair

This dissertation is a compilation of three papers that investigate the role of optimal
contracting in a delegated portfolio management setting. While the study of optimal con-
tracts in classical principal-agent setup has been extensively studied, relatively few have been
studied in the context of delegated portfolio management in finance. And even delegated
portfolio management papers in finance, there are still several open questions and unresolved
issues that are beyond the scope of a standard principal-agent problem.

In Chapter 1, I study a continuous-time principal-agent problem with drift and stochastic
volatility control. While the problem with drift-only control by an agent has been extensively
studied recently, very few existing papers allow an agent to endogenously influence volatility.
Endogenous volatility control is particularly important in delegated portfolio management
settings as volatility is one of the defining aspects of modern financial portfolio management.

In Chapter 2, I study a model that encompasses dynamic agency, delegated portfolio
management and asset pricing. Traditionally, the fields of “asset pricing” and “corporate
finance” are studied independently of each other. However, as the modern portfolio man-
agement industry blooms in size and influence, the role of the portfolio manager and the
contracts that are extended to them arguably has a role in the securities that they invest in,
and hence in equilibrium, the asset pricing implications of the market overall. This paper
is an attempt to bridge “asset pricing” and “corporate finance” (specifically interpreted to
mean delegated portfolio management contracting) into one.

In Chapter 3, I study whether a principal investor is better off delegating most of his
money to a single portfolio manager (centralized delegation), as opposed to multiple portfolio
managers (decentralized delegation), especially when there is the possible presence of moral
hazard. With the size of the hedge fund industry and growing empirical support that moral
hazard is a growing risk among hedge fund managers, it becomes imperative to understand
when an investor decides to delegate his money, should it be delegated in a more centralized
or decentralized fashion.
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Chapter 1

Continuous-Time Principal-Agent
Problem with Drift and Stochastic
Volatility Control: With Applications
to Delegated Portfolio Management

September 21, 2014

Chapter Abstract

We study a continuous-time principal-agent problem where the agent can privately and
meaningfully choose both the drift and volatility of a cash flow, while the principal only
continuously observes the managed cash flows over time. Our model contributes a result
that is hitherto relatively unexplored in both the continuous-time dynamic contracting and
the delegated portfolio management literatures. Firstly, even though there is no direct moral
hazard conflict between the principal and the agent on their preferred volatility choices, but
to avoid inefficient termination and compensation from excess diffusion, this first best choice
is not reached; this is the “reverse moral hazard” effect. Secondly, the dollar incentives the
principal gives to the agent critically depends on the volatility choice, endogenous quasi-
risk aversion of the principal, and the elasticity to the exogenous factor level; this is the
“risk adjusted sensitivity” (RAS) effect. In a delegated portfolio management context, our
model suggests outside investors should prefer funds such that: (i) the investment fund has
an “internal fund” available only to management; (ii) the “external fund” for the outside
investors closely tracks the value of the internal fund; and (iii) has dynamic incentive fee
schemes, and these fees can be interpreted via Black-Scholes “greeks”.
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1.1 Introduction

As of 2009, $71.3 trillion is invested into managed portfolios worldwide 1, and the vast ma-
jority of these managed portfolios are under active management. Despite the prevalence and
importance of delegated portfolio management in the modern capital markets, surprisingly
little is known about its optimal contracting characteristics in a dynamic environment. The
difficulty of approaching these problems is succinctly captured by a remark in Cuoco and
Kaniel (2011):

“A distinctive feature of the agency problem arising from portfolio management
is that the agent’s actions (the investment strategy and possibly the effort spent
acquiring information about securities’ returns) affect both the drift and volatility
of the relevant state variable (the value of the managed portfolio), although
realistically the drift and the volatility cannot be chosen independently. This
makes the problem significantly more complex than the one considered in the
classic paper by Holmström and Milgrom (1987) and its extensions. With a
couple of exceptions, as noted by Stracca (2006) in his recent survey of the
literature on delegated portfolio management, ‘the literature has reached more
negative rather than constructive results, and the search for an optimal contract
has proved to be inconclusive even in the most simple settings’ ”.

To emphasize the point, the ability to influence the volatility of a managed cash flow is critical
in a delegated portfolio management context. Indeed, numerous papers have recognized that
risk shifting 2 behavior of the portfolio manager as an important source of moral hazard that
is typically not present in traditional principal-agent contexts, such as employer-employee
and landlord-tenant relationships.

Here, we present a continuous-time principal-agent model that represents both a first step
in the literature in dynamic contracting theory whereby the agent can explicitly and meaning-
fully privately choose volatility, and equally important, also as a first step into understanding
dynamic contracting environment in the context of delegated portfolio management. We con-
sider a dynamic contracting environment in continuous-time with a risk-neutral agent and a
risk-neutral principal, whereby the agent can privately choose effort and volatility levels that
affect both the mean and overall risk of the cash flows. The principal can continuously ob-
serve the cash flows, but not the hidden choices of effort and volatility that the agent chooses.
In line with the literature, the agent enjoys a private benefit from exerting low levels of effort
(“job shirking”), and we also further assume that the agent enjoys a private benefit from
choosing high level volatility control (“lazy quality management”). The expected payoff of
the managed cash flows (i.e. the drift) is a “reward function” of both the effort and volatility
chosen by the agent. This is to roughly capture the classical “risk-reward trade off” intuition

1 Wermers (2011)
2 See Stoughton (1993) and Admati and Pfleiderer (1997); see also Stracca (2006) for a summary on how

the delegated portfolio management problem presents unique challenges that are not present in standard
principal-agent problems.
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of financial economics, particularly in portfolio choice theory. Here, effort is a binary choice
but volatility is chosen from a closed interval. In a certain sense, in the context of delegated
portfolio management, we can view the agent as continuously managing a portfolio whose
per-period return follows a classical single factor model, whereby the overall expected return
is dependent on effort (i.e. “alpha”) and volatility choice (i.e. “beta”) of a priced system-
atic factor that is unobservable to the principal off-equilibrium. See Section 1.3 for details.
The problem of drift only control, to various degrees of sophistication, has been extensively
studied in recent years (see Section 1.2 for a literature review).

However, to the best knowledge of this author, continuous volatility control when the
principal can continuously observe the cash flows has been given little to no attention in the
models commonly used in the literature, and for good reason. Specifically, if the principal
can continuously observe the cash flows and the agent directly controls the volatility term of
the cash flow, the principal can compute the quadratic variation of the cash flow process, and
thereby infer directly the choice of volatility that the agent has been using. Hence, if indeed
the agent has deviated from the principal’s prescribed volatility level, the principal could in
effect apply a “grim trigger” strategy and punish the agent indefinitely thereon. By using
this argument, the agent will never have any incentive to deviate from the principal’s desired
and prescribed volatility level, and thus, volatility control by the agent can essentially be
abstracted away. Yet economically, the absence of meaningful volatility control by the agent
is very unsatisfying. There are several important situations where allowing the agent to
influence the volatility of the cash flows is economically significant; for example, the classical
considerations of asset substitution in corporate finance 3 and risk shifting in delegated
portfolio management. Thus to have any meaningful volatility control by the agent, a richer
model of the agent managed cash flows is required.

The key ingredient of our model is to introduce an exogenous factor level component
to the overall diffusion term of the managed cash flows. In particular, we will allow the
instantaneous diffusion of the cash flows be a product of an exogenous factor level process that
is completely not managed by the agent, and a component that is directly controlled by the
agent. The agent can observe this exogenous factor term, and off equilibrium, this exogenous
factor level is unobservable to the principal, even though at equilibrium becomes observable
to the principal. Thus when the principal computes the quadratic variation of this cash flow
process, the principal can at best observe the overall product of an unobservable exogenous
factor level and a controlled volatility term, but not the two components separately. So
economically, even if the principal observes high instantaneous cash flow volatility through
the computation of the quadratic variation, the principal cannot disentangle whether this
high volatility is due to a high realization of the exogenous factor level, high volatility control
by the agent, or both. Clearly, the principal should only punish or reward the agent for the
endogenous volatility control by the agent and not for the exogenous component. As well,
in line with the models of drift-only control by the agent, the principal must put the agent
at risk to induce the agent to work according to the principal’s desired and prescribed plan.

3Say Leland (1998), among many others.
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However, given that the agent can choose the volatility of the cash flows, the agent can
effectively undo or weaken some of the risks that the principal imposes on him. Thus,
the incentives involved in a model with combined drift and volatility control are, perhaps
understandably, considerably more difficult than a case with only drift control.

Let us focus the discussion of our model to the concrete important application of delegated
portfolio management. The risk-neutral portfolio manager (i.e. agent) is assumed to have
access a priced systematic factor that is unobservable to the risk-neutral outside investors
(i.e. principal) and also exogenous to the manager’s control. For instance, a “global macro”
hedge fund manager can have access to this “global macro” priced systematic factor, but
due to various institutional frictions, say trading costs or information asymmetry, even if
the investors recognize the presence of this “global macro” factor that prices assets and
has a positive risk premium, the investors cannot directly trade on it nor can they directly
observe it. Furthermore, the manager needs to: (i) privately choose the factor loading (i.e. the
volatility choice) onto this priced systematic factor; and (ii) privately choose the level of effort
to realize his skills to deliver excess returns. The manager’s factor loading choice is private
because broadly speaking, the factor loading is the investment strategy of the manager and
it is not in the incentive of the manager to completely reveal his proprietary investment
positions. Moreover, in our model, the manager enjoys a private benefit from choosing a
high factor loading level, which can be broadly thought of as “lazy quality management”;
that is, the manager could save on actively managing the portfolio to achieve low systematic
risk by not engaging into active hedging or use of derivative contracts. We look for an
equilibrium where the investor wants to induce the manager to always exert high effort, and
to endogenously choose the optimal factor loading.

Next, we discuss economically the form of the optimal contract. Our model suggests
the manager should manage an “internal fund” that is only available to management, while
offering an “external fund” only available to the outside investors. In particular, the external
fund is viewed as a financial derivative contract, with the “underlying assets” being the
internal fund and the exogenous systematic factor. It is worth emphasizing here that, off
equilibrium, the investor can neither observe the value of this exogenous systematic factor
nor the manager’s private choice of the factor loading. But in equilibrium, only after the
investors provide sufficient incentives to the manager, will the manager report this factor
level to the investors, along with the value of the internal fund at all points in time. That is
to say, endogenously and when in equilibrium, the manager will report to the investors the
appropriate factor index to benchmark his internal fund’s performance. The investors will
terminate the manager when the value of the internal fund is sufficiently low, and/or when
the level of the systematic factor is sufficiently low; as when either situation happens, the
value of the external fund becomes too low and the investor will find it optimal to terminate
the agent and obtain the fund’s (inefficient) liquidation value, and the manager will obtain
a retirement value. But if the value of the internal fund is sufficiently high, that is when it
hits a performance benchmark that is dependent on the level of the exogenous systematic
factor, a performance bonus is paid from the investors to the managers.

Let’s discuss the determinants of the value of the internal fund. The investors need to
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dynamically incentivize and impose sufficient amount of risk to the manager’s welfare to
ensure the manager will dynamically make those latent choices that the investors desire.
However, since the manager can directly alter the level of uncertainty in this managed
portfolio through the manager’s choice of the factor loading on the systematic factor, the
manager effectively can partially undo or weaken the amount of risk the investor imposes on
him. Hence, this is why the amount of risk the investors subject the manager to must be in
the form of a dynamic performance fee (i.e. risk adjusted sensitivity (RAS)); this dynamic fee
is precisely the proportion of the managed returns that the manager is entitled to through
the internal fund. So, the value of the internal fund equals to this proportional dynamic
performance fee, multiplied by the excess returns of the managed portfolio, plus the risk
free rate, less the manager’s private cost of implementing the principal’s desired investment
strategy.

Thus, the key economic driver of the value of the internal fund is this dynamic perfor-
mance fee and we now describe its composition. This dynamic performance fee depends on
three components: (i) the factor loading onto the systematic factor chosen by the manager;
(ii) the investors’ “endogenous” risk tolerance to the value of the internal fund; and (iii)
the investors’ elasticity to the systematic factor. All three of these components effectively
relate to the overall risk of the external fund. Component (i) is the direct effect, that the
systematic factor loading chosen by the manager directly affects the riskiness of the returns
received by the investors. The remaining two components are indirect effects. Component
(ii) effectively captures how the value of the external fund can change depending on the value
of the internal fund. In financial derivatives parlance, we can view component (ii) as the
“Black-Scholes Gamma” of the value of the external fund with respect to the value of the
internal fund. But given that the investors here are risk-neutral, this can also be interpreted
as “endogenous quasi risk tolerance”. Component (iii) effectively captures the remaining
other driver that affects investors’ returns in this economy, that being how sensitive is the
value of the external fund to the systematic factor level. But the investors must also further-
more take into the account of the effect of the systematic factor level on the internal fund
in providing dynamic incentives. Hence, we can view component (iii) as the “Black-Scholes
Delta-of-Delta”; that is, we first consider the BS-Delta of the value of the external fund with
respect to the value of the internal fund, and then subsequently consider the BS-Delta of
that with respect to the level of the systematic factor.

Finally, it remains to consider the investment strategy that is chosen in equilibrium.
Given that the principal is risk-neutral, in the first-best equilibrium, he would actually
prefer the highest possible loading onto the systematic factor. And furthermore, given the
manager’s “lazy quality management” private benefits, the manager also privately prefers
the highest possible loading onto the systematic risk factor. Thus, it may appear that there
is no moral hazard conflict on the factor loading choice, that being the highest possible one,
since it is mutually preferred by both the manager and the investor in first best. However,
the first best outcome is not implementable in equilibrium. Here, termination of the manager
is not desirable since the liquidation value of the fund is inefficient. This roughly captures
that without the presence of the skilled manager, the outside capital markets are only willing
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to pay a low fair price for the assets of this portfolio. But if the investors were to recommend
the manager to always take on the highest possible systematic factor loading, this raises the
risk of the managed portfolio to its highest level, it increases the risk of the internal fund, and
so making it more likely to hit the retirement value of the manager, and thus terminating
the contract inefficiently. Thus, in equilibrium, it is not necessarily optimal for the investors
to recommend and implement the first best highest factor loading choice. This is precisely
the reverse moral hazard effect. Indeed, in equilibrium, the optimal choice of the systematic
factor loading is given by a trade off of: (a) the direct private benefits to the manager of
this choice; (b) direct payoffs to the investor from this choice; and (c) incentives due to the
manager, adjusting for the dynamic performance fee. Component (b) is the direct effect to
the investors, which are the additional returns that are delivered by choosing a higher loading
on the systematic factor. Component (a) is a direct effect to the manager, but this direct
effect is adjusted by the value of the internal fund and the value of the external fund. That is
to say, component (a) equals to the manager’s marginal private benefit of selecting a higher
systematic loading, multiplied by the “Black-Scholes Delta” of the value of the external fund
with respect to the value of the internal fund. Finally, component (c) is the risk adjustment
due to the manager through the dynamic performance fee that we had described earlier.

Finally, we note the resemblance between our proposed optimal contract implementation
in the context of delegated portfolio management to current market practices. For instance,
numerous banks (at least prior to the Volcker Rule) also run proprietary trading desks, which
are effectively internal funds that are only available to employees and management. Several
hedge funds also engage into this practice. For example, the hedge fund firm Renaissance
Technologies runs three funds that are open to outside investors, but also run a separate fund,
the Medallion Fund, that is only open to its employees (see Zuckerman (2013)). Darolles and
Gourieroux (2014a) and Darolles and Gourieroux (2014b) also discuss at length the practice
of this internal fund in the hedge fund industry.

1.2 Related Literature

This paper contributes to: (i) a growing literature on continuous-time principal-agent prob-
lems; and (ii) continuous-time delegated portfolio management problems.

One of the first papers that considered a continuous-time principal agent problem is
Holmström and Milgrom (1987). Recent papers in the continuous-time principal-agent prob-
lem include DeMarzo and Sannikov (2006) (of which DeMarzo and Fishman (2007) is the
discrete-time counterpart), Biais, Mariotti, Plantin, and Rochet (2007), Sannikov (2008), He
(2009), Adrian and Westerfield (2009), Hoffmann and Pfeil (2010), Grochulski and Zhang
(2011), He (2011), Williams (2011), DeMarzo, Fishman, He, and Wang (2012), He (2012),
Szydlowski (2012), Miao and Zhang (2013), Miao and Rivera (2013), Zhu (2013), DeMarzo,
Livdan, and Tchistyi (2013), Giat and Subramanian (2013) and Hoffmann and Pfeil (2013).
We note that Biais, Mariotti, and Rochet (2011), Sannikov (2012a), and Sannikov (2013)
all give an excellent survey and overview of the current state in this literature. Please see
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Table 1.B.1 in Section 1.B for a selected survey of the models used in the literature; note
that even though the table enumerates the agent’s managed cash flow form, these papers
often have very different assumptions on the preferences of the agent and the principal, and
some also have different assumptions of the timing in which the principal can observe the
cash flows.

All the aforementioned papers allow the agent to manage a cash flow in the form of a
stochastic differential equation, of various levels of complexity, but the common setup is that
the agent can only exert effort to influence the drift of the cash flow but not its volatility.
But in these sorts of papers, the volatility parameter is held constant, known both to the
principal and the agent. This is without loss of generality in the case when the noise term
of the cash flow is driven exclusively by Brownian motion. DeMarzo, Livdan, and Tchistyi
(2013) is an interesting example whereby the cash flows have a jump component and the agent
can influence the jump, but nonetheless, the agent still does not (and cannot meaningfully)
influence the volatility. To our best knowledge, there are some notable exceptions and we
will describe these below in Section 1.B but regardless, none of them allow for meaningful
volatility control as in our context.

The setup of this model lends itself naturally to delegated portfolio management prob-
lems. As emphasized by Stoughton (1993) and Admati and Pfleiderer (1997), and summa-
rized in Stracca (2006), delegated portfolio management problems present challenges that
are not commonly considered in standard principal-agent problems; in particular, the port-
folio manager has the ability to influence both the expected return and also volatility of the
managed returns or cash flows. While managing expected return part, usually modeled as
moral hazard hidden effort selection, is common in standard principal-agent problems, man-
aging volatility is not. Ou-Yang (2003) is one of the key models in the delegated portfolio
management literature but modeled in continuous time and we will further discuss this case
in Section 1.B.

The problem of “risk shifting”, namely changing volatility of the managed cash flows,
is well recognized as a key moral hazard component in the delegated portfolio management
literature. Basak, Pavlova, and Shapiro (2007) considers a portfolio manager’s risk taking
incentives induced by an increasing and convex relationship of fund flows to relative perfor-
mance, and how this objective could give rise to risk-shifting incentives. However, it should
be noted that the contract in Basak et al. (2007) is exogenously given and there is no ex-
plicit principal-agent modeling. Other papers that investigate into risk shifting behavior by
portfolio managers include: Chevalier and Ellison (1997), Rauh (2008), Giambona and Golec
(2009), Hodder and Jackwerth (2009), Foster and Young (2010) and Huang et al. (2011).
Stracca (2006) and Ang (2012) offer excellent recent surveys on the literature in delegated
portfolio management.
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1.3 Model Motivation in Discrete-Time

To motivate the continuous-time model of the paper, and also to highlight how existing drift-
only control principal-agent models in the literature cannot be used to appropriately model
delegation portfolio management problems, we first draw an analogy to a simple two period
discrete-time asset pricing factor model. Suppose in the current period, a group of investors
hire a portfolio manager to manage a portfolio that will deliver excess returns R − rf next
period that is observable to the investor, where rf is the risk free return. The investors know
a priori that the manager has skill so ex-ante the investors are willing to invest into the
portfolio manager. What is not known to the investors is whether the manager is exerting
sufficient effort to maximize his skills to deliver positive excess returns. 4

Transparent investment funds

Suppose further the fund operates like a mutual fund, so that the investment holdings of
the fund are effectively transparent, and so the investors know and can observe what is the
appropriate market factor, say RM − rf , to price the portfolio, and moreover, the investors
can precisely choose their desired factor loading for themselves. 5 And suppose the managed
portfolio returns are driven by a factor form,

R− rf = α(e) + β0
M × (RM − rf ) + ε, (1.3.1)

where α(e) represents the excess returns of the managed portfolio that is increasing in the
level of effort e that the manager exerts, β0

M is the factor loading onto the factor RM − rf ,
and ε is the idiosyncratic risk with zero mean, and independent of RM − rf and effort e. 6

Since β0
M had been a priori selected by the principal, there is no need to condition on this

anymore. Thus, conditioning on the effort e the manager will exert, the investors’ expected
returns from this managed portfolio is,

E[R− rf | e] = α(e) + β0
ME[RM − rf ], (1.3.2)

4 Throughout the paper, we will interchange the terms “principal” with “investor”, and “agent” with
“manager”, especially when we discuss the implications in a delegated portfolio management setting. It is
hoped that no confusion should arise.

5 Indeed, commercial services like Morningstar regularly report the appropriate investment style or factor
(i.e. “value”, “growth”, “big cap”, etc.) of the majority of mutual funds available, and they also report a
CAPM beta value to the investors. Furthermore, by regulation, mutual funds are required to periodically
disclose their exact holdings.

6 Another way to view (1.3.1) is to view the mutual funds types are indexed by their factor loading
{β0

M,j}j . But there the investors can perfectly see the type at t = 0, and so according to their preferences,

select their desired type, say β0
M . Once this type has been selected, the investors then proceed to construct

contracts to motivate the managers to exert high effort to maximize their skills. But it should be noted
that this type selection argument is only valid because the investors know precisely the appropriate market
factor is RM − rf , and hence can compute for themselves the expected risk premium E[RM − rf ]. If this
were unknown, then this argument does not hold.
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where we assumed that effort choice e is independent of the market risk factor RM . Thus,
we see that the expected returns, conditional on effort e is increasing in effort e. Note here
that since the investors know the appropriate risk factor RM − rf , he can also compute the
expected risk premium E[RM − rf ]. That is, the entire term β0

ME[RM − rf ] and its two
individual multiplicative components, are common knowledge to both the manager and the
investor. Referring to Table 1.B.1 of Section 1.B, the prototypical model in the existing
continuous-time principal-agent literature takes the form,

dYt = µtdt+ σdBt, (1.3.3)

where µt is a choice that the agent can privately select, and the models in the literature
specify µt to various degrees of sophistication; see also Section 1.B for further discussion.
Mapping (1.3.3) to the asset pricing model in (1.3.1), existing drift-only control models can
effectively be viewed as, 7

dYt ≈ R− rf − β0
ME[RM − rf ],

µtdt ≈ E[R− rf | e] = α(e) + β0
ME[RM − rf ],

σdBt ≈ β0
M(RM − rf )− β0

ME[RM − rf ] + ε.

(1.3.4)

In particular, we note that for the noise term σdBt ≈ β0
M(RM − rf )− β0

ME[RM − rf ] + ε, as
mentioned earlier, the risk loading β0

M is a priori known to the investor, the fact that there
is positive risk premium E[RM − rf ] > 0 associated with this factor is also known, and this
is a pure noise term that does not convey any other information to the investor.

“Black box” investment funds

While the viewpoint (1.3.1), and by extension the continuous-time formulation (1.3.3) with
no volatility control, may be plausible for, say, mutual funds that have fairly transparent
investment procedures, this is not the case for numerous other delegated portfolio manage-
ment practices in the market. Most notably, hedge funds and private equity funds, unlike
mutual funds, are not subject to regulation to reveal their investment positions or trading
strategies. And indeed, the investment strategies and positions of these funds are precisely
their “secret sauce” or “black box”, of which they are very protective of its details. As such,
unlike (1.3.1), a far more appropriate model here is the form,

R− rf = α(e) + βZ × (RZ − rf ) + ε, (1.3.5)

where RZ − rf is the excess return of an exogenously priced factor that is observable to
the manager, but unobservable to the investor, and βZ is the factor loading the manager

7 Note that we “demean” by β0
ME[RM − rf ] primarily to balance the third equation of (1.3.4). That is

in that third equation, since σdBt has mean zero, if we did not demean, the right hand side has non-zero
mean as we have positive risk premia. But if we were to demean as written, then both the left-hand side
and right-hand side balance.
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can privately and endogenously control. Concretely speaking, if a hedge fund manager
claims that it is a “global macro fund” but does not disclose its actual positions and trading
strategies, there is no way the investor can infer what is the appropriate risk factor to
benchmark the fund at. And indeed, even looking at other peer “global macro funds” only
give at best a noisy proxy to what the fund in question is actually doing. In particular, that
means that unlike the case of mutual funds as per (1.3.1), the investor cannot ex-ante view
and select the factor loading of the fund. Thus, conditional on the effort e and the factor
loading βZ as chosen by the manager, the expected returns of the managed portfolio are,

E[R− rf | e, βZ ] = α(e) + βZE[RZ − rf ], (1.3.6)

where the effort e and factor loading βZ are independent of the risk factor RZ − rf . Note
that unlike (1.3.2), the last term βZE[RZ−rf ] is not common knowledge to both the investor
and the manager. Indeed, even if the investor knew that there is a positive risk premium
E[RZ−rf ] > 0 associated with the risk factor RZ−rf , the investor still does not know which
factor loading βZ the manager chose, nor necessarily how high that risk premium E[RZ− rf ]
is.

In all, this means to have a principal-agent model that represents the practices of hedge
funds, private equity firms, and other “secret sauce” investment funds, we need at least two
additional ingredients, on top of the skill term α(e): (i) exogenous factor term RZ − rf
observable to the manager but unobservable to the investor; and (ii) endogenous factor
loading term βZ that can be privately controlled by the manager. This represents the starting
point of our continuous-time model, and we will also continue our discussion of this discrete-
time motivation in Section 1.4.

Remark 1.3.1. There’s a slight caveat that prevents a complete mapping from the two-
period discrete time model to the fully dynamic continuous time model. In particular, in a
two-period discrete time model, there is no economic need to discern between “returns” and
“portfolio values”. That is, we may think of the final period returns in the two-period model
as simply the value of the portfolio when its initial portfolio investment is one dollar. And if
the initial portfolio investment was not one dollar, we simply just scale up or down. In the
actual dynamic continuous-time model, the principal’s payoff will have the form

∫
e−rtdYt.

Thus, if we use the exact mapping of (1.3.4), and interpret dYt as per period excess returns,
it would seem like the principal wants to motivate the agent to maximize per period excess
returns, which is at odds with general economic intuition and the large asset pricing literature
in portfolio-consumption choice. Hence, in the application of delegated portfolio management,
we will interpret Yt as the value of a managed portfolio at time t, and dYt as the instantaneous
changes of the value of the portfolio at time t. Implicit however, in this interpretation, is
that the principal gave a fixed dollar amount at time t = 0 for the agent to manage, and
there are no capital withdrawal or injection into the portfolio. And hence, this is why simply
having the principal “myopically” motivate the agent to maximize expected excess returns
is an appropriate interpretation. In general, as far as we are aware, there are yet any full
fledged dynamic portfolio-consumption choice models with agency in the literature.
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1.4 Model Outline

Let (Ω,F , P ) be a complete probability space and let {Bt}t≥0 be a standard Brownian motion
on this probability space and let {Ft}t≥0 be the filtration generated by this Brownian motion,
suitably augmented. We will write E as the expectation operator under probability measure
P . The agent can choose an action process A = {(et, σt)}t≥0, where for all times t ≥ 0,
(et, σt) ∈ {eL, eH} × [σL, σH ], where eH > eL > 0 and σH > σL > 0. We will call {et}t≥0

the effort control (process) and {σt}t≥0 volatility control (process). 8 9 Consider a function
κ : {eL, eH} × [σL, σH ] → [µL, µH ] that maps both the effort and volatility chosen by the
agent to the (expected) return of the (cumulative) cash flow process Y ; that is, consider
(e, σ) 7→ κ(e, σ) = µ. We will call κ as the reward function and we will discuss further on
the assumptions and properties of this function in Section 1.4 below. The cash flow process
Y has dynamics that depend on the agent’s action process 10 ,

dYt = κ(et, σt)dt+ σtdMt, Y0 = y0 (1.4.1)

dMt =MtdBt, M0 = m0, (1.4.2)

where m0 > 0 and note we have denoted µt := κ(et, σt). Given an action process A, we will
call {µt}t≥0 = {κ(et, σt)}t≥0 the drift (process) of the cash flow Y 11 . The principal cannot
observe the agent’s action process but can only observe the cash flow Y . The agent can also
observe the cash flow Y . Let {FY

t }t≥0 be the (suitably augmented) filtration generated by
the cash flow process Y , which represents the principal’s information set. The extra term
Mt in (1.4.1) and its dynamics (1.4.2) is different from the prevailing literature (see Table
1.B.1). We shall call {Mt}t≥0 as the exogenous factor.

Finally, for illustrative purposes only, Figure 1.1 plots this cash flow process against some
other cash flow processes that have been used in the literature.

Both the principal and the agent are risk neutral. The principal discounts time at rate
r1 > 0 and the agent discounts time at rate r0 > 0. As per DeMarzo and Sannikov (2006),
we assume that the agent is less patient than investors; so we assume r0 > r1. The prin-
cipal needs to compensate the agent and is modeled via the {FY

t }t≥0-adapted stochastic
process X = {Xt}t≥0 and assuming limited liability, we restrict the compensations to be
non-negative, so dXt ≥ 0. The principal also has the ability to terminate the agent at some

8 Of course, strictly speaking in the usual language of stochastic differential equations, we would call
σtmt as the (stochastic) volatility of Y . However, since in this setup, mt is an exogenous process, and only
σt is being directly controlled by the agent, it would be more natural to think and call σt as volatility that
is being managed by the agent.

9 Throughout this article, we will use e to denote the effort parameter / process, and use e to denote the
exponential function.

10 Specifically, the action process A is progressively measurable with respect to {Ft}.
11 Throughout the paper, we will interchange the notation µt and κ(et, σt) to denote the drift part of

the cash flow process. This is for notational brevity. Thus, given an action process A = {(et, σt)}t≥0, we
will also with some abuse of notation, also call and denote A = {(µt, σt)}t≥0 as the action process, with the
understanding that µt ≡ κ(et, σt).
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(c) Integrated GBM with drift

Figure 1.1: Illustrations of various types of commonly used cash flow processes. Here, the (con-
stant) parameters are chosen to be µ = 0.5, σ = 0.3, Y0 = 1,m0 = 1, and we
simulate over 1000 discrete evenly spaced points over the time interval t ∈ [0, 1].
Subfigure (1.1a) describes the linear Brownian motion with drift cash flow process,
dYt = µdt+σdBt, that is used in the models by Holmström and Milgrom (1987), De-
Marzo and Sannikov (2006), Sannikov (2008) and several others; see Table 1.B.1. Sub-
figure 1.1b describes the geometric Brownian motion process, dYt = µdYtdt+σYtdBt,
that is used by He (2009) (note, He (2009) calls this the firm value process). Finally,
subfigure (1.1c) describes an an integrated Geometric Brownian motion with drift,
dYt = µdt + σdMt, dMt = MtdBt, as it will be used in this paper. Note also the
parameters used in generating this figure are for illustrative purposes only. Unless
specified otherwise, these parameters are not enforced throughout the paper.
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FY
t -measurable random time τ ∈ [0,∞]. Upon termination, the firm is liquidated for value

12 L > 0 and the agent receives retirement value 13 R > 0. A contract is the tuple (A,X, τ),
which specifies the recommended action process A, a compensation for the agent X and the
termination time τ .

Fix a contract (A,X, τ) and suppose the agent follows the principal’s recommended action
A. The agent’s payoff at time t = 0,

W0(A) := EA
[∫ τ

0

e−r0t
(
dXt +

[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt
σL

− 1

)]
dt

)
+ e−r0τR

]
, (1.4.3)

where ϕe, ϕσ > 0 are constants known to both the principal and the agent. Here, we denote
EA as the expectation under the probability measure PA induced by the agent’s chosen
action process A. We will further discuss the properties of the agent’s payoffs and incentives
in Section 1.4. Likewise, the principal’s payoff at time t = 0 is, 14

EA
[∫ τ

0

e−r1t(dYt − dXt) + e−r1τL

]
= EA

[∫ τ

0

e−r1tκ(et, σt)dt−
∫ τ

0

e−r1tdXt + e−r1τL

]
.

(1.4.4)

Further discussion of the conflict between the agent and principal is deferred until Sec-
tion 1.4. We collect some assorted remarks, largely technical in nature, about the model in
Section 1.A.

Mapping back to the discrete-time model

Mapping back to the discrete-time specification in Section 1.3, and in particular to (1.3.5),
we can map the terms analogously as,

dYt ≈ R− rf − E[βZ(RZ − rf )],

κ(et, σt)dt ≈ E[R− rf | e, βZ ] = α(e) + βZE[RZ − rf ],

σtdMt ≈ βZ(RZ − rf )− E[βZ(RZ − rf )] + ε.

(1.4.5)

As discussed, the specification (1.3.5) and now to the continuous-time extension of (1.4.1),
(1.4.2), can be viewed as a more appropriate model of delegated portfolio management than
existing drift-only control models in the literature. Specifically, observe that the diffusion
term σtdMt ≈ βZ(RZ − rf )− E[βZ(RZ − rf )] + ε does indeed contain information that the
investor does not know, unlike that of (1.3.4). In particular, the investor can at best only

12 We will be more specific about this liquidation value L in Section 1.5.
13 We will be more specific regarding this retirement value R in Section 1.6.
14 In the second equality, we applied Doob’s Optional Stopping Theorem. While τ could have been

unbounded (i.e. never terminating the agent) but a standard argument using bounded sequences of stopping
times and an usual application of the Dominated Convergence Theorem will also show the result. We will
omit these details.
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form an expectation E[βZ(RZ − rf )] of the product of the systematic factor loading βZ ,
interacted with the risk premium RZ − rf , but cannot completely disentangle the two in
expectation. But this implies that it allows an opportunity for the manager to privately
deviate from the investor preferred choice of the systematic factor loading βZ .

Remark 1.4.1. Although slightly beyond the original motivation scope of the paper, it should
be noted that in modeling the managed cash flows dYt, we have that the expected value
κ(et, σt)dt is dependent on both effort and volatility, and this modeling form has found prece-
dence in the recent empirical and theoretical asset pricing literature. In Buraschi, Kosowski,
and Sritrakul (2013), the authors note:

“. . . [The traditional alpha measure that is independent of beta] raises the
question of how well a reduced-form alpha measures the true managerial skill of
a hedge fund manager. An answer to this question depends on the determinants
of the optimal allocation θ∗At made by that manager. If the optimal allocation
is constant and determined exclusively by the risk and return characteristics of
the investment opportunity set (as in a traditional Merton model without agency
distortions), then reduced-form alpha is an unbiased estimate of managerial skill.
However, if the optimal allocation is influenced by nonlinear agency contracts,
then reduced-form alpha is a misspecified estimate of true skill. For instance,
a high reduced-form alpha could be the fortunate result of too much leverage as
managers aim to maximize their incentive options. Of course, high leverage in-
creases not only the manager’s expected return (because of the call option) but
also the likelihood of large negative returns.”

Thus, Buraschi et al. (2013) suggests that the managed portfolio alpha, under the influence
of “nonlinear agency contracts”, could depend on leverage and investment opportunities.

In addition, although absent of any agency considerations, Frazzini and Pedersen (2014)
also considers an overlapping generations model that implies a factor model structure for risky
asset returns, and show that the alpha term could depend explicitly on the factor loading. Also
in empirical research of hedge fund performance, Bollen and Whaley (2009) also notes:

“Accurate appraisal of hedge fund performance must recognize the freedom
with which managers shift asset classes, strategies, and leverage in response to
changing market conditions and arbitrage opportunities. The standard measure
of performance is the abnormal return defined by a hedge fund’s exposure to risk
factors. If exposures are assumed constant when, in fact, they vary through time,
estimated abnormal returns may be incorrect.”

Reward Function κ

We need to be more specific about the way the agent can control the drift and volatility of
the cash flows. It should be noted in drift-control only models, the specification of the drift
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is usually quite simple (i.e. linear). But in our case, given the volatility control, we must be
more careful in modeling and giving economic meaning to link the volatility and drift controls.
Note that one possible characterization is to have the agent control drifts and volatilities that
are completely unrelated to each other. But this case is not economically meaningful since
it destroys the traditional link of risk-return trade-offs of financial economics, particularly
that of portfolio choice theory. We will now more specifically define the reward function κ
as follows.

Definition 1.4.1. A strictly positive real valued function κ : {eL, eH}× [σL, σH ] → [µL, µH ],
(e, σ) 7→ κ(e, σ) = µ, that is twice-continuously differentiable in the second argument, is
called a reward (drift) function if it that has the following properties:

(a) Higher effort, higher reward : κ(eH , σ) > κ(eL, σ), for all σ;

(b) Higher risk, higher reward but at decreasing rate: κσ(e, σ) > 0 and κσσ(e, σ) < 0, for all
(e, σ);

(c) Risk cannot substitute for effort : κ(eH , σ) > κ(eL, σ
′) for all σ, σ′.

The requirement (a) is natural to interpret; that is, if the agent exerts higher effort to
running the project, then the expected payoff should be higher, regardless of the choice of
volatility. Requirement (b) is the traditional risk-reward type trade off. One would expect
that by choosing a riskier project (higher volatility) over a safer project (lower volatility),
it is so that one could enjoy higher expected returns, but we impose that the rate of return
from increasing risk is decreasing. Thus, requirements (a) and (b) should have good natu-
ral interpretations. Requirement (c) means that exerting high effort always gives a higher
return, regardless of the level of risk taken. Effectively, that means that effort and risk are
not “substitute goods”; hence, this requirement explicitly rules out a case where the agent
can exert low effort and take on a high level of risk such that this return is equal or greater
to one with high effort and any level of risk. In the delegated portfolio management con-
text,t his means high managerial skills always deliver better returns any form of “financial
engineering”. Note that clearly (c) implies (a) but we write them out separately as (a) is
effectively the only requirement assumed in the controlled drift-only models (i.e. when κ is a
function only of effort e). More generically, early studies between project selection (viewed
as volatility in the current context), risk and effort can be found in Lambert (1986) and
Hirshleifer and Suh (1992).

We now given an example that satisfies Definition 1.4.1 and hence directly showing that
the set of reward functions is nonempty.

Example 1.4.1. Consider the reward function of the form,

κ(e, σ) =
e− eL
eH − eL

α1 log σH + α1e
α0(e−eL) log σ,
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where α0, α1 > 0 are deterministic constants. Here, we restrict σL, σH such that σL = c,
σH ≈ 1.763, where 1 < c < σH , and that ϕe, ϕσ > 0 are such that ϕe

ϕσ
1
eH

(eH − eL) >
σH
σL

. Note

here that µL = κ(eL, σL) and µH = κ(eH , σH). See Figure 1.2 for an illustration.

Proof. It is immediate that Example 1.4.1 satisfies the conditions of Definition 1.4.1. For
the proofs of all other statements in the paper, please see the Appendix. ■
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Figure 1.2: Illustration of Example 1.4.1 with the parameters: α0 = 1, α1 = 1, eL = 2, eH =
5, σL = 2, σH = 5.

Principal and Agent Conflict

With the reward function specified in Definition 1.4.1, we are now ready to discuss the
sources of conflicts between the principal and the agent. From the agent’s payoff in (1.4.3),
we see that the agent dislikes exerting high effort et = eH and likes to exert low effort et = eL,
and the agent likes to choose high volatility σt = σH and dislikes to choose low volatility
σt = σL. In contrast, from the principal’s payoff in (1.4.4), and the properties of the reward
function as given in Definition 1.4.1, the principal likes high effort et = eH and dislikes low
effort et = eL. Moreover, by the properties of the reward function, and also effectively by
the risk neutrality of the principal, the principal also seems to like high volatility σt. The
assumption that the agent likes to job shirk while the principal does not is common in the
principal-agent literature.

However, in this context, the specification of volatility warrants more discussion. It seems
like since both the agent and the principal prefers higher level of volatility, then volatility
is not a source of moral hazard conflict between the principal and the agent. However, this
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is not entirely correct. As it is standard in the principal-agent literature, to incentivize the
agent, the principal must put the agent’s payoff at risk, and specifically meaning the agent’s
payoff must be sensitive to the agent’s managed cash flows. However, such sensitivity here
is also further affected both by the agent’s volatility choice σt and also the exogenous factor
Mt. Hence, even though both the principal and the agent prefers the volatility choices in the
same direction, but since volatility choice also affects the overall uncertainty in this economy,
this uncertainty indirectly causes the conflict between the agent and the principal. We will
have more to say about this important feature of volatility choice in Section 1.8. Indeed,
this is one of our core paper’s core results of “reverse moral hazard”.

1.5 First Best

Let’s begin by characterizing the first best result. At this point, we should further impose a
restriction on the recovery value L of the firm upon termination. In line with the literature,
we will assume that termination is inefficient so that never terminating τ = +∞ is indeed
optimal in the first best case.

Assumption 1.5.1. We assume that termination is inefficient. That is, the salvage value
of the firm L is such that,

0 < L <

∫ ∞

0

e−r1tκ(eL, σL)dt =
κ(eL, σL)

r1
. (1.5.1)

Recalling Definition 1.4.1, the right-hand side of (1.5.1) is precisely the “worst case”
indefinite payoff scenario for the principal.

Suppose the principal can and will operate the firm without the agent. In this case,
the principal does not need to pay any compensation, so X ≡ 0, nor is there any need for
termination, so τ ≡ +∞. Recalling (1.4.4), the principal has the optimization problem,

bFB0 := sup
e,σ

E
[∫ ∞

0

e−r1tκ(et, σt)dt

]
= sup

e,σ

∫ ∞

0

e−r1tκ(et, σt)dt. (1.5.2)

Proposition 1.5.2. Suppose there are no agency conflicts so the principal does not need
to hire the agent to run the firm. Then the principal will pay zero compensation, X ≡ 0,
and never terminate, τ ≡ +∞. The principal will always exert high effort at all times, so
et ≡ eH for all t, and always choose high volatility σt = σH for all times. The first best value
of the firm bFB0 at time t = 0 is,

bFB0 =

∫ ∞

0

e−r1tκ(eH , σH)dt =
κ(eH , σH)

r1
. (1.5.3)

The first best value of the firm is deterministic and stationary. That is, the time t = 0
value bFB0 does not depend on any state variable, and this is economically intuitive. Given
that the principal only derives payoff from the reward function κ(et, σt), there are no exoge-
nous state variables (namely, say the exogenous factor M) involved.
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1.6 Continuation value and Incentive compatible

contracts

Now we proceed to the main focus of the paper. As it is standard in the literature, following
the arguments like DeMarzo and Sannikov (2006) and Sannikov (2008), we consider the
agent’s continuation value as a state variable to capture the dynamic incentive compatibility
constraints. However, again because of the richer volatility setup of (1.4.1) than the ones in
the current literature, we must take more care in deriving the results.

Throughout this section, let’s fix an arbitrary contract (A,X, τ). In particular, note that
the action process 15 has the form, A = {(et, σt)}t≥0. As noted in footnote 11, defining
µt ≡ κ(et, σt), we will also call A = {(µt, σt)}t≥0 as the action process. Define, the agent’s
time t continuation value (or promised value),

Wt(A) := EA
[∫ τ

t

e−r0(s−t)
(
dXs +

[
ϕe

(
1− es

eH

)
+ ϕσ

(
σs
σL

− 1

)]
ds

)
+ e−r0(τ−t)R

∣∣∣ FY
t

]
.

(1.6.1)
Note here on the left-hand side of (1.6.1), we have suppressed the notation for the dependence
on the payment X and termination time τ , but retained the notation emphasis on the action
process A.

Incentive compatible contracts

Definition 1.6.1. A contract (A,X, τ) at time 0 with expected agent payoff W0(A) is
incentive compatible if

(1) (a) Wt(A) ≥ R for all times t ≤ τ ; , where the retirement value R > 0 is such that,

R >
1

r0
ϕσ

(
σH
σL

− 1

)
; (1.6.2)

(b) Mt ≥ m, for all times t ≤ τ , where m > 0; and

(2) W0(A) ≥W0(A
†), for all other action processes A†.

The optimal contracting problem is to find an incentive-compatible contract that maximizes
the principal’s time 0 expected payoff.

Requirement (1) of Definition 1.6.1 is also more aptly called agent’s individual participa-
tion (IR) constraint. In particular, (1a) says that the agent’s continuation value Wt must

15 We should be clear on the word “fixed” action process here. Although the agent chooses an action
process that just needs to be {Ft}-adapted, but when the principal fixes a recommended action A to the
agent, this recommended action process A is known to the principal and hence A is also {FY

t }-adapted.
That is, the recommended action must be known to the principal but any general deviation away from the
recommended action by agent is not known to the principal.
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be at all times greater than or equal to the agent’s reservation value R. This is a standard
definition of the IR constraint in the literature. The addition of (1b) warrants slightly more
discussion as this is not standard in the literature. Requirement (1b) effectively requires
when the agent manages the cash flows dYt, the agent will only manage it only when the
exogenous factor level Mt at any point in time t is not too low, and in particular it must
be greater than this lower bound m. See further detailed discussions and motivations in
Remark 1.A.1 in Section 1.A, where we also discuss the justification of the retirement value
R in (1.6.2). Finally, requirement (2) is the usual incentive compatibility condition in the
literature.

Continuation value dynamics

The dynamics of the agent’s continuation value is given as follows.

Theorem 1.6.1. Fix a contract (A,X, τ). Then for t ∈ (0, τ), the agent’s continuation
value Wt(A) of (1.6.1) has dynamics,

dWt(A) = r0Wt(A)dt−
(
dXt +

[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt
σL

− 1

)]
dt

)
+ βt (dYt − µtdt) + dϵ⊥,At ,

(1.6.3)

where ϵ⊥,At :=
∫ t
0
er0sdV ⊥,A

s , µt := κ(et, σt), and where βt and V ⊥,A
t are given in Proposi-

tion 1.C.3.

Let’s discuss economic meaning of the dynamics of the agent’s continuation value as
characterized in (1.6.3) of Theorem 1.6.1. Here, βt represents the sensitivity of the agent’s
continuation value to output dYt. When the agent takes the recommended action process
A as given in the contract, the term dYt − µtdt = dYt − κ(et, σt)dt = σtMtdBt is a mean-
zero noise term. The term dϵ⊥,At (explained in more detail below) also has mean zero.
Economically and intuitively (though mathematically incorrect), we can view (1.6.3) in this
alternative way:

Et[r0Wt(A)dt] ≈ Et[dWt(A)] + Et
[
dXt +

[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt
σL

− 1

)]
dt

]
(1.6.4)

Hence, viewed in this way, we can think of the expected growth of the agent’s continuation
value Et[r0Wt(A)dt], when the agent follows the recommended action process A, can be
decomposed into the expected change from the previous continuation value Et[dWt(A)], plus
the expected compensation from the principal Et[dXt], and plus the expected benefits from
taking not the highest effort (et ̸= eH) and not the lowest volatility (σt ̸= σL), which yields

a strictly positive value Et
[[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt
σL

− 1
)]
dt
]
. Note that if the agent were to

really take the highest effort level (et = eH) and the lowest volatility (σt = σL), then the
agent’s private benefits vanishes.
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The economic interpretation of (1.6.3) in terms of a logic like (1.6.4) is similar across
models with only drift control, say for instance, DeMarzo and Sannikov (2006) and Sannikov
(2008). However, the economic interpretations of the two noise terms βt(dYt−µtdt) and dϵ⊥,At

warrant more discussion. Firstly, observe that we have two noise terms here, rather than one,
as in essentially all the papers with drift-only control. Secondly, while the interpretation of
βt as the sensitivity of the agent’s continuation value to output here is still in line with the
existing models, the noise term dYt−µtdt (being multiplied by the sensitivity βt) is different.
Note also (as we will see in subsequent development) βt still retains the interpretation as the
minimal amount of risk the principal wants to subject and incentivize the agent, as in line
with the literature. However, since the agent can control the volatility σt, and if we read the
diffusion term of the agent’s continuation value process dWt as βt(dYt − µtdt) = βtσtMtdBt,
then we see that even if the principal can dictate the sensitivity βt for the agent, the agent
still has the ability to “counteract” this dictation by choosing a volatility level σt to shift
the overall diffusion term βtσtMt (recall M is exogenous). Thus, we can already see that
in a model where the agent can control volatility σt, the principal’s tools to incentivize the
agent may be weakened, as compared to a model where the agent can only control the
drift. This effect is distinctly not present in models without volatility control. Finally, the
additional term dϵ⊥,At is also related to the fact that in this model the agent can control
volatility. Recalling that the cash flows are of the form dYt = µtdt + σtMtdBt. If there
were no volatility control, so the cash flow takes on the form dYt = µtdt + MtdBt, then
uncertainty (as seen by the diffusion term Mt) cannot be dictated by the agent. However,
in this current case, the diffusion term in the cash flow is σtMt, meaning that the agent
can actually endogenously change the uncertainty of the cash flows, and as seeing from the
discussions with regards to the quadratic variation, this change of uncertainty cannot be
detected by the principal if the agent does not follow an incentive compatible action process.
Hence, that is why the term dϵ⊥,At is there to capture this source of extra (orthogonal)
uncertainty (see Proposition 1.C.3). Note that, as shown in Lemma 1.7.3, when we consider
incentive compatible contracts, this term dϵ⊥,At will become identically zero. The economic
intuition is simply that when the principal offers incentive compatible contracts, as opposed
to any arbitrary contracts to the agent, the principal knows that the agent will have no
incentive deviate from the principal’s recommendations. In particular, this also implies the
principal can see the instantaneous diffusion of the cash flows σtMt and hence there is no
source of extra uncertainty that we’d described earlier.

Incentive compatibility conditions

Now, the following is a necessary and sufficient condition to characterize the incentive com-
patible contracts in this context.

Lemma 1.6.2. Fix a contract (A,X, τ) and consider the process β as given in Proposition
1.C.3. Then we have the following equivalence.
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(i) The action A = {(et, σt)}t≥0 is such that,

0 ≥ − ϕe
eH

(e′ − et) +
ϕσ
σL

(σ′ − σt) + βt(κ(e
′, σ′)− κ(et, σt)) (1.6.5)

for all (e′, σ′) ∈ {eL, eH} × [σL, σH ].

(ii) Contract (A,X, τ) is incentive compatible.

The following corollary is a simple rewriting of Lemma 1.6.2 but will be useful for the
subsequent discussion.

Corollary 1.6.3. Under the same setup of Lemma 1.6.2, if β = {βt} is a nonnegative
process, then a given action process A = {(et, σt)} is incentive compatible if and only if for
all times t:

(i) If et = eH ,

βt ≥
1

κ(eH , σt)− κ(eL, σH)

[
ϕe
eH

(eH − eL) +
ϕσ
σH

(σH − σt)

]
. (1.6.6)

(ii) If et = eL,

0 ≤ βt ≤
1

κ(eH , σH)− κ(eL, σt)

[
ϕe
eH

(eH − eL) +
ϕσ
σL

(σt − σH)

]
(1.6.7)

Remark 1.6.4. We should note that in Corollary 1.6.3, the right hand side of (1.6.6) is
strictly positive for all choices of σt. Also, recalling Definition 1.4.1, the right hand side of
the second inequality of (1.6.7) is also strictly positive for all choices of σt.

Remark 1.6.5. At this point, we can make a direct comparison to the case when only the
drift, but not the volatility, is under the agent’s control. That drift only control case has been
considered in DeMarzo and Sannikov (2006) and He (2009) but given our current linear cost
form, a more direct comparison is with He (2009). It should be noted that in He (2009),
the agent manages a geometric Brownian motion (which He (2009) regards as firm value,
rather than cash flow). Nonetheless, consider He (2009, Proposition 1) and they derive the
analogous necessary and sufficient condition to be,

βt ≥ ϕµ
σ

µH
. (1.6.8)

Note in (1.6.8), the multiplicative factor by σ is to reflect the fact that the agent managed
process in He (2009) is a geometric Brownian motion (with managed drift µt and unmanaged
constant volatility σ), rather than our linear setup.

What is most striking about the characterization in (1.6.8) and Lemma 1.6.2(i) is that on
the right-hand side of (1.6.8), there are no other agent choice variables involved; indeed, the
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entire incentive-compatible contract is characterized by this single — perhaps rather “static”
— inequality. In contrast, on the right-hand side of the inequality in Lemma 1.6.2(i), there
still remains a choice variable by the agent; indeed, this type of characterization is very
similar to the one that is provided in Sannikov (2008, Appendix A, Proposition 2), even
though in that problem, there is still no volatility control.

Remark 1.6.6. Despite the addition of volatility control, and in particular that volatility
σt is chosen from an interval [σL, σH ] in our model, it might seem surprising that incentive
compatibility can still be completely be characterized by two inequalities, (1.6.6) and (1.6.7)
of Corollary 1.6.3, much alike binary hidden effort or drift choice models of DeMarzo and
Sannikov (2006) and He (2009). Economically, it is because the volatility choice σt here
is not a direct source of moral hazard conflict. That is, both the principal and the agent
prefer the same direction of volatility, even though they may disagree on the level. Hence,
the principal need not be concerned with providing direct incentives by altering the sensitivity
βt, and hence the optimal choice of sensitivity βt should just focus on providing incentives
to motivate the correct effort level, and since there are just two effort choices here, this
corresponds to the two inequalities. As mentioned earlier, the volatility choice is an indirect
source of moral hazard conflict. In particular, even though the principal and the agent may
agree on the general direction of volatility choices 16 , the fact that the agent can directly
alter the uncertainty of this economy implies the agent’s volatility choice complicates the
principal’s task of providing incentives to the agent.

Remark 1.6.7. At this point, one might step back and ponder about this question: The
principal here can only observe a one-dimensional managed cash flow Y , but why is it that
it can provide incentives to induce the agent to make the appropriate choices for a two-
dimensional moral hazard term (e, σ), that being effort and volatility choices? The essential
explanation lies in the monotonicity of the reward function κ(e, σ) in both arguments and
also the way that the volatility term σ enters linearly into the diffusion term σtdMt of the
managed cash flows dYt. For instance, if we had considered an alternative reward function
form, say like κ(e, σm), for Mt = m, and that the diffusion term is more complicated, like
in the form σtYtdMt, then we can see that the above argument will not hold.

1.7 Principal’s Problem

Once the incentive compatible contracts have been characterized as in Lemma 1.6.2, we are
now ready to consider the principal’s problem.

16 A far more difficult characterization happens when the principal and the agent disagree on their
preferences of the volatility level. This is left for future research.
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Strengthening the IC condition

If we take the necessary and sufficient IC condition as characterized by Corollary 1.6.3, it
will be difficult to ensure that the resulting principal’s value function will be concave in the
agent’s continuation value w. Hence, we will strengthen the IC condition and consider a
sufficient IC condition for Corollary 1.6.3, and also we will restrict the set of sensitivities to
be bounded above.

Assumption 1.7.1. Suppose we restrict the set of sensitivities to be,

B :=
{
β : K ≥ β ≥ β

}
, (1.7.1)

for some sufficiently large K > 0, and where we define,

β :=
1

κ(eH , σL)− κ(eL, σH)

[
ϕe
eH

(eH − eL) +
ϕσ
σL

(σH − σL)

]
. (1.7.2)

Remark 1.7.2. Note that since σ 7→ 1
κ(eH ,σ)−κ(eL,σH)

[
ϕe
eH

(eH − eL) +
ϕσ
σL
(σH − σ)

]
is mono-

tonically decreasing, it is clear that (1.7.1) is a sufficient condition that satisfies the IC
condition as characterized in Corollary 1.6.3. Furthermore, also note that β > 0. As well,
we impose an upper bound K on B to ensure that the set B is compact. If the set B
is not upper bounded, and in particular not compact, then it is conjectured that most of
the arguments henceforth will still go through but one might need more sophisticated proof
techniques.

Principal’s optimization problem

Henceforth, we will restrict our attention to incentive compatible contracts. And when
we write the probability measure P and expectation E and other processes where there is
dependence on the action process A, we will denote them without the superscript A notation.
The following result significantly simplifies the principal’s optimization problem.

Lemma 1.7.3. Fix an incentive compatible contract (A,X, τ). Then under the recommended
action A, we have that,

(i) {FY
t }t≥0 = {Ft}t≥0, where {Ft}t≥0 is the natural filtration generated by Brownian

motion B.

(ii) dε⊥t ≡ 0, P-a.s.

Thus, with Lemma 1.7.3(ii) in hand, we are now ready to consider the principal’s opti-
mization problem. For the remainder of the discussion, we will only consider the case when
the principal wants to induce the agent to choose high effort et = eH at all times t, but the
principal still needs to induce the agent to optimally choose the volatility level σt. In binary
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effort models like DeMarzo and Sannikov (2006) and He (2009), the authors also look for an
always high effort implementation of the optimal contract. Zhu (2013) considers the model
of DeMarzo and Sannikov (2006) and shows that it is possible to induce the agent to choose
high effort and switch to low effort shirking at times. We acknowledge this possibility that
inducing the agent to shirk could yield a potentially higher payoff for the principal, but for
this paper we will only look for an always high effort equilibrium. It should be noted that
we do not place such a restriction on the volatility choice; for instance, we do not insist
on looking for an equilibrium where the principal induces the agent to always choose high
volatility. That is because in our model, as discussed earlier, there is no direct moral haz-
ard conflict between the principal and agent’s desired direction of volatility. However, there
remains an indirect moral hazard conflict arising due to volatility choice as the agent can
effectively alter the level of uncertainty directly in this economy and thereby making it more
difficult for the principal to provide incentives.

Recalling the principal’s time t = 0 payoff form in (1.4.4), the principal’s optimization
problem, when the principal desires to induce always high effort et = eH , is thus,

ṽ(w,m) := sup
σ,X,β,τ

E
[∫ τ

0

e−r1tκ(eH , σt)dt−
∫ τ

0

e−r1tdXt + e−r1τL

]
, (P’)

subject to state value dynamics, dWt =

[
r0Wtdt− ϕσ

(
σt
σL

− 1

)]
dt− dXt + βtσtMtdBt, W0 = w,

dMt =MtdBt, M0 = m,

(S)

Optimal termination time

In (P’) the principal maximizes over the set of effort control processes e = {et} where
et ∈ {eL, eH}, volatility control processes σ = {σt} where σt ∈ [σL, σH ], compensation
processes X = {Xt} which is cadlag and nondecreasing, the sensitivity process β = {βt},
where βt ∈ B, and the termination stopping time τ ; of course, all of the above must be
{Ft}-adapted.

At this point, we will note the following. Let’s considered the relaxed principal’s opti-
mizaton problem, of which we simply remove maximizing over τ in (P’). That is to say,
consider,  v(W0,M0) := sup

e,σ,X,β
E
[∫ τ

0

e−r1tκ(et, σt)dt−
∫ τ

0

e−r1tdXt + e−r1τL

]
,

τ := inf{t ≥ 0 : Wt ≤ R orMt ≤ m},
(P)

subject to the state dynamics (S).
Using an argument similar to Cvitanić and Zhang (2012, Chapter 7, Lemma 7.3.2), and

also in accordance to the intuition that the principal would want to hire the agent as long



CHAPTER 1. CONT-TIME PA PROB WITH DRIFT & STOC VOL CONTROL 26

as the agent is getting paid at least his outside option of R (i.e. individual participation
constraint), we can show that the problem of (P) subject to (S), and the problem of (P’)
subject to (S), are equivalent.

Heuristic HJB

Considering problem (P) subject to (S), this is a stochastic optimal control problem with
continuous controls (i.e. the volatility recommendation σ, and the sensitivity β) and singu-
lar controls (i.e. compensation process X). Hence, standard results in the optimal control
literature suggests the value function v is a solution to the Hamilton-Bellman-Jacobi (HJB)
equation,

max
{
− r1ψ(w,m) + max

σ
sup
β

[(LeHψ)(w,m;σ, β) + κ(eH , σ)] ,

− ψw(w,m)− 1
}
= 0.

(1.7.3)

And here, LeH is the second order differential operator,

(LeHξ)(w,m, ; σ, β) :=

[
r0w − ϕσ

(
σ

σL
− 1

)]
ξw(w,m) +

1

2
m2ξmm(w,m)

+ βσm2ξwm(w,m) +
1

2
β2σ2m2ξww(w,m),

(1.7.4)

and where we maximize over σ ∈ [σL, σH ] and β ∈ B. Also, where not specified, when we
write maxσ and supβ, for notational brevity, it is understood that we are maximizing over
σ ∈ [σL, σH ] and β ∈ B. For convenience, we will also denote the set of admissible controls
at initial state (w,m) as Aw,m, with a typical control element denoted as α = (σ,X, β).

Let us denote the state space for the agent’s continuation value as ΓW := (R,∞), and
the state space for the exogenous factor as ΓM := (m,∞), and the overall state space be
Γ := ΓW × ΓM . The appropriate boundary conditions of this problem are:

v(w,m) = L, for (w,m) ∈ ∂Γ. (1.7.5)

Key illustrations of the value function

Detailed properties of the value function are showed in Section 1.D. The most critical qualita-
tive behaviors of the value function are shown in Figures 1.3 and 1.4. See also the illustration
in Figure 1.5 the numerical solution.

1.8 Optimal Contract Discussion

In this section we will heuristically discuss the properties of the optimal contract and the
implemented actions. The emphasis is on the economic intuition and hence we will suppress
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Figure 1.3: Illustration of the state space Γ. The continuation region is the set C , and the
payment condition is the set D . Here, the free (moving) boundary that separates
between the continuation region and the payment condition is m 7→ W̄ (m). It should
be noted that the shape of W̄ as drawn is only meant to be illustrative.

the mathematical details in this section. In particular, for the sake of discussion in this
section, we will assume outright that the value function is sufficiently smooth such that all
the partial derivatives make sense.

Optimal sensitivity

Let’s first begin by discussing the optimal choice of sensitivity β. Fix any σ ∈ [σL, σH ]. From
the HJB equation (1.7.3), when (w,m) is in the no payment region, the optimal choice of
sensitivity must thus be,

sup
β∈B

βσvwm(w,m) +
1

2
β2σ2vww(w,m), (1.8.1)

and recall the definition of B in (1.7.1).
Before we proceed to discuss the form of the optimal sensitivity β choice in the optimiza-

tion problem (1.8.1), let’s first discuss the diffusion term of the agent’s continuation value
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Figure 1.4: Illustration of the value function in the w-slice. That is, for each m ∈ ΓM , we plot
the value function w 7→ v(w,m).

dynamics dWt in (S), and in particular, highlight how this makes our model significantly
different from the drift-only control models. If we recall back to agent’s continuation value
dynamics dWt (S), the overall diffusion term is βtσtMtdBt. Hence, even focusing on the
choices of (β, σ) on the agent’s continuation value diffusion term alone, we see several effects
at play. On the one hand, the principal wants to provide the cheapest or lowest amount of
sensitivity β to induce the agent to adhere to his recommended actions. But on the other
hand, the amount of risk (i.e. the diffusion term of the agent’s continuation value) is not
solely just based on the principal’s imposed sensitivity β. It is indeed determined by the
product of the sensitivity β, volatility choice σ, and the exogenous factor level Mt = m.
That is to say, in contrast to drift-only control models, where the total amount of risk (i.e.
again, meaning the diffusion term of the agent’s continuation value) is of the form βtdBt, so
the principal can directly dictate the amount of risk he wants to subject the agent to through
the choice of sensitivity β. In contrast, in our case, the principal’s choice of sensitivity β is
not the only source of risk the agent is facing — the agent faces the product βtσtMt, of which
σt remains to be a term that the principal wants to recommend and dictate for direct payoff
reasons, and Mt is an exogenous factor level not controlled by the agent nor the principal.
In all, that is to say when the principal wants to provide incentives through the sensitivity
β, the principal must thus take into account providing incentives for an optimal volatility
choice σ, and also the exogenous factor levelm. It is precisely in this sense, the ability for the
principal to provide incentives to the agent to induce the agent to take on the recommended
action is weakened, relative to a drift-only control model.

Once we understand the incentive concerns in the diffusion term of the agent’s continu-
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(b) Contour plot of v(w,m).

Figure 1.5: Numerical solutions. We use the methods of a controlled Markov Chain approx-
imation (the key reference here being Kushner and Dupuis (2001)) to directly
compute the value function, and this is not dependent on the HJB-PDE formu-
lation. We use the same reward function κ(e, σ) as in Example 1.4.1 with the
same parameter values as in Figure 1.2. The additional parameters that were used:
r0 = 2, r1 = 1.5, ϕe = 0.3, ϕσ = 0.5
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ation value dynamics dWt, we can now be more specific about what the principal needs to
consider in choosing the optimal sensitivity β, as in the optimization problem (1.8.1). Again,
we immediately note several effects that are distinctly not present in drift-only control mod-
els. The optimal choice of sensitivity β now clearly depends on the volatility choice σ, the
cross marginal effect vwm(w,m) of the agent’s continuation value Wt = w and the exogenous
factor levelMt = m, and the second order effect vww(w,m) of the agent’s continuation value.
Let’s assume that vww(w,m) < 0 in the no payment region, implying that the principal, al-
though is risk neutral, becomes “endogenously quasi risk averse” with respect to the agent’s
continuation value. Then the objective function (1.8.1) is a concave quadratic continuous
function in β over a compact convex set B. Thus, a unique maximizer β∗(σ;w,m) exists.
Let us also define the sets on [σL, σH ],

GL(w,m) :=

{
σ ∈ [σL, σH ] : −

vwm(w,m)

σvww(w,m)
< β

}
(1.8.2a)

GM(w,m) :=

{
σ ∈ [σL, σH ] : K ≥ − vwm(w,m)

σvww(w,m)
≥ β

}
(1.8.2b)

GH(w,m) :=

{
σ ∈ [σL, σH ] : −

vwm(w,m)

σvww(w,m)
> K

}
. (1.8.2c)

Note that ∪j∈{L,M,H}Gj(w,m) = [σL, σH ], and Gj(w,m)∩Gk(w,m) = ∅ for j, k ∈ {L,M,H}, j ̸=
k. Then by a usual constrained optimization argument, we see that the optimal sensitivity
choice β∗(σ;w,m) is given by the following. 17

Proposition 1.8.1. The optimal choice of sensitivity associated with the optimization prob-
lem (1.8.1) is,

β∗(σ;w,m) =


β, if σ ∈ GL(w,m)

− vwm(w,m)
σvww(w,m)

, if σ ∈ GM(w,m)

K, if σ ∈ GH(w,m).

(1.8.3)

Proof. The proof is immediate by the usual constrained optimization methods via the Kuhn-
Tucker conditions. ■

As it is with drift-only control models, the object β is the sensitivity, or “incentives”,
that the principal must subject and provide to the agent in order to induce the agent to take
the principal’s desired action. In this case, we see that the sensitivity β that the principal
wants to subject the agent to is determined by two distinct channels: (i) the level of the
exogenous factor at Mt = m; and (ii) the volatility level σt = σ that should be implemented.
For the rest of this discussion, let’s hold the recommended volatility level σ as fixed. Also,
we recognize that when (w,m) is in the no payment, we only have that vw(w,m) ≥ −1.

17 We denote j ∈ {L,M,H} for the sets Gj(w,m) to, respectively, mean “low”, “medium” and “high”.
The reason is that if j = L and σ ∈ GL(w,m), then the optimal sensitivity β∗(σ;w,m) is chosen to be the
one at the lowest value; and likewise for the other cases of j.
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Thus, it is distinctly possible that vw(w,m) = 0. We will suppose that vw(w,m) > 0 for the
sake of this economic discussion, but this is not enforced anywhere else. 18

In the expressions (1.8.2), we see that the object − vwm(w,m)
σvww(w,m)

plays a significant role to

determining the optimal choice of sensitivity in (1.8.3). To highlight its importance, we will

label the term − vwm(w,m)
σvww(w,m)

as risk adjusted sensitivity (RAS). Economically, we can define
RAS as follows:

RAS := − vwm(w,m)

σvww(w,m)

=

(a) Precision of
volatility choice︷︸︸︷

1

σ
×

(b) ”Endogenous” risk tolerance
to agent’s continuation value︷ ︸︸ ︷(

− vw(w,m)

vww(w,m)

)
×

(c) ”Elasticity of
exogenous factor”︷ ︸︸ ︷(
vwm(w,m)

vw(w,m)

)
.

(1.8.4)

We see that RAS depends on three different terms: (a) precision of volatility choice; (b)
“risk tolerance”; and (c) “elasticity of exogenous factor”.

Let’s first discuss the economic channel for which RAS would induce the optimal sensi-
tivity β to be low, that is β∗(σ;w,m) = β in (1.8.3). Noting the form of GL(w,m), in order
for the set to be nonempty, we see that while −vww(w,m) > 0, given that β > 0, there are no
particular sign restrictions on vwm(w,m). Economically, this is the case when the principal
does not care or want exposure to the exogenous factor level, that is roughly to say, the
principal is relatively “inelastic” to the exogenous factor Mt = m. Once the principal does
not care about the exogenous factor. then indeed, we return to the perhaps more familiar
economic logic of drift-only control models. As well, the precision of volatility choice here
must be relatively low, so that the choice of volatility is relatively high. Also, we can in-
fer here that the principal must have low risk tolerance relative to the agent’s continuation
value w, which implies the principal wants to achieve the lowest overall volatility of cash flow
diffusion, and this is achieved when the principal subjects the agent to the lowest sensitivity
β∗(σ;w,m) = β.

Next, let’s discuss the economic channel for which RAS would induce the optimal sen-
sitivity β choice to be high, that is β∗(σ;w,m) = K in (1.8.3). Firstly, noting the form of
GH(w,m) in (1.8.2c), we see that since −vww(w,m) > 0, if we vwm(w,m) ≤ 0, then the set
GH(w,m) = ∅. So let us suppose and discuss the case when GH(w,m) ̸= ∅, which implies
vwm(w,m) > 0. If σ ∈ GH(w,m), then it implies that the precision of volatility choice is
high, or that the volatility choice is relatively low. Furthermore, the “risk tolerance” term
must also be relatively high, and the “elasticity of exogenous factor” is also relatively high.
This is effectively the scenario when the cash flow volatility σ is relatively low, the principal

18 Indeed, for the rest of this discussion, the sign and value of vw(w,m) is largely irrelevant. However,
including the term vw(w,m) allows us to identify terms like −vw(w,m)/vww(w,m) as “risk tolerance” as
it is traditionally defined (when we view the agent’s continuation value Wt = w as a “consumption good”)
19 , and view vwm(w,m)/vw(w,m) as an “elasticity” in the traditional economic sense. But even without
this normalization by vw(w,m), all of the economic reasoning here goes through, except that it may not be
appropriate to keep on using the traditional economic labels.
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is relatively risk tolerance and so is willing to take on more risk, and hence is willing to let
the exogenous factor to give the extra “risk” bump, and so justifying why vwm(w,m) > 0.
In such a case, the principal wants to put the highest sensitivity or incentives to the agent.

Finally, let’s discuss the economic channel for which RAS would induce the optimal
sensitivity β choice to be medium, that is β∗(σ;w,m) = RAS = − vwm(w,m)

σvww(w,m)
. And it is

through this medium case, which is effectively the interior solution to the optimization
problem in (1.8.1), why we think the label risk adjusted sensitivity (RAS) is appropriate.
This case of which σ ∈ GM(w,m) as in (1.8.2b) is exactly the “Goldilocks zone” and the

optimal sensitivity β∗(σ;w,m) = − vwm(w,m)
σσww(w,m)

is almost like a “Goldilocks” sensitivity. That
is, the precision of volatility choice is neither too high nor too low, the risk tolerance of
the principal is neither too high nor too low, and the principal’s appetite for the exogenous
factor is neither too high nor too low.

In all, the above discussion not only suggests that a model with volatility control differs
substantially to drift-only control models on how the optimal sensitivity β should be chosen,
but equally important, our model suggests that how it is chosen is through the decomposition
of the RAS term in (1.8.4).

Optimal volatility

Once the optimal sensitivity has been characterized, as discussed in Section 1.8 and in (1.8.3),
we are now ready to discuss the optimal volatility σ choice. The choice of volatility here also
highlights an interesting economic result — while the principal and the agent both desire
higher volatility as seen from their direct payoffs, so seemingly there is no moral hazard
conflict, but there still exist a distinctive presence of a reverse moral hazard effect.

Firstly, it should be noted that while we have emphasized and focused on the case when
the principal implements the high effort et ≡ eH at all times, in the case of volatility control
σ, it is a priori unclear whether it is possible to say which fixed volatility level that is
prevalent at all time is optimal for both the agent and the principal. Recall again from the
discussion in Section 1.5, the first best action is indeed to implement high effort et ≡ eH at
all times, and also high volatility σt ≡ σH at all times.

But it is perhaps difficult to motivate and justify how and why the principal would find
it desirable to implement the first best volatility choice, that being the high volatility choice,
at all times. It is here that we can pinpoint the source of this reverse moral hazard effect.
Recalling the payoffs of both the agent in (1.4.3) and principal in (1.4.4), it would appear
that there is no direct moral hazard conflict between the principal and the agent in volatility
choice at all. That is, both the principal and agent strictly prefer higher levels of volatility.
Thus, it might appear that in the optimal contract, the principal want to implement the first
best level of volatility, namely setting σt ≡ σH to the highest level, at all times. But in light
of the discussion in Section 1.8 of the overall risk or diffusion term of the agent’s continuation
value dWt, we can see that fixing at the high volatility choice at all times leads to the overall
diffusion term βtσHMtdBt. Recall again that in this setup, termination is inefficient. In
particular, that implies up to the IR conditions of the agent being met, economically the
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principal would want to keep the agent employed as long as possible. Then there are now
two tensions. While the principal’s instantaneous direct payoff κ(eH , σt) = κ(eH , σH) is
maximized when choosing σt = σH (again, the first best result), if the principal recommends
a higher volatility σt at time t, it also boosts the probability that the agent’s continuation
value Wt will hit the termination boundary (i.e. when the first time when Wt = R), and
thereby the principal will only get the inefficient liquidation value L. This is precisely the
reverse moral hazard effect. By the IR condition, so Wt ≥ R, it is clear that it is better
for the agent to be employed than to be terminated. But to keep employment, even though
the agent desires a higher volatility choice through his private benefits, the agent must at
the same time also desire lower volatility to maintain employment. Similarly, while the
principal obtains a higher direct payoff from recommending a higher volatility choice, it is
endogenously in the interest of the principal to not recommend too high of a volatility choice
for fear of terminating the agent and receiving the inefficient liquidation value.

In all, this implies that it is not necessarily optimal for the principal to recommend the
first best volatility choice at all times. And indeed, the above discussion highly suggests
that the reverse moral hazard effect will endogenously lead the principal to shade down
the choice of volatility. And also, by choosing a higher volatility σt, and also observing
the decomposition of RAS in (1.8.3) and the sets (1.8.2), it also implies that the choice of
sensitivity β will tend to be lower. In all, and already suggested in Section 1.8, there is an
interplay of effects between the optimal choice of volatility and optimal choice of sensitivity.
Let us make this precise below.

With the optimal sensitivity choice β∗(σ;w,m) characterized in (1.8.3), we define first
the objective function,

G(σ;w,m) :=ϕσ

(
σ

σL
− 1

)
vw(w,m) + β∗(σ;w,m)σm2vwm(w,m)

+
1

2
β∗(σ;w,m)σ2m2vww(w,m) + κ(eH , σ),

(1.8.5)

and the optimization problem,

max
σ∈[σL,σH ]=∪jGj(w,m)

G(σ;w,m). (1.8.6)

Economically, we see that when the principal recommends the volatility choice, there are
several effects at play. The first three terms of (1.8.5) are for the principal to internalize the

agent’s concerns. The first term ϕσ

(
σ
σL

− 1
)
vw(w,m) are the direct payoffs to the agent for

choosing volatility level σ, multiplied by the weight vw(w,m). The weight vw(w,m) ≥ −1
represents the marginal value of the principal’s value function with respect to an increase to
the agent’s continuation value. So if vw(w,m) > 0, then it is marginally beneficial for the
principal to increase the agent’s continuation value, and in that case, the principal would
prefer to recommend a higher volatility choice, which is also a private benefit again for the
agent; vice-versa, if −1 ≤ vw(w,m) < 0, then the principal would want to decrease the
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agent’s continuation value, and this is achieved by picking a lower volatility level that incurs
a private benefit cost to the agent. And if vw(w,m) = 0, then the principal is indifferent. The
second and third terms β∗(σ;w,m)σm2vwm(w,m) + 1

2
β∗(σ;w,m)σ2m2vww(w,m) of (1.8.5)

capture the sensitivity effects as discussed in Section 1.8, which effectively captures the cost
to providing incentives to the agent, except now the exogenous factor level effect Mt = m
is now explicitly present. Finally, the last term κ(eH , σ) captures the principal’s concerns.
In all, that means in the problem of choosing and recommending the optimal volatility, the
principal must trade off the agent’s incentives, the cost and sensitivity to providing correct
incentives to the agent, and also the principal’s own desired preferences.

At this point, to consider the optimization problem (1.8.5), we effectively need to partition
the volatility control σ into three different regions, according to (1.8.2) and accordingly
change the value of β∗(σ;w,m) as given in (1.8.3). While GM(w,m) is clearly a compact
subset of [σL, σH ], it is clear that GL(w,m) and GM(w,m) are just half-open interval subsets of
[σL, σH ]. So from an optimization perspective, optimizing over non-compact intervals might
have serious non-existence issues. However, this is not a concern in our current case. For
instance, recalling (1.8.2c), if we pick σ ∈ GH(w,m) such that β∗(σ;w,m) = K, and if it is
indeed the optimizer σ is at the boundary K of the set GH(w,m), then that effectively means

− vwm(w,m)
σvww(w,m)

= K and hence we are no different from optimizing over the closure GH(w,m) or

evaluating the objective function at σ ∈ GM(w,m) such that − vwm(w,m)
σvww(w,m)

= K. Either case,

the optimal sensitivity is β∗(σ;w,m) = K and so the overall objective function G(σ;w,m)
of (1.8.5) remains the same. Similar arguments apply to the case when we consider GL(w,m)
of (1.8.2a). Thus, with this argument in mind, we modify our optimization problem and
consider,

max
σ∈∪jGj(w,m)

G(σ;w,m). (1.8.7)

We will consider the optimization each case at a time. When we pick σ ∈ Gj(w,m), for
j = L,M,H, then the objective function respectively becomes,

G(σ;w,m)
∣∣
GL(w,m)

= ϕσ

(
σ

σL
− 1

)
vw(w,m) + p(σ)σm2vwm(w,m)

+
1

2
p(σ)2σ2m2vww(w,m) + κ(eH , σ),

(1.8.8a)

G(σ;w,m)
∣∣
GM (w,m)

= ϕσ

(
σ

σL
− 1

)
vw(w,m)− 1

2

vwm(w,m)2

vww(w,m)
m2 + κ(eH , σ), (1.8.8b)

G(σ;w,m)
∣∣
GH(w,m)

= ϕσ

(
σ

σL
− 1

)
vw(w,m) +Kσm2vwm(w,m)

+
1

2
K2σ2m2vww(w,m) + κ(eH , σ).

(1.8.8c)
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From the forms in (1.8.8), we see that in general there are no closed form and simple analytic
expressions of the optimal choice of volatility σ∗(w,m). Moreover, one needs to compute
the (set of) optimizers σ∗

j (w,m) for each case j = H,M,L, substitute the optimizer back
into the objective function G(σ∗

j (w,m);w,m)|Gj(w,m), and once that is complete, the optimal
volatility choice is the set,

σ∗(w,m) ∈ argmax
j∈{L,M,H}

G(σ∗
j (w,m);w,m)

∣∣
Gj(w,m)

. (1.8.9)

Remark 1.8.2. As a general remark, it should not be surprising that the optimal volatility
choice in the form (1.8.9) is rather this complicated. Indeed, if one observes the drift-only
control model of Zhu (2013), which is based off of the model of DeMarzo and Sannikov
(2006), in which the agent has a binary choice of effort, it is readily seen that it is not
trivial and indeed rather challenging to characterize the optimal effort choice. Here, we have
already simplified matters substantially by concentrating on implementing the always high
effort case, but nonetheless, even allowing for volatility to be optimally implemented, the
resulting optimal volatility recommendation is nonetheless rather complicated to observe.

Remark 1.8.3 (Difficulty of direct application of verification theorem). As we conclude the
discussion of the optimal choice of sensitivity in Section 1.8 and optimal choice in this Sec-
tion 1.8, we can now remark the tremendous difficulty in applying the traditional “verification
theorem” to conjecture the existence of a smooth solution of the HJB (1.7.3) that actually
coincides with the value function in (P). A classical method is the verification theorem argu-
ment, or the “guess and verify” argument, where one conjectures that a PDE that solves HJB
equation subject to some well thought out and economically motivated boundary conditions,
and from the HJB, one takes the first order conditions to obtain the optimal controls, and
substitute these controls back into the original HJB equation. There, one then proceeds to
directly solve the PDE by constructing an explicit solution and thereby directly proving exis-
tence and also smoothness. Then essentially by Ito’s lemma argument, one can then verify
that the HJB is a supersolution of the value function, and hence under the optimal controls,
the HJB is the solution to the value function. This type of argument is fairly prevalent in the
finance literature, especially in asset pricing theory, and also in continuous-time principal
agent problems where there is a single state variable, so the problem is an ODE rather than
a PDE.

However, we see here once we substitute the optimal sensitivity β∗(σ;w,m) in (1.8.3)
and optimal volatility σ∗(w,m) in (1.8.9) back into the HJB equation (1.7.3), the resulting
HJB is sufficiently complex that it is difficult to see how we can indeed obtain the existence
of a smooth solution that satisfies the necessary boundary conditions. And this is especially
why in the technical proofs, we have to proceed through a more roundabout way via viscosity
solutions to show existence, and then “upgrade” our smoothness results.
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1.9 Delegated portfolio management

Motivation

We are now ready to consider the concrete application of the model in the context of delegated
portfolio management. Suppose we regard the principal as outside investors of a managed
portfolio, and regard the agent as the portfolio manager. In this context, we will explicitly
assume that the portfolio manager has skill and can exert costly private effort to search
for and achieve higher cash flow payoffs in the managed portfolio. That is, the portfolio
manager can directly control the drift of the cash flows. Furthermore, we assume the portfolio
manager has available assorted tools and financial instruments to engage into hedging and
speculating behavior that can change the overall volatility of the cash flows. The portfolio
itself is also subject systematically subject to an exogenous market wide or industry wide
factor that the portfolio manager cannot control. Hence, portfolio volatility is comprised of a
manager specific choice in volatility, reflecting risk management practices, and an exogenous
market or industry factor. A delegated portfolio management problem framed in a principal-
agent setting has also been considered by Ou-Yang (2003); other recent models that consider
delegated portfolio management problems include van Binsbergen et al. (2008), Dybvig et al.
(2010) and Cvitanić, Possamäı, and Touzi (2014). In this section, we will relabel and call
the agent as the manager, and the principal as investor.

The main idea here is to have the portfolio manager to have sufficient “skin in the
game” through his own investments. Specifically, consider an investment firm whereby the
investment manager operates two different investment funds: an external fund fund that is
available to outside investors and an internal fund that is only available to management.
Suppose we regard the continuation value Wt as the value of an internal fund that is only
available to the portfolio manager but not to the outside investor. This form of internal fund
that is only available to insiders of the firm, and not outside investors, is also an observed
market practice. For instance, numerous banks (at least prior to the Volcker Rule) also run
proprietary trading desks, which are effectively internal hedge funds. Several hedge funds
also engage into this practice. For example, the hedge fund firm Renaissance Technolo-
gies runs three funds that are open to outside investors, but also run a separate fund, the
Medallion Fund, that is only open to its employees (see Zuckerman (2013)). Darolles and
Gourieroux (2014a) and Darolles and Gourieroux (2014b) also discuss at length the practice
of this internal fund in the hedge fund industry. The external fund has value v(Wt,Mt). In
particular, this specifically implies that the value of the external fund is explicitly dependent
on the value of the internal fund Wt and also the exogenous factor level Mt. It is in this
sense that we view the external fund as a “financial derivative contract” written on the two
underlying “assets”, them being the internal fund and the exogenous factor.

Remark 1.9.1. Asserting that the portfolio volatility overall is directly influenced by the
portfolio manager’s risk management practices and market volatility should be reasonable.
However, asserting that the portfolio manager has skill, and moreover that such skill surely
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Variable Contract implementation interpretation

Wt Value of the internal fund
Mt Factor benchmark

v(Wt,Mt) Value of the external fund
σt Hedging and investment strategy
βt Dynamic performance incentive fees
dXt Performance bonus

(W̄ (Mt),Mt) Benchmarked superior performance bonus payout mark

Table 1.1: We apply our general model to the concrete application of delegated portfolio man-
agement. This table lists how we should interpret the various variables in this specific
context of delegated portfolio management.

translates to higher cash flow payoffs is a strong assumption. Indeed, the question of whether
persistent manager skill exists or not is still heavily debated in empirical research. The
literature on this question is too vast to survey here with any justice, but some recent papers
here include: Fama and French (2010) and Barras et al. (2010).

Interpreting the continuation value

For given sensitivity β = {βt} and volatility σ = {σt}, the continuation value dynamics dWt

in (S) in the no payment region so dXt ≡ 0, we can rewrite the expression as,

dWt =

[
r0Wt − ϕσ

(
σt
σL

− 1

)]
dt+ βtσtdMt

=

[
r0Wt − ϕσ

(
σt
σL

− 1

)]
dt+ βt(dYt − κ(eH , σt)dt)

= βtdYt + r0Wtdt−
[
ϕσ

(
σt
σL

− 1

)
+ βtκ(eH , σt)

]
dt. (1.9.1)

With the context of delegated portfolio management, we will interpret the continuation value
dynamics dWt via the expression form of (1.9.1). See Table 1.1 for a summary and quick
reference.

SinceW is the value of the internal fund, the expression (1.9.1) suggests that the value of
the internal fund is driven by the amount of ownership βtdYt the agent has of the underlying
investment technology, and plus an investment r0Wtdt into a riskfree asset that pays off
at a rate r0. Note here that in this context, we can interpret βt as the dynamic incentive
fees of ownership the manager owns of the investment opportunity dYt, so βtdYt is the total
dollar exposure the manager has to the managed cash flows. The latter two terms of (1.9.1)

represent the cost of implementing an investment strategy σt. The term ϕσ

(
σt
σL

− 1
)
dt can

be thought of as the direct cost of implementing the investment strategy σt; for instance,
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this could represent the direct trading costs or managerial monitoring costs. The term
βtκ(eH , σt)dt represents the proportional expected return of implementing the strategy σt.
So the manager’s internal fund value only gets a positive bump if βt(dYt − κ(eH , σt)dt) > 0,
and since the ownership amount βt > 0, then we have that βt(dYt − κ(eH , σt)dt) > 0 if and
only if dYt − κ(eH , σt) > 0. That is to say, the manager captures the positive excess returns
over the expected return of the investment strategy, only if the investment strategy performs
extraordinarily well.

Since we focus on implementing an always high effort action et ≡ eH , other than the dollar
incentives βt, the remaining control policy here is the volatility σt. Again, we interpret βt
as the dollar incentives of ownership, or dynamic incentive fees, the manager owns of the
managed investment opportunity dYt, so βtdYt is the total dollar exposure the manager has
to the managed cash flows. In addition, here we may broadly interpret σt as investment
strategies. To be more specific, once in equilibrium we implement an always high effort
et ≡ eH action, then it effectively implies that the manager is already exerting costly skill
to find the set investment opportunities with good returns. However, even after exerting
skill to find this investment opportunity set, the manager still needs to choose the specific
investments from the set, and it is here we interpret σt as the opportunities available to
the manager. Specifically, we will let σt be effectively a parameter captures both the set of
investment opportunities and hedging strategies.

Now using the results in Section 1.8, under the optimally chosen sensitivity β∗(σ;w,m)
in (1.8.3) and optimally chosen volatility σ∗(w,m) in (1.8.9), and the set forms Gj(w,m) in
(1.8.2), we can thus write (1.9.1) as,

dWt =
∑

j∈{L,M,H}

{
β∗(σ∗(Wt,Mt);Wt,Mt)dYt + r0Wtdt−

[
ϕσ

(
σ∗(Wt,Mt)

σL
− 1

)
+ β∗(σ∗(Wt,Mt);Wt,Mt)κ(eH , σ

∗(Wt,Mt))
]
dt
}
1σ∗(Wt,Mt) ∈ Gj(Wt,Mt).

(1.9.2)

Economically, the form of (1.9.2) implies the following contractual implementation. The
outside investors offer the manager an initial start up fund value of W0 at t = 0 and in
return, the manager commits to the following dynamic incentive fee compensation scheme
as represented via the optimal dollar incentives β∗(σ∗(w,m);w,m), viewed as a map from
(w,m). That is to say dependent on the value of the internal fund Wt = w and also the
exogenous factor level Mt = m, the manager will choose a different investment strategy
σ∗(w,m). And dependent on this strategy, the internal fund will only get different dollar
exposures of the managed cash flows dYt. For instance, for those investment strategies such
that σ∗(w,m) ∈ GL(w,m), the manager gets a low dollar incentive β∗(σ∗(w,m);w,m) = β;
for those investment strategies σ∗(w,m) ∈ GM(w,m), the manager gets a medium dollar

incentive β∗(σ∗(w,m);w,m) = − vwm(w,m)
σ∗(w,m)vww(w,m)

; and finally, for those investment strategies

σ∗(w,m) ∈ GH(w,m), the manager gets a high dollar incentive β∗(σ∗(w,m);w,m) = K.
The critical real-world implication of the above is as follows — investors should contract

on the value of the internal fund and the exogenous factor level. Again, take hedge funds as a
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prototypical example. Hedge fund investment strategies are essentially completely black box,
and effectively that means even investors into the fund most often have no idea what types of
investment strategies the manager is employing. Hence, that makes directly contracting on
investment strategies to be highly unrealistic and impossible. In our framework however, the
investor only needs to contract on two things: the value of the internal fund Wt = w and the
stochastic factor levelMt = m. That is, the investor writes a contract not on the investment
strategy that maps to the dollar incentives σ 7→ β∗(σ;w,m), but rather directly from the
value of the internal fund and the stochastic factor level (w,m) 7→ β∗(σ∗(w,m);w,m), and
we emphasize that β∗(σ∗(w,m);w,m) only depends on (w,m), and indeed only has three
relatively “small” sets of values, as given by (1.8.3).

However, while the investors can certainly contract on the value of the internal fund
Wt = w, it is unclear how the investors can contract on the factor levelMt = m. In particular,
recall that off equilibrium, the investors cannot observe the exogenous factor level. Thus, to
complete the optimal contract implementation, we further require the manager to directly
and truthfully report the exogenous factor level to the investors. In practice, that translates
to the manager reporting periodically some factor benchmark index to the investors.

Thus, with the internal fund value Wt = w and the exogenous factor level Mt = m
known to the investors, the investors can just adjust the level of the dynamic incentive
fee β∗(σ∗(w,m);w,m) accordingly, without knowledge of the actual employed investment
strategy σ∗(w,m). The advantage of this implementation is that the manager does not need
to report to the investors their actual employed investment strategy, which is usually what
is observed in practice in the case of hedge funds. Moreover, if the internal fund does well,
so when Wt = w hits the payment boundary W̄ (Mt) = W̄ (m), the external investors will
directly compensate manager 20

As a result of the above discussion, the value of the external fund to the investors is
v(w,m), when the value of the internal fund is Wt = w and the level of the exogenous factor
is Mt = m. But economically and conceptually, what does it mean by the value of the
external fund is a function of the value of the internal fund and the level of the exogenous
factor? Borrowing the language of financial derivatives, we effectively can view the external
fund as a derivative, where the underlying asset here is written on the value of the internal
fund and level of the exogenous factor, with two associated barriers. The lower barrier is the
first time (Wt,Mt) = (w,m) hits the level (w,m) = (R,m) or (w,m) = (w,m); that is, either
when the value of the internal fund goes bust (i.e. Wt = R), or when the exogenous factor
level is sufficiently low (i.e. Mt = m) that the manager effectively walks away from the firm.
The upper barrier is the moving barrier (W̄ (Mt),Mt) that determines the optimal capital
injection or compensation scheme. However, despite this discussion, a direct implication
here is that the investment strategy of the manager still remains a black-box to the investor.
Another direct implication here is that the investment strategy of the external fund will
closely track that of the internal fund’s investment strategy.

20 In this setup, injecting more capital dXt into the internal fund is equivalent to compensating the
manger, as we assume the manager derives all utility from maximizing the value of the internal fund.
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Finally, we should observe what is not optimal or feasible in this context. Most notably,
the perhaps “easier” contractual setup would be that there is a single investment fund,
managed by the manager, for which mangers and investors commonly invest to. In this
context, this is not possible. As a thought experiment, suppose this were true, meaning
the internal fund and the external fund are exactly identical. But because the manager can
privately select effort and volatility (again, broadly interpreted as investment opportunity),
and by limited liability, the manager would effectively have incentives to gamble (i.e. choose
the highest volatility) and exert the lowest effort. Focusing on the volatility choice, although
by the form of the reward function κ(e, σ) it may appear that it too is desirable for the
investor to choose the highest volatility, the discussion in Section 1.8 argued that this is
not the case. As well, and this is perhaps a more cynical view of managers, suppose there
does exist only a single common fund, and recalling the black box nature of the investment
strategy, how can investors ensure that the managers will not privately squirrel away the
best available investment opportunities and leave the subpar investment opportunities to the
common fund? However, the establishment of an internal only fund for the manager with an
external fund that closely tracks the investment strategy of the internal fund does mitigate
this concerns. That is, although in equilibrium, the manager will collect some “information
rent”, namely in the form of keeping the best investment strategies still for the internal fund,
but if the investment strategy of the external fund commits to following that of the internal
fund, the external fund still benefits from the exposure of those good investment strategies.

Black-Scholes-Merton “greeks” interpretation

Once we view the external fund as a financial derivative contract written on the internal
fund and the exogenous factor, we can obtain interesting interpretations and understandings
of the RAS and also the optimal investment strategy in the paper. This is essentially made
possible by the “greeks” 21 of the classical papers of Black and Scholes (1973) and Merton
(1973).

Recalling the RAS, and suppose we drop the normalization vw(w,m) as in (1.8.4), we see
that,

RAS :=
−vwm(w,m)

σvww(w,m)
=

1

σ︸︷︷︸
(a) Precision of investment

strategy choice

×
(
− 1

vww(w,m)

)
︸ ︷︷ ︸

(b) Negative reciprocal of
”gamma”

× vwm(w,m)︸ ︷︷ ︸
(c) ”Cross-gamma”

This effectively implies that our dynamic performance fees depend on: (a) the investment
choice taken by the manager; (b) the “gamma” of the value of the external fund relative to
the value of the internal fund; and (c) the “cross-gamma” of the value of the external fund

21 In the Black-Scholes-Merton framework, if V = V (t, S) is the value of an option at time t and with
underlying asset value St = S, then ∆ = ∂V/∂S is called the Delta of the option, and Γ = ∂2V/∂S2 is
called the Gamma of the option. And if there are two underlying assets, so the value of the option is
V = V (t, S1, S2), then ∂

2V/∂S1∂S2 is the Cross-Gamma of the option.
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relative to the value of the internal fund and the external factor. That is, component (a)
links to the direct choice of the manager, component (b) links to incentive provisions for the
manager, and component (c) links to the external factor that is outside of the manager’s
controls.

Much more interestingly, however, is how we can think about the optimal investment
strategy. Recalling (1.8.5) which described the objective function to choosing the investment
strategy, we can now re-interpret as,

G(σ;w,m) := ϕσ

(
σ

σL
− 1

)
vw(w,m)︸ ︷︷ ︸

(A) Direct private payoffs to manager,
adjusted by ”delta”

+ κ(eH , σ)︸ ︷︷ ︸
(B) Direct payoffs to the investor

β∗(σ,w,m)σm2vwm(w,m) +
1

2
β∗(σ,w,m)σ2m2vww(w,m)︸ ︷︷ ︸

(C) Incentives due to the manager,
adjusting for dynamic performance fees

The expression above suggests the investment strategy must trade-off the direct benefits
to the manager, direct benefits to the investor, and also the incentives for the manager.
Component (B) here is straightforward, as it is simply the direct benefit to the investor,
and this is strictly increasing in σ. However, as mentioned regarding the “reverse moral
hazard” effect, we see that taking the highest value σ = σH may not necessarily be optimal,
as one must furthermore consider components (A) and (C). Component (A) can be seen

as the marginal benefit σ
(
σ
σL

− 1
)

of choosing investment strategy σ, multiplied by the

Black-Scholes-Merton “Delta” of the value of the external fund relative to the value of the
internal fund. That is to say, there is an interaction effect between taking on higher σ, which
the manager enjoys, but that could either be amplified or suppressed by how such a change
alters the value of the internal fund, which in term impacts the value of the external fund.
Component (C) is the incentives term for the manager, and this effectively relates back to
our earlier discussion of RAS.

1.10 Conclusion

We studied continuous-time principal-agent problem where the agent can continuously choose
the drift and volatility parameters, while the principal continuously observes and receives the
resulting controlled cash flows. The key ingredient yielding a meaningful private volatility
control by the agent, in that the agent’s deviation cannot be easily detected by the prin-
cipal’s computation of the quadratic variation of the cash flows, is via the introduction of
an exogenous factor level. Hence effectively, even though the principal can infer the overall
instantaneous diffusions of the cash flows, the principal cannot disentangle the component
that is due to the agent’s endogenous volatility control and the exogenous factor level. As
a result, beyond merely hidden drift or effort control, the principal must provide incentives
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now for both inducing the desired effort and volatility. Most importantly, as a concrete
application, our current model provides a first step to considering the dynamic contracting
environment in the context of delegated portfolio management.

By introducing this meaningful sense of volatility control, we now open a new economic
channel for researchers to study continuous-time principal-agent problems. In particular,
there are further questions one can consider between the interplay of effort and volatility. In
particular, there are several questions that this framework researchers could consider:

• The current model assumes the principal is risk neutral. However, once we give the
agent the meaningful ability to privately select volatility, an immediate and relevant
extension is to consider a case when the principal is risk averse.

• In the context of delegated portfolio management, since prices of risky assets jump
(i.e. “disaster” states), it will be interesting to pair, say, our current model to that of
DeMarzo et al. (2013), where the agent can also influence the likelihood of a disaster
state occurring.

In all, we feel that this model is an important step to the growing literature of continuous-time
dynamic contracting, and also to our better understanding of delegated portfolio manage-
ment contracting practices.
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Appendix

1.A Assorted Remarks

Single Brownian motion
In (1.4.1) and (1.4.2), we use a single Brownian motion B, rather than say two different Brownian motions. In particular, this
might be surprising coming from an asset pricing perspective; in asset pricing applications, say like the classical Heston (1993)
model, if S is the price of an asset, then it has say the dynamics,

dSt = µS(t, St)dt+ σS(t, σt, νt)dB1t

dνt = µν(t, νt)dt+ σν(t, νt)dB2t,

where B1 and B2 are correlated Brownian motions (with possibly zero correlation). In this type of specification, we see that
the stochastic volatility dynamics of price S are also further driven by the process ν. In contrast, the specification of (1.4.1)
and (1.4.2) uses the same Brownian motion. Indeed, in our specification, if we were to use two different Brownian motions,
then economically, then there is little hope for an equilibrium. Economically, recall here the principal can only observe a single
source of information (i.e. the cash flow Yt over time), but if there are two sources of risk (i.e. two Brownian motions), then
the agent has far too much room to deviate from the principal’s recommended actions. Indeed, we will see the importance of
using a single Brownian motion in Lemma 1.7.3.

Stochastic Time Change
We can actually view (1.4.1) and (1.4.2) as a time-changed process. We will not use this fact elsewhere in the paper. Since we
can write (1.4.1) and (1.4.2) as dYt = κ(et, σt)dt+σtdMt, but sinceM is a geometric Brownian motion, by the Dambis-Dubins-
Schwartz theorem 22 and by expanding the filtration and changing the probability space if needed, there exists a stochastic time
change {T (t)}t≥0 given by T (t) := inf

{
u :
∫ u
0 exp{−v + 2Bv}dv > t

}
, and another Brownian motion Z, such that Mt = ZT (t).

Hence, we can rewrite the cash flows as,
dYt = κ(et, σt)dt+ σtdZT (t).

Indeed, more is true. Since M is a geometric Brownian motion, by Lamperti’s relation 23 , we can further write M as a
time-changed squared Bessel process.

Further discussions of Definition 1.6.1
We collect some additional discussions of Definition 1.6.1 here so as to not block the overall reading flow of the main text.

Remark 1.A.1. Let’s discuss the economic justification of (1b). If the exogenous factor level M , which again is a geometric
Brownian motion so M > 0, is too low, say when Mt ≈ 0 (even though Mt = 0 happens on a set of measure zero), then
all sources of uncertainty in this economy vanishes. Indeed, suppose in the extreme that we indeed have M ≡ 0. And when
that happens, the managed cash flows thus become dYt = κ(et, σt)dt, without any additional noise term. But this implies
the principal, upon observing cash flows dYt continuously over time, can precisely detect the choice of effort et and choice of

22 See Revuz and Yor (2005, Chapter V, §1, Theorem 1.6) for the precise statement.
23 See Revuz and Yor (2005, Chapter XI, §1, Exercise 1.28).
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volatility σt that the agent has chosen 24 , and clearly then, the principal would instruct the agent to choose the first best effort
and volatility choices. However, first best effort and volatility choices are clearly not beneficial for the agent.

Without the presence of uncertainty (so when M ≡ 0), the principal no longer needs to compensate the agent, X ≡ 0.
Mapping back to the context of delegated portfolio management and recalling the discussion in Section 1.3, when M ≡ 0, it
is equivalent to saying the outside investor is getting precisely zero premia for the factor exposure of this particular managed
fund. In that case, the investor has no particular reason to compensate the manager for management anymore. Indeed, in
this case, if the manager does not choose the first best case of highest effort (et ≡ eH) and choose the appropriate investment
opportunity (σt ≡ σH), the investor will simply walk away. Anticipating this, the agent is conceivably better off to “walk away”
from managing the project before the exogenous factor level M is too low, namely at m, and still manage to extract some
information rent from the principal. More precisely, the agent’s retirement value R is such that,

Payoff to agent with positive exogenous factor M ≥ m > 0, and arbitrary actions︷ ︸︸ ︷∫ τ

0
e−r0tdXt +

∫ τ

0
e−r1τ

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)]
dt

≥ R

>

∫ ∞

0
e−r0tϕσ

(
σH

σL
− 1

)
dt =

1

r0
ϕσ

(
σH

σL
− 1

)
︸ ︷︷ ︸

Payoff to agent with always zero exogenous factor M ≡ 0, and first best actions

.

This discussion hence also justifies the retirement value R as specified in (1.6.2).

Remark 1.A.2. With Remark 1.A.1 in mind, we should also consider the counter case. What if the retirement value R is
too low? Specifically, what if, unlike (1.6.2), R is such that,

1

r0
ϕσ

(
σH

σL
− 1

)
≥ R > 0. (1.A.1)

If the retirement value R is such that (1.A.1) holds, when the exogenous factor level is identically zero M ≡ 0, we will see
that it may be not optimal for the agent to walk away from the contract. That is, if M ≡ 0, again as per the argument in
Remark 1.A.1, the principal can credibly instruct the agent to take on the first best action et ≡ eH and σt ≡ σH , and pay

zero compensation X ≡ 0. That is, the agent simply then receives the instantaneous private benefit of ϕσ
(
σH
σL

− 1
)
dt. Even

though the agent knows that there are some positive information rent to extract from the principal if the exogenous factor level
is strictly positive, but even at the identically zero exogenous factor level case, his instantaneous private benefit still exceeds
the outside retirement value R. So if (1.A.1) holds, it implies there is a possibility that the principal can give the agent zero
compensation and yet the agent will still happily remain employed.

We rule this case out. Specifically, we assume that at time t = 0, the agent can anticipate such effects, and negotiate,
ex-ante, with the outside labor market to secure a sufficiently high retirement value R that satisfies (1.6.2), rather than a low
retirement value of (1.A.1). In the context of delegated portfolio management, we may think of a high retirement value R to
represent an outside fund management opportunity that’s available to the portfolio manager.

1.B Selected important special cases
Several papers in the literature have some level of volatility control in the dynamic principal-agent problem in continuous-time.
However, all of them place various levels of restrictive assumptions on the way the agent can control volatility, which is not
imposed in our setup.

Sung (1995, 2004)

The papers by Sung (1995) and Sung (2004) are the closest in terms of volatility control but still does not resolve the problem
that we have in mind for this paper.

Let’s first review Sung (1995). The author considers a finite time horizon, [0, 1]. The cash flows under management is
of the form dYt = µtdt + σtdBt, where the drift µt and volatility σt are under the agent’s control. A contract is signed
between the principal and the agent at time t = 0 and the agent is compensated at time t = 1. The agent incurs an integrated

24 This is possible since the reward function κ of Definition 1.4.1 is bijective and non-crossing in effort e
and volatility σ.
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Cash flow dynamics References

Brownian motion with
controlled drift

dYt = µtdt+ σdBt Holmström and Milgrom
(1987), Biais, Mariotti,
Plantin, and Rochet (2007),
Sannikov (2008), DeMarzo
and Sannikov (2006), Adrian
and Westerfield (2009), Zhu
(2013)

Geometric Brownian
motion with controlled
drift

dYt = µtYtdt+ σYtdBt He (2009)

General Ito diffusion
with controlled drift

dYt = f(t, Y,µ)dt+ σ(t, Y )dBt Schaettler and Sung (1993)

Brownian motion with
controlled drift and
controlled jump

dYt = (α+ρµt)dt+σdBt−DµtdNt,
α, ρ,D constants

DeMarzo, Livdan, and
Tchistyi (2013)

Brownian motion with
controlled drift via
long run incentives

dYt = δtdt + σdBt, δt =
∫ t

0
f(t −

s)µsds
Sannikov (2012c)

Controlled Poisson in-
tensity

dYt = CdNt, N has intensity pro-
cess {µt}t≥0, C > 0 constant

He (2012)

Linear Ito diffusion
with controlled drift
and volatility

dYt = f(µt,σt)dt+ σtdBt (∗) Sung (1995, 2004)

Geometric Brownian
motion with same
control on drift and
volatility

dYt = [rYt +µt(α− r)]dt+µtκdBt,
r, α, κ constants

(∗) Ou-Yang (2003)

Geometric Brownian
motion with controlled
drift and volatility

dYt = κYtdt + δµtdt + ασtVtdt +
σtVtdBt, κ, δ, α constants

(∗) Cadenillas, Cvitanić, and
Zapatero (2004)

Multidimensional
Brownian motion with
drift and volatility
control, but scalar
observations

dYt = µt
⊤σ(bdt+dBt), µ, σ, b, B are

multidimensional but Y is a scalar
(∗) Cvitanić, Possamäı, and
Touzi (2014)

Table 1.B.1: A selected survey of agent’s managed cash flows in the existing literature. Here,
B denotes a standard Brownian motion and N denotes a Poisson process. For
consistency, the notations here differ from that of the original papers. The agent’s
control (in bold for emphasis) is µ = {µt}t≥0 (and where relevant, σ = {σt}t≥0).
For the (∗) starred cases where volatility is (seemed to be) under control, please see
section 1.B for discussions of their key caveats.
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cost
∫ 1
0 c(µt, σt)dt for choosing between the drift µt and σt over the investment horizon [0, 1]. The principal is restricted to

compensate the agent according to an exogenously fixed “salary function” S. The author considers two cases. In the first
case, the principal observes the entire path of {Yt}t∈[0,1] and hence can also observe σt across this path (i.e. via the quadratic
variation of Y ). Hence, there is no need for the principal to provide incentives to control the volatility σt. In the second case,
the principal can only observe the ending cash flow value Y1. In such a case, the principal cannot know what volatility control
σt the agent had chosen over the investment horizon [0, 1].

Sung (2004) is similar to Sung (1995), except that the author allows for a more general specification of the cash flow
process, and restrict to the second case setup of Sung (1995), whereby the principal can only observe the initial Y0 cash flow
and the terminal Y1 cash flow. Specifically, Sung (2004)’s specification is of the form dYt = f(µt, σt) + σtdBt, where the agent
controls both the drift µt and volatility σt. The details in the preferences of the agent and principal differ slightly between
Sung (1995) and Sung (2004) and we defer the reader to the actual papers for details.

Unlike Sung (1995) and Sung (2004), in this paper we will explicitly allow the principal to observe the agent’s managed
cash flow process at all times.

Ou-Yang (2003)

In Ou-Yang (2003), the principal-agent problem is the in form of an investment manager (i.e. agent) has to manage a portfolio
for an investor (i.e. principal). Asset returns follow the familiar geometric Brownian motion and together with the risk free
asset, it induces a wealth process for the portfolio. The agent can choose the portfolio process and the conflict arises when the
investor cannot observe the manager’s chosen portfolio policy 25 . In this setup, the portfolio choice variable is attached to
the diffusion term of the wealth process. But as duly noted in Ou-Yang (2003, Page 178): “If the investor observes both the
stock price vector P (t) and the wealth process W (t) of the portfolio continuously, then she can infer precisely the manager’s
portfolio policy vector A(t) from the fact that the instantaneous covariance between W (t) and P (t) equals diag(P )σσTA(t).
Since σσT is invertible by assumption, the manager’s policy vector A(t) is completely determined. Hence we must assume that
the investor does not observe the wealth and stock processes simultaneously.” Hence, through this, rather strong, assumption
in restricting what the investor can observe over time, volatility can be controlled without detection by the principal. In this
paper, we will not impose such a strong assumption that restricts the principal’s information set.

Cadenillas, Cvitanić, and Zapatero (2004, 2007)

Cadenillas et al. (2004) does allow the agent to have explicit drift and volatility control but the compensation type is exogenously
given. Using the original notation of Cadenillas et al. (2004, Equation (2)), the agent (manager) manages the value of assets V
under the agent’s management evolves according to,

dVt = µVtdt+ δµtdt+ αvtVtdt+ vtVtdWt,

where u and v are the agent’s controls. Moreover, the paper assumes that while effort (drift) u control for the agent is costly,
project selection (volatility) v control incurs no cost on the agent, but only implicitly matters to the agent through the principal’s
compensation. The principal (outside investors) is exogenously allowed to only compensate the agent with stock that becomes
vested at a terminal time T . The principal simply needs to choose the number of shares of stock to give to the agent and the
level of debt of the firm 26 . In all, taken in this light, Cadenillas et al. (2004)’s interesting approach of the problem does not
have the key ingredients that are present in this paper. Firstly, we do not exogenously fix what the compensation contract the
principal must give to the agent, and indeed the compensation structure is dynamic and endogenous. And secondly, the agent

25 The wealth process, referring to Ou-Yang (2003, Equation (1)), has the form,

dW (t) = [rW (t) +A(t)(µ− r)]dt+A(t)σdBt,

where r is the risk free rate, and µ is the expected return of risky assets, and A(t) is the portfolio choice
policy. Note in particular the choice variable A(t) enters both into the drift and volatility of the wealth
process.

26 It should be noted that in a similar spirit, Carpenter (2000) considers a delegated portfolio choice
problem of which through the portfolio choice policy, the agent can choose the volatility of the value of the
asset portfolio. There are no private benefits or costs to the agent in choosing a particular portfolio choice
policy. Exogenously, the principal compensates the agent (only) with a call option with the strike price being
the terminal value of the managed portfolio.
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does incur private benefits (or equivalently, negative private costs) of controlling the unobservable volatility level of cash flows
and so the principal must provide incentives on both effort and volatility.

Cadenillas et al. (2007) allows for the agent to control both the drift and volatility but they explicitly consider a first-best
risk-sharing setup whereby agency problems are absent.

Cvitanić, Possamäı, and Touzi (2014)

The closest work in the literature to our paper is the contemporary work by Cvitanić, Possamäı, and Touzi (2014). 27 The
goal of that paper is also to investigate under what conditions would there be meaningful volatility control by the agent. The
authors propose that if the principal can only observe managed cash flows Y continuously overtime, and if the agent controls
a vector of volatilities ν ∈ Rd+, so that the managed cash flows have the form,

Yt =

∫ t

0
νs · (bdt+ dBt),

where B is a d-dimensional Brownian motion, and b ∈ Rd is a common knowledge constant vector. Again, since the principal
can continuously observe the managed cash flows Y , then the principal can compute the quadratic variation of Y and obtain
an (integrated) matrix,

d[Y ]t = νt · νtdt,

where, of course, ν · ν′ is a scalar. But given that the principal can only observe Y , there is no way the principal can decipher
the individual managed elements of ν · ν. Thus, this yields to a setup where there is meaningful volatility control. It should be
immediately noted that in the setup of Cvitanić et al. (2014), the dimensionality d plays a critical role. That is, if d = 1, then
we collapse back to the case where there is no meaningful volatility control. Hence, in their setup, the dimensionality must be
d ≥ 2.

Cvitanić et al. (2014) considers a setup where the agent is only paid at a final deterministic time T and both the principal
and the agent have identical CARA utility, and the agent has a quadratic cost in volatility choices. In contrast, our paper
considers only risk neutral principal and agent, but allow for intertemporal compensation from the principal to the agent,
endogenous termination of the agent, and also private effort and volatility choices by the agent. Moreover, fundamentally,
our methods for “hiding” volatility control are fundamentally different in that Cvitanić et al. (2014) relies on a dimensionality
argument, whereas this paper relies on reconsidering economically the modeling method of the noise term. It could be an
interesting extension for future research to combine both of these approaches.

1.C Proofs of Section 1.6
First let’s define,

Vt(A) := EA
[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)]
ds

)
+ e−r0(τ−t)R

∣∣∣ FYt ] (1.C.1)

It is important to note that both (1.6.1) and (1.C.1), which represents the continuation value of the agent at time t if the
action process A is being taken, are conditioned on the filtration {FYt }. That is, the information observable to the principal.
In particular, the filtration that is being conditioned on is not a Brownian one. This is a key and important departure from
the usual papers in continuous-time principal agent problems. In providing incentives to the agent, since the principal can
only observe the cash flows Y , this implies the continuation value of the agent, from the perspective of the principal, can only
condition on the information {FYt } generated by the cash flows Y , and hence (1.6.1) and (1.C.1) have the correct conditioning.

Remark 1.C.1. Consider the typical setup of DeMarzo and Sannikov (2006) in the form (1.C.2),

dYt = µtdt+ σdBt. (1.C.2)

For a fixed recommended action {µt}t≥0, and since the principal observes the cash flows {Yt}t≥0, by simply rearranging terms,
we see that,

dYt − µtdt

σ
= dBt.

27 This author was not aware of the presence of this paper (with a working date of March 7, 2014) until
mid April 2014, but by then, a well working draft of this current paper had already been written and indeed
circulated in small private circles.
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Indeed, this is the key step to the analysis of both DeMarzo and Sannikov (2006) and Sannikov (2008). And so, in this case,
once the action process {µt}t≥0 is fixed 28 , then the left-hand side is completely observable by the principal. And thus, in

these types of setup, the information set available to the principal {FYt }t≥0 is exactly identical to the Brownian information

set {Ft}t≥0, and so we do achieve EA[ · |FYt ] = E[ · |Ft]. That is, in words, if the principal knows the action process and can
observe the cash flows, that means he must also know the Brownian motion noise.

However, in this current setup of (1.4.1) and (1.4.2), this is clearly not the case. In particular, even if the agent knows
the action process and the cash flows, he does not know the Brownian motion noise, and so we have a clear inequality,
EA[ · |FYt ] ̸= EA[ · |Ft]. To see this, observe that even if we repeat the above rearranging computation,

dYt − µtdt = σtMtdBt,

where specifically, we cannot “divide” over the generically not constant over time volatility choice σt (i.e. simply write out the
above SDE in it’s integrated form). Recall also that m is not observable to the principal. And from this expression, we see that
even if an action process A = {(µt, σt)}t≥0 is known to the principal, his information set FYt cannot equal to the information
set generated by Brownian motion Ft.

A trivial rewriting
In light of Remark 1.C.1, it motivates for the following rewriting. The idea is to not think of noise driven by Brownian motion
but rather driven by a more general continuous martingale process. In particular, observe, trivially, from (1.4.1) and (1.4.2),
we can write,

dYt = µtdt+ σtdMt. (1.C.3)

In particular, note that from (1.4.2), it is a geometric Brownian motion with zero drift and unit volatility. Thus, we have an
explicit solution,

Mt =M0exp

{
−
1

2
t+Bt

}
, t ≥ 0. (1.C.4)

For all the proofs that follow, we take, without loss of generality that M0 ≡ 1; the proof goes through with a generic M0 = m0

but we just have to carry more algebra.

Proposition 1.C.2. For a fixed contract (A,X, τ), the stochastic process t 7→
∫ t
0 σsdms is an (PA, {FYt })-martingale.

Proof. First, from (1.C.3) and again since the action process A is held fixed, we write,

Yt − µtdt = σtdMt. (1.C.5)

From (1.C.4), we see immediately that M is a true (P, {Ft})-martingale (i.e. the Dolean exponential with respect to Brownian
motion). Since σt is {Ft}-adapted and since m is a P -square integrable continuous martingale, then this implies that t 7→∫ t
0 σsdMs is also a (P, {Ft})-martingale.

Now, let’s show that t 7→
∫ t
0 σsdMs is also a (P, {FYt })-martingale. Observe that t 7→

∫ t
0 σsdMs is FYt -adapted. But this

is immediate by viewing the left-hand side of (1.C.5) and recalling footnote 15. It remains to verify the martingale property.

Pick any time t1 ≥ t0. Since t 7→
∫ t
0 σsdMs is a martingale, then we immediately have that,

E

[∫ t1

t0

σsdMs

∣∣∣ Ft] = 0.

But by applying the Law of Iterated Expectations,

E

[∫ t1

t0

σsdMs

∣∣∣ FYt ] = E

[
E

[∫ t1

t0

σsdMs

∣∣∣ Ft] ∣∣∣ FYt ] = 0,

so the martingale property holds for {FYt }. Finally, the fact that t 7→
∫ t
0 σsdMs is a (PA, {FYt })-martingale follows immediately.

■

This trivial rewriting of (1.C.3) and observation of Proposition 1.C.2 that σtdMt is an (PA,
{
FYt
}
)-martingale are the key

steps to the beginning of our analysis. Indeed, to emphasize the importance of the observation in Proposition 1.C.2, we will in
the subsequent few sections, denote explicitly the (PA, {FYt })-martingale as,

σtdM
A
t = Yt − µtdt. (1.C.6)

28 More precisely, this means we work under the induced probability measure PA, where A = {µt}t≥0.
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Martingale Representation Theorem
With Proposition 1.C.2 in mind and also the cash flow process in the form (1.C.3), we can now state the following key proposition.

Proposition 1.C.3. Fix a contract (A,X, τ). Then there exist processes {βt}t≥0 and {V ⊥,A
t }t≥0 such that the dynamics of

Vt(A) in (1.C.1) can be written as,

dVt(A) = e−r0tβtσtdM
A
t + dV ⊥,A

t , (1.C.7)

where βt is some predictable process such that
∫ t
0 (e

−r0sβs)2d[
∫ ·
0 σudM

A
u ]s <∞, PA-a.s., and V ⊥,A

t is continuous and orthog-

onal to t 7→
∫ t
0 σsdM

A
s (i.e. meaning, [V ⊥,A,

∫ ·
0 σsdM

A
s ]t = 0, PA-a.s.), and V ⊥,A

0 = 0.

Proof. It is easy to verify that (1.C.1) is a (PA, {FYt })-martingale (i.e. Doob’s martingale). Then the result is an immediate
consequence of Proposition 1.C.2 and the (general) martingale representation theorem. For the precise statement for this
general martingale representation theorem result, please see Hunt and Kennedy (2004, Chapter 5, Theorem 5.37), Protter
(2005, Chapter IV, Section 3, Corollary 1) and Revuz and Yor (2005, Chapter V, Section 4, Lemma 4.2). ■

Remark 1.C.4. In the term e−r0tβtσtdMA
t , the time discount factor term e−r0t is merely a convenient normalization; this

is also done in Sannikov (2008). Also, strictly speaking, β is clearly dependent on the choice of the action process A but will

suppress it for notational convenience when the context is clear. We keep the notation A on the orthogonal process V ⊥,A
t as

the choice of A will make a meaningful difference in the subsequent discussions.
Compared to the papers like Holmström and Milgrom (1987), DeMarzo and Sannikov (2006), Sannikov (2008), and others,

they all invoke a martingale representation theorem for the case when the filtration is generated by Brownian motion (i.e. see
Karatzas and Shreve (1991, Chapter 3, Theorem 4.2), among others); recall again the discussion in Remark 1.C.1 on why
a Brownian filtration setup here is inappropriate. Specifically in the Brownian case, the orthogonal term, denoted above as

V ⊥,A
t , would be identically zero. It is also worth noting that in this line of continuous-time principal-agent literature, there

have been some notable cases where the filtration is not Brownian. For instance, in Sannikov (2007, Proposition 1), the “extra”
orthogonal term is interpreted as a public randomization device.

Dynamics of the agent’s continuation value
With Proposition 1.C.3 in mind, the following is an easy application of Ito’s lemma.

Proof of Theorem 1.6.1. From (1.C.1), we can write,

Vt(A) =

∫ t

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)])
ds+ e−r0tWt(A). (1.C.8)

Applying Ito’s lemma, we obtain,

dVt(A) = e−r0t
(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
+ d(e−r0tWt(A))︸ ︷︷ ︸

−r0e−r0tWtdt+e−r0tdWt

. (1.C.9)

Equating (1.C.7) with (1.C.9), we obtain,

e−r0tβtσtdm
A
t + dV ⊥,A

t

= e−r0t
(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
− r0e

−r0tWt(A)dt+ e−r0tdWt(A)
(1.C.10)

Defining ϵ⊥,At :=
∫ t
0 er0sdV ⊥,A

s , rearranging, and recalling that σtdMt = Yt − µtdt, we obtain,

dWt(A) = r0Wt(A)dt−
(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
+ βt (dYt − µtdt) + dϵ⊥,At , (1.C.11)

and we are done. ■
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Checking for Deviations

With Theorem 1.6.1 on hand, we are now ready to give a simple condition (hopefully that is both sufficient and necessary) to pin

down the incentive compatibility constraints of the agent. Fix two action processes 29 A = {(µt, σt)}t≥0 and A† = {(µ†t , σ
†
t )}t≥0.

If the agent plays A, then the agent’s time zero continuation value is W0(A) as in (1.6.1). But suppose the agent deviates
to A†. Specifically, the cash flow processes under the two different action processes evolve as 30 ,

Under PA: dYt = µtdt+ σtdM
A
t . (1.C.12)

Under PA
†
: dYt = µ†tdt+ σ†

t dM
A†
t . (1.C.13)

Phrased in this light, this strongly calls for a change-of-measure type analysis. To do so, we need to invoke a stronger
version of Girsanov’s theorem, which is usually applied in a Brownian setting. Here, we will use the slightly more general
Girsanov-Meyer theorem. We will reiterate it here for reference:

Girsanov-Meyer Theorem. Let P and Q be equivalent measures. Let X be a continuous (classical) semimartingale under
P with decomposition X = M + A. Then X is also a continuous (classical) semimartingale under Q and has decomposition
X = L+ C, where

Lt =Mt −
∫ t

0

1

Zs
d[Z,M ]s (1.C.14)

is a Q local martingale, and C = X − L is a Q finite variation process.

Proof. For details of the theorem and its proof, please see Protter (2005, Chapter III, Section 8, Theorem 39). ■

Using the Girsanov-Meyer theorem as a guide, and we can set P = PA and Q = PA†
, then it is natural to set,

At =

∫ t

0
µsds, Ms =

∫ t

0
σsdM

A
s , (1.C.15)

and,

Ct =

∫ t

0
µ†sds, Ls =

∫ t

0
σ†
sdM

A†
s . (1.C.16)

Then, to ensure that the correct change of measure is possible, it remains to identify the process Z.
In particular, we define the Radon-Nikodym derivative as,

Zt = EA
[
dPA†

dPA
∣∣∣ FYt

]
. (1.C.17)

To continue the discussion, we will need the following mild technical assumption that we have an appropriate kernel.

Assumption 1.C.5. Suppose associated with the Radon-Nikdoym derivative in (1.C.17), there exists a square integrable
process {φt}t≥0 such that,

dZt = φtZtσtdM
A
t . (1.C.18)

With Assumption 1.C.5 on hand, and letting Nt := φtσtdMA
t , we see that,

Zt = E(N)t, (1.C.19)

29 Again, recalling the notation convention in footnote 11, what we mean here is to fix two action processes
A = {(et, σt)}t≥0 and A† = {(e†t , σ

†
t )}t≥0, then define µt ≡ κ(et, σt) and µ

†
t ≡ κ(e†t , σ

†
t ).

30 To be precise, we mean the following and please see Proposition 1.C.2 again. Under PA, we have

the (PA, {FY
t })-martingale σtdM

A
t = dYt − µtdt; and under PA†

, we have the (PA†
, {FY

t })-martingale

σ†
tdM

A†

t = dYt − µ†
tdt. Rearrange to obtain the two displayed equations.
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the Dolean’s exponential 31 for the process N . For now, let’s suppose that Z is a true {FYt }-martingale but we will verify this
in the subsequent discussion 32 . Thus, it remains to find φt. Note in the above, we have two expressions for L, (1.C.14) as
given in the Girsanov-Meyer theorem statement, and also in (1.C.16). Equating these two expressions for L, we find,

Lt =

∫ t

0
σsdM

A
s −

∫ t

0
φsd

[∫ ·

0
σudM

A
u

]
s

=

∫ t

0
σ†
sdM

A†
s , (1.C.20)

and since dMA
t =MA

t dB
A
t then we immediately have by the quadratic variation of Brownian motion,

d

[∫ ·

0
σudM

A
u

]
t

= σ2
t (M

A
t )2dt.

Rewriting everything in differential form and substituting, we thus have that,

σtdM
A
t − φtσ

2
t (M

A
t )2dt = σ†

t dM
A†
t .

But recall again that σtdMA
t = dYt − µtdt and σ

†
t dM

A†
t = dYt − µ†tdt, so we substitute,

dYt − µtdt− φtσ
2
t (M

A
t )2dt = dYt − µ†tdt.

Canceling terms and equating, we have thus,

∫ t

0
φsσ

2
sM

2
s ds =

∫ t

0
(µ†s − µs)ds.

But since the integrands on the left-hand side and the right-hand side are well bounded, this immediately implies the integrands
must equal. And thus, we have that the Girsanov kernel is,

φt =
µ†t − µt

σ2
t (M

A
t )2

. (1.C.21)

Now in particular, we have the following important relationship.

Lemma 1.C.6. Fix a contract (A,X, τ). Suppose the agent considers the recommended action process A and fixes another
action process A†. The agent considers a deviation from A to A†. Then the noise terms are related in the following manner:

σtdM
A
t = (µ†t − µt)dt+ σ†

t dM
A†
t . (1.C.22)

Proof. Using the Girsanov kernel in (1.C.21), simply substitute,

σtdM
A
t − φtσ

2
t (M

A
t )2dt = σtM

A
t −

(µ†t − µt)

σ2
t (M

A
t )2

σ2
t (M

A
t )2dt

= σ†
t dM

A†
t .

Rearrange, and we get (1.C.22). ■

31 The Dolean’s exponential E(N)t for a continuous local martingale S is given by,

E(S)t := exp

{
St − S0 −

1

2
[S]t

}
.

32 Of course, with the equivalence of PA and PA†
, there is no need to specify for which probability measure

is Z a martingale.
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Change of Measure and Novikov’s Criterion

However, an important task remains — we need to verify that the Dolean’s exponential E(N) for N is a true martingale to
allow for a valid change of measure. With the Girsanov kernel given in (1.C.21), and recalling again that dMA

t =MA
t dB

A
t , we

substitute back to see that,

dNt =
µ†t − µt

σt(MA
t )2

MA
t dB

A
t =

µ†t − µt

σtMA
t

dBAt

But this implies N has quadratic variation,

[N ]t =

∫ t

0

(µ†s − µs)2

σ2
s(M

A
s )2

ds.

In all, that means to ensure that E(N) is a true martingale, a sufficient condition is to ensure that the Novikov’s criterion 33

holds. For what follows, consider a fixed deterministic time horizon T <∞. The Novikov’s criterion requires,

EA
[
exp

{
1

2

∫ T

0

(µ†t − µt)2

σ2
t (M

A
t )2

dt

}]
<∞. (1.C.23)

Lemma 1.C.7. The Novikov criterion (1.C.23) holds for finite time horizon T < ∞ and infinite time horizon T = ∞. And
thus, E(N)t is a true martingale for all t ∈ [0,∞].

Proof. Recall again thatMA itself is a geometric Brownian motion with zero drift and unit volatility. Thus, we can immediately

write MA
t = exp

{
− 1

2
t+BAt

}
; we have taken, without loss of generality M0 = 1. Furthermore, since we know that µt, µ

†
t ∈

[µL, µH ] and likewise σt, σ
†
t ∈ [σL, σH ], then we clearly have,

∣∣µ2t − µ2t
∣∣ ≤ 2µ2H ,

1

σ2
L

≥
1

σ2
t

,
1

σ2
L

≥
1

(σ†
t )

2
.

Substituting,

EA
[
exp

{
1

2

∫ T

0

(µ†t − µt)2

σ2
t (M

A
t )2

dt

}]
≤ EA

[
exp

{
1

2

2µ2H
σ2
L

∫ T

0

1

(MA
t )2

dt

}]

= eµ
2
H/σ

2
LEA

[
exp

{∫ T

0

1

(MA
t )2

dt

}]
= eµ

2
H/σ

2
LEA

[
exp

{∫ T

0
et−2BA

t dt

}]

Thus, the problem reduces now to proving that, EA
[
exp

{∫ T
0 et−2BA

t dt
}]

<∞. It should be noted that this is a non-trivial

problem since we essentially have to show that the expectation of the exponential of an integrated geometric Brownian motion
is finite. As noted from Yor (1992), the aforementioned problem is essentially the same as investigating the properties of,

∫ t

0
eaBs+bsds, a, b ∈ R.

But by scaling properties of Brownian motion 34 B, it suffices to consider the process,

A
(ν)
t :=

∫ t

0
e2(Bs+νs)ds, ν ∈ R. (1.C.24)

Hence, to solve our problem of showing (1.C.23), it is equivalent to showing that,

E
[
exp

{
A

(ν)
t

}]
<∞. (1.C.25)

33 See Protter (2005, Chapter III, Section 8, Theorem 45), Revuz and Yor (2005, Proposition 1.15,
Corollary 1.16) and also Duffie (2001, Appendix D)

34 For this discussion, it suffices to suppress the dependence on action process A.
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But to show that (1.C.25) is finite is equivalent to showing that the Laplace transform (moment generating function) of A
(ν)
t

is well defined and finite. But using Yor (1992, Equation (7.e)) as pointed out by Kim (2004) (see also Albanese and Lawi
(2005)), we are ensured that the aforementioned Laplace transform is well defined and finite.

Thus, this implies that (1.C.23) does indeed hold for each finite T < ∞. However, given in this model, we allow for a
termination time τ that could be finite (i.e. terminating the agent at some time) or infinite (i.e. never terminating the agent),
considering the deterministic finite time case is insufficient. But invoking Revuz and Yor (2005, Chapter VIII, §1, Corollary
1.16), we can extend the discussion from finite time interval [0, T ] for T < ∞ to [0,∞]. Thus, this shows that E(N)t is a
martingale for all times t ∈ [0,∞]. ■

The following lemma will be useful when we further characterize the effects of deviation in the subsequent discussion.

Lemma 1.C.8. Fix a contract (A,X, τ). Consider the setup and the process ϵ⊥,A as defined in Theorem 1.6.1. Fix another

action process A†. The stochastic process ϵ⊥,A is a {FYt }-martingale under both probability measures PA and PA†
.

Proof. The fact that ϵ⊥,A is a (PA,FYt )-martingale is immediate from the fact that by Proposition 1.C.3, V ⊥,A is a (PA,FYt )
martingale.

Thus, it remains to prove that ϵ⊥,At is a (PA†
,FYt )-martingale. Clearly, this is equivalent to showing that V ⊥,A

t is an

(PA†
)-martingale. But thanks to Lemma 1.C.7, this is equivalent to showing that for any s ≥ t, we have,

V ⊥,A
t = EA

† [
V ⊥,A
s |FYt

]
= EA

[
V ⊥,A
s

dPA†

dPA
∣∣∣
FY

s

∣∣∣ FYt
]

Hence, we see that it suffices to prove that the stochastic process as a product, t 7→ V ⊥,A
t

dPA
†

dPA

∣∣∣
FY

t

is an FYt -martingale 35

But we observe that V ⊥,A
t is a square-integrable martingale and likewise for dPA†

/dPA|FY
t

= E(N)t. Then using the notion of

strongly orthogonal martingales in, say, Protter (2005, Chapter IV, §3), to show that the product V ⊥,A
t E(N))t is a martingale,

it is equivalent to showing,
[V ⊥,A, E(N)]t is a uniformly integrable martingale.

But observe that since dV ⊥,A
t and σtdMA

t are orthogonal (i.e. recall Proposition 1.C.3), then computing the quadratic covari-
ation (here, for convenience, we use the differential notation),

dV ⊥,A
t dE(N))t = dV ⊥,A

t E(N)tφtσtdM
A
t

= E(N)tφt (dV
⊥,A
t )(σtdM

A
t )︸ ︷︷ ︸

=0

= 0.

Hence, we have that [V ⊥,A, E(N)]t = 0 (i.e. a constant stochastic process, which is a trivial martingale). Thus, we have that

V ⊥,A is also a martingale under PA†
, in addition to being a martingale under PA. ■

Characterizing Deviations

Proof of Lemma 1.6.2. As before, fix a contract (A,X, τ). And fix another action process A†. Consider a deviation from A to
A†. Let’s do some preliminary computations before showing the equivalence of (i) and (ii). Define,

V̂t :=

∫ t

0
e−r0t

(
dXt +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

σL
− 1

)]
ds

)
+ e−r0tWt(A), (1.C.26)

which is the time t expectation of the agent’s total payoff if he experienced the cost of effort from the action process A† before
time t, and plans to follow the recommended action process A after time t. Let’s write the dynamics of V̂t under the measure

35 Note by the equivalence in measures, we no longer need to be explicit about the probability measure
for which this is a martingale.
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PA†
. Observe that in differential form, and noting the expression in (1.C.10), and equating,

dV̂t = e−r0t

(
dXt +

[
ϕe

(
1−

e†t
eH

)
+ ϕσ

(
σ†
t

σL
− 1

)]
dt

)
+ d(e−r0tWt(A))

= e−r0t

(
dXt +

[
ϕe

(
1−

e†t
eH

)
+ ϕσ

(
σ†
t

σL
− 1

)]
dt

)

+ e−r0tβAt σtdm
A
t + dV ⊥,A

t − e−r0t
(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
.

(1.C.27)

But using (1.C.22) of Lemma (1.C.6), and collecting terms, we can further rewrite (1.C.27) as,

dV̂t = e−r0t

(
dXt +

[
ϕe

(
1−

e†t
eH

)
+ ϕσ

(
σ†
t

σL
− 1

)]
dt

)
+ e−r0tβt

{
[κ(e†t , σ

†
t )− κ(et, σt)]dt+ σ†

t dm
A†
t

}
+ dV ⊥,A

t

− e−r0t
(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
= e−r0t

[
−ϕe

e†t − et

eH
+ ϕσ

σ†
t − σt

σL
+ βt[κ(e

†
t , σ

†
t )− κ(et, σt)]

]
dt

+ dV ⊥,A
t + e−r0tβtσ

†
t dM

A†
t

(1.C.28)

Thus, writing in integrated form for both (1.C.26) and (1.C.28), and equating,

V̂t = V̂0 +

∫ t

0
e−r0s

[
−ϕe

e†t − et

eH
+ ϕσ

σ†
t − σt

σL
+ βt[κ(e

†
t , σ

†
t )− κ(et, σt)]

]
ds

+ V ⊥,A
t +

∫ t

0
e−r0sβsσ

†
sdM

A†
s (1.C.29)

= V̂0 +

∫ t

0
e−r0s

(
dXs +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

σL
− 1

)]
ds

)
+ e−r0tWt(A). (1.C.30)

Let’s consider taking the time 0 expectation of V̂t in (1.C.29) above under PA†
. From Lemma 1.C.8, we have that EA†

[V ⊥,A
t ] = 0.

Furthermore, note that the stochastic process t 7→ e−r0tβtσ
†
t is an FYt square integrable martingale, since the integrator mA

†
t

is a square integrable martingale and the terms in the integrand are well bounded; see Protter (2005, Chapter IV, §2, Theorem
11). Thus, in expectation, the last two terms in the sum of (1.C.29) vanish. Thus, picking any two times t ≥ t0 ≥ 0 in mind,
observe that, under condition (i),

EA
† [
V̂t − V̂t0 | FYt0

]
= EA

†
[∫ t

t0

e−r0s

[
−ϕe

e†t − et

eH
+ ϕσ

σ†
t − σt

σL
+ βt[κ(e

†
t , σ

†
t )− κ(et, σt)]

]
ds
∣∣∣ FYt0

]
≤ 0.

Specifically, this implies that V̂t is an FYt -supermartingale (under both probability measures PA and PA†
, by Lemma 1.C.7).

Now, let’s show that (i) =⇒ (ii). The above supermartingale property implies, EεA†
[V̂t] ≤ V̂0 = W0(A). Rewriting the

left-hand side of the this inequality, and using (1.C.30), we have that,

EA
†
[∫ t

0
e−r0s

(
dXs +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

µL
− 1

)]
ds

)]
+ EA

†
[e−r0tWt(A)]

≤ V̂0

=W0(A)

= EA
[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)])
ds+ e−r0τR

]
.
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Since t ≥ 0 was arbitrary, set it to t = τ and note that Wτ (A) = R a.s. (both in PA and in PA†
), then we have that,

EA
†
[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

σL
− 1

)]
ds

)
+ e−r0τR

]

≤ EA
[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)])
ds+ e−r0τR

]

Thus, if the recommended action process is A, then it is not optimal for the agent to deviate to A†. Thus, (i) =⇒ (ii) holds.
Let’s show that (ii) =⇒ (i) holds. We will prove by contrapositive. Suppose that (i) does not hold on a set of non-zero

measure (again, both under PA or PA†
). Let’s show that deviating away from A is optimal (i.e. A is suboptimal). On the set

of times with non-zero measure such that (1.6.5) does not hold for some time s and some (e, σ) ∈ {eL, eH}× [σL, σH ]. But this
implies we can construct an action process Ã such that there would exist some time t′ such that,

EÃ[V̂t′ ] > V̂0 =W0(A).

But since the agent gets utility EÃ[V̂t′ ] if he follows Ã until time t′ and switches to A, the action process A is suboptimal. This
shows that (ii) =⇒ (i). ■

Proof of Corollary 1.6.3. Consider (1.6.6). To consider a deviation from the recommended action (et, σt) to the deviated action
(e′, σ′), that is (et, σt) ̸= (e′, σ′), we have three cases to consider:

(i) et ̸= e′, σt ̸= σ′;

(ii) et = e′, σt ̸= σ′; and

(iii) et ̸= e′, σt = σ′.

Case (i): Suppose et ̸= e′ and σt ̸= σ′. Let’s prove the case when et = eH . Then we must have that e′ = eL. So, we have,

0 ≥ −
ϕe

eH
(eL − eH) +

ϕσ

σL
(σ′ − σt) + βt

[
κ(eL, σ

′)− κ(eH , σt)
]
.

But from Definition 1.4.1(c), we have κ(eL, σ
′)− κ(eH , σt) < 0. Rearranging the above, we have that,

βt ≥
1

κ(eL, σ′)− κ(eH , σt)

[
ϕe

eH
(eL − eH)−

ϕσ

σL
(σ′ − σt)

]
=

1

κ(eH , σt)− κ(eL, σ′)

[
ϕe

eH
(eH − eL) +

ϕσ

σL
(σ′ − σt)

]
, (1.C.31)

for all σ′ ∈ [σL, σH ]. But we observe immediately that the inequality (1.C.31) holds if and only if (1.6.6) holds. This shows
the equivalence of (1.6.6) with (1.6.5) when et = eH . The case of when et = eL is proved similarly.

Case (ii): Suppose that et = e′ = e and σt ̸= σ′. Suppose first if σ′ > σt, which implies κ(e, σ′)− κ(e, σt) > 0. Then we
have,

ϕσ

σL
(σt − σ′) ≥ βt

(
κ(e, σ′)− κ(e, σt)

)
,

which implies that 0 > βt — contradiction. That is to say, if the principal’s recommended volatility is σt, the agent will not
deviate to a higher volatility σ′ > σt. Next, if σ′ < σt, so κ(e, σ′)− κ(e, σt) < 0, then we have,

ϕσ

σL
(σt − σ′) ≥ βt

(
κ(e, σ′)− κ(e, σt)

)
,

which implies βt is greater than or equal to some strictly negative term. But nonnegativity of βt, this imposes no restriction
on βt.

Case (iii): Suppose et ̸= e′, and σt = σ′ = σ. Consider first the case when et = eH , so e′ = eL, which implies
κ(eL, σ)− κ(eH , σ) < 0. Then we have,

0 ≥ −
ϕe

eH
(eL − eH) + βt (κ(eL, σ)− κ(eH , σ)) ,
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implying,

βt ≥
1

κ(eH , σ)− κ(eL, σ)

ϕe

eH
(eH − eL). (1.C.32)

But we also have that κ(eH , σ)−κ(eL, σ) ≥ κ(eH , σ)−κ(eL, σH), which then is equivalent to the following chain of inequalities,

1

κ(eH , σ)− κ(eL, σ)

ϕe

eH
(eH − eL) ≤

1

κ(eH , σ)− κ(eL, σ)

[
ϕe

eH
(eH − eL) +

ϕσ

σL
(σh − σ)

]
≤

1

κ(eH , σ)− κ(eL, σH)

[
ϕe

eH
(eH − eL) +

ϕσ

σL
(σH − σ)

]
,

and hence the condition (1.6.6) covers Case (iii) when et = eH . The case of when et = eL is similar.
■

1.D Principal’s value function

Properties of the value function
First we obtain some basic properties of the value function ṽ.

Proposition 1.D.1. The value function ṽ is concave in w. That is, for all m > m, and w1, w2 > R and λ ∈ [0, 1],

λṽ(w1,m) + (1− λ)ṽ(w2,m) ≤ ṽ(λw1 + (1− λ)w2,m).

Proof of Proposition 1.D.1. Pick anyW j ≥ R = 0 and controls σj , Xj , βj , τ j , for j = 1, 2, and in particular pick τ1 = τ2 ≡ τ0,
from the admissible control set. Then from (S), we have the dynamics,

dW j
t =

[
r0W

j
t − ϕσ

(
σjt
σL

− 1

)]
dt− dXj

t + βjt σ
j
t dMt,

for any j = 1, 2. Fix any λ ∈ [0, 1]. Multiplying and summing, we obtain,

d(λW 1
t + (1− λ)W 2

t ) =

[
r0(λW

1
t + (1− λ)W 2

t )− ϕσ

(
λσ1
t + (1− λ)σ2

t

σL
− 1

)]
dt

− d(λX1
t + (1− λ)X2

t ) +
(
λβ1
t σ

1
t + (1− λ)β2

t σ
2
t

)
dMt.

Now, let us define,

βt :=
λβ1
t σ

1
t + (1− λ)β2

t σ
2
t

λσ1
t + (1− λ)σ2

t

. (1.D.1)

Let’s show that βt ∈ B, as given in (1.7.1). That is, let’s show that,

K ≥ βt ≥ β. (1.D.2)

The upper bound is clear since β1
t , β

2
t ≤ K. But the lower bound is also clear since β1

t , β
2
t ≥ β. Thus, βt ∈ B.

Hence, we have that if (σj , Xj , βj , τ j) ∈ Awj ,m, j = 1, 2, then

(λσ1 + (1− λ)σ2, λX1 + (1− λ)X2, β, τ) ∈ Aλ(w1,m)+(1−λ)(w2,m),

where β is as constructed in (1.D.1).
Thus, this implies by optimality, and concavity of κ(eH , σ) in σ,

λE

[∫ τ0

0
e−r1tκ(eH , σ

1
t )dt−

∫ τ0

0
e−r1tdX1

t + e−r1τ
0
L

]

+ (1− λ)E

[∫ τ0

0
e−r1tκ(eH , σ

2
t )dt−

∫ τ0

0
e−r1tdX2

t + e−r1τ
0
L

]

≤ E

[∫ τ0

0
e−r1tκ(eH , λσ

1
t + (1− λ)σ2

t )dt−
∫ τ0

0
e−r1td(λX1

t + (1− λ)X2
t ) + e−r1τ

0
L

]
≤ ṽ(λw1 + (1− λ)w2,m).
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Take the supremum to the above over the admissible set of controls, and we obtain, λṽ(w1,m) + (1 − λ)ṽ(w2,m) ≤ ṽ(λw1 +
(1− λ)w2,m), as desired.

■

Proposition 1.D.1 is not only mathematically important, but also economically critical. In the model of DeMarzo and
Sannikov (2006), it was explicitly shown that the principal’s value function as a function of the agent’s continuation value
is concave, and thus, public randomization does not improve the payoff for the principal. Note that public randomization is
effectively concavification of the principal’s value function. However, in DeMarzo, Livdan, and Tchistyi (2013), the authors show
that in the case the agent manages a cash flows with a jump component (interpreted as “disasters”), then public randomization
does indeed improve the value for the principal. Economically, public randomization implies the following. 36 To induce the
current agent to work, the manager could effectively flip a coin every morning, and if the coin lands in heads, the manager
keeps the current agent employed, but if the coin lands in tails, the manager fires the current agent and finds an identical
agent in the labor market to replacement the outgoing agent. This coin flipping act implies that the principal is indifferent
to the identity of the agent, as long as there does exist a competitive labor market of identical agents, and the principal can
frictionlessly hire and fire agents from this labor market pool. Also equally important, the production technology of the firm
is completely independent of the identity of the agent. Effectively, that means the firm is effectively a factory with a fixed
production technology, and the agent is simply hired to spend effort (or not) to press a button in the factory; it does not matter
who presses that button.

However, in the context of delegated portfolio management, this public randomization argument does not hold. In partic-
ular, for investment firms, the technology is the agent. Effectively, investment firms, and hedge funds in particular, live and die
by the investment manager. Threatening the investment manager via the aforementioned coin flipping exercise is not credible,
as the manager knows if he is fired, the firm also collapses with him. Thus, the importance of Proposition 1.D.1 is that the
principal does not need to resort to a public randomization device to achieve a better outcome, as if otherwise, this public
randomization device is not even feasible.

Further properties of the value function

Lemma 1.D.2. For any (wi,mi) ∈ Γ, i = 1, 2,, and λ ∈ [0, 1], if (σi, βi, Xi) ∈ Awi,mi , then there does not exist some β such

that (λσ1 + (1− λ)σ2, β, λX1 + (1− λ)X2) ∈ Aλ(w1,m1)+(1−λ)(w2,m2).

Proof of Lemma 1.D.2. We proceed by contradiction. Fix any (wi,mi), i = 1, 2 and λ ∈ [0, 1]. Without loss of generality, let
us pick m2 > m1. Then there exists some admissible controls (σi, βi, Xi) such that,

dW i
t =

(
r0W

i
t − ϕσ

(
σit
σL

− 1

))
dt− dXi

t + βitσ
i
tdM

i
t .

In particular, we must have that there exist some point (w,m) such that λ(w1,m1) + (1 − λ)(w2,m2) = (w,m) and some
admissible controls (σ, β,X) associated with the point (w,m). In particular, multiplying by λ and summing, we must have
that,

d(λW 1
t + (1− λ)W 2

t ) =

(
r0(λW

1
t + (1− λ)W 2

t )− ϕσ

(
λσ1
t + (1− λ)σ2

t

σL
− 1

))
dt

− d(λX1
t + (1− λ)X2

t ) + λβ1
t σ

1
t dM

1
t + (1− λ)β2

t σ
2
t dM

2
t .

(1.D.3)

But since M1,M2 are both geometric Brownian motions on the same underlying Brownian motion term except for different
initial conditions, so M i

t = mie−1/2t+Bt , the diffusion term above in (1.D.3) can be rewritten as,

λβ1
t σ

1
t dM

1
t + (1− λ)β2

t σ
2
t dM

2
t = λβ1

t σ
1
tm

1e−1/2t+BtdBt + (1− λ)β2
t σ

2
tm

2e−1/2t+BtdBt

=
(
λβ1
t σ

1
tm

1 + (1− λ)β2
t σ

2
tm

2
)
e−1/2t+BtdBt.

But if there exist some admissible control σ associated with (w,m), then from the ϕσ

(
λσ1

t+(1−λ)σ2
t

σL
− 1

)
dt term, it means this

admissible volatility control σ must be σt = λσ1
t+(1−λ)σ2

t . As well, the admissible compensation must beX = λX1+(1−λ)X2.
Then from this form, it implies the admissible sensitivity β must thus be the form, for m = λm1 + (1− λ)m2,

βt[λσ
1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2] = λβ1

t σ
1
tm

1 + (1− λ)β2
t σ

2
tm

2,

36 I thank Dmitry Livdan for pointing this out.
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or that,

βt =
λβ1
t σ

1
tm

1 + (1− λ)β2
t σ

2
tm

2

[λσ1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2]

. (1.D.4)

If this βt is admissible, it must thus be in B. But the lower bound in B cannot hold for βt of (1.D.4). To see this, since βit ∈ B,
i = 1, 2, we have that,

βt ≥ β
λσ1
tm

1 + (1− λ)σ2
tm

2

[λσ1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2]

.

Thus, in order for βt to be admissible, we must thus have that,

λσ1
tm

1 + (1− λ)σ2
tm

2

[λσ1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2]

≥ 1. (1.D.5)

Rearranging and after some algebra, (1.D.5) implies,

m2(σ2
t − σ1

t ) ≥ m1(σ2
t − σ1

t ). (1.D.6)

Recall we had assumed, without loss of generality, m2 > m1 — contradiction, this is impossible to hold for all choices
of σ1

t , σ
2
t ∈ [σL, σH ] for all times t. In particular, it suffices to pick those times t and controls such that σ2

t < σ1
t and

the above inequality will imply m2 ≤ m1. Thus, there does not exist an admissible control β associated with the point
(w,m) = λ(w1,m1) + (1− λ)(w2,m2). ■

Remark 1.D.3. The significance of Lemma 1.D.2 is that it is not possible that the value function is concave in the coordinate
pair of (w,m). Since Γ is clearly a convex set, that means it must be that for any (wi,mi) ∈ Γ, i = 1, 2 and λ ∈ [0, 1]
we can for sure find a point (w,m) such that (w,m) = λ(w1,m1) + (1 − λ)(w2,m2). The difficult in making the concavity
argument of the value function is that from those controls (σi, βi, Xi) associated with point (wi,mi), can we find or construct
a control (σ, β,X) associated with the point (w,m), which again is a convex combination of (wi,mi). Lemma 1.D.2 shows
that we cannot. However, to be clear, that is not to say there does not exist an admissible associated with the point (w,m).
Lemma 1.D.2 merely states that if (w,m) is a convex combination of (wi,mi), i = 1, 2, that admissible control associated with
the point (w,m) cannot be constructed out of the controls associated with (σi, βi, Xi).

Finally, we note that Lemma 1.D.2 is not contradicting Proposition 1.D.1. In particular, Proposition 1.D.1 is not claiming
concavity in the coordinate pair (w,m), but rather it is claiming that if we hold the exogenous factor level m fixed and look at
the w-slice of the state space, then the value function is concave in the w-direction, with respect to the agent’s continuation
value. We summarize and formalize this below in Corollary 1.D.4.

Corollary 1.D.4. The value function v is not concave on Γ.

The next result shows that the value function is decreasing in the exogenous factor level.

Proposition 1.D.5. The value function is decreasing in the exogenous factor level. That is, for any w ∈ ΓW , m1,m2 ∈ ΓM
with m2 ≥ m1, we have,

v(w,m1) ≥ v(w,m2). (1.D.7)

Proof of Proposition 1.D.5. Fix any w ∈ ΓW and fix any m1,m2 ∈ ΓM and let’s suppose m2 ≥ m1. Pick the admissible
control as follows. Pick an arbitrary volatility choice σ = {σt} and let σ1 = σ2 = σ and also pick an arbitrary sensitivity choice
β = {βt} and let β1 = β2 = β. For the compensation process, pick an arbitrary compensation process X = {Xt}, and set
X1, X2 such that,

X1
t = Xt,

X2
t = Xt1t ∈ (0, τ1).

Then we have the associated state variable dynamics associated with those controls as,

dW i
t =

[
r0W

i
t − ϕσ

(
σt

σL
− 1

)]
dt− dXi

t + βtσtdM
i
t

dM i
t =M i

tdBt,
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where (W i
0,M

i
0) = (w,mi), i = 1, 2. Let τ i be the associated hitting time of the form,

τ i := inf
{
t ≥ 0 :W i

t ≤ R orM i
t ≤ m

}
, (1.D.8)

corresponding to the stopping time form in (P).
But recalling that M i is a geometric Brownian motion, that implies the diffusion terms of dW i

t is simply βtσtdM i
t =

βtσtM i
tdBt = βtσtmie

−1/2t+BtdBt = βtσtmidMt, where M is a geometric Brownian motion on B with zero drift and unit
variance and with initial value M0 = 1. But given that m2 ≥ m1, it implies that the diffusion term of dW 2

t is weakly greater
than that of dW 1

t . But recalling (1.D.8), and since W 1
0 = W 2

0 = w, it implies that we we have τ1 ≥ τ2; that is, with a higher
diffusion (from dW 2

t ), and on the same Brownian path Bt, it is likely the first time to get bumped out of the region in (1.D.8)
comes before that of one with a lower diffusion (from dW 1

t ).
Then consider that,

E

[∫ τ1

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX1

t + e−r1τ
1
L

]
− E

[∫ τ2

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX2

t + e−r1τ
2
L

]

= E

[∫ τ1

τ2
κ(eH , σt)dt+ (e−r1τ

1
− e−r1τ

2
)L

]
≥ 0.

But rearranging the above, and recalling the chosen admissible controls were arbitrary, and by optimality, we have that,

v(w,m1) ≥ E

[∫ τ1

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX1

t + e−r1τ
1
L

]
≥ E

[∫ τ2

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX2

t + e−r1τ
2
L

]
.

And again by arbitrariness of the admissible controls and optimality, we have that,

v(w,m1) ≥ v(w,m2) ≥ E

[∫ τ2

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX2

t + e−r1τ
2
L

]
.

This concludes the proof. ■

The next result provides a lower bound on the value function v and directly shows that the value function is positive.

Proposition 1.D.6. For any (w,m) ∈ Γ, define the processes W̃ , M̃ , given by

dW̃t = r0W̃tdt+ βσLdM̃t, W̃0 = w

dM̃t = M̃tdBt, M̃0 = m,

Define the hitting time θ as,

θ := inf
{
t ≥ 0 : (W̃t, M̃t) ̸∈ Γ̄

}
.

Then,
κ(eH , σL)

r1
− E[e−r1θ]

(
κ(eH , σL)

r1
− L

)
≤ v(w,m), (1.D.9)

where κ(eH , σL)/r1 − L > 0, and holds with equality if and only if (w,m) ∈ ∂Γ, in which case θ = 0, and v(w,m) = L. Thus,
the value function is bounded below by a finite, positive constant.

Proof of Proposition 1.D.6. Fix any (w,m) ∈ Γ. Pick the controls (σ,X, β) as σt ≡ σL, X ≡ 0 and βt ≡ β for all times t.
Then the state variables thus becomes,

dW̃t = r0W̃tdt+ βσLdM̃t, W̃0 = w

dM̃t = M̃tdBt, M̃0 = m.

With these choices of controls, the principal’s payoff is thus,

E
[∫ τ

0
e−r1tκ(eH , σL)dt+ e−r1τL

]
= κ(eH , σL)E

[
1− e−r1τ

r

]
+ LE[e−r1τ ]

=
κ(eH , σL)

r1
− E[e−r1τ ]

(
κ(eH , σL)

r1
− L

)
,
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where note that κ(eH , σL)/r1 − L > 0 by Assumption 1.5.1 that κ(eL, σL)/r1 > L and we have κ(eH , σL) > κ(eL, σL) by
Definition 1.4.1. Now, since the stopping time τ =: θ is now viewed as,

θ := inf {t ≥ 0 :Wt ≤ 0 orMt ≤ 0} = inf
{
t ≥ 0 : (Wt,Mt) ̸∈ Γ̄

}
.

Since (w,m) ∈ Γ was arbitrary, then we clearly have (1.D.9) as desired. ■

Remark 1.D.7. Economically, the value on the left hand side of the inequality (1.D.9) represents the following. The term
κ(eH , σL)/r1 is the “second worst” value of the firm, in which the agent effectively chooses the lowest possible volatility σt ≡ σL
for all times t. We note that it is “second worst” value because the absolute “worst” value of the firm is κ(eL, σL)/r1, that is
when the lowest effort et = eL is exerted at all times, but note in this discussion we are concentrating on implementing the
high effort eH contract. However, the agent is still running the firm and recall from Assumption 1.5.1 that terminating the
firm remains to be inefficient. Hence, the term κ(eH , σL)/r1 − L effectively represents the premium the principal has to give
up to the agent to operate the firm, even at its “second worst” value. However, to maintain IR constraints of the agent, the
principal will only allow the agent to run the firm up until the stopping time θ.

Comparison Principle
We first establish a comparison principle for the value function v.

Proposition 1.D.8. Suppose ψ is a smooth solution on Γ that satisfies ψ(0,m) ≥ L for all m > 0, and also satisfies,

max

{
−r1ψ(w,m) + max

σ
sup
β

(LeHψ)(w,m;σ, β) + κ(eH , σ),−ψw(w,m)− 1

}
≤ 0, (1.D.10)

Then we have that,
ψ ≥ v.

Proof of Proposition 1.D.8. Fix an initial state (w0,m0) ∈ Γ and select an arbitrary admissible control α = (σ, β,X) ∈ Aw0,m0 .
Furthermore, for k, n ∈ N, set θk := inf{t ≥ 0 : Wt ≥ k or Wt ≤ 1/k}, and ρn := inf{t ≥ 0 : Mt ≥ n or Mt ≤ 1/n}. Then we
have that θk, ρn ↑ ∞ as k, n→ ∞. Now by Ito’s formula, we have that,

e−r1τ∧θk∧ρnψ(Wτ∧θk∧ρn ,mτ∧θk∧ρn )

= ψ(w0,m0) +

∫ τ∧θk∧ρn

0
e−r1s [−r1ψ(Ws−,Ms) + (LeHψ)(Ws−,Ms;σs, βs) + κ(eH , σs)] ds

−
∫ τ∧θk∧ρn

0
e−r1sκ(eH , σs)ds+

∫ τ∧θk∧ρn

0
e−r1sψw(Ws−,Ms)βsσsdMs +

∫ τ∧θk∧ρn

0
e−r1sψm(Ws−,Ms)dMs

+
∑

0≤s≤τ∧θk∧ρn

e−r1s (ψ(Ws,Ms)− ψ(Ws−,Ms))−
∫ τ∧θk∧ρn

0
e−r1sψw(Ws−,Ms)dX

c
s ,

where Xc is the continuous part of X. Using the mean value theorem and since ψ satisfies the variational inequality (1.D.10),
we have that ψw ≥ −1, and moreover since for times s ∈ [0, τ ∧ θk ∧ ρn], all the integrands in the diffusion terms are bounded,
and noting also that the controls are also in a compact set, and so taking expectations and rearrange, we obtain,

ψ(w0,m0) ≥ Ee−r1τ∧θk∧ρnψ(Wτ∧θk∧ρn ,mτ∧ρk∧ρn ) + E
[∫ τ∧θk∧ρn

0
e−r1sκ(eH , σs)ds−

∫ τ∧θk∧ρk

0
e−r1sdXs

]
.

Now, take k, n→ ∞ and applying Fatou’s lemma, we obtain, and recalling ψ(Wτ ,mτ ) = ψ(0,mτ ) ≥ L,

ψ(w0,m0) ≥ E
[∫ τ

0
e−r1sκ(eH , σs)ds−

∫ τ

0
e−r1sdXs + e−r1τL

]
.

Since the set of admissible controls Aw0,m0 were arbitrary, taking the supermum on the right hand side of the inequality above,
then we are done. ■

With Proposition 1.D.8 on hand, we can now derive some easy growth conditions on the value function v.
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Corollary 1.D.9. For all (w,m) ∈ Γ, the value function v satisfies,

v(w,m) ≤ (1 + r0)w +m+
κ(eH , σH)

r1
.

Proof of Corollary 1.D.9. Take ψ(w,m) := (1 + r0w) +m +
κ(eH ,σH )

r1
on Γ and ψ(w,m) = L for w ≤ 0 and m > 0. Then

clearly ψ is smooth on Γ and moreover, ψww = ψwm = ψmm = 0, and ψw = 1 + r0. Observing (1.D.10), we have that,

−ψw(w,m)− 1 = −(1 + r0)− 1 < 0,

and

− r1ψ(w,m) + max
σ

sup
β

(AeHψ)(w,m;σ, β) + κ(eH , σH)

≤ −r1
(
(1 + r0)w +m+

κ(eH , σH)

r1

)
+ r0w + κ(eH , σH)

= (r0 − r1(1 + r0))w − r1m

≤ 0,

since we have r0/r1 < 1 + r0. Then this choice of ψ satisfies the hypothesis of Proposition 1.D.8 and we are done. ■

Viscosity solution

Overview

Unlike the approach by the existing continuous-time principal-agent problem literature where either the value function of the
principal is only dependent on one single state variable 37 , namely the agent’s continuation value, or there are multiple state
variables but can be shown that the value function can be written in such a way that dynamic programming only applies to a
single state variable 38 . In particular, because there is only one relevant state variable in considering dynamic programming,
the literature can rely on the extensive literature on existence and uniqueness results of ODE theory, and in some cases even
compute explicitly the form of the principal’s value function from the ODE form.

However in our case, it is not evident or perhaps even possible, to consider a rewriting to reduce the two state variables of
the agent’s continuation value W and the exogenous factor level M to a single state variable case. As a result the conventional
and classical approach of the “verification theorem” does not apply. In particular, it means unlike the extensive results from
ODE theory that can ensure existence and uniqueness of smooth solutions, we cannot a priori assume that there will exist a
smooth solution (namely C2(Γ)) such that we can take the first order conditions in (1.7.3), substitute the maximizer back into
(1.7.3) and hope that there will exist a C2 solution that still satisfies the highly nonlinear HJB PDE (1.7.3). Without existence
of such a C2 solution to the HJB PDE (1.7.3), a verification theorem to show that the solution to the HJB PDE (1.7.3) is
indeed the value function (P) may likely fail. Thus, we must use more general techniques to understand the value function (P)
and the HJB PDE (1.7.3) and hence we will consider viscosity solution methods.

To this end, we will first define the PDE operator F . Let us define,

F (w,m, u, p,A) := max

{
− r1u+max

σ
sup
β

([
r0w − ϕσ

(
σ

σL
− 1

)]
pw

+
1

2
m2Amm + βσm2Awm +

1

2
β2σ2m2Aww + κ(eH , σ)

)
,

− pw − 1

}
.

(1.D.11)

Hence, the HJB PDE in (1.7.3) is the rewriting,

F (w,m, v,Dv,D2v) = 0, (1.D.12)

where we denote Dv as the gradient vector and D2v as the Hessian matrix of v, respectively. We will now show that the value
function v of (P) can be understood as the viscosity solution to (1.D.12).

We now give some definitions.

37 There are many examples here. Most notably, DeMarzo and Sannikov (2006), Sannikov (2008), He
(2009), among many others.

38 He, Wei, and Yu (2014) is an interesting recent example.
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Definition 1.D.1. We say that u is a viscosity supersolution of (1.D.12) in Γ if, for every (w,m) ∈ Γ and φ ∈ C2(Γ̄) such
that (w,m) is a local minimum of u− φ in Γ̄, then

F (w,m, u,Dφ,D2φ) ≥ 0. (1.D.13)

We say that u is a viscosity subsolution of (1.D.12) in Γ if, for every (w,m) ∈ Γ and φ ∈ C2(Γ̄) such that (w,m) is a local
maximum of u− φ in Γ̄, then

F (w,m, u,Dφ,D2φ) ≤ 0. (1.D.14)

We say that u is a viscosity solution of (1.D.12) in Γ if it is both a viscosity supersolution and viscosity subsolution.

It is widely known that it is without loss of generality at the point (w,m) in the definition above to take v(w,m) = φ(w,m)
and also to replace local optimality with global optimality in the above.

Dynamic Programming Principle (DPP)

We will also assume and state without proof the Dynamic Programming Principle (DPP).

Theorem 1.D.10 (Dynamic Programming Principle). For every initial state (w,m) ∈ Γ and every stopping time θ,

v(w,m) = sup
α∈Aw,m

E0

[∫ τ∧θ

0
e−r1sκ(eH , σs)ds−

∫ τ∧θ

0
e−r1sdXs + e−r1τ∧θv(Wτ∧θ,Mτ∧θ)

]
.

Value function as a viscosity solution

Proposition 1.D.11. The value function v of (P) is the unique viscosity solution of (1.D.12) in Γ.

Remark 1.D.12. In the proof of Proposition 1.D.11, we directly show that v is both a viscosity subsolution and a viscosity
super solution of (1.D.12), and thus by definition, v is a viscosity solution of (1.D.12). 39 The proof for uniqueness is lengthy
and technical. Hence, on a first pass, we will omit the proof for uniqueness.

Proof to Proposition 1.D.11, Viscosity Subsolution. Fix any (w,m) ∈ Γ and let φ ∈ C2(Γ̄) with v − φ is a local max in Γ̄ and
v(w,m) = φ(w,m). By Theorem 1.D.10, if we pick any x ∈ (0, w] with X ≡ x, then we have that,

φ(w,m) = v(w,m) ≥ v(w − x,m)− x ≥ φ(w − x,m)− x.

Rearrange and take x ↓ 0, then we have
φw(w,m) ≥ −1. (1.D.15)

Next, fix any constant β̄, σ̄ in the control set, and set βt ≡ β̄ and σt ≡ σ̄, and let Xt ≡ 0 for all times t. Let (W,M) be the
state variables with those associated control policies. Fix any h > 0. Define τρ := inf {t ≥ 0 : (Wt,Mt) ̸∈ Bρ(w,m) ∩ Γ}, where
for ρ > 0 sufficiently small, Bρ(w,m) is the ball centered at (w,m) with radius ρ. Then from Theorem 1.D.10, and noting that

39 The proof ideas are largely inspired by and inherited from Yong and Zhou (1999), Fleming and Soner
(2006), Budhiraja and Ross (2008) and Ly Vath, Pham, and Villeneuve (2008).
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τ ∧ τρ = τρ, and applying Ito’s lemma, we have that,

0 ≥ E
[∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ e−r1τρ∧hv(Wτρ∧h,Mτρ∧h)

]
− v(w,m)

≥ E
[∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ e−r1τρ∧h[v(Wτρ∧h,Mτρ∧h)− φ(Wτρ∧h,Mτρ∧h

) + φ(Wτρ∧h,Mτρ∧h
)]

]
− v(w,m)

≥ E

∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ e−r1τρ∧h[v(w,m)− φ(w,m)︸ ︷︷ ︸

=0

+φ(Wτρ∧h,Mτρ∧h
)]

− v(w,m)︸ ︷︷ ︸
=φ(w,m)

= E

[∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ φ(w,m) +

∫ τρ∧h

0
e−r1s[−r1φ(Ws,Ms) + (LeHφ)(Ws,Ms; σ̄, β̄)]ds

+

∫ τρ∧h

0
e−r1sφw(Ws,Ms)β̄σ̄dMs +

∫ τρ∧h

0
e−r1sφm(Ws,Ms)dMs

]
− φ(w,m)

= E
[∫ τρ∧h

0
e−r1s[−r1φ(Ws,Ms) + (LeHφ)(Ws,MS ; σ̄, β̄) + κ(eH , σ̄)]ds

]
≥ E

[∫ τρ∧h

0
e−r1s inf

Bρ(w,m)
[−r1φ(w̃, m̃) + (LeHφ)(w̃, m̃; β̄, β̄) + κ(eH , σ̄)]ds

]

= E
[
1− e−r1τρ∧h

r1

]
inf

Bρ(w,m)
[−r1φ(w̃, m̃) + (LeHφ)(w̃, m̃; β̄, β̄) + κ(eH , σ̄)].

Since with X ≡ 0, then the state variable process (W,M) are continuous and hence τρ > 0. By dominated convergence theorem,
let h ↓ 0 and we have,

E
[
1− e−r1τρ∧h

h

]
→ r1.

As well, dividing the above inequality by h, and letting ρ ↓ 0 so τρ → ∞ and Bρ(w,m) → {(w,m)} and h ↓ 0, and recall
v(w,m) = φ(w,m), we obtain,

0 ≥ −r1v(w,m) + (LeHφ)(w,m; σ̄, β̄) + κ(eH , σ̄).

But since the choice of β̄, σ̄ were arbitrary, the above also implies,

0 ≥ −r1v(w,m) + max
σ

sup
β

(LeHφ)(w,m;σ, β) + κ(eH , σ). (1.D.16)

Putting (1.D.16) and (1.D.15) together and we are done. ■

Proof to Proposition 1.D.11, Viscosity Supersolution. Let φ ∈ C2(Γ̄) and (ŵ, m̂) be a local minimizer of v − φ on Γ with
v(ŵ, m̂) = φ(ŵ, m̂). We need to show that,

F (ŵ, m̂, φ,Dφ,D2φ) ≥ 0 (1.D.17)

For contradiction, suppose not. Then the left hand side of (1.D.17) is strictly negative and by smoothness of φ, there
exists δ, γ > 0 satisfying,

F (w,m,φ,Dφ,D2φ) ≤ −γ, (w,m) ∈ Bδ(ŵ, m̂), (1.D.18)

where Bδ(ŵ, m̂) :=
{
(w,m) : ||(w,m)− (ŵ, m̂)||2 < δ

}
. Since Γ is an open set, by changing δ, if necessary, we may assume that

Bδ(ŵ, m̂) ⊂ Γ.
Fix an arbitrary control α = (σ,X, β) ∈ Aŵ,m̂, and let θ be the first exist time of (W,M) from Bδ(ŵ, m̂). Since

Bδ(ŵ, m̂) ⊂ Γ, we have that θ < τ .
LetW c, Xc denote the continuous parts ofW,X, respectively, and noting that ∆Wt :=Wt−Wt− = −∆Xt := −(Xt−Xt−).

By the continuity of sample paths, Ms =Ms−. Now by Ito’s lemma and taking expectations, we have that,

Ee−r1θ
−
φ(Wθ− ,Mθ− )− φ(ŵ, m̂)

= E
∫ θ−

0
e−r1s [−r1φ(Ws,Ms) + (LeHφ)(Ws,Ms;σs, βs) + κ(eH , σs)] ds

− E
∫ θ−

0
e−r1sφw(Ws,Ms)dX

c
s + E

∑
0≤s<θ−

e−r1s [φ(Ws,Ms)− φ(Ws−,Ms)]

(1.D.19)
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But for 0 ≤ s < θ−, (1.D.18) implies,

−r1φ(Ws,Ms) + (LeHφ)(Ws,Ms;σs, βs) ≤ −γ, (1.D.20)

−φw(Ws,Ms)− 1 ≤ −γ. (1.D.21)

And using the mean value theorem and (1.D.21), we obtain,

φ(Ws,Ms)− φ(Ws−,Ms) ≤ (1− γ)∆Xs. (1.D.22)

Substituting (1.D.20), (1.D.21) and (1.D.22) and noting that Xt = Xc
t +∆Xt, we obtain,

Ee−r1θ
−
φ(Wθ− ,Mθ)− φ(ŵ, m̂)

≤ −E
∫ θ−

0
e−r1sκ(eH , σs)ds+ E

∫ θ−

0
e−r1s(1− γ)dXs − E

∫ θ−

0
e−r1sγds.

(1.D.23)

Note that while (Wθ− ,Mθ−) ∈ B̄δ(ŵ, m̂), we have that (Wθ,Mθ) is either on the boundary ∂B̄δ(ŵ, m̂) or out of B̄δ(m̂, m̂).
However, there exists some random variable λ ∈ [0, 1] such that,

(Wλ,Mλ) := (Wθ− + λ∆Wθ,Mθ) = (Wθ− − λ∆Xθ,Mθ) ∈ ∂B̄δ(ŵ, m̂). (1.D.24)

And again by the mean value theorem and (1.D.21), we have that,

φ(Wλ,Mλ)− φ(Wθ− ,Mθ− ) ≤ (1− γ)λ∆Xθ. (1.D.25)

Note also that,

Wλ =Wθ−λ∆Xθ

= (Wθ −∆Wθ)− λ∆Xθ

=Wθ +∆Xθ − λ∆Xθ

=Wθ + (1− λ)∆Xθ. (1.D.26)

From (1.D.26) and properties of the value function, we also have that,

v(Wλ,Mλ) ≥ v(Wθ,Mθ)− (1− λ)∆Xθ. (1.D.27)

And since v − φ is a local min at (ŵ, m̂), with v(ŵ, m̂) = φ(ŵ, m̂), so we have that,

v(Wλ,Mλ) ≤ φ(Wλ,Mλ). (1.D.28)

So from (1.D.25), (1.D.27) and (1.D.28), we obtain,

φ(Wθ− ,Mθ− ) ≥ φ(Wλ,Mλ)− (1− γ)λ∆Xθ

≥ v(Wλ,Mλ)− (1− γ)λ∆Xθ

≥ v(Wθ,Mθ)− (1− λ)∆Xθ − (1− γ)λ∆Xθ

= v(Wθ,Mθ)− (1− λγ)∆Xθ (1.D.29)

Substituting (1.D.29) into (1.D.23), and rearranging, we thus have,

φ(ŵ, m̂) ≥ E

[∫ θ−

0
e−r1κ(eH , σs)ds−

∫ θ−

0
e−r1sdXs − e−r1θ

−
∆Xθ + e−r1θ

−
v(Wθ,Mθ)

]

+ E

[∫ θ−

0
e−r1sdXs −

∫ θ−

0
e−r1sds+ e−r1θ

−
λ∆Xθ

]
.

(1.D.30)



CHAPTER 1. CONT-TIME PA PROB WITH DRIFT & STOC VOL CONTROL 65

Now suppose we can show that there exists a constant c0 > 0 such that,

E

[∫ θ−

0
e−r1sdXs −

∫ θ−

0
e−r1sds+ e−r1θ

−
λ∆Xθ

]
≥ c0. (1.D.31)

Suppose for now that (1.D.31) is true. Then from (1.D.30), using (1.D.31), recalling that the chosen controls were arbitrary so
we may take the supremum over all admissible controls, and using Theorem 1.D.10 we have that,

φ(ŵ, m̂) ≥ γc0 + v(ŵ, m̂), (1.D.32)

implying that φ(ŵ, m̂)− v(ŵ, m̂) ≥ γc0 > 0 — contradiction, since we had assumed that φ(ŵ, m̂) = v(ŵ, m̂).
So, the proof is complete once we can prove the existence of the constant c0 > 0 that satisfies (1.D.31). To this end, let us

define the C2 function,

ψ(w,m) := c0

(
1−

∣∣∣∣(w,m)− (ŵ, m̂)22
∣∣∣∣

δ2

)
, (1.D.33)

where,
c0 := C0 ∧ (δ/2), (1.D.34)

and C0 is given by,

C0 := δ2(κ(eH , σL)− r1)

× inf
σ̃∈[σL,σH ]

inf
(w̃,m̃∈Bδ(ŵ,m̂))

[
2r0w̃(w̃ − ŵ)− 2ϕσ

(
σ̃

σL
− 1

)
(w̃ − ŵ) + m̃2(m̃− m̂) +K2σ2

H

]−1

.
(1.D.35)

Then a direct (but somewhat messy) computation will show that for any admissible choice (β̄, σ̄), (1.D.33) satisfies,

{
max

{
1− ψw , ψ − 1 , −[−r1ψ + (LeHψ)(·, ·; σ̄, β̄)]− 1

}
≤ 0, on B̄δ(ŵ, m̂),

ψ = 0, on ∂B̄δ(ŵ, m̂).
(1.D.36)

By Ito’s lemma applied to e−r1θ
−
ψ(Wθ− ,Mθ− ), taking expectations and rearranging, we will arrive at (1.D.31).

This completes the proof. ■

Regularity upgrade

Once we have obtained Proposition 1.D.11 and thus we can understand the value function v as the viscosity solution to the
HJB PDE (1.7.3), we are now ready to “upgrade” our results. First we give a “partial” C1 result.

Proposition 1.D.13. The value function v is C1 in the w-direction; that is, for each m ∈ ΓM , the partial derivative vw(w,m)
exists for all w ∈ ΓW , and is continuous in w.

Proof of Proposition 1.D.13. Fix any m0 ∈ Γm. Define the limits,

∇+
wv(w,m0) := lim

δ↓0

v(w + δ,m0)− v(w,m0)

δ
, (1.D.37a)

∇−
wv(w,m0) := lim

δ↓0

v(w,m0)− v(w − δ,m0)

δ
. (1.D.37b)

By Proposition 1.D.1, the map w 7→ v(w,m0) is concave in the w-direction. Thus from standard results in convex analysis
(see, for instance, Rockafellar (1970)), the limits (1.D.37) exist. We want to show that ∇+

wv(w,m0) = ∇−
wv(w,m0), and hence

equals vw(w,m0) for w ∈ Γw. We proceed in three steps.
Step 1. Let’s show that ∇+

w(w,m0) ≥ ∇−
wv(w,m0). For contradiction, suppose there exist some w0 ∈ Γw such that

∇+
w(w0,m0) < ∇−

wv(w0,m0). Fix any nonzero q ∈ (∇+
wv(w0,m0),∇−

wv(w0,m0)), and any ε > 0. Consider the function,

φ(w,m) := v(w0,m0) + q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)
(w − w0)−

1

2ε
(w − w0)

2 −
1

2ε
(m−m0)

2.
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Then φ is quadratic and concave in (w,m), and then clearly (w0,m0) is a local maximum of v−φ, with v(w0,m0) = φ(w0,m0),

φw(w0,m0) = q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)
, φwm = 0, and φww(w0,m0) = φmm(w0,m0) = − 1

ε
. By the viscosity subsolution

property of v, and suboptimality,

0 ≥ F (w0,m0, φ,Dφ,D
2φ)

= max

{
− r1v(w0,m0) + max

σ
sup
β

{[
r0w0 − ϕσ

(
σ

σL
− 1

)]
· q
(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)

+
1

2
m2

0 ·
(
−
1

ε

)
+ βσm2

0 · 0 +
1

2
β2σ2σ2m2

0 ·
(
−
1

ε

)
+ κ(eH , σ)

}
,

− q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)
− 1

}

≥ −r1v(w0,m0) + r0w0q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)
−
m2

0

2ε
−
K2σ2

Lm
2
0

2ε
+ κ(eH , σL).

Rearranging the above, we will have,

0 ≥ −εr1v(w0,m0) + εr0w0q + εκ(eH , σL) +m2
0

(
4r0 −

1

2

)
+K2σ2

Lm
2
0

(
4r0 −

1

2

)
.

Take ε ↓ 0, then the above implies,

0 ≥ m2
0

(
4r0 −

1

2

)
+K2σ2

Lm
2
0

(
4r0 −

1

2

)
,

— contradiction, as we recall r0 ∈ (0, 1). Thus, we have ∇+
wv(w,m0) ≥ ∇−

wv(w,m0) for w ∈ Γw.
Step 2. Now, it remains to show ∇+

wv(w,m0) ≤ ∇−
wv(w,m0). But since for each m0 ∈ Γm, v(w,m0) is concave in the

w-direction, by again standard results from convex analysis (see Rockafellar (1970)), the desired inequality ∇+
wv(w,m0) ≤

∇−
wv(w,m0) immediately holds.

Step 3. By Step 1 and 2, we have that ∇+
wv(w,m0) = ∇−

wv(w,m0) ≡ vw(w,m0). But furthermore, since we have concavity
in the w-direction and also continuity, this implies vw(w,m0) is also continuous. Thus, we have C1 in the w-direction. ■

Now, we give a C2 regularity upgrade.

Proposition 1.D.14. Define the sets,

D := {(w,m) ∈ Γ : vw(w,m) = −1} , (1.D.38)

C := Γ \ D . (1.D.39)

Then,

1. v is C2 in the w-direction on C ∪ Do.

2. In the classical C2 solution sense, we have,

− r1v +max
σ

sup
β

[(LeH v)(·, · ; σ, β) + κ(eH , σ)] = 0, on C . (1.D.40)

Proof of Proposition 1.D.14. Part 1. It is clear that v is C2 in the w-direction on Do. That is, for (w,m) ∈ Do, we have
vw(w,m) = −1. Note that by Proposition 1.D.13, the expression vw(w,m) makes sense. But moreover, since the right hand
side of vw(w,m) = −1 is a constant, which is trivially differentiable in the w-direction, and so it also implies vw(w,m) is
trivially C1, and so v is C2 in the w-direction.

It remains to prove that v is C2 in the w-direction on C .
Part 2. Let’s first show that v is a viscosity solution to,

− r1v(w,m) + max
σ

sup
β

[(LeH v)(w,m;σ, β) + κ(eH , σ)] = 0, (w,m) ∈ C . (1.D.41)

Viscosity supersolution. Indeed, let (ŵ, m̂) ∈ C and φ be a C2 function on C such that (ŵ, m̂) is a local minimum of v−φ
with v(ŵ, m̂) = φ(ŵ, m̂). But that means by first order conditions, and again recalling Proposition 1.D.13, it implies we have
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0 = ∂
∂w

(v − φ)(ŵ, m̂); so in particular, we have that for (ŵ, m̂) ∈ C , φw(ŵ, m̂) = vw(ŵ, m̂) < −1. And thus from the viscosity
supersolution property of v from Proposition 1.D.11, we have,

−r1φ(ŵ, m̂) + max
σ

sup
β

[(LeH v)(ŵ, m̂;σ, β) + κ(eH , σ)] ≥ 0.

This shows the desired viscosity supersolution property.
Viscosity subsolution. The subsolution property is immediate by the fact v is (at least) a viscosity subsolution to (1.7.3),

as given by Proposition 1.D.11. Thus, v is also a viscosity solution to (1.D.41).
Now, fix any arbitrarily bounded set O ⊂ C . Consider the nonlinear Dirichlet boundary value problem,

−r1ξ +max
σ

sup
β

[(LeH ξ)(·, · ; σ, β) + κ(eH , σ)] = 0, on O, (1.D.42a)

ξ = v, on ∂O. (1.D.42b)

In particular, we see that for any a = (a1, a2) ∈ R2, we have that by extracting out the coefficients to the second order
derivative and cross derivative terms of ξ in (1.D.42), and for any β, σ in the admissible choice set,

β2σ2m2a21 + 2βσm2a1a2 +m2a22 ≥ β2σ2
Lm

2a21 + 2βσLma1a2 +m2a22

≥ C(a21 + 2a1a2 + a22)

= C ||a||2 ,

where the constant C := min{β2σ2
Lm

2 , 2βσLm, m2} > 0 and ||·||2 is the standard R2 Euclidean norm. In particular, this
shows PDE (1.D.42) is uniformly elliptic (see Remark 1.D.15) with Dirichlet boundary data. Thus, standard classical existence
and uniqueness results are available (see Evans (1983), Fleming and Soner (2006), and Evans (2010)). Hence, a unique C2

solution ξ on O to (1.D.42) exists. But from the standard uniqueness results of viscosity solution to (1.D.42), this implies we
have v = ξ on O. From the arbitrariness of O, this proves that v is C2 smooth on Γ. ■

Remark 1.D.15. We can now see the significance of the IR constraint in Definition 1.6.1(1b). If in contrast, we do not have
the requirement that Mt ≥ m, so that the state space in question is (w,m) ∈ (0,∞)× (0,∞) rather than (0,∞)× (m,∞), then
there does not exist a strictly positive constant C for which β1σ2m1a21 +2βσm2a1a2 +m2a22 ≥ C ||a||2 can hold, in which case
the PDE is known as being degenerate. The essential problem is that when m = 0, the nature of the state variable dynamics
significantly changes (i.e. from being fully stochastic to fully deterministic).

See also Figure 1.3 for an illustration of the state space Γ. And also see Figure 1.4 for an illustration, for each fixed
m ∈ ΓM , the value function w 7→ v(w,m).

Remark 1.D.16. The set D of (1.D.38) is the payment condition and C is the continuation region (i.e. no payment condition).

Remark 1.D.17. Proposition 1.D.14 shows that in the continuation region C , the value function v is C2 smooth in both (w,m).
Together with the concavity of the value function in the w-direction from Proposition 1.D.1, it implies that in (1.D.40), when
we optimize over the volatility σ choice and the sensitivity β choice, we can use the usual first order conditions to uniquely
characterize them. Thus, Proposition 1.D.1 and Proposition 1.D.14 show that the discussions in Section 1.8 are on meaningful
grounds.

Free boundary
We first introduce the free (moving) boundary,

∂∗ :=
{
(W̄ (m),m) : m ∈ ΓM

}
, (1.D.43)

where W̄ is the map from ΓM to ΓW , defined by,

W̄ (m) := sup {w ∈ ΓW : vw(w,m) = −1} , m ∈ ΓM . (1.D.44)

Through a rather technical and elaborate argument similar to Soner and Shreve (1989), one can show that W̄ is finite and
indeed twice continuously differentiable. We omit the proof here, but the argument should follow, in spirit and actuality, from
Soner and Shreve (1989).



CHAPTER 1. CONT-TIME PA PROB WITH DRIFT & STOC VOL CONTROL 68

Then we can have a further regularity upgrade of our earlier results. Note that for each m ∈ ΓM , we can partition
ΓW = (R,∞) = (R, W̄ (m)) ∪ [W̄ (m),∞). Moreover, note that the set (R, W̄ (m)) × ΓM = C , by construction. Define the
function V on Γ as follows. For each m ∈ ΓM , define,

V (w,m) (1.D.45)

:=


1
r1

maxσ supβ [(LeH v)(w,m;σ, β) + κ(eH , σ)] , w ∈ (R, W̄ (m)),

W̄ (m)− w + 1
r1

[
−r0W̄ (m) + ϕσ

(
σH
σL

− 1
)
+ 1

2
m2vmm(W̄ (m),m) + κ(eH , σH)

]
, w ∈ [W̄ (m),∞).

(1.D.46)

In particular, we have simply taken the value function v, and extracted out the dynamics in the continuation region C as in
Proposition 1.D.14(1.D.40), and then on the payment condition region, linearly extrapolated the value at the slope −1. By the
smoothness of W̄ , we have that V is also a viscosity solution to the HJB PDE (1.7.3). By uniqueness of viscosity solutions, this
implies that V ≡ v on Γ, but we note that V is C2 in the w-direction on ΓW .

In particular, when we evaluate w = W̄ (m) for any m ∈ ΓM from (1.D.46), we obtain,

V (W̄ (m),m) =
1

r1

[
−r0W̄ (m) + ϕσ

(
σH

σL
− 1

)
+

1

2
m2vmm(W̄ (m),m) + κ(eH , σH)

]
, m ∈ ΓM . (1.D.47)

But recalling the terminal condition V = v = L on ∂Γ, and in particular if we take m→ m in (1.D.47), we have,

L =
1

r1

[
−r0W̄ (m) + ϕσ

(
σH

σL
− 1

)
+

1

2
m2vmm(W̄ (m),m) + κ(eH , σH)

]
. (1.D.48)

But if we view the (moving) free boundary m 7→ W̄ (m) as the object of interest, then (1.D.47) identifies the nonlinear ODE.
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Chapter 2

Dynamic Agency, Delegated Portfolio
Management and Asset Pricing

May 17, 2015

Chapter Abstract

We study a dynamic contracting problem in continuous-time dynamically complete market
general equilibrium, whereby an investor must delegate all his portfolio choice problems to
a manager. This framework is one of the first attempts to attack a combined dynamic con-
tracting and dynamic asset pricing problem. The portfolio manager can exert costly private
monitoring effort costs to increase the expected dividend growth rate of a representative
firm. The investor can only observe the dividends of the firm over time, and will consider a
pie sharing rule contract over the dividends of consumption goods to dynamically incentivize
the manager. The key result is that dynamic moral hazard and dynamic optimal contracting
endogenously generates stochastic volatility in the asset returns, and substantial state vary-
ing stochasticity in the market price of risk and the risk free rate; this is in sharp contrast to
an economy without the presence of agency and dynamic contracts where the market price of
risk, risk free rate and asset volatility are all constant. Our results raise the question whether
a traditionally viewed “idiosyncratic” risk, namely incentives and compensation contracts of
fund managers, are priced in that they do affect asset pricing in equilibrium.
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2.1 Introduction

A significant part of wealth in the modern economy are held in delegated portfolios that are
managed by institutional fund managers on behalf of their client investors. 1 But also as a
rise of this concentrated institutional ownership of assets, institutional fund managers play
a dual role, both as portfolio managers who make portfolio weighting decisions, and also
as monitors or shareholder activists who can exert pressure to improve the corporate gover-
nance or even operational performance on their invested firms. Yet, traditional asset pricing
theory stipulates that asset prices are directly determined by individual households, and as a
result, there is no need to consider agency friction in portfolio allocation decisions. Moreover,
given that each household is small relative to the economy, it can be safely assumed that
the household has insufficient voting power to influence the actions of the invested firm’s
manager. But with the ever growing size of the delegated portfolio management industry
and also the monitoring or shareholder activism roles these fund managers play, the agency
conflict between the fund manager and the investor becomes a significant concern. In recent
years, a rich theory of continuous-time dynamic contracting arose in the literature, and has
been successfully applied in the context of corporate finance. Yet surprisingly from the liter-
ature, we know little about the intersection between asset pricing and optimal contracting.
This paper represents one of the first step to understanding the interaction between dynamic
asset pricing, delegated portfolio management and dynamic optimal contracting. In partic-
ular, we use methodologies available almost exclusively to continuous-time asset pricing and
also continuous-time dynamic contracting to derive the results, which would be extremely
difficult to obtain in a discrete-time context.

Suppose there are two individuals in this economy, a risk averse portfolio manager (the
agent) and a risk averse investor (the principal). The investor does not have any access
to the financial markets and must delegate all portfolio decisions to the manager. The
investor contracts with the manager for a fixed finite time horizon and there is intermediate
consumption for both the manager and the investor. There is a risk free asset, and a single
risky asset in this economy that is a claimant to a stream of dividends of a firm (i.e. like
Lucas (1978)). The manager has two roles, both as a monitor and also as a portfolio decision
maker. As a monitor, the manager can privately exert costly effort to increase the expected
dividend growth rate of the firm. But as a portfolio manager, the manager needs to also
decide the amount of wealth to allocate between the risky asset and the risk free asset. The
investor offers a pie sharing contract to the manager over the share of dividends they can
share at each time period. The investor only observes the value of the risky asset dividends
and has no other pieces of information; specifically, the investor cannot observe the private
effort the manager exerts in monitoring, nor can the investor observe the specific portfolio
choices made by the manager.

The results suggest that institutional investors do matter for asset pricing. In particu-
lar, we find that all the key asset pricing primitives have an adjustment for dynamic moral

1 See Wermers (2011).
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hazard and dynamic contracts, above and beyond the base case agency free levels. The key
channel is that the manager’s per period consumption is precisely proportional to the current
dividend level (which is influenced by the manager’s actions), multiplied by the pie sharing
contract (which is influenced by the investor). This cross effect is what endogenously drives
the asset pricing dynamics, as there is a need to endogenously punish or reward the manager.
When the manager’s incentives are aligned with the investor’s, the asset pricing dynamics
(i.e. price-dividend ratio, Sharpe ratio, risk premium, risk free rate, and risky asset return
volatility) are all equivalent to their agency-free constant value counterparts. When the
manger’s incentives are misaligned with the manager’s, and if it becomes relatively costly to
marginally compensate the manager, then the investor will choose to compensate the agent
at the lowest possible rate possible to continue the relationship, and this will also lead to
asset pricing dynamics that are equal to their agency-free constant value counterparts. How-
ever, when the manager’s incentives are again misaligned with the manager’s, but the cost
of compensating the manager is not too high, then the investor will dynamically compensate
the agent, and this will generate time varying and state dependent asset pricing dynamics.
In terms of contracting, our results suggest that the performance and compensation fees
that the manger receives should be back loaded and past performance dependent (i.e. pay
the manager more towards the end of the contracting period). This model also enjoys some
empirical confirmations from the existing literature, and also generates a few testable em-
pirical implications. On the relationship between institutional investors and asset volatility,
Gabaix, Gopikrishnan, Plerou, and Stanley (2006) show that institutional investors matter
for generating excess stock market volatility. In a similar line, Christoffersen, Musto, and
Wermers (2014) review the literature on investor fund flows, institutional managers and asset
pricing.

2.2 Related Literature

This paper contributes to the literature in (i) the interaction between contracting and asset
pricing; (ii) institutional shareholder activism and corporate governance; and (iii) delegated
portfolio management. At the end, we will also briefly discuss how our paper fits broadly to
asset pricing and also the continuous-time dynamic moral hazard literature.

Interaction Between Contracting and Asset Pricing

There are only a few studies that examine the interaction between asset pricing and optimal
contracting. The companion papers of He and Krishnamurthy (2012, 2013) are interesting
steps towards this direction, but the contract forms that they consider are not long-term
dynamic contracts. In particular, Section 5.3 of He and Krishnamurthy (2012) has that
(emphasis ours):

“For tractability reasons, in this paper we focus on short-term contracts. . . . [I]t
will be interesting to develop models that marry the dynamic financial contracting
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models with the dynamic asset pricing models. We are unaware of papers in the
literature that accomplish this.”

Also, Gromb and Vayanos (2010) has that (emphasis ours):

“The constraints stem from moral hazard, and contracts [between fund managers
and investors] are restricted to be static. . .Extending this line of research to
dynamic contracts, while retaining the tractability that is necessary to compute
asset prices in general equilibrium, would be an important step forward.. . .Work
along these lines could take constraints as given and so proceed in parallel with
work on optimal contracting — although an important objective should remain
that the two lines of research eventually merge.”

Thus, as evident from the above quotes by He and Krishnamurthy (2012) and Gromb and
Vayanos (2010), this “marriage” between dynamic asset pricing in general equilibrium and
dynamic optimal contracting remains an important open question in the finance literature.

Cuoco and Kaniel (2011) is one of the first papers to explicitly consider how contracts
of managers can affect equilibrium asset prices in a delegated portfolio management setting.
In particular, the paper takes exogenously several commonly used contract form and derives
the return properties of both the benchmark and non-benchmark securities. Although the
paper does discuss briefly the implications of optimal benchmarking, there was no formal
attempt to consider derive such optimal contracts.

Basak and Pavlova (2013) motivates the preference form of an institutional investor
to include the effects of benchmarking via a private diversion of managed wealth, using the
Edmans and Gabaix (2011) assumption that the manager “takes action after noise”. Vayanos
and Woolley (2013) argues that fund flows between investment funds can explain momentum
and reversal, but they are relatively silent on the question of optimal contracting. Buffa,
Vayanos, and Woolley (2013) explicitly considers an optimal contracting and asset pricing
framework, but the contracts that they consider are essentially static, and not dynamic;
moreover, they restrict the equilibrium asset prices to be affine in the shocks to the dividends
process, and a priori, it is unclear why this necessarily needs to hold in equilibrium.

Sung and Wan (2013) is an interesting contribution to this line of thinking by considering
a discrete-time two-period general equilibrium model with many firms, each firm produces
an identical numeraire good, and each firm is owned by a principal that hires an agent
to manage the firm; furthermore, each individual in the economy can trade bonds and
stocks in the financial markets. Sung and Wan (2013)’s contribution is interesting in that
it directly embeds a general equilibrium framework with a contracting framework, but is
not the delegated portfolio management and shareholder activism problem that this paper
considers.

Ou-Yang (2005) is also another attempt to integrate asset pricing with moral hazard,
and indeed is most similar in spirit to this paper. However, the crucial difference between
Ou-Yang (2005) and this paper is that, in Ou-Yang (2005), there is a distinct separation
between the agent (i.e. the manager who can exert effort to influence the growth rate of
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dividends) and the principal (i.e. who makes portfolio allocation choices and designs com-
pensation schemes for the agent); in contrast, in this paper, both the portfolio choice and
effort choice are made by the agent (manager), and the principal (investor) has no access
to the financial markets and the only action the principal has is to design compensation
contracts for the agent. Thus, whereas Ou-Yang (2005) is in some sense closer towards the
classical principal-agent environment of Holmström and Milgrom (1987), this paper is closer
to the motivation of delegated portfolio management and shareholder activism. Further-
more, from an asset pricing perspective, Ou-Yang (2005) explicitly fixes the risk free rate to
the constant, and hence the author is in effect silent on the moral hazard effects on the risk
free rate. As well, Ou-Yang (2005) assumes a priori that the equilibrium asset prices are
affine in the dividends, but whereas in this paper, all the asset pricing quantities are derived
and proved by first principles, and hence we can say meaningfully the endogenous effects
of moral hazard on the risk premia and the market price of risk. And from the optimal
contracting perspective, the principal can only compensate the agent (based on a history of
observed managed dividends) at the end of the contracting period, but whereas we allow for
full dynamic optimal contracting over all periods of time.

Gorton, He, and Huang (2014) is a recent study to model “managed Lucas trees”, in which
a manager is hired to tend to the trees and the manager trades shares with the investors. The
model is particularly interesting in that the manager here is explicitly acknowledged to be
“big” in that when the manager trades shares with the investors, his trading has price impact
and so the manager must also take this into account. Thus, this is a significant departure
from the aforementioned relevant studies. Kaniel and Kondor (2013) considers a “delegated
Lucas tree” (indeed, similar to our setup here) and consider the portfolio choice dynamics,
but they consider an exogenous contract form for the manager and so does not discuss
dynamic optimal contracts. Dybvig et al. (2010) also has a similar spirit to our paper in
that they consider the effects of agency in portfolio management, assuming complete financial
markets in a single period framework. However, the authors do not consider the full general
equilibrium asset pricing implications and also, they do not have full dynamic contracts as
we do given the time horizon setup they work with.

Delegated Portfolio Management

The setup of this model lends itself naturally to delegated portfolio management problems.
As emphasized by Stoughton (1993) and Admati and Pfleiderer (1997), and summarized
in Stracca (2006), delegated portfolio management problems present challenges that are not
commonly considered in standard principal-agent problems; in particular, the portfolio man-
ager has the ability to influence both the expected return and also volatility of the managed
returns or cash flows. While managing expected return part, usually modeled as moral
hazard hidden effort selection, is common in standard principal-agent problems, managing
volatility is not. Ou-Yang (2003) is one of the key models in the delegated portfolio manage-
ment literature, but does not consider the full asset pricing implications. Other recent models
that consider delegated portfolio management problems include van Binsbergen, Brandt, and
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Koijen (2008), Dybvig, Farnsworth, and Carpenter (2010), Pástor and Stambaugh (2012),
Stambaugh (2014), Cvitanić, Possamäı, and Touzi (2014) and Leung (2014).

Although for the majority of the paper, we will keep in mind a “hedge fund” as a pro-
totypical example of the fund that the manager manages, our model motivation here can
easily be reinterpreted for a “private equity fund”. Thus here, we will briefly mention how
our model fits in with that literature. Specifically, rather than through a shareholder ac-
tivism channel to motivate why the manager must exert privately costly effort to improve
the operations of the portfolio firms, we can think of the private equity manager as the direct
operational manager of the portfolio firm, but must also simultaneously make portfolio allo-
cation decisions. Kaplan and Schoar (2005) and Metrick and Yasuda (2010) are two recent
empirical studies that examine the performance of private equity funds.

Asset Pricing and Dynamic Contracting

Martingale Methods and Dynamically Complete Markets

Clearly the literature of asset pricing is vast, and an excellent treatment is given in Duffie
(2001). What is crucial to our paper is the application of martingale methods in solving the
portfolio-consumption choice problem, as opposed to dynamic programming methods (say
as per Merton (1969)). Under dynamically complete markets, the seminal contributions are
in Cox and Huang (1989, 1991), and Huang and Pagès (1992). As well, we also used results
in the existence of dynamically complete markets in continuous-time, of which recent con-
tributions are in Anderson and Raimondo (2008) and Hugonnier, Malamud, and Trubowitz
(2012).

Continuous-Time Dynamic Moral Hazard

Our paper here is also a contribution to the growing literature of continuous-time principal-
agent problems, or dynamic moral hazard problems. The seminal contribution here is Holm-
ström and Milgrom (1987), but recently, more sophisticated martingale representation meth-
ods have been put forth by Sannikov (2008) and has since been widely adopted in this strand
of the literature. Recent interesting applications of these methods are found in corporate
finance (say of DeMarzo and Sannikov (2006), He (2009), and Edmans, Gabaix, Sadzik,
and Sannikov (2012)) and in macrofinance (say of Brunnermeier and Sannikov (2013)). The
surveys of Sannikov (2012b, 2013) and Biais, Mariotti, and Rochet (2011) summarize the
current state of this research.

2.3 Model setup

Let’s fix a probability space (Ω,F ,P). There are two individuals in this economy, a principal
(whom we will call as the investor) and an agent (whom we will call as the manager). There
exists a single firm that produces a stream of dividends D = {Dt} of the consumption good.
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2 The financial markets consist of two securities: a risk free asset, and a risky asset that
is a claimant on the stream of dividends produced by this firm. The investor has no access
to the financial markets nor has any labor income, but is initially endowed with the entire
supply (which we will subsequently normalize to unity) of this risky asset. The risk free
asset is in zero net supply. The investor has no managerial expertise in monitoring the firm,
and given that the investor has no access to the financial markets, the investor delegates the
management of his wealth portfolio to the manager. 3 4 The delegation time is for a finite
T , and so the time span in consideration is [0, T ]. Since the investor bestowed the entire
supply share of equity of this firm to the manager, the manager now is a majority (or even
the sole) shareholder of this firm.

Dividends

The single firm outputs a dividend stream D = {Dt} with dynamics,

dDt

Dt

= h(At)dt+ ΣdZA
t , (2.3.1)

where A = {At} will be the costly private shareholder activism effort exerted by the man-
ager. We interpret the PA-Brownian motion ZA in the sense as discussed in Section 2.A. In
particular, we will make take the following conditions on the dividend drift:

Assumption 2.3.1 (Dividend drift and effort). The set of feasible effort choices is the
closed interval [aL, aH ], where 0 < aL < aH < ∞. The reward function h : [aL, aH ] → R++

is C1([aL, aH ]), strictly positive and strictly increasing, and h(aL)− Σ2/2 > 0.

Next, we make the following assumption on the form of the equilibrium gains process.

Assumption 2.3.2 (Gains process). The price of the risky asset is S and the gains process
are such that,

dSt +Dtdt

St
= µ(t)dt+ σ(t)dZA

t , (2.3.2)

where the drift µ and volatility σ are {FA
t }-adapted processes that are to be determined in

equilibrium.

2 Essentially this is a Lucas (1978) tree, but it will be under management, as discussed below.
3 Alternatively, we can think of the investor as giving all his voting rights via proxy to the manager, and

furthermore, allow the manager to make portfolio allocation decisions on the investor’s wealth portfolio.
4 We should note that in contrast, He and Krishnamurthy (2012, 2013) does indeed allow the investor

to directly invest into the risk free asset, but not the risky asset. But due to differences in how they model
the moral hazard problem and also the contracting environment, allowing the investor here to have (partial)
access to the financial markets substantially complicates our problem. It is conjectured that one could
attempt to modify the approach considered by Basak and Cuoco (1998) to this paper, but nonetheless, the
presence of the moral hazard and contracting problem substantially complicates the analysis. We leave this
problem for future research.
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Interpretations of effort A = {At}

There are two interpretations of “effort” A = {At} in this context, and both are in accordance
to the delegated portfolio management context and literature.

The first interpretation is monitoring. That is, there is a single firm and the portfolio
manager needs to continuously over time monitor the management of this firm. Monitoring is
private and costly, and higher monitoring At increases the expected operational performance
of the invested firm, and thus yields higher expected dividend growth. For each monitoring
plan A = {At}, the manager then in turn chooses a dynamic portfolio strategy. This idea
of the financial intermediary, which in this case is our portfolio manager, acts as a monitor
for investment projects goes back to the seminal paper of Diamond (1984). Moreover, this
is the same interpretation that of shareholder activism, in that portfolio managers that have
amassed a substantial equity stake into their portfolio firms, can “use their voting power as
a catalyst for corporate change” (Yermack (2010)). Indeed, in particular for hedge funds,
Yermack (2010) observes that:

“. . . [H]edge funds have a number of intrinsic advantages as activists when com-
pared to pension funds, mutual funds, or other institutional investors. Hedge
funds have no diversification requirement, enabling them to concentrate assets
in a few target companies. Hedge funds can invest in illiquid securities, because
their own investors cannot withdraw their capital on short notice, and hedge
funds face less comprehensive ownership disclosure requirements than other in-
stitutions, enabling them to operate with greater secrecy and flexibility.”

Gillan and Starks (2007) review the evolution of shareholder activism in the United States.
The second interpretation is investment opportunity search. The manager can privately

search and invest into one single risky investment, chosen from an infinite pool of choices
Aω = {Aωt }, where each investment opportunity is indexed by ω ∈ R. Private searching

and selecting this risky investment opportunity ω incurs private cost EAω [
∫ T
0
e−ρtg(Aωs )ds] at

t = 0. In return, the investment opportunity with dividend dynamics (2.3.1), with A = Aω,
becomes available, and the manager then in turn needs to further make portfolio investment
decisions. The idea of searching and investing into a particular asset was explored in Vayanos
and Wang (2007).

With these two types of interpretations in mind, but for the sake of brevity, we will
generically call the manager’s choice of A = {At} simply as “effort”.

Manager (Agent)

The manager has time separable logarithmic utility over consumption with subjective time
discount factor ρ. From the role as a portfolio choice allocator, the manager restricts his
choices to self-financing portfolios and from the returns of the managed portfolio P , he draws
his consumption CM . The manager will allocate α dollars into the risk free asset and will
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allocate θ dollars into the risky asset. Furthermore, manager needs to choose the amount of
costly private effort A he will exert.

Thus, the manager has objective function,

sup
CM ,(α,θ),A

E0

[∫ T

0

e−ρt log(CM(t))dt−
∫ T

0

e−ρtg(At)dt

]
, (2.3.3)

subject to the self-financing condition,

dPt = α(t)rtdt+ θ(t)

(
dSt +Dtdt

St

)
− CM(t)dt (2.3.4)

= α(t)rtdt+ θ(t)
(
µ(t)dt+ σ(t)dZA

t

)
− CM(t)dt, (2.3.5)

where the last equality follows from (2.3.2).

Assumption 2.3.3 (Manager’s private cost function). The manager’s private cost function
g : [aL, aH ] → R++ is strictly positive, C2([aL, aH ]), and strictly convex.

The manager has an individual rationality (IR) participation constraint. That is, the
manager’s objective (2.3.3) must be greater than or equal to his constant outside option of
Ŵ ≥ 0. That is,

sup
CM ,(α,θ),A

E0

[∫ T

0

e−ρt log(CM(t))dt−
∫ T

0

e−ρtg(At)dt

]
≥ Ŵ . (2.3.6)

To ensure that this is a feasible contracting relationship between the manager and the in-
vestor, we need some parameter restrictions to ensure that the IR constraint can be satisfied.
That is to say, if the contracting parameters are too small, but the outside option is too
large, then it will never be in the interest of the manager to engage into this contracting
relationship. The following assumption ensures that it is weakly beneficial for the manager
to consider this contract.

Assumption 2.3.4 (IR parameters). The parameters x0, D0, aL, aH ,Σ, ρ, T, Ŵ and func-
tions g, h are such that

log x0 + logD0 − g(aL)

ρ
(1− e−ρT ) +

h(aH)− Σ2/2

ρ2
(1− e−ρT (1 + ρT )) ≥ Ŵ . (2.3.7)

Investor (Principal)

As discussed, the investor has no access to the financial markets and nor does the investor
have any labor income. Thus, consumption CI for the investor must come from the dividends
distribution of the consumption good. However, to incentivize and reward the manager, the
investor will offer a pie sharing rule contract X, of which X(t) ∈ [x0, 1] for all t. That is to
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say, for each unit Dt of dividends output by the firm, the manager will be entitled to X(t)Dt

units, while the investor will be entitled to (1 − X(t))Dt. We will think of 0 < x0 ≪ 1 as
the minimal piece of pie that the investor must share with the manager to maintain the
contractual relationship. See Section 2.3 for more subsequent discussion of this pie sharing
contract. To represent the fact that the investor is the ultimate owner of the managed
portfolio and that the manager is an agent, the investor derives utility over the terminal
value of the portfolio PT ; this utility over the terminal value of the managed portfolio is
explicitly absent in the manager’s optimization problem in (2.3.3). Finally, the investor
has a time separable utility function u satisfying Assumption 2.3.5 below, and also has the
same time subjective discount factor ρ > 0 as the manager. 5 See also Remark 2.3.6 for a
discussion for the utility form u of the investor.

Thus, the investor has objective function,

sup
X

E0

[∫ T

0

e−ρtu(CI(t))dt+ e−rTu(PT )

]
= sup

X
E0

[∫ T

0

e−ρtu((1−X(t))Dt)dt+ e−rTu(PT )

]
,

(2.3.8)

where we have applied the market clearing condition in the equality; see Definition 2.3.1
below. Also, the utility function u satisfies the following conditions.

Assumption 2.3.5 (Investor’s utility function). The investor’s utility function u : R+ → R
satisfies the following conditions:

(i) u is C2(R+);

(ii) u(0) = u for some constant u ∈ R;

(iii) limc→∞ u(c) = ū for ū with u < ū ≤ ∞;

(iv) u is strictly increasing and strictly concave; and

(v) limc→0+ u
′(c) = +∞.

Remark 2.3.6. One might naturally wonder why is it that in the manager’s intertemporal
utility specification (2.3.3) we deliberately constrain ourselves to using log utility, but for
the investor’s intertemporal utility specification (2.3.8) we allow for much greater flexibility.
From a general conceptual perspective, we naturally can freely change the manager’s utility
from the logarithmic specification to something more general. However, as we shall see in
subsequent development, the logarithmic form yields vastly more traceable solutions than
some other general utilities. Thus, the choice of logarithmic utility in (2.3.3) is largely out
of tractability and convenience.

5 DeMarzo and Sannikov (2006) and He (2009) considers the difference in patience level between the
manager and investor.
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Example utility functions

The standard examples of utility functions that satisfy Assumption 2.3.5 include:

Example 2.3.1 (Exponential utility). Consider,

u(c) = u− e−γc

γ
, (2.3.9)

for some constant u > 0, and risk aversion coefficient γ > 0.

Example 2.3.2 (Power / CRRA utility). Consider,

u(c) = u+
c1−γ − 1

1− γ
, (2.3.10)

for some constant u ∈ R, and risk aversion coefficient γ > 0, γ ̸= 1. In particular, we do not
allow for the standard logarithmic utility (i.e. when γ = 1). 6 For the subsequent numerical
implementation, we will in particular focus on this CRRA utility with γ = 2.

Discussion of the pie sharing rule contract

We will now discuss the limitations and implications of focusing on a pie sharing rule contract
X. Unlike the dynamic moral hazard literature of say DeMarzo and Sannikov (2006) and
Sannikov (2008), where the compensation form from the principal to the agent is rather
general, here it seems like we are far more specific and restrictive on the compensation form.
But given the explicit risk averse preferences of the manager and also his managed portfolio
wealth dynamics (2.3.5), it is economically senseless to compensate the manager into his
objective function, as in the cases considered by DeMarzo and Sannikov (2006) and He
(2009), among others, which assume the agent is not only risk neutral, but does not have a
managed portfolio. 7

As it will be seen below, we will be assuming the existence of a dynamically complete
market (see Assumption 2.3.7). Anticipating this assumption, it also restricts the set of

6 This is just for the subsequent dynamic programming implementation. That is, more broadly, it is
undesirable for our purposes to consider investor’s utility forms that are not defined at c = 0, clearly of which
logarithmic utility is an example. And clearly, the exponential utility (2.3.9) and power utility (2.3.10) do
not have this undesirable property.

7 That is, if the investor offers an income stream Ỹ , it is senseless to consider a form like,

E0

[∫ T

0

e−ρt[(log(CM (t))− g(At)) + dỸt]

]
,

where the compensation dỸ directly enters into the manager’s objective function. This is very at odds with
the self-financing condition of the portfolio dynamics, and hence is economically senseless. But this form is
indeed a common compensation form in the dynamic moral hazard literature, which is valid when there is
no portfolio management considerations and the agent is risk neutral.
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meaningful compensation form that we can consider. For instance, suppose the manager can
be compensated directly through a labor income stream that enters into the self-financing
wealth dynamics (2.3.5). Note that, naturally, the presence of a labor income stream will
increase the managed wealth portfolio and thereby allow the manager to draw higher con-
sumption, and hence derive utility.

But for this labor income stream, we need to split into two different cases for discussion.
The first case is that this labor income stream consists of marketable payoffs, that is, payoffs
for which it can be replicated by a portfolio of marketable securities, and in this case being
some combination of the risk free asset and the risky asset. But here since the manager
is also a portfolio choice allocator, and in the presence of dynamically complete markets,
this means the manager can freely undo the marketed payoff compensation that’s offered
to him through different portfolio allocation choices. Hence, for the purpose of offering
incentives to the agent, offering marketed payoffs in a dynamically complete market is not
useful to provide incentives. The second case is that this labor income stream consist of non-
marketable payoffs, that is, these payoffs cannot be replicated through a portfolio of the risk
free and risky asset, because the manager is prevented from selling his labor income in the
securities market. 8 But from the results of He and Pagès (1993), Cuoco (1997) and others on
consumption-portfolio choice problems, the presence of this stochastic non-marketed labor
income generates incomplete markets, which will then be at odds with our Assumption 2.3.7.
And economically from the standpoint of delegated portfolio management, it is not clear how
one can understand the this non-marketed stochastic labor income as a compensation from
the investor to the manager. In particular since in the portfolio management industry, the
majority of the fees the manager generates come from the performance of the managed
portfolio and a percentage of assets under management, 9 so meaning that the majority of
the manager’s compensation is indeed derived from marketed assets, and hence are marketed
themselves. Indeed, the main motivation for non-marketed stochastic labor income comes
from a household portfolio-consumption problem whereby, as quoting from He and Pagès
(1993), “the individual has limited opportunities to borrow against future labor income and
cannot totally insure the risk of income fluctuations”. This description does not seem to be
the most fitting for the case of portfolio managers.

The advantage of using the described pie sharing rule contract is that it is consistent with
the notion of market clearing of the consumption good in the classical general equilibrium
literature. 10 Moreover, it is also economically meaningful in the case of delegated portfolio
management. That is to say, we can think of the pie sharing rule as payouts from the
managed portfolio, of which the investor gets to get some of the payouts and the remainder
goes to the portfolio manager. Thus, in summary, given the aforementioned discussion, the
pie sharing rule contract in this current economy seems to be an economically robust and

8 Clearly, if the manager is able to sell his labor income in the securities market, we are back to the first
case. Thus effectively, this second case is a case where we must have borrowing constraints to make this
statement meaningful.

9 See Wermers (2011) for a discussion.
10 Of, say, the standard reference like Mas-Colell, Whinston, and Green (1995).
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meaningful contract form. Finally, we will also discuss additional contractual tools that are
available at the disposal to both the manager and investor in Section 2.7, where we will allow
for actions like quitting, termination, takeovers and retirement.

Financial Markets

First we give the standard definition of market clearing.

Definition 2.3.1 (Market clearing). We say the consumption good market clears if, for any
pie sharing contract X,

D = CM + CI = CM + (1−X)D (2.3.11)

Suppose the risk free assets are in zero net supply, and we normalize the supply of risky
assets to be one. Then the securities market clears if,

θ(t) = St, (2.3.12a)

α(t) = 0. (2.3.12b)

Next, we state an assumption that is the most critical to this entire paper.

Assumption 2.3.7 (Dynamically complete markets). For any effort process A = {At}
chosen by the manager, the financial markets are dynamically complete with no arbitrage.
Thus, for each effort process A = {At}, a state price density process ξA =: ξ = {ξt} exists
and is unique, and has dynamics,

dξt = −ξt(rtdt+ κtdZ
A
t ), (2.3.13)

where the market price of risk κ is defined as,

κt :=
µ(t)− rt
σ(t)

. (2.3.14)

It should be remarked that Assumption 2.3.7 is the most critical assumption of the paper.
That is, this assumption is actually making a stronger claim than what is usually considered
in the asset pricing theory literature. For instance, in the asset pricing literature and relative
to our context, for a fixed single dividend process D, Anderson and Raimondo (2008) proves
the conditions needed for the existence of dynamically complete markets. Here, specifically,
we require that for any arbitrarily chosen effort process A, which then affects the Brownian
motion ZA, we still have a dynamically complete financial markets. Finally, we note that in
Dybvig et al. (2010), they also consider the effects of agency in portfolio management (but
not in full general equilibrium) in a single period framework and they also further assume
complete financial markets.
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Equilibrium concept

Finally, we the discussion above, we are now ready to summarize and define our concept of
equilibrium in this economy.

Definition 2.3.2 (Complete market competitive subgame perfect Nash equilibrium). A com-
plete market subgame perfect Nash equilibrium (or equilibrium for short) (µ, σ, S, r, α, θ, A,
X,CM , CI) is one such that:

1. The drift and volatility pair (µ, θ) admit a solution such that the risky asset gains process
(2.3.2) holds and admits the existence and uniqueness of the state price density ξA of
Assumption 2.3.7;

2. The consumptions (CM , CI), portfolios (α, θ), risky asset price S and risk free rate r
satisfy the conditions for market clearing of Definition 2.3.1 holds;

3. The manager’s choice variables (CM , (α, θ), A) satisfy the manager’s individual rationality
(IR) condition (2.3.6);

4. The manager’s choice variables (CM , (α, θ), A) is incentive compatible (IC), meaning it is
a solution to the manager’s problem (2.3.3) and (2.3.5); and

5. The investor’s pie sharing rule contract X is a solution to the investor’s problem (2.3.8).

Remark 2.3.8. The problem solving strategy is to separate the problem into two distinct
steps — we first solve the portfolio-consumption choice problem, and then second we solve
the dynamic contracting problem.

2.4 Financial markets equilibrium

We begin by solving the portfolio-consumption choice problem and Proposition 2.4.1 is the
main result of this section.

Proposition 2.4.1. Fix any given effort A and contract X. Then,

(i) The manager’s dollar amount portfolio choice into the risk free asset and risky asset
are respectively,

α(t) = 0 and θ(t) = Pt = St. (2.4.1)

(ii) The parameters satisfy,

κt = σ(t), (2.4.2)

µ(t) = rt + σ(t)2. (2.4.3)
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(iii) The risky asset price satisfies,

St =
1

ρ
X(t)Dt. (2.4.4)

Thus, using the results of Proposition 2.4.1, we can rewrite the manager’s objective
function from (2.3.3) as,

sup
A

E0

[∫ T

0

e−ρt[log(X(t)Dt)− g(At)]dt

]
. (2.4.5)

The key observation of Proposition 2.4.1 is (2.4.4), where X(t)Dt is exactly proportional
to (up to the subjective time discount rate ρ) the equilibrium consumption level CM(t) of
the manager. Furthermore, this implies the equilibrium consumption level of the manager
is affected by two channels — his effort to influence the expected growth rate of dividends
Dt, and the pie sharing rule X(t) that is influenced by the investor. This cross interaction
between the actions of the manager and the investor is what drives the key results in the
implications of the asset pricing dynamics.

2.5 Free rider problem

Before we proceed to consider the contracting problem, with Proposition 2.4.1 and recalling
the manager’s objective (2.3.3) subject to (2.3.5), we first study the source of the free riding
problem in this economy. Suppose the manager is given a deterministic and constant contract
X(t) ≡ x̄ ∈ [x0, 1]. In particular, the case when x̄ = 1 corresponds exactly to the case when
the manager is the sole owner of the asset in this economy.

Proposition 2.5.1. Suppose the pie sharing rule contract is X(t) ≡ x̄ ∈ [x0, 1].

(i) Then the manager’s payoff (2.3.3) equals to,

log x̄

ρ
(1− e−ρT ) + U(0,m), (2.5.1)

where U : [0, T ] × (−∞,∞) satisfies the Hamilton-Bellman-Jacobi (HJB) partial dif-
ferential equation (PDE) on [0, T )× (−∞,∞),

ρU = Ut + max
a∈[aL,aH ]

(m− g(a)) + (h(a)− Σ2/2)Um. (2.5.2)

(ii) If g, h, aL, aH , ρ, T are such that g′(aH)/h
′(aH) > Te−ρT , then the optimal effort is

A∗
t ∈ [aL, aH); that is, if the marginal cost to marginal benefit ratio is sufficiently high

at the highest effort, the manager will never choose the highest effort aH .
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In many ways, the result of Proposition 2.5.1(ii) is intuitive. If there were neither time
nor stochastic variability in the pie sharing contract X, meaning the compensation to the
manager is “not risky”, so that the manager is effectively the sole owner of the asset, the
manager will clearly fully internalize both the costs and benefits of this private effort. That
is to say, if the marginal private costs for exerting the highest effort greatly exceeds the
marginal benefit of exerting the highest effort, it is optimal for the manager to not choose
the highest effort. But this is precisely the source of the free rider problem. 11 The investor
does not bear any of the private costs and reaps all the benefits, and it is clear that the
shareholder would want the highest effort to be implemented at all times. But with non-
risky compensations (i.e. when X(t) ≡ x̄ ∈ [x0, 1]), there is no incentive for the manager
to choose the highest effort whatsoever. This already clearly suggests that to implement
an always high effort contract, we must consider stochastic contracts to put the manager at
risk. This is in accordance to standard principal-agent problem intuition and results as per,
say, Laffont and Martimort (2001) and Bolton and Dewatripont (2004).

To emphasize the free rider inefficiency, as per Proposition 2.5.1(ii), we impose the fol-
lowing assumption henceforth.

Assumption 2.5.2 (Free rider problem). The parameters g, h, aL, aH , ρ, T are such that,

g′(aH)

h′(aH)
> Te−ρT . (2.5.3)

The condition (2.5.3) of Assumption 2.5.2 is indeed relatively weak. For T moder-
ately large, we have that Te−ρT ≈ 0. Hence, the condition (2.5.3) essentially requires
g′(aH)/h

′(aH) ≳ 0. That is, as mentioned above, we just need that the marginal cost
to marginal benefit ratio at the highest effort to be sufficiently high.

2.6 Contracting Problem

Now let’s consider the core section and main results of the paper. The following is a conve-
nient and easy result.

Lemma 2.6.1 (Observational equivalence between stock price and dividends). For any effort
A and contract X, to the investor there is an unique observational equivalence between the
risky asset price S and the dividends D.

Thus, in light of Lemma 2.6.1, we will assume henceforth that the investor can continu-
ously observe dividends D and its dynamics (2.3.1).

11 A recent paper by Edmans and Manso (2010) considers free rider problems in corporate governance in
the presence of multiple small block shareholders. We are not taking this direction here as in our framework,
there is really only a “single” block holder (of voting rights), that being the manager.
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Incentive Compatibility

With Lemma 2.6.1 on hand, we are now ready to consider the set of incentive compatible
contracts. The development of this section resembles the discussion of Sannikov (2008).

Proposition 2.6.2. For any given pie sharing rule contract X and any effort A, define the
manager’s continuation value,

Wt(X,A) =: Wt = EAt
[∫ T

t

e−ρs[log(X(s)Ds)− g(As)]ds

]
, (2.6.1a)

W0(X,A) =: W0 = Ŵ . (2.6.1b)

where EAt [·] =: EA[·|FZA

t ] is the conditional expectation generated by the probability measure
induced by action A, conditioning on the filtration generated by dividends D.

(i) Then there exists η such that the manager’s continuation value has the dynamics,

dWt = [ρWt + g(At)− log(X(t)Dt)] dt+ ηtdZ
A
t (2.6.2a)

= [ρWt + g(At)− log(X(t)Dt)] dt+
ηtDt

Σ

(
dDt

Dt

− h(At)dt

)
. (2.6.2b)

(ii) An effort process A is incentive compatible for the manager if and only if η is such
that,

At = argmax
a∈[aL,aH ]

ηt
Σ
h(a)− g(a). (2.6.3)

(iii) Suppose we seek an equilibrium to implement high effort At ≡ aH at all times. Then η
must be such that,

ηt ≥ Σ
g′(aH)

h′(aH)
. (2.6.4)

Once we have characterized the incentive compatibility conditions as per Proposition 2.6.1,
we are now ready to consider the investor’s optimization problem. We will focus the formu-
lation where the investor must contract with the manager for the duration of length T , and
during that time, the investor can change the pie sharing contract rule. Here, we will make
a broad simplification and subsequently discuss its implications and restrictions.

Assumption 2.6.3 (Constantly High Effort Equilibrium). There exists an equilibrium (in
the sense of Definition 2.3.2) for which it is optimal for the manager to implement an
incentive compatible equilibrium for which:

(i) The manager always exerts high effort At ≡ aH ; and
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(ii) The sensitivity η in (2.6.4) of Proposition 2.6.1 to implement the said equilibrium can
be held at equality, so

ηt ≡ Σ
g′(aH)

h′(aH)
.

Condition (i) of Assumption 2.6.3 is the equilibrium effort choice if the investor could
operate the asset without any private costs g. Condition (ii) essentially says the performance
sensitivity imposed on the manager can be implemented at the cheapest and minimal one.
What is in particular ruled out by Assumption 2.6.3 is job shirking by the manager; that is to
say, allowing the manager to choose At < aH . We will assume and enforce Assumption 2.6.3
henceforth, unless specified otherwise.

2.7 Retirement and Quitting

The setup as of now will not let us pin down the contract form. In particular, we will need
boundary conditions to our dynamic programming problem, else there are infinitely many
number of solutions to our problem. Thus, we will impose the following conditions that
are similar in spirit to Sannikov (2008). In particular, we will allow the investor to retire
the manager, and also allow the manager to quit. That is to say, we consider the following
retirement function F .

Proposition 2.7.1 (Retirement Function). Suppose at time τ ∈ (0, T ), when dividends Dτ =
δ, the investor wants to indefinitely offer the manager a continuation value w ∈ (−∞,∞)
such that the manager will always exert the lowest effort At ≡ aL, for t ∈ [τ, T ]. Then the
investor’s value function will thus equal to F , called the retirement function, given by,

F (τ, w, δ) := EaLτ
[∫ T

τ

e−ρtu((1− x̄(τ, w, δ))DL
t )dt+ e−ρTu(ρ−1DL

T )
∣∣∣ DL

τ = δ

]
, (2.7.1)

where,

x̄(τ, w, δ) := (x̃(τ, w, δ) ∧ 1) ∨ x0 (2.7.2a)

x̃(τ, w, δ) := exp

{
ρweρτ

1− e−ρ(T−τ)
− log δ + g(aL) +

h(aL)− Σ2/2

ρ

(
1− ρ(T − τ)eρ(T−τ)

1− e−ρ(T−τ)

)}
.

(2.7.2b)

and
DL
t = δexp

{
(h(aL)− Σ2/2)(t− τ) + Σ(ZaL

t − ZaL
τ )
}
. (2.7.3)

Effectively, the retirement function F is the worst possible outcome for the investor. That
is, F is the payoff to the investor when the manager indefinitely chooses the lowest effort
At ≡ aL, and the investor in turn gives the manager a time invariant pie x̄.



CHAPTER 2. DYN AGENCY, DEL PORT MGT, AND ASSET PRICING 88

Example 2.7.1 (Power / CRRA Utility). Suppose the investor has power utility of the form
in Example 2.3.2 with parameters such that,

ρ− (1− γ)
(
h(aL)− Σ2(1− 2γ)/2

)
> 0.

Then the retirement function R is given by,

F (τ, w, δ) =

(
u− 1

1− γ

)
1− e−ρ(T−τ)

ρ

+
(1− x̄(τ, w, log δ))1−γδ1−γ

1− γ
e−ρτ

1− exp{ρ− (1− γ)(h(aL)− Σ2(1− 2γ)/2)}
ρ− (1− γ)(h(aL)− Σ2(1− 2γ)/2)

+ e−ρT
(
u+

(ρ−1)1−γδ1−γexp{(1− γ)(h(aL)− Σ2(1− 2γ)/2)(T − τ)}
1− γ

)
(2.7.4)

and x̄ is as given in Proposition 2.7.1.

2.8 Investor’s optimization problem

Thus in summary and recalling (2.3.8), and Proposition 2.4.1 that at t = T we have PT =
X(T )DT/ρ, the investor’s optimization problem is now of the form,

sup
X

E0

[∫ T

0

e−ρtu((1−X(t))Dt)dt+ e−ρTu
(
ρ−1X(T )DT

)]
.

Here we make the obvious observation that at the terminal time t = T , since the manager
has no claims to the final dividend nor the final portfolio wealth, the investor will clearly set
X(T ) = 1 optimally. Thus, we can simplify the investor’s optimization problem above to,

sup
X

E0

[∫ T

0

e−ρtu((1−X(t))Dt)dt+ e−ρTu
(
ρ−1DT

)]
, (2.8.1)

subject to state variables,

dWt = [ρWt − g(aH)− logX(t)− logDt] dt+ Σ
g′(aH)

h′(aH)
dZaH

t , W0 = w, (2.8.2a)

dDt = Dth(aH)dt+DtΣdZ
aH
t , D0 = δ (2.8.2b)
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Dynamic programming

Then we have the following standard principle of dynamic programming result. Denote the
sets,

O := (Ŵ , W̃ )× (δ, δ̄), (2.8.3a)

Q := [0, T )×O, (2.8.3b)

∂∗Q := ([0, T ]× ∂O) ∪ ({T} ×O), (2.8.3c)

where ∂ denotes the boundary of a set.

Proposition 2.8.1. Let the value function 12 associated with the optimization problem
(2.8.1) and (2.8.2) be denoted as V (t, w, y) =: V (t, w, y), and we will use subscripts to
denote partial derivatives. 13 The value function V satisfies the Hamilton-Jacobi-Bellman
(HJB) equation on Q,

Vt = sup
x∈[x0,1]

ρV + u((1− x)δ) + (ρw − g(aH)− log x− log δ)Vw + h(aH)δVy

+
Σ2

2

[(
g′(aH)

h′(aH)

)2

Vww + δ2Vyy + 2

(
g′(aH)

h′(aH)

)
δVwy

]
.

(2.8.4)

subject to boundary conditions,
V = F on ∂∗Q. (2.8.5)

See also Figure 2.1 for an illustration.

Remark on the economic richness of this setup

Actually, more is true than what is shown in Proposition 2.8.1. Similar to Sannikov (2008),
we can actually consider alternative contractual environments by changing the boundary
conditions. That is to say, if we maintain the same boundaries of the form (2.8.3), but
change the boundary function F (i.e. the retirement function of Section 2.7) with another
smooth function F̃ , the general results thereafter on existence and smoothness still holds.
For our purposes, what is most critical is imposing the lower and upper bounds so that the
state space Q is indeed bounded. Unfortunately, that comes at the cost in terms of the
economic richness that we can consider in the model. For instance, in Sannikov (2008) and

12 In the actual proofs, we will actually consider a “smoothed” version Fk of the retirement function F .
Essentially, the issue is that F itself is not differentiable in all the arguments. However, for the purpose
of obtaining the existence and uniqueness of smooth solutions to the dynamic programming problem, we
simply replace F with a smoothed version Fk so that the function becomes differentiable. Qualitatively and
economically, this does not change the results. See the appendix for details.

13 To be clear, we will denote Vt := ∂V/∂t, Vw := ∂V/∂w and Vy := ∂V/∂y. Note that for the derivative
with respect to the dividend state variable, we denote the partial derivative by “Vy” instead of, say, “Vδ”.
Similar comments apply to the other higher order partial and cross derivatives.
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Figure 2.1: Illustration of the state space to the optimization problem in Proposition 2.8.1.

He (2009), the authors use the smooth-pasting and value-matching conditions to characterize
the optimal termination point of the agent’s continuation value. That type of analysis is
only held in solid rigorous grounds when we deal with ordinary differential equations, as
in those papers. However, in this setting, given that we have an explicit partial differential
equations setting with one time variable and two state variables, it is a priori unclear whether
the smooth-pasting and value-matching conditions as per Dixit (1993); Dixit and Pindyck
(1994) are still valid. Finally, if we were to consider an unbounded state space, we would
require far stronger conditions on the growth behavior of all the relevant functions to ensure
that we do have a smooth solution to the HJB in Proposition 2.8.1, which we do not have,
but the trade-off here is that we have far more explicit characterizations on the asset pricing
side of the model.

2.9 Optimal pie sharing rule contract

We will define some sets, although they seem very unmotivated, are essentially related to
the Lagrange multipliers, and the sufficient and necessary conditions of optimality. Recall
we denote Vw := Vw(t, w, δ), and using Lemma 2.D.3, let’s also denote X̃ := X̃(t, w, δ) =
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I(−Vw(t, w, δ)/δ, δ) ∈ (x0, 1).

Definition 2.9.1. We will define the following sets on Q,

E := {(t, w, δ) : Vw(t, w, δ) ≥ 0} (2.9.1a)

EI := {(t, w, δ) : Vw(t, w, δ) < 0 and − Vw(t, w, δ) ≥ x0δu
′((1− x0)δ)} (2.9.1b)

EIc = {(t, w, δ) : Vw(t, w, δ) < 0 and − Vw(t, w, δ) < x0δu
′((1− x0)δ)} (2.9.1c)

Note that the above sets completely partition Q, and each of them are mutually exclusive
to each other.

Now we come to the explicit construction and computation of the optimal Markovian pie
sharing rule X.

Proposition 2.9.1. The optimal Markovian pie sharing contract rule is given by,

X(t, w, δ) =

{
x0, on E ∪ EIc,
X̃(t, w, δ), on EI.

(2.9.2)

Economically and intuitively speaking, the optimal pie sharing contract takes on the
following form. Firstly, recall that Vw := Vw(t, w, δ) is the change of the investor’s value
function with respect to the change of the manager’s continuation value Wt = w. So on E,
when Vw ≥ 0, given that the investor’s value function V is increasing with the continuation’s
valuation value w, so this is the case when the manager’s and the investor’s interests are
perfectly aligned, there is no need to provide additional incentives to motivate the manager,
and hence, it is optimal to choose the lowest pie sharing x0.

Secondly, suppose now Vw < 0, that is, when the agent’s continuation value w increases,
the principal’s value function V decreases, or conversely, when the agent’s continuation
value w decreases, the principal’s value function V increases. This is precisely the case
when the interests of the manager and the investor are misaligned, and hence the investor
may now need to provide incentives to the manager. Observe that u′((1 − x0)δ) is the
investor’s instantaneous marginal utility when he enjoys the highest possible share (1−x0)δ
of the dividends, but x0δ is the lowest possible portion of the dividends that are due to the
manager. Thus, we can think of u′((1− x0)δ) as the “price” of providing lowest incentives,
and x0δ is the “quantity” of lowest possible incentives to be provided.

So when Vw < 0, the investor needs to compare the case in EI when

−Vw ≥ x0δu
′ ((1− x0)δ)),

and the case in EIc when
−Vw < x0δu

′ ((1− x0)δ)).

In EI, the condition says that the benefit −Vw > 0 of correcting the alignment of interests
between the investor and manager is weakly greater than the total instantaneous benefit
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x0δu
′((1− x0)δ) of the investor taking the highest possible pie share, and so meaning in EI,

it is beneficial for the investor to compensate the agent X̃(t, w, δ) > x0. Analogously in EIc,
the benefit −Vw > 0 of correcting the alignment of interests between the investor and the
manager is strictly smaller than the total instantaneous benefit of the investor taking the
highest possible pie share, and hence on EIc, the investor is better off by taking the highest
possible pie share 1− x0, and give the lowest possible pie share x0 to the manager.

2.10 Asset Pricing Dynamics

With the results of Section 2.9 on hand, we are now ready to consider the asset pricing
dynamics and solve for the equilibrium µ, σ as considered in (2.3.2). In particular, in light
of Proposition 2.9.2, there are clearly three types of values the contract X can take on, and
they all are associated with three different state space values (t, w, δ).

Proposition 2.10.1. Denote,

X̃(t, w, δ) := I

(
−Vw(t, w, δ)

δ
, δ

)
, (2.10.1)

where the definition of I is given in Lemma 2.D.3. Note that X̃ is effectively the interior
solution of the pie sharing contract rule on [x0, 1]. For any (t,Wt, Dt) ∈ Q, for notational
convenience, X̃ := X̃(t,Wt, Dt), X̃t := X̃t(t,Wt, Dt), X̃w := X̃w(t,Wt, Dt) and likewise for
all the other cross and partial derivatives. For any set K in Q, we will also denote the
indicator 1K := 1K(t,Wt, Dt).

(i) The equilibrium gains process (2.3.2) drift µ(t) = µ(t,Wt, Dt) is given by,

µ(t,Wt, Dt)

=

(
ρ

x0
+ h(aH)

)
1E∪EIc

+

(
ρ

X̃
+ h(aH) +

1

X̃

[
X̃t + X̃w(ρWt − g(aH)− log X̃ − logDt) +DtX̃yh(aH)

]
+

1

X̃

Σ2

2

[
X̃ww

(
g′(aH)

h′(aH)

)2

+ (2X̃y +DtX̃yy) + 2(X̃w +DtX̃wy)
g′(aH)

h′(aH)

])
1EI .

(ii) The equilibrium gains process (2.3.2) volatility σ(t) = σ(t,Wt, Dt) is given by,

σ(t,Wt, Dt) = Σ1E∪EIc +

(
Σ +

Σ

X̃

[
X̃w

g′(aH)

h′(aH)
+DtX̃y

])
1EI .
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(iii) The equilibrium market price of risk is given by,

κt = κ(t,Wt, Dt) = σ(t,Wt, Dt), (2.10.2)

where the expression for σ is as given in (ii).

(iv) The equilibrium risk free rate is given by,

rt = r(t,Wt, Dt) = µ(t,Wt, Dt)− σ(t,Wt, Dt)
2. (2.10.3)

Remark 2.10.2. Finally with Proposition 2.10.1 we can now fully explain why it is crucial in
this paper that we must have smooth solutions to the investor’s value function V , while such
condition, while desirable, is strictly not necessary for general optimal contracting problems,
where we can use weaker notions of solutions like viscosity solutions. Effectively, we need two
conditions to make everything fall in place: (i) the existence of Markovian optimal controls;
and (ii) of these Markovian controls, they are smooth in the state variables. The existence
of the Markovian optimal controls is afforded by the smoothness of the value function. The
smoothness of the state variables is afforded essentially by the primitive parameters of the
model. In particular, it is precisely the smoothness of optimal control in the state variables
that allow us to apply validly Ito’s lemma 14 to derive the equilibrium risky asset gains process
drift µ and volatility σ, and thereby “complete the loop” of the model.

Discussion of the asset pricing dynamics

Again, the key result of this section and the paper is Proposition 2.10.1 where we show and
summarize the implications of dynamic moral hazard and contracting on the dynamic asset
pricing primitive parameters.

Drift µ

If we consider the drift µ of the risky asset gains process, we clearly see that the value of
the drift takes on three different values depending on the time and state values (t,Wt, Dt) =
(t, w, δ). The cases E or EIc where the pie sharing rule takes on the lowest constant (X = x0),
we have the standard result that the drift is identically constant, resulting from the log
preferences of the manager. Roughly speaking, this drift value is essentially equal expected
growth rate of the dividends (i.e. h(aH)), plus the patience of the manager ρ, modified by
the proportion X of the dividend consumption good is entitled to. This is the result if there
were no agency conflicts in the market. The most interesting case is the intermediate case
when X ∈ (x0, 1), which happens when the time and state values are in EI. Rewriting the

14 Recall that for a function f(t, y), Ito’s lemma requires that f is C1,2.
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result of Proposition 2.10.1 when we are on EI,

Agency-free expected return︷ ︸︸ ︷
ρ

X̃
+ h(aH)

+

Risk premium due to dynamic agency and contracting︷ ︸︸ ︷
1

X̃

[
X̃t + X̃w(ρWt − g(aH)− log X̃ − logDt) +DtX̃yh(aH)

]

+

Risk adjustment, modified for marginal cost to marginal benefit ratio︷ ︸︸ ︷
1

X̃

Σ2

2

[
X̃ww

(
g′(aH)

h′(aH)

)2

+ (2X̃y +DtX̃yy) + 2(X̃w +DtX̃wy)
g′(aH)

h′(aH)

]
.

(2.10.4)

Volatility σ / Market price of risk κ

Similarly, if we consider the volatility σ of the risky asset gains process, we see that again it
depends on the time and state values. The cases E or EIc when the pie sharing rule takes
on the lowest constant, we have that the asset volatility is identically equal to the constant
dividend volatility, which again is the case when we have no agency conflicts in the market.
Things are more interesting when we have the intermediate case when the time and state
values are in EI. Rewriting the result of Proposition 2.10.1 when we are on EI,

Agency-free
volatility︷︸︸︷

Σ +

Adjustment for dynamic moral hazard
and optimal contracting︷ ︸︸ ︷

Σ

X̃

[
X̃w

g′(aH)

h′(aH)
+DtX̃y

]
. (2.10.5)

It should be noted that by Proposition 2.4.1, the market price of risk κ and the risky asset
return volatility σ are identical.

2.11 Numerical Solutions

It is clear that the value function V in Proposition 2.8.1 would have no closed form solutions,
which thus also leads to no closed form solutions for the optimizer X which characterizes the
optimal pie sharing contract, and also the important asset pricing primitive parameters as
per Proposition 2.4.1 and Proposition 2.10.1. Hence, we must resort to numerical solutions
to continue our investigation. We in particular focus on the investor’s utility u being of
CRRA with risk aversion parameter γ = 2. See also Section 2.F for more details of this case.
We plot the value function (Figures 2.1, 2.2, 2.3, 2.4 and 2.5) at various points of time t.

Remark 2.11.1. It should be explicitly be noted that no specific attempts are made to “cal-
ibrate” these parameters to match any real world empirical moments. But rather, the core
parameters are chosen merely as an illustration of the model. Specifically, one might wonder
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about why we choose a very high drift value for the dividend growth rate under the highest
effort case. That is only for numerical stability purposes. The main takeaway from these
numerical illustrations should be more of its qualitative than quantitative effects.

Investor’s value function V (t, w, δ)

The value function confirms several economic intuitions regarding the setup of this problem.
At the end of the contracting period, when t = T , the principal has essentially a zero value
function. This is to be expected since for moderate values of the subjective time discount rate
ρ and moderate values of contract time T , e−ρTu(ρ−1DT ) is close to (but not equal to) zero.
And as time rolls back to the initial time point t = 0, we see that the value function increases
in value. Again, this is anticipated since the investor has more time to enjoy consumption
of his share of the managed Lucas fruit. We note that at t = 0, the value function V (t, w, δ)
exhibits also several behavior that is anticipated from this model setup. The value function
is increasing in the dividends δ realization. Clearly, with a higher dividend realization, all
else being equal, the investor can derive higher utility over its consumption. But with respect
to the continuation value, we see that the value function is concave in the w-direction; that
is, holding time t and the dividend level δ fixed, V (t, ·, δ) is concave in w. This is visually
most apparent when t = 0, but it is indeed true at all times t.

Optimal pie sharing rule contract X∗(t, w, δ)

The most interesting results come from the optimal pie sharing rule X∗(t, w, δ), particularly
since both the solution to the contracting problem and the implications of asset pricing all
strongly depend on the pie sharing rule. The most obvious characteristic of the pie sharing
contract is its back loaded nature. That is, near the ending time periods, there are vastly
more states than near the initial periods where the investor will pay the manager an amount
strictly greater than the minimum pie sharing portion x0. Furthermore, we see even for
fixed time t, there is substantial variation in the optimal pie sharing contract across (w, δ),
suggesting thus that the payment the investor offers to the manager is past performance
dependent (i.e. depending on the continuation value w of the manager), and also market
dependent (i.e. depending on the dividends δ).

Asset pricing parameters µ(t, w, δ) and σ(t, w, δ)

Let’s now turn to the key asset pricing implications of this model. In addition to the figures
below, we also show several other figures that emphasize upon the asset pricing implications.
Recall from Proposition 2.4.1 and Proposition 2.10.1, we note that the market price of risk
κt, in equilibrium, is identical to the gains volatility σt. And also, we have that the price-
dividend ratio St/Dt = X(t)/ρ, and hence this means the price-dividend is equal to the
optimal pie sharing rule, inverse scaled by the subjective time discount factor ρ. Hence, it
suffices to concentrate our focus to the gains parameters µt and σt. From the figures, we
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see the qualitative result that in the regions where the optimal pie sharing rule X∗(t, w, δ)
exceeds the minimum pie sharing level x0, dynamic changes occur in both the gains drift
µt and the gains volatility σt. When the optimal pie sharing rule exceeds the minimum pie
sharing level, this is exactly when the investor needs to provide incentives to the manager.
Qualitatively, we see the result that when the investor needs to provide incentives to the
manager, the expected gains drift µt decreases, and the gains volatility σt increases. This
is precisely the channel in which institutional managers’ incentives can affect asset prices in
general equilibrium.
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Figure 2.1: The shown time value is at t = 0.01. The x-axis is the manager’s continuation value Wt = w, the y-axis
is the dividend value Dt = δ. The investor’s utility is CRRA, u(c) = u + c1−γ−1

1−γ . The key parameters are:
ρ = 0.10u = 10, γ = 2, x0 = 0.02, [aL, aH ] = [0.36, 0.95], h(a) = g(a) = ea,Σ = 0.15, T = 6.
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Figure 2.2: The shown time value is at t = 0.4. The x-axis is the manager’s continuation value Wt = w, the y-axis is the
dividend value Dt = δ. The investor’s utility is CRRA, u(c) = u+ c1−γ−1

1−γ . The key parameters are: ρ = 0.10, u =
10, γ = 2, x0 = 0.02, [aL, aH ] = [0.36, 0.95], h(a) = g(a) = ea,Σ = 0.15, T = 6.
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Figure 2.3: The shown time value is at t = 1.6. The x-axis is the manager’s continuation value Wt = w, the y-axis is the
dividend value Dt = δ. The investor’s utility is CRRA, u(c) = u+ c1−γ−1

1−γ . The key parameters are: ρ = 0.10, u =
10, γ = 2, x0 = 0.02, [aL, aH ] = [0.36, 0.95], h(a) = g(a) = ea,Σ = 0.15, T = 6.
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Figure 2.4: The shown time value is at t = 4.0. The x-axis is the manager’s continuation value Wt = w, the y-axis is the
dividend value Dt = δ. The investor’s utility is CRRA, u(c) = u+ c1−γ−1

1−γ . The key parameters are: ρ = 0.10, u =
10, γ = 2, x0 = 0.02, [aL, aH ] = [0.36, 0.95], h(a) = g(a) = ea,Σ = 0.15, T = 6.
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(b) Optimal pie sharing rule contract
X∗(t, w, δ).
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(c) Gains drift µ(t, w, δ).
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Figure 2.5: The shown time value is at t = 5.0. The x-axis is the manager’s continuation value Wt = w, the y-axis is the
dividend value Dt = δ. The investor’s utility is CRRA, u(c) = u+ c1−γ−1

1−γ . The key parameters are: ρ = 0.10, u =
10, γ = 2, x0 = 0.02, [aL, aH ] = [0.36, 0.95], h(a) = g(a) = ea,Σ = 0.15, T = 6.
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2.12 Conclusion

We have presented a model where an investor must delegate all of his investment decisions
to an institutional investment manager. This model incorporates elements of both dynamic
agency, dynamic optimal contracting and dynamic asset pricing in general equilibrium. The
results strongly suggest that the incentives and the dynamic incentive contracts of institu-
tional managers do indeed affect asset prices in general equilibrium. More importantly, the
results suggest that dynamic incentives and dynamic contracts imply that in equilibrium,
the key asset pricing parameters such as the equilibrium asset drift, volatility, market price
of risk and risk free rate become endogenously stochastic over and above the agency-free
benchmark case.

Although not directly investigated in our model, but our qualitative results strong sug-
gest that for those financial assets that are managed or heavily invested upon by institutional
managers, its “idiosyncratic risks” would be priced. That is to say, classical asset pricing
intuition would suggest that the compensation contracts of the firm or that of the insti-
tutional fund managers are considered idiosyncractic and can be diversified away by the
representative household investor. However, this view is limiting. In particular, if there are
frictions that prevent the household investor from directly accessing the capital markets, and
specifically, the investor must somehow depend on portfolio delegation to an institutional
manager, as it is shown in this paper, the dynamic incentives and contracts of this manager
could indeed affect asset prices in equilibrium. Indeed, following up on the empirical liter-
ature say by Campbell et al. (2001), Goyal and Santa-Clara (2003), Bali et al. (2005) and
others where they suggest that idiosyncratic risk of assets could be priced, our results suggest
that a potential avenue for further investigation could be the linkage between institutional
investor participation of the asset and that asset’s pricing (or not) of its idiosyncratic risk.
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Appendix

2.A Probabilistic setup
Remark 2.A.1. These technical details will become crucial in the subsequent development and hence we need to be clear on
the exact probabilistic setup of the problem. We take a similar discussion here to Cvitanić and Zhang (2012), Chapter 5.

Let’s recall we had fixed a probability space (Ω,F ,P). Let Z be a standard Brownian motion on this probability space,
and let FZ = {FZt }0≤t≤T be the filtration on [0, T ] generated by Z. Define the process Y by,

Yt :=

∫ t

0
ΣdZs = ΣZt. (2.A.1)

For any given FZ -adapted effort process A = {At} (this will be further elaborated below), define,

ZAt := Zt −
∫ t

0

(
h(As)− Σ2/2

Σ

)
ds, (2.A.2a)

MA
t := exp

{∫ t

0

(
h(As)− Σ2/2

Σ

)
dZs −

1

2

∫ t

0

(
h(As)− Σ2/2

Σ

)2

ds

}
, (2.A.2b)

PA(G) := E[MA
T 1G], (2.A.2c)

where E is the expectation under the probability measure P, G is any F-measurable event, and 1 is the indicator function.
And since for all t, At = a ∈ [aL, aH ], we are ensured that MA is a martingale, and hence by Girsanov’s theorem, we have that
PA is a probability measure and ZA is a PA-Brownian motion. Then we have that,

dYt = ΣdZt = Σ

(
dZAt +

h(At)− Σ2/2

Σ

)
dt =

(
h(At)−

Σ2

2

)
dt+ΣdZAt . (2.A.3)

Note that we view the triple (Y, ZA,PA) as a weak solution to the stochastic differential equation,

dYt =

(
h(At)−

Σ2

2

)
dt+ΣdZAt . (2.A.4)

Now, for this given effort process A, we define Dt := eYt and by Ito’s lemma, we have that

dDt = Dt

[(
h(At)−

Σ2

2

)
dt+ΣdZAt

]
+

Σ2

2
Dtdt

= h(At)Dtdt+ΣDtdZ
A
t (2.A.5)

Thus, when we write the dividends process in (2.3.1), it is understood in the sense of (2.A.5) and the preceding development
leading to that expression.



CHAPTER 2. DYN AGENCY, DEL PORT MGT, AND ASSET PRICING 104

“Soft” Retirement Function
We note that the retirement function F (2.7.1) is not differentiable in the arguments due to the form of x̄ in (2.7.2). Again, the
non-differentiability comes because we are constrained such that the pie sharing rule must lie in [x0, 1]. However, for subsequent
development (which are completely technical), smoothness is a highly desirable technical property. Thus, we will make the
following technical compromise by replacing the “hard” maximum and minimum functions by their “soft” counterparts.

Definition 2.A.1 (Soft max / Soft min). Fix any a, b ∈ R. For any softening parameter k > 0, define the soft max Mk : R → R
as,

Mk(a, b) :=
1

k
log(eka + ekb), (2.A.6)

and define the soft min mk : R → R as,
mk(a, b) := −Mk(−a,−b). (2.A.7)

Definition 2.A.2 (“Soft” Retirement Function). Fix any softening parameter k > 0. Then from Proposition 2.7.1, we define
the soft retirement function (τ, w, δ) 7→ Rk(τ, w, δ) in the same form as (2.7.1), except we replace x̄ in (2.7.2) with the softened
version x̄k as,

x̄k(τ, w, δ) := mk(Mk(x̃(τ, w, δ), 1), x0),

where x̃ is as given in (2.7.2).

It should be emphasized that the difference between the “hard” retirement function of Proposition 2.7.1 and that of
the “soft” retirement function in Definition 2.A.2 is purely technical and has no economic content. That is to say, when we
generically refer to “retirement function” in economic intuition discussions, we could refer to either, even though in the actual
implementation, we will use the “soft” version for its smoothness properties.

2.B General Proofs
Proof of Proposition 2.4.1. Choose any effort A = {At} as fixed and consider the manager’s portfolio choice problem in (2.3.3).
By dynamically complete markets, there exists an unique state price density ξA =: ξ with dynamics (2.3.13). By Cox and Huang
(1989, 1991), we can consider the static optimization problem pointwise as,

max
CM (t)

e−ρt log(CM (t))

subject to ξtCM (t) = ξ0w0.
(2.B.1)

So we can use the standard Lagrangian method to solve, and using first order conditions, we have that the manager’s optimal
consumption satisfies,

CM (t) =
e−ρt

λ0ξt
, (2.B.2)

where λ0 > 0 is the Lagrange multiplier. But by no arbitrage, the value P of the portfolio satisfies,

Pt = Et
[∫ T

t

ξs

ξt
CM (s)ds

]
= Et

[∫ T

t

ξs

ξt

e−ρs

λ0ξs
ds

]
=

1

ξtλ0
Et
[∫ T

t
e−ρsds

]
=

1

ξtλ0

e−ρt − e−ρT

ρ
(2.B.3)

= CM (t)
1− e−ρ(T−t)

ρ
, (2.B.4)

where the last equality follows from (2.B.2).
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Using (2.B.4) and Ito’s lemma, we have that,

dPt = d

(
CM (t)

1− e−ρ(T−t)

ρ

)

=
1

ρ

[
dCM (t)− d(CM (t)e−ρ(T−t))

]
=

1

ρ

[
−ρCM (t)e−ρ(T−t)dt+ (1− e−ρ(T−t))dCM (t)

]
= −CM (t)dt+ Pt(rt + κ2t )dt+ PtκtdZt.

But since,

dCM (t) = d

(
e−ρt

λ0ξt

)
=

1

λ0

[
−ρe−ρt

1

ξt
dt+ e−ρtd

(
1

ξt

)]
=

1

λ0

[
−ρe−ρtdt+ e−ρt

(
1

ξt
(rt + κ2t )dt+

1

ξt
κtdZt

)]
Hence, substituting back, we have,

dPt = −CMe−ρ(T−t)dt− ρPtdt+ Pt(rt + κ2t )dt+ PtκtdZt. (2.B.5)

Taking (2.B.5) and recalling the self-financing condition (2.3.5), and matching drift and volatility, and simplifying, we have
that,

α(t)rt + θ(t)µ(t) = Pt(rt + κ2t ), (2.B.6a)

θ(t)σ(t) = Ptκt. (2.B.6b)

Apply the securities market clearing condition (2.3.12a) and (2.3.12b), then (2.B.6a), (2.B.6b) imply that

κt = σ(t), (2.B.7a)

θ(t) = Pt = St, (2.B.7b)

µ(t) = rt + κ2t = rt + σ(t)2. (2.B.7c)

Now, using the consumption goods market clearing condition (2.3.11), we have that CM (t) = Dt − (1 − X(t))Dt = X(t)Dt.
Using (2.B.7b) and (2.B.4), we obtain thus,

St = Pt =
1

ρ
X(t)Dt. (2.B.8)

■

Proof to Proposition 2.5.1. Suppose the pie sharing rule contract is X(t) ≡ x̄ ∈ [x0, 1]. Then the manager’s optimization
problem can be rewritten as,

sup
A

E0

[∫ T

0
e−ρt[log(x̄Dt)− g(At)]dt

]
= sup

A
E0

[∫ T

0
e−ρt

[
log x+ logD0 +

∫ t

0
(h(As)− Σ2/2)ds+

∫ t

0
ΣdZAs − g(At)

]
dt

]
= sup

A

∫ T

0
e−ρt

[
log x+ logD0 +

∫ t

0
(h(As)− Σ2/2)ds− g(At)

]
dt. (2.B.9)

Define the state transition as,

dMA
s

ds
= h(As)− Σ2/2, (2.B.10a)

Mt = logDt = m ∈ (−∞,∞). (2.B.10b)
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Define

U(t,m) := sup
A

∫ T

t
e−ρ(T−t)[MA

s − g(As)]dt (2.B.11)

Thus, (2.B.9) can be written as (2.5.1).
Hence, it remains to study the value function U . It should be noted that we now have on hand a deterministic optimal

control problem. 15 Thus, U satisfies the HJB-PDE (2.5.2) on [0, T )× (−∞,∞). 16 Thus (i) holds.
Next we consider (ii). The optimizing control thus satisfies the optimization problem,

max
a∈[aL,aH ]

−g(a) + h(a)Um,

and this is well posed by the smoothness conditions on h and g as per Assumptions 2.3.1 and 2.3.3. 17 This is a standard
constrained optimization problem. Using the Kuhn-Tucker theorem and proceeding, we can verify that,

a∗ ∈


{aH} when Um > g′(aH)/h′(aH),

{aL} when Um < g′(aL)/h
′(aL),

{(aL, aH) : g′(a)/h′(a) = Um} otherwise.

(2.B.12)

But under the condition g′(aH)/h′(aH) > Te−ρT , that means the condition for the highest effort case a∗ = aH will never be
feasible. Thus, (ii) holds. ■

Lemma 2.B.1. The value function U of (2.B.11) in the proof to Proposition 2.5.1 is such that for (t,m) ∈ [0, T ]× (−∞,∞)

(i) Um(t,m) = e−ρ(T−t)(T−t);

(ii) Um(0,m) ≥ Um(t,m)

Proof to Lemma 2.B.1. Following the proof of Proposition 2.5.1, observe that for any ε > 0,

U(t,m+ ε)− U(t,m)

ε
=

1

ε

∫ T

t
eρ(T−t)[(m+ ε)−m]ds

= e−ρ(T−t)(T − t).

Taking ε ↓ 0, we clearly see that, Um(t,m) = e−ρ(T−t)(T−t), and in particular, Um > 0 and we have that Um(0,m) ≥ Um(t,m)
for all t ∈ [0, T ]. ■

Proof to Lemma 2.6.1. Suppose the investor can only observe the stock prices S. But by dynamically complete markets, the
investor can anticipate the investment strategy of the manager, and hence deduce the results of Proposition 2.4.1. But given
that the investor obviously knows his own contract offer X, and using thus Proposition 2.4.1(iii), that is equivalent to observing
the dividends D. ■

15 Given that the focus of the paper is not the trivial case when the manager is the sole owner of the
asset, we will omit checking the technical regularity conditions to ensure the existence and uniqueness of
this deterministic optimal control problem. However, we will be far more careful in the second best case in
the subsequent development, which is the main focus of this paper. Details of deterministic optimal control
problems can be found in Fleming and Soner (2006).

16 Also note that the value function here must clearly satisfy the terminal condition U(T,m) = 0. We
also should further impose the initial condition U(0,m) = Ŵ so that it satisfies the manager’s IR constraints
(2.3.6). However, we place no further boundary conditions on m. We explicitly acknowledge that this implies
there will be, in general, infinite number of solutions that satisfy the first order Hamilton-Jacobi-Bellman
(HJB) partial differential equation (PDE). That is, here, we are only providing a generalized solution, and
not the specific solution, which will require us to further provide boundary conditions. But given the purpose
of this proposition is to illustrate the form of the action At, we will not further push for the full discussion
here.

17 Technically, we had also implicitly used a condition on the sign of Um which ensures that we indeed
have global concavity of this objective function; see the simple technical Lemma 2.B.1 below.
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Proof of Proposition 2.6.2. First let’s consider (i). Fix any action process A and contract X. Define,

Vt = EAt
[∫ T

0
e−ρs[log(X(s)Ds)− g(As)]

]
(2.B.13)

=

∫ t

0
e−ρs[log(X(s)Ds)− g(As)]ds+ e−ρtWt(X,A). (2.B.14)

Now, since V is a PA-martingale, then by the Martingale Representation Theorem, say from Sannikov (2008), there exists η
such that,

dVt = e−ρtηtdZ
A
t (2.B.15)

First, applying Ito’s lemma to (2.B.14), we have,

dVt = e−ρt[log(X(t)Dt)− g(At)]dt+ d(e−ρtWt)

= e−ρt[log(X(t)Dt)− g(At)]dt− ρe−ρtWtdt+ e−ρtdWt. (2.B.16)

Equating (2.B.15) with (2.B.16) and solving for dWt, we have (2.6.2a), (2.6.2b).
Next let’s consider (ii). Suppose the investor wants to implement action process A. But suppose the manager considers an

arbitrary different effort process A∗, such that As ̸= A∗
s for all s. For any given point time t > 0, suppose instead the manager

considers the action Ã defined by,

Ãs =

{
A∗
s , for s ∈ [0, t]

As, for s ∈ (t, T ].

Consider the manager’s payoff V̂ when he considers the action process Ã. Then, using (2.B.14), we have that,

V̂t = V̂0 +

∫ t

0
e−ρs[log(X(s)Ds)− g(A∗

s)]ds+ e−ρtWt(X,A). (2.B.17)

Using (2.A.2), we see that the PA-Brownian motion ZA and the PA∗
-Brownian motion ZA

∗
are given as,

ZAt = Zt −
∫ t

0

(
h(As)− Σ2/2

Σ

)
ds

ZA
∗

t = Zt −
∫ t

0

(
h(A∗

s)− Σ2/2

Σ

)
ds,

and equating the above to Zt and solving, we have that,

ZAt = ZA
∗

t +
1

Σ

∫ t

0
(h(A∗

s)− h(As))ds. (2.B.18)

Applying Ito’s lemma to (2.B.17), and using (2.B.18),

dV̂t = e−ρt [log(X(t)Dt)− g(A∗
t )] dt+ d(e−ρtWt(X,A))

= e−ρt [log(X(t)Dt)− g(A∗
t )] dt− ρe−ρtWt(X,A)dt

+ e−ρt
{
[ρWt(A,X) + g(At)− log(X(t)Dt)]dt+ ηtdZ

A
t

}
= e−ρt[g(At)− g(A∗

t )]dt+ e−ρtηtdZ
A
t

= e−ρt[g(At)− g(A∗
t )]dt+ e−ρtηt

1

Σ

[
(h(A∗

t )− h(At))dt+ dZA
∗

t

]
= e−ρt

[
g(At)− g(A∗

t ) +
ηt

Σ
(h(A∗

t )− h(At))
]
dt+ e−ρtηtdZ

A∗
t . (2.B.19)

To ensure that the manager has no incentive to deviate, we need the drift of (2.B.19) be such that at all time points t,

At ∈ argmax
a∈[aL,aH ]

ηt

Σ
h(a)− g(a),

and given the conditions on g and h, we are ensured that the unique optimizer is an interior solution, and thus we achieve
equality in (2.6.3). The condition (2.6.4) is exactly the condition one needs by considering the Lagrangian to achieve the corner
solution a = aH .

■
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Proof to Proposition 2.7.1. If the manager is retired at time τ ∈ (0, T ), and at retirement holds a fixed Xt ≡ x̃ ∈ (x0, 1) for
all times t ∈ [τ, T ] and the manager chooses the lowest effort At ≡ aL, then the dividends process will follow, for DLτ = δ,

DLt = δ +

∫ t

τ
DLuh(aL)du+

∫ t

τ
DLuΣdZ

aL
u , t ∈ [τ, T ].

Then from (2.4.5), we have the manager’s payoff thus satisfies,

EaLτ
[∫ T

τ
e−ρt

(
log(x̃DLt )− g(aL)

)
dt
∣∣∣ Dτ = δ

]
= EaLτ

[∫ T

τ
e−ρt

(
log x̃+ logDτ + (h(aL)− Σ2/2)(t− τ) + Σ(Z

aL
t − Z

aL
τ )− g(aL)

)
dt
∣∣∣ Dτ = δ

]
=

log x̃+ log δ − g(aL)

ρ
e−ρτ (1− e−ρ(T−τ)) +

h(aL)− Σ2/2

ρ2
e−ρτ

(
1− e−ρ(T−τ)(1 + ρ(T − τ))

)
. (2.B.20)

Now, for any promised continuation value w ∈ (−∞,∞) for the manager, and in the above since x̃ ∈ (x0, 1) was arbitrary,
let us find the function x̃ = x̃(t, w, δ) such that w equates to the manager’s payoff (2.B.20). Solving, we have that,

x̃ = x̃(τ, w, δ)

:= exp

{
ρweρτ

1− e−ρ(T−τ) − log δ + g(aL)−
h(aL)− Σ2/2

ρ

(
1−

ρ(T − τ)eρ(T−τ)

1− e−ρ(T−τ)

)}
. (2.B.21)

But since the pie sharing rule is constrained in [x0, 1], to include the endpoints, we modify x̃ to consider the bounded version
x̄, defined as,

x̄(τ, w, δ) := (x̃(τ, w, δ) ∧ 1) ∨ x0. (2.B.22)

And likewise, from (2.3.8), we have the investor’s payoff,

R(τ, w, δ) := EaLτ
[∫ T

τ
e−ρtu((1− x̄(τ, w, δ))DLt )dt+ e−ρTu(ρ−1DLT )

∣∣∣ Dτ = δ

]
(2.B.23)

■

Proof to Example 2.7.1. Observe that if utility u has the power utility form as in Example 2.3.2, then we compute that, for
any x̄ ∈ [x0, 1], and t ∈ [τ, T ] and Dτ = δ,

u
(
(1− x̄)DLt

)
= u+

[
(1− x̄)Dτ exp

{
h(aL)(t− τ)− (Σ2/2)(t− τ) + Σ(Zt − Zτ )

}]1−γ − 1

1− γ

= u+
(1− x̄)1−γδ1−γexp

{
(1− γ)

(
h(aL)(t− τ)− (Σ2/2)(t− τ) + Σ(Zt − Zτ )

)}
− 1

1− γ
.

Take expectation, and for convenience, denote EaLτ [ · ] := EaLτ [ · | Dτ = δ],

EaLτ
[
e(1−γ)(h(aL)(t−τ)−Σ2/2(t−τ))e(1−γ)Σ(Zt−Zτ )

]
= e(1−γ)(h(aL)(t−τ)−Σ2/2(t−τ))EaLτ

[
e(1−γ)Σ(Zt−Zτ )

]
= e(1−γ)(h(aL)(t−τ)−Σ2/2(t−τ))e(1−γ)

2Σ2(t−τ)

= exp
{
(1− γ)

(
h(aL)− Σ2(1− 2γ)/2

)
(t− τ)

}
.

which implies,

EaLτ [u
(
(1− x̄)DLt

)
] = u+

(1− x̄)1−γδ1−γexp{(1− γ)
(
h(aL)− Σ2(1− 2γ)/2

)
(t− τ)} − 1

1− γ
.
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Using Fubini’s theorem and applying the expressions above, we can compute the retirement function of (2.7.1) as,

R(τ, w, δ) =

∫ T

τ
e−ρt

(
u+

(1− x̄(τ, w, log δ))1−γδ1−γexp{(1− γ)
(
h(aL)− Σ2(1− 2γ)/2

)
(t− τ)} − 1

1− γ

)
dt

+ e−ρT
(
u+

(ρ−1)1−γδ1−γexp{(1− γ)(h(aL)− Σ2(1− 2γ)/2)(T − τ)}
1− γ

)
=

(
u−

1

1− γ

)
1− e−ρ(T−τ)

ρ

+
(1− x̄(τ, w, log δ))1−γδ1−γ

1− γ

∫ T

τ
e−ρtexp

{
(1− γ)

(
h(aL)− Σ2(1− 2γ)/2

)
(t− τ)

}
dt

+ e−ρT
(
u+

(ρ−1)1−γδ1−γexp{(1− γ)(h(aL)− Σ2(1− 2γ)/2)(T − τ)}
1− γ

)
=

(
u−

1

1− γ

)
1− e−ρ(T−τ)

ρ

+
(1− x̄(τ, w, log δ))1−γδ1−γ

1− γ
e−ρτ

1− exp{ρ− (1− γ)(h(aL)− Σ2(1− 2γ)/2)}
ρ− (1− γ)(h(aL)− Σ2(1− 2γ)/2)

+ e−ρT
(
u+

(ρ−1)1−γδ1−γexp{(1− γ)(h(aL)− Σ2(1− 2γ)/2)(T − τ)}
1− γ

)
.

■

2.C Proofs to investor’s optimization problem

Regularity of the HJB and the investor’s value function

General remark on the motivations for regularity

Beyond economic motivations as given in Section 2.7, there is a distinct technical and economic reason why we need to constrain
the state space to be bounded, although the cost of this might be some loss in economic richness. For instance, while papers
like Sannikov (2008) and DeMarzo and Sannikov (2006) use more complicated contractual possibilities, namely that of optimal
termination 18 of the manager, we explicitly do not pursue this route here. Firstly, if we were to consider such free-boundary
problems, it is easy to conjecture or see that the optimal termination of the manager will be a surface of the form (t, δ) 7→ W̃ (t, δ),
and a priori, it is difficult to prove the existence of such an object, and even given existence, it is difficult to say much about
its uniqueness and smoothness properties. The key difference between our paper and the earlier work in contracting is that we
are explicitly dealing with two state variables, rather than one, and this adds substantial difficulty to the problem. Thus, at
the risk of sacrificing some economic richness of the problem, we consider simpler contracts here.

Secondly, and also extremely important both economically and technically, we need to ensure that our value function is
sufficiently nice. That is to say, we are explicitly using strong conditions such that we can ensure the investor’s value function
V has a unique smooth classical solution. This is critical as, unlike the pure dynamic moral hazard problems in the literature,
our problem does not end at the characterization of the value function. Indeed, we need a far more specific understanding of
the resulting optimal controls. While a general characterization of the contracting possibilities and utility forms imply that we
can use more advanced weak solution PDE concepts, such as viscosity solutions 19 , to understand the value function, but in
general the resulting optimal controls may not be sufficiently smooth nor Markov. But since from Proposition 2.4.1, (2.3.2)
and Assumption 2.3.7, we need to essentially apply Ito’s formula to match drift and diffusion terms to solve for the equilibrium
asset price dynamics and risk free asset price dynamics. Thus, to have any hope for such a goal to completing the circle and
finishing the asset pricing problem, we must have strong (and perhaps overtly strong) conditions so that the value function
yields a classical smooth solution, and that the resulting optimal controls are smooth and Markovian. For instance, Strulovici

18 Essentially through the value matching and smooth pasting conditions in the free-boundary problem
to find the optimal termination point.

19 See, for instance, Fleming and Soner (2006) and Crandall, Ishii, and Lions (1992).
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and Szydlowski (2014) also emphasizes the point that for economic applications, smoothness of the value function is a critical
property. 20 See also Rincón-Zapatero and Santos (2012) for a discussion.

Standard conditions
It will be helpful to write our state variables in vector form. Define Rt := (Wt, Dt)⊤, and it has dynamics, 21

dRt = a(t, Rt, x(t))dt+ b(t, Rt, x(t))dBt, (2.C.1)

where for r = (r1, r2) = (w, δ), we have the drift and volatility of the stacked state variables as,

a(t, r, x) =

(
ρr1 − g(aH)− log x− log r2

g(aH)r2

)
, (2.C.2a)

b(t, r, x) = Σ

(
g′(aH)/h′(aH)

r2

)
. (2.C.2b)

We will also denote the control value space as, 22

U := [x0, 1]. (2.C.3)

It is clear that a and b are both 23 C1(Q̄×U). For what follows, we will denote C as an universal constant that may vary line
by line. For Propositions 2.C.1 and 2.C.2, we will merely note the qualitative description here, and leave the exact specification
in the proof, especially since the qualitative behavior is what is most important for us and not the exact specification.

Lemma 2.C.1 (State regularity conditions). The state dynamics drift and volatility terms satisfy on Q,

(ii) A Lipschitz condition in time and state;

(iiii) A growth condition in state and control.

Proof to Lemma 2.C.1. We show that a and b satisfy a Lipschitz condition on Q. In particular, denoting ||·||2 as the standard
Euclidean 2-norm 24 , for any (t′, r′, x′), (t′′, r′′, x′′) ∈ Q× U ,

∣∣∣∣a(t′, r′, x′)− a(t′′, r′′, x′′)
∣∣∣∣
2
=

∣∣∣∣∣∣∣∣(ρ(r′1 − r′′1 ) + (log x′′ − log x′) + (log r′′2 − log r′2)
g(aH)(r′2 − r′′2 )

)∣∣∣∣∣∣∣∣
2

≤ C
(∣∣t′ − t

∣∣+ ∣∣∣∣r′ − r′′
∣∣∣∣
2

)
,

where the last inequality follows since U is compact, and that y 7→ log y is Lipschitz on a domain of the form [ε,∞) for any
ε > 0. Likewise for the diffusion,

∣∣∣∣b(t′, r′, x′)− b(t′′, r′′, x′′)
∣∣∣∣
2
=

∣∣∣∣∣∣∣∣( 0
Σ(r′2 − r′′2 )

)∣∣∣∣∣∣∣∣
2

≤ C(
∣∣t′ − t

∣∣+ ∣∣∣∣r′ − r′′
∣∣∣∣
2
),

where the last inequality follows trivially. Thus (i) holds.

20 It should be noted that Strulovici and Szydlowski (2014) only considers one dimensional state dynamics.
We are working with two dimensional state dynamics. Hence, the results from Strulovici and Szydlowski
(2014) cannot be directly applied to here.

21 This notation here is not to be confused with the equilibrium interest rate r = {rt}. There should be
no notation confusion in this section as we will make no reference to the interest rate.

22 This U as the control value space should not be confused with the manager’s value function in Section 2.5
when we considered a constant deterministic contract for the manager. There should be no confusion in the
notational here since we do not use any results from Section 2.5 in this section. This notation U is used here
as it is conventional in the control theory literature to denote the control value space.

23 As is standard, we denote the closure of a set A by Ā.
24 That is, if y = (y1, y2) ∈ R2, then ||y||2 :=

√
y21 + y22 .
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Next, let’s show the desired growth condition. Note that, for (t, r, x) ∈ Q we have that,

||a(t, r, x)||2 =

∣∣∣∣∣∣∣∣(ρr1 − g(aH)− log x− log r2
g(aH)r2

)∣∣∣∣∣∣∣∣
2

≤ C(1 + ||r||2 + |x|),

where the last inequality follows since U is compact and we have that on Q, log δ < log r2. Likewise,

||b(t, r, x)||2 =

∣∣∣∣∣∣∣∣Σ(g′(aH)/h′(aH)
r2

)∣∣∣∣∣∣∣∣
2

≤ C(1 + ||r||2 + |x|),

where the last inequality is obvious. Thus (ii) holds. This completes the proof. ■

Lemma 2.C.2 (Objective function regularity conditions). With the given state variable dynamics, both the intertemporal
utility function and terminal bequest function form satisfy a polynomial growth condition in state and control.

Proof to Lemma 2.C.2. Define ũ(x, δ) =: ũ(x, r2) = u((1 − x)r2). Then by the multivariable mean-value theorem, for any
(t, r, x) ∈ Q, there exists some c ∈ (0, 1) such that,

|ũ(x, r2)− ũ(0, r2)| ≤ ||∇ũ((1− c)x+ c · 0, (1− c)r2 + cr2)||2 ||(x− 0, r2 − r2)||2
= ||∇ũ((1− c)x, r2)||2 ||(x, 0)||2 ,

where ∇ is the gradient. And by the chain rule,

∇ũ((1− c)x, r2) = u′((1− c)xr2)

(
−cr2

(1− c)x

)
.

Using the above, and the triangle inequality, we thus have,∣∣e−ρtu((1− x)r2)
∣∣ = ∣∣e−ρt∣∣ |ũ(x, r2)|
≤ 1 · |ũ(x, r2)− ũ(0, r2) + ũ(0, r2)|
≤ |ũ(x, r2)− ũ(0, r2)|+ |ũ(0, r2)|

≤
∣∣∣∣∣∣∣∣u′((1− c)xr2)

(
cr2

(1− c)x

)∣∣∣∣∣∣∣∣
2

||(x, 0)||2 + ||ũ(0, r2)||

≤ C(1 + ||r||m2 + |x|m),

for some power m > 0. Note the last inequality follows from the smoothness of u in Assumption 2.3.5 and that on Q and U ,
the set of values r2 and x can take on are bounded.

Since we use the same functional form for the intertemporal utility and the terminal bequest function, essentially the same
computation shows that ∣∣∣e−ρTu(ρ−1r2)

∣∣∣ ≤ C(1 + ||r||m2 ).

It should be noted here that the precise power coefficient m > 0 is not particularly important here; what is important is
the qualitative polynomial growth behavior. This completes the proof. ■

For the subsequent discussion, let’s also define the variance-covariance matrix Ω. Define, 25

Ω(t, r, x) := b(t, r, x)b(t, r, x)⊤ = Σ2

(
(g′(aH)/h′(aH))2 g′(aH)/h′(aH)r2
g′(aH)/h′(aH)r2 r22

)
,

and also denote Ω = [ωij ]i,j=1,2.

Lemma 2.C.3 (Uniform ellipticity). The HJB equation (2.8.4) is uniformly elliptic on Q.

25 This Ω for the variance-covariance matrix is not to be confused with the state space Ω of the underlying
probability space (Ω,F ,P). No confusion should arise in this section as we do not refer to the state space Ω
here.
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Proof to Lemma 2.C.3. The uniform ellipticity condition requires that for any ψ = (ψ1, ψ2) ∈ R2 and any (t, r, x) ∈ Q × U
that, ∑

i,j=1,2

ωij(t, r, x)ψiψj ≥ C ||ψ||22 , (2.C.4)

for some constant C.
In our case, fix any ψ = (ψ1, ψ2) ∈ R2 and without loss of generality, assume ψ1 ≥ ψ2. And observe that for (t, r, x) ∈ Q,

and in particular that r2 > δ,

∑
i,j=1,2

ωij(t, r, x)ψiψj = Σ2

(
g′(aH)

h′(aH)

)2

ψ2
1 + 2Σ2 g

′(aH)

h′(aH)
r2ψ1ψ2 +Σ2r2ψ

2
2

> Σ2

(
g′(aH)

h′(aH)

)2

ψ2
1 + 2Σ2 g

′(aH)

h′(aH)
δψ1ψ2 +Σ2δψ2

2

≥ C
(
ψ2
1 + 2ψ1ψ2 + ψ2

2

)
≥ C

(
ψ2
1 + 2ψ2

2 + ψ2
2

)
≥ C(ψ2

1 + ψ2
2)

= C ||ψ||22 ,

for some universal constant C. Thus, we indeed have the uniform ellipticity condition (2.C.4). ■

Finally, we document some miscellaneous properties and smoothness properties of the relevant functions in our setup. The
proposition is stated without proof, as the proof for each item is obvious by inspection.

Lemma 2.C.4 (Misc. properties and smoothness of input functions). We have,

(i) U is compact;

(ii) O is bounded with ∂O a manifold of class C(3);

(iii) For φ = Ω, a, u, the function φ and its partial derivatives φt, φri , φrirj are continuous on Q̄× U , for i, j = 1, 2;

(iv) For each smooth parameter k > 0, the boundary condition function 26 Fk ∈ C3([0, T )× R2).

Remark 2.C.5 (Smoothness at the boundary). Lemma 2.C.4(iv) deserves a remark. Recall again the motivation for defining
the “soft” retirement function Fk, in contrast to the “hard” retirement function F . We see that it is precisely due to the
boundary condition V k =: V = Fk that we want high level of smoothness at the boundary to ensure that we do indeed have
a resulting smooth solution V k. Specifically, if we were to use the original hard retirement function F , and given its lack of
smoothness (again, coming from the hard max and hard min), we cannot possibily expect a smooth solution V .

Finally, we now come to the main result of this section.

Proposition 2.C.6 (Existence and uniquness of smooth HJB equation). For any smoothing parameter k > 0, there exists a
unique solution V := V k ∈ C1,2(Q) ∩ C(Q̄) to (2.8.4) and (2.8.5).

Proof to Proposition 2.C.6. This follows from Fleming and Soner (2006), Section IV, and specifically IV.4. That is, the results
of Lemmas 2.C.1, 2.C.2, 2.C.3, and 2.C.4 satisfy the regularity conditions for the existence of a classical solution to the HJB-PDE
(2.8.4) with the assigned boundary conditions (2.8.5). ■

Remark 2.C.7. Note that thanks to these strong regularity conditions, we can thus apply results and methods from the theory
of second order nonlinear parabolic partial differential equations, instead of weak solution concepts such as viscosity solutions.

26 Strictly speaking, the soft retirement function Fk is a map with domain [0, T ]×[Ŵ , W̃ ]×[δ, δ̄]. However,
by inspection of the function form of the hard retirement function R of Proposition 2.7.1 and its soft extension
in Definition 2.A.2, we can clearly see that the domains can be extended as [0, T ] × R2. This extension is
simply a technical condition to ensure smoothness properties, even though the actual state space is the much
smaller [0, T ]× [Ŵ , W̃ ]× [δ, δ̄] = Q̄. We will use some slight abuse of notations here for brevity.
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2.D Markov Control Construction
Once we have verified that the conditions as outlined in Section 2.C are satisfied, then we can use the results as outlined in
Fleming and Soner (2006), Section IV. In particular, details here will be brief, in particular since the details are very well
documented in Fleming and Soner (2006), Section IV. We just summarize the key results as follows:

Existence of Markovian Feedback Optimal Control
Proposition 2.D.1. Consider the setup as in Proposition 2.8.1. Then,

(i) The solution V as in Proposition 2.C.6 is the solution to the value function (2.8.1) subject to the state variables (2.8.2).

(ii) The optimal control X∗ exists and is Markov, and hence X∗ = X∗(t, w, δ).

Proof to Proposition 2.D.1. We observe that,

(i) Taking the result from Proposition 2.C.6 and given the smoothness result that we obtain, we simply apply the standard
Verification Theorem argument as per Theorem 3.1 of Fleming and Soner (2006).

(ii) The conditions we have laid forth in Section 2.C satisfy the hypothesis of Theorem 4.4 of Fleming and Soner (2006),
which the optimal control must be Markovian.

■

Remark 2.D.2. In Section 2.D below, we will explicitly construct that Markovian control and thereby directly show uniqueness,
instead of mere existence as per Proposition 2.D.1. Essentially, our uniqueness result comes from the smoothness and concavity
of the relevant functions, and that we are maximizing over a compact control value space.

Construction of Controls
Given the existence of the Markovian feedback controls as per Proposition 2.D.1, we are now ready to explicitly characterize
them. Referring back to the HJB equation on Q in (2.8.4), for each (t, w, δ) ∈ Q, and denoting Vw := Vw(t, w, δ) for notational
convenience, we see that the control optimization problem is of the form, and recall we had denoted U = [x0, 1],

max
x∈U

ℓt,w,δ(x) := u((1− x)δ)− (log x)Vw, (2.D.1)

We see that (2.D.1) is a single variate constrained optimization problem over the compact set U and for each fixed (w, δ), the
map x 7→ u((1−x)δ)−(log x)Vw is continuous and smooth, so the extreme value theorem guarantees the existence of a solution,
and moreover, the Karush-Kuhn-Tucker theory 27 applies.

Given the amount of notation ahead, we should note that (2.D.1) is conceptually standard, but the difficulty and the
computational burden essentially lies in the sign and value of Vw. Unfortunately, a priori, it is difficult to analytically show the
qualitative behavior of Vw(t, w, δ) as (t, w, δ) varies.

We will need a simple technical lemma relating to the inverse function of the utility.

Lemma 2.D.3. For any δ > 0, the map (x0, 1) ∋ x 7→ xu′((1− x)δ) ∈ R has an unique smooth inverse I(·, δ).

Proof. Proof to Lemma 2.D.3 Fix any δ > 0, and simply define,

f(x, δ) := xu′((1− x)δ).

An easy application of the chain rule has that,

fx(x, δ) = −xδu′′((1− x)δ) + u′((1− x)δ) > 0,

where the inequality follows from Assumption 2.3.5, and in particular we have the standard utility forms u′′ < 0 and u′ > 0.
But that means for any δ > 0, the map x 7→ f(x, δ) is strictly monotonically increasing and hence there exists a unique inverse
I(·, δ). But given that f is smooth in both x, δ, the inverse function theorem shows that the inverse I is also smooth in both of
its arguments. ■

27 See standard references like de la Fuente (2000).



CHAPTER 2. DYN AGENCY, DEL PORT MGT, AND ASSET PRICING 114

Proof to Proposition 2.9.1. Considering the optimization problem (2.D.1). We will need to consider three cases. Fix any
(t, w, δ) ∈ Q and denote Vw := Vw(t, w, δ).

Case (a): Vw = 0. In this case, we have that ℓt,w,δ(x) = u((1− x)δ). And computing the first derivative,

d

dx
ℓt,w,δ(x) = −δu′((1− x)δ) < 0,

which shows that on U , ℓt,w,δ is monotonically decreasing. Hence, its maximizer must be x∗ = x0 when Vw = 0. This completes
Case (a).

Case (b): Vw > 0. In this case, again computing the first derivative, we have that,

d

dx
ℓt,w,δ(x) = −δu′ ((1− x)δ)−

1

x
Vw < 0,

which again shows that on U , ℓt,w,δ is monotonically decreasing. Hence, its maximizer must be x∗ = x0 when Vw > 0.
Thus, this also implies when Vw ≥ 0, the optimizer must be x∗ = x∗(t, w, δ) = x0, and this is the condition for the set E of
Definition 2.9.1. This completes Case (b).

Case (c): Vw < 0. In this case, we note that when Vw < 0, then x 7→ −(log x)Vw is globally concave. And also,

x 7→ u ((1− x)δ) is also globally concave. The sum of concave functions is concave, and hence, ℓt,w,δ is globally concave.
Hence, if there is a critical point to ℓt,w,δ on U , this point is the only candidate point for an interior global maximizer (i.e.
not minimizer). Thus, the Karush-Kuhn-Tucker conditions apply here and are both sufficient and necessary for maximization
optimality.

Consider the Lagrange multipliers λH and λL associated with the constraints x− 1 ≤ 0 and x0 − x ≤ 0, respectively. We
define the Lagrangian,

Lt,w,δ := ℓt,w,δ(x)− λH(x− 1)− λL(x0 − x).

By first order conditions,

0 =
d

dx
Lt,w,δ

=
d

dx
ℓt,w,δ(x)−

1

x
Vw − λH + λL

= −δu′((1− x)δ)−
1

x
Vw − λH + λL.

For the complementary slackness conditions, consider when λH > 0 and so x = 1, and we have,

0 < λH = −δ′((1− 1)δ)− Vw = −δu′(0)− Vw

— contradiction, since limc→0+ u
′(c) = +∞. Thus, the point x = 1 is never optimal.

When λL > 0 and x = x0, we have,

0 > −λL = −δu′((1− x0)δ)−
1

x0
Vw(t, w, δ),

which, after rearranging, is the condition of the set EIc of Definition 2.9.1.
Thus for the interior solution, which is the condition of the set EI of Definition 2.9.1, which solves,

0 = −δu′((1− x)δ)−
1

x
Vw,

rearranging and using Lemma 2.D.3, we have that the interior solution must be,

x∗ = X̃(t, w, δ) = I

(
−
Vw

δ
, δ

)
.

This completes Case (c).
Thus, putting Cases (a), (b) and (c) together, we have the result as claimed. ■
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2.E Proofs to Asset Pricing Dynamics

Regularity upgrade assumption
Before we proceed, there remains an important technicality that we need to consider. We will first state this as an assumption
and then subsequently make some remarks.

Assumption 2.E.1. We assume that the value function V in Proposition 2.C.6 is such that Vtw, Vwww, Vwyy , Vwwy ∈ C(Q̄).

As we shall subsequently see when we consider the asset pricing dynamics, we will need higher orders of differentiability
for the value function V to apply Ito’s lemma on it than just C1,2(Q) ∩ C(Q̄) as given in Proposition 2.C.6. In particular, we
will need Vtw, Vwww, Vwyy , Vwwy to exist and smooth. Note that this regularity upgrade was not needed in the discussion in
Section 2.D. Rather than going through the very technical details of obtaining this regularity upgrade, as per Krylov (1987),
Chapters 4 and 5, we will simply make Assumption 2.E.1.

Remark 2.E.2. At least from an intuitive (but not rigorous) this level, Assumption 2.E.1 is not as far fetched as it initially
appears. Most notably, we consider the follow “faux derivation” as an illustration, which will not be used anywhere else in the
paper (and hence can be omitted from reading, if desired).

The first five partial derivatives Vt, Vw, Vww, Vyy , Vwy are well defined immediately by Proposition 2.C.6. Now, consider
the four partial derivatives Vtw, Vwww, Vwyy , Vwwy. From the HJB equation (2.8.4), rearrange as,

sup
x∈[x0,1]

[u((1− x)δ)− (log x)Vw]− ρV + (ρw − g(aH)− log δ)Vw + h(aH)δVy

= −
{
Vt +

Σ2

2

[(
g′(aH)

h′(aH)

)2

Vww + δ2Vyy + 2

(
g′(aH)

h′(aH)

)
δVwy

]}
.

(2.E.1)

Now, if we denote f(x; t, w, δ) := u((1 − x)δ) − (log x)Vw(t, w, δ), and consider the value function associated with the
optimization problem to the left-hand side of (2.E.1),

W(t, w, δ) := sup
x∈[x0,1]

f(x; t, w, δ). (2.E.2)

The result of Proposition 2.C.6 implies that f satisfies the Envelope Theorem conditions of Milgrom and Segal (2002), Theorem
2. Thus, we conclude that W is Lebesgue-a.e. differentiable. Now, the other two terms in the sum of the left-hand side of
(2.E.1) are clearly differentiable in (w, δ) ∈ O, again by Proposition 2.C.6.

Thus, it implies the entire left-hand side of (2.E.2) is differentiable in (w, δ) ∈ O Lebesgue-a.e. But this implies the entire
term of the right-hand side of (2.E.1) is differentiable in (w, δ) ∈ O Lebesgue-a.e.

However, this “faux derivation” does not lead to our desired result. Most notably, we see that if a function h is differen-
tiable, and if h = f + g, it does not necessarily imply that f, g are both differentiable, as f, g could be in some sense filling each
other’s roughness as a sum. 28 Hence, we have “almost” the result that we need, but not quite.

Remark 2.E.3. Another route that we could take is via the method of viscosity solutions and a stochastic verification theorem.
It is well known that the HJB PDE can be viewed as a viscosity solution as per Crandall, Ishii, and Lions (1992). Indeed, it
also known that if a classical solution exists, this is also identical to the viscosity solution to the HJB PDE, as per Fleming and
Soner (2006). Hence, if we pause the analysis at the viscosity sense of solutions, and using the stochastic verification theorems
of Zhou et al. (1997) in a viscosity framework, we could also construct feedback controls. Then in this sense, the constructed
feedback controls will be functions of the highly smooth test functions that approximate the value function, and in particular,
we will have no issues of understanding the higher orders of smoothness of the value functions. But this approach is slightly
undesirable from an economic perspective, especially when it comes to the asset pricing dynamics. As it will be made clear
when we derive the asset pricing dynamics, if we understand the value function from a viscosity sense, we in principle have
an infinite number (indexed by the sequence of test functions) of drift and volatility terms of the underlying risky asset gains
process, even though each of them converge to the viscosity sense of our solution. Economically, this sounds somewhat at odds
with our intuition of the law of one price (which is a consequence of no-arbitrage conditions, which we have here). Indeed,
this somewhat awkward economic interpretation of viscosity solutions is highlighted also in Strulovici and Szydlowski (2014).

28 Clearly, the elementary converse is true; that if f, g are differentiable, then h = f + g is differentiable.
But we are not looking for this direction of implications here.
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Preliminary computations revolving X̃(t, w, δ)

We collect some computations revolving X̃(t, w, δ), as defined in (2.10.1). Note that it is precisely in these computations where
we need the implications of Assumption 2.E.1. Since (ℓ, δ) 7→ I(ℓ, δ), we denote Ii as the partial derivative to the ith function
argument, and Iij as the ijth partial derivative, for i, j = 1, 2.

The following is a direct application of the chain rule, valid thanks to Assumption 2.E.1, which we will state without the
obvious proof.

Lemma 2.E.4. Consider the optimal pie sharing rule X̃(t, w, δ) as in (2.10.1). Suppose further that I is differentiable in both
arguments. Then we have that,

X̃w = I1 (−Vw/δ, δ) [−Vww/δ]

X̃t = I1 (−Vw/δ, δ) [−Vtw/δ]

X̃y = I1(−Vw/δ, δ)
[
Vw/δ

2 − Vwy/δ
]
+ I2(−Vw/δ, δ)

X̃ww = I1(−Vw/δ, δ)[−Vwww/δ] + I11(−Vw/δ, δ)[Vww/δ]2

X̃yy =
[
I11(−Vw/δ, δ)

(
Vw/δ

2 − Vwy/δ
)
+ 2I12(−Vw/δ, δ)

] [
Vw/δ

2 − Vwy/δ
]

+ I1(−Vw/δ, δ)
[
−2Vw/δ

3 + Vwyy/δ + 2Vwy/δ
2
]
+ I22(−Vw/δ, δ)

X̃wy = I1(−Vw/δ, δ)
[
Vww/δ

2 − 2Vwwy/δ
]
− I11(−Vw/δ, δ) (Vww/δ)

[
Vw/δ

2 − 2Vwy/δ
]

− I12(−Vw/δ, δ) [Vww/δ] .

Application of Ito’s lemma
Proof to Proposition 2.10.1. We have three cases to consider, each corresponding to the related indicator functions. Recall
Proposition 2.4.1 and (2.3.2). Consider a small time interval [t0, t1] for 0 ≤ t0 < t1 < T

Case (1): Suppose the set {(t,Wt, Dt) ∈ EH : t ∈ [t0, t1]} ≠ ∅. Then by Proposition 2.9.2, X ≡ 1 on this set. Then from
Proposition 2.4.1, we have that St =

1
ρ
Dt. Then we have that on one hand, for t ∈ [t0, t1],

dSt +Dtdt =
1

ρ
dDt +Dtdt

=
1

ρ

(
Dth(aH)dt+DtΣdZ

aH
t

)
+Dtdt

= Dt(ρ
−1h(aH) + 1)dt+DtΣdZ

aH
t .

Equating with (2.3.2), it implies that we have,

µ(t) = ρ+ h(aH),

σ(t) = Σ.

Case (2): Suppose the set {(t,Wt, Dt) ∈ EL : t ∈ [t0, t1]} ̸= ∅. An analogous computation to Case (1) shows that,

µ(t) =
ρ

x0
+ h(aH)

σ(t) = Σ.

Case (3): Suppose the set {(t,Wt, Dt) ∈ EM : t ∈ [t0, t1]} ̸= ∅. Then we have St =
1
ρ
X̃(t,Wt, Dt)Dt. Now, applying Ito’s

lemma,

ρdSt = X̃tDtdt+ X̃wDt

[
(ρWt − g(aH)− log X̃ − logDt)dt+Σ

g′(aH)

h′(aH)
dZ

aH
t

]
+ (X̃ +DtX̃y)

(
h(aH)Dtdt+ΣDtdZ

aH
t

)
+

1

2

[
X̃wwDt

(
Σ
g′(aH)

h′(aH)

)2

+ (2X̃y +DtX̃yy)(ΣDt)
2 + 2(X̃w +DtX̃wy)Σ

2 g
′(aH)

h′(aH)
Dt

]
dt.
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Matching drift to (2.3.2), we have that,

Stµ(t) =
1

ρ

[
X̃tDt + X̃wDt(ρWt − g(aH)− log X̃ − logDt) + (X̃ +DtX̃y)h(aH)Dt

+ (X̃ +DtX̃y)h(aH)Dt

+
1

2

(
X̃wwDt

(
Σ
g′(aH)

h′(aH)

)2

+ (2X̃y +DtX̃yy)(ΣDt)
2

+ 2(X̃w +DtX̃wy)Σ
2 g

′(aH)

h′(aH)
Dt

)]
+Dt.

But recalling again that St =
1
ρ
X̃Dt, we arrange and simplify to obtain,

µ(t) =
1

X̃

[
ρ+ X̃t + X̃w(ρWt − g(aH)− log X̃ − logDt) + (X̃ +DtX̃y)h(aH)

+
Σ2

2

(
X̃ww

(
g′(aH)

h′(aH)

)2

+ (2X̃y +DtX̃yy)Dt + 2(X̃w +DtX̃wy)
g′(aH)

h′(aH)

)]
.

And matching volatility to (2.3.2), and rearranging, we have that,

σ(t) = Σ +
Σ

X̃

[
X̃w

g′(aH)

h′(aH)
+DtX̃y

]

Thus, the above shows that (i) and (ii) hold.
Now for (iii) and (iv), those are simply restatements of Proposition 2.4.1(ii).

■

2.F Special Case: CRRA utility with γ = 2
Here, we’ll investigate a special case of the principal’s utility u with CRRA form with coefficient of relative risk aversion γ = 2;
see Example 2.3.2. In particular, with the CRRA preferences with γ = 2, we can be more specific of the results optimal pie
sharing rule contract as discussed in Section 2.9.

We next revisit Lemma 2.D.3, Proposition 2.9.1, Definition 2.9.1 and Lemma 2.E.4.

Corollary 2.F.1. Suppose the principal’s utility function u is of a CRRA form with γ = 2 as in Example 2.3.2. Then,

(a) For (t, w, δ) ∈ EI, and denoting Vw := Vw(t, w, δ), the interior optimal pie sharing rule of Proposition 2.9.1 can be written
as,

X̃(t, w, δ) = −
(δ−1 − 2Vw)−

√
δ−2 − 4δ−1Vw

2Vw
. (2.F.1)

(b) For (t, w, δ) ∈ EI, and denoting Vw := Vw(t, w, δ), the function I of Lemma 2.D.3 can be written as,

I (y, δ) =
δ−2 + 2y − δ−1

√
δ−2 + 4y

2y
. (2.F.2)
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(c) For (t, w, δ) ∈ EI, and denoting Vw := Vw(t, w, δ), the derivatives of I in Lemma 2.E.4 can be computed as,

I1(y, δ) = −(1/2)y−2
(
δ−2 + 2y − δ−1(δ−2 + 4y)1/2

)
+ y−1

(
1− δ−1(δ−2 + 4y)−1/2

) (2.F.3)

I2(y, δ) = (1/2)y−1
(
−2δ−3 + δ−4(δ−2 + 4y)−1/2 + δ−2(δ−2 + 4y)1/2

)
(2.F.4)

I11(y, δ) = −
[
y−2[1− δ−1(δ−2 + 4y)−1/2]− y−3[δ−2 + 2y − δ−1(δ−2 + 4y)1/2]

]
+
[
2y−1δ−1(δ−2 + 4y)−3/2 − y−2[1− δ−1(δ−2 + 4y)−1/2]

] (2.F.5)

I22(y, δ) = (1/2)y−1δ−3
(
6δ−1 + δ−4(δ−2 + 4y)−3/2

− δ−2(δ−2 + 4y)−1/2 − 2(δ−2 + 4y)1/2
) (2.F.6)

I12(y, δ) = −(1/2)y−2
[
−2δ−3 + δ−4(δ−2 + 4y)−1/2 + δ−2(δ−2 + 4y)1/2

]
+ y−1

[
−δ−4(δ−2 + 4y)−3/2 + δ−2(δ−2 + 4y)−1/2

]
.

(2.F.7)

Proof. Here, we have that,

u(c) = u+
c1−2 − 1

1− 2
= u+ 1− c−1.

And clearly, u′(c) = c−2 and u′′(c) = −2c−3.
Let’s first consider part (a). Recalling Definition 2.9.1 and consider (t, w, δ) ∈ EI for which we have an interior solution

X̃(t, w, δ) to our problem, and denote Vw := Vw(t, w, δ). Hence, repeating the proof and some notations of Proposition 2.9.1,
we have the first order conditions,

0 =
d

dx
ℓt,w,x(x) = −

1

(1− x)2δ
−

1

x
Vw. (2.F.8)

But by rearranging, we note that (2.F.8) can be rewritten as,

0 = δ−1x+ Vw(1− x)2

= δ−1x+ Vw(1− 2x+ x2)

= Vwx
2 + (δ−1 − 2Vw)x+ Vw. (2.F.9)

which we recognize is a quadratic equation in x. Hence, the quadratic equation applies to (2.F.9) and we have,

x =
−(δ−1 − 2Vw)±

√
(δ−2 − 2Vw)2 − 4V 2

w

2Vw
=

−(δ−1 − 2Vw)±
√
δ−2 − 4δ−1Vw

2Vw
. (2.F.10)

Let x+, x− be respectively the positive root and negative root of (2.F.10). That is,

x+ :=
(δ−1 − 2Vw)−

√
δ−2 − 4δ−1Vw

−2Vw
,

x− :=
(δ−1 − 2Vw) +

√
δ−2 − 4δ−1Vw

−2Vw
.

Given that the optimization problem at hand is globally concave, if an interior solution exists, there can only be one. Thus,
we need to decide which root to take as our interior solution. But recall that on EI, for which in particular we have Vw < 0,
this implies the discriminant δ−2 − 4δ−1Vw > 0, since clearly δ > 0, and hence we have real and not complex solutions. Thus,
x+, x− > 0. Moreover, note here that x− > x+.

To be a candidate solution, we must have (at least) that x < 1. However, let’s show that x− fails this criterion and hence
cannot be the solution. To see this, note that,

x− < 1 ⇐⇒
δ−1 − 2Vw +

√
δ−1 − 4δ−1Vw

−2Vw
< 1

⇐⇒ δ−1 − 2Vw +
√
δ−2 − 4δ−1Vw < −2Vw

⇐⇒ δ−1 +
√
δ−2 − 4δ−1Vw < 0 — contradiction.
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Hence, x− cannot be the candidate solution. This leaves x+. But we must verify that x+ ∈ (x0, 1) so that it is the only possible
and admissible interior solution. Let’s first verify that x+ < 1. To see this,

x+ < 1 ⇐⇒
δ−1 − 2Vw −

√
δ−1 − 4δ−1Vw

−2Vw
< 1

⇐⇒ δ−1 − 2Vw −
√
δ−2 − 4δ−1Vw < −2Vw

⇐⇒ δ−1 <
√
δ−1 − 4δ−1Vw

⇐⇒ 0 < −4δ−1Vw,

which holds, recalling that Vw < 0. Hence, x+ < 1 holds. Next, we verify that x+ > x0. To see this,

x0 < x+ ⇐⇒ x0 <
δ−1 − 2Vw +

√
δ−1 − 4δ−1Vw

−2Vw

⇐⇒
√
δ−2 − 4δ−1Vw < δ−1 − 2Vw(1− x0)

⇐⇒ δ−2 − 4δ−1Vw < (δ−1 − 2Vw(1− x0))
2

⇐⇒ 4δ−1Vw(1− x0)− 4δ−1Vw < 4V 2
w(1− x0)

2

⇐⇒ Vw < −x0δ−1(1− x0)
2,

where the last statement is exactly the condition of the set EI. Hence, x+ > x0, and hence x+ = X̃(t, w, δ) ∈ (x0, 1) of (2.F.1)
is the only interior solution, if it exists, to our optimization problem.

Let’s consider part (b). The expression (2.F.1) also allows us to compute the exact form of the function I as characterized
by Lemma (2.D.3). Evidently, we have that x = X̃(t, w, δ) is equal to I(y, δ) in (2.F.2) when we evaluate at y = −Vw/δ. Thus
part (b) holds.

For part (c), we revisit the computations in Lemma 2.E.4, but this is just a direct computation based off of the result of
part (b). ■

2.G Technical details to the numerical solution
Here, we present the technical details to the numerical solution as discussed in the main text. We proceed to numerically
compute the problem in the following steps:

1. We begin the numerical solution from the results of Proposition 2.8.1, and in particular the HJB equation (2.8.4) and the
boundary conditions (2.8.5).

2. We discretize the state space O in step sizes dx (for the w-direction), dy (for the δ-direction), and dt (for the t-direction).

3. We replace each of the derivatives that appear in the HJB equation in (2.8.4) with their finite difference counterparts. For
the optimization procedure, we discretize the control space over some number of points, and grid search for the optimizer.
Most notably, we do not take first order conditions and substitute back the optimizer, as this procedure is known to be
highly numerically unstable. Hence, we prefer to discretize and then optimize, rather than optimize and then discretize.

4. Once the discretized value function is found, we use first order conditions to find the (numerical) optimizer X∗(t, w, δ),
which is our optimal pie sharing rule.

5. The subsequent step is to find the various derivatives X∗(t, w, δ) necessary to compute the equilibrium gains parameters
µ(t, w, δ) and σ(t, w, δ) as in Proposition 2.10.1. Given that we are using an CRRA specification with relative risk aversion
parameter of γ = 2 as discussed in Section 2.F, we can indeed write the various derivatives of X(t, w, δ) in terms of the
various derivatives of the (numerical) value function V (t, w, δ). However, after some numerical investigation, we discovered
that the results are highly numerically unstable and full of numerical errors due to discretization.

6. Hence, we will take a different approach. We will take the (numerical) optimizerX∗(t, w, δ) and use the procedure Nakamura,
Wang, and Wang (2008). That is, we will take the (numerical) optimizer X∗(t, w, δ), compute its regularized version, use
that to compute the desired derivatives, and finally obtain our desired gains parameters µ(t, w, δ) and σ(t, w, δ). This
procedure will smooth out the numerical instabilities.
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2.H Additional illustrations
For the purpose of example and robustness, here we give further illustrations of the comparative statics associated with the
value function and the optimal pie sharing rule. The parameters specifications here are identical to that of Section 2.11.

Derivatives of the value function
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Figure 2.H.1: At t = 0.01, for various derivatives of the value function V (t, w, δ)
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Figure 2.H.2: At t = 1.6, for various derivatives of the value function V (t, w, δ)
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Figure 2.H.3: At t = 5.0, for various derivatives of the value function V (t, w, δ)



CHAPTER 2. DYN AGENCY, DEL PORT MGT, AND ASSET PRICING 124

Regularization of the Nakamura et al. (2008) procedure

As mentioned, the sole reason for taking a regularized version of the optimal pie sharing rule X∗(t, w, δ) is that we need its
associated derivatives in computing the equilibrium gains drift µ(t, w, δ) and volatility σ(t, w, δ). However, as it is known in the
numerical computation literature (see Nakamura et al. (2008) for a discussion), even small numerical errors of the underlying
function could magnify to nontrivial amount of errors when we further compute numerical derivatives of this function. In our
case, the source of the numerical errors largely come from the discretization procedure that we take in numerically solving
the HJB PDE. We had initially taken this more “direct” approach, hoping to compute the numerical derivatives of the value
function and with the closed form solutions available for the case of the optimal pie sharing rule as expressed as functions of the
derivatives of the value function, we could just plug in the numerical counterparts. However, indeed, we find that the numerical
errors from the results are far too large to be acceptable. Hence, we took a far more computationally intensive regularization
approach like Nakamura et al. (2008).

Here, we will first show the optimal pie sharing ruleX∗(t, w, δ) computed as Proposition 2.9.1 using the numerical derivative
to Vw(t, w, δ) directly substituted. Using this as the input, we feed this to the Nakamura et al. (2008) procedure, and show the
resulting regularized version. In the main text, the gains parameters µ(t, w, δ) and σ(t, w, δ) are computed exclusively on the
regularized version. Note that in the Nakamura et al. (2008) version, it seems that the picture “rises” from the edges whereas
the original version does not; this is a mere graphical artifact but note that the levels of both versions are indeed in line with
each other.
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Figure 2.H.4: At t = 0.01. We show the optimal pie sharing rule X∗(t, w, δ) based on the ana-
lytical solution in Proposition 2.9.1 and the numerical derivative Vw(t, w, δ) to the
numerical value function V (t, w, δ). We also show the regularized version of the
optimal pie sharing rule based on the Nakamura et al. (2008) procedure.
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Figure 2.H.5: At t = 1.6. We show the optimal pie sharing rule X∗(t, w, δ) based on the ana-
lytical solution in Proposition 2.9.1 and the numerical derivative Vw(t, w, δ) to the
numerical value function V (t, w, δ). We also show the regularized version of the
optimal pie sharing rule based on the Nakamura et al. (2008) procedure.
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Figure 2.H.6: At t = 5.0. We show the optimal pie sharing rule X∗(t, w, δ) based on the ana-
lytical solution in Proposition 2.9.1 and the numerical derivative Vw(t, w, δ) to the
numerical value function V (t, w, δ). We also show the regularized version of the
optimal pie sharing rule based on the Nakamura et al. (2008) procedure.
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Chapter 3

Centralized versus Decentralized
Delegated Portfolio Management
under Moral Hazard

December 5, 2015

Chapter Abstract

If an investor wants to invest into two asset classes, should he delegate to a single portfolio
manager to manage both asset classes (centralized delegation)? Or should he delegate to
two managers, each of whom exclusively manages one asset class (decentralized delegation)?
Optimal risk sharing and portfolio choice discretion delineate the difference between central-
ization versus decentralization. Asset classes whose returns are negatively correlated and
have high volatilities will favor centralization. But if the two asset classes have very different
mean returns, this disfavors centralization: the single manager may disregard portfolios im-
plementing the investor’s desired investments and prefer portfolios in alternative investments.
Thus, the investor must pay the single manager high performance fees to disincentivize devi-
ation. Decentralization eliminates this necessity because one manager cannot trade another
manager’s asset class, and the investor contracts with each manager individually. But in de-
centralization, it may be impossible to implement the investor’s desired investments because
managers deviate without considering the correlation between the managers’ returns. This
last problem can be resolved in a dynamic setting, in which the investor’s wealth “intertem-
porally glues” together the managers’ wealths to provide the correct incentives.
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3.1 Introduction

Delegated portfolio management is a core activity in the modern financial markets — but
what is the optimal form of delegation? If an investor wants to access, say, an Asian macro
strategy and an European macro strategy, should the investor delegate the execution of these
two strategies to a single global strategy manager (centralized delegation)? Or should he
delegate separately to an Asian strategy manager and also an European strategy manager
(decentralized delegation)? Moreover, suppose there is moral hazard risk that instead of
delivering the advertised Asian macro strategy, managers could privately deviate to a passive
Asian equity index that the investor could have accessed without delegation. And suppose
analogous moral hazard risks could occur in the European asset class. In the presence of
such moral hazard problem, which form of delegation is better: centralized delegation or
decentralized delegation?

William F. Sharpe was the first to coin the term “decentralized investment management”
in his Presidential Address to the American Finance Association 1981 Annual Meeting.
Furthermore, Sharpe concludes with:

There is, of course, much more to this problem [of decentralized investment man-
agement]. We have assumed away many important aspects of the principal-agent
relationships(s). . . . In short, we have clearly provided necessary and sufficient
conditions for the traditional final sentence in such a paper: More research on
this subject is needed. (Sharpe (1981, page 233))

Clearly the general literature in principal-agent theory, and also to its specific applications
to delegated portfolio management, has significantly advanced in the years since 1981. Yet
to the best my knowledge, the problem of understanding the similarities and differences be-
tween centralized versus decentralized delegation with the presence of moral hazard remains
unexplored, and its solution properties remain elusive. In particular, substantial recent em-
pirical evidence (see literature review in Section 3.2 below) suggests that moral hazard risks
are strongly present in hedge funds, via the forms of fraud, operational risk, misrepresen-
tation of investment strategies and conflicting evidence of managerial effort in generating
alpha. Thus, the key contribution of this paper is an attempt to explore a question opened
by Sharpe from decades ago, and this question is made ever more imperative in the modern
financial markets.

In this economy, there are two classes of individuals: a single Principal and multiple
Managers. The Principal is initially endowed with a single unit of wealth, while Managers
have zero initial wealth. All individuals are risk averse with mean-variance preferences over
terminal wealth. The Principal has a strict desire for Managers to be compliant and imple-
ment a specific pair of investment strategies (say Asian active macro and European active
macro strategies, from the previous example), and the Principal must delegate to Managers
to access these strategies. However, implementing these strategies will incur private costs
for the Managers. Moreover, Managers could deviate to alternative deviant strategies (say
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Asian passive market index and European passive market index) that are privately cost-
less but have lower mean returns and different correlation structure than the Principal’s
desired pair of strategies. For simplicity, we take an extreme assumption that the Principal
would abandon delegation if his desired strategy pair cannot be implemented. Largely for
tractability in the model, we emphasize again that the Principal will only want to implement
his desired pair of strategies and he will not entertain other strategy pairs.

In the presence of such moral hazard over investment strategies within each of the two
asset classes, the Principal needs to decide which form of delegation is best. In the first
option, the Principal can choose centralized delegation: the Principal will delegate all initial
wealth to a single Manager C (say a global strategy manager). Manager C will have two
actions: investment strategy choice and portfolio allocation choice. Manager C will first
need to select a strategy pair, one strategy from each asset class. Then secondly, taking
any offered contract into account, Manager C will construct portfolio weights between this
strategy pair. In return, the Principal will compensate Manager C with a linear contract
over the net returns of the resulting portfolio.

Alternatively, in the second option, the Principal can choose decentralized delegation: the
Principal will make a portfolio choice and decide how much of his initial wealth to delegate
to Manager A (say, an Asian asset manager) who will exclusively manage one asset class,
and delegate the rest to Manager B (say, an European asset manager) who will exclusively
manage the other asset class. Both Managers can only pick one strategy from their respective
asset classes. The Principal will compensate these two Managers also with linear contracts
over the net returns from their respective asset class.

We make clear on the action differences between centralization and decentralization. In
centralization, Manager C has both strategy choice and portfolio choice, while the Principal
only has contract choice. In decentralization, Manager A and Manager B have strategy
choice within their own asset class, while the Principal has both asset allocation choice and
contract choice.

Static delegation

We begin with a static delegation model, where the contract begins today and terminates
one period later.

In first best with no moral hazard risk, where the Principal can observe and directly
contract on the Managers’ strategy choices in each asset class, the comparison of centralized
versus decentralized delegation is a simple question of optimal risk sharing. High return
correlation of returns between the Principal’s preferred strategy pair will favor decentraliza-
tion, and low correlation will favor centralization. Given any contract, the single Manager C
will pick portfolios between this strategy pair, again with one strategy from each asset class.
And since the contract is linear over the net returns of the portfolios, then low correlation
between the strategies will lead to lower overall portfolio volatility, which then implies lower
contract volatility for Manager C. As Manager C is also risk averse, it becomes cheaper for
the Principal to compensate him because of reduced risk compensations. In contrast, if the
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correlation is high, delegating to Manager C will increase his contract volatility, which in
turn means the Principal must increase the risk compensation.

In contrast, for decentralization, the Principal picks portfolio weights over his initial
wealth to delegate to Manager A and Manager B, in addition to offering separate linear
contracts for each Manager over their strategy’s net returns. When the correlation of the
Principal’s desired strategy pair is high, the Principal can pick portfolio weights to spread
out the risk between himself, Manager A and Manager B to optimally risk share. In contrast,
when the correlation is low, since Manager A’s and Manager B’s contracts only depend on
their own strategy returns, only the Principal can capture the low correlation diversification
benefit and thus the risk sharing benefit is reduced for decentralization. This first best
result illustrates the idea that risk management “defines the boundaries” of a firm. In
centralization, risk management is handled exclusively by Manager C, since only Manager C
picks portfolios between strategies. Whereas in decentralization, the Principal handles risk
management himself since only he picks portfolios.

Next, we consider the second best case where moral hazard is distinctly present, in
that Managers can privately choose their investment strategies. We highlight three specific
components that affect the Principal’s decision for centralized delegation versus decentralized
delegation under moral hazard: (i) investment opportunity set; (ii) Managers’ risk aversions;
and (iii) Managers’ private costs.

With respect to (i), we claim that a wide investment opportunity set strongly disfavors
centralized delegation. For any given contract, Manager C makes portfolio weight choices
and also strategy pair choices. When Manager C deviates away from the Principal’s desired
strategy pair, the deviant pair of strategies will generically have different mean returns with
some correlation level. Given that the Manager C has mean-variance preferences, he will
naturally put greater portfolio weights to the deviant strategy of one asset class with a higher
mean return and a lower portfolio weight to the deviant strategy of another asset class with
a lower mean return. This generates a “long-short” trading profit benefit for Manager C out
of the deviant strategy pair that is not enjoyed by the Principal; again, the Principal has a
strict desire for Manager C to be compliant and to implement the Principal’s desired strategy
pair, and will not entertain any other deviant strategy pairs. Thus to ensure compliance,
the Principal must compensate Manager C with higher performance fees as an opportunity
cost for Manager C’s foregone long-short trading profits, along with Manager C’s private
costs for implementing the Principal’s desired strategy pair. That is to say, if the investment
opportunity set is so “wide” that the mean return differences between the two asset classes
are large, it will strongly disfavor centralized delegation due to increased performance fees
the Principal must compensate. In contrast, under decentralized delegation, even if Manager
A or Manager B deviates, they can only deviate in strategies within their own asset class.
So the aforementioned long-short opportunity cost in centralization simply does not exist
for them due to restriction in their respective investment opportunity set. Hence, to ensure
compliance from the decentralized Managers, the Principal simply needs to compensate for
their private costs, and the mean and volatility differences between the compliant and deviant
strategies in their respective asset classes.
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With respect to (ii) Managers’ risk aversions, lower managerial risk aversion will disfavor
centralized delegation. The effect of risk aversion on Manager C is intimately linked to
(i) the investment opportunity set restrictions. As Manager C becomes less risk averse,
the less he cares about volatility of the overall portfolio and likewise on the correlation
between investment strategies across asset classes; the only thing that becomes relevant
are simply the mean return differences between the deviant strategy pairs. Thus, in the
extreme limit when Manager C becomes risk neutral, for any given contract, Manager C
will simply take an infinite long position into the deviant strategy from one asset class with
highest possible mean, and take an infinite short position into the deviant investment strategy
from another asset class with lowest possible mean. Without any portfolio constraints on
Manager C, this potentially infinitely large long-short trading profit would be too high of an
opportunity cost for the Principal to compensate, and thereby resulting in the nonexistence of
a contract to implement the Principal’s desired strategy pair. We should note that this result
is starkly different from standard principal-agent theories1 where it is generically cheaper for
a Principal to contract with a less risk averse agent since the Principal then saves on the
required risk premium compensation. In our case, the result is completely reversed: a less risk
averse Manager C is actually more expensive to compensate, and in the limit when Manager
C is risk neutral, it may become infinitely costly to compensate him. These effects are
completely driven by Manager C’s relaxed investment opportunity set; in particular, when
the Principal is risk averse while Manager C is risk neutral. When Manager C can have less
restrictive access to financial markets — namely that he can freely construct portfolio weights
between asset classes — he can modify the risk and reward effects of the contract to his desire,
and in particular, can offload the contract risks onto the financial markets, and thereby
distort the incentive effects of the contract. In contrast, in decentralized delegation and
again extending the discussion from (i), Manager A and Manager B cannot trade each other’s
asset class, and thus are severely restricted in their respective investment opportunity set.
When the two Managers consider a deviation, they are concerned with the differences in the
strategies’ means and volatilities within their own asset class. Thus decentralized delegation
is much closer to a standard principal-(multi)agent problem whereby compensation to less
risk averse agents could be reduced.2

With respect to (iii) Managers’ private costs, high private costs disfavors decentralized
delegation. In centralization, by being compliant and implementing the Principal’s desired
strategy pair, Manager C must incur a high private cost. But for any given any contract,
Manager C is still a risk averse individual; Manager C’s portfolio choice behavior is similar
to the Principal if the Principal were to have direct access to his desired strategy pair. Hence,
Manager C also prefers portfolio choices that generates a high portfolio mean return and
low portfolio volatility to generate an optimal mean-variance trade-off for his performance

1For instance, the standard references of Laffont and Martimort (2001) and Bolton and Dewatripont
(2004).

2 In the model, we assume that volatilities of all investment strategies are equivalent and hence the risk
aversion term will not even appear in the incentive compatibility constraints for decentralized delegation.
But from the model, it is evident this will be true when the strategies have different volatilities.
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fees. Thus, Manager C acts like a quasi-Principal for any given contract, and while private
costs certainly affect the contracting environment, they only play a second order effect in
centralization. In contrast, in decentralization, Manager A and Manager B are restricted in
their investment opportunity sets. So when Manager A or Manager B consider a deviation,
the private costs play a first order effect as in standard principal-agent theories. Indeed,
when private costs are sufficiently high for Manager A and Manager B to implement the
Principal’s desired pair of strategies, a contract may fail to exist; in contrast, for those same
high private cost levels, a contract may still exist for centralized delegation.

In all, under static delegation, the relaxed investment opportunity set in centralized dele-
gation and the restricted investment opportunity set in decentralized delegation is the critical
source of difference between the contracting environment of centralization and decentraliza-
tion. And indeed, this trickles down to why Managers’ risk aversions and Managers’ private
costs have different implications to the contracting environments.

The above discussion illustrates various trade-offs between centralization versus decen-
tralization. However, there is one important special case, which has critical implications for
risk management practices for the Principal, whereby decentralization is surely worse than
centralization. In decentralization, again, linear contracts are offered over Manager A’s and
Manager B’s respective strategy’s net returns. In determining a deviation, Manager A and
Manager B are only concerned with the mean return and volatility differences between the
Principal’s desired strategy and the deviant strategy within their own asset class. Indeed,
these differences are the benefits to Managers for compliance. Nonetheless, the Principal still
wants a particular strategy pair from each of the asset classes to be implemented because
it correlates favorably with some in-situ background investments that the Principal already
holds.3 However, suppose if these differences are small, then the benefits to the Managers for
compliance are small, but the private costs for implementing the Principal’s desired strategy
remain high. In this case, the Managers will surely deviate and thus, no contract will exist to
implement the Principal’s pair of desired strategies in decentralization. Fundamentally, this
is because only the Principal can capture the diversification benefits of the two asset classes,
while Managers completely ignore these benefits when considering a deviation because one
Manager’s compensation does not depend on another Manager’s strategy. Effectively, we
need a contracting mechanism that only depends on the Managers’ own strategy returns,
and nothing else, to link the Managers’ wealths despite the presence of moral hazard.

3 Continuing from the previous example with the Asian asset class, one could argue that an Asian macro
strategy could have a mean return that is only marginally higher than that of the Asian passive equities index.
And likewise for the European asset class. However, the broad passive Asian and European passive indices
will tend to have large index weights into constituent members that are conglomerates with global business
operations. In contrast, suppose Managers construct the Asian and European macro strategies to have
investments in firms whose business scopes are largely confined to their geographies. Furthermore, suppose
the Principal already has some background in-situ investments in some developing economies. Then investing
an extra marginal unit of wealth into a broad Asian and European index may correlate less favorably with the
developing economies due to the presence of those conglomerate firms in those passive indicies. In contrast,
investing into those Asian and European macro funds, even if they have low excess mean returns over their
respective indicies, would correlate more favorably with the investments in the developing economies.
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Dynamic delegation

A dynamic delegation model with committed reinvestment is a possible solution. The key
idea here is through committed reinvestments, the Principal’s intermediate wealth becomes
an “intertemporal glue” that links the terminal wealths between Manager A and Manager
B.

Suppose Manager A’s and Manager B’s strategy choice from their respective asset classes
are chosen and committed to at the initial contracting date t = 0. Once the strategies
have been committed, subsequent per-period returns will be generated from this strategy
only.4 Furthermore, the Principal also commit to future portfolio policies and contracts.
All individuals have mean-variance preferences over terminal wealths at t = 2, and there
is no intermediate consumption. The Principal allocates portions of his initial wealth to
Manager A and Manager B at t = 0, then subsequently, one-period returns are generated
and performance fees are collected at t = 1. Then also at t = 1, the Principal collects
all the returns from the Managers and aggregates them into a single pot of intermediate
wealth. From this pot of intermediate wealth, the Principal reinvests (quite possibly different
proportions than that of t = 0) into Manager A and Manager B at t = 1. Finally, at t = 2,
one-period returns are generated and performance fees are collected by the Managers. But
then t = 2 terminal wealths of Manager A and Manager B will depend on the portfolio
weights and performance fees the Principal had allocated to them at t = 1, which then
depends on the level of intermediate wealth that the Principal had at t = 1 available for
reinvestment. Furthermore, the intermediate aggregated wealth at t = 1 depends on the
investment strategies that Manager A and Manager B had committed to at t = 0. Thus,
using the Principal’s intermediate aggregated wealth as an “intertemporal glue”, Manager
A’s and Manager B’s t = 2 terminal wealth will depend on each other’s committed strategies
at t = 0. Moreover, through this “intertemporal glue”, if one Manager deviates from the
Principal’s desired investment strategy choices at t = 0, it could potentially hurt both of
them simultaneously at t = 2. Note that in this mechanism, the fees the Principal pays to
Manager A and Manager B are still dependent only on the respective Manager’s strategy
returns. To have a comparison against dynamic decentralized delegation, we also consider the
dynamic model for centralized delegation whereby the Principal reinvests back into Manager
C in an analogous fashion.

Overview

A literature review is in Section 3.2. We introduce the model setup in Section 3.3. The first
best results are in Section 3.4. The second best results, which are the core contributions of
the paper, are in Section 3.5. From there, we motivate and discuss the dynamic decentral-
ized delegation model in Section 3.6. The first best results for the dynamic decentralized
delegation are in Section 3.7, while the second best results are in Section 3.8. All proofs are

4 For instance, if an Asian macro strategy was chosen at t = 0, the subsequent period returns (from
t = 0 to t = 1, and t = 1 to t = 2) will be from this Asian macro strategy.
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in the Appendix. Moreover, we also have an Online Appendix for additional results for the
dynamic centralized model. All the proofs and additional results on the dynamic models are
also in the Online Appendix. We conclude in Section 3.9.

3.2 Literature Review

Sharpe (1981) is the seminal paper that coined the term “decentralized investment manage-
ment”. In particular, he argues an investor would prefer decentralization over centralization
for “diversification of style” and “diversification of judgment”.5 But beyond these two rea-
sons, Barry and Starks (1984) also add that risk sharing is another motive for preferring
decentralization over centralization. Elton and Gruber (2004) recognize that decentralized
delegation is a very real issue faced by practitioners and offer conditions under which “a
central decision maker can make optimal decisions without requiring decentralized decision
makers to reveal estimates of security returns”. More recently, van Binsbergen, Brandt, and
Koijen (2008) study the decentralization problem in continuous time and derive the opti-
mal wealth that the investor should allocate between decentralized managers. None of the
references above have studied a moral hazard problem of any form. The goal of our paper
is to study the similarities and differences of centralization versus decentralization under
an explicit moral hazard problem, whereby both the contract and the portfolio policies are
endogenously determined.

Our problem clearly belongs to the vast literature of delegated portfolio management.
Stracca (2006) offers a survey on the theory findings of delegated portfolio management.
The problem of moral hazard in delegated portfolio management, but only to delegation of
a single agent, has been studied at least since Bhattacharya and Pfleiderer (1985) and ?.
These papers usually information based, whereby the principal delegates to an agent because
the agent can exert private costly effort to acquire a signal of the future value of a security.
Instead, in our paper, we do not take the private costly information acquisition route and
rather assume that the principal delegates because the principal has access restrictions to
the financial markets. A recent paper by He and Xiong (2013) also assumes the principal has
restricted access to the financial markets, and delegates to an agent who will both acquire
a signal about an asset’s future return, and also make an investment decision. Our model
is not about costly private information acquisition. Nonetheless, the authors reach a similar
conclusion that if there is too much flexibility in what an agent can do — like our single
Manager C in centralized delegation — it will be more costly to the principal to induce the
agent for correct decisions. Indeed, like our paper, the inability of the principal to contract
on the agent’s portfolio choice in He and Xiong (2013) is a critical source of moral hazard.
But in our paper, the portfolio choice dimension will form a critical difference between

5 While Sharpe (1981) notes that some of these concepts were already discussed in Rosenberg (1977)
and Rudd and Rosenberg (1980), we view that Sharpe (1981) makes the ideas more transparent and offers
a clearer call for research directions.
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centralization versus decentralization, and moreover, we show that there are important cases
where centralization is indeed preferred over decentralization.

The empirical question of whether moral hazard is present in investment managers is
a subject of substantial research. Although our paper is not specific to the type of funds
being delegated to, the prototypical example we have in mind is hedge funds. Getmansky,
Lee, and Lo (2015) and Agarwal, Mullally, and Naik (2015) are recent survey papers of the
hedge fund industry. In particular, strong empirical evidence suggests that moral hazard
is a substantial concern in hedge fund. Patton (2009a) argue that a quarter of funds that
advertise themselves as “market neutral” have significant exposures to the market factor.
Brown, Goetzmann, Liang, and Schwarz (2008, 2012) and Brown, Goetzmann, Liang, and
Schwarz (2009) argue that proper due diligence to the extent of reducing operational risks
of hedge funds is a source of alpha. Bollen and Pool (2012) constructs several performance
flags based on hedge fund return patterns as indicators of increased fraud risks.

There is a small but growing empirical literature on comparing the effectiveness of cen-
tralized versus decentralized delegation. Blake, Rossi, Timmermann, Tonks, and Wermers
(2013) document that pension fund managers have gravitated from a centralized delegation
model to a decentralized delegation model. In the context of mutual funds, Dass, Nanda,
and Wang (2013) compare the performance of sole- and team-managed balanced funds. Sim-
ilarly, Kacperczyk and Seru (2012) ask whether centrally managed or decentrally managed
mutual funds perform better.

Our model also fits into the broad literature of optimal delegation forms. The recent work
by Gromb and Martimort (2007) discuss the optimal design of contracts for experts who can
privately collect a signal. The paper there focuses on risk neutral individuals with limited
liability and economies of scale of private costs. Whereas in this paper, we explicitly focus
on how risk aversion can play a critical role in portfolio choice, and there is no economies
of scale in private costs. Some key earlier work on delegation to multiple agents are Demski
and Sappington (1984), Demski, Sappington, and Spiller (1988) and Holmström and Milgrom
(1991), but these papers do not explicitly consider the issue of portfolio choice and access to
financial markets in the moral hazard formulation.

3.3 Static Model Setup

Individuals, Assets and Moral Hazard

There are two time periods t = 0 and t = 1. There are two classes of individuals: a single
Principal and three Managers A, B and C. The Principal is initially endowed with $1 unit
of wealth, and Managers have $0 initial wealth. Both the Principal and the Managers have
mean-variance preferences over their own terminal wealth. The Principal has a risk aversion
parameter of ηP > 0, while the Managers have a risk aversion parameter of ηM > 0.

There are two risky asset classes, indexed by θ and τ . Within each asset class, there
are two specific investment strategies {H,L}. Thus, for asset class θ, the specific investment
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strategies are {θH, θL}, and for asset class τ , they are {τH, τL}. We denote the net return of
any particular investment strategy to be Ri for i ∈ {θH, θL, τH, τL}.

The Principal has no access to the financial markets and must delegate to the Managers
for access. Here, we will make an assumption on the investment strategy the Principal
strictly prefers from each asset class. Please also see Remark 3.3.3 for a discussion of the
importance and restrictions of this assumption.

Assumption 3.3.1. The Principal has a strict preference to implement the strategy pair
(θH, τH) over any other strategy pairs.

Motivated by Assumption 3.3.1, we will call the “H” investment strategies to be compli-
ant6 , and the “L” strategies to be deviant7 . Likewise, we will call the strategy pair (θH, τH)
to be the compliant strategy pair, and call any strategy pair (θ, τ) ∈ S−(θH,τH) to be deviant
strategy pairs. As a concrete example, we may think of θ as the Asian equities asset class
and τ as European equities. Then θH can represent an active Asian macro equities strategy,
while θL is a passive Asian market index. Analogously, the τH strategy can represent an
active European macro equities, while τL can represent a passive European market index.

With some abuse of notations, we will also use θ and τ to index the investment strategies
under their respective asset classes θ and τ . Thus, we will write θ ∈ {θH, θL} to denote
θ is an investment strategy from {θH, θL} of the asset class θ. Analogous comments for
the expression τ ∈ {τH, τL}. And we will write Rθ to denote the net return of a strategy
θ ∈ {θH, θL} in the asset class θ. Again, analogous comments for the notation Rτ for
τ ∈ {τH, τL}. Thus, the set of all possible strategy pair combinations from these two asset
classes is S := {(θH, τH), (θH, τL), (θL, τH), (θL, τL)}. We will denote the set of strategy pairs
that exclude the compliant pair as S−(θH,τH) := S \ {(θH, τH)}.

For each asset class, the Managers can privately choose the investment strategy and they
incur a private cost for implementing the Principal’s desired strategies. The private cost
structure for choosing (θ, τ) is,

c(θ) =

{
c > 0, θ = θH,

0, θ = θL
and c(τ) =

{
c > 0, τ = τH,

0, τ = τL.
(3.3.1)

We may think of the source of this private as “effort”, in that the Managers need to exert
private costs to actively manage a more complex investment strategy for any given asset
class.8

We will, respectively, denote the means and variances of θ ∈ {θH, θL} as, µθ := E[Rθ], σ
2
θ :=

Var(Rθ), with analogous notations for τ ∈ {τH, τL}. And we will denote the correlations of
the pairs (θ, τ) as ρθτ := Corr(Rθ, Rτ ), for (θ, τ) ∈ S.

6 The term compliant refers to the strategies that the Principal strictly prefers the Managers to imple-
ment.

7 The term deviant refers the strategies that the Principal strictly prefers the Managers to not implement.
8 Here, we have assumed that both asset classes θ and τ have identical private costs but this can be

readily relaxed without affecting the qualitative results.
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We make the following assumptions on the moments of the investment strategies.

Assumption 3.3.2. Assume that,

1. The compliant strategies have identical means9, µ ≡ µθH = µτH. Also, compliant strategies
have higher means than the deviant ones,

∆µθ := µθH − µθL = µ− µθL > 0,

∆µτ := µτH − µτL = µ− µτL > 0.

2. The volatilities of all investment strategies are identical,10

σ2 ≡ σ2
θ = σ2

τ , for all θ, τ .

3. No perfect correlations between the investment strategies,

|ρθτ | < 1, (θ, τ) ∈ S.

Remark 3.3.3. Assumption 3.3.1 is a critical assumption of the paper, and it is clearly done
with some loss of generality. Furthermore, the assumption has both technical and economic
content. From a technical perspective, and as we shall see in the next section, this assumption
simplifies the objective function of the Principal. Without this assumption, the Principal will
need to cycle through all four possible strategy pairs (θ, τ) ∈ S to compute which pair yields
the highest value function for himself. This exercise will then exclusively depend on the
parameter values. While this is not difficult to do from a technical perspective, it is not
particularly economically insightful. Furthermore, the parameter conditions to ensure that
(θH, τH) is the optimal pair is also not economically interesting.

Economically, however, this assumption can be motivated in one of the two following
ways. Firstly, this assumption may be justified if the Principal has some in place background
investments that correlate favorably with the compliant pair (θH, τH). Thus, he wants to
delegate to Managers that will implement (θH, τH) for him.

Secondly, this motivation can be economically justified if the Principal actually has partial
access to the financial markets. Suppose the Principal can actually directly and costlessly
access both of the deviant strategies of each asset class, so θL and τL. Continuing from the
opening example with Asian equities and European equities, θL would represent a passive
Asian index and τL would represent a passive European index that the Principal could access
directly without delegation. Thus, the Principal would only want to delegate to implement his
preferred strategy pair (θH, τH), which are, respectively, the Asian macro and European macro
strategies from the opening example. Thus, for instance, if the parameters are such that the

9 The equivalent means assumption can be easily relaxed at the expense of more complicated expressions
of the results.

10 The equivalent volatility assumption can be easily relaxed at the expense of more complicated expres-
sions of the results.
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strategy pair (θH, τL) yields higher value for the Principal than (θH, τH), then the Principal
only needs one outside Manager to manage the asset class θ; analogous comments also apply
for the other deviant strategy pairs. If this were the case, we would have no meaningful
discussion of centralized versus decentralized delegation as in our context.

Thus, for the remainder of the paper, Assumption 3.3.1 is strictly enforced.

Delegation forms

In the presence of moral hazard over investment strategy choices for each asset class, how
should the Principal delegate? For the rest of the paper, we will focus on two forms of
delegation — centralized delegation and decentralized delegation. In all forms of delegation,
the Principal will offer a linear contract over the portfolio’s net returns.

Centralized delegation

t = 0 t = 1

Principal offers
a linear contract

(xC , yC) ∈ R× [0, 1]
to the Manager C

Manager C accepts
or rejects

the contract

Manager C makes
investment strategy

choices
θ ∈ {θH, θL},
τ ∈ {τH, τL}

Manager C chooses
portfolio weights
1− ψ ∈ R into Rθ;
and ψ into Rτ

Principal receives pooled
portfolio return

R̂(θ,τ) := (1− ψ̂(θ,τ))Rθ + ψ̂(θ,τ)Rτ ;

pays xC + yCR̂(θ,τ) to the Manager C

Manager C receives payoffs
xC + yCR̂(θ,τ) − (c(θ) + c(τ))

Figure 3.1: Centralized delegation timeline. Manager C has a strategy choice from each asset
class, and also has a portfolio choice between those selected pair of strategies. The
Principal only has a contract design choice.

In centralized delegation, the Principal delegates all initial wealth to a single Manager
C. In the previous example, Manager C can be a global strategy manager who manages
both the Asian and European asset class. Manager C will be responsible for managing
both asset class θ and τ . Given any contract, Manager C will have both a strategy choice
and a portfolio choice. Firstly, from each of the two asset classes, Manager C will pick a
strategy θ ∈ {θH, τH} and a strategy τ ∈ {τH, τL}. Secondly, for each chosen strategy pair
(θ, τ), Manager C will pick portfolio weight 1 − ψ into strategy θ, and portfolio weight ψ
into strategy τ . The resulting portfolio (1 − ψ̂(θ,τ), ψ̂(θ,τ)) will have a net return R̂(θ,τ). In

return for Manager C’s services, the Principal offers a linear contract xC + yCR̂(θ,τ) over the
portfolio net return, where (xC , yC) ∈ R × [0, 1]. Thus, xC is a fixed (percentage) fee, while
yC is a performance (percentage) fee. See Figure 3.1 for a timeline.
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Thus, the optimization problem under centralized delegation is as follows.

sup
(xC ,yC)∈R×[0,1]

E[W (θH,τH)
cP ]− ηP

2
Var(W

(θH,τH)
cP ), (Cen)

subject to,

W
(θ,τ)
cP := 1 + R̂(θ,τ) − (xC + yCR̂(θ,τ)), (3.3.2a)

W
(θ,τ)
C := −(c(θ) + c(τ)) + xC + yCR̂(θ,τ), (3.3.2b)

W̃
(θ,τ)
C := −(c(θ) + c(τ)) + xC + yC ((1− ψ)Rθ + ψRτ ) , (3.3.2c)

ψ̂(θ,τ) := arg sup
ψ∈R

E[W̃ (θ,τ)
C ]− ηM

2
Var(W̃

(θ,τ)
C ), (3.3.2d)

R̂(θ,τ) := (1− ψ̂(θ,τ))Rθ + ψ̂(θ,τ)Rτ , (3.3.2e)

0 ≤ E[W (θH,τH)
C ]− ηM

2
Var(W

(θH,τH)
C ), (3.3.2f)

(θH, τH) = argmax
(θ′,τ ′)∈S

E[W (θ′,τ ′)
C ]− ηM

2
Var(W

(θ′,τ ′)
C ). (3.3.2g)

In (Cen), the Principal maximizes his mean-variance utility over terminal wealth (3.3.2a),
which is equal to the return from the Manager C managed portfolio, less the fees that the
Principal pays. In the maximization, the Principal needs to pick the optimal fixed fees xC
and optimal performance fees yC as part of the linear contract. Given the linear contract,
Manager C will construct the optimal portfolio, as in (3.3.2d), out of the two strategies,
one each from the two asset classes, to obtain the portfolio returns in (3.3.2e). In return
for Manager C’s service, his terminal wealth is (3.3.2b). The contract must be such that
Manager C is willing to participate and so (3.3.2f) is Manager C’s individual rationality
constraint. In the second best case, the Principal’s desired strategy pair (θH, τH) must also
be incentive compatible for Manager C, which is (3.3.2g).

Decentralized delegation

In decentralized delegation, the Principal delegates wealth to two different individuals, Man-
ager A and Manager B. Manager A is responsible for only managing asset class θ, and
Manager B is responsible for only managing asset class τ . Thus, following the earlier ex-
ample, Manager A is an Asian asset class manager, while Manager B is an European asset
class manager. The Principal will allocate 1− π portion of his initial wealth to Manager A
and π proportion to Manager B. In return for the two individuals services, the Principal
will offer a linear contract (1 − π)(xA + yARθ) to Manager A, and π(xB + yBRτ ) to Man-
ager B, where (xA, yA), (xB, yB) ∈ R× [0, 1].11 Thus, xA, xB represent the fixed (percentage)

11 To actually have a feasible contract, we actually require that π ≥ 0 and 1 − π ≥ 0. Else, without
this requirement, the Principal could demand infinitely large claw back payments from the two Managers.
We will see in the subsequent that these conditions do not bind in the presence of the individual rationality
constraints.
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t = 0 t = 1

Principal offers
two linear contracts

(xA, yA), (xB, yB) ∈ R× [0, 1]
to both Managers A, B

Principal makes
portfolio choices:

(i) 1− π ∈ R to Manager A; and
(ii) π to Manager B

Managers A,B accept
or reject

the contract

Managers A,B make
investment strategy

choices
θ ∈ {θL, θH} and
τ ∈ {τL, τH},

resp.

Principal receives returns
πRτ + (1− π)Rθ;

pays (1− π)(xA + yARθ) to Manager A, and
pays π(xB + yBRτ ) to Manager B

Manager A receives returns
(1− π)(xA + yARθ)− c(θ);
Manager B receives returns

π(xB + yBRτ )− c(τ)

Figure 3.2: Decentralized delegation time line. In contrast to centralized delegation of Figure 3.1,
the Principal now has both contract design choice and portfolio choice. Manager A
and Manager B only have strategy choices within their own asset class.

fees for, respectively, Manager A and Manager B, whereas yA, yB represent the performance
(percentage) fees. Please see Figure 3.2 for the time line.

Thus, the optimization problem under decentralized delegation is as follows.

sup
(xA,yA),(xB ,yB)∈R×[0,1]

sup
π∈[0,1]

E[W (θH,τH)
P ]− ηP

2
Var(W

(θH,τH)
P ) (Dec)

subject to,

W
(θ,τ)
P := 1 + πRτ + (1− π)Rθ − π(xB + yBRτ )− (1− π)(xA + yARθ) (3.3.3a)

W θ
A := (1− π)(xA + yARθ)− c(θ) (3.3.3b)

W τ
B := π(xB + yBRτ )− c(τ) (3.3.3c)

0 ≤ E[W θH
A ]− ηM

2
Var(W θH

A ), and 0 ≤ E[W τH
B ]− ηM

2
Var(W τH

B ) (3.3.3d)

θH = argmax
θ′∈{θH,θL}

E[W θ′

A ]− ηM
2
Var(W θ′

A ) (3.3.3e)

τH = argmax
τ ′∈{τH,τL}

E[W τ ′

B ]− ηM
2
Var(W τ ′

B ) (3.3.3f)

The Principal’s objective (Dec) is to pick the optimal linear contracts to compensate the two
Managers, and also to pick the optimal portfolio policy to decide how much wealth to allocate
to the Managers’ strategies. The Principal’s terminal return (3.3.3a) is equal to the portfolio
(1 − π, π) that the Principal decides to allocate to Manager A and B’s strategy returns
(Rθ, Rτ ), less the fees owed. Both (3.3.3b) and (3.3.3c) represent, respectively, Manager
A and Manager B’s terminal wealth. The two Managers’ participation constraints are in
(3.3.3d). To induce Manager A and Manager B to pick the Principal’s desired strategy pair
(θH, τH), the Managers’ incentive compatibility constraints are in (3.3.3e) and (3.3.3f).
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3.4 First Best

Let us begin by considering the first best setup, whereby the Principal can directly observe
and contract on the private investment strategy choices of the Managers.

Centralized Delegation in First Best

For the first best centralized delegation case, consider problem (Cen) without the incentive
compatibility constraint (3.3.2g).

Proposition 3.4.1. Consider the first best centralized delegation problem; that is, problem
(Cen) without the incentive compatibility constraint (3.3.2g). Fix any strategy pair (θ, τ) ∈ S.

(a) Given any linear contract (xC , yC) ∈ R × [0, 1], the optimal portfolio weight to strategy
τ of Manager C is, 12

ψ̂(θ,τ) =
1

2

(
1 +

1

yC

µτ − µθ
ηMσ2(1− ρθτ )

)
. (3.4.1)

(b) For any given contract (xC , yC), the mean and variance of the portfolio return are given
by,

E[R̂(θ,τ)] =
1

yC

(µθ − µτ )
2

2ηMσ2(1− ρθτ )
+
µθ + µτ

2
,

Var(R̂(θ,τ)) =
1

y2C

(µθ − µτ )
2

2η2Mσ
2 (1− ρθτ )

+ σ2(1 + ρθτ ).

(c) The optimal fixed and performance fees are, respectively,

x̂C((θ, τ), yC) = (c(θ) + c(τ))− yCE[R̂(θ,τ)] +
ηM
2
y2CVar(R̂(θ,τ)), for any yC ∈ [0, 1]

(3.4.2)

ŷFBC =
ηP

ηP + ηM
,

and so under the optimal contract, the optimal portfolio is,

ψ̂(θ,τ) = ψ̂(θ,τ)(ŷ
FB
C ) =

1

2

(
1 +

ηP + ηM
ηPηM

µτ − µθ
1− ρθτ

)
.

12If one needs the value of ψ̂θτ (yC) at yC = 0, we will define it via the limit; that is, ψ̂(θ,τ)(0) :=

limyC↓0 ψ̂(θ,τ)(y). However, as we shall see, the optimal performance fee y generically will not be reached
at 0 (i.e. due to individual rationality of Manager C), and hence the point 0 is not really of concern. For
subsequent expressions in this proposition that involves yC in the denominator, define it through the same
limiting argument.
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(d) The Principal’s value function for implementing (θH, τH),

E[W (θH,τH)
cP ]− ηP

2
Var(W

(θH,τH)
cP )

∣∣∣
FB

= −2c+ 1 + µ− 1

4

ηPηM
ηP + ηM

σ2(1 + ρθH,τH).

(e) For any contract (xC , yC), the Manager C’s utility for implementing investment strategy
pair (θ, τ) is,

E[W (θ,τ)
C ]− ηM

2
Var(W

(θ,τ)
C )

= −(c(θ) + c(τ)) + xC +
(µθ − µτ )

2

4ηMσ2(1− ρθτ )
+

1

2
(µθ + µτ )yC − 1

4
ηMσ

2(1 + ρθτ )y
2
C ,

and in particular for (θH, τH), it is,

E[W (θH,τH)
C ]− ηM

2
Var(W

(θH,τH)
C ) = −2c+ xC + µyC − 1

4
ηMσ

2(1 + ρθH,τH)y
2
C .

For any given contract, the portfolio weight ψ̂(θ,τ) into strategy τ made by Manager C
will clearly be independent of the fixed fees xC and only be dependent on the performance fee
yC . For instance, suppose strategy τ has a higher mean return than strategy θ, so µτ > µθ
(the converse case is analogous). Then in this case, naturally Manager C will allocate higher
portfolio weights ψ̂(θ,τ) to strategy τ and less to strategy θ; and if the strategies have high
correlations ρθτ , it induces the Manager C to almost take a “long-short” strategy whereby
even more weights are allocated to τ and less are to θ.

Indeed, for any contract (xC , yC) and any strategy pair (θ, τ) ∈ S, we observe the expected
wealth and risk aversion adjusted wealth volatility for Manager C, after he has chosen the
optimal portfolio, are respectively,

E[W (θ,τ)
C ] = −(c(θ) + c(τ)) + xC + yC ·

[
1

yC

(µθ − µτ )
2

2ηMσ2(1− ρθτ )
+
µθ + µτ

2

]
︸ ︷︷ ︸

ER̂(θ,τ)

= −(c(θ) + c(τ)) + xC +
(µθ − µτ )

2

2ηMσ2(1− ρθτ )
+
µθ + µτ

2
yC ,

ηM
2
Var(W

(θ,τ)
C ) =

ηM
2
Var(yCR̂(θ,τ))

=
ηM
2
y2C ·

[
1

y2C

(µθ − µτ )
2

2η2Mσ
2(1− ρθτ )

+ σ2(1 + ρθτ )

]
︸ ︷︷ ︸

Var(R̂(θ,τ))

=
(µθ − µτ )

2

4ηMσ2(1− ρθτ )
+
ηM
2
σ2(1 + ρθτ )y

2
C .



CHAPTER 3. CEN VS DEC DEL PORT MGT UNDER MORAL HAZARD 143

Firstly, the risk-adjusted long-short trading profits for Manager C will be the term(
1

2
− 1

4

)
(µθ − µτ )

2

ηMσ2(1− ρθτ )
=

(µθ − µτ )
2

4ηMσ2(1− ρθτ )
,

and these trading profits are completely independent of any contract (xC , yC) the Principal
offers. Secondly, there are contract mean and volatility effects for implementing the strategy
pair (θ, τ). The contract mean effect is µθ+µτ

2
yC , which is the expected performance fee

payoff to Manager C. The contract volatility effect, adjusted for Manager C’s risk aversion,
is ηM

2
σ2(1+ρθτ )y

2
C . In particular, for any contract and any strategy pair, the expected wealth

of Manager C is E[W (θ,τ)
C ] and its risk adjusted wealth volatility is ηM

2
Var(W

(θ,τ)
C ). However,

the performance fees yC only enter through the contract mean and contract volatility effect
as discussed above, but is independent of the long-short trading profits for Manager C. These
effects are related to Manager C’s “relaxed investment opportunity set” and we will have
more to say about incentivization in Section 3.5 when moral hazard is present.

The optimal fixed fees x̂C are to simply compensate for Manager C’s private costs for
taking on investment strategy pairs (θ, τ), less Manager C’s share of the returns, and plus
a volatility adjustment. The performance fees ŷC is equal to the ratio of Principal’s risk
aversion ηP over the sum of both the Principal and Manager C’s risk aversion ηP+ ηM. This
performance fee form is directly from optimal risk sharing of the linear contract form.

Decentralized Delegation in First Best

Next, we consider the first best decentralized delegation case. That is, consider the problem
(Dec) without the incentive compatibility constraints (3.3.3e) and (3.3.3f).

Proposition 3.4.2. Consider the first best centralized delegation problem; that is, problem
(Dec) without the incentive compatibility constraints (3.3.3e) and (3.3.3f). For any invest-
ment strategy θ, τ , define the quantities:

πo(θ,τ) :=
1

2

[
1 +

(µτ − µθ)(ηM + ηP(1− ρθτ ))

ηPηMσ2(1− ρθτ )

]
,

yoA,(θ,τ) :=
ηP [(µθ − µτ )(1− ρθτ )(ηM + ηP(1 + ρθτ )) + ηPηMσ

2(1− ρ2θτ )]

(µθ − µτ ) [(ηM + ηP)2 − η2Pρ
2
θτ ] + ηPηMσ2(1− ρθτ )[ηM + ηP(1 + ρθτ )]

,

yoB,(θ,τ) :=
ηP [(µθ − µτ )(1− ρθτ )(ηM + ηP(1 + ρθτ ))− ηPηMσ

2(1− ρ2θτ )]

(ηM + ηP(1 + ρθτ )) [(µθ − µτ )(ηM + ηP(1− ρθτ ))− ηPηMσ2(1− ρθτ )]
.

Then,

(a) For any portfolio π allocated to Manager B and performance fees (yA, yB), the optimal
fixed fees are,

x̂A(θ, π, yA) =
1

1− π

[
c(θ)− (1− π)yAµθ +

ηM
2
y2A(1− π)2σ2

]
(3.4.3a)

x̂B(τ, π, yB) =
1

π

[
c(τ)− πyBµτ +

ηM
2
y2Bπ

2σ2
]

(3.4.3b)
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(b) If (πo(θ,τ), y
o
A,(θ,τ), y

o
B,(θ,τ)) ∈ (0, 1)3, then the optimal portfolio policy and optimal perfor-

mance fee policy of the Principal for implementing strategy (θ, τ) are

(πo(θ,τ), y
o
A,(θ,τ), y

o
B,(θ,τ)).

(c) In particular, for implementing (θH, τH), the optimal portfolio and performance fee polices
are,

(π̂FB, ŷFBA , ŷFBB ) =

(
1

2
,

ηP(1 + ρθH,τH)

ηM + ηP(1 + ρθH,τH)
,

ηP(1 + ρθH,τH)

ηM + ηP(1 + ρθH,τH)

)
,

and the Principal’s value function is,

E[W (θH,τH)
P ]− ηP

2
Var(W

(θH,τH)
P )

∣∣∣
FB

= −2c+ µ− 1

4

ηPηMσ
2(1 + ρθH,τH)

ηM + ηP(1 + ρθH,τH)
.

In decentralization, the Principal will allocate equal amount of wealth into both Manager
A and Manager B, and moreover, the performance fees the Principal will pay to them will be
equal as well. This result is immediate since from Assumption 3.3.2, we had assumed that
the compliant strategy pair (θH, τH) have identical means and identical volatilities. Unlike
the performance fees of centralization in Proposition 3.4.1, where the performance fees are
simply ηP/(ηP + ηM), the performance fees in decentralization must take into account the
correlations ρθH,τH of the strategies. Thus, in centralization, risk management is internalized
by the single Manager C, and hence the resulting performance fees only need to depend
on the risk aversions of the individuals. However, with decentralization, the Principal must
handle risk management himself and thus the performance fees must reflect the correlations
of strategies, in addition to the individuals’ respective risk aversions.

Risk management defines “the boundaries of a firm”

The first best results of centralized delegation in Proposition 3.4.1 and that of decentralized
delegation in Proposition 3.4.2 illustrate the idea that risk management defines the “bound-
aries of a firm”. Indeed, the boundaries of a firm are central ideas in economics since Coase
(1937), and the contemporary resurgence of these ideas can be traced to Williamson (1975,
1985). See Holmström and Roberts (1998) and Williamson (2002) for excellent surveys.

In centralization, the boundary of a “firm” is fixed and wide. Here, we interpret a “firm”
to be Manager C, and its boundaries to be the activities that Manager C could take on. The
Principal delegates all wealth to Manager C, and in this sense, the boundary of a “firm” is
fixed. But the boundary of a firm is wide in the sense that given any contract, Manager
C handles portfolio choice between the investment strategy pair desired by the Principal.
In first best centralization, while the Principal can observe and contract on the investment
strategy choices made by Manager C, the Principal cannot contract on the specific portfolio
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choices made by Manager C. Thus, risk management is, in effect, non-contractible. In
our setup, largely because it will help in analytical tractability for the second best case
of Section 3.5, we assume that the strategy pair (θH, τH) have equivalent mean returns µ
and also equivalent volatility σ; see again Assumption 3.3.2. Again, both the Principal
and Manager C have mean-variance preferences. And suppose, hypothetically, the Principal
could have direct access to the capital markets. Then both the hypothetical Principal and
Manager C will load equal portfolio weights into the two strategies, regardless of their risk
aversions ηM and ηP; in this special case, the Principal and Manager C will identically agree
on portfolio choice. However, it is not difficult to see that if the mean returns are different,
or that the volatilities are different, Manager C’s portfolio choice would differ to that of the
hypothetical Principal. Moreover, even in first best, while the Principal can contract on the
strategy pair (θ, τ) Manager C implements, the Principal cannot contract on Manager C’s
portfolio choice. Moreover, this difference in the portfolio weight choices between Manager C
and this hypothetical Principal stems from the difference of their risk aversion and also the
performance fees offered to Manager C. In all, without ability to contract on portfolio choice
(or more broadly speaking, risk management), the boundary of Manager C is effectively fixed
and wide, and Principal will use contracts to simply optimally risk share.

The discussion for decentralization is far simpler. In decentralization, the boundary of
a “firm” is flexible and narrow. Manager A and Manager B can only operate within their
own asset class, and in this sense, their boundaries are narrow. In contrast to centralization,
wealth allocations and hence also risk management, is exclusively handled by the Principal.
The amount of wealth the Principal allocates to each Manager thus dictates the influence
each Manager has on the Principal’s welfare, and it is in this sense that the boundary of a
“firm” is flexible.

As we shall see in Section 3.5 where moral hazard is present, these two core differences
between the boundary of a “firm” in centralization versus decentralization will have key
implications for their optimal contracts and its existence.

Comparison between Centralized Delegation versus Decentralized
Delegation in First Best

Now we can compare centralized delegation versus decentralized delegation under first best.

Proposition 3.4.3. The difference between the Principal’s value function in first best de-
centralized delegation and first best centralized delegation is,(

E[W (θH,τH)
P ]− ηP

2
Var(W

(θH,τH)
P )

) ∣∣∣
FB

−
(
E[W (θH,τH)

cP ]− ηP
2
Var(W

(θH,τH)
cP )

) ∣∣∣
FB

=
ηMη

2
PρθH,τH(1 + ρθH,τH)σ

2

4(ηP + ηM)(ηM + ηP(1 + ρθH,τH))
.

Thus, decentralized delegation is better than centralized delegation if and only if the returns
of the Principal’s desired strategy pair (θH, τH) are strictly positively correlated ρθH,τH > 0;
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conversely, centralized delegation is better than decentralized delegation if and only if the
strategies are strictly negatively correlated ρθH,τH < 0; and the two forms of delegation are
equivalent when the strategies are uncorrelated ρθH,τH = 0.

When the correlation between the Principal’s desired strategy pair (θH, τH) is strictly
negative, ρθH,τH < 0, delegating to a single Manager C is beneficial. Given that Manager C
will be putting long positions into both investment strategies θH and τH, and since Manager
C is also risk averse, a strictly negative correlation ρθH,τH lowers the contract volatility
for Manager C, and thereby it is cheaper for the Principal to risk share with Manager
C. But when the correlations become strictly positive, ρθH,τH > 0, the reverse happens,
and decentralized delegation is more appealing to the Principal. When the correlations
become positive, delegating to a single Manager C actually increases Manager C’s contract
volatility, and thereby making it more expensive for the Principal to risk share. However,
with decentralized delegation, neither Manager A nor Manager B directly absorb the positive
correlation effects. Thus, the Principal, via use his own portfolio choice, can make it cheaper
to risk share with the decentralized Managers. And finally, in the case when the strategies
are uncorrelated, ρθH,τH = 0, both centralized and decentralized delegation are identical, since
neither the centralized or decentralized Managers(s) are affected by the correlation structure
directly for the purpose of risk sharing.

3.5 Second Best

We come to one of the core results of the paper. Here, we assume the Principal cannot direct
observe nor contract on the specific investment strategies that the Managers choose within
each asset class. In both the second best centralized delegation (Proposition 3.5.1) and second
best decentralized delegation (Proposition 3.5.2), the key emphasis will be, respectively, the
performance fees and the optimal portfolio policies. In contrast, the fixed fees (i.e. xC in
centralization; and xA, xB in decentralization) are actually relatively straightforward. In
both cases, the optimal fixed fees will ensure the Managers will participate and accept the
contract. Furthermore, the fixed fees will compensate the Managers for their private costs,
less the expected performance fee amount payoff, plus a volatility adjustment. This fixed fee
form is standard in all linear contracting setups, and hence we will focus our paper on the
performance fees and the portfolios.

Centralized delegation

Let’s first state the second best results for centralized delegation.

Proposition 3.5.1. Consider the second best centralized delegation problem (Cen). Then:

(a) For any performance fee yC ∈ [0, 1], the optimal fixed fees has the same form as that of
first best in (3.4.2) of Proposition 3.4.1.
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(b) For any performance fees yC ∈ [0, 1] and investment strategy pair (θ, τ) ∈ S, the opti-
mal portfolio ψ̂(θ,τ) chosen by Manager C is the same as the first best form (3.4.1) of
Proposition 3.4.1. Indeed, the portfolio weight Manager C will allocate to strategy τ in
the strategy pair (θ, τ) is,

ψ̂(θH,τH) ≡
1

2
,

ψ̂(θ′,τ ′) =
1

2

(
1 +

1

yC

µτ ′ − µθ′

ηMσ2(1− ρθ′,τ ′)

)
, (θ′, τ ′) ∈ S−(θH,τH)

(c) The (three) incentive compatibility constraints on the performance fees yC for inducing
Manager C to implement the strategy pair (θH, τH) are,

− 2c+
1

2
(µθH + µτH)yC − 1

4
ηMσ

2(1 + ρθH,τH)y
2
C

≥ −(c(θ′) + c(τ ′)) +
1

4

(µθ′ − µτ ′)
2

ηMσ2(1− ρθ′,τ ′)
+

1

2
(µθ′ + µτ ′)yC − 1

4
ηMσ

2(1 + ρθ′,τ ′)y
2
C ,

(3.5.1)

for (θ′, τ ′) ∈ S−(θH,τH). The three incentive compatibility constraints (3.5.1) can be equiv-
alently written as a single constraint,

0 ≥ max
(θ′,τ ′)

{
− (c(θ′) + c(τ ′)− 2c) +

1

4

(µθ′ − µτ ′)
2

ηMσ2(1− ρθ′,τ ′)

+
1

2
(µθ′ − µθH + µτ ′ − µτH)yC − 1

4
η2Mσ

2(ρθ′,τ ′ − ρθH,τH)y
2
C

}
, (3.5.2)

where the maximum is taken over the possible deviant strategy pairs (θ′, τ ′) ∈ S−(θH,τH).
Recall from Assumption 3.3.2, µ ≡ µθH = µτH.

(d) If the net cost for Manager C to comply and implement the Principal’s desired strategy
pair (τH, τH) is sufficient low, the Principal will achieve first best. That is, if

0 > max
(θ′,τ ′)

{
− (c(θ′) + c(τ ′)− 2c) +

1

4

(µθ′ − µτ ′)
2

ηMσ2(1− ρθ′,τ ′)

+
1

2

η

η + ηM
(µθ′ − µθH + µτ ′ − µτH)−

1

4

(
η

η + ηM

)2

η2Mσ
2(ρθ′,τ ′ − ρθH,τH)

}
(3.5.3)

then then the optimal performance fee is ŷC = ŷFBC .

(e) Suppose the net costs for compliance to Manager C is sufficiently high; that is, replace >
in (3.5.3) with ≤. If an optimal performance fee ŷC ∈ [0, 1] exists, there necessarily exists
some (unique) pair of deviant strategy pair (θb, τb) ∈ S−(θH,τH) that yields the highest net
deviation benefit for Manager C. Furthermore, consider the following two conditions on
(θb, τb).
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(i) For any strategy pair (θ′, τ ′) ∈ S−(θH,τH), define (i.e. the quadratic discriminant),

D(θ′,τ ′) :=
1

4
(µθ′ − µθH + µτ ′ − µτH)

2

+

[
− (c(θ′) + c(τ ′)− 2c) +

1

4

(µθ′ − µτ ′)
2

ηMσ2(1− ρθ′,τ ′)

]
η2Mσ

2(ρθ′,τ ′ − ρθH,τH).

(3.5.4)

Suppose the strategy pair (θb, τb) is such that,

D(θb,τb) ≥ 0.

(ii) For the pair (θb, τb), define (i.e. the positive quadratic root),

ỹ+,(θb,τb) :=
1

2

(
−µθb − µθH + µτb − µτH

2
+
√
D(θb,τb)

)
×
[
−(c(θb) + c(τ b)− 2c) +

1

4

(µθb − µτb)
2

ηMσ2(1− ρθb,τb)

]−1

. (3.5.5)

Suppose the pair is (θb, τb) is such that,

ỹ+,(θb,τb) ∈ [0, 1].

If both conditions (i) and (ii) hold, then the second best performance fee is ŷC = ỹ+,(θb,τb).
If neither condition (i) nor (ii) hold, then no second best contract will exist for centralized
delegation.

The right hand side of the incentive compatibility condition (3.5.2) is the “net cost” for
Manager C for being compliant instead of being deviant. Firstly, we have the standard
private costs effect: by being compliant and picking (θH, τH), Manager C needs to incur
private costs of c(θH) + c(τH) = 2c, but by deviating to (θ′, τ ′) ∈ S−(θH,τH), the private costs
are strictly lowered to c(θ′) + c(τ ′); hence, 2c − (c(θ′) + c(τ ′)) represents the net private
costs for complying instead of deviating. These effects would be standard in practically all
standard principal-agent models. However, there are three additional effects that arise solely
because of Manager C’s ability to take an arbitrary contract offered by the Principal, and
then subsequently trade upon it.

Secondly, incentive compatibility for Manager C also comes in the form of the net re-
turn differences from implementing the compliant investment strategy pair (θH, τH) versus
the deviant pair (θ′, τ ′) ∈ S−(θH,τH). From implementing the compliant pair and recall-
ing the optimal portfolio choices, Manager C gains an expected performance fee payoff of
(µθH + µτH)y/2 = µy, whereas by implementing a deviant pair, Manager C has the expected
performance fee payoff of (µθ′ + µτ ′)y/2. But recall for the compliant investment strategies,
µ = µθH > µθ′ and µ = µτH > µτ ′ . Thus, by being compliant, Manager C enjoys a net gain
of (2µ− µθ′ − µτ ′)y/2 in higher performance fee payoffs.
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Finally, the Principal wants to incentivize Manager C as cheap as possible, which is
equivalent to binding the incentive compatibility constraints with the minimal net costs to
Manager C across all possible strategy deviations.

For the remaining terms in the incentive compatibility constraint (3.5.2) we will discuss
them in Section 3.5, when we compare centralization versus decentralization. See also Corol-
lary 3.B.1 for the explicit conditions on the parameters under which which strategy pair
(θb, τb) is the most profitable deviation for Manager C.

Decentralized delegation

Next, let’s state the second best result for decentralized delegation.

Proposition 3.5.2. Consider the second best decentralized delegation case; that is consider,
problem (Dec) in its entirety.

(a) For any portfolio π and performance fee policies (yA, yB), the optimal fixed fees have the
form (3.4.3) of first best decentralization in Proposition 3.4.2.

(b) The incentive compatibility conditions to induce the Principal’s desired strategy pair
(θH, τH) are,

0 ≥ c− (1− π)yA∆µθ, (3.5.6a)

0 ≥ c− πyB∆µτ . (3.5.6b)

(c) Suppose the private costs c are sufficiently high13 , then the second best decentralized
optimal policies are,

(π̂, ŷA, ŷB)

=

(
1

2

[
1 +

∆µτ −∆µθ
∆µθ∆µτ

c

]
,

2∆µτc

c(∆µτ −∆µθ) + ∆µθ∆µτ
,

2∆µθc

c(∆µθ −∆µτ ) + ∆µθ∆µτ

)
.

We will defer discussing the decentralized contracting environment and the incentive com-
patibility constraints (3.5.6) in the next section, Section 3.5, when we compare centralization
versus decentralization.

Comparison between Centralization versus Decentralization

Now, we can compare the similarities and differences in contracting between centralization
and decentralization.

13 The precise conditions for this are in Proposition 3.B.2(aiv). See also Proposition 3.B.2 for further
details of the optimal policies of second best decentralized delegation.
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Investment opportunity set

The relaxation or restriction in the investment opportunity set is the key incentive difference
between centralization and decentralization.

Let’s first consider centralized delegation. Firstly, Manager C enjoys a relaxed investment

opportunity set. The term 1
4

(µθ′−µτ ′ )2
ηMσ2(1−ρθ′,τ ′ )

in Manager C’s incentive compatibility constraint

(3.5.2) represents the long-short trading benefit for Manager C by deviating to (θ′, τ ′). Under
the compliant strategy pair (θH, τH), we had assumed that they have equivalent means µ
and also equivalent volatility σ, and thus Manager C would put equal weights into both
investment strategies, and hence the optimal portfolio weights would be independent of
Manager C’s risk aversion, strategies’ volatility σ, and the correlation ρθH,τH . In contrast,
under the deviant investment strategy pairs (θ′, τ ′) ∈ S−(θH,τH), they have potentially different
means, and hence the correlation structure ρθ′,τ ′ and the volatility σ contribute to a long-

short strategy motive for Manager C; see again the portfolio form ψ̂(θ,′,τ ′) of Proposition 3.4.1.
This constitutes a benefit for Manager C that is foregone by being compliant, and hence is
an opportunity cost for Manager C that the Principal needs to compensate for in the form
of higher performance fees.

Secondly, incentive compatibility for Manager C also comes in the form of differences in
the contract volatility under the compliant strategy pair and that of deviant strategy pairs.
For any investment strategy pair (θ, τ), the contract volatility for Manager C is σ2(1+ρθ,τ )y

2
C .

And thus, adjusting for Manager C’s risk aversion, the term −1
4
ηMσ

2(ρθ′,τ ′ − ρθH,τH)y
2
C is the

net change in contract volatility for Manager C from taking the compliant pair (θH, τH) versus
a deviant pair (θ′, τ ′) ∈ S−(θH,τH). The signs of the correlations matter. If ρθ′,τ ′ − ρθH,τH > 0,
that is the deviant strategy (θ′, τ ′) ∈ S−(θH,τH) has a strictly higher correlation than the
compliant strategy pair, then this represents a net benefit for Manager C; that is, since
Manager C is risk averse, picking the compliant strategy pair with a lower correlation is
beneficial, so being compliant reduces the contract volatility. For the reverse case, when
ρθ′,τ ′ − ρθH,τH < 0, being compliant increases the contract volatility.

Finally, there is an interaction between the contract volatility and the long-short trading
benefit for Manager C. On the one hand, a higher correlation ρθ′,τ ′ increases the contract
volatility for Manager C when consideration a deviation to (θ′, τ ′), and is thus detrimental
to Manager C. But on the other hand, a higher ρθ′,τ ′ also increases the long-short trading
benefit for Manager C, and is thus beneficial for Manager C. These interaction effects,
again, are only afforded to Manager C due to his ability to modify the contract via his
relaxed investment opportunity set.

In contrast, Manager A and Manager B under decentralization face a far more restricted
investment opportunity set as compared to Manager C under centralization. And accord-
ingly, the incentive compatibility constraints of decentralization take on a far more simpler
form than centralization. Given any contract, Manager A and Manager B will only care
about the mean and volatility differences14 between the strategies’ returns in their respec-

14 From Assumption 3.3.2, we assumed that all strategies have identical volatility σ. We further discuss
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tive asset classes. And these differences in the moments between the Principal’s desired
strategy versus that of the deviant strategy are the benefits for Manager A and Manager B
for deviation. We will see the restricted investment opportunity set in decentralization will
translate to different implications than centralization for the managers’ risk aversions and
their private costs.

Managers’ risk aversions

Related to the investment opportunity set, the Managers’ risk aversion also play an opposite
role in contracting under centralization versus decentralization.

In centralization, suppose Manager C becomes less risk averse, so ηM ↓ 0. Firstly, when
this happens, Manager C becomes less concerned with the volatility difference of the contract
1
4
η2Mσ

2(ρθ′,τ ′−ρθH,τH)y2C → 0, for all deviant strategy pairs (θ′, τ ′) ∈ S−(θH,τH). Secondly, when
Manager C considers a deviation, Manager C cares less about the volatilities of the deviant
strategy pairs (θ′, τ ′) and also less of the correlation of their returns ρθ′,τ ′ . And indeed, as
Manager C becomes less risk averse, he only cares about the absolute difference |µθ′ − µτ ′|
between the deviant strategies. In the limit when Manager C becomes risk neutral, he will
take an infinitely large long position into strategy with highest mean, and take an infinitely
large short position into the strategy with the lowest mean. Thus as ηM ↓ 0, the long-short

trading profit would become infinitely large, 1
4

(µθ′−µτ ′ )2
ηMσ2(1−ρθ′,τ ′ )

↑ +∞. When this happens, the

cost for the Principal to compensate Manager C to ensure his compliance will be excessively
high, and thus a contract to implement the Principal’s desired investment strategy pair
(θH, τH) will fail to exist.

The above result is completely the opposite of standard principal-agent theories.15 The
literature suggests that it should be cheaper for a principal to compensate a less risk averse
agent, because of the lower risk premium the principal needs to pay the agent for bearing
risk. Here it is the reverse — the less risk averse Manager C becomes, the more expensive
it is to compensate him. This is again due to the relaxed investment opportunity set in
centralized delegation. For any given contract, Manager C can simply use the financial
markets to modify the intended incentives of the contract.16

In contrast, in decentralized delegation, as Manager A and Manager B become less risk
averse, an optimal contract may still exist. Indeed in this regard, unlike centralization, de-
centralization is much closer to a standard principal-(multi)agent problem. In the model,
we have assumed that the volatility σ of all investment strategies are equivalent. Thus, the
incentive compatibility constraints (3.5.6) under decentralization do not involve the Man-
agers’ risk aversion. And even if we were to assume the volatilities of investment strategies
are different, it is straightforward to see that the right-hand side of (3.5.6) would simply
have additional terms +ηM

2
(1 − π)2y2A(σ

2
θH

− σ2
θL
) and +ηM

2
π2y2B(σ

2
τH

− σ2
τL
) for Manager A

this implication in Section 3.5 below.
15 Say Laffont and Martimort (2001) and Bolton and Dewatripont (2004).
16 Admati and Pfleiderer (1997, Section V) makes a related point that benchmarked compensations are

not relevant to soliciting effort.
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and Manager B, respectively. Depending on the sign of σ2
θH

− σ2
θL

and σ2
τH

− σ2
τL
, the Prin-

cipal either pays additional fees for increased volatility risk imposed on the Managers, or
get savings in fees for decreased volatility risk. Regardless, as ηM ↓ 0, we collapse back to
our current case of (3.5.6). Thus, given Managers have restricted investment opportunity
sets, Managers’ risk aversion ηM play the standard role in the usual principal-agent literature
under decentralization.

Managers’ private costs

Managers’ private costs play a differentiating effect on centralization and decentralization.
Decentralized delegation cannot tolerate high levels of private costs c by both Manager A

and Manager B before no contract to implement the Principal’s desired strategy pair (θH, τH)
can exist. Unlike centralized delegation where the Manager C can take an arbitrary contract
and trade it to maximize the risk-return trade-offs for himself first, this is distinctly not the
case for decentralized delegation. In decentralized delegation, both Manager A and Manager
B have completely dedicated themselves to one particular strategy from their respective
asset classes, and cannot further form portfolios to maximize risk-return trade-offs. Thus,
although Manager A and Manager B are truly risk averse, from the perspective of incentive
compatibility, they behave like risk neutral individuals. That is to say, both Manager A and
Manager B only care about the private costs c and also the mean return differences ∆µθ
and ∆µτ between the compliant strategy and the deviant strategy in their own asset class,
and do not care about second moment effects of volatility nor correlation and even their own
risk aversions.17 And due to this “risk neutrality” in determining incentive compatibility,
contracting with decentralized individuals with high private costs could become prohibitively
costly, and so much so that a contract to implement the Principal’s desired strategy pair
(θH, τH) could fail to exist.

In contrast, centralized delegation can tolerate a higher level of private costs c before no
contract can exist. Given any contract, since Manager C is risk averse, he will pick portfolios
that generate a high portfolio mean return and a low portfolio volatility. Indeed, save for the
differences in risk aversion levels between the Principal and Manager C, the portfolio choice
behavior of Manager C is analogous to that of the Principal, were the Principal to have
direct access to the financial markets. Thus, Manager C behaves like a “quasi-Principal”
and hence, private costs c only play a second order effect. This is why for moderately high
levels of private costs c, the compliant Manager C must pay 2c and yet a centralized contract
will still exist for Principal to implement his desired strategy pair (θH, τH). In sharp contrast,
for these same moderately high levels of private costs c, decentralized contracts may fail for
Manager A and Manager B.

17 As discussed earlier, we had assumed all strategies have equivalent volatilities. But it is not difficult
to see that even if strategies in each of the asset classes have different volatilities, the fact that private costs
c will still play a first order effect in Manager’s consideration for deviation in decentralization.
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Numerical illustrations

To gain a fuller understanding of the differences and similarities between second best cen-
tralized delegation and second best decentralized delegation, we now turn to some numerical
illustrations of our results. As one can surmise from Proposition 3.5.1 and Proposition 3.5.2,
it is easiest to display these results in a numerical and graphical fashion. Thankfully, despite
the perhaps complex structures of the optimal portfolios and fees, and thus extending to
their respective Principal’s value functions, in that they are often highly nonlinear in the
economic parameters of interest, the results are nonetheless rather straightforward to com-
pute numerically; especially since we actually do have closed form analytical answers for all
of the results. A more explicit analytical solution to the difference in value functions between
centralization and decentralization is available under the extreme case when there is only
moral hazard over mean returns; see Section 3.B.

The base parameters that we will use in the numerical illustrations are given in Table 3.1,
unless plotted otherwise. In the figures below, we need to distinguish between two different

Principal’s risk aversion parameter ηP 5
Managers’ risk aversion parameter ηM 3
Compliant investment strategies’ mean returns, µ ≡ µθH = µτH µ 0.25
Mean return on deviant strategy θL µθL 0.10
Mean return on deviant strategy τL µτL 0.08
Volatility of all strategies σ 0.40
Correlation coefficient of compliant pair (θH, τH) ρθH,τH 0.20
Correlation coefficient of deviant pair (θH, τL) ρθH,τL 0.30
Correlation coefficient of deviant pair (θL, τH) ρθL,τH 0.30
Correlation coefficient of deviant pair (θL, τL) ρθL,τL 0.30
Managers’ private costs c 0.06

Table 3.1: The base parameter assumptions used in Section 3.5.

types of “better”. The first type is when contracts for implementing (θH, τH) exist for both
centralization and decentralization; the darker colors indicate which form of delegation is
better under this circumstance. The second type is when contracts for implementing (θH, τH)
does not exist under one form of delegation, while it does exist for another form of delegation.
In this second type, the form of delegation that has contract existence is better, by default;
this is indicated by the lighter colors.

In Figure 3.1, we see that high correlation ρθH,τH for the compliant strategy pair (θH, τH)
will favor decentralization, while low correlation will favor centralization. This is inherited
from the optimal risk sharing result of first best in Proposition 3.4.3. However, in the presence
of moral hazard, when ρθH,τH is sufficiently high, a centralized contract to implement (θH, τH)
for the Principal will not exist. Recalling the discussion on the investment opportunity set
in Section 3.5, for any performance fee yC ∈ [0, 1], the term −1

4
η2Mσ

2(ρθ′,τ ′ − ρθH,τH)y
2
C is the

difference between the contract volatility for Manager C implementing a deviant strategy



CHAPTER 3. CEN VS DEC DEL PORT MGT UNDER MORAL HAZARD 154

Principal's value function comparison
'Cen' better 'Cen' better, as no 'Dec' contract exists

'Dec' better 'Dec' better, as no 'Cen' contract exists

No contract for both 'Cen' and 'Dec'

Figure 3.1: Comparing the Principal’s value function under centralization versus decentralization:
compliant strategy pair correlation ρθH,τH versus private costs c.

pair (θ′, τ ′) ∈ S−(θH,τH), versus that of the compliant strategy pair (θH, τH). As the correlation
ρθH,τH of the compliant strategy pair increases, Manager C will incur a high contract volatility
for being compliant, whereas a low contract volatility for being deviant. Thus, when the
correlation ρθH,τH is sufficiently high, Manager C will surely deviate for any performance
fee yC to lower the contract volatility for himself, which then leads to nonexistence of a
contract in centralization to implement the Principal’s desired strategy pair (θH, τH). For
decentralization, high private costs c will also lead to contract nonexistence for implementing
the Principal’s desired strategy pair (θH, τH); this effect is as discussed in Section 3.5.

In Figure 3.2, we again see the effects of the relaxed investment opportunity set of Sec-
tion 3.5 under centralization. In this example, consider the deviant strategy τL of the as-
set class τ (the case for the strategy θL of the asset class θ is similar). Recall the long-

short opportunity cost under centralization is 1
4

(µ′θ−µ
′
τ )

2

ηMσ2(1−ρθ′,τ ′ )
for the deviant strategy pairs

(θ′, τ ′) ∈ S−(θH,τH). When the deviant strategy is τ ′ = τL, if its mean return µτL is low,
Manager C can take small long or even short positions in τL to finance large positions in
strategies in the asset class θ. So, as µτL decreases, the long-short opportunity cost for Man-
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Principal's value function comparison
'Cen' better 'Cen' better, as no 'Dec' contract exists

'Dec' better 'Dec' better, as no 'Cen' contract exists

No contract for both 'Cen' and 'Dec'

Figure 3.2: Comparing the Principal’s value function under centralization versus decentralization:
deviant strategy mean return µτL versus private costs c.

ager C increases, making centralized delegation unfavorable. In contrast, this opportunity
cost does not exist in decentralization. Furthermore, recall that Manager B is responsible
for managing asset class τ . As µτL decreases, the expected performance fee payoff yBµτL
for Manager B when he deviates from the compliant strategy τH to the deviant strategy
τL also decreases, and thereby making deviation less profitable for him. Thus when this
happens, the performance fees for Manager B could reach that of the first best result, and
thereby making decentralization favorable. However, we note that as µτL increases and as it
approaches the mean return µτH = µ of the compliant strategy τH, the payoff in performance
fees for Manager B to be compliant and deviant become similar. However, Manager B still
needs to incur a private cost c to implement the Principal’s desired strategy; in such a case
when the net benefit for being compliant rather than deviant is small, while Manager B still
needs to incur private costs c, Manager B will for sure deviate. As a result, a decentralized
contract for implementing the Principal’s desired strategy pair (θH, τH) could fail to exist, as
Manager B will for sure deviate. This observation here will motivate our discussion of the
dynamic model in Section 3.6.
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Principal's value function comparison
'Cen' better 'Cen' better, as no 'Dec' contract exists

'Dec' better 'Dec' better, as no 'Cen' contract exists

No contract for both 'Cen' and 'Dec'

Figure 3.3: Comparing the Principal’s value function under centralization versus decentralization:
compliant strategy pair correlation ρθH,τH versus strategy volatility σ.

In Figure 3.3, we see the effects of strategy volatility σ and the correlation ρθH,τH of the
compliant pair on the contracting environment. For low correlations, as volatility σ increases,
it will favor centralization because of the optimal risk sharing effect as discussed even in the
first best setup of Proposition 3.4.3. As already discussed in Figure 3.1, high correlation
ρθH,τH of the compliant strategy pair will increase the contract volatility for Manager C.
Here, volatility also brings about another perspective on this long-short opportunity cost.
As volatility σ decreases across all strategies, Manager C will care even more about the mean
difference between the deviant strategy pairs, and thus place more extreme long and short
positions. This increases the opportunity cost for Manager C to be compliant, and thereby
making centralization unfavorable.

In Figure 3.4, we study the effects of the Principal risk aversion ηP and the Managers’ risk
aversion ηM on the contracting environment. As discussed in Section 3.5, in centralization
when Manager C becomes less risk averse, he will more extreme long-short profits in the
deviant strategy pairs, and it will become ever more costly for Principal to induce Manager
C to be compliant. In decentralization, thanks to Assumption 3.3.2 that volatilities are
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Principal's value function comparison
'Cen' better 'Cen' better, as no 'Dec' contract exists

'Dec' better 'Dec' better, as no 'Cen' contract exists

No contract for both 'Cen' and 'Dec'

Figure 3.4: Comparing the Principal’s value function under centralization versus decentralization:
Principal’s risk aversion ηP versus Managers’ risk aversion ηM.

identical across all strategies, Manager A and Manager B will not factor in their risk aversion
in a deviation. Note that in one extreme when Manager C is highly risk averse while the
Principal is relatively less risk averse, centralization will be favored.

3.6 Dynamic Model

Motivation

In Section 3.5, we discussed the various effects of moral hazard on static centralized delegation
and decentralized delegation under second best. However, in spite of our discussions, there
is however one distinct important case where decentralized delegation is particularly fragile
compared to centralization.
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Failure of static decentralized delegation

Suppose the strategy returns within the asset class θ and τ have similar mean returns. That
is, suppose ∆µθ ≈ 0 and ∆µτ ≈ 0. To fix ideas on when this is possible, recall again the
motivating example discussed in Footnote 3 of the Introduction. Here, we can be more
concrete with that example. Recalling the centralized delegation incentive compatibility
constraint (3.5.1), in this case when the mean strategy returns within each asset class are
similar, a contract to induce the centralized Manager C to take the Principal’s desired
strategy pair (θH, τH) over other deviant strategy pairs will exist. Indeed in this case when
∆µθ ≈ 0 and ∆µτ ≈ 0, the opportunity cost for foregone long-short trading profits are
actually reduced, and thereby making centralized delegation even more attractive. However,
in this case the incentive compatibility constraints (3.5.6) for Manager A and Manager B,
respectively, in decentralized delegation are,

0 ≥ c− (1− π)yA∆µθ ≈ c and 0 ≳ c− πyB∆µτ ≈ c.

The condition 0 ≳ c is clearly impossible to satisfy unless the private costs are trivially small,
c ≈ 0. For Manger A, the difference in mean returns, ∆µθ, between the compliant strategy
θH and the deviant strategy θL represents the benefit to Manager A for compliance in terms of
higher expected performance fees. And when when ∆µθ ≈ 0, the benefit for being compliant
is small while Manager A still needs to incur a private cost c. In this situation, it is impossible
for the Principal to incentivize Manager A to implement the Principal’s desired strategy θH,
as Manager A will surely deviate. Similar observations hold for Manager B with respect
to his asset class τ . Economically, this is because neither of the decentralized Managers
are affected by the strategies’ correlations when considering a deviation. Indeed, in a static
decentralization, only the Principal reaps the diversification benefits via the strategies’ return
correlation.

This issue hints at a severe loss of efficiency for the decentralized delegation form. Here,
we have a setup whereby the decentralized Managers cannot be motivated and coordinated
to take on the compliant strategy pair for the Principal. An obvious and correct response
to this is to simply declare that for these asset classes with such mean return properties,
centralized delegation is by default better than decentralized delegation. However, this is a
rather unsatisfying response, and it is of interest to study mechanisms whereby we can still
correctly incentivize Managers in decentralized delegation.

Remark 3.6.1. When dynamics are available, a conceivable natural solution to this problem
is through the use of benchmarks to ensure that Managers had indeed implemented the desired
strategy. Indeed, van Binsbergen et al. (2008) have argued that a carefully designed benchmark
can be used to align the incentives of multiple decentralized delegated portfolio managers. 18

However, the use of benchmarks is problematic in light of the discussion of Admati and Pflei-
derer (1997), who argue that benchmarks are not useful in providing incentives to Managers,

18 One should note, however, van Binsbergen et al. (2008) is not a model of moral hazard. And thus,
what they call as “aligning incentives” is really simply better risk sharing in a first best case.
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and also echoed in the discussion earlier in Section 3.5, allowing the Managers to access the
financial markets could allow them to modify the effects of the contract. And most impor-
tantly, from an empirical perspective, direct benchmarked compensation contracts are simply
not prevalent in hedge funds and private equity type investments whereby the contracts are
usually based on the raw returns of the managed assets; see Getmansky, Lee, and Lo (2015)
for a recent review. Heinkel and Stoughton (1994) also consider a dynamic two-period dele-
gated portfolio management problem with linear contracts to incentivize managers to acquire
information; however, the authors critically assume the managers are risk neutral, and hence
is silent to our interemporal income hedging motive of the Managers that we emphasize as a
key economic channel, in both centralized and decentralized delegation.

Furthermore, from a contracting theory perspective, this problem has two obvious candi-
date solutions even in a static setup. The first one is via a team based contracting scheme 19

where the two decentralized Managers take on disjoint actions but their compensation is from
a common source; for instance, consider when Manager A’s and Manager B’s compensations
are dependent not on their own fund returns but actually on the Principal’s terminal wealth.
The second one is via a tournament contracting scheme 20 where Manager A’s compensation
depends on not only his own fund performance but also that of Manager B, and vice-versa.
However, neither the first type nor the second type of compensation are observed in practice.
The current practice remains that a fund’s compensation is only dependent its own return
performance. 21

In all, a direct expansion of the static contracting space will not solve the problem of
coordinating decentralized Managers return strategy dependence in the presence of moral
hazard.

Joint incentivization via reinvestments

The use of reinvestments in a dynamic model is a potential mechanism to induce the correct
incentivization in decentralized delegation. Suppose the Principal commits to contracting
with the Managers for one additional period. For each asset class, strategies chosen by
Managers have a committed long term effect: once strategies (θ, τ) have been chosen and
committed to at the beginning of the contract, the same set of strategies will be executed in
both the first period and in the subsequent period.

It should be strongly emphasized that by contracting for another period, we are not re-
lying on the arguments of repeated interactions as in the repeated dynamic principal-agent

19See Marschak (1955) and Marschak and Radner (1972).
20See Nalebuff and Stiglitz (1983) and more recently for an explicit example in portfolio delegation and

competition for fund flows, Basak and Makarov (2014).
21It is beyond the scope of the paper to study why is it that the current practice does not incorporate

these alternative compensation schemes as suggested by contracting theory. However, this author speculates
that these team based and tournament based compensation schemes strongly depend on all agents in the
game to know of other agents’ existence and characteristics. This condition could be difficult to execute in
practice.
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literature. 22 The strategy choice is long term so the Principal need not perform statistical
inference over time to learn the true action taking by the Managers and thereby punish or
reward accordingly in subsequent periods. Moreover, the key mechanism that we require is
the path dependence of Principal’s wealth on the Managers’ long term compensation. In
decentralization, once we allow for a subsequent period of contracting, the more wealth the
Principal has at the end of the initial period, the more wealth the Principal can allocate to
both Managers for investing in the subsequent period. Thus, the next period compensation
for the multiple Managers would heavily depend on the Principal’s wealth level from the
previous period. Thus, this path dependence in next period compensation would induce a
hedging motive for the multiple Managers in the initial period. In particular, this hedg-
ing motive comes from the intertemporal covariance between a particular Manager’s future
wealth and the Principal’s wealth, of which this compounds in all Managers’ strategy pair
correlations. Through this mechanism, the decentralized Managers will become concerned
about the correlation of strategies amongst each other when considering a deviation.

Additional assumptions in dynamics

The economic setup of the dynamic model is essentially identical to that of the static model
in Section 3.3, but we will need a few adjustments to account for the temporal nature of the
dynamic problem. The individuals in this economy are still equivalent to before. Instead of
contracting for just periods t = 0, 1, the contracting period is now extended to t = 0, 1, 2.

The asset class θ with investment strategies {θL, θH} now has per-period-returns Rθ,t, for
t = 1, 2; and likewise, the asset class τ with strategies {τL, τH} now has per-period-returns
Rτ,t for t = 1, 2. We should note that this is not a dynamic nor repeated moral hazard
model in the usual principal-agent literature. In particular, the Managers could not make
private choices on the strategies θ, τ in both periods t = 0 and t = 1. Rather, this is a model
where the Managers commit to a particular strategy at t = 0 but simply contracts with the
Principal for two periods.

In what follows, we will denote Et as the time t conditional expectation, Vart as the
time t conditional variance, Covt as the time t conditional variance, and Corrt as the time t
conditional correlation, for t = 0, 1.

We will make two assumptions.

Assumption 3.6.2. Let Rθ,t and Rτ,t be the period t = 1, 2 returns of investment strategies
θ, τ . We assume the time t = 1 returns of all investment strategies are independent of their
t = 2 counterparts.

Assumption 3.6.3. Assume Assumption 3.6.2. Furthermore assume the following.

(i) The conditional means of all strategies are equivalent across time; that is, µθ ≡ Et[Rθ,t+1]
and µτ ≡ Et[Rτ,t+1] for t = 0, 1.

22 Say, for instance, Mailath and Samuelson (2006).
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(ii) The conditional volatility of all strategies are equivalent across time; that is, 0 < σ2 ≡
Vart(Rθ,t+1) = Vart(Rτ,t+1) for all strategies θ, τ and all time t = 0, 1.

(iii) The conditional correlations of strategy pairs are equivalent across time; that is, ρθ,τ ≡
Corrt(Rθ,t+1, Rτ,t+1) for all strategies θ, τ and all time t = 0, 1.

As we begin to discuss dynamic portfolio choice and dynamic contracting, it becomes
quite clear the fashion in which state variables statistically relate to each other across time
are critically important. Assumption 3.6.2 immediately rules out stochastic and time vary-
ing means, volatility and correlation between investment strategies, which is admittedly the
strongest assumption above. While we do impose the assumption of independent distribu-
tions across time, we do not need to impose identical distributions. In particular, it is not
difficult to actually extend our current model to allow non-identical (but independent) dis-
tributions across time. But allowing some moments (i.e. Assumption 3.6.3) to be equivalent
across time, makes some of the discussion easier, and can be extended to be more general
case at the cost of some loss of tractability.

Dynamic Decentralized Delegation

In all, the optimization problem for decentralized delegation is as follows. Please see Fig-
ure 3.1 for the time line.

t = 0 t = 1

Principal offers contracts
xA, (yA,0, yA,1) ∈ R, [0, 1]2 to Manager A, and
xB, (yB,0, yB,1) ∈ R× [0, 1]2 to Manager B

for t = 0, 1

Principal makes
t = 0, 1 portfolio weight choices:
(i) 1− πt ∈ R to Manager A; and

(ii) πt to Manager B

Managers accepts
or rejects

the contract

Managers A,B make
investment strategy
choices θ and τ

Principal receives returns
π0Rτ,1 + (1− π0)Rθ,1;

pays (1− π0)yA,0Rθ,1 to Manager A, and
pays π0yB,0Rτ,1 to Manager B

Principal gets
aggregated wealth
W

(θ,τ)
P,1 = w

(θ,τ)
P,1

t = 1 t = 2

Principal reinvests
w

(θ,τ)
P,1 (1− π1) to Manager A

w
(θ,τ)
P,1 π1 to Manager B

Principal receives
w

(θ,τ)
P,1 (1 + π1Rτ,2 + (1− π1)Rθ,2);

pays w
(θ,τ)
P,1 (1− π1)yA,1Rθ,2 to Manager A, and

pays w
(θ,τ)
P,1 π1yB,1Rτ,2 to Manager B

Manager A receives
−c(θ) + xA + w

(θ,τ)
A,1 + w

(θ,τ)
P,1 (1− π1)yA,1Rθ,2;

Manager B receives
−c(τ) + xB + w

(θ,τ)
B,1 + w

(θ,τ)
P,1 π1yB,1Rτ,2

Figure 3.1: Dynamic decentralized delegation time line.
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sup
xA,xB∈R,

yA,0,yA,1∈[0,1],
yB,0,yB,1∈[0,1]

sup
π0,π1

−xA − xB + E0[W
(θH,τH)
P,2 ]− ηP

2
Var0(W

(θH,τH)
P,2 ), (DynDec)

subject to,

W
(θ,τ)
P,1 := 1 + (1− π0)Rθ,1 + π0Rτ,1 − (π0yB,0Rτ,1 + (1− π0)yA,0Rθ,1) , (3.6.1a)

W
(θ,τ)
P,2 := W

(θ,τ)
P,1 [1 + (1− π1)Rθ,2 + π1Rτ,2 − ((1− π1)yA,1Rθ,2 + π1yB,1Rτ,2)] , (3.6.1b)

W
(θ,τ)
A,1 := (1− π0)yA,0Rθ,1, (3.6.1c)

W
(θ,τ)
A,2 := W

(θ,τ)
A,1 +W

(θ,τ)
P,1 (1− π1)yA,1Rθ,2, (3.6.1d)

W
(θ,τ)
B,1 := π0yB,0Rτ,1, (3.6.1e)

W
(θ,τ)
B,2 := W

(θ,τ)
B,1 +W

(θ,τ)
P,1 π1yB,1Rτ,2, (3.6.1f)

0 ≤ xA − c+ E0[W
(θH,τH)
A,2 ]− ηM

2
Var0(W

(θH,τH)
A,2 ), (3.6.1g)

0 ≤ xB − c+ E0[W
(θH,τH)
B,2 ]− ηM

2
Var0(W

(θH,τH)
B,2 ), (3.6.1h)

θH = argmax
θ′

xA − c(θ′) + E0[W
(θ′,τH)
A,2 ]− ηM

2
Var0(W

(θ′,τH)
A,2 ), (3.6.1i)

τH = argmax
τ ′

xB − c(τ ′) + E0[W
(θH,τ

′)
B,2 ]− ηM

2
Var0(W

(θH,τ
′)

B,2 ). (3.6.1j)

See also Remark 3.6.5 for notes on the slight differences between the economic setup here
of the dynamic model and that of the static model in Section 3.3.

In the decentralized objective function of the Principal in (DynDec), the Principal needs
to choose the optimal fixed fees xA, xB and the t = 0 and t = 1 performance fees yA,0, yA,1 and
yB,0, yB,1, respectively for Manager A and B, and the portfolio weights π0, π1 for Manager
B. After Manager A and Manager B are paid their performance fees yA,0, yB,0 at t = 1,
we assume for simplicity that neither Manager will reinvest their collected fees. The budget
constraints for the Principal are (3.6.1a), (3.6.1b), and the budget constraints for Manager
A and B are respectively (3.6.1c), (3.6.1d) and (3.6.1e), (3.6.1f). Given that both Manager
A and Manager B are initially endowed with zero amount of wealth, (3.6.1g) and (3.6.1h)
are their individual rationality constraints. Likewise, (3.6.1i) and (3.6.1j) are their respective
incentive compatibility constraints for the Principal to induce the two Managers to take on
the Principal’s strict preferred (θH, τH) investment strategy pair.

Remark 3.6.4. Let’s clarify some of the notations and the interpretations of the timing.

• This is a model of commitment and thus the Principal commits to both Manager A and
Manager B on his current and future portfolio and performance fee policies.

• To be clear on the returns notation, we write Rθ,1 to be the net return from t = 0 to
t = 1 for strategy θ, and Rθ,2 to be the net return from t = 1 to t = 2. Analogous
comments apply for strategy τ with net returns notation Rτ,t.
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• We should discuss the notation of the portfolio and performance fee policies. At t = 0,
the Principal will allocate 1−π0 of his initial wealth to Manager A, and π0 to Manager
B. The Principal will also at t = 0 promise performance fees yA,0 and yB,0 to Manager
A and Manager B, respectively, at t = 1. Thus for instance, the total performance fee
payoff for Manager A at t = 1 for implementing strategy θ is (1−π0)yA,0Rθ,1. We will
call π0 to be the t = 0 portfolio policy, and yA,0 be the t = 0 performance fee policy to
Manager A, even though the performance fees are actually paid at t = 1. We keep this
timing convention notation because the randomness in the returns are indeed realized
at t = 1. Thus, the portfolio and performance policy must be known in advanced,
at t = 0, in order for the model to be nontrivial. Hence, we refer to policies at the
time of decision, and not at the time of payment. Likewise, we will call 1 − π1 be the
t = 1 portfolio policy to Manager A and yA,1 be the t = 1 performance fee policy, even
though the actual performance fee payoff to Manager A is at t = 2 for the quantity
w

(θ,τ)
P,1 (1− π1)yA,1Rθ,2. Analogous comments apply for Manager B.

Remark 3.6.5. While the economic setup in the dynamic model is largely identical to that
of the static model setup in Section 3.3, there are two minor differences that are worth
noting. Firstly, we have assumed that the fixed fees xA, xB to Manager A and Manager B,
respectively, are a lump sum figure and only paid at the contract terminal date t = 2. That
is, only performance fees are paid at t = 1 and t = 2. This is largely to simplify the analysis.
Secondly, the private costs c(θ) and c(τ) are — akin to the fixed fees — are now paid at t = 2.
Thus, even though the Managers commit to their investment strategy choice at t = 0, the
costs are only incurred at t = 2. This, again, is largely to simplify the problem. Alternatively,
we may think of the private cost not as a wealth cost but as a utility cost incurred at t = 0.

Finally, in light of the modifications of the timing of the fixed fees and private costs as
discussed above, as opposed to the static model of Section 3.3, we slightly reinterpret the
budget constraints W

(θ,τ)
k,t the individual k at time t. Whereas the wealths in the static model

are inclusive of the private costs and the fixed fees, in the dynamic model we interpret the
wealths are exclusive of the private costs and the fixed fees. This largely is done to simplify
the notations.

Remark 3.6.6. We discuss the analogous dynamic centralized delegation model in Sec-
tion 3.B. As the core motivation for introducing a dynamic model is to fix an issue specific
to decentralized delegation in the static model, we will thus keep the main discussion of a
dynamic model to decentralized delegation.

3.7 First Best in Dynamics

Dynamic Decentralized Delegation in First Best

Let us begin by considering the first best setup, whereby the Principal can directly observe
and contract on the private investment strategy choices of the Managers.
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Proposition 3.7.1. Consider the first best dynamic decentralized delegation problem; so con-
sider (DynDec) without the incentive compatibility constraints (3.6.1i) and (3.6.1j). Recall
that the Principal wants to implement strategy pair (θH, τH).

(a) For any portfolio and performance fee policies (π0, π1, yA,0, yA,1, yB,0, yB,1), the optimal
fixed fees for Manager A and Manager B, are, respectively,

x̂A,(θH,τH) = c− E0[W
(θH,τH)
A,2 ] +

ηM
2
Var0(W

(θH,τH)
A,2 ),

x̂B,(θH,τH) = c− E0[W
(θH,τH)
B,2 ] +

ηM
2
Var0(W

(θH,τH)
B,2 ).

(b) The t = 1 optimal policies are given as follows.

(i) The optimal t = 1 portfolio to allocate to Manager B is independent of fees and
wealth effects,

π̂FB1 =
1

2
.

(ii) The optimal t = 1 performance fee policies chosen by the Principal to compensate
Managers A and B are equivalent, and they are,

ŷFBA,1 = ŷFBB,1 =
ηP(1 + ρθH,τH)

ηP(1 + ρθH,τH) + ηM
.

(c) The t = 0 optimal policies are given as follows.

(i) The optimal t = 0 portfolio to allocate to Manager B is again independent of fees
and wealth effects,

π̂FB0 =
1

2
.

(ii) The optimal t = 0 (interior solution) performance fee policies chosen by the Prin-
cipal to compensate Manager A are, 23

ŷFBA,0 =
ŷNA,0
ŷDA,0

,

23 We use “N” for numerator and “D” for denominator.
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provided that ŷFBA,0 ∈ (0, 1), and where,

ŷNA,0 := 2η2P(1 + ρθH,τH)
2[ηPσ

2(1 + ρθH,τH)− 2µ2]

+ ηPηM(1 + ρθH,τH)
[
− 8µ2 + ηPσ

2(1 + ρθH,τH)×

[4 + µ(5− ρθH,τH + µ(3 + ρθH,τH))] + ηPσ
4(1 + ρθH,τH)

2
]

+ η2M

[
− 4µ2 + ηP(2 + µ(5 + 4µ− ρθH,τH))(1 + ρθH,τH)σ

2

+ ηPσ
4(1 + ρθH,τH)

2
]
,

ŷDA,0 := σ2

[
2η3P(1 + ρθH,τH)

3 + 2η3M

+ ηMη
2
P(1 + ρθH,τH)

2[6 + µ(2− 2ρθH,τH + µ(3 + ρθH,τH)) + σ2(1 + ρθH,τH)]

+ ηPη
2
M(1 + ρθH,τH)[6 + 4µ2 + 2µ(1− ρθH,τH) + (1 + ρθH,τH)σ

2]

]
.

The performance fees to compensate Manager B are identical, ŷFBB,0 = ŷFBA,0 .

Observing Proposition 3.7.1, under the Principal’s desired pair (θH, τH), and recalling
Assumption 3.6.2 and Assumption 3.6.3, given that both strategies have equivalent means,
it is no surprise that the t = 1 portfolio policy π̂FB1 would place equal weights between
Manager A and Manager B. And indeed, the t = 1 optimal performance fees ŷFBA,1 and ŷ

FB
B,1 for

Manager A and Manager B, respectively, are identical in form to that of the static first best
decentralized delegation problem of Proposition 3.4.2. For the t = 0 policies, and again given
the return assumptions of Assumption 3.6.2 and Assumption 3.6.3, the Principal will still
place equal portfolio weights π̂FB0 into Manager A and Manager B. Given that Manager A
and Manager B have identical risk aversion ηM and identical outside options, it is no surprise
that their t = 0 performance fees ŷFBA,0 and ŷFBB,0 would be identical. However, even though the
portfolio policies of π̂FB0 and π̂FB1 are identical across time, the performance fees are not. The

t = 0 performance fees will affect the amount of wealth W
(θH,τH)
P,1 available for reinvestment

at t = 1, and hence affecting the terminal t = 2 wealths of all individuals involved; thus
the t = 0 performance fees ŷFBA,0 and ŷFBB,0 must take into account this intertemporal wealth
hedging channel, and hence why these t = 0 performance fee policies will differ from that
of the t = 1 policy (since one period later at t = 2 is the terminal contracting date). See
Section 3.C for numerical illustrations of Proposition 3.7.1.

3.8 Second Best in Dynamics

Now we consider the second best dynamic delegation problem in its entirety.
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Dynamic Decentralized Delegation in Second Best

Proposition 3.8.1. Consider the second best decentralized delegation problem (DynDec) in
its entirety.

(a) For any portfolio and performance fee (π0, π1, yA,0, yA,1, yB,0, yB,1), the optimal fixed fees
for Manager A and Manager B have the same form as that of the first best result of
Proposition 3.7.1.

(b) Consider the t = 1 optimal policies. Suppose the t = 1 realized wealth under strategy

pair (θ, τ) ∈ S is W
(θ,τ)
P,1 = w

(θ,τ)
P,1 . Then for some constants λA, λB ∈ R:

(i) The optimal t = 1 portfolio is,

π̂λA,λB1 =
π̂N,λA,λB1

π̂D,λA,λB1

, (3.8.1)

where the analytical forms of the numerator and denominator can be found in
(3.H.8) of the Appendix.

(ii) The optimal t = 1 performance fee to compensate Manager A is,

ŷλA,λBA,1 =
ŷN,λA,λBA,1

ŷD,λA,λBA,1

, (3.8.2)

where the analytical forms of the numerator and denominator can be found in
(3.H.9) of the Appendix.

(iii) The optimal t = 1 performance fee to compensate Manager B is,

ŷλA,λBB,1 =
ŷN,λA,λBB,1

ŷD,λA,λBB,1

, (3.8.3)

where the analytical forms of the numerator and denominator can be found in
(3.H.10) of the Appendix.

(c) The t = 1 continuation utilities for the Principal, Manager A and Manager B under
the strategy pair (θ, τ) ∈ S are as follows. For notational simplicity, we will denote
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π̂1 := π̂λA,λB1 , ŷA,1 := ŷλA,λBA,1 , ŷB,1 := ŷλA,λBB,1 . Then,

ˆ̃U
(θH,τH)
P,1 := w

(θH,τH)
P,1 (1 + [1− (1− π̂1)ŷA,1 − π̂1ŷB,1]µ)

− ηP
2
σ2(w

(θH,τH)
P,1 )2

[
(1− π̂1)

2(1− ŷA,1)
2 + π̂2

1(1− ŷB,1)
2

− 2π̂1(1− π̂1)(1− ŷA,1)(1− ŷB,1)ρθH,τH

]
,

Û
(θH,τH)
A,1 := w

(θH,τH)
A,1 + (1− π̂1)ŷA,1w

(θH,τH)
P,1 µ− ηM

2
σ2(1− π̂1)

2ŷ2A,1(w
(θH,τH)
P,1 )2,

Û
(θL,τH)
A,1 := w

(θL,τH)
A,1 + (1− π̂1)ŷA,1w

(θL,τH)
P,1 µτL −

ηM
2
σ2(1− π̂1)

2π̂2
1(w

(θL,τH)
P,1 )2,

Û
(θH,τH)
B,1 := w

(θH,τH)
B,1 + π̂1ŷB,1w

(θH,τH)
P,1 µ− ηM

2
σ2π̂2

1 ŷ
2
B,1(w

(θH,τH)
P,1 )2,

Û
(θH,τL)
B,1 := w

(θH,τL)
B,1 + π̂1ŷB,1w

(θH,τL)
P,1 µτL −

ηM
2
σ2π̂2

1 ŷ
2
B,1(w

(θH,τL)
P,1 )2,

Note that the first two sum terms in all the continuation utility expressions above (exclud-

ing the term involving −ηMσ2/2) are equal to E1W
(θ,τ)
k,2 for individuals k = P,A,B and

for various respective strategy pairs (θ, τ). Define also the t = 1 aggregated continuation
utility,

ÛλA,λB
P,1 := ˆ̃U

(θH,τH)
P,1 + Û

(θH,τH)
A,1 + Û

(θH,τH)
B,1

− λA

(
Û

(θL,τH)
A,1 − (−c+ Û

(θH,τH)
A,1 )

)
− λB

(
Û

(θH,τL)
B,1 − (−c+ Û

(θH,τH)
B,1 )

)
. (3.8.4)

(d) The set of optimal t = 0 policies (π̂λA,λB0 , ŷλA,λBA,0 , ŷλA,λBB,0 ) is the solution to the following
optimization problem,

ÛλA,λB
P,0 = sup

yA,0,yB,0∈[0,1]
sup
π0∈R

E0[Û
λA,λB
P,1 ]− ηP

2
Var0(E1W

(θH,τH)
P,2 )

− ηM
2
Var0(E1W

(θH,τH)
A,2 )− ηM

2
Var0(E1W

(θH,τH)
B,2 )

− λA

[
−ηM

2
Var0(W

(θL,τH)
A,2 ) +

ηM
2
Var0(W

(θH,τH)
A,2 )

]
− λB

[
−ηM

2
Var0(W

(θH,τL)
B,2 ) +

ηM
2
Var0(W

(θH,τH)
B,2 )

]
. (3.8.5)

(e) The optimal constants λ̂A, λ̂B ∈ R are the solution to the problem,

inf
λ′A,λ

′
B∈R,

and at least one
of them are
nonzero

Û
λ′A,λ

′
B

P,0 .
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The analytical forms (see Section 3.H) of these t = 1 optimal policies all have a fractional
form, where both the numerator and denominator are separately nonlinear in the t = 1
realized wealths of both compliant and deviant strategy pairs. As we explain below, this
fractional form of the optimal policies at t = 1 will drive the value-at-risk (VaR) constraint
24 interpretation of the t = 0 portfolio and performance policies.

The t = 1 portfolio and performance fee policies

Let’s begin with a discussion of the t = 1 portfolio and performance fee policies (π1, yA,1, yB,1).

To make the argument concrete, for any given contract, let Ũ
(θH,τH)
P,t be the Principal’s time

t = 0, 1 continuation utility under the compliant investment strategy pair (θH, τH), and let

U
(θ,τ)
A,t and U

(θ,τ)
B,t be the time t = 0, 1 continuation utilities of both Manager A and Manager

B under a general strategy pair (θ, τ) ∈ S. In particular, the t = 1 continuation utilities
for the Principal, Manager A and Manager B, respectively, under the compliant investment
strategy pair (θH, τH) are,

Ũ
(θH,τH)
P,1 = E1[W

(θH,τH)
P,2 ]− ηP

2
Var1(W

(θH,τH)
P,2 ),

U
(θH,τH)
A,1 = E1[W

(θH,τH)
A,2 ]− ηM

2
Var1(W

(θH,τH)
A,2 ),

U
(θH,τH)
B,1 = E1[W

(θH,τH)
B,2 ]− ηM

2
Var1(W

(θH,τH)
B,2 ).

As it is the case with first best, the Principal wants to design portfolio and performance
fee policies to optimally risk share at the lowest possible cost possible with Manager A and
Manager B. This implies that, on the one hand, Principal wants to pick policies such that
the sum of all individuals’ continuation utilities Ũ

(θH,τH)
P,1 + U

(θH,τH)
A,1 + U

(θH,τH)
B,1 is maximized.

However, Manager A and Manager B could have deviated at t = 0. If Manager A was
compliant and Manager B was deviant, the resulting strategy pair would be (θH, τL); if
Manager A was deviant and Manager B was compliant, the resulting strategy pair would
be (θL, τH). Since the Principal only wants to implement (θH, τH), there is no circumstance
where Manager A and Manager B would deviate to the pair (θL, τL). Thus, the incentive
compatibility constraints at t = 0 to implement (θH, τH) are,

−c+ U
(θH,τH)
A,0 ≥ U

(θL,τH)
A,0 ,

−c+ U
(θH,τH)
B,0 ≥ U

(θH,τL)
B,0 ,

where, for reasonable parameters in equilibrium, both constraints will bind. Now, let
W

(θL,τH)
P,1 = w

(θL,τH)
P,1 and W

(θH,τL)
P,1 = w

(θH,τL)
P,1 be the Principal’s realized wealths at t = 1

under the two deviant strategy pairs (θL, τH) and (θH, τL), respectively.
Here we argue why the Principal’s wealth can be used as an “intertemporal glue” to bridge

the payoffs of the two Managers even in the presence of moral hazard. For instance from the

24 See Jorion (2006) for a survey of the value-at-risk (VaR) literature.



CHAPTER 3. CEN VS DEC DEL PORT MGT UNDER MORAL HAZARD 169

budget constraint (3.6.1d), for any strategy pair (θ, τ), Manager A’s expected performance

fee payoff at t = 2 is w
(θ,τ)
P,1 (1− π1)yA,1Rθ,2. This expected payoff to Manager A depends on

Manager A’s strategy return Rθ,2 from t = 1 to t = 2, the Principal’s portfolio allocation
1−π1 at t = 1 to Manager A, performance fees yA,1, and also on the Principal’s t = 1 realized

wealth W
(θ,τ)
P,1 = w

(θ,τ)
P,1 available for reinvestment when strategy pair (θ, τ) was implemented

at t = 0. However, the strategy pair choice (θ, τ) at t = 0 by the Managers is private, and
the Principal only wants to implement the strategy pair (θH, τH). Thus, the t = 1 portfolio
policy π1 and the performance fee (yA,1, yB,1) policy chosen by the Principal — which are
committed to at t = 0 — must induce Manager A to prefer implementing strategy θH over
θL, regardless of what strategy τ ∈ {τH, τL} Manager B takes. Analogous remarks apply for
incentivizing Manager B. Assigning Lagrange multipliers λA, λB ∈ R \ {0} to the equality
binding constraints, the Principal’s t = 1 optimization problem will thus be maximizing the
t = 1 policies (π1, yA,1, yB,1) over,

25

UλA,λB
P,1 = Ũ

(θH,τH)
P,1 + U

(θH,τH)
A,1 + U

(θH,τH)
B,1

− λA

(
U

(θL,τL)
A,1 − (−c+ U

(θH,τH)
A,1 )

)
− λB

(
U

(θH,τL)
B,1 − (−c+ U

(θH,τH)
B,1 )

)
.

We optimize the t = 1 policies to get (π̂λA,λB1 , ŷλA,λBA,1 , ŷλA,λBB,1 ) as per (3.8.1), (3.8.2) and

(3.8.3). The t = 1 portfolio and performance fee policies (π̂λA,λB1 , ŷλA,λBA,1 , ŷλA,λBB,1 ) will be

contingent on the realized wealthsW
(θH,τH)
P,1 = w

(θH,τH)
P,1 of the compliant strategy pair (θH, τH),

and also the realized wealths W
(θH,τL)
P,1 = w

(θL,τH)
P,1 (when Manager B deviates) and W

(θL,τH)
P,1 =

w
(θL,τH)
P,1 (when Manager A deviates). The resulting optimized t = 1 aggregated continuation

utility is ÛλA,λB
P,1 as per (3.8.4). To ensure that both Manager A and Manager B would be

compliant in equilibrium, the Principal must compensate both Manager A and Manager B for
the difference in the mean and volatility in their performance fee payoffs under the compliant
strategy pair (θH, τH) versus that of the deviant strategy pairs (θ

′, τ ′). This effect is intuitively
quite similar to the opportunity cost effect of foregone alternative wealth realizations as per
second best static centralization of Proposition 3.5.1. The Lagrange multipliers λA, λB give
the appropriate scaling of said compensation difference.

Moreover, the optimal policies (π̂λA,λB1 , ŷλA,λBA,1 , ŷλA,λBB,1 ) will take on a fractional form, where

the numerator and denominator are nonlinear in the Principal’s t = 1 realized wealth w
(θH,τH)
P,1

under the compliant strategy pair, and are also nonlinear in the wealths w
(θH,τL)
P,1 and w

(θL,τH)
P,1

that are realized under the deviant strategy pairs (θH, τL) and (θL, τH), respectively. The
fractional forms are inherent from the mean-variance preferences of all individuals involved.
Even from the classical Markowitz (1952) mean-variance formulation, it is immediate that the
optimal portfolio policy there would follow a fractional form, where the numerator involves
the mean returns of securities, and the denominator involves the volatilities of the securities

25 See Section 3.A for the dynamic programming principle specific to mean-variance preferences so that
the optimal policies are time consistent.
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and the initial wealth of an investor. A similar effect is at play here. To Manager A, for
instance, w

(θH,τH)
P,1 (1− π̂λA,λB1 )ŷλA,λBA,1 is precisely the amount of after performance fees wealth

that the Principal allocates to Manager A, and multiplying this term out, we can see that
the numerator of this expression involves the risk-adjusted mean payoffs to the Principal,
Manager A and Manager B under the wealths of the compliant strategy pair and wealths of
the deviant strategy pairs, and the denominator involves the volatility of such payoffs and
also the correlations with respect to the return strategies.

One should note that in the first best case of Proposition 3.7.1, when no moral hazard
is present and so λA, λB = 0, the optimal t = 1 portfolio and performance fee policies have
the simple form,

(π̂FB1 , ŷFB1,A , ŷ
FB
1,B) =

(
1

2
,

η(1 + ρθH,τH)

η(1 + ρθH,τH) + ηM
,

η(1 + ρθH,τH)

η(1 + ρθH,τH) + ηM

)
.

Under first best, the only motive for the Principal is to optimally risk share and indeed,
the Principal would invest equally into both Manager A and Manager B, and the resulting
performance fees are simply a re-weighting of their respective risk aversions by the correlation
of the compliant strategy pair. In particular, in first best, no wealth effects are involved in
the t = 1 optimal policies, whereas in second best, the wealth effects driven by strategy pair
deviations are distinctly present.

The t = 0 portfolio and performance fee policies

We now need to determine the t = 0 portfolio and performance fee policies (π0, yA,0, yB,0). At
this point, at least from a mechanical perspective, it is apparent why the full joint distribution
of compliant and deviant return strategies (RθH,1, RτH,1, RθL,1, RτL,1) will be needed. The
t = 1 optimal policies are a fractional form of the t = 1 wealths under compliant and deviant
strategies of the Principal, which in turn depends on the t = 0 policies (π0, yA,0, yB,0). Given
that we are using a mean-variance framework, it implies that we need to compute the t = 0
expectation and variance of t = 1 fractional form random variables to arrive at the t = 0
optimal policies. Given that ratios of expectations are not the same as expectations of ratios,
26 we will need the full joint distribution of the strategies’ returns to compute such moments.
The above summarizes the technical reason for why full joint distributions of the returns are
needed, beyond the first and second moments. But the economic reason is most interesting.

Economically, moral hazard implies a value-at-risk (VaR) type constraint on the t = 0
portfolio and performance fee policies (π0, yA,0, yB,0). By the principle of dynamic pro-
gramming for mean-variance preferences (see Section 3.A), the Principal’s t = 0 poli-
cies (π0, yA,0, yB,0) is the solution to the problem (3.8.5). Firstly, the t = 0 policies will
have an intertemporal hedging effect on the individuals’ t = 2 terminal wealth volatil-
ity under the compliant strategy pair (θH, τH) and these are to be minimized, as seen in
ηP
2
Var0(E1W

(θH,τH)
P,2 ) + ηM

2
Var0(E1W

(θH,τH)
A,2 ) + ηM

2
Var0(E1W

(θH,τH)
B,2 ). In these t = 0 variance

26 Simply put, E[X/Y ] ̸= E[X]/E[Y ], and Var(X/Y ) ̸= Var(X)/Var(Y ).
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computations, the “intertemporal glue” effect of the Principal’s wealth become apparent;
these t = 0 variance computations will involve the t = 1 optimal policies, which then af-
fect the wealths 27 W

(θH,τH)
P,1 under the compliant strategy pair, and the wealths W

(θH,τL)
P,1

and W
(θL,τH)
P,1 under the deviant strategy pairs. That is, the Principal’s wealths (both un-

der compliant and deviant strategy pairs) enters into the covariance term of Manager A’s
and Manager B’s wealths, and thereby through this “intertemporal glue”, Manager A’s and
Manager B’s terminal wealth volatility are connected to each other. This effect is starkly
absent in static decentralization. Secondly, there is a direct intertemporal hedging effect
from t = 0 policies that Manager A and Manager B’s t = 2 terminal wealth volatilities
under the compliant strategy pair (θH, τH) is weakly lower than that of the deviant strategy

pairs; this is reflected in the condition λA(−ηM
2
Var0(W

(θL,τH)
A,2 ) + ηM

2
Var0(W

(θH,τH)
A,2 )) for Man-

ager A, and λB(−ηM
2
Var0(W

(θH,τL)
B,2 )+ ηM

2
Var0(W

(θH,τH)
A,2 )) for Manager B. Thirdly and finally,

the t = 0 policies must ensure that the continuation utility E0[Û
λA,λB
P,0 ] is maximized. These

three points places not only restrictions on the types of t = 0 portfolios and performance fees
the Principal can offer, but also these are also intimately linked with the return distribution
— not just moments — of the compliant and deviant strategies.

Illustration of VaR constraints effects due to moral hazard

As we can see from Figures 3.1, 3.2, 3.3 and 3.4 (and see also its caption descriptions),

whether a high or low realization in the wealths (w
(θH,τH)
P,1 , w

(θL,τH)
P,1 ) of deviant strategy pairs

at t = 1 makes a substantial difference in the t = 1 optimal policies. Effectively, if an
extremely low realization of wealths under deviant strategy pairs are realized, to maintain
incentive compatibility for those affected Managers, the Principal must redirect further ex-
treme wealth allocations and performance fees to ensure that the terminal wealths between
the continuation utilities under compliant strategy pair and the continuation utilities under
deviant strategy pairs are equal. In contrast, when positive shocks are realized, the Principal
need not consider extreme wealth allocation and performance fees for incentive compatibility.
Clearly, the t = 0 optimal policies (π0, yA,0, yB,0) of the Principal will endogenously alter the
distribution of t = 1 wealths under the compliant and deviant strategy pairs; but as seen in
those figures, the actual distribution of the strategy returns also play a critical input.

Thus, due to extreme differences between the t = 1 optimal policies response to the
positive and negative shocks, which then propagate back to the t = 0 optimal policy choices,
we can thus see that the incentive compatibility constraints are precisely akin to a VaR
constraint on the t = 0 portfolio policies, where downside return shocks play a far more
prominent role than upside return shocks. Furthermore, this is why extreme downside tail
risks and joint probability tail dependence play a critical role in the contracting environment,
and this motivates the discussion in Section 3.8.

27 Note these t = 1 wealths are random from the perspective at t = 0.
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Figure 3.1: The t = 1 optimal policies of second best decentralized delegation when the wealths under deviant strategy pairs (θH, τL) and (θL, τH)
have a positive shock. The base parameters are equivalent to that of Table 3.1 and with the amendment Table 3.1, which simply resets
the deviant strategies to have equivalent means. We set the Lagrange multipliers (λA, λB) = (−1.7,−1.7) as these are the numerical
results associated with this set of base parameters when we actually numerically compute for the value function of the Principal.

The vertical axis plots the respective t = 1 policies (π̂λA,λB
1 , ŷλA,λB

A,1 , ŷλA,λB
B,1 ), while the horizontal axis plots the t = 1 realized values

W
(θH,τH)
P,1 = w

(θH,τH)
P,1 of the Principal under the compliant strategy pair (θH, τH). The legended pairs of values correspond to various

scenarios of t = 1 realized wealths (W
(θH,τL)
P,1 ,W

(θH,τL)
P,1 ) = (w

(θH,τL)
P,1 , w

(θL,τH)
P,1 ) under deviant strategy pairs; these wealths represent a

positive realization to the returns (RθH , RτL) and (RθL , RτH), such that the realized wealths, respectively, w
(θH,τL)
P,1 and w

(θL,τH)
P,1 are

greater than the Principal’s t = 0 initial wealth of $1.

As an illustrative example, when the wealth w
(θH,τL)
P,1 (i.e. Manager A compliant, Manager B deviant) is higher than w

(θL,τH)
P,1 (i.e.

Manager A deviant, Manager B compliant) and as the wealth w
(θH,τH)
P,1 under the compliant strategy pair increases, the Principal

places less wealth π̂λA,λB
1 into Manager B and more wealth into Manager A. Furthermore, higher wealths w

(θH,τH)
P,1 will increase the

t = 1 performance fees (ŷλA,λB
A,1 , ŷλA,λB

B,1 ) for both Manager A and Manager B. However when the deviant wealth w
(θH,τL)
P,1 is high,

it uniformly shifts up the performance fee ŷλA,λB
A,1 to Manager A, and uniformly shifts down the performance fee ŷλA,λB

B,1 to Manager
B. Thus, in this case, there is fund in-flow and higher performance fees to the compliant Manager A, and fund out-flow and lower
performance fees to the deviant Manager B. This is the case where the Principal is rewarding for compliance and punishing for
deviance. But it is not necessarily true that being complaint necessarily implies higher fund flows.

Suppose, however, the situation is reversed in that w
(θH,τL)
P,1 is lower than w

(θL,τH)
P,1 . Then in this case, the Principal will allocate higher

portfolio weights π̂λA,λB
1 to Manager B, and lower portfolio weights to Manager A. Moreover, the performance fees ŷλA,λB

A,1 to Manager

A uniformly decreases, while the performance fees ŷλA,λB
B,1 to Manager B uniformly increases. Thus in this case, even though Manager

A was complaint while Manager B was deviant, there is now fund out-flow and lower performance fees to the compliant Manager
A, and fund in-flow and higher fee performance fees to the deviant Manager B. This is the case where the Principal is essentially
rewarding for luck.
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Figure 3.2: The t = 1 optimal policies of second best decentralized delegation when the wealths under deviant strategy pairs (θH, τL) and (θL, τH)
have a negative shock. The setup and layout of this figure is identical to that of Figure 3.1. However, we assume in this case the wealth

w
(θH,τL)
P,1 under the deviant strategy pair (θH, τL) had a positive shock due to positive realizations of (RθH , RτL), whereas the wealth

w
(θL,τH)
P,1 under the deviant strategy pair (θL, τH) had a negative shock due to negative realizations of (RθL , RτH).

It is evident that the negative shock case here is significantly different than that of the positive shock case of Figure 3.1. The

discontinuity in the optimal performance fee process marks a cutoff in the wealth realization w
(θH,τH)
P,1 under the compliant strategy

pair (θH, τH). To the left of this cutoff the geometry of the portfolio policies are reversed to that of the right of this cutoff. Namely,

for the portfolio policy π̂λA,λB
1 , to the left of the cutoff, it is concave-like in the on-equilibrium wealth w

(θH,τH)
P,1 , whereas to the right

of the cutoff, it is convex-like; the similar can be said for the two performance fee policies. In this case, w
(θL,τH)
P,1 suffered a negative

shock, and the deviant strategy pair (θL, τH) is the case when Manager A had deviated while Manager B was compliant. Given this,
to ensure incentive compatibility for Manager A, the Principal must thus boost the wealth allocations to Manager A. Hence, as the

compliant wealth w
(θH,τH)
P,1 increases, the Principal will reduce portfolio allocations π̂λA,λB

1 to Manager B and redirect them to Manager

A. Likewise, the Principal will increase the performance fees ŷλA,λB
A,1 to Manager A, while decreasing the performance fees ŷλA,λB

B,1 to

Manager B. Note also that there are indeed ranges of compliant wealths w
(θH,τH)
P,1 where no performance fees in [0, 1] will exist, and

these are the regions where a contract will not exist for decentralized delegation, and this is especially true if the realized wealths

w
(θH,τH)
P,1 are not sufficiently high.
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Figure 3.3: This is similar to Figure 3.1 except that both off-equilibrium wealths

(w
(θH,τH)
P,1 , w

(θL,τH)
P,1 ) enjoy a large positive shock.
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Figure 3.4: This is similar to Figure 3.2 except that both off-equilibrium wealths

(w
(θH,τH)
P,1 , w

(θL,τH)
P,1 ) suffer a negative shock.

Numerical illustrations of joint tail probabilities via copulas

As discussed in Section 3.8, the incentive compatibility constraints in dynamic decentralized
delegation are akin to VaR constraints on the t = 0 portfolio and performance fee policies.
Furthermore, as discussed and even further illustrated in Figures 3.1, 3.2, 3.3 and 3.4, we
see that extreme downside risks are a particular concern. This motivates us to investigate
how exactly do joint tail probabilities affect the contracting environment. For this purpose,
we will need a method to model the joint tail probabilities, of which a natural tool is via
copulas. Two numerical illustrations are given in Figure 3.5 and Figure 3.6. Please see
details in Section 3.F.

To focus on the risk channel, we will assume that the deviant strategies θL and τL now
have identical means. That is, for the numerical parameters in the following illustrations,
we use the parameters of Table 3.1 but further amended with that of Table 3.1.
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Mean return on deviant strategy θL µθL 0.08
Mean return on deviant strategy τL µτL 0.08

Table 3.1: The base parameters are amended to that of Table 3.1.
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Figure 3.5: Numerical illustration of the Principal’s t = 0 value function along with the t = 0
optimal policies against various parameters of the Gumbel-Hougaard copula. The
base parameters are the same as Table 3.1 along with the amendment Table 3.1. We
assume the marginal distributions of the strategy returns (RθH , RτH , RθL , RτL) follow
by a discrete approximation to the normal distribution. The joint distribution is
modeled by the Gumbel-Hougaard copula, in which it has a parameter δGumbel ≥ 1.
See Example 3.F.3 of Section 3.F for details. A low δGumbel parameter implies the
joint distribution is nearly independent, whereas a higher value implies increasing
upper tail dependence of the joint distribution.As the joint returns have increasing
upper tail dependence, the Principal’s value function decreases.

3.9 Conclusion

We study a problem of centralized delegation versus decentralized delegation, where there is
moral hazard risk over the investment strategy choice within each asset class. In the static
model under first best, it is simply a matter of which form of delegation that offers better
risk sharing with respect to the investment strategies.

With the presence of moral hazard in centralized delegation, the Principal needs to com-
pensate the single Manager C for the private costs of taking the Principal’s desired strategy
pair but also the opportunity cost for any foregone long-short trading profits from deviant
strategy pairs the Manager could have enjoyed. This implies if the Manager’s investment
opportunity set is too wide, in that the mean return differences of the asset classes under
management by Manager C are large, or that the Manager C is nearly risk neutral, no
centralized contract will exist to implement the Principal’s desired strategy pair. In decen-
tralized delegation, the restricted investment opportunity sets of the respective Manager A
and Manager B confine their deviations to their own asset classes. Thus, the aforementioned
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Figure 3.6: Numerical illustration of the Principal’s t = 0 value function along with the t = 0
optimal policies against various parameters of the Clayton copula. The base param-
eters are the same as Table 3.1 along with the amendment Table 3.1. We assume
the marginal distributions of the strategy returns (RθH , RτH , RθL , RτL) follow by a
discrete approximation to the normal distribution. The joint distribution is modeled
by the Clayton copula, in which it has a parameter δClayton > 0. See Example 3.F.1
of Section 3.F for details. A low δClayton parameter implies the joint distribution has
high lower tail dependence, whereas a higher value implies the joint distribution is
almost independent. As the joint returns have increasing lower tail dependence, the
Principal’s value function decreases.

opportunity cost in centralization simply does not exist in decentralization. But when the
decentralized Manager A and Manager B consider a strategy deviation within their own
respective asset classes, they only care for the mean and volatility differences between the
compliant and deviant strategies, and do not take into account the correlation of their joint
strategies. Hence, if the strategies within the asset classes have similar mean returns, it may
be impossible for the Principal to induce his desired strategy pair with the decentralized
Managers because only the Principal can capture the diversification benefits of the strate-
gies’ correlations, and not Manager A and Manager B themselves.

In a dynamic decentralization model with committed reinvestments, Manager A and
Manager B will have a motive to intertemporally hedge their future wealths with that of the
Principal. Using the Principal’s intertemporal wealth as a bridge between multiple Managers’
payoffs, the Principal can thus incentivize the Managers to implement his desired investment
strategy pair. The dynamic model shows that the incentive compatibility constraints can be
viewed as value-at-risk constraints on the Principal’s portfolio and performance fee policies.
Thus, even though individuals have mean-variance preferences and only linear contracts are
considered, the Principal endogenously requires the knowledge of the full joint probability
distribution of the compliant and deviant strategy pair returns, beyond just the first and
second moments. The analogous dynamic centralized delegation model is studied in Sec-
tion 3.B. Via copulas, we numerically investigate how tail dependence of strategy returns
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affect the dynamic contracting environment.
It would be interesting to further study this problem of centralized versus decentralized

delegation with a more general contract space, even in a static model. This paper focuses
the contract space to be linear in returns for both centralization and decentralization. But as
emphasized in the paper, the restriction versus relaxation in the investment opportunity set
in centralization versus decentralization, respectively, drives most of the differences between
the two delegation forms. This highly suggests that a “one size fits all” contract space for
both delegation forms is inappropriate. In particular, this is to say that the problem suggests
that the optimal contract in a more general contract space should look rather different in
centralization versus decentralization. However, as also noted in the paper, when Managers
can actively access the financial markets to modify the incentive effects, the determination of
an optimal contract is really a joint problem of optimal contract design and optimal financial
market restriction. We leave this interesting problem to future research.
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Appendix

3.A Proofs for Section 3.4
Proof of Proposition 3.4.1. (a) Using first order sufficient and necessary conditions, we can see that the value to (3.3.2d) will

be given by (3.4.1).

(b) Substitute in the optimal portfolio found above into the mean and variance expressions.

(c) Since the fixed fee xC ∈ R is linear respect to the Principal’s objective function, it implies that in equilibrium, the individual
rationality constraint (3.3.2f) constraint binds. This implies the Principal’s objective function can be rewritten as,

E[W (θ,τ)
cP ]−

η

2
Var(W

(θ,τ)
cP ) = 1 + E[R̂(θ,τ)]− (c(θ) + c(τ))

−
ηP

2
y2CVar(R̂(θ,τ))−

ηM

2
(1− yC)

2Var(R̂(θ,τ)).

Now, by first order conditions on yC , we see that the above becomes a fourth order polynomial (i.e. quartic) equation, and
has the following roots,

yC ∈
{

ηP

ηM + ηP
, −

(µθ − µτ )
2/3(

η2Pσ
4(1− ρ2θτ )

)1/3 , ±
(−1)2/3 (µθ − µτ )

2/3(
η2Pσ

2(1− ρ2θτ )
)1/3

}
.

The first root is clearly in (0, 1); the second root is negative and hence not in (0, 1); the third and fourth roots (with ±)
are not in R since (−1)2/3 ∈ C. Thus, an interior solution exists and is uniquely given by the first root. 28

(d) Simply substitute in the optimal fixed and optimal fees found earlier.

(e) Analogous to the above.
■

Proof of Proposition 3.4.2. (a) By binding the (IR) constraints (3.3.3d), we obtain the optimal fixed fee form, and we can
rewrite the Principal’s objective function as,

E[W (θ,τ)
P ]−

η

2
Var(W

(θ,τ)
P ) = −(c(θ) + c(τ)) + 1 + π(µτ − µθ) + µθ −

ηM

2
y2Bπ

2σ2 −
ηM

2
y2A(1− π)2σ2

−
ηP

2

[
π2((1− yB)2σ2 + (1− yA)

2σ2 − 2(1− yB)(1− yA)ρθτσ
2)

+ 2π(1− yA)
(
(1− yB)ρθτσ

2 − (1− yA)σ
2
)

+ (1− yA)
2σ2

]
. (3.A.1)

28 It should be noted that in general, quartic equations (and naturally arising here because of first order
conditions) are notoriously difficult to obtain simple and explicit solutions for. It is conjectured that if
one extends to consider more than two risky investment strategies, or that we extend to more general
non-linear contracts, it would be difficult to obtain a closed form contract for even first best centralized
delegation. Indeed, the most difficult step in the proof of this Proposition 3.4.1 is this step, as everything
else is straightforward. It was actually somewhat surprising to this author that despite a rather complicated
first order condition, an economically sensible and intuitive solution for the performance fee arises.
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(b) By first order conditions applied to (3.A.1), we arrive at three different stationary points of (π, b, q),

(π, yA, yB) ∈
{(

0 ,
ηP

ηM + ηP
, 1 +

(ηP + ηM)(µθ − µτ )− ηPηMσ
2

ηPηMρθτσ2

)
,

(
1 , 1 +

(ηM + ηP)(µτ − µθ)− ηPηMσ
2

ηPηMρθτσ2
,

ηP

ηM + ηP

)
,

(πo, yoA, y
o
B)

}

The first and second stationary points, which would imply zero wealth invested into either of the agents, will violate the
individual rationality constraint (3.3.3d). Thus, only the third stationary point is a candidate for an interior solution.

(c) This is simply applying Assumption 3.3.2. The value function computation is straightforward.
■

Proof of Proposition 3.4.3. Use Proposition 3.4.1 and Proposition 3.4.2. ■

3.B Additional Results and Proofs for Section 3.5
Proof of Proposition 3.5.1. (a) This is the same proof as that of Proposition 3.4.1.

(b) This is evident since the arguments in Proposition 3.4.1 for deriving Manager C’s optimal portfolio choice holds true for
any arbitrary contract.

(c) By Assumption 3.3.2 and Proposition 3.4.1, if the Principal wants to implement and induce the investment strategy pair
(θH, τH), then the Principal needs to write a contract that prevents Manager C from taking on the deviant strategies
(θ′, τ ′) ∈ S−(θH,τH). These are captured by the incentive compatibility constraints in (3.5.1). One should note that these
three constraints can be collapsed to a single one by equivalently writing,

− 2c+
1

2
(µθH + µτH )y −

1

4
ηMσ

2(1 + ρθH,τH )y2

≥ max
(θ′,τ ′)

{
−(c(θ′) + c(τ ′)) +

1

4

(µθ′ − µτ ′ )
2

ηMσ2(1− ρθ′,τ ′ )
+

1

2
(µθ′ + µτ ′ )y −

1

4
ηMσ

2(1 + ρθ′,τ ′ )y
2

}
, (3.B.1)

where we take the maximum on the right hand side over (θ′, τ ′) ∈ S−(θH,τH), which is clearly then equivalent to (3.5.2).

Note that by Assumption 3.3.2, we have that µθ′ ≤ µθH and µτ ′ ≤ µτH , and where at least one of these two inequalities
are strict, and hence µθ′ − µθH + µτ ′ − µτH < 0. Likewise, c(θ′) + c(τ ′)− 2c < 0. However, since we only assume that the
correlations ρθ,τ for all investment strategy pairs (θ, τ) are different, and in particular no special sign and order restrictions,
so we have that if ρθ′,τ ′ − ρθH,τH > 0, then the component is concave in y, and if ρθ′,τ ′ − ρθH,τH < 0, it is convex in y.
Thus, we have a pointwise maximum of convex and/or concave functions, and in general, one has no particular geometric
form of this.

(d) From the condition (3.5.2), we substitute in the first best solution to check the condition under which none of the incentive
compatibility constraints will bind. This is condition (3.5.3).

(e) Suppose the conditions on the private costs (3.5.3) are such that a first best solution will not be attained in second best.
While we could indeed proceed to use Kuhn-Tucker conditions (with say three Kuhn-Tucker multipliers) to solve for the
optimal solution, we can proceed with a much more geometric proof here. Firstly, by (3.5.1) or equivalently (3.5.2),
it is clear that when a binding solution (that is in [0, 1]) exists, only one of the constraints will bind. Suppose that
(θb, τb) ∈ S−(θH,τH) is the pair of deviant investment strategies for which its associated incentive compatibility constraint
binds.

Given the quadratic form of constraints, we are motivated to define the discriminant for the binding deviant pairs (θ′, τ ′)
(3.5.4). Notice that the sign of the discriminant is heavily dependent on the sign of ρθb,τb − ρθH,τH . Provided that
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D(θb,τb) ≥ 0, so that roots will exist for the quadratic associated with the binding incentive compatibility constraint

(θb, τb), we compute the roots as,

ỹ±,(θb,τb) =
1

2

(
−
µθb − µθH + µτb − µτH

2
±
√
D(θb,τb)

)

×
[
−(c(θb) + c(τb)− 2c) +

1

4

(µθb − µτb )
2

ηMσ2(1− ρθH,τH )

]−1

.

With our current assumptions, it is not difficult to show that the negative root ỹ−,(θb,τb) < 0. Thus, let’s focus on the

positive root ỹ+,(θb,τb) of (3.5.5). We must now recall that our solution must be confined in [0, 1]. Hence, a second best

solution will exist only if ỹ+,(θb,τb) ∈ [0, 1], and likewise, if ỹ+,(θb,τb) ̸∈ [0, 1], then no second best solution will exist.
■

Corollary 3.B.1. Consider the second best centralized delegation setup in Proposition 3.5.1, and suppose the conditions (i.e.
conditions (i) and (ii) of part (d)) for the existence of a second best contract holds. In particular, recall (3.5.5). Then the
most profitable deviant investment strategy (θb, τb) for Manager C is the following and given under the following conditions,
which then leads to the optimal performance fee ŷC = ỹ+,(θ′,τ ′).

(a) The optimal performance fee is ỹ+,(θH,τL) when,

0 ≥ max
{
c+

1

4

(µθL − µ)2

ηMσ2(1− ρθL,τH )
−

1

2
∆µτ ỹ+,(θH,τL) −

1

4
η2Mσ

2(ρθL,τH − ρθH,τH )ỹ2+,(θH,τL) ,

2c+
1

4

(µθL − µτL )
2

ηMσ2(1− ρθL,τL )
−

1

2
(∆µθ +∆µτ )ỹ+,(θH,τL) −

1

4
η2Mσ

2(ρθL,τL − ρθH,τH )ỹ2+,(θH,τL)

}
.

(b) The optimal performance fee is ỹ+,(θL,τH) when,

0 ≥ max
{
c+

1

4

(µ− µτL )
2

ηMσ2(1− ρθH,τL )
−

1

2
∆µθ ỹ+,(θL,τH) −

1

4
η2Mσ

2(ρθH,τL − ρθH,τH )ỹ2+,(θL,τH) ,

2c+
1

4

(µθL − µτL )
2

ηMσ2(1− ρθL,τL )
−

1

2
(∆µθ +∆µτ )ỹ+,(θL,τH) −

1

4
η2Mσ

2(ρθL,τL − ρθH,τH )ỹ2+,(θL,τH)

}
.

(c) The optimal performance fee is ỹ+,(θL,τL) when,

0 ≥ max
{
c+

1

4

(µθL − µ)2

ηMσ2(1− ρθL,τH )
−

1

2
∆µτ ỹ+,(θL,τL) −

1

4
η2Mσ

2(ρθL,τH − ρθH,τH )ỹ2+,(θL,τL) ,

c+
1

4

(µ− µτL )
2

ηMσ2(1− ρθH,τL )
−

1

2
∆µθ ỹ+,(θL,τL) −

1

4
η2Mσ

2(ρθH,τL − ρθH,τH )ỹ2+,(θL,τL)

}
.

Proof of Corollary 3.B.1. This is simply rewriting out the condition (3.5.2) more explicitly. ■

Proof of Proposition 3.5.2. (a) This is simply by binding the (IR) constraints (3.3.3d).

(b) This is simply rewriting the (IC) constraints (3.3.3e), (3.3.3f).

(c) This will be seen as a special case of Proposition 3.B.2(aiv).
■

Proposition 3.B.2. Recall the setup of Proposition 3.5.2.

(a) Consider the following conditions on the private cost c imply the optimal second best decentralized delegation optimal
portfolio and performance fee policies (π̂, ŷA, ŷB) have the following form:
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(i) If,

0 < c ≤ ηP∆µθ∆µτ (1 + ρθH,τH )min

{
1

ηP∆µθ(1 + ρθH,τH ) + ∆µτ (2ηM + ηP(1 + ρθH,τH ))
,

1

ηP∆µτ (1 + ρθH,τH ) + ∆µθ(2ηM + ηP(1 + ρθH,τH ))

}
,

then,

(π̂, ŷA, ŷB) = (π̂FB , ŷFBA , ŷFBB ) =

(
1

2
,

ηP(1 + ρθH,τH )

ηM + ηP(1 + ρθH,τH )
,

ηP(1 + ρθH,τH )

ηM + ηP(1 + ρθH,τH )

)
.

(ii) If,

∆µθ∆µτηP(1 + ρθH,τH )

ηP∆µθ(1 + ρθH,τH ) + ∆µτ (2ηM + ηP(1 + ρθH,τH ))

< c

≤
∆µθ∆µτηP(1 + ρθH,τH )

ηP∆µτ (1 + ρθH,τH ) + ∆µθ(2ηM + ηP(1 + ρθH,τH ))
∧∆µθ,

then,

(π̂, ŷA, ŷB)

=

(
(∆µθ − c)

(
ηM + ηP(1 + ρθH,τH )

)
∆µθ

(
2ηM + ηP(1 + ρθH,τH )

) ,
c
(
2ηM + ηP(1 + ρθH,τH )

)
ηM∆µθ + c[ηM + ηP(1 + ρθH,τH )]

,
ηP(1 + ρθH,τH )

ηM + ηP(1 + ρθH,τH )

)
.

(iii) If,

∆µθ∆µτηP(1 + ρθH,τH )

ηP∆µτ (1 + ρθH,τH ) + ∆µθ(2ηM + ηP(1 + ρθH,τH ))

< c

≤
ηP∆µθ∆µτ (1 + ρθH,τH )

ηP∆µθ(1 + ρθH,τH ) + ∆µτ (2ηM + ηP(1 + ρθH,τH ))
∧∆µτ

then,

(π̂, ŷA, ŷB)

=

(
ηM∆µτ + c

[
ηM + ηP(1 + ρθH,τH )

]
∆µτ

[
2ηM + ηP(1 + ρθH,τH )

] ,
ηP(1 + ρθH,τH )

ηM + ηP(1 + ρθH,τH )
,

c[2ηM + ηP(1 + ρθH,τH )]

ηM∆µτ + c[ηM + ηP(1 + ρθH,τH )]

)
.

(iv) If,

ηP∆µθ∆µτ (1 + ρθH,τH )max

{
1

ηP∆µθ(1 + ρθH,τH ) + ∆µτ (2ηM + ηP(1 + ρθH,τH ))
,

1

ηP∆µτ (1 + ρθH,τH ) + ∆µθ(2ηM + ηP(1 + ρθH,τH ))

}

< c <
∆µθ∆µτ

∆µθ +∆µτ
,

then,

(π̂, ŷA, ŷB) =

(
1

2

[
1 +

∆µτ −∆µθ

∆µθ∆µτ
c

]
,

2∆µτ c

c(∆µτ −∆µθ) + ∆µθ∆µτ
,

2∆µθc

c(∆µθ −∆µτ ) + ∆µθ∆µτ

)
.
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(v) Else if none of the conditions above are satisfied, then there does not exist an optimal second best decentralized
delegation contract.

Proof of Proposition 3.B.2. (a) After binding the (IR) constraints (3.3.3d) into the Principal’s objective function, it remains
that the portfolio and performance fee policy (π, yA, yB) have to respect the (IC) constraints (3.5.6), and the box constraints
(π, yB , yA) ∈ R× [0, 1]2. However, we observe that (π, yA, yB) being on the boundary of [0, 1]3 would immediately violate
either the (IR) constraints, the (IC) constraints, or both. Hence, for a solution to exist, (π, yA, yB) must be in the interior
of [0, 1]3, that being (0, 1)3. Hence, given a feasible solution (π, yA, yB) ∈ (0, 1)3, we must then cycle through the 2×2 = 4
cases where either the (IC) constraint (3.5.6a) of Manager A bind or not, and whether (IC) constraint (3.5.6b) of Manager
B bind or not.

(i) This is the case when we obtain an interior solution and neither (IC) of Manager A nor (IC) of Manager B bind.
Substitute in the first best solution from Proposition 3.4.2, under Assumption 3.3.2, into (3.5.6) and replace ≥ with
> to get the conditions on the private costs c.

(ii) This is the case when only (IC) of Manager A binds and when that of Manager B does not bind. This happens when,
after substituting the first best solution into (3.5.6), and we obtain,

∆µθηP(1 + ρθH,τH ) > 2c(ηM + ηP(1 + ρθH,τH )),

∆µτηP(1 + ρθH,τH ) ≤ 2c(ηM + ηP(1 + ρθH,τH )).

The binding condition also allows for us to get the portfolio policy π as a function of yA. Via first order conditions
on the objective function, substitute back and then we solve for (π, yA, yB). However, we still need to satisfy the
interior box constraints (π, yA, yB) ∈ (0, 1)3. We have yA ∈ (0, 1) holding. Here, yB > 0 and to have yB < 1, we
need,

c < ∆µτ .

Under such condition, we would also have π ∈ (0, 1). Putting those three conditions on the private cost c together
yields the displayed condition.

(iii) This is the case when (IC) of Manager A does not bind, but that of Manager B does bind. The argument is completely
analogous to the previous one.

(iv) This is the case when both (IC)’s of Manager A and Manager B bind. Here, we need to differentiate between two
sub-cases — when ∆µθ = ∆µτ and when ∆µθ ̸= ∆µτ .

If ∆µθ = ∆µτ ≡ ∆µ, then we immediately have that (π, yA, yB) = (1/2, 2c/∆µ, 2c/∆µ). So, the condition to ensure
that (π, yA, yB) ∈ (0, 1)3 is clearly when,

c <
∆µ

2
.

Suppose ∆µθ ̸= ∆µτ , and without loss of generality, suppose ∆µθ > ∆µτ . To have yA > 0, we would need,

∆µθ∆µτ

∆µθ −∆µτ
> c,

and to have yA < 1, one would need,

c <
∆µθ∆µτ

∆µθ +∆µτ
.

Finally, to have π > 0, we would need,

c <
∆µθ∆µτ

∆µθ −∆µτ
.

Putting these conditions together implies we need,

η(1 + ρθH,τH )

2
(
ηM + ηP(1 + ρθH,τH )

)∆µθ ≤ c < min

{
∆µθ∆µτ

∆µθ −∆µτ
,

∆µθ∆µτ

∆µθ +∆µτ

}
.

Simplifying and generalizing to the case when ∆µθ < ∆µτ , we have the displayed condition.

■
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When there is only moral hazard over mean returns
An interesting special case that neither neither potentially favors nor biases centralized delegation is when there is no moral
hazard over correlations, ρ ≡ ρθτ for all (θ, τ), and the potential mean return losses between the two investment strategies are
identical, ∆µ ≡ ∆µθ = ∆µτ . In this case, the incentive compatibility constraints (3.5.6) of decentralized delegation have the
form,

0 ≥ c− (1− π)yA∆µ, (3.B.2a)

0 ≥ c− πyB∆µ, (3.B.2b)

which is effectively the same form as before, but the incentive compatibility constraint (3.5.1) for centralized delegation reduces
to,

0 ≥ max
(θ′,τ ′)

{
2c− (c(θ′) + c(τ ′)) + ∆µyC

}
= 2c+∆µyC (3.B.3)

Thus, in this special case for centralized delegation, the centralized Manager C has incentives that are very much aligned with
the Principal, as the alternative investment strategies (θL, τL) have the same mean µθL = µτL = µ − ∆µ, same volatility and
same correlations, this implies that a long-short strategy is not profitable.

Corollary 3.B.3. Assume that there is no moral hazard over correlations ρ ≡ ρθτ for all strategy pairs (θ, τ) ∈ S, and the
mean return differences between the two strategies are identical, ∆µ ≡ ∆µθ = ∆µτ > 0.

(a) Consider the second best centralized delegation problem.

(i) The optimal performance fee is,

ŷC =


ŷFBC , 0 < c <

1

2

ηP

ηP + ηM
∆µ

2c

∆µ
,

1

2

ηP

ηP + ηM
∆µ ≤ c <

∆µ

2

∅, otherwise.

(ii) The associated Principal’s value function in second best centralized delegation is,

E[WcP ]−
ηP

2
Var(WcP )

∣∣∣
SB,(θH,τH)

=


−2c+ µ−

ηPηM

4(ηM + ηP)
σ2(1 + ρ), 0 < c <

1

2

η

η + ηM
∆µ,

−2c+ µ−
[
4ηMc

2 + ηP(∆µ− 2c)2
]
(1 + ρ)σ2

4(∆µ)2
,

1

2

ηP

ηP + ηM
∆µ ≤ c <

∆µ

2
,

−∞, otherwise.

(b) Consider the second best decentralized delegation problem.

(i) The optimal portfolio and performance fee policies are,

(π̂, ŷA, ŷB) =



(
1

2
,

ηP(1 + ρ)

ηM + ηP(1 + ρ)
,

ηP(1 + ρ)

ηM + ηP(1 + ρ)

)
, 0 < c <

1

2

η(1 + ρ)

ηM + ηP(1 + ρ)
∆µ,(

1

2
,
2c

∆µ
,
2c

∆µ

)
,

1

2

ηP(1 + ρ)

ηM + ηP(1 + ρ)
≤ c <

∆µ

2
,

∅, otherwise.

(ii) The associated Principal’s value function in second best decentralized delegation is,

E[WP ]−
ηP

2
Var(WP )

∣∣∣
SB,(θH,τH)

=


−2c+ µ− ηPηM(1+ρ)σ2

4(ηM+ηP(1+ρ))
, 0 < c < 1

2
ηP(1+ρ)

ηM+ηP(1+ρ)
∆µ,

−2c+ µ− σ2[4(ηM+ηP(1+ρ))c2−ηP(1+ρ)∆µ(∆µ−4c)]
4(∆µ)2

, 1
2

ηP(1+ρ)
ηM+ηP(1+ρ)

≤ c < ∆µ
2
,

−∞, otherwise.
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(c) Let’s compute the difference between the Principal’s value function under second best decentralized delegation and that of
second best decentralized delegation.

(i) Suppose ρ ∈ (−1, 0). Then ηP
ηP+ηM

>
ηP(1+ρ)

ηM+ηP(1+ρ)
, and,

(
E[WP ]−

ηP

2
Var(WP )

∣∣∣
SB,(θH,τH)

)
−
(
E[WcP ]−

ηP

2
Var(WcP )

∣∣∣
SB,(θH,τH)

)

=



ηMη
2
Pρ(1+ρ)σ

2

4(ηM+ηP)(ηM+ηP(1+ρ))
, 0 < c <

ηP(1+ρ)
ηM+ηP(1+ρ)

,

σ2[4c∆µηP(ηM+ηP)−4c2(ηM+ηP)(ηM+ηP(1+ρ))−(∆µ)2η2P(1+ρ)]
4(ηP+ηM)(∆µ)2

,
ηP(1+ρ)

ηM+ηP(1+ρ)
≤ c < ηP

ηP+ηM
,

ηMc
2σ2

(∆µ)2
ρ, ηP

ηP+ηM
≤ c < ∆µ

2
,

undefined, otherwise.

In particular, for all c ∈ (0,∆µ/2),

(
E[WP ]−

ηP

2
Var(WP )

∣∣∣
SB,(θH,τH)

)
−
(
E[WcP ]−

ηP

2
Var(WcP )

∣∣∣
SB,(θH,τH)

)
< 0.

(ii) Suppose ρ ∈ (0, 1). Then
ηP(1+ρ)

ηM+ηP(1+ρ)
> ηP

ηP+ηM
, and,

(
E[WP ]−

ηP

2
Var(WP )

∣∣∣
SB,(θH,τH)

)
−
(
E[WcP ]−

ηP

2
Var(WcP )

∣∣∣
SB,(θH,τH)

)

=



ηMη
2ρ(1+ρ)σ2

4(ηM+ηP)(ηM+ηP(1+ρ))
, 0 < c < 1

2
ηP

ηP+ηM
,

σ2(1+ρ)
4

(
ηP +

4c[c(ηM+ηP)−ηP∆µ]

(∆µ)2
− ηPηM
ηM+ηP(1+ρ))

)
, 1

2
ηP

ηM+ηP
≤ c < 1

2
ηP(1+ρ)

ηM+ηP(1+ρ)
,

ηMc
2σ2

(∆µ)2
ρ, 1

2
ηP(1+ρ)

ηM+ηP(1+ρ)
≤ c < ∆µ

2
,

−∞, otherwise.

In particular, for all c ∈ (0,∆µ/2),

(
E[WP ]−

ηP

2
Var(WP )

∣∣∣
SB,(θH,τH)

)
−
(
E[WcP ]−

ηP

2
Var(WcP )

∣∣∣
SB,(θH,τH)

)
> 0.

(iii) If ρ = 0, then for all c ∈ (0,∆µ/2),

(
E[WP ]−

ηP

2
Var(WP )

∣∣∣
SB,(θH,τH)

)
−
(
E[WcP ]−

ηP

2
Var(WcP )

∣∣∣
SB,(θH,τH)

)
= 0.

Proof of Corollary 3.B.3. This is a special case of Proposition 3.5.1 and Proposition 3.5.2. ■

Corollary 3.B.3 illustrates that when there is no moral hazard over correlations, ρ ≡ ρθH,τH = ρθL,τL , and that the mean
return losses due to moral hazard are equal, ∆µ ≡ ∆µθ = ∆µτ , then this substantially aligns the interests of the centrally
delegated single Manager C. And as a result, in this special case, our results are essentially identical to the first best case of
Proposition 3.4.3 that we had studied earlier. In particular, centralized delegation is favored when the correlations are negative
ρ < 0, decentralized delegation is favored when the correlations are positive ρ > 0, and both forms of delegation are equal when
the investment strategies are uncorrelated ρ = 0.
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This Online Appendix continues its section numbering from the Appendix of the main
text.
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Appendix

3.A Principle of Dynamic Programming

As it is well known in the literature 29 of extending mean-variance analysis to multiple periods, the mean-variance utility over
terminal wealth is not directly amenable to a recursive form for dynamic programming. Here, however, we will take effectively
the discrete-time approach as motivated by Basak and Chabakauri (2010).

Consider time periods t = 0, 1, . . . , T . Consider the t = 0 mean-variance utility over a time t = T random variable WT ,

U0 := E0[WT ]−
η

2
Var0(WT ).

Also let us define the time t continuation utility,

Ut := Et[WT ]−
η

2
Vart(WT ), for t = 0, 1, . . . , T , (3.A.1)

and note that UT =WT . The law of total variance states that,

Vart(WT ) = Et[Vart+1(WT )] + Vart(Et+1[WT ]), for t = 0, 1, . . . , T − 1. (3.A.2)

Substituting (3.A.2) into (3.A.1), and using the law of iterated expectations, we observe that,

Ut = Et[WT ]−
η

2
(Et[Vart+1(WT )] + Vart(Et+1[WT ]))

= Et[WT ]−
η

2
Et[Vart+1(WT )]−

η

2
Vart(Et+1[WT ])

= Et
[
Et+1[WT ]−

η

2
Vart+1(WT )

]
−
η

2
Vart(Et+1[WT ])

= Et[Ut+1]−
η

2
Vart(Et+1[WT ]).

Thus, the equations that gives the backward recursive relationship are,

UT =WT ,

Ut = Et[Ut+1]−
η

2
Vart(Et+1[WT ]), t = 0, 1, . . . , T − 1.

(3.A.3)

In the actual application considered in this paper, we will use T = 2 and so we will consider time periods t = 0, 1, 2.

3.B Dynamic Centralized Delegation
In the dynamic centralized delegation model, the Principal will offer to Manager C a long term contract, consisting of a fixed
fee 30 xC ∈ R paid at t = 2, and multi-period performance fees (yC,0, yC,1) ∈ ×[0, 1] over, respectively, the ending period

29 Please see Li and Ng (2000), Basak and Chabakauri (2010), Basak and Chabakauri (2012) and others.
30 Paying the fixed fee at the end of the contracting period substantially simplifies the discussion below.

If a performance fee is also paid at the beginning of the contracting period t = 0, then this fixed fee also
factors into the portfolio choice of Manager C at t = 1. This is clearly very possible, but this is not the
raison d’être of extending our discussion from a simple one period model to a dynamic two period model.
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wealth WcP,1 and WcP,2. Manager C will choose to either accept or reject the contract. If Manager C accepts and commits
to the contract, then at t = 0 the Principal gives his initial wealth of $1 to the single centralized Manager C who has $0
initial wealth. Then Manager C will commit to a long term strategy (θ, τ) ∈ S. Subsequently, Manager C will choose portfolio
weights (1 − ψ0, ψ0) into the strategies with a period return (Rθ,1, Rτ,1). At the end of period t = 1, the Principal will pay

yC,0R̂(θ,τ),1 to Manager C, where R̂(θ,τ) is the managed portfolio of Manager C. Thus, after fees, the t = 1 wealth of the
Principal is WcP,1, and the t = 1 wealth of Manager C is WC,1. For simplicity, with the available wealth of WC,1, Manager C
will make no further investments. At t = 1, the Principal will reinvest with Manager C again, and so Manager C will choose
portfolio weights (1 − ψ1, ψ1) into the strategies with returns (Rθ,2, Rτ,2). At the end of the period, Manager C will be paid

WcP,1yC,1R̂(θ,τ),2.
In all, the optimization problem for centralized delegation is as follows. Please see Figure 3.B.1 for a time line.

t = 0 t = 1

Principal offers
a linear contract

xC , (yC,0, yC,1) ∈ R× [0, 1]2

to the Manager

Manager C accepts
or rejects

the contract

Manager C makes investment
strategy choices

(θ, τ) ∈ S

Manager C chooses
portfolio weights

1− ψ0 ∈ R into Rθ,1;
and ψ0 into Rτ,1

Principal receives managed
portfolio returns

R̂(θ,τ),1,
pays Manager C,

and has wealth WcP,1

Manager C receives payoff
yC,0R̂(θ,τ),1

t = 1 t = 2

Manager C chooses
portfolio weights

1− ψ1 ∈ R into Rθ,2;
and ψ1 into Rτ,2

Principal receives managed
portfolio returns

R̂(θ,τ),2,
pays Manager C,

and has wealth WcP,2

Manager C receives payoff
−(c(θ) + c(τ)) + xC +WcP,1yC,1R̂(θ,τ),1

Figure 3.B.1: Dynamic centralized delegation time line.
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sup
xC∈R,

yC,0,yC,1∈[0,1]

−xC + E0[W
(θH,τH)
cP,2 ]−

ηP

2
Var0(W

(θH,τH)
cP,2 ), (DynCen)

subject to,

W
(θ,τ)
cP,1 := 1 + R̂1,(θ,τ) − yC,0R̂1,(θ,τ), (3.B.1a)

W
(θ,τ)
cP,2 :=W

(θ,τ)
cP,1

[
1 + R̂2,(θ,τ) − yC,1R̂2,(θ,τ)

]
, (3.B.1b)

W
(θ,τ)
C,1 := yC,0R̂1,(θ,τ), (3.B.1c)

W
(θ,τ)
C,2 :=W

(θ,τ)
C,1 + yC,1W

(θ,τ)
cP,1 R̂2,(θ,τ), (3.B.1d)

{ψ̂t,(θ,τ)}t=0,1 := argmax
{ψt}t=0,1,
ψt∈R

E0[W̃
(θ,τ)
C,2 ]−

ηM

2
Var0(W̃

(θ,τ)
C,2 ), (3.B.1e)

W̃
(θ,τ)
C,1 := yC,0

(
ψ0Rτ,1 + (1− ψ0)Rθ,1

)
(3.B.1f)

W̃
(θ,τ)
C,2 :=W

(θ,τ)
C,1 + yC,1W

(θ,τ)
cP,1

(
ψ1Rτ,2 + (1− ψ1)Rθ,2

)
, (3.B.1g)

R̂t,(θ,τ) := (1− ψ̂(θ,τ),t−1)Rθ,t + ψ̂(θ,τ),t−1Rτ,t, t = 1, 2, (3.B.1h)

0 ≤ xC − (c(θ) + c(τ)) + E0[W
(θH,τH)
C,2 ]−

ηM

2
Var0(W

(θH,τH)
C,2 ), (3.B.1i)

(θH, τH) = argmax
(θ′,τ ′)∈S

xC − (c(θ′) + c(τ ′)) + E0[W
(θ′,τ ′)
C,2 ]−

ηM

2
Var0(W

(θ′,τ ′)
C,2 ). (3.B.1j)

In the objective function of (DynCen), the Principal wants to maximize the t = 2 terminal wealth, by choosing the optimal
t = 0 and t = 1 performance fees yC,0 and yC,1, respectively, and also the optimal fixed fee xC . Again, recalling from
Assumption 3.3.1, we assume the Principal only wants to implement the strategy pair (θH, τH). Here, (3.B.1a) and (3.B.1b)
are the Principal’s t = 1 and t = 2 budget constraints; here we assume that there is no intermediate consumption and the
Principal will reinvest all the t = 1 payoffs back into Manager C. Given any contract, Manager C will choose the optimal t = 0
and t = 1 portfolios, in accordance to the budget constraints (3.B.1f) and (3.B.1g), and the portfolio choice problem (3.B.1e),
which results in the portfolio return (3.B.1h). The budget constraints for Manager C, after substituting in the optimal portfolio
choices, are (3.B.1c) and (3.B.1d); we assume that Manager C will not reinvest his t = 1 wealth. Since Manager C has zero
initial wealth, (3.B.1i) is his individual rationality constraint. And due to moral hazard, (3.B.1j) is the incentive compatibility
constraint for inducing Manager C to choose the Principal’s strict preference for the strategy pairs (θH, τH).

3.C Dynamic Centralized Delegation in First Best
For the first best centralized delegation case, consider problem (DynCen) without the incentive compatibility constraint (3.B.1j).

Proposition 3.C.1. Consider the first best centralized delegation problem (DynCen) but without the incentive compatibility
constraints (3.B.1j). Fix any investment strategy pair (θ, τ) ∈ S. Assume Assumption 3.6.2.

(a) Fix any arbitrary contract (xC , {yC,0, yC,1}) and let’s consider the optimal portfolio policy as chosen by Manager C.

(i) Suppose the realized wealth of the Principal at t = 1 is W
(θ,τ)
cP,1 = w

(θ,τ)
cP,1 . Then the t = 1 optimal portfolio is,

ψ̂1,(θ,τ) :=
E1Rτ,2 − E1Rθ,2 + ηM

(
Var1(Rθ,2)− Cov1(Rθ,2, Rτ,2)

)
yC,1w

(θ,τ)
cP,1

ηMVar1(Rθ,2 −Rτ,2)yC,1w
(θ,τ)
cP,1

(3.C.1)

(ii) The t = 0 optimal portfolio policy chosen by Manager C is the solution to the following optimization problem.

Suppose the realized t = 1 wealth for the Principal and Manager C are, respectively, W
(θ,τ)
cP,1 = w

(θ,τ)
cP,1 ,W

(θ,τ)
C,1 =
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w
(θ,τ)
C,1 . Define,

ˆ̃U
(θ,τ)
C,1 := ˆ̃U

(θ,τ)
C,1 (yC,0, yC,1)

= sup
ψ1∈R

E1[W̃
(θ,τ)
C,2 ]−

ηM

2
Var1(W̃

(θ,τ)
C,2 )

= w̃
(θ,τ)
C,1 +

(E1Rθ,2 − E1Rτ,2)2

2ηMVar1(Rθ,2 −Rτ,2)

+
(E1Rτ,2 + E1Rθ,2)

(
Var1(Rθ,2)− Cov1(Rθ,2, Rτ,2)

)
Var1(Rθ,2 −Rτ,2)

yC,1w
(θ,τ)
cP,1

−
Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2

Var1(Rθ,2 −Rτ,2)
y2C,1(w

(θ,τ)
cP,1 )2 (3.C.2)

And also consider, for any arbitrary t = 0 portfolio ψ0 ∈ R, the t = 0 variance of E1W̃
(θ,τ)
C,2 is,

Var0(E1W̃
(θ,τ)
C,2 ) =

1

(ηP + ηM)2Var1(Rθ,2 −Rτ,2)

[
yC,0(η + ηM )Var1(Rθ,2 −Rτ,2)

+ η(1− yC,0)E1[Rτ,2](Var1(Rθ,2)− Cov1(Rθ,2, Rτ,2))

+ η(1− yC,0)E1[Rθ,2](Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2))

]2
×
(
Var1(Rθ,2)(1− ψ0)

2 +Var1(Rτ,2)ψ
2
0 + 2ψ0(1− ψ0)Cov1(Rθ,2, Rτ,2)

)
(3.C.3)

The t = 0 optimal portfolio policy ψ̂0 = ψ̂0(yC,0), as a function of an arbitrary t = 0 performance fee yC,0, chosen
by Manager C is solves the following quadratic concave objective in ψ0 ∈ R,

ˆ̃UC,0 = sup
ψ0∈R

E0[
ˆ̃UC,1]−

ηM

2
Var0(E1W̃C,2). (3.C.4)

(b) Let’s consider the optimal contract offered by the Principal.

(i) For any performance fees yC,0, yC,1 ∈ [0, 1], the optimal fixed fee is,

x̂C,(θ,τ) := x̂C,(θ,τ)(yC,0, yC,1) = (c(θ) + c(τ))− E0[W
(θ,τ)
C,2 ] +

ηM

2
Var0(W

(θ,τ)
C,2 ). (3.C.5)

(ii) The t = 1 optimal performance fee is,

ŷFBC,1 =
ηP

ηP + ηM
. (3.C.6)

(iii) The t = 0 optimal performance fee is given by the following. Suppose also that the t = 1 realized value of the

Principal’s wealth is w
(θ,τ)
cP,1 . Firstly, define the portfolio return variances Σ̂1,(θ,τ), and recall ψ̂1 = ψ̂1(ŷFBC,1),

Σ̂1,(θ,τ) := (1− ψ̂1)
2Var1(Rθ,2) + ψ̂2

1Var1(Rτ,2) + 2ψ̂1(1− ψ̂1)Cov1(Rθ,2, Rτ,2). (3.C.7)

Then define also the t = 1 continuation utility value for the Principal,

ˆ̃U
(θ,τ)
cP,1 = (1 + (1− ŷC,1)[(1− ψ̂1)E1Rθ,2 + ψ̂1E1Rτ,2])−

ηP

2
(1− ŷFBC,1)

2Σ̂1,(θ,τ) (3.C.8)

The t = 0 optimal fee ŷC,0 is the solution to the problem,

ÛcP,0 = sup
yC,0∈[0,1]

E0[
ˆ̃U
(θ,τ)
cP,1 ] + E0[Û

(θ,τ)
C,1 ]−

ηP

2
Var0(E1W

(θ,τ)
cP,2 )−

ηM

2
Var0(E1W

(θ,τ)
C,2 ), (3.C.9)

where W
(θ,τ)
C,t is Manager C’s time t wealth as per (3.B.1c), (3.B.1d) after choosing the optimal portfolios, and

Û
(θ,τ)
C,1 is Manager C’s t = 1 continuation utility value (3.C.4) after substituting in the optimal t = 1 performance

fee ŷFBC,1 .
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Let’s begin by discussing the optimal portfolio policies (3.C.1) at t = 1 of the Manager C under first best dynamic
centralized delegation as per Proposition 3.C.1. At t = 1, the optimal portfolio choice form by Manager C is nearly identical to
that of a static mean-variance optimizer, and indeed, the solution form is fairly similar to the static model in Proposition 3.4.1.

The beginning wealth at t = 1 for Manager C is precisely yC,1w
(θ,τ)
P,1 . Based on this level of wealth at t = 1 and risk aversion ηM,

Manager C constructs the optimal portfolio to optimizer the one period ahead mean-variance of terminal wealth. Anticipating
this, the Principal simply offers a performance contract ŷFBC,1 at t = 1 of (3.C.6) to optimally risk share with Manager C in
accordance to their respective risk aversions ηP and ηM. In all, the t = 1 policies are essentially akin to that of the static
centralized delegation model of Proposition 3.4.1.

The optimal portfolio policy (3.C.4) at t = 0 of Manager C is slightly more nuanced. At t = 0, for any given t = 0
performance fee yC,0, Manager C’s hedging motive of future income will matter. Namely, Manager C wants to choose portfolios
ψ0 = ψ0(yC,0) at t = 0 such that:

• Maximizes the t = 0 expectation of the t = 1 continuation value ŨC,1. In particular, the continuation value ŨC,1 is
equal to:

– Manager C’s next period (final period) wealth W
(θ,τ)
C,1 ;

– Constant term relating to the benefits of executing a long-short strategy;

– The t = 0 portfolio choice effects on the t = 2 performance fees for Manager C. Such t = 2 performance fees

depend on the level t = 1 wealth W
(θ,τ)
cP,1 of the Principal, which of course, depends on Manager C’s t = 0

portfolio choice; and

– Given that Manager C is risk averse, there is also a contract volatility term (W
(θ,τ)
cP,1 )2 in desiring lower volatility

in the t = 2 performance fees.

• Intertemporal hedging motive Var0(E1W
(θ,τ)
C,1 ) relating to the t = 0 variance of the next period t = 1 expectation on

the terminal period t = 2 wealth.

Once the optimal portfolio polices ψ̂0 of Manager C has been determined, the Principal’s optimal performance fee choice
procedure is as follows. At t = 1, the Principal simply wants to optimally risk share based on the Principal and Manager
C’s risk aversion parameter and offers the performance fee ŷFBC,1 of (3.C.6). However, at t = 0, the optimal performance fee is
chosen, again, to optimally risk share with Manager C but now taking into account the intertemporal hedging motive of both
the Principal himself and also that of Manager C:

• The Principal wants to choose small performance fees to maximize his next period t = 1 expected wealth and minimize

his t = 1 wealth volatility; E0[
ˆ̃U
(θ,τ)
cP,1 ] = E0[W

(θ,τ)
cP,1 ]− ηP

2
Var0(W

(θ,τ)
cP,1 ).

• The Principal’s t = 0 fees affects his t = 1 wealth, and that in turn affects both the amount of resulting wealth in t = 2,
depending on the portfolio policy of Manager C and the then realized returns. Thus, the Principal’s intertemporal

hedging motive is to choose performance fees to minimize the terminal wealth volatility − ηP
2
Var0(E1W

(θ,τ)
cP,2 ).

• The Principal has a strong risk sharing motive with Manager C to minimize Manager C’s continuation utility E0[Û
(θ,τ)
C,1 ]

and an intertemporal incentive motive to minimize Manager C’s terminal date t = 2 wealth volatility− ηM
2

Var0(E1W
(θ,τ)
C,2 );

note that by the form of the performance fees, lower wealth volatility Var0(E1W
(θ,τ)
C,2 ) for Manager C also implies a

lower wealth volatility Var0(E1W
(θ,τ)
cP,2 ) for the Principal, and again since all individuals are risk averse, this is beneficial

for the Principal.

By now explicitly imposing Assumption 3.6.3, we get greater transparency of the solution form.

Corollary 3.C.2. Consider again the first best dynamic centralized delegation problem (DynCen) and Proposition 3.C.1. In
addition to Assumption 3.6.2, assume also Assumption 3.6.3. Recall that the Principal wants to implement investment strategy
pairs (θH, τH).

(a) The optimal portfolio policies chosen by Manager C are given as follows.

(i) The t = 1 optimal portfolio chosen by Manager C is independent of the performance fees y1, and is,

ψ̂FB1 =
1

2
.
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(ii) The t = 0 optimal portfolio chosen by Manager C is independent of the performance fees y0, and is,

ψ̂FB0 =
1

2
.

(b) The optimal contract chosen by the Principal is given as follows.

(i) The optimal fixed fee form is given in (3.C.5).

(ii) The t = 1 optimal performance fee chosen by the Principal is,

ŷFBC,1 =
ηP

ηP + ηM
.

(iii) The t = 0 optimal (interior solution) performance fee chosen by the Principal is, 31

ŷFBC,0 =
ŷNC,0

ŷDC,0
, (3.C.10)

provided that ŷFBC,0 ∈ (0, 1), and where,

ŷNC,0 = 2ηP(−2µ2 + ηPσ
2) +

(
−4µ2 + 2ηP[1 + 2µ(1 + µ)]σ2 + ηPσ

4
)
ηM

+ 2ηPσ
2
(
ηP + [1 + 2µ(1 + µ) + σ2]ηM

)
ρθH,τH + ηPηMσ

4ρ2θH,τH ,

ŷDC,0 = σ2(1 + ρθH,τH )
[
2η2P + 2η2M + ηPηM(4(1 + µ2) + σ2(1 + ρθH,τH ))

]
.

See Section 3.C for numerical illustrations of Corollary 3.C.2.

Numerical Illustrations of Dynamic Delegation in First Best
Using the analytical solutions for first best dynamic delegation from Corollary 3.C.2 and Proposition 3.7.1, we can easily
numerically illustrate the Principal’s value functions under centralization and decentralization, and also their associated optimal
policies at t = 0. It should be noted that from Corollary 3.C.2 and Proposition 3.7.1, the t = 1 optimal policies for both
centralization and decentralization take on explicit and simple forms. Hence, we will focus the numerical illustrations on the
t = 0 optimal policies, for which its comparative statics may not be obvious at first glance. The optimal portfolios at t = 0
for both centralization and decentralization take on a simple explicit form, and hence are not plotted. In decentralization, the
t = 0 optimal performance fee for both Manager A and Manager B are identical, and hence only one of them is plotted. The
base parameters are all identical to that of Table 3.1.

31 i.e. “N” for numerator, and “D” for denominator.



C
H
A
P
T
E
R

3.
C
E
N

V
S
D
E
C

D
E
L
P
O
R
T

M
G
T

U
N
D
E
R

M
O
R
A
L
H
A
Z
A
R
D

192

-0.5 0.0 0.5
ρθH,τH

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Principal's value fn
μ⩵ 0.1

μ⩵ 0.2

μ⩵ 0.3

μ⩵ 0.1

μ⩵ 0.2

μ⩵ 0.3

-0.5 0.0 0.5
ρθH,τH

0.2

0.4

0.6

0.8

1.0
yC,0
FB

-0.5 0.0 0.5
ρθH,τH

0.2

0.4

0.6

0.8

1.0
yA,0
FB

 yB,0
FB

Figure 3.C.1: Plot of the first best dynamic delegation model against the compliant investment strategy pair’s correlations
ρθH,τH , with several scenarios on the means µ of the compliant investment strategy. Similar to the static first
best case of Proposition 3.4.3, due to optimal risk sharing, higher correlations ρθH,τH favor decentralization,
while lower correlations favor centralization. And also, naturally, higher mean returns µ will increase the
Principal’s t = 0 value function. While the first best performance fees in the centralized static model of
Proposition 3.4.1 only consist of the Principal’s and Manager C’s risk aversions, this is clearly not the case for
the t = 0 centralization performance fees due to the intertemporal hedging incentive of all individuals involved.
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Figure 3.C.2: Plot of the first best dynamic delegation model against the Managers’ risk aversion ηM, with several scenarios
on the correlations of the compliant investment strategy pair ρθH,τH . As Managers’ risk aversion ηM increases,
it becomes more expensive to compensate the Managers for taking on the volatility of the contract. This is the
same effect as per the first best static delegation model of Section 3.4.
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Figure 3.C.3: Plot of the first best dynamic delegation model against the compliant strategies’ mean return µ, with several
scenarios of the strategies’ volatilities σ. Given that all individuals have mean-variance preferences, it is no
surprise that the Principal’s t = 0 value function increases with higher mean µ, and is lower with a higher
volatility σ. However, as compared to the first best static delegation model of Section 3.4, especially that of
Proposition 3.4.1 for centralization and Proposition 3.4.2 for decentralization, the optimal static performance
fees distinctly do not depend on the mean return µ. In this first best dynamic delegation model, as the mean
return µ of the compliant strategies, the t = 0 performance fees under both first best dynamic centralization and
decentralization decrease. Likewise, in the first best static delegation model, largely thanks to Assumption 3.3.2,
the volatility σ of returns also does not enter the static first best performance fees. In contrast, here in first best
dynamic delegation, as volatility σ increases, the t = 0 performance fees decreases under both centralization
and decentralization.
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3.D Dynamic Centralized Delegation in Second Best
Proposition 3.D.1. Consider the second best centralized delegation problem (DynCen) in its entirety. Assume Assump-
tion 3.6.2 and Assumption 3.6.3. Note and recall that the Principal wants to implement the investment strategy pair (θH, τH).

(a) For any given contract (xC , {yC,0, yC,1}) and any investment strategy pair (θ, τ), the optimal portfolio policies ψ̂t,(θ,τ) for
t = 0, 1 is equivalent to the form as in Proposition 3.C.1 for first best centralized delegation.

(b) The optimal fixed fee x̂C,(θH,τH) is equivalent to the form (3.C.5), when evaluated at (θ, τ) = (θH, τH), for any performance
fees (y0, y1).

(c) Suppose the t = 1 realized wealths are W
(θ,τ)
cP,1 = w

(θ,τ)
cP,1 and W

(θ,τ)
C,1 = w

(θ,τ)
C,1 , for the Principal and Manager C, respectively.

Then there exists some vector 32 λC = (λ
(θL,τL)
C , λ

(θH,τL)
C , λ

(θL,τH)
C ) ∈ R3 of which only one of the elements is nonzero

and the other two will be zero, and let λ
(θb,τb)
C be that nonzero element. Then the optimal t = 1 performance fee is,

ŷ
λC
C,1 := ŷ

λC
C,1(w

(θH,τH)
P,1 , w

(θb,τb)
P,1 )

=

w
(θH,τH)
P,1

[
2λ

(θb,τb)
C µ+ w

(θH,τH)
P,1 ηPσ

2(1 + ρθH,τH )

]
− λ

(θb,τb)
C (µθb + µτb )w

(θb,τb)
P,1

σ2
[
(ηP + ηM(1 + λ

(θb,τb)
C ))(1 + ρθH,τH )(w

(θH,τH)
P,1 )2 − λ

(θb,τb)
C ηM(w

(θb,τb)
P,1 )2(1 + ρθb,τb )

] . (3.D.1)

(d) The t = 1 continuation value of Manager C taking on investment strategy pair (θ, τ) and the Principal are,

Û
(θ,τ)
C,1 = U

(θ,τ)
C,1 |

yC,1=ŷ
λC
C,1

= w
(θ,τ)
C,1 + ŷ

λC
C,1w

(θ,τ)
cP,1 [(1− ψ̂1,(θ,τ))µθ + ψ̂1,(θ,τ)µτ ]−

ηM

2

(
ŷ
λC
C,1w

(θ,τ)
P,1

)2
Σ̂1,(θ,τ), (3.D.2a)

ˆ̃U
(θH,τH)
cP,1 = Ũ

(θH,τH)
cP,1 |

yC,1=ŷ
λC
C,1

= w
(θH,τH)
cP,1

(
1 + (1− ŷ

λC
C,1)µ

)
−
ηP

2

(
(1− ŷ

λC
C,1)w

(θH,τH)
P,1

)2
Σ̂1,(θH,τH), (3.D.2b)

where we recall that the optimal t = 1 performance fee ŷ
λC
C,1 = ŷ

λC
C,1(w

(θH,τH)
cP,1 , w

(θb,τb)
cP,1 ).

(e) The optimal t = 0 performance fee ŷ
λC
C,0 ∈ [0, 1] is the solution to the following optimization problem,

Û
λC
cP,0 = sup

yC,0∈[0,1]
E0[Û

(θH,τH)
C,1 ]−

ηM

2
Var0(E1W

(θH,τH)
C,2 )

+ E0[
ˆ̃U
(θH,τH)
cP,1 ]−

ηP

2
Var0(W

(θH,τH)
cP,2 )

− λ
(θb,τb)
C

[
E0[Û

(θb,τb)
C,1 ]−

ηM

2
Var0(E1W

(θb,τb)
C,2 )

−
(
(c(θb) + c(τb))− 2c+ E0[Û

(θH,τH)
C,1 ]−

ηM

2
Var0(E1W

(θH,τH)
C,2 )

) ]
. (3.D.3)

32 As one can see in the proofs, this is the vector of Lagrange multipliers associated with the three possible
incentive compatibility constraints. As argued in the static centralized delegation model, if a binding solution
exists, only one of these will bind. And hence only the binding constraint will have a nonzero unsigned
Lagrange multiplier, while the slack constraints will have zero valued multipliers. If the optimal solution is
non-binding, then we return back to the first best case, and in that case, λC = 0 will be the zero vector —
we refer this case back to the first best setup of Proposition 3.D.1 and is not treated here for succinctness in
exposition.
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(f) The optimal constant λ̂C = (λ̂
(θL,τL)
C , λ

(θH,τL)
C , λ

(θL,τH)
C ) is the solution to,

inf
λ′
C=(λ

′1
C ,λ

′2
C ,λ

′3
C )∈R3,

only one of λ
′k
C is nonzero

Û
λ′
C

cP,0. (3.D.4)

If a finite value is not reached for the infimum, no second best contract will exist.

At t = 1, for any arbitrary t = 1 performance fee y1, Manager C who is taking on the compliant investment strategy pair

(θH, τH) will be entitled to the total performance fee amount of yC,1w
(θH,τH)
cP,1 , where W

(θH,τH)
cP,1 = w

(θH,τH)
cP,1 is the Principal’s

t = 1 realized wealth. But if Manager C decides to deviate to the deviant investment strategy pair (θH, τH), then Manager

C’s total performance fee becomes yC,1w
(θb,τb)
cP,1 . Because of the long term investment strategy (θ, τ) commitment by Manager

C at t = 0, there is a strong path dependence on the Principal’s t = 1 wealth w
(θ,τ)
cP,1 , which then affects Manager C’s t = 1

performance fee compensation. Thus, analogous to the idea in the static centralization model of Proposition 3.5.1, opportunity
costs for Manager C associated with foregone investment strategy benefits by deviating is no longer a simple difference between
means and volatilities, but rather the whole possible paths of returns form such opportunity costs. Hence, in addition to the
usual risk sharing arguments that already hold in first best, the Principal needs to balance out the cost of Manager’s deviant
strategy. In all, the optimal t = 1 performance fee is precisely (3.D.1), and as usual λC represents the shadow price on Manager
C’s incentive compatibility.

Now let’s discuss the t = 0 optimal performance fee choice in (3.D.3). From the Principal’s perspective, the optimal
performance fee ŷC,0 serves two objectives: (i) optimal risk sharing; and (ii) incentive compatibility. As it was also true in
the first best case of Proposition 3.C.1, the Principal wants to choose t = 0 performance fee to maximize his continuation

utility E0[
ˆ̃U
(θH,τH)
cP,1 ] while minimizing Manager C’s continuation utility E0[Û

(θH,τH)
C,1 ]. Since both the Principal and Manager

C are both risk averse, again as per the first best case of Proposition 3.C.1, the Principal has an intertemporal hedging

motive, in which case the t = 0 performance fees should minimize the terminal wealth volatility −( ηM
2

Var0(E1W
(θH,τH)
C,2 ) +

ηP
2
Var0(W

(θH,τH)
cP,2 )). But under second best, the performance fees must also induce Manager C to take on the Principal’s strictly

preferred strategy pair (θH, τH), which are the terms multiplied by λ
(θb,τb)
C . In particular, in equilibrium, the performance

fees are set such that Manager C’s private costs, the continuation value and Manager C’s intertemporal hedging motive

−2c+E0[Û
(θb,τb)
C,1 − ηM

2
Var0(E1W

(θb,τb)
C,2 )] under (θH, τH), would equate to the payoff for Manager C under the most profitable

investment deviation pair (θb, τb), which consists of the private costs, continuation value and the intertemporal hedging motive,

−(c(θb)+c(τb))+E0[Û
(θb,τb)
C,1 − ηM

2
Var0(E1W

(θb,τb)
C,2 )]. Taking all these effects in account, it implies also that the determination

of the optimal t = 0 performance fee ŷ
λC
C,0 must also depend on the full joint distribution of both the compliant and deviant

strategy returns (RθH , RτH , RθL , RτL ).
The economic reason for why the full joint distribution is perhaps most interesting. The incentive compatibility constraint

of Manager C act as an endogenous value-at-risk (VaR) constraint on the performance fee policies across time. The equilibrium

wealth paths if Manager C is compliant is W
(θH,τH)
C,t , and the wealth paths of the most profitable deviation is W

(θb,τb)
C,t . To

incentivize Manager C, it implies that the performance fees over time must be constructed such that the terminal mean-variance

of W
(θH,τH)
C,2 , taking into account Manager C’s private costs, must weakly exceed that of W

(θb,τb)
C,2 , while due to the individuals’

risk aversions, intertemporal wealth smoothing is also taken into account. As it is common with VaR type constraints, the
tail probabilities of returns are of first order importance. In particular, we are now concerned with the joint tail probabilities
wealths under the on-equilibrium compliant strategies and off-equilibrium deviant strategies.

The technical reason for why the full joint distribution is required is that we are now dealing with ratios of random variables.

One can observe that ŷ
λC
C,1W

(θH,τH)
cP,1 is a ratio of function of wealths W

(θH,τH)
P,1 and W

(θb,τb)
P,1 . Thus when the Principal needs

to decide on the t = 0 optimal performance fee ŷC,0, the Principal needs to consider the t = 0 expectation of his t = 1

continuation value Û
λC
cP,1. And since the expectation of a ratio is generically not equal to the ratio of expectations, it means

that one would indeed need the full multivariate distribution of (RθH , RτH , RθL , RτL ). Indeed, only when λC = 0 (i.e. the

incentive compatibility constraint is non-binding, or effectively the first best setup), does ŷ
λC
C,1|λC=0 become linear in W

(θH,τH)
cP,1

and hence overall quadratic in the wealth for ŷ
λC
C,1W

(θH,τH)
cP,1 |λC=0, and hence only in this case, it suffices to just consider the

first and second moments of the returns.

3.E Distribution restrictions in second best
Throughout this paper, we have been relatively silent on the existence of the moment quantities involved in both the optimiza-
tion of our static and dynamic models. This is especially since in the static models (Section 3.3), as we work with mean-variance
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preferences, it is clear that having well defined and finite first and second moments of the investment strategy returns (Rθ, Rτ )
will suffice for our optimization problem. And indeed, again in the first best dynamic models for both centralized and de-
centralized delegation, first and second moments existence will also suffice; it should be noted that even though we had made
strong independence and identical distribution assumptions (i.e. Assumption 3.6.2 and Assumption 3.6.3), even if we relax these
assumptions, it is clear that as long as certain conditional versions of first and second moments exist, everything will still pass
through.

But as we discuss the second best dynamic delegation problem, the ratio of functions involving the investment strategy
returns will naturally arise from the incentive compatibility constraints. This immediately places a strong restriction on the
forms of multivariate distributions (RθH , RτH , RθL , RτL ) that are permissible in order to have finite first and second moments
in the computation of the agents’ continuation utilities and variances of wealth. As an important special case, this immediately
rules out (RθH , RτH , RθL , RτL ) having a jointly Gaussian distribution. 33 This is worthy of mention since numerous theoretical
and empirical papers in the asset pricing literature that implicitly or explicitly invoke Gaussian assumptions in the distribution
of returns. The key point here is that the introduction of moral hazard in delegated portfolio management, through the incentive
compatibility constraints, should give the researcher further pause on how one should think about the returns distribution of
not only the equilibrium investment strategies, but also the off-equilibrium returns distributions. We have further remarks on
this issue of modeling joint distribution of returns in Section 3.F, where we will use copulas to model said joint dependence.

3.F Dependence Modeling and Copulas
As noted in Section 3.8, where we’d discussed centralized and decentralized delegation under second best, simply knowing
the first and second moments of the investment return strategies of Rθ, Rτ for each of θ, τ is not sufficient — one needs
to have the full joint distribution (RθH , RτH , RθL , RτL ) of the return strategies. From Assumption 3.3.2 of Section 3.3, and
Assumption 3.6.2 and Assumption 3.6.3 of Section 3.6, we have already in place several restrictions on the moments of the
investment strategies, which implies that we already have some a priori restrictions on their respective marginal distributions.
To further model the joint distribution of these investment strategies, when we already have some specified restrictions on their
marginal distributions, the most direct method is via copulas.

Why Copulas?
The first order of business is to answer a seemingly obvious question — if one wants a multivariate distribution involving four
random variables, isn’t the multivariate Gaussian the most convenient and obvious choice?

Why not multivariate Gaussian? Why discrete distributions and copulas?

The reader might naturally wonder why would one not use a four dimensional joint Gaussian distribution on (RθH , RτH , RθL , RτL ),
where we can conveniently impose our restrictions on the means and the variances, and then subsequently model the correla-
tions. While this is statement is true in principle, but in practice we encounter several issues, both on the mathematical aspect
and also on the numerical computation aspect. As seen in Proposition 3.D.1 and Proposition 3.8.1, we require to take the
expectation of a ratio of random variables. And for Gaussian distributions, it is well known that something as simple as X/Y ,
where X and Y are independent standard normals, follows the Cauchy distribution, of which no moments exist. A similar issue
arises precisely in this setting, as already mentioned in Section 3.E. As a result, it is highly inconvenient or even wrong to use
the seemingly innocuous multivariate Gaussian distribution in our model.

The second reason is a numerical issue. Even if we brush aside probabilistic and integration issues on the existence of
moments, from a numerical computation perspective, computing the moments of a ratio still brings substantial challenges. For
one, computing a multivariate integral using a four dimensional joint Gaussian is rather computationally intensive, and when
the integrands involve ratios of such random variables, we also have to handle numerical stability issues. Indeed, one could
make the same remark for general multivariate continuous distributions (say, elliptical distributions) where the density function
is non-trivial to compute and subsequently numerically integrate. And we also need to recall, since we are optimizing over an
endogenous choice of optimal portfolio and performance fee policies, that means we need to iteratively compute such moments
numerous times. In all, this brings about a highly computationally intensive and delicate task.

For these two reasons above, it is far easier to use discrete distributions so that: (i) We do not need to worry about moment
existence and integral convergence issues, since we’ll be working with finite sums; and (ii) Discrete distributions with small
number of states are far more computationally easily to execute than that of continuous distributions with infinite number of
states. And once we recognize the mathematical and numerical practical need to step away from the multivariate Gaussian
distributions, where the correlation matrix being the single quantity that governs all dependence behaviors, one then needs to

33 For instance, it is well known that if X ∼ N (µ, σ2), then E[1/Xk] does not exist for any integer k.
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be more delicate in modeling the joint dependence of random variables. As far as this author is aware, the most direct and
well-established method is via copulas.

Copulas — bare basics
The study of copulas is well established and extensive; see Joe (2014) and Nelsen (2007), and for specific applications in finance,
see Embrechts et al. (2003) and Patton (2009b, 2012).

Here, we make no attempt to summarize the theories but rather just extract out the minimalistic bare elements that
are necessary to achieve two goals for the purpose of this paper: (i) A way to construct joint distributions from the marginal
distributions of random variables; and (ii) Parametric copula choices that can qualitatively inform us on the dependence behavior
of the random variables.

For this section only, let’s denote I := [0, 1] to be the unit interval, let R̄ be the extended real line and denote Ran f to be
the range of a function f .

We start with the definition of a copula.

Definition 3.F.1 (Nelsen (2007), Definition 2.10.6). An n-dimensional copula (or n-copula) is a function C : In → I such
that:

1. For every u ∈ In,
C(u) = 0 if at least one coordinate of u is 0,

and,
if all coordinates of u are 1 except uk, then C(u) = uk;

2. For all u0 = (u0,1, . . . , u0,n) ∈ In and u1 = (u1,1, . . . , u1,n) ∈ In such that u0 ≤ u1 (i.e. u0,j ≤ u1,j for all j = 1, . . . , n),

∑
i1=0,1

· · ·
∑

in=0,1

(−1)i1+···+inC(ui1,1, . . . , uin,n) ≥ 0.

The next key theorem connects copulas to multivariate distributions.

Theorem 3.F.1 (Sklar’s theorem in n-dimensions; Nelsen (2007), Theorem 2.10.9). Let H be an n-dimensional distribu-
tion function with margins F1, F2, . . . , Fn. Then there exists an n-copula C such that for all x = (x1, x2, . . . , xn) ∈ R̄n,

H(x1, x2, . . . , xn) = C (F1(x1), F2(x2), . . . , Fn(xn)) . (3.F.1)

If F1, F2, . . . , Fn are all continuous, then C is unique; otherwise, C is uniquely determined on RanF1×RanF2×· · ·×RanFn.
Conversely, if C is an n-copula and F1, F2, . . . , Fn are distribution functions, then the function H defined by (3.F.1) is an
n-dimensional distribution function with margins F1, F2, . . . , Fn.

To be concrete, let’s consider the probability mass function when the marginal distributions are discrete. For notational
simplicity, we assume, only for the expression below, that the random vector Y is discrete and moreover that Y ∈ Nn, where N
is the set of natural numbers. For the actual application in mind, the support of our random vector will be discrete and finite,
and it should be clear from the below that the notation there is straightforward to modify. The probability mass function (pmf)
of Y = (Y1, . . . , Yn), and where Fj is the marginal distribution of Yj , for j = 1, . . . , n, is given by the 2n finite differences,

P(Y = y) =
∑
i1=0,1

· · ·
∑

in=0,1

(−1)i1+···+inP(Y1 ≤ y1 − i1, . . . , Yn ≤ yn − in)

=
∑
i1=0,1

· · ·
∑

in=0,1

(−1)i1+···+inC(F1(y1 − i1), . . . , Fn(yn − in)).

For our model, we have n = 4 and that Yj ’s will be the investment strategy returns, which will be defined on a finite discrete
support (which only has few states). Given that the marginal Fj ’s will be defined on finite discrete supports, these should be
relatively quick to compute numerically. However, even if the Fj ’s are quick to compute, we must not forget that we will need
to evaluate these Fj(·)’s on the copula C with n arguments, before then computing the 2n finite differences. And this is only
for one possible value of the y’s. And since we need to be working with moments of ratios of random variables, we need to
consider summing over all possibilities of y’s with respect to the pmf P(Y = y). Thus, it is imperative that we pick a copula
C that is very quick to compute.
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Remark 3.F.2. As already motivated above, we do not consider numerically intensive procedures that do not admit closed
form solutions of the copula C. An example of a copula without closed form solutions are elliptical copulas (in which Gaussian
copulas are a special case), of which the pmf of a multivariate discrete random variable Y has the form,

P(Y = y) =

∫ Φ−1(F+
1 )

Φ−1(F−
1 )

· · ·
∫ Φ−1(F+

n )

Φ−1(F−
n )

ϕn(x1, . . . , xn; Γ) dx1 · · · dxn,

where here, ϕn(·; Γ) denotes the probability density function (pdf) of an n-dimensional elliptical distribution at location 0
and with scale parameter (correlation matrix) Γ, and Φ−1 denotes the inverse cumulative distribution function (cdf) of the
univariate margins of the said elliptical distribution; and F+

j := P(Yj ≤ yj) and F−
j := P(Yj ≤ yj − 1). Clearly, there are no

closed form solutions for Φ−1. See Joe (2014) for details.
The main point for the purpose of our paper is that these distributions that do not admit closed form solutions for the copula

entails highly numerically intensive computations (i.e. for both Φ−1, and the multivariate numerical integration) for even one
single computation of P(Y = y). In particular, we need to consider expectations of the form E[g(Y; v)] =

∑
g(y; v)P(Y = y),

where for our purposes, g itself already is somewhat complicated in y and may not have closed form solutions, and moreover,
that we need to further numerically optimize over the endogenous variable(s) v. All such numerical computations make
this copula family numerically unsuitable for our paper — even though we fully acknowledge that, with sufficient computing
resources, it would be interesting to explore this copula family since the correlation scale parameter Γ allows for a richer
dependence structure than the Archimedean family that we discuss below.

Archimedean copulas
For the purpose of this paper, we will only consider the family of Archimedean copulas. 34 Let’s begin with a technical
definition.

Definition 3.F.2 (Completely monotonic function; Nelsen (2007), Definition 4.6.1.). A function g(t) is completely monotonic
on an interval J if it is continuous there and has derivatives of all orders that alternate in sign; i.e., if it satisfies,

(−1)k
dk

dtk
g(t) ≥ 0,

for all t in the interior of J and k = 0, 1, 2, . . ..

Now, we can give the definition of an n-dimensional (exchangeable) Archimedean copula. 35

Definition 3.F.3 (Multivariate Archimedian copula; Nelsen (2007), Theorem 4.6.2.). Let φ be a continuous strictly decreasing
function from I to [0,∞] such that φ(0) = ∞ and φ(1) = 0, and let φ−1 denote the inverse of φ. If C is the function from In

to I given by,
C(u) = φ−1 (φ(u1) + φ(u2) + . . .+ φ(un)) , (3.F.2)

then C is an n-copula for all n ≥ 2 if and only if φ−1 is completely monotonic on [0,∞). The function φ is called the generator
of the copula. 36

There are numerous properties associated with the Archimedean copula (see Nelsen (2007)) but for our purposes, one of the
most restrictive implications of this copula is that it implies an exchangeable distribution. That is, if the multivariate distribution
of (Y1, . . . , Yn) is constructed from an Archimedean copula, then it is equivalent in distribution to (Yσ(1), . . . , Yσ(n)), where
σ(1), . . . , σ(n) are any permutations of 1, . . . , n. This is admittedly restrictive. But in return, we get a multivariate distribution
that is based on a single parameter that can then generate various tail dependence behaviors; these tail dependence 37 behaviors
are what’s most important for the purpose of our application.

34 In particular, we do not consider the multivariate Gaussian copula (see Remark 3.F.2), which is widely
popular in mathematical finance (say Li (2000)), largely only because of computational speed problems
for our model at hand. Nelsen (2007) and Joe (1997, 2014) are standard references that contain excellent
overviews of various types of copulas and their properties.

35 The theorem statement of Theorem 4.6.2. in Nelsen (2007) yields the definition of a multivariate
Archimedean copula.

36 For most purposes and also in the literature, this generator is parametrized by a single scalar δ.
37 There are several different measures of tail dependence and details can be found in Joe (2014). For

our purposes, a qualitative description suffices. We say that a pair of random variables exhibit upper tail



CHAPTER 3. CEN VS DEC DEL PORT MGT UNDER MORAL HAZARD 200

Examples

In what follows, we will list out both the bivariate and multivariate forms of the classical Archimedean copulas. We will use
these examples as fundamental building blocks in the subsequent constructions of hierarchical Archimedean copulas. In the
examples below, we will also record the inverse of the generator as it will become useful in the subsequent sections.

Example 3.F.1 (Clayton). For 0 ≤ δ <∞, the bivariate Clayton copula, is,

C(u, v; δ) =
(
u−δ + v−δ − 1

)−1/δ
, u, v ∈ I, (3.F.3)

where its generator is,

φ(s; δ) = (1 + s)−1/δ , (3.F.4a)

φ−1(t; δ) = t−δ − 1, t ∈ I. (3.F.4b)

The multivariate Clayton copula is,

C(u; δ) =
[
u−δ1 + . . .+ u−δn − (n− 1)

]−1/δ
, u ∈ In. (3.F.5)

See Joe (2014, Section 4.6.1) for details.
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Figure 3.F.1: A scatter plot of (X1, X2), whose joint distribution is generated by the Clayton
copula of Example 3.F.1 with various parameters. The marginal distributions are
Xi ∼ N (0.20, 0.35) for i = 1, 2.

Example 3.F.2 (Frank). For −∞ < δ <∞, the bivariate Frank copula, is,

C(u, v; δ) = −δ−1 log

(
1− e−δ − (1− e−δu)(1− e−δv)

1− e−δ

)
, u, v ∈ I, (3.F.6)

dependence when one realizes high extreme values, the other also realizes high extreme values. Likewise, we
say a pair of random variables exhibit lower tail dependence when one realizes low extreme values, the other
also realizes low extreme values. It should also be noted that by their constructions, it is fairly difficult for
Archimedean copulas to generate distributions whereby one random variable realizes high extreme values,
while the other one realizes low extreme values. Thus, when one computes (Pearson’s) correlation on such
random variables, they will tend to be nonnegative. But it should be noted that correlation computations
obscure a critical qualitative behavior. Namely, it is possible to have high positive correlations with or
without tail dependence. Moreover, if two random variables exhibit upper or lower tail dependencies, they’ll
both result in positive (Pearson’s) correlation, and yet their qualitative behaviors are completely different
and indeed opposing.
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where its generator is,

φ(s; δ) = −δ−1 log
(
1− (1− e−δ)e−s

)
, (3.F.7a)

φ−1(t; δ) = − log
1− e−δt

1− e−δ
, t ∈ I. (3.F.7b)

The multivariate Frank copula is,

C(u; δ) = −δ−1 log

(
1−

∏n
j=1(1− e−δuj )

(1− e−δ)n−1

)
, u ∈ In. (3.F.8)

See Joe (2014, Section 4.5.1) for details.
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Figure 3.F.2: A scatter plot of (X1, X2), whose joint distribution is generated by the Frank
copula of Example 3.F.2 with various parameters. The marginal distributions are
Xi ∼ N (0.20, 0.35) for i = 1, 2.

Example 3.F.3 (Gumbel). For 1 ≤ δ <∞, the bivariate Gumbel copula is,

C(u, v; δ) = exp

{
−
(
[− log u]δ + [− log v]δ

)1/δ}
, u, v ∈ I, (3.F.9)

where its generator is,

φ(s; δ) = exp(−s1/δ), (3.F.10a)

φ−1(t; δ) = (− log t)δ, t ∈ I. (3.F.10b)

(3.F.11)

The multivariate Gumbel copula is,

C(u; δ) = exp

−

 n∑
j=1

[− log uj ]
δ

1/δ
 , u ∈ In. (3.F.12)

See Joe (2014, Section 4.8.1) for details.
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Figure 3.F.3: A scatter plot of (X1, X2), whose joint distribution is generated by the Gumbel
copula of Example 3.F.3 with various parameters. The marginal distributions are
Xi ∼ N (0.20, 0.35) for i = 1, 2.

Approximating continuous marginals by discrete marginals
As mentioned at the beginning of Section 3.F, due to both moment existence issues on the theoretical end and also on numerical
computation issues in practice, in this paper we will use discrete distributions rather than continuous distributions. In particular,
in light of the copula discussion above, we just need to focus on describing a method to construct marginal distributions Fi’s,
and the joint distribution will then be applied via the copula.

So suppose we have finite number of states. 38 Rather than assigning probability weights in a potentially arbitrary fashion,
we will use a more systematic method to construct the probabilities. We will construct a discrete distribution that matches
the moments of a corresponding parametric continuous distribution. We follow the procedure described in Luceno (1999);
although we acknowledge that the core ideas are much older and are already described in Abramowitz and Stegun (1972) (see
also Stoer and Bulirsch (2002)). In particular, we approximate the Gaussian distribution. In the actual applications to this
paper, we will model the returns of all strategies Rθ, Rτ to have Gaussian marginals, with moments matching Assumption 3.3.2,
Assumption 3.6.2 and Assumption 3.6.3.

3.G Additional Results and Proofs for Section 3.7
Proof of Proposition 3.C.1. (a) Fix any investment strategy pair (θ, τ).

(i) For any given contract (x,
{
yC,0, yC,1

}
), the problem of solving for the portfolio policy of Manager C is,

sup
ψ0,ψ1∈R

−(c(θ) + c(τ)) + E0[x+ W̃
(θ,τ)
C,2 ]−

ηM

2
Var0(W̃

(θ,τ)
C,2 ) (3.G.1)

=: −(c(θ) + c(τ)) + xC + ˆ̃U
(θ,τ)
C,0 , (3.G.2)

where recall that W̃
(θ,τ)
C,t = W̃

(θ,τ)
C,t (ψ0, ψ1;xC , {yC,0, yC,1}), as per (3.B.1f), (3.B.1g), is the time t wealth of Manager

C (except for the fixed fee xC) for an arbitrary contract, and also an arbitrary portfolio policy. Using the dynamic
programming principle as per Section 3.A, we are motivated to recursively define, for t = 0, 1,

Ũ
(θ,τ)
C,t := Ũ

(θ,τ)
C,t (yC,0, yC,1) = EtŨC,t+1 −

ηM

2
Vart(Et+1W̃

(θ,τ)
C,2 ). (3.G.3)

Thus, at t = 1, Manager C faces the portfolio choice problem,

ˆ̃U
(θ,τ)
C,1 = sup

ψ1∈R
Ũ

(θ,τ)
C,1 . (3.G.4)

Note that, clearly by the fixed nature of the fixed fee x, it does not affect Manager C’s portfolio choice at any period
t. Optimizing, the resulting t = 1 portfolio is (3.C.1). After substituting the t = 1 optimal portfolio back into the
objective function, the resulting t = 1 value function for Manager C is (3.C.2).

38 In the application, we’ll be taking small number of states, say three.
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(ii) Next, again holding for an arbitrary contract, we consider the t = 0 portfolio policy as chosen by Manager C, and
indeed that is the problem,

ˆ̃U
(θ,τ)
C,0 = sup

ψ0∈R
E0[

ˆ̃U
(θ,τ)
C,1 ]−

ηM

2
Var0(E1W̃

(θ,τ)
C,2 ), (3.G.5)

which is (3.C.4).

Substitute the optimal portfolio choices back into Manager C’s wealth constraints, of which we then have W
(θ,τ)
C,t =

W̃
(θ,τ)
C,t (ψ̂0, ψ̂1;xC , {yC,0, yC,1}) as per (3.B.1c), (3.B.1d).

(b) Thus from before, for any given arbitrary contract (xC , {yC,0, yC,1}), we have solved for Manager C’s optimal portfolio

policies ψ̂t,(θ,τ)(xC , {yC,0, yC,1}) for all times t = 0, 1. We now solve the optimal contact as chosen by the Principal.

(i) From the individual rationality constraint (3.B.1i), it will bind and implying the fixed fee xC is (3.C.5).

(ii) Let us now optimize over the performance fees (yC,0, yC,1). Recalling the objective function (DynCen), and substi-
tuting in the fixed fee x̂C,(θ,τ) form, the optimization problem of the Principal at t = 0 is,

Û
(θ,τ)
cP,0 = sup

xC∈R,
yC,0,yC,1∈[0,1]

−xC + E0[W
(θ,τ)
cP,2 ]−

ηP

2
Var0(W

(θ,τ)
cP,2 )

= sup
yC,0,yC,1∈[0,1]

−(c(θ) + c(τ)) + E0[W
(θ,τ)
C,2 ]−

ηM

2
Var0(W

(θ,τ)
C,2 )

+ E0[W
(θ,τ)
cP,2 ]−

ηP

2
Var0(W

(θ,τ)
cP,2 )

= sup
yC,0,yC,1∈[0,1]

−(c(θ) + c(τ)) + Ũ
(θ,τ)
P,0 + UC,0,

where we have defined, for any yC,0, yC,1 ∈ [0, 1],

Ũ
(θ,τ)
cP,0 := E0[W

(θ,τ)
cP,2 ]−

ηP

2
Var0(W

(θ,τ)
cP,2 ), (3.G.6)

U
(θ,τ)
C,0 := E0[W

(θ,τ)
C,2 ]−

ηM

2
Var0(W

(θ,τ)
C,2 ). (3.G.7)

Now, applying the dynamic programming principle of Section 3.A, this motivates the definition that for t = 0, 1,

Ũ
(θ,τ)
cP,t = EtŨcP,t+1 −

ηP

2
Vart(Et+1WcP,2), (3.G.8a)

U
(θ,τ)
C,t = EtUC,t+1 −

ηM

2
Vart(Et+1WC,2). (3.G.8b)

This implies we can now consider the problem

Û
(θ,τ)
cP,1 = sup

yC,1∈[0,1]
Ũ

(θ,τ)
cP,1 + U

(θ,τ)
C,1 , (3.G.9)

to determine the t = 1 fees. Taking first order conditions for optimization, and actually analogous to the static cen-
tralized delegation problem in first best of Proposition 3.4.1, the first order conditions associated with the performance
fees yC,1 will have four roots, them being,

{
ηP

ηP + ηM
, −

(E1Rθ,2 − E1Rτ,2)2/3

(W 2
cP,1η

2
M(Var1(Rθ,2)Var1(Rτ,2))− Cov1(Rθ,2, Rτ,2)2)1/3

,

±
(−1)2/3(E1Rθ,2 − E1Rτ,2)2/3

(W 2
cP,1η

2
M(Var1(Rθ,2)Var1(Rτ,2))− Cov1(Rθ,2, Rτ,2)2)1/3

}

but the only real-valued solution in [0, 1] is clearly the first one. Thus, we have determined Principal’s t = 1 optimal

performance fee policy (3.C.6). Let ˆ̃U
(θ,τ)
cP,1 be the value of Ũ

(θ,τ)
cP,1 evaluated at ŷC,1, and also let Û

(θ,τ)
C,1 be the value

of U
(θ,τ)
C,1 evaluated at ŷC,1, so that Û

(θ,τ)
cP,1 = ˆ̃U

(θ,τ)
cP,1 + Û

(θ,τ)
C,1 .
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(iii) Now, we continue to optimize for the t = 0 performance fees yC,0 ∈ [0, 1]. From the dynamic programming principle,
we can consider the problem,

Û
(θ,τ)
cP,0 = sup

yC,0∈[0,1]
E0[

ˆ̃U
(θ,τ)
cP,1 ]−

ηP

2
Var0(E1W

(θ,τ)
cP,2 )−

ηM

2
Var0(E1W

(θ,τ)
C,2 ), (3.G.10)

which is (3.C.9).

■

Proof of Corollary 3.C.2. The t = 1 results are a simple application of Assumption 3.6.3 to the results of Proposition 3.C.1.
However, by using Assumption 3.6.3, we can get substantial simplifications and clarity in the t = 0 results. One can readily
verify that with the simplifications provided by Assumption 3.6.3, the objective function for the t = 0 fees optimization becomes
a concave quadratic in y0, and thus if an interior maximizer exists in (0, 1), then it must be unique and can be characterized
by first order conditions. ■

Decentralization
Proposition 3.G.1. Consider the first best decentralized delegation problem (DynDec) but without the incentive compatibility
constraints (3.6.1i) and (3.6.1j). Fix any strategy pair (θ, τ) ∈ S. Assume Assumption 3.6.2.

(a) For any portfolio policy and performance fees (π0, π1, yA,0, yA,1, yA,0, yA,1), the optimal fixed fees for Manager A and
Manager B are, respectively,

x̂A,(θ,τ) = c(θ)− E0[W
(θ,τ)
A,2 ] +

ηM

2
Var0(W

(θ,τ)
A,2 ), (3.G.11a)

x̂B,(θ,τ) = c(τ)− E0[W
(θ,τ)
B,2 ] +

ηM

2
Var0(W

(θ,τ)
B,2 ). (3.G.11b)

(b) Suppose the t = 1 realized value of the Principal’s wealth is W
(θ,τ)
P,1 = w

(θ,τ)
P,1 . Then the t = 1 optimal policies are given as

follows.

(i) The t = 1 optimal portfolio chosen by the Principal is 39 ,

π̂1,(θ,τ) =
π̂1N
1

π̂1D
1

+
π̂2N
1

π̂2D
1

, (3.G.12)

provided that π̂1,(θ,τ) ∈ (0, 1) and where,

π̂1N
1 := Var1(Rθ,2)

[
(ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)

− Cov1(Rθ,2, Rτ,2)(ηMVar1(Rτ,2) + ηPCov1(Rθ,2, Rτ,2)
]
,

π̂1D
1 := (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)[Var1(Rθ,2) + Var1(Rτ,2)]

− 2ηMVar1(Rθ,2)Var1(Rτ,2)Cov1(Rθ,2, Rτ,2)

− ηP(Var1(Rθ,2) + Var1(Rτ,2))Cov1(Rθ,2, Rτ,2)
2,

and,

π̂2N
1 := (E1Rτ,2 − E1Rθ,2)

[
η2PCov1(Rθ,2, Rτ,2)

2 − (ηP + ηM)2Var1(Rθ,2)Var1(Rτ,2)
]
,

π̂2D
1 := ηPηMw

(θ,τ)
P,1 π̂1D

1 .

39 i.e. “N” for numerator, and “D” for denominator.
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(ii) The optimal t = 1 performance fee chosen by the Principal to compensate Manager A is,

ŷA,1,(θ,τ) =
ŷNA,1

ŷDA,1
, (3.G.13)

provided that ŷA,1,(θ,τ) ∈ (0, 1), and where,

ŷNA,1 := η2PηMVar1(Rτ,2)[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)
2]wP,1

+ ηP(E1Rθ,2 − E1Rτ,2)
[
(ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)

− Cov1(Rθ,2, Rτ,2)(ηMVar1(Rτ,2) + ηPCov1(Rθ,2, Rτ,2))
]
,

ŷDA,1 := (E1Rθ,2 − E1Rτ,2)[(ηP + ηM)2Var1(Rθ,2)Var1(Rτ,2)− η2PCov1(Rθ,2, Rτ,2)
2]

+ ηPηMVar1(Rτ,2)
[
− ηPCov1(Rθ,2, Rτ,2)

2

+Var1(Rθ,2)[(ηP + ηM)Var1(Rτ,2)− ηMCov1(Rθ,2, Rτ,2)]
]
w

(θ,τ)
P,1 .

(iii) The optimal t = 1 performance fee chosen by the Principal to compensate Manager B is,

ŷB,1,(θ,τ) =
ŷNB,1

ŷDB,1
, (3.G.14)

provided that ŷB,1,(θ,τ) ∈ (0, 1), and where,

ŷNB,1 := η2PηMVar1(Rθ,2)[−Var1(Rθ,2)Var1(Rτ,2) + Cov1(Rθ,2, Rτ,2)
2]w

(θ,τ)
P,1

+ ηP(E1Rθ,2 − E1Rτ,2)
[
− ηPCov1(Rθ,2, Rτ,2)

2

+Var1(Rθ,2)[(ηP + ηM)Var1(Rτ,2)− ηMCov1(Rθ,2, Rτ,2)]
]
,

ŷDB,1 := (E1Rθ,2 − E1Rτ,2)[(ηP + ηM)2Var1(Rθ,2)Var1(Rτ,2)− η2PCov1(Rθ,2, Rτ,2)
2]

+ ηPηMVar1(Rθ,2)
[
− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)

+ Cov1(Rθ,2, Rτ,2)(ηMVar1(Rτ,2) + ηPCov1(Rθ,2, Rτ,2))
]
w

(θ,τ)
P,1 .

(c) The t = 0 optimal portfolio and fee policies (π̂0,(θ,τ), ŷA,0,(θ,τ), ŷB,0,(θ,τ)) are obtained by solving the following.

(i) Define the t = 1 continuation utilities for the Principal, Manager A and Manager B, respectively:

Ũ
(θ,τ)
P,1 := E1W

(θ,τ)
P,2 −

ηP

2
Var1(W

(θ,τ)
P,2 ), (3.G.15a)

U
(θ,τ)
A,1 := E1W

(θ,τ)
A,2 −

ηM

2
Var1(W

(θ,τ)
A,2 ), (3.G.15b)

U
(θ,τ)
B,1 := E1W

(θ,τ)
B,2 −

ηM

2
Var1(W

(θ,τ)
B,2 ), (3.G.15c)

where the t = 2 wealth expressions, W
(θ,τ)
P,2 ,W

(θ,τ)
A,2 ,W

(θ,τ)
B,2 , have substituted in the t = 1 optimal policies (π̂1,(θ,τ),

ŷA,1,(θ,τ), ŷB,1,(θ,τ)) found above. Then one can write,

Ũ
(θ,τ)
P,1 = −

u1NP
u1DP

(W
(θ,τ)
P,1 )2 +

u2NP
u2DP

W
(θ,τ)
P,1 +

u3NP
u3DP

, (3.G.16a)

U
(θ,τ)
A,1 =W

(θ,τ)
A,1 −

u1NA
u1DA

(W
(θ,τ)
P,1 )2 −

u2NA
u2DA

W
(θ,τ)
P,1 +

u3NA
u3DA

, (3.G.16b)

U
(θ,τ)
B,1 =W

(θ,τ)
B,1 −

u1NB
u1DB

(W
(θ,τ)
P,1 )2 −

u2NB
u2DB

W
(θ,τ)
P,1 +

u3NB
u3DB

, (3.G.16c)

where uijk , for k = P,A,B, i = 1, 2, 3 and j = N,D, are constants that relate to the risk aversion parameters
(ηP, ηM) of the Principal and Managers A and B, and to the time t = 1 expectations, variances and covariances
of the investment strategy returns pair (Rθ,2, Rτ,2) at t = 2. In particular, u1Nk , u1Dk , for k = P,A,B, are strictly

positive terms. (The precise analytical forms of these uijk ’s are in the proof).



CHAPTER 3. CEN VS DEC DEL PORT MGT UNDER MORAL HAZARD 206

(ii) After substituting in the optimal t = 1 policies, the t = 1 expectation of the t = 2 terminal wealths are,

E1W
(θ,τ)
P,2 =

w1N
P

w1D
P

W
(θ,τ)
P,1 +

w2N
P

w2D
P

, (3.G.17a)

E1W
(θ,τ)
A,2 =W

(θ,τ)
A,1 −

w1N
A

w1D
A

W
(θ,τ)
P,1 +

w2N
A

w2D
A

, (3.G.17b)

E1W
(θ,τ)
B,2 =W

(θ,τ)
B,2 −

w1N
B

w1D
B

W
(θ,τ)
P,1 +

w2N
B

w2D
B

, (3.G.17c)

where wijk , for k = P,A,B, i = 1, 2 and j = N,D, are constants that relate to the risk aversion parameters (ηP, ηM)
of the Principal and Managers A and B, and to the time t = 1 expectations, variances and covariances of the
investment strategy returns pair (Rθ,2, Rτ,2) at t = 2. (The precise analytical forms of these wijk ’s are in the proof).

(iii) The optimal t = 0 portfolio and performance fees policies (π̂0,(θ,τ), ŷA,0,(θ,τ), ŷB,0,(θ,τ)) are obtained by maximizing
(π0, yA,0, yB,0),

Û
(θ,τ)
P,0 = sup

yA,0,yB,0∈[0,1]
sup
π0∈R

E0

[
Ũ

(θ,τ)
P,1 + U

(θ,τ)
A,1 + U

(θ,τ)
B,1

]
−
ηP

2
Var0(E1W

(θ,τ)
P,2 )−

ηM

2
Var0(E1W

(θ,τ)
A,2 )−

ηM

2
Var0(E1W

(θ,τ)
B,2 ). (3.G.18)

Let’s begin by discussing the t = 1 optimal portfolio and fees policies, (3.G.12), (3.G.13), and (3.G.14), of the Principal in
first best dynamic decentralized delegation as per Proposition 3.G.1. At t = 1, the realized wealths of the Principal, Manager A

and Manager B become, respectively, W
(θ,τ)
P,1 = w

(θ,τ)
P,1 ,W

(θ,τ)
A,1 = w

(θ,τ)
A,1 and W

(θ,τ)
B,1 = w

(θ,τ)
B,1 . By the linearity of the contracts

offered and since t = 2 is the terminal contracting date, it implies that from the Principal’s perspective, the t = 1 wealths

w
(θ,τ)
A,1 , w

(θ,τ)
B,1 of Managers A and B do not come into his decision making. Thus at t = 1, the Principal simply needs to choose

portfolios π1 to maximize his t = 2 returns, while simultaneously using the portfolio and fee policies (π1, yA,1, yB,1) to risk share
with Managers A and B. We should note, however, for a generic pair of investment strategies (θ, τ), there is a distinct Principal

t = 1 wealth effect w
(θ,τ)
P,1 that enters into the optimal portfolio π̂1,(θ,τ) and the optimal performance fees (ŷA,1,(θ,τ), q̂B,1,(θ,τ)).

Next, let’s consider the t = 0 optimal policies (3.G.18) for the Principal. The Principal needs to take into account the
motives of himself and the other two agents. In particular, by defining the continuation utilities (3.G.16) of the Principal,
Manager A and Manager B, the t = 0 optimal portfolio and performance fee policies effectively maximize the Principal’s

continuation utility E0[Ũ
(θ,τ)
P,1 ], while minimizing Manager A’s and Manager B’s continuation utilities E0[U

(θ,τ)
A,1 + U

(θ,τ)
B,1 ].

Simultaneously, given that all individuals have mean-variance preferences over terminal wealth, and hence an intertemporal
hedging motive is in effect, the Principal’s optimal t = 0 policies must minimize the volatility of all individuals’ terminal wealths

E1W
(θ,τ)
k,2 , for k = P,A,B.

Proof of Proposition 3.G.1. (a) As it is usual, the individual rationality constraints (3.6.1g), (3.6.1h) for both Manager A and
B will bind. This pins down the optimal fixed fees for Manager A and B as given in (3.G.11).

(b) From the objective function (DynDec) and using the optimal form of the fixed fees (3.G.11), we consider the optimization
problem,

sup
xA,xB∈R,

yA,0,yA,1∈[0,1],

yB,0,yB,1∈[0,1]

sup
π0,π1

−xA − xB + E0[W
(θ,τ)
P,2 ]−

ηP

2
Var0(W

(θ,τ)
P,2 )

= sup
yA,0,yA,1∈[0,1],

yB,0,yB,1∈[0,1]

sup
π0,π1∈R

−(c(θ) + c(τ)) + E0[W
(θ,τ)
A,2 ]−

ηM

2
Var0(W

(θ,τ)
A,2 )

+ E0[W
(θ,τ)
B,2 ]−

ηM

2
Var0(W

(θ,τ)
B,2 )

+ E0[W
(θ,τ)
P,2 ]−

ηP

2
Var0(W

(θ,τ)
P,2 ). (3.G.19)

At this point, motivated by the dynamic programming principle of Section 3.A, let us further define, recursively for t = 0, 1,

Ũ
(θ,τ)
P,t = EtŨ(θ,τ)

P,t+1 −
ηP

2
Vart(Et+1W

(θ,τ)
P,T ),

U
(θ,τ)
A,t = EtU(θ,τ)

A,t+1 −
ηM

2
Vart(Et+1W

(θ,τ)
A,T ),

U
(θ,τ)
B,t = EtU(θ,τ)

B,t+1 −
ηM

2
Vart(Et+1W

(θ,τ)
B,T ).
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Define,

Û
(θ,τ)
P,0 = sup

yA,0,yA,1∈[0,1],

yB,0,yB,1∈[0,1]

sup
π0,π1∈R

Ũ
(θ,τ)
P,0 + U

(θ,τ)
A,0 + U

(θ,τ)
B,0 ,

so that our optimization problem (3.G.19) can be rewritten as,

− (c(θ) + c(τ)) + Û
(θ,τ)
P,0 . (3.G.20)

Now we can consider the Principal’s problem at t = 1. Using the budget constraints, the Principal’s objective is to maximize
over portfolio policies π1 and the fees (yA,1, yB,1) ∈ [0, 1]2,

Ũ
(θ,τ)
P,1 + U

(θ,τ)
A,1 + U

(θ,τ)
B,1

= E1[W
(θ,τ)
P,2 +W

(θ,τ)
A,2 +W

(θ,τ)
B,2 ]−

ηM

2
Var1(W

(θ,τ)
A,2 )−

ηM

2
Var1(W

(θ,τ)
B,2 )−

ηP

2
Var1(W

(θ,τ)
P,2 )

= E1

[
w

(θ,τ)
P,1

(
1 + π1(1− yB,1)Rτ,2 + (1− π1)(1− yA,1)Rθ,2

)]
+ E1

[
w

(θ,τ)
A,1 + w

(θ,τ)
P,1 (1− π1)yA,1Rθ,2

]
−
ηM

2
(w

(θ,τ)
P,1 )2(1− π1)

2y2A,1Var1(Rθ,2)

+ E1

[
w

(θ,τ)
B,1 + w

(θ,τ)
P,1 π1yB,1Rτ,2

]
−
ηM

2
(w

(θ,τ)
P,1 )2π2

1y
2
B,1Var1(Rτ,2)

−
ηP

2
(w

(θ,τ)
P,1 )2

[
π2
1(1− yB,1)

2Var1(Rτ,2) + (1− π1)
2(1− yA,1)

2Var1(Rθ,2)

+ 2π1(1− π1)(1− yB,1)(1− yA,1)Cov1(Rθ,2, Rτ,2)

]
= w

(θ,τ)
A,1 + w

(θ,τ)
B,1 + w

(θ,τ)
P,1

[
1 + π1Rτ,2 + (1− π1)Rθ,2

]
−
ηM

2
(w

(θ,τ)
P,1 )2(1− π1)

2y2A,1Var1(Rθ,2)

−
ηM

2
(w

(θ,τ)
P,1 )2π2

1y
2
B,1Var1(Rτ,2)

−
ηP

2
(w

(θ,τ)
P,1 )2

[
π2
1(1− yB,1)

2Var1(Rτ,2) + (1− π1)
2(1− yA,1)

2Var1(Rθ,2)

+ 2π1(1− π1)(1− yB,1)(1− yA,1)Cov1(Rθ,2, Rτ,2)

]
.

Optimizing for an interior solution over (π1, yA,1, yB,1) we get the described solution. Substitute the optimal t = 1 policies

back into Ũ
(θ,τ)
P,1 , U

(θ,τ)
A,1 , U

(θ,τ)
B,1 and denote them, respectively as, ˆ̃U

(θ,τ)
P,1 , Û

(θ,τ)
A,1 , Û

(θ,τ)
B,1 . After substituting and simplifying,

this results in the expressions (3.G.16).

(c) Next, we consider the t = 0 optimal portfolio and performance fee policies. At t = 0, the Principal considers the problem,

ÛP,0 = sup
yA,0,yB,0∈[0,1]

sup
π0∈R

E0[
ˆ̃U
(θ,τ)
P,1 + Û

(θ,τ)
A,1 + Û

(θ,τ)
B,1 ]

−
ηP

2
Var0(E1W

(θ,τ)
P,2 )−

ηM

2
Var0(E1W

(θ,τ)
A,2 )−

ηM

2
Var0(E1W

(θ,τ)
B,2 ). (3.G.21)

Firstly, we should note that after substituting in the optimal portfolio and fee policies (π̂1, ŷA,1, ŷB,1) and substituting
them back and simplifying, we get (3.G.16). Where for the terms involved in UA,1,

u1NA := η2PηMVar1(Rθ,2)Var1(Rτ,2)
2
(
Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2
)2
,

u1DA := 2

[
− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)(Var1(Rθ,2) + Var1(Rτ,2))

+ 2ηMVar1(Rθ,2)Var1(Rτ,2)Cov1(Rθ,2, Rτ,2)

+ ηP(Var1(Rθ,2) + Var1(Rτ,2))Cov1(Rθ,2, Rτ,2)
2

]2
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and,

u2NA := ηPVar1(Rτ,2)[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)
2]

×
[
ηPCov1(Rθ,2, Rτ,2)

2[Var1(Rθ,2)E1Rτ,2 +Var1(Rτ,2)E1Rθ,2]

+ ηMVar1(Rθ,2)Var1(Rτ,2)Cov1(Rθ,2, Rτ,2)(E1Rθ,2 + E1Rτ,2)

− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)[Var1(Rθ,2)E1Rτ,2 +Var1(Rτ,2)E1Rθ,2]

]
,

u2DA :=

[
ηPCov1(Rθ,2, Rτ,2)

2(Var1(Rθ,2) + Var1(Rτ,2))

+ 2ηMVar1(Rθ,2)Var1(Rτ,2)Cov1(Rθ,2, Rτ,2)

− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)(Var1(Rθ,2) + Var1(Rτ,2))

]2
,

and,

u3NA := (E1Rθ,2 − E1Rτ,2)×
[
ηPCov1(Rθ,2, Rτ,2)

2 + ηMVar1(Rτ,2)Cov1(Rθ,2, Rτ,2)

− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)
]

×
[
ηPCov1(Rθ,2, Rτ,2)

2[2Var1(Rτ,2)E1Rθ,2 +Var1(Rθ,2)(E1Rθ,2 + E1Rτ,2)]

+ ηMVar1(Rθ,2)Var1(Rτ,2)Cov1(Rθ,2, Rτ,2)(3E1Rθ,2 + E1Rτ,2)

− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)[2Var1(Rτ,2)E1Rθ,2 + (E1Rθ,2 + E1Rτ,2)Var1(Rθ,2)]

]
,

u3DA := 2ηM

[
ηP(Var1(Rθ,2) + Var1(Rτ,2))[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2]

+ ηMVar1(Rθ,2)Var1(Rτ,2)Var1(Rθ,2 −Rτ,2)

]2
.

For the terms involved in UB,1,

u1NB := η2PηMVar1(Rθ,2)
2Var1(Rτ,2)[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2],

u1DB := u1DA ,

and,

u2NB := u2NA ,

u2DB := u2DB ,

and,

u3NB := (E1Rτ,2 − E1Rθ,2)×
[
ηCov1(Rθ,2, Rτ,2)

2 + ηMVar1(Rθ,2)Cov1(Rθ,2, Rτ,2)

− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)
]

×
[
ηPCov1(Rθ,2, Rτ,2)

2[2Var1(Rθ,2)E1Rτ,2 +Var1(Rτ,2)(E1Rθ,2 + E1Rτ,2)]

+ ηMVar1(Rθ,2)Var1(Rτ,2)Cov1(Rθ,2, Rτ,2)(E1Rθ,2 + 3E1Rτ,2)

− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)[2Var1(Rτ,2)E1Rθ,2 + (E1Rθ,2 + E1Rτ,2)Var1(Rτ,2)]

]
,

u3DB := u3DA .
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For the terms involving ŨP,1,

u1NP := ηPη
2
MVar1(Rθ,2)

2Var1(Rτ,2)
2Var1(Rθ,2 −Rτ,2)[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2],

u1DP := 2

[
ηP(Var1(Rθ,2) + Var1(Rτ,2))[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2]

+ ηMVar1(Rθ,2Var1(Rτ,2)Var1(Rθ,2 −Rτ,2))

]2
,

and,

u2NP := η2P(Var1(Rθ,2) + Var1(Rτ,2))
2[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2]2

+ ηPηMVar1(Rθ,2)Var1(Rτ,2)Var1(Rθ,2 −Rτ,2)[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)
2]

× [(2 + E1Rτ,2)Var1(Rθ,2) + (2 + E1Rθ,2)Var1(Rτ,2)]

+ η2MVar1(Rθ,2)
2Var1(Rτ,2)

2Var1(Rθ,2 −Rτ,2)×
[(1 + E1Rτ,2)Var1(Rθ,2) + (1 + E1Rθ,2)Var1(Rτ,2)− (2 + E1Rθ,2 + E1Rτ,2)Cov1(Rθ,2, Rτ,2)],

u2DP := u2DA .

Furthermore, the t = 1 expectation of the t = 2 wealth, after substituting in the t = 1 optimal policies are given in (3.G.17).
The terms involved in WA,2 are,

w1N
A := ηPE1[Rθ,2]Var1(Rτ,2)[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2],

w1D
A := ηPCov1(Rθ,2, Rτ,2)

2[Var1(Rθ,2) + Var1(Rτ,2)]

+ 2ηMVar1(Rθ,2)Var1(Rτ,2)Cov1(Rθ,2, Rτ,2)

− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)[Var1(Rθ,2) + Var1(Rτ,2)],

and,

w2N
A := E1[Rθ,2](E1Rθ,2 − E1Rτ,2)

[
ηPCov1(Rθ,2, Rτ,2)

2

+ ηMVar1(Rτ,2)Cov1(Rθ,2, Rτ,2)− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)

]
,

w2D
A := ηMw

1D
A .

The terms involving in WB,2 are,

w1N
A := ηPE1[Rτ,2]Var1(Rθ,2)[Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2],

w1D
B := w1D

A ,

and,

w2N
B := E1[Rτ,2](E1Rτ,2 − E1Rθ,2)

[
ηPCov1(Rθ,2, Rτ,2)

2

+ ηMVar1(Rτ,2)Cov1(Rθ,2, Rτ,2)− (ηP + ηM)Var1(Rθ,2)Var1(Rτ,2)

]
,

w2D
B := ηMw

1D
A .

The terms involving WP,1 are,

w1N
P := ηP[Var1(Rθ,2) + Var1(Rτ,2)][Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,2, Rτ,2)

2]

+ ηMVar1(Rθ,2)Var1(Rτ,2)

[
(1 + E1Rτ,2)Var1(Rθ,2) + (1 + E1Rθ,2)Var1(Rτ,2)

− Cov1(Rθ,2, Rτ,2)(2 + E1Rθ,2 + E1Rτ,2)

]
,

w1D
P := ηP[Var1(Rθ,2) + Var1(Rτ,2)][Var1(Rθ,2)Var1(Rτ,2)− Cov1(Rθ,1, Rτ,2)

2]

+ ηMVar1(Rθ,2)Var1(Rτ,2)Var1(Rθ,2 −Rτ,2),



CHAPTER 3. CEN VS DEC DEL PORT MGT UNDER MORAL HAZARD 210

and,

w2N
P := (E1Rθ,2 − E1Rτ,2)

[
ηPCov1(Rθ,2, Rτ,2)[Var1(Rθ,2)E1Rτ,2 −Var1(Rτ,2)E1Rθ,2]

− (ηP + ηM)(E1Rθ,2 − E1Rτ,2)Var1(Rθ,2)Var1(Rτ,2)

]
,

w2D
P := ηPw

1D
A .

■

Proof of Proposition 3.7.1. This is clearly a special case of Proposition 3.7.1. ■

3.H Proofs for Section 3.H
Proof of Proposition 3.D.1. (a) For any given contract (xA, {yA,0, yA,1}) and any investment strategy pairs (θ, τ) ∈ S, it is

clear that Manager C’s optimal portfolio choice would be equivalent to the form as given in Proposition 3.C.1.

(b) Recall that the Principal wants to induce the strategy pair (θH, τH). Thus, by binding the individual rationality constraint
(3.B.1i), we obtain the optimal fixed fee form as per Proposition 3.C.1.

(c) Now we consider the Principal’s second best optimization problem. Recall that the Principal wants to implement the
strategy pair (θH, τH), but Manager C could deviate to (θ, τ) ∈ S−(θH,τH). As it was in the case in static centralized
delegation, although we have three incentive compatibility constraints, clearly only one of them will bind, while the others

will be slack. Following Bellman (1956), let us introduce the Lagrange multipliers λ
(θH,τL)
C , λ

(θL,τH)
C , λ

(θL,τL)
C into our

dynamic optimization problem. Recall also the notations from the proof of Proposition 3.C.1 where we had denoted Û
(θ,τ)
C,t

as Manager C’s time t continuation value for implementing strategy (θ, τ) along the optimal portfolio strategies ψ̂t,(θ,τ);

note and recall also that Û
(θ,τ)
C,t is still a function of the performance fees (y0, y1). Also note that using our notations, we

can rewrite the incentive compatibility constraints (3.B.1j) as,

−2c+ U
(θH,τH)
C,0 ≥ −c+ U

(θH,τL)
C,0 , (3.H.1a)

−2c+ U
(θH,τH)
C,0 ≥ −c+ U

(θL,τH)
C,0 , (3.H.1b)

−2c+ U
(θH,τH)
C,0 ≥ U

(θL,τL)
C,0 . (3.H.1c)

Thus at t = 0, recalling the objective function form (DynCen), substituting in the optimal fixed fee form, and incorporating
the rewritten form of the incentive compatibility constraint, the Principal considers the sequence of problems indexed by

λC := (λ
(θH,τL)
C , λ

(θL,τH)
C , λ

(θL,τL)
C ) ∈ R3,

sup
xA∈R,

yA,0,yA,1∈[0,1]

− xA + E0[W
(θH,τH)
cP,2 ]−

ηP

2
Var0(W

(θH,τH)
cP,2 )− λ

(θH,τL)
C

[
Û

(θH,τL)
C,0 −

(
−c+ Û

(θH,τH)
C,0

)]

− λ
(θL,τH)
C

[
Û

(θL,τH)
C,0 −

(
−c+ Û

(θH,τH)
C,0

)]
− λ

(θH,τL)
C

[
Û

(θH,τL)
C,0 −

(
−c+ Û

(θL,τH)
C,0

)]
= sup
yA,0,yA,1∈[0,1]

−2c+ E0[W
(θH,τH)
C,2 ]−

ηM

2
Var0(W

(θH,τH)
C,2 )

+ E0[W
(θH,τH)
cP,2 ]−

ηP

2
Var0(W

(θH,τH)
cP,2 )− λ

(θL,τL)
C

[
U

(θL,τL)
C,0 −

(
−2c+ U

(θH,τH)
C,0

)]
− λ

(θH,τL)
C

[
Û

(θH,τL)
C,0 −

(
−c+ Û

(θH,τH)
C,0

)]
− λ

(θL,τH)
C

[
Û

(θL,τH)
C,0 −

(
−c+ Û

(θH,τH)
C,0

)]
=: −2c+ Û

λC
cP,0. (3.H.2)

In particular, again as motivated by the dynamic programming principle of Section 3.A, let’s recall the notations (3.G.8).

In particular, this implies that if we focus on the value function term Û
λC
cP,0, and denoting U

λC
cP,0 as the associated objective



CHAPTER 3. CEN VS DEC DEL PORT MGT UNDER MORAL HAZARD 211

function, we can consider the recursive relationship,

Û
λC
cP,1 = sup

yA,1∈[0,1]
U

(θH,τH)
C,1 + Ũ

(θH,τH)
cP,1 − λ

(θL,τL)
C

[
U

(θL,τL)
C,1 −

(
−2c+ U

(θH,τH)
C,1

)]
− λ

(θH,τL)
C

[
Û

(θH,τL)
C,0 −

(
−c+ Û

(θH,τH)
C,0

)]
− λ

(θL,τH)
C

[
Û

(θL,τH)
C,0 −

(
−c+ Û

(θH,τH)
C,0

)]
(3.H.3)

Û
λC
cP,0 = sup

yA,0∈[0,1]
E0[Û

λC
cP,1]−

ηM

2
Var0(E1W

(θH,τH)
C,2 )−

ηP

2
Var0(W

(θH,τH)
cP,2 )

− λ
(θL,τL)
C

[
−
ηM

2
Var0(E1W

(θL,τL)
C,2 )−

(
−
ηM

2
Var0(E1W

(θH,τH)
C,2 )

)]
− λ

(θH,τL)
C

[
−
ηM

2
Var0(E1W

(θH,τL)
C,2 )−

(
−
ηM

2
Var0(E1W

(θH,τH)
C,2 )

)]
− λ

(θL,τH)
C

[
−
ηM

2
Var0(E1W

(θL,τH)
C,2 )−

(
−
ηM

2
Var0(E1W

(θH,τH)
C,2 )

)]
(3.H.4)

= sup
yA,0∈[0,1]

U
(θH,τH)
C,0 + Ũ

(θH,τH)
cP,0 − λ

(θL,τL)
C

[
U

(θL,τL)
C,0 −

(
−2c+ U

(θH,τH)
C,0

)]
− λ

(θH,τL)
C

[
U

(θH,τL)
C,0 −

(
−c+ U

(θH,τH)
C,0

)]
− λ

(θL,τH)
C

[
U

(θL,τH)
C,0 −

(
−c+ U

(θH,τH)
C,0

)]
, (3.H.5)

where we have denoted Û
(θ,τ)
C,1 as the value of Manager C’s continuation value after substituting in the optimal t = 1

performance fee ŷ1 into U
(θ,τ)
C,1 , and likewise for ˆ̃U

(θH,τH)
cP,1 . But as it was argued in the static centralized delegation case, we

know that at equilibrium, if a binding solution exists, only one of the three incentive compatibility constraints will bind.
And thus, to further save on notations, if (θb, τb) is the pair of deviant strategies associated with the binding incentive

compatibility constraints, we allow that Lagrange multiplier λ
(θb,τb)
C to be nonzero, and set the remaining other two to

zero. Then after this simplification, we get the displayed equations we see in the proposition.

And also note that, with some abuse of notations, the wealth values W
(θ,τ)
C,2 and W

(θ,τ)
cP,2 in (3.H.3) and (3.H.4) are different;

in (3.H.3), after conditioning on the t = 1 realized wealths of both the Principal and Manager C, those t = 2 wealth terms
are only a function of yA,0; in (3.H.4), the resulting optimal fee ŷA,1 has been substituted in, and since at t = 0, the t = 2
wealth is a function of t = 1 wealth, those t = 2 wealth terms are only a function of yA,0. Finally in (3.H.5), we simply

reuse the notations in the proof of Proposition 3.C.1, and in particular noting that in U
(θ,τ)
C,0 and Ũ

(θH,τH)
cP,0 is the t = 0

utility value for Manager C and the Principal, after substituting for Manager C’s optimal portfolio policy for any arbitrary

contract; hence in the dynamic programming formulation, U
(θ,τ)
C,0 and Ũ

(θH,τH)
cP,0 are only a function of yA,0.

Indeed, taking first order conditions, which is both sufficient and necessary for optimization here, the optimal t = 1
performance fees are (3.D.1).

(d) With the t = 1 optimal performance fees (3.D.1), we substitute it back to the t = 1 continuation value of the Principal and

Manager C; that is, and recalling the optimal portfolio policy form ψ̂1,(θ,τ) := ψ̂1,(θ,τ)(yA,1) of (3.C.1), we get (3.D.2).

(e) Substituting those expressions back into (3.D.3), and further substituting in the budget constraints (3.B.1a) and (3.B.1c),

we can find an optimizer ŷ
λC
A,0 ∈ [0, 1].

(f) Now, once ŷ
λC
A,0 has been found, then we obtain the t = 0 value function Û

λC
cP,0 for the Principal. At this point, we still

need to choose the optimal λC . Assuming that the conditions for Strong Duality Theorem holds, 40 then the optimal λC
is precisely the solution to (3.D.4).

■

Proof of Proposition 3.8.1. The proof is quite analogous to that of Proposition 3.D.1 but repeated here for completeness.

(a) By the same arguments as in Proposition 3.D.1, the individual rationality constraints (3.6.1g) and (3.6.1h) will bind. This
pins down the form of the fixed fees, and indeed it has the same form as the first best form of Proposition 3.G.1.

40 It is relatively easy to check that the constraint qualifications conditions should hold here, and hence
one can expect strong duality to hold. See, for instance, Bertsekas (1999).
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(b) We now consider the Principal’s second best optimization problem. Again, following Bellman (1956), we introduce the
Lagrange multipliers λA, λB associated with the incentive compatibility constraints (3.6.1i), (3.6.1j), respectively. We will
also recycle the notations from the proof of Proposition 3.G.1 of the first best case. Note that using those notations, we
can write the incentive compatibility constraints (3.6.1i) and (3.6.1j), respectively, as,

−c+ U
(θH,τH)
A,0 ≥ U

(θL,τH)
A,0 , (3.H.6a)

−c+ U
(θH,τH)
B,0 ≥ U

(θH,τL)
B,0 . (3.H.6b)

Thus, the Principal’s optimization problem from (DynDec), binding the individual rationality constraints and thereby
substituting the optimal fixed fees,

sup
xA,xB∈R,

yA,0,yB,1∈[0,1],

yB,0,yB,1∈[0,1]

sup
π0,π1

−xA − xB + E0[W
(θH,τH)
P,2 ]−

ηP

2
Var0(W

(θH,τH)
P,2 )

− λA

(
U

(θL,τH)
A,0 − (−c+ U

(θH,τH)
A,0 )

)
− λB

(
U

(θH,τL)
B,0 − (−c+ U

(θH,τH)
B,0 )

)
= sup
yA,0,yA,1∈[0,1],

yB,0,yB,1∈[0,1]

sup
π0,π1

−2c+ U
(θH,τH)
A,0 + U

(θH,τH)
B,0 + Ũ

(θH,τH)
P,0

− λA

(
U

(θL,τH)
A,0 − (−c+ U

(θH,τH)
A,0 )

)
− λB

(
U

(θH,τL)
B,0 − (−c+ U

(θH,τH)
B,0 )

)
=: −2c+ Û

λA,λB
P,0 .

By the dynamic programming principle of Section 3.A, and also recall the analogous argument in the proof of Proposi-
tion 3.G.1, we are lead to consider the following sequence of problems:

Û
λA,λB
P,1 = sup

π1∈R,
yA,1,yA,1∈[0,1]

Ũ
(θH,τH)
P,1 + U

(θH,τH)
A,1 + U

(θH,τH)
B,1

− λA

(
U

(θL,τH)
A,1 − (−c+ U

(θH,τH)
A,1 )

)
− λB

(
U

(θH,τL)
B,1 − (−c+ U

(θH,τH)
B,1 )

)
, (3.H.7a)

Û
λA,λB
P,0 = sup

π0∈R,
yA,0,yB,0∈[0,1]

E0[Û
λA,λB
P,1 ]−

ηP

2
Var0(E1W

(θH,τH)
P,2 )−

ηM

2
Var0(E1W

(θH,τH)
A,2 )−

ηM

2
Var0(E1W

(θH,τH)
B,2 )

− λA

(
−
ηM

2
Var0(E1W

(θL,τH)
A,2 ) +

ηM

2
Var0(E1W

(θH,τH)
A,2 )

)
− λB

(
−
ηM

2
Var0(E1W

(θH,τL)
B,2 ) +

ηM

2
Var0(E1W

(θH,τH)
B,2 )

)
(3.H.7b)

Considering the optimizing problem (3.H.7a), and optimizing for the t = 1 policies (π1, yA,1, yB,1), we arrive at (3.8.1),
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(3.8.2) and (3.8.3). In particular,

π̂
N,λA,λB
1

= w
(θH,τH)
P,1

[
−(w

(θH,τH)
P,1 )2(ηP + ηM)(λA − λB) + (w

(θH,τL)
P,1 − w

(θL,τH)
P,1 )(w

(θH,τL)
P,1 + w

(θL,τH)
P,1 )ηMλAλB

]
µ

ηM

(
−(w

(θL,τH)
P,1 )2λA + (w

(θH,τH)
P,1 )2(1 + λA)

)(
−(w

(θH,τL)
P,1 )2ηMλB + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λB))σ2

)
− w

(θH,τL)
P,1

(
−(w

(θL,τH)
P,1 )2ηMλA + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λA))

)
λBµτL

+ (w
(θH,τH)
P,1 )2ηP

[
w

(θH,τH)
P,1 (−λA + λB)µ+ ηM

(
−(w

(θL,τH)
P,1 )2λA + (w

(θH,τH)
P,1 )2(1 + λA)

)
σ2 − w

(θH,τL)
P,1 λBµτL

]
ρθH,τH

+ w
(θL,τH)
P,1 λAµθL

(
−(w

(θH,τL)
P,1 )2ηMλB + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λB)) + (w

(θH,τH)
P,1 )2ηPρθH,τH

)
, (3.H.8a)

π̂
D,λA,λB
1

= ηMσ
2

[
2(w

(θH,τH)
P,1 )4(ηP + ηM)

+ (w
(θH,τH)
P,1 )2(w

(θH,τH)
P,1 − w

(θL,τH)
P,1 )(w

(θH,τH)
P,1 + w

(θL,τH)
P,1 )(ηP + 2ηPηM)λA

+ (w
(θH,τH)
P,1 − w

(θH,τL)
P,1 )(w

(θH,τH)
P,1 + w

(θH,τL)
P,1 )

(
−2(w

(θL,τH)
P,1 )2ηMλA + (w

(θH,τH)
P,1 )2 (ηP + 2ηM(1 + λA))

)
λB

+ (w
(θH,τH)
P,1 )2ηP

(
−(w

(θL,τH)
P,1 )2λA − (w

(θH,τL)
P,1 )2λB + (w

(θH,τH)
P,1 )2(2 + λA + λB)

)
ρθH,τH

]
. (3.H.8b)

And,

ŷ
N,λA,λB
A,1

= −w(θL,τH)
P,1 λAµθL

(
−2(w

(θH,τL)
P,1 )2ηMλB + (w

(θH,τH)
P,1 )2 (ηP + 2ηM(1 + λB)) + (w

(θH,τH)
P,1 )2ηPρθH,τH

)
+ w

(θH,τH)
P,1

[(
−2(w

(θH,τL)
P,1 )2ηMλAλB + (w

(θH,τH)
P,1 )2[ηP(λA − λB) + 2ηMλA(1 + λB)]

)
µ

+ w
(θH,τH)
P,1 ηPηM

(
−(w

(θH,τL)
P,1 )2λB + (w

(θH,τH)
P,1 )2(1 + λB)

)
σ2

+ w
(θH,τH)
P,1 ηP

(
w

(θH,τL)
P,1 λBµτL +

[
w

(θH,τH)
P,1 (λA − λB)µ

+ ηM(−(w
(θH,τL)
P,1 )2λB + (w

(θH,τH)
P,1 )2(1 + λB))σ2 + w

(θH,τL)
P,1 λBµτL

]
ρθH,τH

)]
, (3.H.9a)

ŷ
D,λA,λB
A,1

= w
(θH,τH)
P,1

[
(w

(θH,τH)
P,1 )2(ηP + ηM)(λA − λB) + (−(w

(θH,τL)
P,1 )2 + (w

(θL,τH)
P,1 )2)ηMλAλB

]
µ

+ ηM

[
−(w

(θL,τH)
P,1 )2ηMλA + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λA))

] [
−(w

(θH,τL)
P,1 )2λB + (w

(θH,τH)
P,1 )2(1 + λB)

]
σ2

+ w
(θH,τL)
P,1

[
−(w

(θL,τH)
P,1 )2ηMλA + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λA))

]
λBµτL

+ (w
(θH,τH)
P,1 )2ηP

[
w

(θH,τH)
P,1 (λA − λB)µ+ ηM

(
−(w

(θH,τL)
P,1 )2λB + (w

(θH,τH)
P,1 )2(1 + λB)

)
σ2 + w

(θH,τL)
P,1 λBµτL

]
ρθH,τH

− w
(θL,τH)
P,1 λAµθL

[
−(w

(θH,τL)
P,1 )2ηMλB + (w

(θH,τH)
P,1 )2 (ηP + ηM(1 + λB)) + (w

(θH,τH)
P,1 )2ηPρθH,τH

]
. (3.H.9b)
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And,

ŷ
N,λA,λB
B,1

= w
(θH,τH)
P,1

[(
− 2(w

(θL,τH)
P,1 )2ηMλAλB + (w

(θH,τH)
P,1 )2 (−ηPλA + (ηP + 2ηM(1 + λA))λB)

)
µ

+ w
(θH,τH)
P,1 ηPηM

(
−(w

(θL,τH)
P,1 )2λA + (w

(θH,τH)
P,1 )2(1 + λA)σ

2
)

− w
(θH,τL)
P,1

[
−2(w

(θL,τH)
P,1 )2ηMλA + (w

(θH,τH)
P,1 )2 (ηP + 2ηM(1 + λA))

]
λBµτL

+ (w
(θH,τH)
P,1 )2ηP

[
w

(θH,τH)
P,1 (−λA + λB)µ+ ηM

(
−(w

(θL,τH)
P,1 )2λA + (w

(θH,τH)
P,1 )2(1 + λA)

)
σ2 − w

(θH,τL)
P,1 λBµτL

]
ρθH,τH

+ (w
(θH,τH)
P,1 )2w

(θL,τH)
P,1 ηPλAµθL (1 + ρθH,τH )

]
, (3.H.10a)

ŷ
D,λA,λB
B,1

= w
(θH,τH)
P,1

[
− (w

(θH,τH)
P,1 )2(ηP + ηM)(λA − λB) + (w

(θH,τL)
P,1 − w

(θL,τH)
P,1 )(w

(θH,τL)
P,1 + w

(θL,τH)
P,1 )ηMλAλB

]
µ

+ ηM

[
−(w

(θL,τH)
P,1 )2λA + (w

(θH,τH)
P,1 )2(1 + λA)

] [
−(w

(θH,τL)
P,1 )2ηMλB + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λB))

]
σ2

− w
(θH,τL)
P,1

[
−(w

(θL,τH)
P,1 )2ηMλA + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λA))

]
λBµθL

+ (w
(θH,τH)
P,1 )2ηP

[
w

(θH,τH)
P,1 (−λA + λB)µ+ ηM

(
−(w

(θL,τH)
P,1 )2λA + (w

(θH,τH)
P,1 )2(1 + λA)

)
σ2 − w

(θH,τL)
P,1 λBµτL

]
ρθH,τH

+ w
(θL,τH)
P,1 λAµθL

[
−(w

(θH,τL)
P,1 )2ηMλB + (w

(θH,τH)
P,1 )2(ηP + ηM(1 + λB)) + (w

(θH,τH)
P,1 )2ηPρθH,τH

]
. (3.H.10b)

(c) This is just to gather some results in preparation for the next subpart by substituting in the aforementioned t = 1 optimal
policies.

(d) This is equivalent to (3.H.7b).

(e) This is immediate by the Strong Duality theorem.

■
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