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Abstract 
 

Biological Networks: Dynamics, Mechanisms and Responses 
 

by  
 

Marcus Hudak Stoiber 
 

Doctor of Philosophy in Biostatistics 
 

University of California, Berkeley 
 

Professor Peter Bickel, Chair 
 

The study of biological networks has been central to our understanding of 
life and its complex, dynamic nature. The elucidation of molecular networks 
began with the discovery and characterization of key cellular processes including 
metabolism, response to stimuli and control of gene expression. In the last 
several decades, genomics has emerged as a foundational pursuit within the life 
sciences. The size of datasets defined in relation to sequenced genomes has 
grown faster than exponentially, leading to the need for advanced analytical and 
computational methods. I present here three studies of large RNA-sequencing-
based data sets. First, a study of the steady state transcriptional composition for 
Drosophila cell lines, tissues, developmental stages and biological perturbations 
provide a deeper understanding of spatiotemporally-resolved regulation in 
Drosophila, the first and still central genetic model system. This dataset, at the 
time of my analysis, was the largest and most complete transcriptional atlas ever 
composed. It was also the first large strand-specific study of its kind, which 
presented new opportunities and challenges. Second, a study of the RNA targets 
of 20 RNA binding proteins provides a map for one layer of post-transcriptional 
regulation, which contributes to the steady states presented in the first study. 
Finally, a study of transcriptional responses to the principle developmental 
hormone in arthropods, ecdysone, across 41 different and physiologically distinct 
cell lines sheds light on the dynamic, responsive nature of gene-regulatory 
networks that enable cells to differentiate into the diverse tissues that compose 
developing and mature organisms. These studies provide foundational 
knowledge, as well as models for future work in systems biology, as genome-
scale studies across larger, more diverse cellular states become increasingly 
prevalent. 
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Introduction 
 

The fields of genetics has a rich history dating back to Mendel’s discovery 
of “units of heredity” in 18653. Major advancements made throughout the 1800’s 
and 1900’s led to our current understanding of genetics with a major shift 
occurring in 1975 when Sanger et al4 as well as Maxam and Gilbert5 in 1977 
invented a process for DNA sequencing. This technology allowed the 
interrogation of the exact content of the heritable unit in all organisms, giving rise, 
over the following decades, to genomics. With the advent of next-generation 
sequencing technologies throughout the last decade, interrogation of biological 
networks on a genome-wide scale has become increasingly accessible to the 
broad scientific community. Now the genomes are interrogated at levels of 
epigenetics, transcriptional output, three dimensional conformation, and 
dynamics, to name a few of the many descendant pursuits enabled by high-
throughput DNA sequencing technology.   

The fruit fly, Drosophila melanogaster, provides a tremendously powerful 
system to further our understanding of genomic biology. The fruit fly has been 
extensively studied throughout a century of genetic experiments6. This enables 
the rich characterization of discoveries made from the application of genomic and 
epigenomic profiling technologies in terms of prior genetic knowledge. This 
strong foundation leads to biological interpretations and functional 
characterizations of biological networks discovered using next-generation 
sequencing technologies that are not possible in other metazoan systems. Here I 
will present three studies leveraging RNA sequencing (RNA-seq) in Drosophila 
melanogaster that each produced novel insights into the regulation and dynamics 
of gene expression. 

In chapter one, I describe the analysis of the largest transcriptional survey 
of a metazoan7. The modENCODE consortium produced 126 RNA samples 
derived from developmental stages8, dissected tissues, cell lines and 
environmental perturbations. This data allows for the study of transcriptional 
output of Drosophila in a manner unbiased compared to studies focused on one 
or a few single genes. Analysis begins with the annotation of genic regions from 
the sequencing samples using the GRIT algorithm9. Using the GRIT annotation 
and the diverse survey of expression measurements, I explore the complexity of 
transcripts produced through the combinatorial usage of alternative transcription 
start sites, alternative splicing, and polyadenylation sites; the dynamic expression 
of long non-coding RNAs; and the transcriptional response to environmental 
perturbations. 

In chapter two, I describe the analysis of a 20 RNA binding proteins 
(RBPs) interrogated using RNA Immunoprecipitation followed by sequencing 
(RIP-seq), which identifies RNAs bound by bait RNA Binding Proteins (RBP). 
This study is the largest study of RBP targets at genome-scale and reveals broad 
characteristics of the post-transcriptional network, as well as insights into the 
biology of ribonucleoproteins. I find that this network contains high occupancy 
target (HOT) RNAs, which are enriched for many genes with post-transcriptional 
regulatory functions. Via integrative analysis with an RNAi screen, I find that 
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target RNAs tend to undergo alternative splicing when the RBPs that bind them 
are knocked down. This indicates that significant subsets of the binding events I 
detected are functional. RBPs tend to bind mRNA and protein products from the 
same gene, and hence may post transcriptionally regulate their protein 
interaction partners. Additional characteristics of the RBP network include 
ribonuclear complexes including non-coding RNAs, specifically bound 3’ UTRs, 
insight into the RNA processing of mRNAs from ultra-complex genes, and 
enriched intronic binding a subset of RBPs. I developed an algorithm to discover 
motifs from RIP-seq bound gene sets. I show that most motifs correspond to 
previously discovered in vitro motifs, validating the method, and identify several 
striking exceptions. This study provides the most comprehensive view of the 
network of RNA-binding proteins to date, including key factors in the post-
transcriptional regulatory machinery. 

In chapter three, I describe the transcriptional response of 41 diverse 
Drosophila melanogaster cell lines to the key developmental steroid hormone 20-
hydroxyecdysone (20E), ecdysone. Ecdysone triggers many of the major 
transitional events in Drosophila development including molting events. 
Leveraging the diverse cell states present across 41 cell lines derived from 
embryonic, larval, and ovarian tissues, we observe a diverse response both in 
specific transcriptionally responsive genes as well as the total count of genes 
responsive in a given cell line, which we denote the responsive gene count 
(RGC). The ecdysone receptor (EcR), part of the heterodimer that transduces 
20E signaling, shows the strongest correlation with RGC, indicating that EcR titer 
is rate limiting in the ecdysone response. Additionally, the alternative isoforms 
appear to alternatively regulate essential ecdysone responsive genes. In order to 
gain a predictive understanding of the diversity of ecdysone response across 
cellular states, I show that transcription factor (TF) expression along with known 
TF binding motifs combine to produce significant power to predict the specific set 
of genes induced in a given cell. However, by modeling the strength of prediction 
as a function of cell-states surveyed, I show that transcriptional data alone are 
unlikely to be sufficient to fully elucidate the system. Finally, I analyze an 
extended time course for three cell lines and show that the response to ecdysone 
is consistent with a kinetic model of response. 

Together these studies provide numerous biological insights and their 
undertaking has led me to produce several novel analysis pipelines that enable 
the interpretation of biological “big data”. As such data sets become more 
common with the dropping price of sequencing and development of new high-
throughput technologies, the thoughtful analysis of biological big data will 
become increasingly important. The interpretation of biological data should, in the 
spirit of descriptive applied statistics in general, provide insightful summaries of 
vast arrays of data in small collections of useful and easily comprehensible 
statistics. Interpretation should also enhance our ability to predict and model the 
system under study, and yield generalizable rules to larger biological contexts. 
The analyses presented here accomplish these goals and provides hypotheses 
for future genetic and genomic studies to further our molecular understanding of  
metazoans. 
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Chapter 1: Statistical Genomics Analysis of an 
Extensive Drosophila Transcriptome Survey 
 
Preface 
 

The contents of this chapter have been adapted from the previously 
published paper “Diversity and Dynamics of the Drosophila Transcriptome” with 
permission from primary contributing authors. The contents included here 
represent analyses conducted by myself. 

During 2009-2012, the modENCODE Consortium compiled the largest 
transcriptional atlas generated for any metazoan organism. The LifeMap included 
RNA-seq data derived from a developmental time course including 30 life 
stages8, 29 dissected tissues, 25 cell lines, and 21 environmental perturbations 
designed to reveal stress-responsive and adaptive genes not expressed under 
laboratory conditions7. A genome-wide annotation was generated using the GRIT 
algorithm9 taking RNA-seq, p(A)+seq, CAGE, RACE10, ESTs11, and full-length 
cDNAs12 as input. I conducted genomic and statistical analyses of these data and 
the GRIT annotation to elucidate the biological insights revealed by this extensive 
life map. 
 
Introduction 

Next-generation RNA sequencing has permitted the mapping of 
transcribed regions of the genomes of a growing variety of organisms13,14. These 
studies have demonstrated that large fractions of metazoan genomes are 
transcribed and have cataloged the individual elements of transcriptomes, 
including promoters15, polyadenylation sites16,17, exons and introns8. However, 
the complexity of the transcriptome arises from the combinatorial incorporation of 
these elements into mature transcript isoforms. Studies that have inferred 
transcript isoforms from short read sequence data have focused on a small 
subset of isoforms, filtered using stringent criteria18,19. Studies that have relied on 
cDNA or EST data to infer transcript isoforms have not had sufficient depth of 
sampling to explore the diversity of RNA products at the vast majority of genomic 
loci20. The human genome has been the focus of intensive manual annotation21, 
but analysis of strand-specific RNA-seq data from human cell lines reveals over 
100,000 splice junctions not incorporated into any transcript model22. Hence, a 
large gap exists between the genome annotations and the emerging picture of 
transcriptomes observed in next-generation sequence data. Here, we describe a 
complete transcript set modeled by integrative analysis of promoter data (CAGE 
and RACE), splice sites and exons (RNA-seq), and polyadenylation sites (poly(A) 
reads from ESTs and RNA-seq). We analyze RNA from a diverse set of 
developmental stages, dissected organ systems and environmental perturbations 
using a strand-specific sequencing strategy. Our data provide higher 
spatiotemporal resolution and allow for deeper exploration of the Drosophila 
transcriptome than previously possible. Our analysis reveals a transcriptome of 
unprecedented complexity expressed in discrete, tissue-specific mRNA and 
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ncRNA transcript isoforms that span the majority of the fly genome on both 
strands and provides valuable insight into metazoan biology. 
 
Results 
 
A Dense Landscape of Discrete poly(A)+ Transcripts 

The GRIT annotation9 consists of 304,788 transcripts and 17,564 genes 
(Figure 1.1a), of which 14,692 are protein-coding (Methods). Ninety percent of 
genes produce at most 10 transcript and five protein isoforms, while 1% of genes 
have highly complex patterns of alternative splicing, promoter usage, and 
polyadenylation, and may each be processed into hundreds of transcripts (Figure 
1.1a, example 1.1b). Gene models span 72% of the euchromatin, an increase 
from 65% in FlyBase 5.12 (FB5.12), the reference annotation at the beginning of 
the project23. There were 64 euchromatic gene-free regions longer than 50kb in 
FB5.12, and 25 remaining in FB5.45. The GRIT annotation includes new gene 
models in eachof these regions. Newly identified genes (1468 total) are 
expressed in spatially- and temporally-restricted patterns, and 536 reside in 

Figure 1.1 Overview of the Annotation 
a, Maximum number of transcript isoforms vs. number of unique ORFs per gene (only the longest ORF in 
each transcript is reported). The genes Dscam and para are omitted, as they are extreme outliers both 
encoding more than 10,000 unique ORFs. b, A compact visualization of the transcripts encoded by gene 
Dys (Dystrophin), which may encode 72 transcripts and 32 proteins. Highlighted is alternative splicing and 
polyadenylation at the 3' end of transcripts. c, An internal promoter of ovo is bidirectional in ovaries and 
gives rise to a 107kb transcript that bridges two 50kb gene deserts and encodes no long or conserved 
ORFs. The mature RNA is only 430bp in length. 



	
   3	
  

previously uncharacterized gene-free regions. Others map to well-characterized 
regions, including the ovo locus, where I discovered a new ovary-specific, 
poly(A)+ transcript (Mgn94020), extending from the second promoter of ovo on 
the opposite strand and spanning 107kb (Figure 1.1c). Exons of 36 new genes 
overlap molecularly defined mutations with associated phenotypes (GSC p-
value~0.0002), suggesting potential functions. For instance, the lethal P-element 
insertions l(3)L3051 and l(3)L411124 map to promoters of Mgn095159 and 
Mgn95009, respectively, suggesting these may be essential genes. Nearly 60% 
of the intergenic transcription reported8 is now incorporated into gene models. 
 
Transcript Diversity  

More than half of protein-coding genes (7940 genes; 54.86%) encode two 
or more transcript isoforms with alternative first exons (AFEs). There are 31,032 
AFEs associated with 5463 genes that reflect alternative and tissue-specific 
promoter usage but do not affect protein-coding potential. There are 22,530 
AFEs of 2477 genes that alter the coding capacity of previously annotated 
transcripts and increase the complexity of the predicted proteome; the median 
alteration to the predicted amino acid sequence is 55 N-terminal residues. 
Spliced genes have an average of 2.6 distinct first exons, but only 1.4 predicted 
start codons. Alternative pre-mRNA splicing is also enriched near 5’ transcript 
ends (Figure 1.2a,b). We observe averages of 4.7, 3.7 and 2.4 alternatively 
spliced isoforms per intron in 5' UTRs, protein coding sequences and 3' UTRs, 
respectively. We note that splicing in 3' UTRs is comparatively rare: 2765 genes 
(14% of spliced genes) have spliced 3' UTRs, a value more frequent than seen in 
gene annotations in mammals, as expected given that nonsense-mediated decay 
is less influenced by 3' UTR splicing patterns in Drosophila25. We note that 5' 
UTR complexity is only weakly correlated with protein-coding sequence 
complexity: the splice-forms per intron measure yields a log-linear correlation of 
0.22 and a Spearman's coefficient of 0.21 (Figure 1.2a).  

Genes with novel alternative N-terminal coding sequence include well-studied 
examples, such as Prothoracicotropic hormone (Ptth)26, the neural-secreted 
hormone that initiates metamorphosis in insects. We find three protein isoforms 
for Ptth, one of which encodes a distinct amino terminus in frame with the 
conserved hormone domain. Furthermore, a predictive model27 suggests that this 
new alternative N-terminal sequences may direct specific subcellular localization 
of the Ptth protein isoform to the mitochondrial matrix, bypassing its usual 
pathway to extracellular secretion. This appears to be a representative case of a 
general phenomenon: 31.22% of alternative start codons are predicted to change 
sub-cellular localization of the protein, compared to 4.60% of internal cassette 
exons (p < 1e-100 by t-test) and 11.89% of alternative C-terminal coding 
sequence (p < 1e-33 by t-test).  

Despite the depth of RNA-seq data (>14B uniquely mapping reads), the data 
suggest that 59.94% of genes encode no more than a single protein isoform



	
   4	
  

 

 
 (Methods) and 42.29% encode only a single transcript isoform. However, one 
third of these single protein-encoding genes encode single exon ORFs (19.94% 
vs. 59.94%). For genes containing ORFs that result from the splicing of multiple 
exons, 49.11% produce more than one protein isoform. As a point of comparison, 
in mammals, it has been estimated that 95% of genes produce multiple transcript 
isoforms28,29. There are, however, interesting outliers: seven genes have the 
potential to produce more than one hundred transcript isoforms, each due to 
alternative UTR splicing and promoter usage, but encode only a single protein, 
e.g. Gbeta13F. Dhc98D has 45 introns, but produces at most two transcripts. 
Other genes include far fewer splice sites but have the potential to encode 
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Figure 1.2 Splicing Complexities across the Gene Body 
a, Alternative first exons occur in two main configurations: multiple transcription start sites (TSS) and 
multiple donor sites (DS). A subset of the multiple TSS categories has several TSSs with a shared DS (red 
transcripts), and similarly for DS (blue transcripts). A further subset of the alternative TSS category directly 
affect the encoded protein (maroon transcripts), and similarly for DS (dark blue transcripts). Overlap of 
configurations is radially proportional (units indicate percentage of all spliced genes). b, Complex processing 
and splicing of the 5’ UTR of Gβ13F. At the top of the figure are the testes and CNS positively stranded 
RNA-seq reads followed by the splice junctions (shaded gray as a function of usage), a simplified version of 
the full-length gene model and an expansion of the 5’ UTR showing some of the complexity. Transcription of 
the gene initiates from one of three different promoters (green arrows) terminates at one of ten possible 
polyA+ addition sites and via complex splicing patterns generates 235 transcripts that all produce the same 
protein. The first exon has two alternative splice acceptors that splice to one of eleven different donor sites. 
Only five donor sites are shown due to the proximity of the possible splice sites.  Four splice donors are 
represented by the single red line and map to positions 15,755,148, 67, 72, 84 differing by 12, 5 and 19 bp 
respectively. Three splice donors are represented by the single green line and map to positions 15,755,256, 
68, 79 differing by 12 and 11 bp.  Two splice donors are represented by the single purple line 15,755, 409, 
16 differing by 7 bp. These splice variants are combined with four different proximal internal splices to 
generate the full complement of transcripts. Polyadenylation site, shown in red, come from Polya-seq of 
adult heads. c, Intron retention rates (PSI) across the gene body. Pictured are the genome-wide mean 
lengths of exons and introns connected by red parabolic arcs. The parabolic arcs illustrate the upper and 
lower quartiles of intron retention for introns retained at or above 20 PSI in at least one sample, across all 
samples. We note that, on average, the first intron in the 5' UTR is the longest in a gene, and that splicing in 
untranslated sequence is less efficient than between CDS exons 
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hundreds of protein isoforms. For example, Gug has 24 introns and may encode 
up to 170 distinct protein isoforms.  

We find that the majority of transcriptome complexity is attributable to a small 
subset of genes. Forty-seven genes have the capacity to encode more than 1000 
transcript isoforms each, and together account for 50% of all transcripts inferred 
from our data (Figure 1.3). Furthermore, 27% of transcripts encoded by these 
genes have been detected exclusively in samples enriched for neuronal tissue 
and another 56% have been detected only in the embryo (83% in total). RNA in 
situ expression assays, for each of these genes in the developing embryo, were 
conducted, by the Celniker lab, to determine their tissue specificities. I found that 
18 out of 33 of these genes expressed in the embryo are detectably expressed 
only in neural tissue (hypergeometric p-value for enrichment < 1e-16). Hence 
examining the potential complexity of genes across samples reveals that the 
capacity to encode more than 1000 transcripts is largely a neuronal 
phenomenon. 

To further characterize genes that express alternatively spliced transcripts, 
we examined the conserved protein domains encoded by each gene. Among 
genes with the capacity to produce more than 100 transcripts (304 genes), there 
are six significantly enriched conserved domains (FDR <0.1%) present in 24 
genes. All correspond to RNA binding domains: ELAV/HuD family splicing factor, 
sex-lethal family splicing factor, glycine-rich RNA-binding protein 4 motif, 
heterogeneous nuclear ribonucleoprotein R, Q family, and poly-U binding splicing 
factor, half-pint family. Furthermore, the most enriched Biological Process GO 
term is synaptic transmission (16 genes, FDR < 7e-14). This cluster contains 
previously known neural-specific high complexity genes, e.g. Dscam30 and also 
contains 21% of all genes with neural-specific 3' UTR extensions 
(hypergeometric p-value < 1e-16). 

The set of high-complexity protein-coding genes is not strictly limited to 
neuronal tissues. There are a small number of 
exceptionally complex genes expressed in other 
cell types. For example, Myosin heavy chain 
(Mhc) may encode 438 protein isoforms. 
Mammalian genomes include many myosin-
encoding genes, with separate loci for smooth, 
cardiac, skeletal, and other distinct muscle 
tissues31. None of these genes in mammals are 
known to encode more than a dozen protein 
isoforms. In fly, complex splicing permits a single 
locus to encode the proteins needed for all muscle 
tissue. The gene structure is similar to that of 
Dscam, in that five groups of cassette exons of 
similar length are present, and exactly one 
cassette exon from each group is included in each 
transcript.  

Genes with complex splicing patterns tend to 

a

<5 
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Figure 1.3 Complex Splicing 
Patterns are Largely Limited to 
Neural Tissues 
Pie charts illustrating the fact that a 
small minority of genes (48, 0.2%) 
encodes the majority of all transcripts 
inferred in our study. 
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be conserved among Drosophila species. Figure 
1.4 shows that the number of introns in orthologous 
genes correlates strongly (r ~ 0.9) between D. 
melanogaster and D. pseudoobscura32. We see 
only three strong outliers, including the innate 
immunity response gene mustard (mtd), which has 
undergone a large expansion in D. melanogaster 
that is not seen in D. pseudoobscura. 
 
Long Non-coding RNAs 

A growing set of candidate long non-coding 
RNAs (lncRNAs) have been identified in 
Drosophila8,33,34. In FB5.45 there were 392 
annotated lncRNAs, and it has been suggested 
that as many as 1119 lncRNAs may be 
transcribed in the fly35. However, this number was 
based on transcribed regions, not transcript 
models, and utilized non-stranded RNA-seq 
data35. I find 3880 genes produce transcripts with ORFs encoding fewer than 100 
amino acids (aa). Of these, 795 encode conserved proteins (Methods) longer 
than 20aa. For example, a single exon gene in the last intron of the early 
developmental growth factor spätzle encodes a 42aa putative ORF that is highly 
conserved across all sequenced Drosophila species. It is not known where, when 
or if this short ORF is translated. I identified 1875 candidate lncRNA genes 
producing 3085 transcripts, 2990 of which have no overlap with protein-coding 
genes on the same strand. Some of these putative lncRNAs may encode short 
polypeptides, e.g. the gene tarsal-less encodes three 11aa ORFs with important 
developmental functions36. I determined protein conservation scores for each 
ORF between 20 and 100aa. Of the 1119 predicted lncRNAs35, full-length 
transcript models for 246 transcribed loci are included in the GRIT annotation; 
the remainder were expressed at levels beneath thresholds used in this study. 
This is not surprising, the expression patterns of lncRNAs are more restricted 
than those of protein-coding genes: the average lncRNA is expressed (BPKM >1) 
in 1.5 developmental and 3.2 tissue samples, compared to 6.6 and 17 for protein-
coding genes, respectively. Many lncRNAs (563 or 30%) have peak expression 
in testes, and 125 are detectable only in testes. Similarly restricted expression 
patterns have been reported for lncRNAs in humans and other mammals21,37. 

Interestingly, all newly annotated genes overlapping molecularly defined 
mutations with phenotypes are lncRNAs. For instance, the mutation D114.3 is 
annotated as a loss of function regulatory allele of spineless (ss) that maps 4 kb 
upstream of ss38 and within the promoter of Mgn4221. Similarly, Mgn00541 
corresponds to a described, but not annotated 2.0 kb transcript overlapping the 
annotated regulatory loss of function mutant allele ci[57] of cubitus interruptus39. 
It remains to be determined whether these mutations are a result of the loss of 
function of newly annotated transcripts, the possible gain of function of the newly 

Figure 1.4 Intron Counts are 
Conserved between Drosophilids15  
Indicated are two outliers that have 
undergone species-specific 
expansion. We attribute the fact that 
we observe more outliers in the 
melanogaster lineage to the superior 
quality of the assembled genome and 
the increased depth of sequencing 
data. 
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annotated transcripts or, as currently annotated, cis-acting regulatory elements 
(e.g. enhancers). 
 
Antisense Transcription 

Antisense transcription has been previously reported in Drosophila40, but the 
catalog of antisense transcription incorporated into gene models has been largely 
limited to mRNA-mRNA overlaps. I identify non-coding antisense transcript 
models within the GRIT annotation for 402 lncRNA loci that are antisense to 
mRNA transcripts of 422 protein-coding genes (e.g. prd, Figure 1.5a), and 36 
lncRNAs form "sense-antisense gene-chains" overlapping more than one 
protein-coding locus, as has been previously observed in mammals37,41. I note 
that 21% of lncRNAs in Drosophila are antisense to mRNAs, comparable to 
human where 15% of annotated lncRNAs are antisense to mRNAs (1672 
lncRNAs out of 10,840, as of GENCODE v10). In all antisense transcript models 
for 5057 genes (29%, compared to previous estimates of 15%40) have been 
assembled. For 67% of these loci, the antisense expression is observable in at 
least one cell line, indicating that the sense and antisense transcripts may be 
present in the same cells (BPKM > 1 for at least one sense-antisense exon pair). 
Note that lncRNA-mediated antisense accounts for a small minority of antisense 
transcription – 94% of antisense loci involve overlapping protein-coding genes. 
However, only 323 loci (667 genes) encode proteins on both strands. Hence, the 
vast majority (84%) of antisense is due to overlapping UTRs: 1389 genes have 
overlapping 5' UTRs (divergent transcription), 3430 have overlapping 3' UTRs 
(convergent transcription), and 540 have both, meaning that they, as with many 
lncRNAs, form gene-chains across contiguously transcribed regions. A small 
subset of genes with antisense in both UTRs corresponds to a rare 
transcriptional phenomenon: reciprocal transcription. At these loci, sense and 
antisense transcripts overlap almost completely (more than 90% reciprocal 
overlap). There are 13 such examples in Drosophila, (e.g. Polypeptide N-
acetylgalactosaminyltransferase 35A (Pgant35A)) seven of which are male-
specific (none are female-specific). I note that mRNA/lncRNA sense-antisense 
pairs tend to be more positively correlated in their expression than mRNA/mRNA 
pairs, (mean r ~ 0.16 vs. 0.13, KS 2-sample one-sided test p < 1e-9), and while 
this mean effect is subtle, the trend is clearly visible in the QQ plot7. Furthermore, 
in both cases positive correlation is more common and more extreme than 

Imaginal Disc+
-

Testes+
-

Gene Models

Tissue-Specific
RNA-Seq

prd
Mgn00375

Mgn00376

12,084K 12,085K 12,086K 12,087K

45672 

-456
201 

-17 -1800 

1800

chr2L chr2L16,710K 16,715K

CG31782

CG31808

Cyt-c-d

16,705K

-5 -397 

4086 52,202

78 

-45 

21nt Testes

Testes

a b

-

Figure 1.5 Examples of Antisense Transcription 
a, 5'/5' bidirectional antisense transcription at the prd locus. Short RNA sequencing does not reveal 
substantial siRNA (i.e. 21 nt-dominant small RNA) signal in this region. b, A 5’/5’ antisense region that 
produces substantial small RNA signal on both strands.  
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negative correlation (lncRNA/mRNA 5th, 95th quantiles -0.125, 0.729, mRNA / 
mRNA 5th, 95th quantiles -0.169, 0.634), suggesting that negative regulation via 
the siRNA pathway does not completely process either the sense or antisense 
transcripts in most cells. Surprisingly, this effect is stronger when the analysis is 
restricted to cell line samples7. 
 

Environmental Stress Reveals New Genes, Transcripts and Common 
Response Pathways 

Whole-animal perturbations each exhibited condition-specific effects, e.g. 
the metallothionein genes were induced by heavy metals (Figure 1.6a), but not 
by other treatments. The genome-wide transcriptional response to cadmium (Cd) 
exposure involves small changes in expression level at thousands of genes (48 
hours after exposure), but only a small group of genes change >20-fold, and this 
group includes six lncRNAs (the third most strongly induced gene is CR44138, 
Figure 1.6a). Four newly modeled lncRNAs are differentially expressed (1% 
FDR) in at least one treatment, and constitute novel eco-responsive genes. 
Furthermore, 57 genes and 5259 transcripts (of 811 genes) were detected 
exclusively in these treatment samples. Although no two perturbations revealed 
identical transcriptional landscapes, I find a homogeneous response to 
environmental stressors (Figure 1.6b). The direction of regulation for most genes 
is consistent across all treatments; very few are up-regulated in one condition 
and down-regulated in another. Classes of strongly up-regulated genes included 
those annotated with the GO term “Response to Stimulus, GO:0050896” (most 
enriched, p-value<1e-16), and those that encode lysozymes (>10-fold), 
cytochrome P450s, and mitochrondrial components mt:ATPase6, mt:CoI, 
mt:CoIII (>5-fold). Genes encoding egg-shell, yolk, and seminal fluid proteins are 
strongly down-regulated in response to every treatment except “Cold2” and “Heat 

Figure 1.6 Effects of Environmental Perturbations on the Drosophila Transcriptome 
Adults were treated with the stimulant, caffeine; heavy metals, Cd, Cu and Zn; temperature, cold and heat; 
and the herbicide, paraquat. a, A genome-wide map of genes that are up or down regulated as a function of 
Cd treatment. Labeled genes are those that showed a 20-fold (<10% FDR) change in response (linear 
scale). Genes highlighted in red are those identified previously in larvae50. b, Heat map showing the fold 
change of genes with an FDR < 10% (of being differentially expressed) in at least one sample (log2 scale).  
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Shock”. For these two stressors, samples were collected 30 minutes after 
exposure, corresponding to an “early response test” showing suppression of 
germ cell production is not immediate. 
 

Discussion 
The D. melanogaster genome has the potential to encode hundreds of 

thousands of transcript and protein isoforms via the combinatorial usage of 
alternative promoters, splice sites, polyadenylation sites, and RNA editing 
events. The vast majority of splicing complexity occurs in neural tissue, and more 
than half in differentiating neural and related tissues. A small subset of ultra-
complex genes encode more than half of the transcript isoforms that we have 
inferred, and these are dramatically enriched for RNA editing events; indeed, 
many are edited at multiple exons, which further amplifies the number of unique 
proteins these loci may encode. We also observe alternative splicing in UTRs, 
which do not alter the encoded proteins; genes like CaMKI may express 
thousands of transcript isoforms that differ only in their non-coding UTRs, but 
fewer than 10 protein isoforms. Our study indicates that the total information 
output of an animal genome may be heavily weighted by the needs of the 
developing nervous system, and that transcriptional complexity is a feature of 
both coding and non-coding sequences.  

We identified over 1500 new genomic regions that produce discrete, 
capped, polyadenylated transcript isoforms in one of the best-annotated animal 
genomes. Each of these corresponds to a candidate new gene. This underscores 
the importance of spatiotemporal resolution in comprehensive gene identification. 
A large fraction of the new genes are testes-specific, many of which are 
antisense RNAs, as previously described in mammalian systems 37. Some new 
non-coding RNAs, such as the lncRNA Mgn.94020 at the ovo locus (Figure 1.1c) 
have large genomic spans and long-distance splicing events, forming sense-
antisense gene chains that bring distal protein-coding genes into direct 
transcriptional relationships, another previously mammalian-specific 
phenomenon. The presence of short RNAs at many regions of antisense 
transcription is suggestive of functional roles for these transcripts, and strongly 
suggests that the sense and antisense transcripts are present in the same cells 
and at the same times. The positional conservation of fly and human antisense 
transcription at genes like eve (EVX1), Dcr-2 (DICER1), CTCF (CTCF), AdoR 
(ADORA2A), and many others across 600 million years suggests the evolution of 
a conserved regulatory mechanism basal to sexual reproduction in metazoans. 
Functional studies are needed to determine if these antisense transcripts play 
similar roles in mammalian and fly gonads. 

One of the largest challenges in the interpretation of transcriptional data is 
the identification of protein coding vs. non-coding transcripts. We have defined a 
comprehensive catalog of putative lncRNAs. However, many genes are known to 
encode poorly conserved, short polypeptides, including genes specific to the 
male accessory gland, and a number of our candidate lncRNAs may likewise 
encode short peptides, particularly since a large fraction were discovered in 
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testes and male accessory gland samples. Ribosome profiling has revealed that 
a number of putative lncRNAs in mammals can be translated42, but so far these 
have been difficult to validate with direct proteomics data43. Therefore, while we 
refer to our capped, poly(A)+ RNAs that lack long or conserved ORFs as non-
coding, additional data are needed to assess whether these RNAs have 
functions that are independent of protein translation.  
 

Methods 
 
Predicting Proteins Based on Transcript Models  

In each transcript, I automatically annotated the longest ORF as a 
predicted protein whenever that ORF was at least 100 aa in length. When the 
longest ORF was between 20 aa and 100 aa, I evaluated each ORF longer than 
20 aa as follows: I ran RPS-BLAST using the CDD (as below) and annotated any 
ORF with a CDD hit E-value of 1e-5 or less as a protein-coding ORF; I ran 
PhyloCSF (as below) and annotated any ORF with a conservation score of -0.2 
or more as a protein-coding ORF. I note that this procedure identified novel 
conserved ORFs in 277 FB5.4544 non-coding genes out of 893 such annotated 
genes, as well as 391 conserved ORFs in novel genes. In all, short conserved 
ORFs were identified in 27% of genes with no ORF over 100aa. Only 5% of 
these calls were due to the CDD RPS-BLAST search; PhyloCSF called the 
remainder of the protein-coding genes. I consider these novel short ORFs 
“provisional”; extensive validation will be required to determine if they are 
translated in vivo.  
 
Identifying Conserved Domains in Predicted Proteins 

I utilized the NCBI Conserve Domain Database (CDD)45 and the Reverse 
Psi-BLAST (RPS-BLAST) tool46 to identify functional domains in predicted 
proteins, using default settings. I used an E-value threshold of 1e-5 to specify 
potential hits. The precise executable and settings utilized are detailed below: 

• blast standalone execuatable (including RPS-BLAST algorithm): 
ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.26/blast-2.2.26-x64-
linux.tar.gz 

• Conserved Domain detailed definitions and short names: 
ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/cddid_all.tbl.gz 

• Binary Conserved Domain Database (downloaded 9/1/12): 
ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/big_endian/Cdd_BE.tar.gz  

 
The Reverse Position Specific BLAST 2.2.26+ algorithm as part of the 

NCBI BLAST+ standalone package (version 2.2.26) was used to identify 
conserved domains within putative conserved domains.  
 
Identifying Conserved ORFs that Lack Known Domains  

I utilized the program PhyloCSF47 to identify novel conserved ORFs that 
lacked known domains in the CDD database. The inputs to the algorithm are the 
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14 flies multiple alignments in MAF format (reviewed in 48) and the set of ORFs 
called from the GRIT annotation (see above, “Predicting proteins based on 
transcript models”). The algorithm was run as follows: 

• PhyloCSF executable (as of 2012-10-28): 
http://github.com/mlin/PhyloCSF/tarball/20121028-exe 

PhlyoCSF is run in the "AsIs" mode which analyzes only the input ORFs 
(ORFs are not discovered by PhyloCSF). Based on communication with the 
Kellis group and their previous experience24 (also, personal communication with 
Mike Lin), I utilized a conservation score threshold of -0.2 to identify conserved 
proteins 
 
Defining lncRNA Elements  

I define genes that lack any coding transcript given the above definition, 
and that encode no known small RNA (e.g. tRNAs, miRNAs, etc.) as lncRNAs. I 
note that this means that our annotation includes non-coding transcripts of 
coding genes. In Drosophila, there is one gene known to encode four 11aa 
ORFs36, and hence it is possible that some of our lncRNAs may yet encode 
conserved and/or functional short polypeptides. However, PhyloCSF run time is 
exponential in minimum ORF length between 10 aa and 20 aa, due to an 
exponential increase in the number of such ORFs present in transcript models. 
Furthermore, the power of the model is predicated on being able to observe 
protein-coding structure in multi-species alignments, e.g. third base wobble47. 
This power is dampened in short ORFs, and after extensive manual review I 
determined that 20 aa was likely close to the limit of detection of the algorithm. 
This corresponds roughly to the limits of detection of MS/MS in our experience43, 
and highlights the difficulty of identifying short protein coding sequencing, and the 
importance of emerging assays such as Ribo-seq42.  
 
Computing Gene Expression  

I computed gene level expression measurements in BPKM as previously 
described8 over the projected gene models. The projected gene models were 
determined by projecting all overlapping exons for each gene down into non-
overlapping exon regions, and then computing the BPKM across the entire 
region. 
 
Differential Gene Expression Analysis  

Differential gene expression analysis was conducted only for our adult 
treatment samples. Our negative control used for this analysis the wild-type adult 
fly in gender-balanced mixed populations. Gene-level BPKMs were computed on 
independent biological replicates. I conducted quantile normalization of the 
BPKMs across all treatments and the negative control. To compare two 
conditions, A and B, I selected the replicates in A and B that minimized: 
1− 𝑟!,! 𝑟!,!  over 𝑖, 𝑗 ∈ 1,2 , that is, the pair of replicates that provide the least 

evidence of differential expression are selected. I call this value corresponding to 
this minimum the Most Conservative Ratio statistic (MCR). I ignored any gene 
not expressed above BPKM 1 in either the treatment or the control (represented 
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as a value of identically 0). Additionally, all genes that varied more between 
replicates within either treatment or control than under the MCR statistic were 
ignored (represented as a value of identically 1). I formed a rank list of the 
remaining genes under the MCR statistic. I identified thresholds in two ways. 
Firstly, I compared our two Cold Shock treatments, Cold 1 and Cold 2. As these 
treatments differ only slightly, I expected no genes to be differentially expressed 
between these two samples. No genes had an MCR value >1.77 or <0.33. To 
ensure a stringent threshold for differential expression, I fit a normal distribution 
to the log(MCR) values, and computed an FDR value corresponding to identically 
one false discovery on average per treatment (only one gene falsely discovered, 
not 1% FDR). This gave a threshold of approximately 5 (or 0.2, reciprocally). 
Hence, although some genes may be differentially expressed between Cold 1 
and Cold 2, under the conservative assumption that in fact there are none, I 
estimate that I have, on average, one falsely discovered differentially expressed 
gene per treatment. Secondly, and far more conservatively, I performed 
permutation tests and studied the distribution of the MCR statistic under random 
permutations. This has the advantage of providing a sample-by-sample estimate 
of the FDR. 
 
Multiple Testing and Enrichment 

Throughout the manuscript p-values are listed with the test utilized to 
generate them. These were computed as follows: Statistics computed in R were 
done with R version 2.15.349. z-scores were computed in R in the usual way, as 
standardized residuals with empirical unbiased estimates of mean and standard 
deviation. z-tests were done in R using the function z.test. t-tests were done in R 
using the function t.test in preference to z.tests for all small sample-size tests of 
asymptotically Gaussian statistics. Hypergeometric tests were conducted using 
the R function phyper. Binomial tests were conducted using the R function 
binom.test. Chi-square tests were conducted in MATLAB (R2011a). Gene Set 
Enrichment Analysis (GSEA) was conducted as in 50. Permutation tests were 
conducted in python with custom scripts. Values were permuted uniformly and 
empirical p-values were generated. Hence, the number of permutations 
conducted determines the minimum p-value generated for these tests. False 
Discovery Rates (FDRs) were computed using Benjamini-Hochberg procedure 
implemented in custom scripts in Python. 
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Chapter 2: Extensive Cross-regulation of Post-
transcriptional Regulatory Networks in Drosophila 
 
Preface 

The contents of this chapter are derived from the in submission paper, 
“Extensive cross-regulation of post-transcriptional regulatory networks in 
Drosophila” with the consent from primary contributing co-authors. The contents 
presented here represent analyses conducted by myself. Specifically, the 
Celniker, Artavanis-Tsakonas and Graveley labs conducted data producing 
experiments. These data producing methods have been omitted from this 
manuscript and can be found in the above referenced paper. Additionally, 
supplementary tables have been omitted from this manuscript and can be found 
in the above referenced paper (available here in pre-print 
http://brownlab.lbl.gov/marcus.stoiber/preprint_manuscripts/). 
 
Abstract 

In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). 
Despite the importance of these complexes in many biological processes 
including splicing, polyadenylation, stability, transportation, localization, and 
translation, their compositions are largely unknown. We affinity purified 20 
distinct RNA binding proteins (RBPs) from cultured Drosophila melanogaster 
cells under native conditions and identified both the RNA and protein 
compositions of these RNP complexes.  We identified “high occupancy target” 
(HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs 
encode components of the nonsense-mediated decay and splicing machinery as 
well as RNA binding and translation initiation proteins. The RNP complexes 
contain proteins and mRNAs involved in RNA binding and post-transcriptional 
regulation. Genes with the capacity to produce hundreds of mRNA isoforms, 
ultra-complex genes, interact extensively with heterogeneous nuclear ribonuclear 
proteins (hnRNPs). Our data is consistent with a model in which subsets of RNPs 
include mRNA and protein products from the same gene, indicating the 
widespread existence of auto-regulatory RNPs. From the simultaneous 
acquisition and integrative analysis of protein and RNA constituents of RNPs we 
identify extensive cross-regulatory and hierarchical interactions in post-
transcriptional control. 
 
Introduction 
 Gene expression involves a complex and often dynamic interplay between 
proteins and RNA. The synthesis and/or function of almost all known RNAs 
involve the formation of ribonucleoprotein particles (RNPs)51. These RNP 
complexes range from small (e.g., Cas9 bound to a guide RNA) to large (e.g., the 
ribosome or spliceosome). Very few RNP complexes have been characterized in 
any organism.  
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The protein components of RNPs can either interact directly with RNA 
through one or more RNA binding domains, or can be associated indirectly 
through interaction with another protein that is itself directly bound to RNA52. 
Proteins such as NOVA-1/2, PTBP1, U2AF65 and RBFOX2, as well as others, 
contain RNA binding domains that directly bind RNA in a largely sequence-
specific manner53,54,55,56. In contrast, SMN, which is involved in snRNP 
biogenesis, lacks any known RNA binding domains, and associates with the U 
snRNAs indirectly. Many assays characterizing protein-RNA interactions utilize 
UV-crosslinking to ensure that the observed interactions are either direct or 
occurred in cells prior to lysis57. Though powerful, these approaches also have 
the following limitations.  First, many RBPs that interact directly with RNA cannot 
be crosslinked to RNA due to the configuration of the RNA-protein interaction. 
Second, even for proteins that can be crosslinked to RNA, the efficiency of 
crosslinking is low and not every site of interaction is amenable to crosslinking. 
Finally, these approaches cannot capture indirect interactions including proteins 
that are part of an RNP that do not directly contact RNA. Thus crosslinking-
independent approaches are necessary to capture the larger RNA-protein 
interaction landscape.  
 In addition to the diversity of capture approaches used to study RNA-
protein interactions, there are differences in the assays used to characterize the 
interacting molecules. Several groups have used probes to purify specific target 
RNAs and then identify the associated proteins, though these approaches often 
require tagging the target RNA, reviewed in McHugh et al. 201458. Hentze59 and 
Parker60 have used oligo-dT to globally purify human and yeast cellular mRNA-
protein complexes (mRNPs), respectively, and then identified the bound proteins, 
but not the associated RNAs. However, very few studies have purified native 
RNP complexes and characterized both the RNA and protein components.  

RNA binding proteins (RBPs) play a crucial role in cellular biology, 
particularly in higher eukaryotic organisms where ~3% of genes encode proteins 
that have either known or predicted RNA binding domains52. RBPs participate in 
many essential post-transcriptional functions including pre-mRNA splicing, 3’ end 
formation, RNA localization, RNA turnover and translation. Many RBPs 
participate in several of these processes52. One example of a pleiotropic RBP is 
the Fragile X Mental Retardation Protein (FMRP), encoded in Drosophila 
melanogaster by Fmr1. FMRP forms a complex with components of the RNAi 
machinery including Argonaute 2 (AGO2), an essential component of the RNA-
induced silencing complex (RISC61). FMRP also associates with the ribosome to 
directly block translation by inhibiting tRNA association62, and in yet another 
capacity, functions as a translational activator63. Other proteins that have been 
shown to have pleiotropic effects include NOVA64, MBNL65 family proteins, and 
hnRNP H166. It is likely that the participation of RBPs in multiple post-
transcriptional processes will be common.    

RBPs recognize their RNA targets through RNA binding domains.  In 
Drosophila, and most eukaryotes, common classes of RNA binding domains 
include the RNA-recognition motif (RRM), the K homology domain (KH), the 
double-stranded RNA-binding motif (dsRBM), and zinc-finger motifs. As with 
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transcription factors, there is no one-to-one mapping between domains and 
functional roles, and many RBPs with characterized functions appear pleiotropic. 
Some RBPs have strong sequence specificity for cognate binding sites, including 
Nova/Pasilla(PS), which binds to YCAY repeats in species from insects to 
mammals, although the RNA targets regulated by Nova/PS have changed 
substantially across metazoans67,68. The RNAcompete assay has been used to 
identify in vitro binding specificities and relative affinities for a number of RBPs in 
several species69. A number of factors have been studied in vivo, but largely 
within small-scale studies (e.g. 70,71,72,73,74). An in vivo study in yeast74 surveyed 
the binding patterns of 40 RBPs and concluded that the targets of different 
factors fall into distinct functional classes, indicating that specific RBPs 
participate in defined regulatory pathways.  A study of six of the seven 
Drosophila small ribonucleoprotein particle proteins (Sm proteins) in Drosophila 
showed that the Sm RNA targets fall into three categories: small nuclear RNAs 
(snRNAs), small Cajal bodies (scaRNAs) and mRNAs73. The extent to which in 
vitro binding affinity models are sufficient to explain in vivo patterns of binding is 
unclear. In most cases, it is also largely unknown whether RBPs tend to bind 
RNA individually as monomers or in larger complexes. 

To explore the compositions of RNPs in Drosophila, we characterized the 
RNA and protein components of RNPs purified using 20 distinct proteins as baits. 
These proteins were chosen based on their known RNA binding domains (e.g., 
K-Homology domain, RRM) or roles in RNA biology. We group these 20 RBPs 
into broad functional classes: Exon Junction Complex (EJC), which marks the 
location of splicing events and provides a link to processing events downstream 
of splicing; in mammals this includes nonsense-mediated decay (NMD)75,76 (the 
release factor, encoded by Upf1); Serine-arginine (SR) splicing factors, that 
although primarily implicated in splicing, have also been shown to participate in 
other post-transcriptional events69 (encoded by B52, Rbp1, SC35, SF2, Srp54, 
tra2); Spliceosome-associated factors that interact with the canonical 
spliceosome complex77,78 (encoded by snRNP-U1-70K: abbreviated here as 
snRNP70K, CG6227, Cbp20, Rm62, U2af50); heterogeneous nuclear 
ribonuclear proteins (hnRNPs), a functionally diverse group of proteins that 
participate in nuclear RNA processing and export79 (encoded by elav, ps, mub, 
msi, Syp); and lastly pleiotropic proteins including factors with diverse functions 
in translational regulation and RNA localization (encoded by Fmr1, qkr58E-1, 
qkr54B). 

A unique aspect of this study is that RNA and protein are co-purified from 
the same IP reaction, something that is not possible in CLIP-seq, or other cross-
linking-dependent procedures. We utilize RNA-immunoprecipitation (RIP) to 
identify both the RNA and protein components of ribonuclear complexes. 
Analysis of the RNAs and proteins associated with these RBPs reveals a densely 
interconnected network of interactions. Many RBPs associate with the RNA and 
protein products encoded by the same gene, and therefore may regulate both the 
protein and RNA components of dozens of RNP complexes.  More generally, the 
RNAs encoding proteins involved in post-transcriptional regulation tend to be 
bound by most of the factors in our study, forming “high occupancy targets” RNA 
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(HOT RNAs). Several studies, e.g. 80, have shown that the RNAs encoding RBPs 
tend to be post-transcriptionally regulated, suggesting that this may occur more 
often for post-transcriptional regulators than other types of genes. Our data 
reveals that this tendency may derive from local interactions in the regulatory 
network, where RBPs interact with, and presumably regulate the mRNAs 
encoding their protein interaction partners. Hence, via the integrative analysis of 
matched protein and RNA interaction data, we identify a poorly studied layer of 
feedback in the hierarchy of gene regulation of metazoan cells.  
 
Results 
 
Identification of the RNA and Protein Components of RNP Complexes 
 To explore the composition of RNP complexes in Drosophila, the 
Artavanis-Tsakonas lab purified RNP complexes under native conditions (without 
crosslinking) from cultured cells expressing 20 different epitope-tagged RNA 
binding proteins and then analyzed the protein components by mass 
spectrometry and the RNA components by RNA sequencing (Figure 2.1).  The 

Figure 2.1 Data Production and Processing 
 
The data processing pipeline is described here starting from transfection of RNA binding proteins into 
S2R+ cells. Immunoprecipitation is then performed to pull down ribonucleoprotein particles. The protein 
and RNA components of the RNPs are then separated and measured with MS/MS and RNA 
sequencing. These data are then analyzed together at global and local levels. 
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proteins selected for these experiments were chosen because they contained KH 
or RRM type RNA binding domains, DEAD-box RNA helicase domains, or lacked 
known RNA binding domains, but have important roles in RNA biology. The  
proteins studied are known to function in splicing, nonsense mediated decay, 
translation regulation and RNA localization and include members of the SR and 
hnRNP families of proteins, core components of the spliceosome, and  
components of the Exon Junction Complex (EJC) (Table 2.1).  For each protein 
we added a C-terminal FLAG-HA epitope to the longest ORF in a vector that 
allowed inducible expression in transiently transfected cells. This is the same  
strategy that was developed and demonstrated to be highly effective to produce 
a Drosophila Protein Interaction Map81.  

Protein Class RNA Binding 
Domain(s) Notes 

Number of 
Identified 
Targets 

tra2 SR-related 1 RRM, 2 RS 
domains splicing, sex determination 1126 

Rm62 Spliceosome DEAD-Box 
Domain 

RNAi, splicing, interacts with Fmr1, 
AGO2 and dcr-1, neurogenesis 1559 

B52 SR Protein 2 RRMs, 1 RS 
Domain splicing 2384 

Cbp20 Spliceosome 1 RRM Binds to 7mG caps 601 

Upf1 NMD, EJC 
DEAD-Box 
Domain, Zinc-
binding domains 

helicase, NMD 2077 

Rbp1 SR protein 1 RRM splicing 1751 
CG17838/S
yp hnRNP 3 RRMs neurogenesis, R/Q splicing domain 1726 

qkr58E-1 Other 1 KH domain neurogenesis 1724 

elav hnRNP 3 RRMs neurogenesis 1775 

ps hnRNP 3 KH Domains splicing 1781 

Srp54 SR protein 2 RRMs splicing 1905 

qkr54B Other 1 KH Domain poly(A) and poly(U) binding in vitro 1429 

msi hnRNP 2 RRMs translation repressor 1034 

SC35 SR protein 1 RRM, 1 RS 
Domain splicing 1272 

Fmr1 Other 2 KH Domains 
self-binding, protein binding, 
synapse organization, long-term 
memory 

880 

CG6227 Spliceosome DEAD-Box 
Domain splicing, Prp5 Ortholog 639 

SF2 SR protein 2 RRMs, 1 RS 
Domain splicing 1538 

mub hnRNP 3 KH Domains splicing 1104 

snRNP70K Spliceosome 1RRM, 1 RS 
Domain 

splicing, component of U1 snRNP,  
interacts with SMN complex 642 

U2af50 Spliceosome 3 RRMs, 1 RS 
Domain 

splicing, part of U2AF heterodimer 
(with U2AF38) 1866 

Table 2.1 RBP Annotations 
Literature review and primary class designation of RBPs from this study as well as total number of 
identified targets from each RBP 
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Tagged RBPs were transfected into Drosophila S2R+ cells in biological 
duplicate. As controls we used both empty vector and four different non-RNA 
binding proteins. For these experiments, cell lysates were prepared in the 
presence of RNase inhibitors to maintain an RNase-free environment to facilitate 
recovery of intact RNAs. The RNA-protein complexes were purified by 
immunoprecipitation (IP) and the products of each co-IP were split into two equal 
fractions. One fraction was used for LC/MS/MS analysis to define the protein 
composition of the sample and relate the proteins to the DPiM, and the second 
fraction was depleted of rRNAs and subjected to RNA sequencing to analyze the 
associated polyadenylated and non-polyadenylated RNAs. 

This experimental approach results in the identification of protein-RNA 
(RIP-seq) and protein-protein (MS/MS) interactions in a single IP reaction. 
Because we do not crosslink, we pull down stable whole complexes, and 
therefore our data do not distinguish between direct and indirect interactions or 
binding events. When we identify interactions of two RBPs with mRNAs from the 
same gene, we conclude that these two factors share a common target, though 
the protein-RNA interactions can occur on either the same or different mRNA 
molecules. However, if we additionally observe protein-protein interactions 
between these RBPs, we conclude that there is evidence for the existence of an 
RNP complex that includes the target RNA and the two RBPs. RBPs interact with 
many RNAs and proteins present in S2R+ cells. Hence, our data is amenable to 
network analysis techniques that identify community structure. Because we 
observe whole complexes, not individual pairwise interactions, we expect stable 
RNPs to yield densely connected “cliques” of associated RNA and protein 

molecules. Our data is consistent 
with this model, and described as 
follows. 

To identify RNAs enriched by 
each RBP, we mapped sequenced 
reads to the genome and then 
quantified the capture level 
(analogous to expression level in a 
knockout experiment) of each gene 
(FlyBase r5.57) in both IP and 
control experiments with DEseq82 
(Methods). We applied two 
thresholds to the DESeq output: a 
local Irreproducible Discovery Rate 
(IDR) of 10% (approximately 3.2% 
global IDR, Methods) and a Fold 
Change (FC) of 50% in both 
biological replicates, corresponding 
to a local signal to noise ratio of at 
least 2.0. The IDR, a standard 
technique for the analysis of IP data 
developed by the ENCODE 
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Figure 2.2 Number of Differentially Captured 
RNAs 
Number of differentially captured RNAs for each 
possible number of RBPs from the study. For 
number of RBPs that produce more than 5000 
possible combinations a random set of 5000 were 
chosen. 
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Consortium, is analogous to the false 
discovery rate (FDR), and leverages 
biological replicates to measure 
quantitative reproducibility83,84. At this 
stringent cutoff, we recover an 
average of 1,231 interacting RNAs per 
RBP (Figure 2.2). The RBPs we 
surveyed collectively show statistically 
significant enrichment of RNA 
products of 72% of genes expressed 
in S2R+ cells (Methods) and 40% of 
all genes in Drosophila. 
 As one way to assess the 
quality of our data, we examined our 
results for known RNA-Protein 
interactions. For example, 
snRNA:U1:82Eb and snRNA:U1:95Cc 
are the two RNAs most strongly 
enriched by SNRNP70K, an integral 
component of the U1 snRNP. 
Consistent with the known interactions 
between the Cap Binding Complex 
and U snRNAs85, CPB20 interacts 
strongly with the U1, U4, U5, U11 and 
U12 snRNAs. Moreover, as Rbp1 is 
known to cross-regulate Rbp1-like86, 
we observe a strong interaction of 
RBP1 protein with Rbp1-like mRNA. 
Thus, our dataset recapitulates known 
protein RNA interactions reported in 
the literature.  
 The majority of the factors in 
our study are involved in splicing 
regulation. In Drosophila, 74% of genes produce spliced transcripts (87% of 
genes expressed in S2R+ cells). All but one RBP (CBP20, a component of the 
nuclear cap-binding complex) shows strong enrichment for spliced genes (p-
value < 0.005). Hence the preference of most RBPs in this study to bind spliced 
RNAs supports their functional roles as splicing regulators. 
 
“High Occupancy Target” RNAs are a Feature of Post-Transcriptional 
Regulation  

Most of the RBPs in our study associate with overlapping sets of target 
RNAs. A total of 74% (141 out of 190) of pairwise intersections of RBP target 
RNAs across all pairs are larger than expected at random (hypergeometric p-
value < 0.01). For example, Smg5 mRNA, which encodes an RNA binding 
protein involved in NMD, interacts with RNP complexes containing 15 of the 20 

Figure 2.3 Expressions of Target RNAs 
Stacked bar plot across quantiles of non-zero 
expression loci of RBP-gene interactions 
grouped by a) target/non-target/HOT RNA and 
b) each RBPs individual hits. 
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studied RBPs. Indeed there are six such mRNAs (CG12065, CG3008, CG7456, 
Hsp26 and Hsp27), which is considerably more than expected under an 
independence model (probability that the RNA bound by the most RBPs >= 15 is 
less than 0.001). The RNAs encoded by 282 genes interact with half or more of  
the RBPs in our study and we will refer to these RNAs as “high occupancy target” 
(HOT) RNAs. Under a model conservatively conditioned on the assumption that 
only RNAs associated with at least one RBP are available for binding, this 

Figure 2.4 RBP-RNA Binding Network 
a. This plot presents a global view of the RNA-
protein interaction network. Each point in the 
center column represents an RBP (RIP-seq 
experiment). Corresponding points on the left 
represent each RBP’s mRNA. Dashed lines 
represent hypothetical binding events that 
cannot be observed due to the overexpressed 
background. Lines join an RBP and an RBP’s 
mRNA if significant binding is observed 
(Methods) and the lines are shaded according 
to the strength of binding (–log IDR value) for 
this interaction. Points on the right represent 
the set of genes annotated with the 
corresponding hotspot GO term. Lines are  
 
drawn between an RBP and a hotspot GO term if the bound set of RNAs significantly overlaps (p-
value < 0.01) the GO term set. The thickness of these lines represents the significance of the overlap 
between the corresponding sets of RNAs. The shading of these lines indicates the binding strength of 
this set of bound RNAs (defined as the 75th percentile of the –log IDR values for the bound RNAs). b-
e. HOT RNAs are driven by the most enriched RNAs. Each plot represents the enrichment for a 
single hotspot GO term gene set across all experiments. The one solid line represents the median 
IDR value for each RNA for of all RBPs and each transparent line represents a single RBP. Each 
point represents 100 RNAs binned by IDR value in increasing order. The y-value for each point 
represents the –log hypergeometric p-value for the overlap between the 100 bound RNAs and the GO 
term gene set. Each plot represents the “down-the-rank-list” enrichment for a particular hotspot GO 
term: b. Translation Initiation c. Splicing d. NMD e. RNA Binding f. Neurogenesis g. Protein Folding 
h. Proteasome i. Protein Binding	
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constitutes 282-fold enrichment over expectation (Poisson-binomial p-value <10-

15). This threshold ensures that HOT RNAs are the targets of a diverse group of 
RBPs, including multiple binding domains and functional families. We note that 
the qkr58E-1 and qkr54B mRNAs, which encode two of the RBPs we surveyed, 
are themselves HOT RNAs. Additionally, we note that the set of HOT RNAs, as 
well as RIP-seq targets in general, span a wide range of gene expression levels, 
see Figure 2.3 and are not biased toward highly expressed RNAs. 

 A number of Biological Process GO terms are strongly enriched in the 
HOT RNAs, with the strongest being nuclear mRNA splicing (GO:0000398, 
adjusted p-value <0.001), neurogenesis (GO:0022008, adjusted p-value <0.001) 
and NMD (GO:0000184, adjusted p-value <0.05). We also observe enrichment 
for the Molecular Function GO terms RNA Binding (GO:0003723, adjusted p-
value <0.05) and translation initiation (GO:0003743, adjusted p-value <0.05). 
When we rank the target RNAs by their local IDR, using this score as a proxy for 
a direct measure of binding affinity or fractional occupancy, we find that the most 
strongly associated RNAs drive the enrichment of the HOT RNA enriched GO 
terms (Figure 2.4). Collectively, HOT RNAs show strong enrichment for several 
categories, which include mRNAs of almost a quarter of the genes involved in 
RNAi (five out of 22, including Dcr-2 and AGO2) and almost half of the genes 
involved in NMD, despite consisting of only 3% of expressed genes (Figure 2.4). 
The hnRNP and quaking related RBPs contribute much less significantly to HOT 
RNA GO term enrichments than SR or splicing related RBPs (rank rum p-value 
<0.0005). However, at least one hnRNP or quaking related protein targets 92% 

RBP Hypergeometric 
Test 

RNAi within RIP-seq 
Wilcox Rank-Sum Test Overlap Splicing Events 

Altered by RNAi 
RIP-Seq 
Targets 

Srp54 9.57E-17 1.61E-06 103 264 1693 

CG6227 4.07E-06 0.0507 18 118 461 

Rm62 2.21E-05 0.00212 105 519 1316 

mub 3.01E-05 0.188 22 91 962 

qkr54B 5.76E-05 0.09831 19 60 1256 

Upf1 6.38E-05 0.0540 53 181 1697 

B52 0.000112 0.00296 103 343 2052 

Rbp1 0.00438 0.112 24 100 1381 

elav 0.00638 0.0398 34 135 1615 

snRNPU1 0.00649 0.180 35 449 491 

Syp 0.00822 0.0953 18 67 1522 

SC35 0.0425 0.509 22 138 1082 

tra2 0.226 0.586 7 55 1001 

Fmr1 0.675 0.492 5 91 697 

Table 2.2 Overlap between RNAi and RIP-seq Experiments for Individual RBPs 
Hypergeometric p-values quantify the deviation from random overlapping patterns between the 
target RNAs from RIP-seq and genes that showed differential splicing patterns after RNAi 
treatment for each RBP. Wilcoxon Rank-Sum p-values represent the preference for genes showing 
differential splicing after RNAi treatment to show stronger interactions (as measured by IDR value) 
from RIP-seq experiment on the same RBP. 
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of HOT RNAs, and thus contribute strongly overall to the biological GO term 
enrichments of HOT RNAs. 

 
Binding Events Identified by RIP-seq are Functional 

   To assess potential biological functions of the RNA-protein interactions 
identified in this study, we compared our RIP-Seq results to RNAi knockdown 
experiments of 14 of the RBPs included in this study (Srp54, CG6227, Rm62, 
mub, qkr54B, Upf1, B52, Rbp1, elav, snRNPU170K, Syp, SC35, tra2, and Fmr1) 
[Brooks et al, submitted]. We observed statistically significant overlaps (max p-
value < 0.05) between the splicing events altered upon RNAi knockdown of an 
RBP and the RIP-Seq targets for the same RBP (Table 2.2). There was lower 
overlap between targets and affected splicing events for tra2 and Fmr1, though 
Fmr1 appears to play a role in mRNA localization and has not been reported to 
directly regulate splicing, and the RNAi depletion efficiency of tra2 was lower 
than the other RBPs. In conclusion, these overlaps provide overwhelming 
statistical evidence for the functional importance of the interactions identified by 
RIP-seq (Fisher combined p-value <10-100) and visa-versa for the splicing events 
identified by RNAi.  

 

Figure 2.5 RBP-Protein-RNA Interactions  
a. Plot represents combined interactions between RBPs and all proteins pulled down in at least one 
experiment as well as their corresponding transcripts. Edges are drawn where an RBP participates in an 
interaction with a gene. Grey lines indicate RBP-RNA interactions, blue lines indicate RBP-protein 
interactions and yellow lines indicate both interactions with the same gene. b. Diagram of the U2 snRNP 
adapted from 2 showing the interactions between core proteins of the U2 snRNP and the RBPs from this 
study. Only those RBPs involved in protein-protein interactions are presented. The U2 snRNP is 
composed of U2 snRNA, the SF3a and SF3b splicing complexes as well as the Sm proteins. Lavender-
colored proteins are components of the U2 snRNP (along with U2AF50). RBPs from this study are 
colored according to their primary class designation used consistently throughout the paper. Lines 
indicate the type of interaction as in Figure 2.6a 
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RNP Complexes Contain Proteins and their Encoding mRNAs  
As mass spectrometry was conducted on each of the IP fractions from 

which RNA was eluted for sequencing, we can identify the proteins associated 
with all RBP baits. We obtained at least one confident interacting protein for all 
but one (RBP1) of the 20 RBPs. We observe an average of 13 proteins 
associated with each RBP and a total of 198 proteins co-associated with at least 
one RBP. We confirmed protein-protein interactions for the pairs SC35:QKR58E-
2, QKR58E-1:LARK, U2AF50:UPF1 using reciprocal co-IP experiments with an 
alternative tag. These simultaneously validate the targeted interactions and our 
protein tagging strategy (Methods). We also compared our results to a database 
of published interactions (www.droidb.org), and found that 44.6% have been 
previously reported (>40-fold enrichment, parametric permutation test, p-value < 
10-16). The co-associated proteins are strongly enriched for mRNA binding 
(GO:0003729, p-value <10-13) molecular function despite masking many possible 
interactions between RBPs targeted in this study due to possible cross-
contamination from the MS protocol. The associating proteins are enriched for 
several terms also enriched in the HOT RNAs including both biological process 
and cellular component splicing-related terms. We observed highly significant 
overlap (hypergeometric p-value < 0.01) between the protein and the 
corresponding RNA targets for three (B52, SYP and CG6227) of the 20 RBPs, 
and note that there is a strong tendency amongst all RBPs to co-bind proteins 
and their mRNAs (Fisher’s Method P-Value, <10-8), which indicates that proteins 
may bind their own mRNA. For example, the B52 protein interacts with CG4849’s 
protein and mRNA. Hence, RNP complex members interact with the RNAs 
encoding interacting proteins. This indicates that post-transcriptional regulation is 
highly interconnected and cross-regulatory operating at both the transcript and 
protein levels (Figure 2.5a).  

We find significant enrichment within the identified protein interaction 
partners for genes encoding components of the U2 snRNP and related proteins 
(GO:0005686, adjusted p-value <10-7). Within this complex, we observe 
coordinated binding, where RBPs co-immunoprecipitate with proteins and the 
corresponding mRNAs that encode them (Figure 2.5b), suggesting tight post-
transcriptional control of the U2 snRNP complex by constituent and other RBPs. 
For example, we observe that four RBPs from this study (U2AF50, B52, SRP54 
and CG6227/Prp5) interact with both the RNA and protein expressed from 
CG2807, which encodes the ortholog of SF3B1 (SAP155), an integral component 
of the U2 snRNP complex. Furthermore, QKR58E-1 interacts with the CG2807 
protein and SNRNP70K interacts with the CG2807 RNA. CG16941, which 
encodes the SF3A1/SAP120 subunit of U2 snRNP, is another hub of interactions 
with protein-protein interactions with QKR58E-1, protein-RNA interactions with 
SNRNP70K and CG6227, the ortholog of yeast Prp5, and both protein and RNA 
interactions with the SRP54, U2AF50, and B52 proteins. Finally, we observe that 
B52 appears to play a central role as it interacts with many U2 snRNP 
components including the RNAs of four Sm proteins, D1, D2, D3 and F, as well 
as three proteins, CG16941, CG13900 and CG2807 as mentioned above. 
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Together these results are consistent with an intricate network of cross-
regulatory interactions that control expression of the U2 snRNP components. 

In addition to the experiments performed for this study, we investigated 
relationships to protein complexes and pathways reported in the Drosophila 
Protein interaction Map (DPiM), a protein-protein interaction map generated in 
the same cell line81. The DPiM contains 10 protein complexes containing 12 of 
the 20 RBPs in this study. For these RBPs, we observe associations with RNAs 
encoding proteins within the reported complexes for seven out of eight (not 
including two gene complexes). These interactions include SNRNP70K within 
DPiM complex 30 (DC30), where we find SNRNP70K binds RNAs encoding 
three of the seven proteins that compose this complex. DC482 is a complex 
containing only PS and MSI, which we confirmed, and we observed a strong 
association between PS and msi RNA, but no significant evidence for the 
reciprocal interaction between MSI and ps RNA. DC52 includes QKR54B and 
SYP, which is replicated in our experiments (using SYP as bait). This complex 
includes six other proteins, four of which contain RNA binding motifs (CG4612, 
CG7903, NITO and QKR58E-3) and a fifth that contains an RNA helicase domain 
and has been implicated in RNAi (CG6701). QKR54B and SYP, as well as 
QKR58E-1, associate with the transcripts encoding QKR58E-3 and CG6701. 
Additionally, we see that QKR58E-1 strongly associates with this complex 
through both protein and RNA interactions. We find reciprocal RNA binding 
between the pairs of SYP and QKR58E-1 as well as QKR54B and QKR58E-1. 
Seven gene products interact with two of these three RBPs and four genes 
interact with all three.  
 
hnRNP/QKRs Associate with Unique Target RNAs and RNAs from Ultra 
Complex Genes  

Recently, a small subset of genes was identified that each generates more 
than 100 mRNAs via complex alternative splicing, promoter use and 
polyadenylation and are referred to as “ultra complex genes” or UCGs7,9. Most, 
but not all, UCGs are expressed principally in neural tissue7. UCGs are rare in 
the Drosophila transcriptome; 255 are expressed in S2R+ cells. Nonetheless, we 
find that UCGs are enriched among the RNA targets of RBPs. UCGs are 25% 
more likely to be associated with at least one RBP than would be expected at 
random (binomial p-value <10-38), and this enrichment is driven largely by 
hnRNP/QKRs (rank sum p-value: <0.0005). Mice bearing mutations in the 
orthologs of qkr54B and qkr58E-1 exhibit neural developmental phenotypes87. 
Our results show that the targets of QKR54B and QKR58E-1 are not enriched for 
genes involved in neurogenesis. However, QKR58E-1 shows amongst the 
strongest enrichment for UCGs (hypergeometric p-value <5*10-10). 

In addition to enrichment for UCGs, hnRNP/QKRs tend to associate with 
unique target RNAs that other RBPs from this study do not target (rank sum p-
value <0.001). The most striking examples are ELAV and MSI that have 26% and 
19% of their RNA targets associated with no other RBP studied. Additionally, 
RNAs with low expression (RPKM < 1 in control samples) are 1.7-fold more likely 
to show binding to hnRNP/QKR (binomial p-value <10-54). In particular Ccn RNA, 
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which encodes a growth factor implicated in neurogenesis, is detected at very 
low levels in the control samples (0.27 RPKM) and 20 of the IP samples (max of 
0.72 RPKM), yet is enriched greater than 7000-fold by SYP (592 RPKM). This 
indicates a highly specific and strong association between SYP and this 
neurogenesis-related mRNA. 

A

B

C

Fas1

Transcripts

chr3R
1 kb

12,462,000 12,465,000

msi

elav

qkr54B

qkr58E-1

Syp

5’ UTR CDS Intron 3’ UTR

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10

−5

0

5

10

hnRNPs SRSplicing Otherqkrs hnRNPs SRSplicing Otherqkrs hnRNPs SRSplicing Otherqkrs hnRNPs SRSplicing Otherqkrs

hnRNPs

SR

Splicing

Other

Cirl

Transcripts

qkrs

5 kb

4,504,000 4,511,000

Figure 2.6 Gene Structure Binding  
a. The 3’ UTR region of the Fas1 locus, where we observe MSI binding specifically to the 3’ UTR 
extended isoform. It has been previously reported that this 3’ UTR extension is controlled by elav. b. Cirl 
is a hotspot RNA in our analysis (bound by, in order of lowest to highest IDR value, SRP54, U2AF50, 
B52, RBP1, RM62, CG6227, MUB, TRA2, QKR58E-1, PS and SNRNP70K). We note that motif hits 
group tightly in the gene structure regions. c. This plot represents the enrichment of each RBP’s motif 
along gene structure (5’ UTR, CDS, 3’ UTR). The annotation was collapsed into regions that are only 
observed as a particular gene structure. Significant motif k-mers (top 1% most likely k-mers given the 
RBP PWM) are then identified across the transcriptome and overlapped with the gene structure. Each 
point represents the enrichment of motif-hit proportion within a gene element over the length of the gene 
structure element at the locus. Note that only enriched loci for each RBP with at least 20 motif hits are 
plotted. The order of the RBPs is as follows: mub, ps, msi, elav, CG17838, qkr54B, qkr58E-1, Cbp20, 
Rm62, CG6227, snRNP-U1-70K, U2af50, B52, SF2, SC35, Rbp1, tra2, Srp54, Fmr1 and Upf1. 
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hnRNP/QKRs Associate with Extended 3’ UTRs 
It has been previously 

published88 that elav is necessary and 
sufficient to produce several 3’ UTR 
extensions in Drosophila, and that this 
action is dependent on the direct 
association of ELAV with target 
transcripts. We investigate the 
associations between the RBPs and 
RNAs expressed from 363 genes with 
previously reported 3’ UTR extensions 
that are expressed in S2R+ cells89. We 
find that ELAV associates with 34% of 
these RNAs containing 3’ UTR 
extensions (p-value <10-15). However, 
several other hnRNP/QKRs are also 
strongly associated with RNAs 
containing 3’ UTR extensions (QKR54B 
30%, p-value <10-16; QKR58E-1 36%, p-
value <10-21; MSI 26%, p-value <10-18). We find that MSI associates with 52 
RNAs containing 3’ UTR extensions that are not detectably associated with 
ELAV. We manually reviewed each of the eight ELAV targets reported in 88, and 
found equal or stronger association to 3’ UTR extended isoforms by QKR54B, 
QKR58E-1 and MSI than with ELAV. One striking example is Fas1 where MSI 
associates with isoforms including the extended 3’ UTR, and ELAV associates 
only with the shorter isoforms (Figure 2.6a). These results indicate that several 
hnRNP/QKRs in addition to ELAV associate with neural-specific 3’ UTR 
extensions. These proteins potentially play roles in either poly(A) site selection, 
RNA localization, RNA stability or translation regulation of the 3’ UTR extended 
isoforms. 
 
Gene Region Motif Enrichment 

We next sought to identify sequence motifs enriched in the RNA targets 
associated with each RBP. However, since the approach we used enriches for 
full transcripts (Figure 2.7), rather than small, RBP-protected fragments, 
identification of sequence motifs must be performed by considering the entire 
sequence of the all possible RNAs at a each enriched locus. Extant methods are 
not available to determine sequence specificity given a set of bound loci within a 
complex transcriptome, where many genes encode multiple transcripts. We 
developed a method that identifies enriched sequence signatures within a set of 
RNAs as compared to all expressed genes, and if statistically significant 
sequence signatures are found, combines these to produce a sequence motif for 
each RBP (Methods). We identified motifs for each factor. The RBP encoded by 
pasilla (ps) interacts specifically with repeats of YCAY68, a motif we recover 
(Figure 2.8). Additionally, we compared our motifs to those discovered using the 
in vitro RNACompete method90 and found strong correspondence (Methods). 

Figure 2.7 Expression across Gene Body 
Average expression across gene body (from 5' 
to 3') for single isoform genes with reads 
covering at least 25% of bins across gene body 
in all samples. 
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 The motif enrichment across target mRNA gene structure suggests that 
motif analysis may provide insight into the regions of mRNAs bound by particular 
RBPs. For instance, analysis of the gene Cirl (a HOT RNA) reveals a pattern of 
motif positions consistent with UTR binding for some factors, and CDS binding 
for others (Figure 2.6b). We asked if any RBPs’ motif showed preferential binding 
in the 5’ UTR, CDS, introns and/or 3’ UTR and computed the enrichment of 
motifs across the transcript body (Methods). In general, the motifs for 
hnRNP/QKRs tend to be present in UTRs more than the spliceosome or SR 
proteins (Figure 2.6c), though we observe that two hnRNPs, PS and MUB, show 
enrichment in CDS regions while an SR protein’s, SRP54, motif is enriched in the 
5’ UTR. ELAV targets are strongly enriched for genes with alternative 3’ UTRs, 
as expected, but the strongest enrichment is observed for MSI that shows 
statistically significant enrichment in over three quarters of genes in Drosophilia. 
We also found significant enrichment within the 5’ UTR for QKR54B, QKR58E-1 
and SYP. Splicing factors (excluding CBP20) and SR proteins show a mean 2.7 
enrichment z-score (p-value <0.01) for motif hits in CDS regions. The EJC 
release factor UPF1 shows motif enrichment in CDS regions. These motif 
enrichments were computed solely from exonic sequence, so it is important to 
consider that these binding preferences may change if intronic sequence is 
considered. This is particularly true for factors, such as PS, that have known 
intronic binding function. 
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Figure 2.8 RIP Discovered Motifs and Previously Discovered RNACompete Motifs 
Both RIP-seq (top row) and in vitro (bottom row, where applicable) discovered motifs for the RBPs in this 
study 
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Non-coding RNA-RBP Interactions 
 We sequenced total RNA without a size fractionation step thus recovering 
unpolyadenylated noncoding RNA targets, which include microRNAs (miRNAs), 
small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs) and small Cajal 
body-specific RNAs (scaRNAs) as well as unpolyadenylated long non-coding 
RNAs. We visually inspected many examples of these targeted RNAs and 
discovered that the majority of targets are due to the enrichment of the RNA 
precursors (i.e. retained introns containing noncoding RNAs). However, we also 
observed several examples of significant enrichment for “intergenic” noncoding 
RNAs (e.g. snRNA:U5:14B, snRNA:U2:14B  and snRNA:U2:34ABb). For 
example, RBP1, MUB and MSI all significantly enrich for the snRNA:7SK RNA, in 
fact MSI enriches for this RNA over 19-fold. Intriguingly, ELAV displays a very 
strong (590 fold) interaction with snRNA:U5:35D and QKR58E-1 enriches 
RNaseP:RNA over seven-fold. In addition, there are 236 annotated noncoding 
RNAs (e.g., CR31044) that interact with between one and 11 RBPs. For 
example, CR31044 which encodes a ~5 kbp RNA that contains miR-279 and 
miR-996 interacts with 11 RBPs, the strongest of which is SYP. Similarly, 10 
RBPs interact with CR43651 which encodes a ~1 kbp RNA hosting miR-14 – the 
strongest interactor in this case is PS with a 65-fold enrichment. These results 
identify RBPs that may participate in the biogenesis of specific miRNAs.   

We also find that 10 RBPs target one or more small functional RNAs and 
in total 19 small functional RNAs are targeted by at least one RBP. These include 
six of 144 expressed snoRNAs, four of nine miRNAs, seven of 18 snRNAs and 
two of 14 scaRNAs. Of the 10 RBPs, ELAV targets include the most: eight small 
functional RNAs; no other RBP targets more than four. As mentioned earlier, two 
U1 snRNAs, snRNA:U1:82Eb and snRNA:U1:95Cc interact with SNRNP70K, 
consistent with its known role in the U1 snRNP complex91, and are among the 
most enriched RNAs in any IP in this study (84-fold, 81-fold respectively). 
 

Figure 2.9 Retained Intron Signal in the Data 
a. The number of intron and gene level targets is represented for each RBP on the y and x axes, 
respectively. The amount of overlap between each RBP’s intron and gene level targets, as measured by 
the Jaccard index at the locus level, is indicated by each point’s size. b. The Xrp1 locus is indicative of 
several genes that produce different cohorts of RBPs binding to different retained introns. The exon 
regions of reads are removed from this figure. The height of each sequence track is 20 BPKM and the 
red and blue portions of the tracks indicate the biological replicates. 
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Enriched Intronic Regions 
 In addition to investigating the enrichment of particular mRNA transcripts 
at the gene level, we also queried introns for evidence of enrichment (Methods). 
We find that while gene level enrichments correlate well (ρ=0.62) with intron 
enrichment loci across RBPs, there are several factors with many gene level 
targets that do not show a similar signature at the intron level consistent with 
intron targeting as a feature of some RBPs and not others (Figure 2.9a). Two 
factors in particular, B52 and SRP54 are enriched for differentially retained 
introns with respect to control total RNA samples at almost twice as many loci as 
any other RBP. 

We find individual introns are targets of multiple factors.  We also find 
gene loci with multiple introns that are targets of distinct cohorts of factors. A 
striking example is the Xrp1 locus, which encodes a DNA-binding protein and is a 
HOT RNA at the gene level (targeted by 17 RBPs, Figure 2.9b). Xrp1 contains 
seven introns, five portions of which do not overlap other annotated features, and 
hence are amenable to differential expression analysis (Methods). We find 
differential intronic enrichment for four of these introns. For example, the second 
intron is strongly targeted by MSI, but not any other factors, while the fourth 
intron is preferentially targeted by SRP54 and ELAV. Several other loci with 
marked differential intron retention include MRP and crol as well as at the loci of 
two of the RBPs in this study ps and Syp. 
 
RBP Functional Groups Bind the mRNAs of Functionally Related Proteins 

The co-association of two or more RBPs with a single target RNA occurs 
broadly throughout the transcriptome. Pairwise intersections provide a natural 
similarity (and, conversely, dissimilarity) measure between any two RBPs 
(Methods). Multi-dimensional scaling (MDS), a generalization of principal 
component analysis, is a powerful technique for visualizing the relationships 
between data points in high natural dimension92. MDS of the co-associations into 
two dimensions reveals that RBPs from related functional groups (e.g. the SR 
proteins) bind overlapping sets of target RNAs. This clustering becomes tighter 
for the three major functional groups when, rather than considering the overlaps 
in the sets of associated RNAs, the similarity of annotated GO term enrichment 
profiles (across all biological GO terms) is examined (Methods). As several 
analyses indicate a strong relationship between the hnRNP class of RBPs and 
the two quaking related proteins (QKR54B and QKR58E-1), we will refer to these 
proteins collectively as hnRNP/QKRs.  

MDS using GO term profiles indicates that functionally related RBPs 
associate with mRNAs encoding functionally related proteins. Clusters are tighter 
under the GO similarity measure than raw transcript overlap. We observe the 
following ratios between mean within-group distances and mean between-group 
distances: SR proteins (transcript overlap 0.85, functional overlap 0.69); 
Spliceosome (transcript overlap 0.98, functional overlap 0.92); hnRNP/QKR 
(transcript overlap 0.95, functional overlap 0.92). However, these cluster 
measurement differences do not rise to the level of statistically significant. Both 
the hnRNP/QKR and SR protein classes functional clustering is driven in part by 
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the HOT RNA enriched term neurogenesis, as defined by the GO terms that 
provide the largest decreases of within-group distances when removed from the 
analysis (Methods). Additionally, SR proteins cluster due to mitotic spindle 
organization (GO:0007052) and translation (GO:0006412) while splicing-related 
RBPs functionally cluster primarily due to the HOT RNA enriched term splicing as 
well as telomere capping (GO:0016233). 
 
Comparison of RIP-seq and RNACompete Derived Motifs 

Position specific score matrixes (PSSMs) have been determined by 
RNAcompete, which measures the binding specificity of purified recombinant 
proteins with a pool of randomized RNA, for 50 Drosophila RBPs90, of which 13 
are included in our study. To determine the extent to which RNAcompete PSSMs 
are sufficient to explain interaction strength in S2R+ cells (quantified by negative 
log IDR value), we examined the predictive power (Methods) of the RNAcompete 
motifs, and compared these to motifs derived from our data. We found that in all 
cases the RNAcompete motif alone was not sufficient to predict RIP-seq binding 
patterns. Hence, as has been found in numerous studies of transcription factors 
93,94, the interactions between RBPs and their target RNAs cannot be strongly 
predicted by simply using PSSMs scores derived from in vitro biochemical 
assays.  
 
RIP-seq Derived Motifs Cluster within Functional Groups 

We quantified the similarity of PSSM binding models for our factors using 
Kullback-Leibler divergence95. MDS analysis reveals relationships between 
classes of factors. We note that the spliceosome components and SR proteins 
show the most similar RIP-seq derived motifs, driven primarily by a strong “AGG” 
submotif. This is in contrast to the RNAcompete motifs, which show significant 
differences within these classes. We note as well that for U2AF50 in particular, 
the motif discovered in our experiments diverges significantly from the 
RNAcompete motif. In the case of U2AF50, the differences between our motif 
and the RNAcompete motif may be partly due to the fact that we used only exon 
sequences in our motif discovery. In addition, U2AF50 is known to form a tight 
heterodimer with U2AF38, and interacts with other proteins, which could impact 
the binding specificity of U2AF50 in our RIP-seq experiments. Since the RIP-seq 
derived motifs correspond only to enriched sequence signatures, and may not 
reflect the direct binding specificity of the factors, the few factors for which the 
RIP-seq and RNAcompete motifs strongly differ may be due to the detection of 
sequences associated with other RNA binding proteins or co-factors. 
 
Discussion 

We obtained genome-wide RNA-protein and protein-protein interaction 
profiles for 20 RNA binding proteins. The combined use of next generation 
sequencing and mass spectrometry on a single immunoprecipitates for each 
RBP provided new insights into the composition of ribonucleoprotein complexes 
in metazoans. Validation of RNA-protein interactions by RNA sequencing of 
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RNAi depleted cells demonstrated the functional importance of these complexes 
in splicing regulation. 

We found that strongly bound RNAs included HOT RNAs that interact with 
most of the factors in our study. These included many of the genes encoding 
proteins in the RNAi and NMD pathways, related to neurogenesis, other RNA 
binding and splicing factors, and components of the proteasome. This is 
consistent with previous reports96,97 that genes involved in post-transcriptional 
regulation tend to be regulated post-transcriptionally. Feedback loops are a 
central idea in cellular biology, and it is striking that feedback appears to function 
broadly at the level of an entire regulatory process. Integrative analysis of RBP 
protein and mRNA interaction profiles revealed ubiquitous interactions with 
mRNA and protein products of the same gene. Furthermore, we find that RBPs 
that participate in the same protein complex tend to reciprocally bind the mRNAs 
of their interaction partners. A striking example of this was presented for the 
RBPs that interact with the protein components of the U2 snRNP and the RNAs 
encoding them. Hence, we find that widespread post-transcriptional regulation of 
post-transcriptional regulators may be an emergent property of local cross-
regulation, where RBPs of a complex tend to regulate their interaction partners. 
Similar patterns have been observed among transcription factors acting in the 
same pathway, e.g. global cross-regulation within the gap gene network98. We 
find that protein-interaction-associated post-transcriptional regulation is common, 
and hence constitutes a general layer of feedback in the hierarchy of gene 
regulation. 

The hnRNP/QKR proteins bound a more diverse repertoire of target RNAs 
than other classes of RBP. We found that hnRNP/QKRs in general were strongly 
associated with UCGs, genes with many promoters, alternative splicing events, 
and/or polyadenylation sites. In contrast, SR proteins bound largely overlapping 
sets of post-transcriptional regulators, with few targets bound by only a single 
member of this class. This is consistent with their known biochemical 
redundancy69, but may in principle also reflect complex regulatory programs 
requiring the input of multiple SR factors. We find that the hnRNP Syp mRNA is 
itself a target of QKR58E-1, and reciprocally, SYP binds mRNAs of qkr58E-1, 
and we detected protein-protein interactions between SYP and QKR58E-1. The 
mRNAs of the quaking-related factor held out wings (how) are targets of both 
quaking related factors we surveyed, and HOW is a protein interaction partner of 
SYP. Overall, we find extensive co-regulation and interaction among UCGs and 
the RBPs that target them. 

We found that motifs derived from splicing factors and the EJC component 
UPF1 tend to be found in CDS regions of target mRNAs indicating potential 
binding, while hnRNP/QKRs are enriched in UTRs. While several factors, 
including ELAV, are strongly enriched in 3’ UTRs, we found that other 
hnRNP/QKRs, particularly MSI, show even stronger association with 3’ UTR 
extensions. It was previously reported that ELAV is both necessary and sufficient 
for these extensions to exist at eight genes88, but global binding patterns indicate 
that MSI interacts with the extended 3’ UTRs and may play an important role in 
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some aspect of their biology. Thus, ELAV may modulate the biogenesis of 
extended 3’ UTRs, while MSI binds to the extended UTRs. 

Our data is consistent with the co-localization of mRNAs of RBPs and the 
proteins they encode. Furthermore, these associations between interacting 
proteins and mRNA products from the same genes could be ribosome proximal, 
or ribosome mediated. It could be that the protein complexes studied here 
undergo co-translational assembly. This is also an intriguing possibility. 
Importantly, our assays measure time and space averages across ensembles of 
homogeneous, but not identical or synchronized cells. Hence, while it is clear that 
the proteins co-purify and bind the same RNA targets, it may be that these 
associations occur on different individual RNA molecules that are neither 
spatially nor temporally localized with the proteins they encode. Additional 
assays, particularly high content imaging approaches, will be needed to resolve 
these possibilities, and to elucidate the intriguing biology at the basis of feedback 
in post-transcriptional regulatory networks. 
 
Methods 
 
Sequencing/Mapping 

RNA sequencing libraries were prepared using the Illumina mRNA Sample 
Preparation kits as described by the manufacturer, but both the poly(A) selection 
and RNA fragmentation steps were omitted. Libraries were quantitated on an 
Agilent Bioanalyzer and sequenced on an Illumina HiSeq 2000 to generate 
single-end 50 bp reads. Library preparation and sequencing were completed by 
the Graveley lab and are included here for completeness. Reads were mapped 
to the Drosophila genome using tophat version 1.4.0 guided by the MDv1 
annotation8 with the following settings: --no-novel-juncs, -a 6, -m 2, --min-intron-
length 28, -I 200000, -F 0, -g 1, -x 60 and -n 2. Mapped reads are publicly 
available in the GEO database with accession number GSE37756. 
 
Control Filtering/Validation 

In order to obtain a confident set of control samples each empty vector control 
sample was tested for differentially enriched annotated RNAs versus all other 
empty control samples using the DESeq R package. One empty vector control 
sample produced a significant number (> 50 loci) of differentially enriched RNAs 
and was removed from further analysis, in particular from testing for differentially 
enriched RNAs in samples of interest. Similarly, each non-RBP sample was 
tested for differentially enrichment as compared to both the validated control 
samples as well as non-RBP samples. As each non-RBP experiment was 
conducted in biological replicate these replicates were tested together. None of 
the non-RBP samples produced more than a few (10) significantly bound 
(adjusted p-value < 0.05) RNAs and thus all (5 samples each in biological 
replicate) non-RBP samples were used for testing in the samples of interest. 
 
Sequence-based Transfection Validation 



	
   33	
  

In addition to western gel validation of RBP transfection the following 
sequence based method was applied to all samples. The raw sequence output of 
each experiment was queried for the exact FLAG-HA tag sequence immediately 
adjacent to the RBP of interest. A consensus sequence was created for each 
experiment by anchoring each read at the FLAG-HA tag sequence and recording 
the most frequent base at each position starting adjacent to the tag sequence. 
BLASTN99 was run on the consensus sequence against the drosophila “nr” 
database. All RBP samples of interest presented in this paper were confirmed via 
this method. Five non-RBP samples were used as negative controls as described 
in the previous methods section. 
 
Identification of Differentially Bound RNAs 

In order to confidently identify the differentially captured targets of each RBP 
of interest the following pipeline was implemented. Mapped reads were binned 
into gene counts with the htseq python package script htseq-count with setting 
intersection-strict against most current functionally characterized FlyBase 
annotation r5.5723. The DESeq82 tool (R version 3.0.2 and DESeq version 1.14.0) 
was used as the basis of the pipeline to identify differentially enriched RNAs. We 
note that differentially enriched RNAs have the same sequence signature as 
differential transcription in many extant studies, except that differential binding 
only results in more abundant transcripts. As such loci in which both replicates 
did not show a normalized fold change greater than one were filtered from 
downstream analysis. Also loci that did not show a sequencing depth greater 
than 1 read per kilobase per million mapped reads (RPKM) in the controls or any 
sample were removed from downstream analysis. We note that although some 
RNAs show low expression in the control samples we find significant evidence 
for strong binding at a select few loci (e.g. Ccn) and this does not use a strict 
RPKM cutoff from the controls alone. DESeq is thus an applicable tool in this 
setting after the appropriate filters are applied.  

We note that all biochemical steps for the experiments in this dataset are 
identical aside from the RBP of interest’s RNA is transfected into the cells. Thus 
dispersion estimates at a particular locus are comparable across samples, up to 
sequence depth as required by the DESeq model. To take advantage of this 
replication schema gene level dispersion estimates were computed across all 
samples not being tested as well as controls at each locus for each RBP sample 
of interest (corresponding to the DESeq “per-condition” setting). Differential 
enrichment statistical significance values were then calculated on each biological 
replicate separately, thus producing two p-values for each RBP-RNA 
combination. Only RNAs that showed adjusted p-values less than one in both 
biological replicates as compared to the control samples were considered in 
further analysis. 

In order to identify RNAs that are both strongly and reproducibly bound the 
IDR (R package; version 1.1.1) model83, a copula mixture model, was fit on the 
significance values (across all combinations of valid RBPs and RNAs). The IDR 
method has been extensively applied to assess reproducibility in biological 
experiments84. Note that IDR cutoff values are quite reproducible when fit on 
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each sample individually. Differentially enriched RNAs are defined as those that 
produce a local IDR value of less than 10% (corresponding to <10% chance of 
having resulted from the irreproducible component) as well as a minimal 50% 
increased fold change in both biological replicates.  
 
GO Term Enrichment 
 In order to identify gene ontology (GO) terms that are identified within 
particular groups of genes we compute enrichment p-values for each GO term. 
The enrichment p-value is a hypergeometric p-value for the number of genes 
annotated with a particular GO term within a set of interest compared to all 
expressed genes (defined as in the previous section; at least one sample with 
greater than 1 RPKM). GO terms annotated to less than 5 genes are removed 
from analysis. All reported enrichment p-values are adjusted via the Benjamini, 
Hochberg100 correction to control false discovery rate (FDR). 
 
Global RBP Binding Profile Comparison 

In order to visualize the binding partners, related characteristics of all RBPs 
as well as sequence binding preferences we applied dimension reduction 
techniques. The multi-dimensional scaling (MDS) algorithm101, which minimizes 
the difference between the input distance and the plotted two-dimensional 
representation, was applied to several different definitions of distance based on 
the bound RNAs of each RBP (using the R “cmdscale” function for metric MDS 
and “isoMDS” function for non-metric MDS that is part of the MASS package; 
version 7.3-33). Note that MDS output coordinates are only unique up to 
centering and dilation, thus coordinate values are omitted in plots.  

The first distance is the Jaccard distance, one minus the size of the 
intersection divided by the size of the union, between the set of bound RNAs for 
any two RBPs. Note that non-metric MDS (which optimizes the rank of distances 
as opposed to the true distances) was applied to this distance definition since a 
reasonable fit could not be achieved with metric MDS. The second distance is 
defined on the vector of negative log (base 10) biological GO term enrichment 
values annotated to all bound RNAs. Note that values are capped at 10 to avoid 
outlier enrichment from driving distances. The “functional” distance between any 
two RBPs is defined as the cosine distance between the vectors of GO term 
enrichments for each RBP. The third distance is defined on the motifs discovered 
for each RBP as described in the next section as well as motifs discovered by the 
in vivo method RNAcompete method. In order to assess the distance between 
two motifs we used the Kullback Leibler divergence as has been done in 
previous studies with good success95. We define the distance by the smallest 
divergence between two motifs across all possible offsets requiring that at least 
four overlapping positions. 
 In order to compare relative clustering of RBP classifications we used the 
ratio of mean distances within a class to the mean distances between a class 
and all other RBPs. Thus lower ratios indicate tighter clusters (smaller distances 
within a class of RBPs than between that group and other RBPs). Note that these 
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ratios are computed from the raw distance measures not the Euclidian distances 
from the MDS plots. 
 Specifically for the functional characterization we were interested in the 
GO terms that “drive” the clustering observed for a particular class. In order to 
identify those terms, we leave a single GO term out of the distance calculation 
and calculate the within class versus between class ratio. A positive differential 
with respect to the ratio including all terms indicates that a term causes a group 
to cluster more tightly. Those terms that are more prevalent outside a particular 
class of RBPs than within are removed, as these terms are not indicative of an 
attribute for that class of RBPs. These terms are driving the tighter clustering of a 
class by virtue of existing in all other RBPs. More prevalent is defined as a higher 
mean enrichment value within a class that in all other RBPs. 
 
RBP Motif Discovery 

Given that our differential enrichment analysis pipeline identifies loci, as 
opposed to linear sequences as in similar studies102,103, we have implemented 
the following pipeline in order to identify enriched motifs amongst the bound set 
of transcripts for each RBP in this study. We note that discovery of bound motifs 
in previous studies has proven particularly difficult and cannot be accurately 
obtained using existing software such as HOMER104 that takes linear, 
genomically disjoint sequences or MEME105 that in addition does not take into 
account enrichment, but only presence of a motif within a set of sequences.  

The first step in the algorithm is to represent each locus as a vector of 7-mer 
counts. As the Drosophila melanogaster transcriptome contains a large number 
of alternative events (alternative transcript starts, stop as well as alternative 
splicing events) the set of 7-mers for each locus are defined as all unique 
genomic locations of 7-mers across all transcripts within each gene model. We 
note that we are not performing differential transcript isoform analysis that has 
proven to be a difficult problem to solve9 and thus must take into account all 
annotated transcripts in our motif analysis. Note also that we are removing all 
global low complexity sequences from this analysis. 

For each RBP the total count of each 7-mer across all bound loci is 
computed. Then the hypergeometric p-value for the enrichment of each 7-mer is 
calculated as compared to the background 7-mer totals amongst all expressed 
loci. We note that this distribution does not strictly follow the hypergeometric 
distribution as genes may contain multiple copies of a particular 7-mer, but note 
that randomly selected sets of genes produce reasonably uniform distribution of 
p-values under the hypergeometric model. The set of 7-mers that are significantly 
more enriched in the differentially enriched set of loci than one would expect at 
random are used to create the desired motif. Under the null model, of no 
sequence enrichment, p-values follow a uniform distribution. Thus we have that 
the minimal p-value follows a beta distribution with parameters alpha=1 and 
beta=1/# of 7-mers. We define a cutoff for a significant 7-mer as the one-sided 
1% enrichment p-value of the beta distribution (6.13*10-7). We require that a 
bound set of interest produce greater than ten 7-mers which show significant 
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enrichment (which all of our 20 RBPs do) in order to produce a motif. We only 
take the 50 most enriched 7-mers. 

In order to produce a motif of variable width from the enriched set of 7-
mers we generate a set of sequences with five copies of each 7-mer surrounded 
by ten bases of random sequence, thus approximately following the null 
distribution of the MEME model. This set of sequences is passed to the MEME 
algorithm105 along with weights corresponding to the transformed negative log 
enrichment p-values, thus forcing more enriched 7-mers to drive the motif signal. 
The transformation raises the minimum of the negative log p-value and 200 to 
the 0.75th power and scales these values between 1/50th and 1. The MEME 
algorithm produced a single motif per sample between 3 and 11 bases in width 
and is required to include each sequence in the produced motif (corresponding to 
the “OOPS” setting). The produced motif is taken as the experimentally 
discovered motif (Figure 2.8). A post-hoc filter was applied to trim the motif if less 
than 5% of the total information content lay in the outer-most positions of the 
motif.  
 
Gene Region Motif Enrichment 
 Because the RIP-seq protocol does not include a cross-linking step we are 
able to observe only those transcripts that are differentially bound. In order to 
identify the gene region (i.e. un-translated region; UTR or coding sequence; 
CDS) preferences for each RBP we used the learned motif. First we identified the 
top 0.1% of hits (defined probabilistically by the position specific weight matrix) to 
the Drosophila transcriptome. We then intersected these locations with those 
regions that are only ever observed as a particular gene region (5’ UTR, CDS or 
3’ UTR). Only genes in which each region type composed 2% of the total gene 
length were included. Also genes were required to have at least 20 hits for a 
particular motif to be included in order to remove genes with a small sample of 
motif locations. For these genes we compute a z-score by first computing the 
binomial test p-value, where the test statistic is the fraction of motif hits in a 
region type and the expected fraction is the sequence length for that region type 
over the total gene length. This p-value is transformed to a z-score by taking the 
inverse of the survival function for the Gaussian distribution. 
 
Software Implementation 
 All statistical procedures were completed using the R software program 
(version 3.0.2). Rank sum p-values are computed using the one-sided 
“wilcox.test” function that is part of the stats package. Poisson-binomial p-values 
are computed using the “poibin” package, version 1.2 where the parameters are 
the fraction of expressed genes observed as differentially bound for each RBP. 
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Chapter 3: The Early Response to Ecdysone in 41 
Diverse Drosophila Cell Lines 
 
Preface 

The contents of this chapter are derived from the in submission paper, 
“The Early Response to Ecdysone in 41 Diverse Drosophila Cell Lines” with the 
consent from primary contributing co-authors. The contents presented here 
represent analyses conducted by myself. Specifically, the Cherbas and Cherbas 
labs conducted data producing experiments. The data production methods have 
been omitted from this manuscript and can be found in the above referenced 
paper (available here in pre-print 
http://brownlab.lbl.gov/marcus.stoiber/preprint_manuscripts/). Additionally, 
supplementary tables have been omitted from this manuscript and can be found 
in the above referenced manuscript. 
 
Abstract 
 Endocrine signals transduced by nuclear receptors elicit major cell state 
changes that include cytodifferentiation, profound modulation of immune 
responses, neoplastic growth, and insect metamorphosis. Responses alter gene 
expression and cell types respond differently to a single, common endocrine 
signal. In Drosophila, the molting hormone 20E, ecdysone, directs major 
developmental transitions. Here we survey the early ecdysone responses of 41 
Drosophila cell lines, representing diverse cell states. We observe genes that are 
widespread in their responsiveness, those responding in most lines, and many 
more whose responsiveness is restricted to one or a few lines. Genes in the 
widespread class include those previously identified in ecdysone responses 
studies in few tissues and genetic analyses. Many restricted genes are induced 
in some cell lines, repressed in others and fail to respond in still others. 
Expression of the ecdysone receptor (EcR) expression level predicts both the 
extent and the velocity of the global magnitude of cellular responses, and hence 
EcR titer appears to be rate limiting for ecdysone transduction. Promoter motif 
compositions combined with transcription factor titer provide significant predictive 
power for the identification of restricted responses. We characterize the 
conditional responsiveness for genes with shared promoter architecture and find 
that transcripts initiating from a bidirectional promoter can be independently 
controlled in ecdysone response. These findings provide the basis for decoding 
the specificity of ecdysone responses, and for understanding the pathways of 
type-II nuclear receptors. 
 
Introduction 

In animals, steroid hormones induce development and differentiation, 
regulate immune function and inflammation, modulate cell cycle and 
osmoregulation, and are broadly critical to organismal health. Errors in steroid 
hormone signaling pathways are linked to disease states ranging from 
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oncogenesis to mood disorders. Steroid hormones bind nuclear receptors, which 
are deeply conserved across metazoans106 and share a common structure107: an 
unconserved N-terminal A/B region including a transcriptional activation domain 
(AF-1), followed by a highly conserved 66-68 residue DNA binding domain 
(DBD), a short hinge region, a conserved ligand binding domain (LBD), and 
unconserved sequence of variable extent called the F domain. Receptors 
function by binding to highly conserved response elements (HREs), where they 
act as powerful transcriptional effectors. Early targets of transcriptional regulation 
are known in a variety of cell types in several organisms. Although, the complete 
cell-type-specific genomic response has not been elucidated. 

Binding of the hormone to its nuclear hormone receptor (NHR), activates 
transcription of a limited set of direct target genes including transcription factors 
(TFs). Within hours this generally leads to a secondary response of activation 
and repression of hundreds of downstream genes. These changes activate 
expression of cell-fate-specific structural genes and lead to cellular 
differentiation. In Drosophila, responses to the steroid hormone 20-
hydroxyecdysone (20E, hereafter referred to as ecdysone) provide an excellent 
model for study of regulatory principles108. Ecdysone acts through a type 2 
heterodimeric NHR composed of the products of Ecdysone receptor and 
ultraspiracle (usp) bound to a typical response element (EcRE) at distributed 
sites in the genome109-111. At least one-third of Drosophila genes respond to 
ecdysone signals in some cell at one stage or another (L. Cherbas and P. 
Cherbas, unpublished observations). The number of responders in any one cell 
at any particular stage is much smaller. Because the effects of the hormone are 
global, hormones are distributed throughout the organism by the endocrine 
system, the nature of an individual cell’s stage-specific response varies 
greatly112,113 ecdysone may drive cyto-differentiation or it may drive apoptosis, as 
in most larval tissues at metamorphosis. The wide array of specific cellular 
effects include the modulation of cell cycle114, the induction of apoptosis115,116, 
neurite elongation117. Ecdysone is known to activate and/or repress both protein 
coding and non-coding genes, including microRNAs118,119. 

In the EcR/USP system, only the heterodimer binds ligand111 thus USP is 
an allosteric regulator with respect to ligand binding by EcR. Perhaps related, 
DNA binding modifies ligand binding by the heterodimer120. The “canonical” 
EcRE is an inverted repeat 5’-AGGTCA/TGACCT-3’121, but EcR/USP also binds 
direct repeats and inverted repeats of different spacings122,123. 

Numerous EcR/USP coregulators have been identified. Davis et al.124 
carried out a bioinformatic search looking for potential coregulators based on the 
LXXLL motif common to many hormone receptors. Trithorax-related (TRR) is 
known to interact with EcR/USP and to methylate H3K4125. Cryptocephal 
(Drosophila ATF4) is known to interact directly with isoform B2126, Taiman (TAI) a 
p160 homolog and also Alien co-localize with the receptor122. There is evidence 
implicating the products of Rig, Ash2, βFtz-F1, and the histone chaperone DEK 
as coregulators or critical components of coregulator complexes127-129. 
Drosophila SMRTER (a relative of SMRT and NCoR) is known to be crucial to 
ligand-independent repression. There is ample evidence that remodeling factors 
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including SWI/SNF and the NURF complex interact with EcR/USP and play key 
roles in ecdysone response130-134. There is also evidence that ecdysone induced 
expression is associated with acetylation of H3K23135. 

However, the central question that remains is that of specificity: How are 
responding genes selected from the broad array of potential targets? Few 
genome-wide studies have been conducted of the ecdysone response. Following 
initial work using subsets of genes and microarrays136,137. Gauhar et al.138 
employed low-resolution methods (enzymatic tagging) to provide initial data of 
the receptor binding sites in Kc167 cells and identified ecdysone responsive 
genes. Kellner et al.139 showed that JIL-1 kinase is present at both enhancers 
and promoters of ecdysone induced genes in (Kc167 cells) and argue that it 
phosphorylates nearby histone H3. They find that JIL-1’s presence is required for 
CREB-induced acetylation of H3K27 and is also required for recruitment of the 
14-3-3 scaffold protein that is involved in multi-protein regulation. Shlyueva et 
al140 performed the STARR-seq assay that identifies regions with enhancer 
activity in S2 and OCS cell lines before and 24 hours after ecdysone exposure. 
RNA-seq was performed in S2 cells before and after 24 hours of ecdysone 
exposure. These studies together provide a set of 3,415 ecdysone responsive 
genes from genome-wide ecdysone exposure studies from a small set of two cell 
lines (S2 and Kc) and two organ cultures (salivary gland and third instar larvae 
organs). 

We performed a survey of the early transcriptional responses in 41 
Drosophila cell lines to ecdysone transduction to identify responsive genes in a 
diverse set of cell types representing embryonic, larval, and adult tissues, and 
including the female germ line. We find that the extent of the transcriptional 
response – the number of genes induced at five hours, is highly correlated with 
the steady-state expression level of EcR, and not usp or any other TF, 
suggesting that the EcR expression level is rate-limiting in the early cellular 
response. The set of responsive genes differs substantially between cell lines: 
most genes are induced in only a few cell lines. Responsive genes cluster in 
neighborhoods, and tandem arrays of genes on the same strand are more likely 
to be jointly induced than pairs of genes transcribed from bidirectional promoters. 
Lastly, we identify a network of TFs that explains much of the restricted ecdysone 
responses, and sets the stage for subsequent, hypothesis based ‘omics 
interrogation of this model steroid hormone. 
 
Results 
 
Overview of Study Design 
 RNA samples were collected from 41 cell lines (Table 3.1) immediately 
before and at a five hour exposure to ecdysone (20E) at a biologically relevant 
concentration of 10-6 M. Transcription levels were measured by single-end 
poly(A)+ RNA-sequencing with 100 base pair (bp) reads. For four of the cell 
lines, CCa, Kc, MCW12 and BG3-c2, duplicate samples were collected in order  
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Cell Line Short Name Origin 
In 25 Cell Line 

Paper1 
Extended 

Time Course 
1182-4H 1182-4H embryonic – hapl.     
CCa Cca embryonic     
CME L1 L1 v. prothoracic d.     
CME W1 CL8+ Cl.8 d. mesothoracic d.     
CME W2 W2 d. mesothoracic d.     
D1 D1 embryonic     
DX DX embryonic     
E-CS E-CS embryonic     
E-OR E-OR embryonic     
G1 G1 embryonic     
G2 G2 embryonic     
GM2 GM2 embryonic     
GM3 GM3 embryonic     
Jupiter Jupiter embryonic     
Kc167 Kc embryonic     
mbn2 mbn2 larval circ. system     
MCW12 MCW12 d. mesothoracic d.     
ML83-26 83-26 embryonic     
ML-DmBG1-c1 BG1-c1 CNS     
ML-DmBG2c2 BG2-c2 CNS     
ML-DmBG3-c2 BG3-c2 CNS     
ML-DmD1-c4 D1-c4 d. mesothoracic d.     
ML-DmD11 D11 eye-ant. d.     
ML-DmD17-c3 D17-c3 d. metathoracic d.     
ML-DmD20-c5 D20-c5 ant. d.     
ML-DmD21 D21 d. mesothoraic d.     
ML-DmD23-c4 D23-c4 d. mesothoracic d.     
ML-DmD4-c1 D4-c1 imaginal d.     
ML-DmD8 D8 d. mesothoracic d.     
ML-DmD9 D9 d. mesothoracic d.     
OSS OSS ovary -- somatic     
PR-8 PR-8 embryonic     
Pten X Pten X embryonic     
Ras[v12];wts[RNAi] Ras-wts:RNAi embryonic     
Ras[v12]-H3 Ras-H3 embryonic     
Ras[v12]-H7 Ras-H7 embryonic     
Rumi[26]Ras[v12]-4 Rumi-Ras embryonic     
S1 S1 embryonic     
S2-DRSC S2-DRSC embryonic     
S3 S3 embryonic     
Sg4 Sg4 embryonic     

Table 3.1 41 Cell Lines 
Table includes the official cell line names, short names used throughout this paper, the tissue/stage of 
origin, whether the cell line was included in the 25 cell lines analysis paper1 and if the cell line is included 
in the time course studied here. 
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to estimate the biological variation present in this system. Samples were taken 
from a time course of exposure at one, three, five and seven hours of exposure 
to ecdysone for three cell lines, Kc, BG3-c2 and S2-DRSC. Data for nine cell 
lines was biologically replicated in triplicate on microarrays. 
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Figure 3.1 Cell Line Responses: Breadth and Similarity 
Using the thresholds defined in the text the inductive (a) and repressive (b) response within each cell line 
is represented. The red shaded bars represent widespread genes, responsive in greater than half of cell 
lines, and black shaded bars indicate restricted response genes, responsive in less than half of cell lines, 
as noted in the legend. Main histograms show the response of each cell line, ordered by total number of 
responsive genes E-OR, Ras-H3, D11, BG3-c2, D23-c4, D21, D8, MCW12, Sg4, S3, ML83-26, PR-8, 
D4-c1, D20-c5, G1, Rumi-Ras, Pten X, Jupiter, Ras-H7, GM3, D1-c4, 1182-4H, S2-DRSC, S1, CCa, W2, 
L1, D9, E-CS, DX, Cl.8, Kc, mbn2, BG1-c1, GM2, OSS, D1, D17-c3, BG2-c2, G2, Ras-wts:RNAi. Inset 
histograms show the total number of responsive genes by the number of cell lines responding. C. Cell 
line similarity, as measured by the Jaccard similarity (size of the intersection of responsive genes divided 
by the size of the union) within the restricted response, is used to cluster the cell lines as shown in the 
dendrogram on the left. Repressive (lower left) and inductive (upper right) response similarity 
corresponds to the scale indicated in the lower right. Stacked barplots are the same as those in Figure 
3.11a and 3.1b, reordered by the dendrogram 
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 Gene and exon level transcriptional quantifications were assessed using 
the FlyBase r5.57 annotation. Differential expression calculations were carried 
out using the DESeq82 R package (Methods). Significantly induced or repressed 
genes were identified by applying a biological relevance fold change threshold of 
two and a statistical significance threshold of 0.01 differential expression 
adjusted p-value. A relaxed statistical significance threshold of 0.01 unadjusted 
p-value is applied for genes that show strongly significant tendency for induction 
or repression across many cell lines (Fisher’s method p-value < 10-8, Methods). 

As reported previously1, cell lines are remarkably transcriptionally diverse, 
though not necessarily representative of in vivo transcriptional diversity. This 
study includes 21 cell lines with previously characterized transcriptomes1. 
Greater than 70% of all Drosophila genes (11,884) are detectibly expressed at 
RPKM (reads per kilobase per million mapped reads) greater than one prior to 
ecdysone exposure. Of those, 5,846 are constitutively expressed in all cell lines, 
while 1,459 are expressed in only a single cell line. The number of expressed 
transcription factors (TFs) per cell line ranges from 406 to 450, and 595 (85% of 
all TFs in fly141) are expressed in at least one cell line. After ecdysone exposure, 
an additional 305 genes are expressed that were not basally detectable (at one 
BPKM) in any cell line, and 360 genes are constitutively inactivated (expressed 
at greater than one BPKM in at least one cell line before and exposure and none 
after exposure). We define genes with significant responses in more than half of 
the cell lines as “widespread”, and others as “restricted”. The vast majority of 
restricted genes are expressed in only a few cell lines; only 100 genes fall into 
the widespread class (Figure 3.1a-b). Indeed, few pairs of cell lines overlap in 
their restricted responses by more than 20% (Figure 3.1c). Therefore this in vitro 
system provides the opportunity to study diverse and distinct ecdysone response 
dynamics as a function of initial cell states. 
 
The Ecdysone Responsive Transcriptome 

A total of 1,645 genes are significantly transcriptionally responsive in at 
least one cell line. Fifty-nine TFs are induced in response to ecdysone, and 35 of 
these are responsive in five or fewer cell lines. Several of these are known 
ecdysone responsive TFs, while many are newly identified and point to new 
hormone-responsive pathways. Among responsive genes, the most strongly 

  
Fold Change Threshold 

 
 log2(1.2) log2(1.5) log2(1.66) 1 log2(2.5) log2(3) log2(4) 

P-
Va

lu
e 

Th
re

sh
ol

d 0.001 0.9862 0.9862 0.9862 0.9889 0.9938 0.9900 0.9714 
0.0025 0.9916 0.9916 0.9916 0.9954 0.9954 0.9898 0.9684 
0.005 0.9938 0.9938 0.9938 0.9985 0.9955 0.9885 0.9665 
0.01 0.9950 0.9950 0.9960 1.0000 0.9949 0.9875 0.9659 

0.025 0.9929 0.9929 0.9966 0.9978 0.9922 0.9862 0.9633 
0.05 0.9915 0.9934 0.9960 0.9949 0.9890 0.9846 0.9633 
0.1 0.9899 0.9923 0.9913 0.9841 0.9834 0.9809 0.9629 

Table 3.2 Responsive Gene Count Robustness to Thresholds 
Table shows Pearson correlations between count of responsive genes with chosen thresholds and a 
wide range of biologically applicable fold change values and statistically meaningful significance values. 
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enriched GO term is "imaginal disc-derived wing morphogenesis" (adj. p-value < 
0.001). When induced and repressed genes are analyzed separately, the GO 
terms “protein catabolic process”, “salivary gland autophagic cell death” and 
“axon guidance” are enriched among induced genes, and “mesoderm 
development” among the repressed.  

Figure 3.2 Genomic Locations of Differentially Expressed Genes 
Each panel represents the ecdysone responsive behavior for a cell line (ordered by the total number of 
responsive genes). The genomic position is represented on the radial axis. The magnitude and direction 
of response, as measured by the negative log10 of the differential expression p-value times the direction 
of response, is represented on the polar axis. Red and blue points are significantly repressed and 
induced, respectively, in response to ecdysone 
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It is well known that some tissues and cell types are more responsive to 
ecdysone than others. We measure the responsiveness of a cell line as the count 
of genes significantly induced or repressed five hours after induction, and refer to 
this as the Responsive Gene Count (RGC). While RGC is threshold-dependent, 
the rank-order of cellular responsiveness is well preserved across a broad range 
of biologically and statistically meaningful parameterizations (Methods; Table 
3.2). The RGC varies by two orders of magnitude across cell lines and is driven 
by responsive genes with highly restricted expression patterns (Figure 3.1 and 
3.2).  

The RGC does not correlate with the count of basally expressed TFs (r ~ -
0.04, p = 0.85) and correlates only weakly with the total number of genes 
expressed per cell line (r ~ -0.35, p = 0.03). We assessed association of the RGC 
with the basal expression level of each gene in the genome in a multiple testing 
setting (Methods). Among all genes, the expression level of EcR is by far the 
most strongly correlated with RGC (r ~ 0.71, FDR < 0.001, minimum FDR for 
other genes > 0.03). We further assessed this observation within both induced 
and repressed genes (Figure 3.3) and find that EcR expression level is strongly 
correlated with both. In fact, EcR is the only gene highly statistically significantly 
(p-value < 0.01) correlated with the number of both induced and repressed genes 
(EcR FDR < 0.001, minimum FDR for other genes > 0.02). The EcR heterodimer 
partner, usp, exhibits weak correlation with RGC (r > 0.35, FDR > 0.9; Figure 
3.3). 

The residuals left after correcting for the effect of EcR expression level on 
RGC, as well as on the counts of induced and repressed genes (separately) 
show little correlation with any gene (maximal correlation < 0.61; minimum FDR > 

EcR usp
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Figure 3.3 Ecdysone Receptor Expression Correlations 
A. Scatter plots comparing the global number of induced (upper panels) and  repressed (lower panel) 
genes with the normalized expression of the canonical ecdysone heterodimer receptor (EcR and usp 
panels). B. Barplots showing the correlation of normalized expression with number of induced or 
repressed genes for the genes with 20 highest correlations. EcR shows the highest correlation for both 
induced and repressed genes 
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0.6). Taken together, these results indicate that EcR titer is rate limiting for the 
transcriptional response to ecdysone. 
 
Correspondence with Previous Studies 

We reviewed existing literature on genome-wide transcriptional responses 
to ecdysone and found that 3,415 genes (1,755 induced and 1,800 repressed) 
have been identified as ecdysone-responsive. Of these, we observe only 730 
among our 1,645 (overlap significance, hypergeometric p-value < 10-100). Our set 
corresponds most similarly with the study from Shlyueva et al.140, which also 
collected RNA-seq data from S2 cells (although a different isolate) collected 
before and 24 hours after ecdysone exposure. We find that 70% of genes 
induced in more than half of the cell lines surveyed are also reported induced in 
Shlyueva et al. We see minimal correspondence with samples taken from organ 
cultures, which conflate the responses of many distinct cell types. 
 
Widespread Response to Ecdysone 

The 100 genes with widespread responses include 68 induced and 32 
repressed in more than half of our cell lines. Five genes, Hr4, Hormone receptor-
like in 46 (Hr46), Ecdysone-induced protein 75B (Eip75B), CG44004 and bip1, 
are induced in all 41 cell lines. All five have been previously identified in other 
genome-wide surveys of ecdysone exposure response136-138,140. There are no 
genes repressed in all cell lines, with fruitless (fru) being the most constitutively 
repressed in 33 of the 41 cell lines. More broadly, widespread induced genes are 
significantly enriched for biological GO terms “metamorphosis,” “salivary gland 
cell autophagic cell death” and “steroid hormone mediated signaling” (p-value < 
0.001), as expected, since the majority of these genes have been previously 
reported in other studies of ecdysone response. I note that these genes may not 
respond in the different transcriptional and chromosomal landscapes of all 
tissues and developmental stages, but these observations suggest that their 
responses are global in Drosophila cells. 

The promoter regions of widespread induced genes, defined as 500 bp 
upstream of each TSS, are 36% enriched over background for the EcRE motif (p-
value < 0.02) representing the most significantly enriched of all known motifs in 
the HOMER library104 (Methods). 

Notably, 11 widespread induced genes lack GO annotations, and these 
include four long non-coding RNA (lncRNA) genes, CR43432, CR43626, 
CR45391 and CR45424. These lncRNAs are each expressed in the salivary 
gland and fat body and at low levels in most other tissues. Only CR43432 is 
expressed at high levels during development, with maximal expression (>100 
RPKM) in the 4-14 hour embryos. This is in contrast to the majority of lncRNAs in 
Drosophila (and indeed mammals), which are expressed predominantly in 
tissues of the nervous system and the gonads7,21. Notably, this lncRNA is 
induced at levels comparable the well-known response polished rice, which 
encodes short (11 aa) peptides critical for ecdysone transduction in the 
epidermis142. CR43432 encodes three short, ultra-conserved ORFs, and hence 
constitutes a candidate protein-coding gene.     
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The set of widespread repressed genes is much smaller than the set of 
induced genes, as is the overall repressive response in most cell lines. There are 
no statistically enriched GO terms among this set of genes. 

 
Diversity of the Ecdysone Response: The Restricted Set 

We find that 93% (a total of 863) of induced genes and 96% (a total of 
765) of repressed genes are significantly ecdysone responsive in fewer than half 
our cell lines. These restricted responses form the molecular basis of the diverse 
transcriptional and physiological effects that the ecdysone hormone induces 
throughout developmental and within distinct cell types. A total of 400 and 241 
genes are induced and repressed respectively in exactly one cell line, with a 
large fraction (31%) responding only in the Ras-H3 cell line, an outlier in this 
study (Methods). 

Eighty-three genes are significantly induced in some cell lines and 
significantly repressed in others. Sixteen are induced and repressed in at least 
two cell lines. One striking example is the TF, CG9932, which is significantly 
induced in five cell lines and significantly repressed in six. CG9932 is 
differentially expressed across development with peaks at 20 hours and late L3 
stage and shows strong expression in embryonic fat body and salivary glands. It 
is likely that some promoters respond in distinct directions based on prior 
epigenetic state. This phenomenon has also been noted in mammalian response 
to glucocorticoids143.  

The restricted set includes genes that respond weakly in several cell lines. 
Some of these genes do not pass our statistical criteria in any single sample, but 
by aggregating information across cell lines we obtain sufficient power to 
confidently annotate weak, reproducible induction or repression (Methods). A 
total of 635 genes, 335 induced and 300 repressed, of this type are present 
genome-wide. Weakly induced genes are strongly enriched for GO terms 
including “protein binding”, "vesicle-mediated transport" and "macroautophagy" 
and weakly repressed genes are enriched for "rRNA processing" and "calmodulin 
binding". Weakly induced genes are found within 2.5 kb of a significantly induced 
gene more often than expected by chance (84% enrichment, binomial p-value 
<10-5). This pattern does not hold for weakly repressed genes. 
 
Responsive-Proximal Genes Tend to Respond Similarly 

The proximity of weakly induced to strongly induced genes indicates that 
local genome architecture may play a role in ecdysone response. To explore the 
effects of proximity, we modeled the average fraction of neighboring responsive 
genes (as well as the direction of response) as a function of genomic distance 
(Figure 3.4a, raw data shown in Figure 3.5). Additionally, we stratified these 
proximity relationships based on the positional relationships of gene-pairs, i.e. 
upstream versus downstream and same versus opposite strand (Methods). We 
then smooth these values to produce an interpretable plot of the average effect 
of local genome architecture on neighborhoods including genes that respond to 
ecdysone. 
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We find that genes proximal to responsive genes tend to be responsive (p-
value < 10-15; sample t-test against median for genes between 10 kb and 20 kb) 
and additionally they tend to respond in the same direction (p-value < 10-100 
induced and p-value < 10-19 repressed; one-sample t-test). The response of 
opposite-strand gene pairs (bidirectional and convergent) is less coordinated 
than genes with operon-type architecture (same strand pairs, p-value < 10-10). 
One striking example of a divergently responsive bidirectional pair is Piezo and 
CG8498. The TSSs of these genes are separated by only 655 bps (Figure 3.4b) 
and the responses in most cell lines are strong and in opposite directions. 
CG8498 is a widespread induced gene with 38 cell lines responding significantly 

Figure 3.4 Genomic Positional Dependence of Ecdysone Response 
A. Each line represents the smoothed either fraction of responsive genes (upper panel) or response 
direction (lower panel). Response direction is measured by the mean of the magnitude and direction of 
response for genes within a moving window across genomic position. Genes within 20 kbp of a 
significantly responsive gene contribute to smoothed lines grouped by their genomic positional relation, 
see key. Red and black lines summarize genes proximal to a repressed or induced gene respectively. In 
the first panel the blue line represents the genome-wide average as measured by the 10kb to 20kb 
proximal region. B. The CG8498 and Piezo locus is an example of divergent promoters responding in 
opposing directions. This exemplifies the trend shown in Figure 3.4a where divergent promoters do not 
tend as strongly to respond consistently. Note that since CG8498 and Piezo are expressed at different 
levels, the maximal height to the left of the vertical dashed line is 1000 BPKM and the maximal height to 
the left is 75 BPKM. C. The CG43389 and CR43626 locus is an example of “operon-type” promoter 
structured genes responding in the same direction. This exemplifies the trend shown in Figure 3.4a 
where “operon-type” promoters tend to respond consistently, particularly for induced genes 
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and all but two cell lines showing repression of Piezo. One example of co-
responsive genes in an operon-type configuration is the pair CG43389 and the 
non-coding gene CR43626, which are significantly induced in 32 and 35 cell lines 
respectively (Figure 3.4c).  

Taken together, these results indicate that response to ecdysone may 
involve or depend upon local chromatin organization or modification. Indeed, the 
bromodomain protein toutatis (tou), a gene involved in chromatin remodeling144, 
is strongly induced in 15 cell lines. Both an acetyllysine binding domain 
(bromodomain) and a methyl-CpG binding domain exist in tou, a BAZ 
(bromodomain adjacent to zinc finger) protein. As a class, these genes appear to 
be involved in the integration of information encoded in DNA methylation and 
post-translational histone modifications145. The involvement of acetyllysine 
binding factors is consistent with previous reports demonstrating that ecdysone 
transduction impacts H3K23 acytelation135. 
 
Exon Level Analysis 

Along with gene level events the induction and repression of specific 
exons, predominantly promoter switching events, has been previously 
reported140. The widespread responsive gene Eip75B shows the strongest exon 
level event in the genome across all cell lines (p-value < 10-100), consistent with 
previous reports140,146. In total 35 genes show significant exon level induction 
events and 31 genes show significant repression events (thresholds: adj. p-value 
< 0.01 and 50% fold change). Six genes, including Eip75B show significant 
induced and repressed exons representing promoter-switching events. 

Figure 3.5 Raw Genomic Positional Dependence Data 
Each point represents the response, as measured by the transformed p-value; that is the negative log 10 
of the DESeq p-value times the sign of the log 2 fold change, of a gene proximal to a significantly 
responsive gene. Genes proximal to significantly induced gene are shown on the left and genes near 
repressed genes are shown on the right. The facets show the responses grouped by promoter 
architecture (upstream vs. downstream and same versus opposite strand). The data from each panel is 
used to produce each line in Figure 3.4a 
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Ecdysone Receptor Isoforms 

Cherbas et al.147 
demonstrated that the alternative 
EcR isoforms (EcR-A, consisting 
of transcripts A, D and E and 
EcR-B1/2, consisting of 
transcripts B, C and G) play 
important roles in development. 
Gonsalves et al.137 showed that 
EcR isoforms are differentially 
expressed between Kc cells and 
salivary gland cells, indicating 
that alternate EcR isoforms elicit 
different transcriptional 
responses. Cell lines in this study 
show a wide range of EcR 
isoform expression. The length 

normalized fraction of the EcR-B1/2 isoform expression (Methods) ranges from 
0.31 (BG3-c2 cell line) to 1 (S2 cell line) with most cell lines expressing 
predominantly the EcR-B1/2 isoform. We do not see strong correlation to the 
total number of induced or repressed genes, or the residuals after correcting for 
the main EcR expression effect, but we do observe strong correlation between 
the EcR-B1/2 isoform fraction and the expression of many individual genes. The 
most significantly correlated genes are gliolectin (glec), squeeze (sqz), CG5059, 
Eip55E and broad (br). Only glec and Xbp1 show increased expression with 
increased EcR-A isoform levels amongst the top 10 most correlated, consistent 
with a predominantly repressive role for EcR-A (Wilcox rank-sum p-value < 10-

10). Of the highly correlated genes, the TF br shows the largest dynamic range 
(two orders of magnitude); twenty-three cell lines show significant induction and 
one, BG3-c2, shows significant repression (Figure 3.6).  
 
Transcription Factor Expression Predicts Restricted Responses 
  While the global level of responsiveness (RGC) is well characterized by 
EcR titer, other effects are clearly at work producing diverse restricted 
responses. TFs are likely candidate EcR cooperative factors. We developed a 
statistical machine-learning model aimed at identifying these factors: we used 
basal expression levels and TF binding motifs to predict restricted responses. 
Specifically, we used normalized TF expression levels as our covariates, and a 
TF’s expression level to affect the prediction of a gene’s response if (and only if) 
we observe an instance of the cognate binding motif in the gene’s promoter 
(Methods). We also supplied the model with information about the basal 
expression level of each gene since genes with low expression are intuitively less 
likely to be repressed, and genes expressed at high levels are less likely to be 
induced by orders of magnitude.   

Figure 3.6 Ecdysone Receptor Isoform Correlation 
Scatter plot of showing the correlation between EcR 
isoform expression ratio and the log2 fold change of 
expression broad upon ecdysone exposure. Broad 
response shows the largest dynamic range amongst the 
genes with the highest correlation to EcR isoform ratio 
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We fit models for induction and repression. The inductive model will be 
explained here, as the construction is analogous for the repressive model. We 
construct mutually exclusive training and test sets by selecting gene-cell line 
pairs, as follows. First, we select a gene with an induced, restricted expression 
pattern. Then we identify the subset of cell lines in which it is responsive. These 
data points are gene-cell line pairs, and will enter either the training or the test 
set. For the same gene, we select an equal number of cell lines with the most 
opposed responses. This means that if a given gene is induced in five cell lines 
and repressed in twelve, data points corresponding induction levels in the five 
induced and also the five most repressed cell lines will enter either our training or 
test sets. We fit the model to predict which gene-cell line pairs correspond to 
inductive versus repressive responses, and test on held-out data. A notable 

Figure 3.7 Graphical Abstract of Restricted Set Response Prediction 
A. Transcription factor expression levels (left bar plots) combined with known binding motif preference 
(green arrows indicate promoter motif match) are used to predict whether a cell line is significantly 
induced (blue bars) or most repressed/lowest fold change (red bars) at a locus for genes in the induced 
restricted set and similarly for the repressed restricted set. Random forests are trained and used to 
predict response direction on either left out sets of cell lines or left out sets of genes. B. Scatterplots 
showing predictive power when cell lines are left out as a test set for the matched inductive (left panel) 
and the matched repressive response (right panel). The x-axis indicates the number of cell lines included 
in the sub-sampled data (note that points are randomly shifted in the x-direction for visual clarity) and the 
y-axis indicates the average predictive accuracy when each cell line in the sample is left out as test set. 
Fitted lines in red show average predictive accuracy. Fitted horizontal asymptotes (dashed lines), 
representing the average predictive accuracy with infinite cell lines available to predict the response of 
an unseen cell line, are 0.74 for the matched inductive response and 0.79 for the matched repressive 
response 
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feature of our modeling strategy is that we hold out entire cell lines, so when we 
assess our models predictive performance, it is assessed on cell lines it has not 
previously seen. This ensures that the rules we learn about ecdysone response 
are generalizable. We find a predictive accuracy on held-out cell lines of 61% 
and 64% for induced and repressed genes respectively, indicating that we have 
weak, but significant (binomial p-value < 10-15) power to predict the direction of a 
gene’s response.   

We used feature selection to compute the relative importance of each 
covariate in our model (Methods). Our measure of importance for a given 
covariate is the average percent loss of predictive accuracy when the values of 
the covariate are randomly permuted (as described,148). We find that, for models 
of both induction and repression, the rank of basal gene expression level is the 
most important covariate. This variable importance may be due to the biological 
inability to suppress a gene that is already not expressed or to increase the 
expression of a gene already highly expressed. I note that this observation may 
be a statistical detection artifact, but may also represent true biological insight 
(i.e. the response to ecdysone must achieve a certain level of expression as 
opposed to a particular fold change). For the repression model, we see that gene 
rank is 2.5 times more important than the most important TF. In the induction 
model, the gene rank is only 1.3 times more important. However, in both models 
a number of TFs are also statistically significantly important for the prediction 
problem. Several of the most important TFs have known roles in ecdysone 
response, including br and Eip74EF. TFs not previously implicated in ecdysone 
are also important in both prediction problems, including longitudinals lacking 
(lola) and Chorion factor 2 (Cf2). We note nearly all covariates have positive 
importance values in both prediction problems, indicating that the cooperation of 
many factors may be involved in the restricted responses.  

This approach also enables us to assess the power of transcriptional data 
along with promoter and TF binding site information for elucidating the basis of 
hormone responses. We fit and assessed this model successively using different 
numbers of cell lines, between four and forty. For each count of cell lines, we 
randomly selected (with replacement) 1000 training/test set combinations (Figure 
3.7). For small numbers of cell lines, the model does worse than random 
guessing in the test set, and this is not surprising: the responsiveness defined as 
the RGC of cell lines varies by two orders of magnitude – hence small subsets of 
cell lines provide poor generalizability. In particular, the marginal distribution of 
induction versus repression is, on average, substantially different between the 
training and test set for small sample sizes. For larger samples, as above, we 
find that the average accuracy reaches 61% for the induced genes and 64% for 
the repressed genes. We extrapolate from this a theoretical maximal accuracy 
(asymptote) for identifying the response of an unseen cell line of 74% and 79% 
(respectively) given an infinite number of cell lines in the training set (Methods). I 
note that an alternative model comprised of only transcriptional data may provide 
increased predictive power. 
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Dynamics of Extended Temporal Response 
In addition to the response detected at the five hour time point, we 

explored the response to ecdysone for an extended temporal range, including 
one, three, five and seven hours after exposure for three cell lines, BG3-c2, Kc 
and S2. We normalized responses, setting the basal expression level of each 
gene to zero, and then quantified changes at subsequent time points in multiples 
of fitted standard deviations (Methods). This intuitive representation captures 
much of the same information as z-scores, and has the advantage that each 
gene is set to the same (zero) value in basal conditions. We used this 
representation to identify structures in both the scales and directionalities of 
temporal responses (Figure 3.8).  

Among genes that show significant induction in all three cell lines, genes 
in the BG3-c2 cell line respond systematically more rapidly. Expression levels in 
this cell line also quench (level off) more quickly than in S2 and Kc, which show 
steadily rising expression through all seven hours.  

There are 15 genes that are responsive at five hours after induction only in 
Kc and S2 cells, and these show a strong and consistent expression pattern in 
the BG3-c2 time course: they are responsive at one hour, and then reduce 
expression level at each time-point thereafter. Six of these 15 genes are 
widespread responsive (p-value < 1e-10), including br and Eip71CD. The rapid (at 
1 hour) induction of these genes indicates that BG3-c2 is in a more ecdysone 
sensitive basal state. Notably, the total responsiveness of these three cell lines 
differs substantially: the RGC value for BG3-c2 cells is more than twice that of S2 
or Kc cells. Taken together, these data indicate that the observed increased 
responsiveness of BG3-c2 cells at five hours may be due to an accelerated 
ecdysone response relative to other cells.  
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Figure 3.8 Extended Time Course. Four panels show normalized expression (Methods) over an 
extended time course of zero, one, three, five and seven hours for subsets of genes identified as 
significantly ecdysone responsive in the zero to five hour analysis for these three cell lines. The left 
panels show the median normalized expression at each time point and the right panels show the full set 
of normalized expression values at each time point 
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Discussion 
 The overall responsiveness of a cell line to ecdysone induction correlates 
strongly with EcR mRNA titer. This suggests that the availability of ECR, not USP 
or other factors, is the primary rate-limiting step in the ecdysone response. 
Furthermore, the EcRE is enriched in the promoters of genes in the widespread, 
but not the restricted class. Widespread genes are predominantly immediate and 
direct targets of the EcR complex and we provide strong evidence that the 
response of restricted genes is conditionally dependent on additional factors. 
Additionally, EcR isoform titer is a powerful predictor of response direction and 
magnitude for several genes. Among these, the TF br exhibits the largest 
dynamic ecdysone response range (three orders of magnitude), suggesting 
strong dependence on ECR isoform as well as net titer.  

The expression of restricted genes correlates significantly with predictors 
based on TFs together with their discovered sequence specific motifs. In 
particular, br and lola, are strong predictors of restricted responses across all 41 
cell lines. We estimate that more than a hundred TFs are needed to achieve 
maximal predictive accuracy indicating that the interaction of many TFs and co-
factors convey divergent gene responses. 

The organization of responsive genes in the genome supports the idea that 
epigenetic state, including chromatin context may be important: weakly 
responsive genes tend to be near more significantly responsive genes in 
“responsive neighborhoods”. These neighborhoods may be sensitized to 
induction or repression via chromatin modifications, e.g. the generation of 
docking sites for chromatin-binding transcriptional co-factors. Responsive 
neighborhoods tend to be organized in an “operon” configuration, meaning that 
neighboring genes transcribed on the same strand tend to be induced or 
repressed together, with the upstream gene tending to respond more strongly 
than the downstream neighbor. This is remarkable, since genes transcribed from 
bidirectional promoters are often under independent control, indicating that the 
spatial resolution of ecdysone transduction along the genome is on the order of 
hundreds of base pairs. Ecdysone induction spreads directionally along the 
genome, in the direction of transcription, suggesting a role for Pol2-associated 
chromatin modifications. Furthermore, the widespread and early induction of 
chromatin remodeling factors like tou supports the idea that the secondary 
targets may be determined in part by chromatin remodeling, and that co-factors, 
in addition to TFs, play essential roles in specifying cellular responses. 
 Extended time courses with additional early and late time points revealed 
that the less responsive cell lines may simply be responding more slowly, where 
EcR titer determines not only the extent of the response but also the timing. Our 
data are consistent with a kinetic model of transduction, which would predict that 
the widespread response constitutes the primary and broadly conserved targets 
of EcR, and that the timing of the onset of secondary inductions alters the 
trajectory of cell fate and specifies much of the restricted responses. Assessing 
this possibility will require perturbation experiments where the EcR titer is 
manipulated and time courses are taken at finer resolution. 
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 We have produced the most expansive transcriptional ecdysone-response 
atlas of distinct cell states to date. These data point towards the molecular basis 
of the diverse responses of Drosophila cells to ecdysone. It is clear that 
transcriptional data as analyzed by our model will not fully elucidate the 
transduction of this model steroid: even given sequencing of every cell in the fly, 
it is unlikely that we could exceed 79% accuracy in our in silico model of 
response based on our analysis of the asymptotics of our predictive power. This 
is not surprising; we are missing information about enhancers, chromatin state, 
and the 3D structure of the nucleus. Recent studies of ECR binding patterns 
reveal that only 30% of binding sites are promoter-proximal140. Though an 
alternative model including only transcriptional information may provide greater 
predictive accuracy, we postulate that a minimally sufficient dataset that could 
fully elucidate the molecular machinery of the ecdysone response will include in 
vivo binding site maps for relevant transcription factors, extensive chromatin 
state profiling, enhancer activity data and structural information. Furthermore, 
since chromatin-binding co-factors are as yet largely unknown, a second round of 
primary data production will likely be needed to identify specific actuators once 
an initial integrative model has been formed. Early responders also include RNA 
binding proteins and many small RNAs. Understanding secondary effects will 
require models of post-transcriptional regulation. Additionally, multi-cellular 
effects, including auxiliary cell-cell signaling and mechanotransduction across 
fields of cells in tissues may play essential roles, and these will likely be missed 
ex vivo.  
         It is important to recall that the large number of ecdysone-responsive 
genes in each cell line is in apparent contrast to the results of genetic interaction 
experiments (147 and unpublished observations), which suggest that the primary 
ecdysone response in individual tissues is controlled by a relatively small number 
of critical genes. The latter hypothesis is based on genetic experiments, which 
show that each ecdysone receptor isoform, as well as many co-regulators, are 
required in only a few tissues. While it is possible that cell lines are aberrant in 
displaying rapid ecdysone regulation of a large number of genes, studies of 
primary organ cultures137 and whole animals136 support the notion that very large 
numbers of genes are ecdysone-responsive. It may be that most ecdysone-
responsive genes are not “critical” to the cell’s response, in the sense that their 
response is not required for the cell to achieve its developmental fate. Such a 
phenomenon would be expected if homeostatic mechanisms buffer the effects of 
most fluctuations in transcription, as has been described for the very well-studied 
folate cycle of vertebrates, where biochemistry and mathematical modeling 
indicates that most components of the pathway are remarkably insensitive to 
variations in the level of individual enzymes and substrates149. Thus a change in 
the level of a particular transcript may be critical for the developmental response 
of a cell to ecdysone or may have no detectable consequences for the 
physiology of the cell; functional studies are required to distinguish these 
possibilities for any given gene. 

It may also be that, if the response of a particular gene is critical in one 
tissue, and merely not harmful in another, that gene may show a strong 
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ecdysone response in cells for which the response is of little or no physiological 
significance. We find only a few genes with promoters that are both inducible and 
repressible via ecdysone, indicating that the evolution of this plasticity may be 
difficult. We must also consider the possibility that some ecdysone responses are 
accidental in the sense that the receptor binds (directly or indirectly) to a 
promoter or enhancer sequence that evolved for other purposes. Or, 
alternatively, as is indicated by the co-responsiveness of proximal genes 
transcribed on the same strand, that local chromatin modifications needed to 
active a target gene have off-target effects in the genomic neighborhood. A 
response that is physiologically unnecessary but not harmful will be maintained if 
the components of the response are needed for other purposes. 

This survey provides a foundation for understanding the context 
dependence of steroid hormone signaling. We produced a draft map of critical 
transcription factors and co-factors important for both the early and secondary 
responses. Hypothesis-based experimentation along with additional ‘omic studies 
will be needed if ecdysone is to be the first fully mapped metazoan hormone.  
 
Methods  
 
Differential Expression Analysis 
 Gene and exon level counts were computed using the python package 
HTSeq150 (version 0.6.1p1) using the FlyBase annotation version r5.5744. Exon 
level counts were analyzed using the DEXSeq R package151 (version 1.12.1). 
Exon level ecdysone exposure effects are reported only for a model fit across all 
cell lines. Thus exon p-values and fold changes are not reported for each cell line 
individually. Gene level analysis is completed using the DESeq R package82 
(version 1.18.0). As only a portion of the samples were completed in biological 
duplicate, gene level dispersion estimates were made using the replicated 
samples and applied to all cell lines. The statistical assumption underlying this 
analysis is that gene-level biological dispersion is consistent across cell lines. 
 
EcR Isoform Analysis 
 In order to investigate the effects of the differential isoforms at the EcR 
locus, exons were assigned to either the long EcR-A or short EcR-B1/2 isoforms. 
Constitutive exons were ignored in this analysis. The ratio of EcR-B1/2 to EcR-A 
is calculated for each cell line as the ratio of the length normalized (total 
collapsed isoform-specific exonic regions) number of reads assigned to the EcR-
B1/2 exons to the total length normalized read count to isoform specific exons. 
These ratios are compared to RGCs in the results. 
 
Identification of Widespread and Restricted Ecdysone-responsive Genes 
         In order to leverage the breadth of cell lines examined in this study while 
identifying ecdysone-responsive gene we employ a threshold based on the 
responsiveness across all cell lines. This threshold allows genes that show a 
trend toward significance, while possibly not achieving standard statistical 
significance within any particular cell line, to be confidently identified as 
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ecdysone-responsive. Formally this is measured by the Fisher’s Method test for 
trend in significance across all cell lines. 

Each gene is associated with two Fisher’s Method values corresponding 
to a trend towards induction and repression across all cell lines. We note that it is 
possible to achieve significance in both responsive behaviors under this 
structure. The procedure to produce these tests is analogous for induction and 
repression, so we will describe the procedure for induction here. In order to 
compute a Fisher’s Method significance value the p-values produced by the 
differential expression analysis are used to construct a ranked list of induced 
genes within each cell line. Genes that are repressed are assigned a p-value of 
one and thus are tied at the bottom of that cell line’s rank list. These rank values 
thus represent a uniform marginal distribution for each cell line, as required in 
order to apply Fisher’s Method. For each gene the rank within each cell line is 
combined using Fisher’s Method. Genes that tend towards the top of the rank list 
in many cell lines will produce significant values, while gene randomly distributed 
amongst each list will produce less significant values. 

Two types of thresholds, biological relevance and statistical significance, 
are applied to each gene within each cell line. The biological relevance threshold 
is defined by a fold change upon ecdysone exposure greater than two fold 
(inductive or repressive). Statistically significant responsive genes are those that 
achieved either an adjusted p-value less than 0.01 regardless of Fisher’s Method 
p-value or an unadjusted p-value of 0.01 and a Fisher’s Method p-value less than 
10-8. 
  
Enrichment of Motifs 
 Enrichment of motifs within promoter region DNA sequence was carried 
out using the homer2 program 104 with the “known” command against the 
supplied all.motifs database wihch contains the EcRE motif of interest. Scripts 
and database are available online http://homer.salk.edu/homer/motif/. 
 
Summary Analysis 
 All statistical analyses are computed using R (version 3.1.2) using custom 
scripts. Gene lengths for length-normalized expression are taken as the mean of 
the lengths of the transcripts for that gene. GO term enrichment was produced 
using the fb_2014_03 version of the flybase gene ontology152. Only genes with at 
least one annotated ontology term were used for enrichment calculates. All GO 
term enrichment p-values are calculated using the hypergeometric distribution. 
  
Responsive Proximal Genes 
 For all significantly responsive genes the fraction of responsive genes and 
the average response direction of nearby genes are analyzed. In order to 
determine the distance between two genes the ecdysone relevant transcription 
start sites (TSS) are first determined. For genes with multiple transcription start 
sites the TSS is determined to be the TSS associated with a significant exon 
level response to ecdysone if one exists, or the exon with the highest length 
normalized expression in the relevant time point (i.e. five hour time point for 
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induced genes, zero hour time point for repressed genes or the average for non-
responsive genes). 
 Each gene within 20,000 base pairs of a responsive gene is associated 
with two values, first if the gene is responsive and second the direction of 
response, taken as the negative log10 of the p-value times the sign of the log fold 
change after ecdysone exposure divided by before (these values are trimmed to 
plus and minus 10 to avoid outlier effects). A moving window of 100 gene, cell 
line combinations is used to calculate the fraction of responsive genes and the 
average response direction within each bin. The binned points are grouped 
according to the response direction of the responsive gene as well as the shared 
promoter architecture (upstream/downstream and same/opposite strand). These 
points are then smoothed using loess with a local linear fit over binned points. 
The plot produced is found in Figure 3.4. 
  
Restricted Ecdysone-response Prediction 
 In order to predict the restricted response the following two models, 
referred to as matched induction and matched repression, were fit. The models 
are symmetric, so only matched induced model will be described in full detail.  

At each gene in the restricted induced set we aim to predict which cell 
lines respond significantly and which respond most repressively, defined as the 
cell lines showing the smallest log2 fold change of ecdysone exposure 
expression / pre-exposure expression. A matching number of the most 
repressive responsive cell lines are chosen such that each gene contains a 
balanced number of induced and matched repressed cell lines. 
 In order to predict which gene-cell lines combinations belong to the above 
described sets the model is provided with normalized TF expression masked by 
known TF motif from the TOMTOM database153 presence in the promoter of the 
gene to be predicted. TF expression is included only if at least one cell line 
expresses the TF above the 20th percentile of genes with at least one read. A TF 
motif is considered significant by setting the threshold on the allowed 
mismatches to the known PWM such that just less than 5% of non-responsive 
genes’ promoters contain a hit to the motif. There are 270 TFs with known motifs 
and valid expression. Additionally, the model is given the rank of the normalized 
expression of the gene to be predicted as lowly expressed genes are intuitively 
less likely to be repressed and more likely to be induced and conversely for 
highly expressed genes. 
 This model is then fit using random forests148,154. Important variables are 
determined from a model fit on all 41 cell lines. Accuracy measures are obtained 
by constructing the above outcome and predictor variables and then removing 
each cell line as a test set. The data from the remaining cell lines are used to 
train the random forest and the data from the left out cell line is used to test the 
accuracy of the model’s predictions. Accuracy measures from all cell lines are 
averaged and reported.  

In order to determine the effect of increased numbers of cell lines on 
prediction accuracy samples of cell lines are taken randomly and restricted 
responding genes, outcome and predictor data are constructed. The left out cell 
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line method is again used to determine the accuracy of the model. Since there 
are many subsets of cell lines which may be chosen the subsetting procedure is 
repeated 1000 times for each number of cell lines and all average accuracy 
values are reported. 

In order to estimate the asymptotic predictive accuracy given infinite cell 
lines the predictive accuracy values described above were fit to the function 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦~− 𝑎×#𝐶𝑒𝑙𝑙𝐿𝑖𝑛𝑒𝑠!! + 𝑐  using an alternating least squares linear fit. 
The fitted c parameter indicates the estimated asymptotic predictive accuracy. 
  
Extended Time Course Analysis 
 For a subset of three cell lines, Kc, BG3 and S2, that have an extended 
time course, including the zero, one, three, five and seven hour time points the 
following analysis pipeline was conducted. In order to compare the transcriptional 
responses across the time course for each cell line a normalization that allows 
comparison of genes with dissimilar steady state expression levels, but may 
share ecdysone response “shape”. This normalization begins by applying the 
robust median library size normalization from the DESeq R package82. Then a 
mean centering is applied at each gene and cell line across all five time points. 
The gene cell line expression is then divided by the fitted standard deviation 
across all gene-cell lines combinations in order to adjust for the known increase 
in variance at higher expression loci. These normalized expression measures 
can thus be interpreted as a response shape across time for each cell line and 
response shape is comparable for genes at distance mean expression levels, but 
the trend and relative scale of response over time is maintained. Units represent 
standard deviations from the mean across time. These normalized expression 
values are analyzed in the context of the response at the five hour time point. 
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