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†Dept. of Telecom. & Systems Eng., Univ. Autònoma de Barcelona, Spain. Email: gonzalo.seco@uab.cat
§Dept. of Teleinformatics Eng., Federal Univ. of Ceara, Brazil. Email: josef.a.nossek@tum.de

Abstract—The one-bit spatial Sigma-Delta concept has recently
been proposed as an approach for achieving low distortion and
low power consumption for massive multi-input multi-output
systems. The approach exploits users located in known angular
sectors or spatial oversampling to shape the quantization noise
away from desired directions of arrival. While reducing the an-
tenna spacing alleviates the adverse impact of quantization noise,
it can potentially deteriorate the performance of the massive
array due to excessive mutual coupling. In this paper, we analyze
the impact of mutual coupling on the uplink spectral efficiency of
a spatial one-bit Sigma-Delta massive MIMO architecture, and
compare the resulting performance degradation to standard one-
bit quantization as well as the ideal case with infinite precision.
Our simulations show that the one-bit Sigma-Delta array is
particularly advantageous in space-constrained scenarios, can
still provide significant gains even in the presence of mutual
coupling when the antennas are closely spaced.

I. INTRODUCTION

Power consumption is a key concern for next-generation

wireless networks. Deploying power efficient base stations

(BSs) while satisfying high-data-rate demands is of crucial

importance. Massive multiple-input multiple-output (MIMO)

architectures are considered to be an important component

of next-generation systems to meet the aforementioned ob-

jectives, but the high power consumption required by large

arrays employing high-resolution analog-to-digital converters

(ADCs) poses some practical problems. Hence, the use of low-

resolution ADCs with reduced power consumption has gained

attention in recent years [1]-[6].

Recently, a spatial Sigma-Delta (Σ∆) architecture has been

proposed to compensate for the performance loss due to

the use of one-bit quantization in massive MIMO systems

[7]-[10]. In this architecture, either the users of interest are

assumed to lie within some known angular sector (e.g., as

in a sectorized wireless cell), or the array is assumed to

be spatially oversampled (antennas spaced less than one-half

wavelength λ apart), so that a spatial analog of the classical

Σ∆ approach can be used to shape the quantization noise

to angles away from the users’ desired directions of arrival

(DoAs). Unlike temporal oversampling, there is a limit to the

amount of spatial oversampling that can be achieved, due to the

physical dimensions of the antennas. In addition, the impact

This work was supported by the U.S. National Science Foundation under
Grants CCF-1703635 and ECCS-1824565.

of mutual coupling may become significant as the antenna

spacing decreases [11], [12]. While [8] has shown that the low-

complexity one-bit Σ∆ architecture can achieve performance

approaching that of systems with high-resolution ADCs, this

prior work did not consider the mutual coupling effect.

In this paper, we investigate the impact of mutual coupling

on the performance of the spatial Σ∆ approach assuming a

uniform linear array (ULA) of antennas. Our results show that

the one-bit Sigma-Delta array is particularly advantageous in

space-constrained scenarios, and can still provide significant

gains even in the presence of mutual coupling when the

antennas are closely spaced. For very small antenna spacings,

the noise shaping gain is offset by the loss due to mutual

coupling, and the performance remains relatively constant; this

is in contrast to a standard high-resolution ADC architecture

without Σ∆, where the performance degrades monotonically

as the antennas move closer together.

Notation: We use boldface letters to denote vectors, and

capitals to denote matrices. The (i, j)-th element of matrix A

and the i-th element of vector a are denoted by [A]ij and

ai, respectively. The symbols (.)∗, (.)T , and (.)H represent

conjugate, transpose, and conjugate transpose, respectively.

A circularly-symmetric complex Gaussian (CSCG) random

vector with zero mean and covariance matrix Rv is denoted

by v ∼ CN(0, Rv). Ci(x) , γ + log(x) +
∫ x

0

cos(t)−1
t

dt, and

Si(x) ,
∫ x

0

sin(t)
t

dt denote cosine and sine integrals where γ is

the Euler-Mascheroni constant. E[.], R{.} and I{.} represent

the expectation operator, the real part and imaginary part of a

complex value, respectively. We use diag (x) as the diagonal

matrix formed from the elements of vector x.

II. SYSTEM MODEL

A. Channel Model and Mutual Coupling

Consider the uplink of a single-cell multi-user MIMO

system consisting of K single-antenna users that send their

signals simultaneously to a BS equipped with a uniform linear

array (ULA) with M antennas. The M × 1 signal received at

the BS from the K users is given by

x = GP
1
2 s + n, (1)

where G = [g1, · · · , gK ] ∈ CM×K is the channel matrix be-

tween the users and the BS, and P is a diagonal matrix whose

kth diagonal element, pk , represents the transmitted power of
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the k-th user. The scalar symbols transmitted by the users are

collected in the vector s ∈ CK×1, where E
{
ssH

}
= IK and

the symbols are assumed to be independently drawn from a

CSCG codebook. The term n ∼ CN (0, Rn) denotes additive

CSCG receiver noise at the BS.

For the kth user, the channel vector is modeled as

gk =

√
βk

L
T Akhk, (2)

where βk models geometric attenuation and shadow fading,

the columns of the M × L matrix Ak are steering vectors

corresponding to signal arrivals from different DoAs, and hk

represents fast-fading channel coefficients that are assumed

to be independently and identically distributed as CN (0, 1)
random variables. The matrix T models the mutual coupling:

T =

(
I +

1

R
Z

)−1

(3)

where R denotes the low-noise amplifier (LNA) input

impedance. Assuming thin half-wavelength dipoles, the ele-

ments of Z can be characterized as [13]

[Z]ij = 30

(
2Ci(2πdij) − Ci(ξij + π) − Ci(ξij − π)

+ j
(
−2Si(2πdij) + Si(ξij + π) + Si(ξij − π)

)
)
, i , j

[Z]ii = 30
(
γ + log(2π) − Ci(2π) + jSi(2π)

)
, (4)

where dij is the distance between antennas i and j normalized

by the wavelength, and ξij = π
√

1 + 4d2
ij

.

Since we will be focusing on situations where the signals

of interest arrive within a certain angular sector, we assume a

physical channel model in which the angular domain for each

user is described by L fixed DoAs, as in [15]. Hence, Ak has

columns defined by the steering vectors

a (θkℓ) = [1, e−j2πd12sin(θkℓ ), · · · , e−j2πd1M sin(θkℓ )]T, (5)

for DoAs θkℓ . The channels for each user are further dis-

tinguished by independent fast fading coefficients, which we

collect in the matrix H = [h1, · · · , hK ] ∈ CL×K .

The presence of mutual coupling will not only affect the

channel, but will also in general produce colored noise at the

receiver. For the mutual coupling model described above, the

covariance Rn of the additive noise can be derived as [14]

Rn =

T
(
σ2
i

(
ZZH

+ R2
N I − 2RNR(ρ∗Z)

)
+ 4kT BR(Z)

)
TH, (6)

with E{iN iHN } = σ2
i
I , E{uN uH

N
} = σ2

u I , RN =
σu

σi
,

E{uN iHN } =
ρ

σuσi
I , where iN and uN denote the equivalent

noise current and voltage of the low noise amplifier (LNA),

and k, T , and B represent the Boltzman constant, environment

temperature, and bandwidth, respectively.

B. Σ∆ Quantization

In a standard implementation involving one-bit quantization,

each antenna element at the BS is connected to a one-bit

ADC. In such systems, the received baseband signal at the

mth antenna becomes

ym = Qm (xm) , (7)

where Qm (.) denotes the one-bit quantization operation ap-

plied separately to the real and imaginary parts as

Qm (xm) = αm,r sign (R (xm)) + jαm,isign (I (xm)) . (8)

The output voltage levels of the one-bit quantizers are repre-

sented by αm,r and αm,i . While the output level is irrelevant for

standard one-bit quantization, for Σ∆ quantization the selection

of adequate output levels is of critical importance, as discussed

in [8]. Furthermore, we allow these levels to be a function of

the antenna index m, although once the values of αm,r and

αm,i are chosen, they remain fixed and independent of the

user scenario or channel realization. After quantization, the

received baseband signal at the BS is given by

y = Q (x) =
[
Q1 (x1) ,Q2 (x2) , · · · ,QM (xM )

]T
. (9)

By appropriately designing the output voltages of the ADCs

(see [8] for details), the received baseband signal at the BS

after Σ∆ quantization becomes

y = x + U−1q , (10)

in which

U =



1

e−jφ 1
...

. . .
. . .

e−j(M−1)φ · · · e−jφ 1



, (11)

where φ denotes the center angle of the sector with low

quantization noise, and q represents the effective quantization

noise. Following the same reasoning as in [8], the covariance

matrix of the quantization noise can be approximated as

Rq ≃ diag
(
pq

)
, (12)

where

pq =

( π
2
ζ − 1

)
Πpx (13)

px =

[
E

[
|x1 |2

]
,E

[
|x2 |2

]
, · · · , E

[
|xM |2

] ]T
(14)

Π =



1 0(
π
2
ζ − 1

)
1

...
. . . 1

(
π
2
ζ − 1

)m . . .
. . .

. . .

...
. . .

. . .
. . .

. . .
(
π
2
ζ − 1

)M−1 · · ·
(
π
2
ζ − 1

)m · · ·
(
π
2
ζ − 1

)
1





and ζ = 1.13 is a correction factor. In the following sections,

we investigate the spectral efficiency of the system described

above and study the impact of antenna spacing.

III. SPECTRAL EFFICIENCY

Due to the complicated structure of the mutual coupling

matrix in (3) and the quantization noise shaping matrix U−1,

a closed-form expression for the spectral efficiency (SE), if

it exists, would likely not provide significant insight into its

behavior with respect to antenna spacing, nor would it provide

a tool for the purpose of optimization. Hence, in the next

section we numerically evaluate the SE of the system.

The received Σ∆-quantized signal, y, at the BS is

y = Q (x) = GP
1
2 s + n + U−1q . (15)

The total effective noise η = n +U−1q has covariance matrix

Rη = Rn + U
−1RqU

−H . We assume the BS employs a linear

receiver W , and we will consider the case of maximum ratio

combining (MRC) and zero-forcing (ZF). For MRC, we do

not account for the fact that Rη is spatially colored, since pre-

whitening G destroys the approximate orthogonality of the

array response and increases the inter-user interference. Thus,

for MRC we set W = G. However, knowledge of Rη can be

exploited by the ZF receiver, and thus we assume the pre-

whitened solution W = R−1
η G(GHR−1

η G)−1.

For either receiver, the detected symbol vector is

ŝ = WH y = WHGP
1
2 s +WHn +WHU−1q. (16)

The k-th detected symbol can be written as

ŝk =
√

pkw
H
k gk sk +

√
pkw

H
k

∑

i,k

gisi + wH
k n + wH

k U−1q,

(17)

where wk is the kth column of W . We assume the BS

treats wH
k
gk as the desired signal and the other terms of

(17) as worst-case Gaussian noise when decoding the signal.

Consequently, a lower bound for the ergodic achievable SE at

the kth user can be written as [16]

Sk =

E

[

log2

(

1 +
pk

��wH
k
gk

��2

∑
i,k pi |wH

k
gi |2 +

��wH
k
n
��2 +

��wH
k
U−1q

��2

) ]

.

(18)

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the SE performance

of the Σ∆ massive MIMO system for various scenarios. We

assume static-aware power control in the network [17] so that

pk = p0/βk . In all of the cases considered, unless otherwise

noted, we assume K = 10 users and equally spaced antennas

with normalized spacing d. The DoAs for each user are drawn

uniformly from the interval [θ0−δ, θ0+δ], and the center angle

of the Σ∆ array is steered towards φ = 2πdsin (θ0).
To highlight the impact of mutual coupling, we will compare

the performance when mutual coupling is included to that
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Fig. 1. Quantization noise power density for a system with θ0 = 0◦, 2δ = 40◦,
SNR = 0 dB, M = 100, L = 15.

when it is hypothetically absent. Simulating the case without

mutual coupling amounts to setting Z = RI in (3) and (6),

which leads to T = 1
2
I and Rn = σ

2
n I , with the noise power

given by

σ2
n =

1

4

[
σ2
i

(
R2
+ R2

N − 2RN RR(ρ)
)
+ 4kT BR

]
.

The factor of 1/2 in T results from the fact that x in (1) is

the voltage on a load matched to the antenna impedance. This

voltage is half of the antenna open-circuit voltage, and given

that the load represents the input to the LNA, it is the signal

available for further processing. Thus, the per-antenna and per-

user reference signal-to-noise-ratio (SNR) in the absence of

mutual coupling is given by

SNR ,
1

4

p0

σ2
n

. (19)

The circuit parameters used in (3) and (6) are defined as σ2
i
=

2kT B/R, and σ2
u = 2kT BR, leading to RN = R where R =

50 Ω, T = 290 K, ρ = 0, and B = 20 MHz. This leads

to a value of σ2
n = 2kT BR, where the factor of 2 appears

because we are accounting for noise in both the antennas and

the LNAs. We further assume CSCG symbols and 104 Monte

Carlo trials for the simulations.

In Fig. 1, we investigate the impact of the mutual coupling

matrix, T , on the spatial spectrum of the quantization noise

when θ0 = 0. To do so, we define the quantization noise power

density as

ρq (θ) ,
1

c(θ)E
[��a (θ)H THU−1q

��2
]
, (20)

where c(θ) = ‖T a (θ)‖2 is a normalizing factor and θ ∈
[−90◦, 90◦] denotes the DoA. We see that the noise shaping
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Fig. 2. SE versus antenna spacing for a system with an MRC receiver and
θ0 = −10◦, angular sector 2δ = 40◦ , SNR = 10 dB, M = 100, L = 15.

characteristic of the Σ∆ array is not significantly affected by

the mutual coupling, except for the case of d = λ/8, where

we see a small shift in the quantization noise spectrum.

In Fig. 2, we show the effect of antenna spacing on the SE

of a system with an MRC receiver. We see that, when there is

no constraint on the size of the array, better performance for

the standard one-bit architecture can be achieved by moving

the antennas farther apart. We see that the standard one-bit

architecture outperforms the Σ∆ array when d > λ/2, due

to the fact that increasing the antenna spacing increases the

quantization noise power for the Σ∆ architecture across the

DoA sector of interest, as observed in Fig. 1. Furthermore, we

see that the SE for the Σ∆ architecture is not monotonic and

d = λ/2 provides the best performance, which corresponds to

no oversampling. The optimal value of d for the Σ∆ array will

of course decrease if the sector of user DoAs was widened.

The SE results for the ZF receiver are shown in Fig. 3.

We again observe the degradation of the Σ∆ performance as

d increases, but in this case there is a more significant gain

relative to standard one-bit quantization for smaller antenna

spacings, and the optimal antenna spacing for the Σ∆ array is

reduced to approximately d = λ/3.

While the standard one-bit architecture can outperform the

Σ∆ approach when there is no constraint on the dimension

of the array (large d), Figs. 4 and 5 demonstrate that the Σ∆

array provides a better result in space-constrained scenarios.

For these simulations, we consider a case in which the antenna

array has a limited aperture of d0 = 50 and we increase

the number of antennas from M = 100 to M = 400, which

corresponds to a decrease in antenna spacing from d = 1/2 to

d = 1/8. For the case of an MRC receiver in Fig. 4, the Σ∆

architecture achieves a spectral efficiency nearly equal to that
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Fig. 3. SE versus antenna spacing for a system with ZF receiver and θ0 =

−10◦, angular sector 2δ = 40◦, SNR = 10 dB, M = 100, L = 15.
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Fig. 4. SE versus number of BS antennas for a system with MRC receiver
and θ0 = −10◦, angular sector 2δ = 40◦, SNR = 10 dB, d0 = 50, L = 15.

of an array with full-resolution ADCs when M ≥ 250. For the

case of ZF, Σ∆ provides a dramatic gain in SE over standard

one-bit quantization.

In Fig. 6, the optimal antenna spacing for the Σ∆ architec-

ture with a ZF receiver is shown for different SNRs, where

we have quantized d to the nearest value of λ/10. It can be

seen that the optimal spacing is dependent on the SNR and

DoA region width, δ. The optimal antenna spacing decreases

as SNR increases, and also as the size of the DoA sector of

interest increases. We expect this phenomenon since for wider
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Fig. 5. SE for a system with ZF receiver and θ0 = −10◦, angular sector
2δ = 40◦, SNR = 10 dB, d0 = 50, L = 15.

DoA sectors, a wider noise shaping characteristic is required

to achieve the best performance. The same general conclusion

holds true for the case with the MRC receiver.

V. CONCLUSION

We have studied the effect of mutual coupling on the

performance of one-bit Σ∆ massive MIMO systems. It was

shown that the Σ∆ architecture is most suitable for array

deployments with an aperture size constraint. While the per-

formance of standard one-bit quantization saturates as the

number of antennas increases in a constrained-aperture array,

the performance of the Σ∆ architecture tends to approach that

of a system with high-resolution ADCs. This is due to the

noise-shaping gain achieved by the Σ∆ architecture when the

users are sectorized or the array is oversampled in space. It is

worthwhile to note that the inevitable power loss due to mutual

coupling can to some extent be alleviated using, for example,

a matching network. This is a subject of future investigation.
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