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And is not human life in many parts of the earth governed to
this day less by time than by weather, and thus by an
unquantifiable dimension which disregards linear regularity,
does not progress constantly forward but moves in eddies,
is marked by episodes of congestion and irruption, recurs in
ever-changing form, and evolves in no one knows what direction?

W. G. Sebald
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ABSTRACT OF THE DISSERTATION

Eddy fluxes in baroclinic turbulence

by

Andrew F. Thompson

Doctor of Philosophy in Oceanography

University of California, San Diego, 2006

Professor William R. Young, Chair

The eddy heat flux generated by the statistically equilibrated baroclinic

instability of a uniform, horizontal temperature gradient is studied using a two-

mode quasigeostrophic model. An overview of the dependence of the eddy diffusiv-

ity of heat Dτ on the planetary potential vorticity gradient β, the bottom friction

κ, the deformation radius λ, the vertical shear of the large-scale flow 2U and the

domain size L is provided at 70 numerical simulations with β = 0 (f -plane) and

110 simulations with β 6= 0 (β-plane).

Strong, axisymmetric, well-separated baroclinic vortices dominate the

equilibrated barotropic vorticity and temperature fields of f -plane turbulence. The

heat flux arises from a systematic northward (southward) migration of anti-cyclonic

(cyclonic) eddies with warm (cold) fluid trapped in the cores. Zonal jets form spon-

taneously on the β-plane, and stationary, isotropic, jet-scale eddies align within

the strong eastward-flowing regions of the jets. In both studies, the vortices and

jets give rise to a strong anti-correlation between the barotropic vorticity ζ and

the temperature field τ . The baroclinic mode is also an important contributor to

dissipation by bottom friction and energizes the barotropic mode at scales larger

than λ. This in part explains why previous parameterizations for the eddy heat

flux based on Kolmogorovian cascade theories are found to be unreliable.

xv



In a separate study, temperature and salinity profiles obtained with ex-

pendable conductivity, temperature and depth (XCTD) probes within Drake Pas-

sage, Southern Ocean are used to analyze the turbulent diapycnal eddy diffusivity

κρ to a depth of 1000 meters. The Polar Front separates two dynamically different

regions with strong, surface-intensified mixing north of the Front. South of the Po-

lar Front mixing is weaker and peaks at a depth of approximately 500 m, near the

local temperature maximum. Peak values of κρ are found to exceed 10−3 m2 s−1.

Wind-driven near-inertial waves, mesoscale eddies and thermohaline intrusions are

discussed as possible factors contributing to observed mixing patterns.
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Introduction

The large-scale circulation of the atmosphere and ocean is characterized

by flows with scales of hundreds to thousands of kilometers, which vary on time

scales of days to years. Yet circulation patterns remain influenced by smaller-scale

processes, such as internal waves, mesoscale eddies, atmospheric storms, etc. The

difficulty in representing dynamics that connect vastly different scales is a funda-

mental problem of large-scale geophysical flows. This dissertation considers two

rather different examples of small/mesoscale processes that are essential for un-

derstanding global heat, energy and momentum budgets. Chapters II through IV

consider the effects of coherent vortices and zonal (along latitude) jets on merid-

ional (along longitude) heat transport in a simple, baroclinically unstable system.

Chapter V presents an observational study of the distribution of small-scale vertical

mixing across Drake Passage, Southern Ocean.

I.1 Baroclinic instability and eddy fluxes

In the atmosphere and ocean, a poleward heat flux arises to balance

heating at the equator and cooling at the poles. In a broad sense, this differential

heating generates large overturning cells, for example the meridional overturning

1
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circulation in the ocean (Wunsch & Ferrari 2004) and the Hadley cell in the tropical

atmosphere (Gill 1982), which transport warm (cold) fluid poleward (equatorward)

in the upper (lower) portion of the cell. However, the atmosphere and ocean are

dominated by rotation and stratification, which add important complications to

geophysical transport. The meridional temperature gradient and its associated

sloping isopycnals give rise to a zonal flow through the thermal wind balance. The

zonal flow is unable to relax the meridional gradient, but potential energy stored in

the sloping isopycnals is released through baroclinic instability. Baroclinic insta-

bility leads to the formation of mesoscale eddies and atmospheric storms on scales

comparable to the deformation radius of the respective environments (roughly 50

km in the ocean and 1000 km in the atmosphere). Heat transport by these coher-

ent structures, the eddy heat flux, makes an important contribution to relaxing

the temperature gradient, which is ultimately maintained by solar heating. Figure

I.1 summarizes these processes.

The first part of this thesis focuses on understanding the poleward eddy

heat flux that arises from a large-scale, uniform, unstable temperature gradient.

Inclusion of the eddy heat flux in general circulation models, or GCMs, is essential

for producing accurate representations of the global climate. Decadal (or longer)

simulations using GCMs are currently too coarse to resolve ocean eddies, and may

only weakly resolve atmospheric storms. Improvements in numerical models may

mean that climate simulations will compute eddy fluxes directly in the future,

however, an understanding of how environmental parameters, such as the large-

scale temperature gradient, influence eddy fluxes is still desirable. Thus, the goal

is to survey the eddy heat flux in a simple baroclinic model and to determine a

physically-motivated relationship between the flux and control parameters.

We study the eddy heat flux with a two-mode (or two-layer), doubly-

periodic quasi-geostropic (QG) model. The equations of motion are described

in detail in Appendix A. The model is forced with a fixed temperature gradient

(or equivalently a fixed velocity jump between the upper and lower layers) that is
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Figure I.1: Schematic of a baroclinically unstable flow. Differential heating in
the meridional direction leads to sloping isopycnals and a vertically sheared zonal
flow through the thermal wind relationship. Potential energy stored in the slop-
ing isopycnals is released through baroclinic instability, which generates eddies
comparable in size to the deformation radius.
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Figure I.2: (a) Contours of the linear baroclinic instability growth rate sλ/U as
a function of zonal kλ and meridional lλ wavenumbers with β∗ = βλ2/U = 1/2.
Here λ is the deformation radius and 2U is the vertical shear between upper and
lower layers. The fastest growing mode occurs along lλ = 0 (meridional bands).
Panel (b) shows the growth rate along the line lλ = 0 for four different values of
β∗. In the absence of friction, the critical value for instability is β∗ = 1.

baroclinically unstable. The linear baroclinic instability problem was characterized

by Eady (1949), who showed that a rotating fluid with a constant vertical shear

is unstable at all wavenumbers up to a large wavenumber cutoff. Charney (1947)

presented a more realistic model of baroclinic instability by including the planetary

vorticity gradient, or the β effect, in his calculations. Charney found that β has

a stabilizing influence at low wavenumbers, such that instability only occurs if a

critical vertical shear Uc = 2βλ2 is exceeded, where λ is the deformation radius.

The linear instability is summarized in Figure I.2.

Growth of the instability is eventually saturated through frictional pro-

cesses. In the numerical model, this is accomplished through a linear Ekman drag

acting on the lower layer. The resulting statistically steady state is turbulent and

eddy statistics are calculated by averaging over both space and time to remove

turbulent fluctuations. Besides saturating the instability, bottom friction may also



5

act to destabilize the baroclinic system at values of β that would otherwise be

stable (Holopainen 1961). Thus, we find that bottom friction plays a crucial role

in the equilibrated heat flux.

I.2 Eddy flux theories

Because of the strong effects of rotation and stratification, geophysical

flows behave similarly to two-dimensional flows, including the characteristic tur-

bulent cascade of energy to large scales. Rhines (1977) and Salmon (1980) charac-

terize the energy transfers in baroclinic turbulence as a direct transfer of energy in

the baroclinic mode with a simultaneous inverse cascade of the barotropic mode.

This scenario, referred to here as the “dual cascade,” is summarized in Figure I.3.

Energy enters at large scales in the baroclinic mode through solar heating and

undergoes a direct cascade to the deformation radius. Deformation-scale eddies

generated through baroclinic instability energize the barotropic mode (Larichev &

Held 1995), and initiate an inverse cascade that is ultimately halted by bottom

friction. The β effect may also modify the isotropic view of the inverse cascade

shown in Figure I.3.

The dual cascade scenario has been used as a framework to derive pa-

rameterizations for the meridional eddy heat flux in baroclinic systems (Larichev

& Held 1995, Held & Larichev 1996, Lapeyre & Held 2003). These models rely on

the assumption that energy supplied by large-scale differential heating makes its

way to small scales in the barotropic mode before undergoing an inverse cascade.

Thus the inverse cascade rate is equivalent to the dissipation, similar to the purely

barotropic model of Smith et al. (2002). The theory is closed by identifying a

wavenumber that represents the halting scale of the inverse cascade (k0 in Figure

I.3). This wavenumber may depend on bottom friction (Larichev & Held 1995), β

(Held & Larichev 1996, Lapeyre & Held 2003) or both (Danilov & Gurarie 2002).

We test recent eddy flux parameterizations with results from our numer-
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Figure I.3: Schematic of the “dual cascade” view of energy transfers in baroclinic
turbulence (Rhines 1977, Salmon 1980). Energy enters in the form of potential
energy in the baroclinic mode due to differential solar heating. There is a direct
cascade of energy in the baroclinic mode. Transfer to the barotropic mode occurs
near the deformation radius through baroclinic instability. Energy then undergoes
an inverse cascade in the barotropic mode until it is removed through large scale
dissipation, such as Ekman drag. The β effect may also alter this isotropic view
of the barotropic inverse cascade at large scales.

ical simulations in Chapters II and III. We find that parameterizations based on

Kolmogorovian spectral cascades are inaccurate over a broad region of parameter

space.

Eddy flux theories dependent on energy cascade arguments make little

contact with the physical reality that QG turbulence is dominated by coherent

structures. Simulations with β = 0 and sufficiently large bottom friction contain

many coherent vortices (see Figure II.3(d))1. These structures have opposite signed

potential vorticity in the upper and lower layers, which is the defining feature of a

heton (Hogg & Stommel 1985). Because of bottom drag, however, the lower layer

vortex is always weaker than its upper layer counterpart. These vortex pairs are

not strongly self-propelled, but rather the pair is advected by the far-field velocity

of other hetons.

These observations motivate a description of the fluid as a “gas” con-

1For simulations with very weak bottom friction, there is nothing to halt the inverse cascade
and eddies grow to the domain size. In these simulations, there are only one or two large eddies
in the domain and eddy statistics are not meaningful.



7

taining many baroclinic vortices (similar to the model of Carnevale et al. 1991).

Through this model we relate vortex-core values of important descriptors such

as the temperature and the vorticity to domain-averaged values. These scalings

are combined with relationships derived from statistically steady invariants of the

system, namely the energy balance and the cross-invariant (a special case of the

enstrophy balance), to form the basis of a vortex-centric theory for the eddy heat

flux. The vortex gas scalings are discussed in Chapter II and are verified with a

vortex census algorithm described in Appendix B. A semi-empirical formula for

the eddy heat flux is given solely in terms of external parameters of the system

and is shown to be an improvement over earlier predictions in the literature.

I.3 β and zonal jets

Variations in the Coriolis parameter with latitude caused by planetary

curvature, or the β-effect, affect geophysical flows by introducing an anisotropy

that results in the spontaneous generation of zonal jets. Zonal jets are a persistent

feature on many of the large planetary atmospheres, especially Jupiter and Saturn

(Vasavada and Showman 2005). Figure I.4 shows a photograph of at least eight

stable jets in Jupiter’s atmosphere taken from the Cassini satellite on a recent

flyby. Because of the Earth’s smaller radius, the terrestrial atmosphere is limited

to a single meandering jet stream in each hemisphere. There is, however, increasing

evidence that zonal jets are abundant in the ocean basins. These oceanic jets have

been identified in numerical simulations (Richards et al. 2006) as well as in sea

surface height anomalies from satellite altimetry (Maximenko et al. 2005). Since

the deformation radius is at least an order of magnitude smaller in the ocean than

in the atmosphere, oceanic jets have meridional scales as small as three degrees of

latitude allowing many jets within a single ocean basin.

Zonal jets are characterized by an asymmetry between eastward (narrow

and fast) and westward (broad and slow) regions (Panetta 1993). In the baroclinic
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Figure I.4: Photograph of zonal jets on Jupiter as taken by the Cassini satel-
lite. The banded structure marks regions of intense jet streams that reach
speeds of nearly 500 kilometers per hour. Vortex-like atmospheric storms em-
bedded within the jets are sheared apart as they move out towards the jet
edges. This photo was obtained from NASA’s Jet Propulsion Laboratory web-
site: www.jpl.nasa.gov/jupiterflyby.
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system, the vertical shear is largest within the rapid eastward flowing regions and

therefore baroclinically unstable eddies grow fastest here. The growth of these

eddies is the same process produces atmospheric storms (strong baroclinic eddies)

within in the Earth’s jet stream. In this way, zonal jets in the numerical simulations

act like “storm tracks” as described by Chang et al. (2002).

Robinson (2006) has shown that baroclinic eddies are primarily respon-

sible for the remarkable persistence of midlatitude jets in the Earth’s atmosphere.

Robinson’s work follows other recent studies (Huang & Robinson 1998, Manfroi &

Young 1999, Dritschel et al. 2006) that explain the “self-maintanence” of zonal jets

in terms of a negative viscosity (Starr 1968, McIntyre 1970) that forces the zonal

mean flow. Eddies generated during baroclinic instability meander onto the flanks

of the jets where the zonal flow shears the eddies. This gives rise to non-zero

Reynolds stresses that transfer energy from the eddy component into the zonal

mean flow2. This process is described in detail in Chapter IV. The system may

reach equilibrium, i.e. the negative viscosity effects are saturated, if damping is

introduced, typically in the form of large-scale bottom drag.

The introduction of β also modifies the dual cascade scenario as shown

in Figure I.3. β-plane flows are subject to both wavelike and turbulent motions

(Rhines 1975), with the transition between regimes occurring at the Rhines scale

ℓR, where

ℓR ∼
√

U
β
. (I.1)

Here, ℓR is a natural length scale arising from β and a velocity scale U , where

Rhines (1975) takes U to be the total RMS velocity, including both zonal and

eddy components of the flow. Rhines further suggests that β halts the barotropic

inverse cascade at wavenumber kRh
β = ℓ−1

R . Vallis and Maltrud (1993) pursued

this idea and make the important observation that at small wavenumbers, where

2In our two-layer simulations we find that the Reynolds stresses are only significant in the
upper layer. Transfer between upper and lower layers occurs primarily through a form drag
interaction.
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Figure I.5: (a) Sketch of an idealized isotropic inverse cascade. The spectrum is
forced at large wavenumbers and is transferred upscale with a characteristic slope
of k−5/3. Energy is eventually removed by bottom friction at scales k < kκ or
anisotropy develops at k = kβ. (b) A sketch of the anisotropic inverse cascade
as described by Vallis & Maltrud (1993). At high wavenumbers the cascade is
isotropic. At kβ, marked by the dashed curve, energy is preferentially channelled
into zonal modes and is eventually dissipated at scales k < kκ, marked by the
dotted curve. For cases where kκ > kβ, the inverse cascade is halted before strong
zonal jets can develop. There is a dumbbell-shaped region (solid curves) within
which there is little energy (see also Figure IV.10).

the β-effect is important, the inverse energy cascade can no longer be represented

by an isotropic spectrum ( Figure I.5(a)). Instead, Vallis & Maltrud (1993) argue

that two-dimensional spectra will exhibit a dumbbell-shaped region centered along

the x-axis that is devoid of energy. This occurs because at a certain transition

wavenumber kβ, the formation of Rossby waves slows the inverse cascade and

energy is channelled into zonal modes perpendicular to the restoring force of β.

Figure I.5(b) shows a sketch of the energy transfers in the anisotropic case.

The exact value of kβ has been a source of controversy and confusion

for the past 20 years. Besides the wavenumber associated with the Rhines scale,

kRh
β , Vallis and Maltrud (1993) suggest that kβ is determined by the length scale

derived from the energy cascade rate ε and β, or kVM
β = (β3ε)

1/5
. Holloway

and Hendershott (1977) offer a third possibility for kβ, where now the balance is
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between β and the RMS barotropic vorticity, kHH
β = β/

√

〈ζ2〉, where 〈〉 indicates

both a spatial and temporal average. These three length scales are all distinct,

and further ambiguity arises as to whether the velocity U and vorticity ζ scales

should be comprised of eddy components, zonal components or both.3

Regardless of the exact definition of kβ, this wavenumber still represents a

terminus for the isotropic inverse cascade of the barotropic mode, and is typically

a crucial part of eddy flux parameterizations. Still, while β clearly affects the

inverse cascade, β does not dissipate energy and thus cannot halt the inverse

cascade alone. Bottom drag dissipates energy in zonal and eddy components and

is ultimately responsible for halting the inverse cascade.

Although bottom friction is crucial for obtaining an equilibrated steady

state, few studies have considered the combined effect of β and bottom friction on

the eddy heat flux of β-plane turbulence. Danilov & Gurarie (2002) propose fric-

tional, kDG
κ ∼ κ3/2ε−1/2, and β wavenumbers, kDG

β ∼ β1/2κ1/4ε−1/4, where κ is the

coefficient of bottom friction, which they use to determine the transition between

friction-dominated and β-dominated flow. Smith et al. (2002) provide a scaling for

the turbulent eddy diffusivity4 in terms of both β and κ for a barotropic system,

however, the different method of forcing used in this study makes it difficult to

adapt this model to the baroclinic system (see discussion in Chapter III). Finally,

Held & Larichev (1996) and Lapeyre & Held (2003) propose that the baroclinic

eddy heat flux is independent of bottom friction when β is strong.

Chapter III presents a suite of 110 statistically equilibrated simulations of

baroclinic turbulence, which indicates that over most of parameter space bottom

3The transition wavenumber kβ (usually in the guise of the Rhines scale kRh

β ) has also
been touted as being equivalent to the inverse of the jet spacing. While there are no numer-
ical simulations that clearly support the Rhines scale as defined in (IV.3) as the jet spacing
(Vallis 2006, personal communication), a recent prediction by Dritschel et al. (2006) propose
jet spacing ∼ max.

(

ℓR, ℓ
2

R/λ
)

. In the baroclinic system, the most thorough study to date has
been conducted by Panetta (1993), who showed that the Rhines scale does indeed predict the jet
length if the velocity scale is taken to be twice the square root of the total eddy kinetic energy.
In Chapter IV we verify Panetta’s (1993) prediction with our suite of numerical simulations.

4The turbulent eddy diffusivity is defined to be the eddy flux divided by minus the large-scale
gradient.
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friction does influence both the eddy heat flux and the structure of the zonal jets.

The results of Chapter III suggest that the importance of the baroclinic mode in

the total dissipation by bottom drag and in the transfer of energy between the

eddy and zonal mean flow is not properly captured by energy cascade arguments.

Another failing of previous cascade theories is that they do not explicitly

account for the zonal flows which are characteristic of β-plane turbulence. Chapter

IV is primarily a descriptive account of both the zonal jets and the large-scale

stationary eddies in the baroclinic simulations. A “phenomenological” model of

baroclinic turbulence that incorporates these structures is the focus of ongoing

work.

I.4 Diapycnal mixing and the Southern Ocean

Eddy fluxes arising from baroclinic instability are an integral part of

horizontal transports in the atmosphere and ocean. An understanding of vertical

transport processes is equally important in developing accurate circulation models.

In the ocean, diapycnal (cross-density surface) mixing is an essential element of the

thermohaline circulation. The thermohaline circulation results from downwelling

at a few isolated locations in the Nordic, Labrador and Weddell Seas and upwelling

throughout the rest of the ocean basins. Upwelling occurs through mixing events,

such as internal wave breaking, which happen over temporal and spatial scales that

are too small to be resolved directly by numerical simulations. GCMs thus rely

on parameterizations to incorporate the effects of small-scale diapycnal mixing.

Improving these parameterizations remains an active area of research.

Munk (1966) first suggested that wide-spread small-scale diapycnal mix-

ing could close the thermohaline circulation. Assuming spatially-uniform mixing,

Munk employed a one-dimensional advection-diffusion model to conclude that a

turbulent diapycnal diffusivity κρ = 10−4 m2 s−1 was necessary to balance down-

welling at high latitudes. The first indirect estimates of ocean mixing by Osborn
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& Cox (1972) and Osborn (1980), however, reported diffusivities an order of mag-

nitude smaller than Munk’s prediction. Eventually direct tracer release studies

(Toole et al. 1994) confirmed open ocean diffusivities of 10−5 m2 s−1. Many stud-

ies have since shown that mixing is not uniform (Munk & Wunsch 1998, Wunsch

& Ferrari 2004); instead, enhanced mixing occurs in regions close to sharp topo-

graphical features such as islands and ocean ridges (Polzin et al. 1997, Klymak

et al. 2006). It remains uncertain whether these localized mixing “hot spots” are

sufficient to close the thermohaline circulation. Limited sampling in polar regions

due to harsh weather conditions continues to contribute to this uncertainty.

Characterization of diapycnal mixing in the Southern Ocean is of further

interest because of the region’s unique properties. Isopycnals outcrop in the South-

ern Ocean making deep and intermediate waters susceptible to wind and buoyancy

forcing at the surface. Outcropping isopycnals have been identified as potential

sites of large atmospheric uptake, implying that the Southern Ocean provides one

of the first signals of rapid and anthropogenically-forced climate change (Banks et

al. 2000, Gille 2002). Vertical mixing also helps regulate the conversion of Deep

Water into Sub-Antarctic Mode Water5 (Speer et al. 2000), which is then exported

to the three major ocean basins. Thus, the Southern Ocean has a large influence

on the transport of heat and other tracers throughout the globe and its inclusion

in GCMs is essential.

While the Antarctic Circumpolar Current (ACC) is primarily character-

ized by a strong zonal flow, the ACC’s “residual” meridional circulation is an

important means of transporting heat and other tracers across lines of latitude.

The residual circulation is thought to be driven by near-surface Ekman flow and

mesoscale eddies generated by baroclinic instability (Karsten & Marshall, 2002).

The role of diapycnal mixing in this circulation, however, is still poorly understood

5Toggweiler & Samuels (1995, 1998) argue that the conversion of North Atlantic Deep Water,
through diapycnal mixing in the Southern Ocean, reduces the magnitude of the globally-averaged
diapycnal diffusivity needed to close the thermohaline circulation. This would explain the small
magnitude of mixing rates in the open ocean and eliminate the “missing mixing” problem.
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(Figure I.6).

Numerical and theoretical models by Karsten et al. (2002) and Bryden &

Cunningham (2003) assume that mixing in the Southern Ocean occurs primarily

along isopycnals, and diapycnal exchanges are limited to surface processes. A

recent numerical study by Cessi & Fantini (2005), though, suggests that diapycnal

mixing plays a prominent role in determining the depth of the thermocline and

the deep stratification of the Southern Ocean. An improved understanding of the

interaction between diapycnal mixing and meridional eddy fluxes is needed and

provides a natural connection between the two topics covered in this disseration.

While direct measurements of diapycnal mixing in the Southern Ocean

obtained from microstructure profilers are just now becoming available, recent

studies (Kunze 2003, Naveira Garabato et al. 2004, Sloyan 2005, see discussion

in section V.2) infer diapycnal mixing rates from “outer turbulence” scales, or

finescale structure, O(1 m). Chapter V also presents a study of turbulent mixing

rates inferred from finescale data. Measurements are made in the upper 1000 m

throughout Drake Passage, which is an important choke point of the ACC and

a region subject to intensified mixing over sharp topographical features (Naveira

Garabato et al. 2004).

Since 2002, temperature and salinity profiles from XCTD (expendable

conductivity, temperature and depth) probes have been collected by the U.S.

Antarctic Supply Vessels travelling between Punta Arenas, Chile and Palmer Sta-

tion, Antarctica as part of SIO’s High Resolution XBT/XCTD Network. The

purpose of the sampling, which occurs between four and six times per year, is to

monitor seasonal and interannual change in upper ocean properties across Drake

Passage. The XCTD data set is unique in that it provides one of the few studies

where mixing measurements have been made in the same location over a long pe-

riod of time. A full discussion of the sampling characteristics of the XCTD appears

in Chapter V.
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Figure I.6: Schematic of the meridional circulation in the Antarctic Circumpolar
Current (ACC), based on Karsten et al.’s (2002) Figure 1. The strong eastward
zonal wind drives a northward Ekman transport (green curve). Differential heating
across the ACC also generates sloping isopycnals and mesoscale eddies through
baroclinic instability (see also Figure I.1). Transport by these eddies balances the
Ekman transport to a large extent; the resulting residual circulation is discussed by
Karsten & Marshall (2002). Most models of the ACC’s residual circulation neglect
sub-surface diapycnal exchanges. However Cessi & Fantini (2005) find that sub-
surface mixing may have an important influence on meridional transport in the
ACC.
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I.5 Mixing parameterizations

In Chapter V we use two independent methods of estimating diapycnal

mixing from outer turbulence scales, (1) Thorpe scales and (2) vertical strain

spectra. These two methods are discussed in some detail in section V.3, and

therefore will be sketched only briefly here.

The Ozmidov scale LO is defined as

LO = ε1/2N−3/2 , (I.2)

where ε is the dissipation rate of turbulent kinetic energy and N is the buoyancy

frequency. LO is the scale at which inertial and buoyancy effects are compara-

ble. Unfortunately ε is expensive to measure directly because it requires cm-scale

resolution. The Thorpe scale LT (Thorpe 1977), on the other hand, is a related

length scale that indicates the size of density inversions in a stratified fluid. Figure

I.7 summarizes the calculation of LT . Dillon (1982) and others have shown that

LO is linearly proportional to LT , although the constant of proportionality may

vary depending on the mixing environment. Thus, turbulent dissipation can be

calculated with an estimate LT , which only requires finescale measurements.

An alternative method for inferrring mixing rates comes from evidence

that ocean mixing is related to the energy density of the internal gravity wave field.

Nonlinear wave-wave interactions transfer energy and momentum to increasingly

smaller-scale waves, which are more likely to break down into turbulence. The

hypothesis, then, is that tractable formulas exist that relate differences between

observed energy spectra and the energy spectrum of a canonical internal wave field

(Garrett & Munk 1975) to the mixing rate of the sampled region (Henyey et al.

1986). The spectral method is based on larger scales than the Thorpe scale method

and thus does not require as fine resolution. It also provides an estimate of mixing

rates independent of the Thorpe scale estimate.

While the turbulent dissipation of kinetic energy ε in the ocean is the ac-
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Figure I.7: Schematic of the Thorpe scale LT derived from a density inversion in
an otherwise stable potential density profile. Observations within an inversion are
rearranged vertically to achieve a stable, monotonic profile. A sample moved from
a depth zn to a depth of zm has a Thorpe displacement d′n = zm− zn. The Thorpe

scale LT is the RMS value of the Thorpe displacements LT =
〈

d′2
〉1/2

, where 〈〉
represents an average over a single overturn.
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tual quantity of interest, ε is often converted to a diapycnal eddy diffusivity κρ as a

parameterization of small-scale mixing in numerical simulations. A thorough dis-

cussion of how to calculate κρ from turbulent dissipation appears in Moum (1990)

and is summarized in Ferron et al. (1998). Briefly, the extraction of turbulent

kinetic energy from the mean kinetic energy P is balanced by the conversion of

turbulent kinetic energy to potential energy B and dissipation of turbulent kinetic

energy ε such that

P = B + ε . (I.3)

The turbulent diffusivity κρ arises from the assumption that a diffusive parame-

terization can be used to approximate the vertical density flux w′ρ′,

B =
g

ρ0

〈w′ρ′〉 = N2κρ , (I.4)

where primes denote eddy quantities, N is the buoyancy frequency and 〈〉 repre-

sents an average over turbulent fluctuations. Using (I.3) and (I.4) and introducing

the Richardson flux number Rf = BP−1, yields

κρ = ΓεN−2 , (I.5)

as proposed by Osborn (1980). Here Γ = Rf/(1 − Rf), which is typically taken

to be a constant equal to 0.2. A discussion of the proper estimate of N from the

data is given in Chapter V.



II

Scaling baroclinic eddy fluxes:
vortices and energy balance

II.1 Abstract

The eddy heat flux generated by the statistically equilibrated baroclinic

instability of a uniform, horizontal temperature gradient is studied using a two-

mode f -plane quasigeostrophic model. An overview of the dependence of the eddy

diffusivity, D, on the bottom friction κ, the deformation radius λ, the vertical

variation of the large-scale flow U and the domain size L is provided by numerical

simulations at 70 different values of the two non-dimensional control parameters

κλ/U and L/λ.

Strong, axisymmetric, well-separated baroclinic vortices dominate both

the barotropic vorticity and the temperature fields. The core radius of a single

vortex is significantly larger than λ, but smaller than the eddy mixing length ℓmix.

On the other hand, the typical vortex separation is comparable to ℓmix. Anti-

cyclonic vortices are hot, and cyclonic vortices are cold. The motion of a single

vortex is due to barotropic advection by other distant vortices, and the eddy heat

flux is due to the systematic migration of hot anti-cyclones northward and cold

cyclones southwards. These features can be explained by scaling arguments and

an analysis of the statistically steady energy balance. These arguments result in a

relation between D and ℓmix. Earlier scaling theories based on coupled Kolmogoro-

19
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vian cascades do not account for these coherent structures and are shown to be

unreliable.

All the major properties of this dilute vortex gas are exponentially sen-

sitive to the strength of the bottom drag. As the bottom drag decreases both the

vortex cores and the vortex separation become larger. Provided that ℓmix remains

significantly smaller than the domain size, then local mixing length arguments are

applicable, and our main empirical result is ℓmix ≈ 4λ exp(0.3U/κλ).

II.2 Introduction

Eddy heat and potential vorticity fluxes are part of a dynamical bal-

ance in which potential energy created by differential heating is released through

baroclinic instability. Many theoretical and numerical studies have attempted to

find physically plausible parameterizations of these eddy fluxes so that turbulent

transport can be included in coarsely resolved climate models. Pioneering at-

tempts used linear theory to describe the eddy structure and energy arguments to

constrain the eddy amplitude (Green 1970, Stone 1972). More recently, though,

fully non-linear numerical realizations of homogeneous quasi-geostrophic turbu-

lence have been used to diagnose eddy fluxes in a statistical steady state main-

tained by imposing a uniform temperature gradient (Haidvogel & Held 1980; Hua

& Haidvogel 1986; Larichev & Held 1995; Held & Larichev 1996; Smith and Vallis

2002; Lapeyre & Held 2003). The grail is a physically motivated relation between

the eddy heat flux and control parameters, such as the imposed large-scale thermal

gradient. Provided that there is scale separation between the mean and the ed-

dies, the resulting flux-gradient relation might apply approximately to a spatially

inhomogeneous flow. In other words, the hypothesis is that baroclinic eddy fluxes

can be parameterized by a turbulent diffusivity, D, which might, however, depend

nonlinearly on the large-scale temperature gradient (e.g., Pavan & Held 1996).

Our first goal in this work is largely descriptive: we characterize the de-
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pendence of D on external parameters such as the domain size L, the bottom drag

coefficient κ, the Rossby deformation radius λ, and the imposed velocity jump 2U .

Our notation is introduced systematically in Appendix A and is largely the same

as that of Larichev & Held (1995, hereafter LH95): τ(x, y, t) and ψ(x, y, t) are the

disturbance streamfunctions of the baroclinic and barotropic modes respectively.

A precise definition of the eddy diffusivity, D, is then

D ≡ U−1 〈ψxτ〉 . (II.1)

Here 〈〉 denotes both a horizontal average over the square 2πL× 2πL domain, and

an additional time average to remove residual turbulent pulsations.

〈ψxτ〉 in (II.1) is the product of the barotropic meridional velocity, ψx, and

the thermal field τ i.e., the meridional heat flux is proportional to 〈ψxτ〉. Moreover,

the mechanical energy balance in a statistically steady state (see Appendix A) is

Uλ−2 〈ψxτ〉 = κ
〈

|∇ψ −
√

2∇τ |2
〉

+ hypν , (II.2)

where “hypν” indicates the hyperviscous dissipation of energy. The first term on

the right hand side of (III.2) is the mechanical energy dissipation (Watts per kilo-

gram) by bottom drag, κ. The left hand side of (III.2) is the energy extracted from

the unstable horizontal temperature gradient by baroclinic instability. Enstrophy

budgets also identify 〈ψxτ〉 as the large-scale source balancing the hyperviscous

enstrophy sink at high wavenumbers. Thus a single quantity, conveniently defined

as D in (II.1), summarizes all of the important quadratic power integrals and fluxes

in homogeneous baroclinic turbulence.

Dimensional considerations (Haidvogel & Held 1980) show that

D = Uλ×D∗

(

λ

L
,
κλ

U
,
ν

UL7

)

, (II.3)

where D∗ is a dimensionless function. The final argument of D∗, involving the

hyperviscosity ν, is small (see section II.8). For brevity we suppress reference

to this hyperviscous parameter. In Figure II.1 we summarize a panoramic set of
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Figure II.1: A summary of eddy diffusivity, D/Uλ, for 70 simulations. The smooth
curve is Dloc

EB in (II.31). At the pivot, simulations with L/λ varying by a factor of 8
have nearly the same value of D/Uλ. As summarized in Table II.1, the resolution
was held constant for each series of simulations, except for the series with L/λ = 50.
In that series limited computer resources forced us to reduce the resolution from
◦ = 5122 to • = 2562 (see section II.8 for details).

numerical simulations revealing the main features of the function D∗(λ/L, κλ/U).

D∗ varies by over a factor of one thousand in response to much smaller changes

in κλ/U and L/λ: there is plenty of scope for relatively crude scaling arguments

to collapse this data. Finding this scaling is not entirely straightforward because

there is not a convincing straight line anywhere in the loglog plot of Figure II.1.

This is the first indication that the function D∗ is not adequately characterized as

a power law.

Classical theories of baroclinic turbulence (Rhines 1977; Salmon 1978,



23

LH95

k0 λ
−1

(molecular effects)

Baroclinic Energy

Barotropic Energy

S80

HH80

Small−scale

dissipation

L
−1

L
−1

diss.

Uλ−2 〈ψxτ〉

Figure II.2: Diagrammatic summary of the dual-cascade scenario (adapted from
Salmon 1980). Baroclinic energy enters the system at scales comparable to the
domain size, L, via differential heating. Baroclinic energy is then transfered to
higher wavenumbers in a direct cascade. In the classical view (S80 and HH80),
energy transfers from the baroclinic to the barotropic mode at the deformation
wavenumber, k ∼ λ−1, and barotropic energy then cascades back to larger scales
and is ultimately removed by bottom drag. LH95 revised this picture by showing
that the wavenumber where energy is removed is correlated with energy production
and the associated potential vorticity fluxes. LH95 identified this length scale k−1

0

as that of the energy-containing eddies and suggested that its location in the
spectrum varied strongly with bottom drag.

1980; Haidvogel & Held 1980) argue that energy is created at large scales by

differential heating and then cascades downscale to the Rossby deformation radius.

Baroclinic energy is then converted to barotropic near the deformation radius,

and the barotropic mode undergoes an inverse cascade until energy is removed by

bottom drag. The dual-cascade scenario, summarized in Figure II.2, supposes that

L ≫ λ so that there is spectral room for the cascades to operate. This regime,

with the domain scale greatly exceeding the Rossby deformation radius, is also

oceanographically relevant.



24

Early studies of baroclinic turbulence assumed that the mixing-length of

baroclinic eddies was comparable to λ. In these circumstances, Haidvogel & Held

(1980, hereafter HH80) argued that eddy statistics should be independent of the

domain scale L. Varying the parameter L/λ between 7 and 15, HH80 provided

evidence in support of this hypothesis. The data in Figure II.1 spans a significantly

larger range of L/λ than does HH80, and further supports their conclusion that D

is independent of L provided that κλ/U is not too small.

The proviso is necessary because Figure II.1 clearly shows an important

distinction between two regimes: local mixing and global mixing. The local regime

is exemplified by the point marked “pivot” in Figure II.1 (where κλ/U = 0.16).

At the pivot, four simulations with L/λ varying by a factor 8 have nearly the same

D. The four pivot solutions exemplify the “local-mixing regime” of HH80, within

which D is independent of L. But as κλ/U is reduced to very small values, eddy

length scales grow. Once the eddy mixing length is comparable to the domain

scale L, the system leaves the local-mixing regime and enters the global-mixing

regime, also indicated in Figure II.1.

The notion of a diffusive parameterization, applicable to a slowly varying

mean flow (Pavan and Held 1996), is valid only in the local mixing regime. Thus,

our main focus in the remainder of this paper is characterization of the local regime.

Figure II.3 further illustrates how modest variations of bottom drag, κ,

greatly change the nature of the flow. HH80 and LH95 previously noted this

extreme sensitivity to κ, and rationalized it by arguing that bottom drag is the

only mechanism preventing barotropic eddies from cascading upwards, all the way

to the domain scale L. Pedlosky (1983) considered the linear instability problem

with bottom friction and Riviere & Klein (1997) studied a weakly nonlinear system.

But it is really the fully nonlinear studies that indicate the key role of bottom drag

in equilibrated baroclinic turbulence. Smith & Vallis (2002) and Riviere et al.

(2004) considered a relatively small range of κ, and showed that the eddy length

scale decreases with increasing bottom drag. Arbic & Flierl (2004a) presented
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similar results and also explored the regime κλ/U > 1, where the lower layer

velocities are small. We will not consider κλ/U > 1 in this paper. Arbic & Flierl

(2004a) also provide evidence from current meter data that mid-ocean eddies lie

somewhere in the region κλ/U ≈ 1, which corresponds to the regime considered

in this study.

A striking feature of the simulations is the formation and persistence of

axisymmetric vortices. Figure II.3 shows that the size and density of these vortices

are influenced by bottom friction. The global mixing solution in panel (c) of

Figure II.3 is dominated by just a few vortices: the volatility of the corresponding

time-series in panel (b) is due to the extreme fluctuations produced by two or

three jostling vortices. It seems there is little hope of constructing a statistical

theory of the few-vortex global mixing regime. The more important local regime

is simpler in the sense that there are many interacting vortices: the corresponding

time series in panel (b) is stable because of the many-vortex self-averaging. Thus

simple statistical scaling theories may have some force in the local mixing regime.

Specifically, the barotropic vorticity in panel (d) of Figure II.3 is best characterized

as a “dilute gas” of vortices (Carnevale et al. 1991). This observation, combined

with some deductions based on the statistically steady energy balance in (III.2),

provides an analytic entry exploited in sections II.4 and II.5.

Within the vortex cores there is a strong anti-correlation between the

barotropic vorticity, ζ ≡ ∇2ψ, and temperature, τ : a cyclonic barotropic vortex

traps cold fluid in its core while an anti-cyclonic barotropic vortex traps warm fluid

in its core. Figure II.4 shows expanded views of (a) barotropic vorticity and (b)

temperature corresponding to the the boxed region in Figure II.3(d). Panel (c) of

Figure II.4 shows a scatter plot of temperature and barotropic vorticity from each

point in Figure II.3(d). The scatter plot has a number of branches corresponding

to individual vortices such as those in panels (a) and (b) (indicated by the gray

points), therefore most of the temperature anomaly is in the vortices. The mutual

advection of these vortices is the main mechanism by which heat is transported
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Figure II.3: (a) Growth rates of the linear baroclinic instability problem for dif-
ferent values of the bottom drag parameter. (b) Time series of eddy diffusivity for
different values κλ/U . The “instantaneous diffusivity” shown in these time series
is defined by taking 〈〉 in (II.1) only as an (x, y)-average. Panels (c) and (d) show
snapshots of the vorticity of the barotropic mode, ∇2ψλ/U . In panels (b), (c) and
(d), L/λ = 25. The box appearing in panel (d) is expanded in Figure II.4.
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Figure II.4: Non-dimensional (a) barotropic vorticity and (b) temperature from
the boxed region in Figure II.3(d). Panel (c) shows a scatter plot of temperature
and barotropic vorticity data for the snapshot in Figure II.3(d). The gray points
show the data that lie within the boxed region (panels (a) and (b) above). The
branches of the scatter plot represent individual vortices and illustrate the strong
correlation between temperature and barotropic vorticity in the vortex cores.

meridionally in this system.

LH95 showed that the potential vorticity flux and the meridional heat

flux (both of which are proportional to D) are dominated by the largest length

scales excited by the inverse cascade. LH95 associated the length k−1
0 ≫ λ with

both the mixing length and the peak of the barotropic energy spectrum. LH95 then

used the dual-cascade model as a framework to derive a scaling for the diffusive

parameterization of the eddy fluxes (for more detail see section II.3).

However if the bottom drag is strong enough to limit the inverse cascade
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to scales less than L, then arguments based on an inertial energy-conserving spec-

tral fluxes are invalid. And if bottom drag is sufficiently small to allow a relatively

undamped inverse cascade, then barotropic energy accumulates at the domain size,

which is just the global mixing regime in Figure II.1. In Held & Larichev (1996)

and Lapeyre & Held (2003), this concern is ameliorated because a planetary po-

tential vorticity gradient β halts the inverse cascade without damping, so that

the dual-cascade scenario is more plausible. But in the case studied here, with

β = 0, the dual-cascade scenario is implausible. Compounding these difficulties,

the dual-cascade scenario of Figure II.2 takes no explicit account of the vortices

which dominate the thermal field.

For the reasons above, we reject the dual-cascade scenario, and we support

this position by showing in sections II.3 and II.4 that the main scaling relations of

the dual-cascade scenario are inaccurate. We instead argue that eddy fluxes result

from the interaction of coherent baroclinic vortices. In the local mixing regime the

self-averaging of these vortices allows the properties of a single “typical” vortex to

be representative of domain-averaged quantities such as the turbulent diffusivity

D. Therefore in section II.4 we will consider the properties of a typical vortex core.

Relationships between vortex-core properties and domain-averaged values are then

applied to the energy balance in section II.5, which results in a scaling forD in both

global and local mixing regimes. In section II.6 we discuss the large-scale limit of

the equations of motion and we show that there is a new conserved quantity, the

cross-invariant, which characterizes the anti-correlation between τ and ζ . In section

II.7 we present an empirical formula that collapses the results of the simulations.

Section II.8 discusses the sensitivity of the numerical results to hyperviscosity

and resolution, and section II.9 is the discussion and conclusion. Appendix A

summarizes our notation and the two-mode quasigeostrophic equations, and in

Appendix B we describe an automated vortex census algorithm used to verify our

vortex-scaling assumptions.
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II.3 Large eddies and dual-cascade scaling

LH95 performed large-domain simulations with L/λ = 50, which for the

first time allowed the inverse cascade in the barotropic mode to be observed. An-

alyzing spectral representations of baroclinic and barotropic energy levels, LH95

found that energy production is localized at length scales much larger than the

Rossby deformation radius λ. On the other hand, energy transfer from the baro-

clinic to the barotropic mode near λ plays the passive, but important, role of

energizing the inverse cascade. LH95 then proposed a revision to the theory of

HH80 and Salmon (1980) by arguing that the appropriate mixing length should

be k−1
0 , not λ. LH95 identified k0 as the wavenumber corresponding to the peak

in the barotropic energy spectrum i.e., k0 is both the wavenumber of the energy-

containing eddies and the inverse of the mixing length. This modification of the

dual-cascade scenario is indicated in Figure II.2 by the arrow labeled LH95. Figure

II.2 also indicates that the exact location of k0 along the barotropic spectrum can

vary dramatically due to a strong dependence on bottom friction.

LH95 then proceeded to estimate the eddy diffusivity as

D = characteristic barotropic velocity, V × mixing length . (II.4)

Retaining the dual-cascade scenario as an interpretative framework, and taking

k−1
0 as the mixing length, LH95 argue that V ∼ U/k0λ. Thus, once the dust

settles, the final result is the dual-cascade scaling

D ∼ U/k2
0λ . (II.5)

The strong dependence of D on bottom drag κ is implicit in k0, but no relationship

between k0 and κ was proposed by LH95.

In Figure II.5 we test the scaling (II.5) using the data in Figure II.1 and

the definition

k0 ≡
√

〈|∇ψ|2〉 / 〈ψ2〉 . (II.6)
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Figure II.5(b) shows that k0 defined in (II.6) corresponds well to the peak in the

barotropic energy spectrum in both the local and global mixing regimes. We also

find that k0 defined in (II.6) is insensitive to changes in the hyperviscosity and

numerical resolution.

If the scaling in (II.5) is valid, then the non-dimensional ratio Dλk2
0/U in

Figure II.5(a) should be a constant, independent of both κλ/U and L/λ. Instead

Dλk2
0/U varies by a factor of 10. Our conclusion is that (II.5) has little value as a

correlation between eddy diffusivity D and the peak wavenumber of the barotropic

energy spectrum, k0. It is perhaps not surprising that a length scale associated

with the barotropic energy spectrum gives poor quantitative agreement in a flow

dominated by baroclinic vortices.

One reason behind the failure of (II.5) is the assumption that k−1
0 is

equivalent to the mixing length. A more precise definition of the mixing length is

ℓmix ≡ U−1
√

〈τ 2〉 . (II.7)

According to this definition, ℓmix times the basic state τ -gradient, U , is equal to

the root mean square fluctuation,
√

〈τ 2〉. This definition of the mixing length

is consistent with the large-scale limit of the governing equations in which the

baroclinic evolution equation reduces to advection of the quasi-passive scalar τ by

the barotropic flow (see section II.6).

Figure II.6(a) shows that the non-dimensional number k0ℓmix varies by

over a factor of two. Moreover, k0ℓmix has a maximum value as a function of

κλ/U . This peak in k0ℓmix is the clearest demarcation between the local and

global mixing regimes in our simulations1. This peak arises because ℓmix reaches

the domain size (and saturates) at a smaller value of κλ/U then does the energy-

containing length scale, k−1
0 . Further discussion of these two length scales appears

in section II.9. Figure II.6(b) shows ℓmix/λ as a function of κλ/U . The dashed

1Both Figure II.1 and Figure II.6(a) show that the value of κλ/U at which the local to global
transition occurs depends on L/λ. At L/λ = 50 the peak in k0ℓmix is roughly κλ/U = 0.1 At
L/λ = 25 the peak is at 0.16.
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Figure II.5: (a) A comparison of the dual-cascade prediction, D ∼ U/k2
0λ, to

the simulated D’s. Also shown is the ratio of the simulated D to DEB defined
in (II.31) for the local mixing regime. Points within the global mixing regime
use (II.29) with ℓmix = πL. (b) A comparison of the length scale k−1

0 , defined in
(II.6), to the LH95 definition of the energy containing length, which is identified
with the largest energy-containing wavenumber of the barotropic mode. The LH95
definition and our definition are in good agreement.
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A survey of ℓmix/λ values showing the statistical independence of domain size at
moderate values of κλ/U . (c) A comparison of the observed mixing length to the
empirical fit proposed in (II.37).

lines at the left are πL/λ and indicate that ℓmix saturates at about πL, or half

the domain size, as κλ/U → 0. In the local mixing regime, the eddy diffusivity

D is independent of domain size L, and Figure II.6(b) shows that the ratio ℓmix/λ

shares this independence.

Following the expression for D in (II.4) we also write the diffusivity in

terms of the eddy mixing length and the meridional barotropic velocity V . We

define

V ≡
√

〈ψ2
x〉, (II.8)
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and we introduce the correlation coefficient

c ≡ 〈ψxτ〉
√

〈ψ2
x〉 〈τ 2〉

, (II.9)

so that D = cV ℓmix. To examine this relationship we show the correlation c in

Figure II.7. In the local regime c has a weak dependence on κλ/U : the dashed line

in Figure II.7 indicates that c ≈ 1/4. Taking c to be constant, then, throughout

the local mixing regime, an important scaling relation2 is

D ∼ V ℓmix . (II.10)

II.4 Vortex properties in the local mixing regime

To this point we have introduced three diagnostics characterizing the

domain-averaged flow, namely D, ℓmix and V . We now consider the vortices them-

selves and relate vortex-core properties to D, ℓmix and V . We employ three im-

portant scaling assumptions which are valid in the local mixing regime:

1. Temperature, τ , and barotropic vorticity, ζ , are dominated by the vortex

cores. τcore and ζcore denote typical core values.

2A ∼ B (“A scales with B”) means that the ratioA/B is approximately constant as the control
parameters κλ/U and L/λ vary. In practical terms “approximately constant” means that A/B
varies by ±20% e.g., (II.10) is true in the local mixing regime since D = (0.25 ± 0.05)V ℓmix.
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2. A typical core radius, rcore, is significantly greater than λ, and core baro-

tropic potential vorticity scales with the core baroclinic potential vorticity

i.e., ζcore ∼ λ−2τcore.

3. ℓmix scales with the typical spacing between vortices, and the total number

of vortices ∼ (L/ℓmix)
2.

The three assumptions are supported by diagnosis of the simulations. Assumption

2 is a result of total potential vorticity conservation; assumption 2 is also supported

by the scatter plot in Figure II.4 (c).

We consider the flow to be a dilute vortex gas. Since the temperature

field is dominated by the vortex cores, the squared temperature fluctuation, 〈τ 2〉,
should scale with τ 2 integrated over a single vortex core, that is τ 2

corer
2
core, multiplied

by the number of vortices in the domain, L2/ℓ2mix, and finally divided by L2 to form

the average. Using the definition of ℓmix in (II.7) we can thus write τcore in terms

of the two length scales ℓmix and rcore as:

τcore ∼
Uℓ2mix

rcore
. (II.11)

We turn now to the second assumption, ζcore ∼ τcore/λ
2, and eliminate τcore using

(II.11). This gives:

ζcore ∼
Uℓ2mix

λ2rcore
. (II.12)

Next, following Carnevale et al. (1991), and using the estimate in their

equation (3), we relate the barotropic velocity V to the core vorticity by V ∼
ζcorer

2
core/ℓmix. Eliminating ζcore with (II.12) one has:

V ∼ Uℓmixrcore
λ2

. (II.13)

From (II.10) one now obtains the eddy diffusivity in terms of rcore and ℓmix:

D ∼ Uℓ2mixrcore
λ2

. (II.14)
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It is amusing that the scaling relations above imply that D ∼ ζcorer
2
core i.e., that

the circulation of a typical vortex scales with the eddy diffusivity.

To test (II.11) through (II.14) we need rcore. The most precise way to

obtain the typical vortex radius rcore is to identify individual vortices and measure

each rcore according to some objective definition. A faster and more convenient

alternative is to again use vortex-scaling theory and estimate 〈ζ2〉 as ζ2 integrated

over a single vortex core, that is ζ2
corer

2
core, multiplied by the number of vortices

in the domain, L2/ℓ2mix, and finally divided by L2 to form the average. This

gives 〈ζ2〉 ∼ (ζcorercore/ℓmix)
2. Using (II.12) and (II.13) this implies that rcore ∼

V/
√

〈ζ2〉. These considerations motivate the definition of a new length ℓζ as

ℓζ ≡
√

V 2

〈ζ2〉 , (II.15)

and the scaling hypothesis

rcore ∼ ℓζ . (II.16)

ℓζ is simply an easily diagnosed surrogate for rcore.

Invoking (II.16) we can replace rcore by ℓζ in (II.11) through (II.14). In

particular from (II.13) the vortex-scaling theory predicts that the ratio

κ1 ≡
V λ2

Uℓmixℓζ
=
λ2

√

〈ζ2〉
√

〈τ 2〉
, (II.17)

is constant. We see in Figure II.8(a) that this ratio is indeed remarkably constant

although there is variation in the value of κ1 due to resolution differences (for

further discussion see section II.8). These variations do not have a large effect

on our estimates for D in the following sections, and for the purposes of making

quantitative estimates we will take κ1 to be approximately 0.60 (the L/λ = 25

and 50 series). Another indication of the vortex gas scaling is that the ratio

κ2 ≡ − 〈τζ〉
√

〈τ 2〉 〈ζ2〉
, (II.18)

is also roughly constant and equal to 0.53, independent of resolution effects — see

Figure II.8(b).
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Figure II.8: A survey of the two constant ratios (a) κ1 ≡ λ2
√

〈ζ2〉/
√

〈τ 2〉 and (b)

κ2 ≡ 〈τζ〉 /
√

〈τ 2〉 〈ζ2〉. κ1 varies slightly due to resolution differences between L/λ
series (see section II.8). The dashed lines indicate κ1 ≈ 0.60 and κ2 ≈ 0.53. The
data shown here focuses on the local mixing regime. Results from some simulations
are unavailable because 〈ζ2〉 was not collected in the original suite of simulations.
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To further verify our vortex-scaling theory, we use an automated “vortex

census” to quantify vortex statistics in simulations at seven different values of

κλ/U . In Figure II.9 we provide confirmation of the two relationships prominently

involving the length scales ℓmix and rcore. In Figure II.9(a), we plot the mean

number of vortices, N , for each value of κλ/U . N is determined from 50 snapshots

of the barotropic vorticity field in its equilibrated turbulent state. Vortex theory

predicts ℓmix ∼ N−1/2 and our vortex census shows that ℓmix ∼ N−0.57±0.05. The

variation in the exponent is due to changes in the vortex census parameters. These

parameters and the vortex census algorithm are described in Appendix B. Figure

II.9(b) plots the ratio lζ/rcore, where rcore is determined from the vortex census. The

ratio is constant to within ±10% although the observed lζ/rcore does systematically

increase as κλ/U decreases. The core radius is difficult to quantify because typical

vortices only span 3-6 grid spaces for these large domain simulations. Still, the

results in Figure II.8 and Figure II.9 give us confidence that the assumptions made

at the outset of this section are indeed true: in the local mixing regime there is a

self-similar population of vortices.

To conclude this section we notice that (II.17) can be rearranged as

V λ

Uℓmix

≈ 0.60 × ℓζ
λ
. (II.19)

The dual-cascade scenario argues that direct and inverse cascade rates are equal

and thus predicts the ratio V λ/Uℓmix is constant. Equivalently, the large scale eddy

turnover time, ℓmix/V is equal to the linear baroclinic instability growth rate λ/U .

However, we show in the next section that the right hand side of (II.19) is actually a

non-constant function of κλ/U — see (II.26). Diagnosis of the simulations confirms

both (II.19) and (II.26).

II.5 The energy balance

In the previous sections we introduced six unknown quantities rcore (or

equivalently ℓζ), τcore, ζcore, D, V and ℓmix. We regard the first and last as the most
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Figure II.9: (a) The number of vortices in the equilibrated turbulent state for
seven different values of κλ/U as determined from an automated vortex census.
Smaller values of κλ/U correspond to fewer vortices and a larger mixing length;
vortex theory predicts lmix ∼ N−1/2. (b) lζ divided by rcore, as determined by the
vortex census, at the same seven values of κλ/U . The ratio is constant to within
±10%. A description of the vortex census algorithm is given in Appendix B.
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basic quantities and in (II.11) through (II.14) we have expressed the middle four in

terms of these. A final relationship that we have yet to exploit is the statistically

steady energy balance in (III.2). This provides a fifth relation between the six

unknowns rcore, τcore, ζcore, D, V and ℓmix.

Neglecting hyperviscosity, we can expand the energy balance in (III.2) to

write

Uλ−2 〈ψxτ〉 ≈ κ
(

〈

|∇ψ|2
〉

− 2
√

2 〈∇ψ · ∇τ〉 + 2
〈

|∇τ |2
〉

)

. (II.20)

Diagnostics show that within the local regime the three terms on the right hand

side of (II.20) are comparable3.

The definitions in (II.1) and (III.12) and the fact that the flow is largely

isotropic allows us to first re-write the energy balance as

U2

λ2
D ≈ κ

(

2V 2 − 2
√

2 〈∇ψ · ∇τ〉 + 2
〈

|∇τ |2
〉

)

. (II.21)

Using integration by parts, the quantity 〈∇ψ · ∇τ〉, which we will refer to as the

cross-invariant, can be re-written as −〈τζ〉. Both temperature and barotropic

vorticity are dominated by values in the vortex cores, therefore the product τζ is

strongly dominated by core values. Thus returning to our vortex core relations

from section II.4, and specifically using (II.18) with the definitions of ℓmix and ℓζ

in (II.7) and (II.15), we can write

−〈τζ〉 = κ2UV
ℓmix

ℓζ
, (II.22)

where κ2 ≈ 0.53. Note that the negative sign is necessary on the left hand side of

(II.22) because τ and ζ are negatively correlated. This strong anti-correlation be-

tween τ and ζ is important because the cross-term makes a significant contribution

to the dissipation in (II.20).

The final term on the right hand side of (II.20) involves 〈|∇τ |2〉. Unfor-

tunately, 〈|∇τ |2〉 cannot be directly related to the vortex core properties because

3The global mixing regime is much simpler because the Ekman dissipation is dominated by
the barotropic mode, εEkman ≈ κ

〈

|∇ψ|2
〉

.
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the domain-average of the temperature gradient fluctuations is not dominated by

vortex cores. Instead, equal contributions to this average come from the vortex

cores and the surrounding filamentary sea. In the sea between the vortices τ suf-

fers a cascade to small scales and |∇τ | can become comparable to typical core

values. The non-vortex contribution to 〈|∇τ |2〉 is further enhanced because the

filamentary sea accounts for a much larger percentage of the domain than do the

vortices.

The first hope then is that 〈|∇τ |2〉 is small relative to the other terms in

(II.20). But diagnosis shows that this is not the case in the local mixing regime.

Not only does 〈|∇τ |2〉 make an important contribution, but a surprisingly good

approximation in the local mixing regime is that

√
2
〈

|∇τ |2
〉

≈ 〈∇ψ · ∇τ〉 . (II.23)

That is, 〈|∇τ |2〉 cancels almost exactly half the cross-term, so that the total dis-

sipation on the right hand side of (II.20) can be approximated by κ(〈|∇ψ|2〉 −
√

2 〈∇ψ · ∇τ〉). Figure II.10(a) shows the ratio of this truncated dissipation εtrunc

to the total dissipation due to Ekman friction εEkman for 60 simulations. For most

of parameter space, the truncated dissipation is accurate to within ±5% of the

total Ekman dissipation. To understand why the approximation in (II.23) is so

accurate, we must consider the large-scale limit of the governing equations and

conservation of the cross-invariant in section II.6.

Returning to the energy balance in (II.21), and applying the approxima-

tions in (II.22) and (II.23) we have

U2

λ2
D ≈ κ

(

2V 2 −
√

2κ2UV
ℓmix

ℓζ

)

. (II.24)

If we first replace D with cV ℓmix and then multiply (II.24) by a factor of λ3/U3ℓ2mix,

we find that each of the three terms is proportional to some power of V λ/Uℓmix.

From (II.17) this ratio is equivalent to κ1ℓζ/λ. These steps reduce (II.24) to the
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Figure II.10: (a) The ratio of the truncated dissipation εtrunc =
κ

(

〈|∇ψ|2〉 −
√

2 〈∇ψ · ∇τ〉
)

to the total Ekman dissipation εEkman =

κ
(〈

|∇ψ −
√

2∇τ |2
〉)

. (b) The ratio of the two terms comprising εtrunc. One can
show from (II.17), (II.22) and (II.26) that vortex-scaling theory predicts this ratio
to be approximately

√
2κ1κ2/2Q2, where Q(κ∗) is defined in (II.27). The dashed

line shows that there is good agreement between theory and the simulations. In
the global mixing regime εtrunc ≈ 〈|∇ψ|2〉.
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quadratic equation

2κ∗

(

κ1

ℓζ
λ

)2

− c

(

κ1

ℓζ
λ

)

−
√

2κ∗κ1κ2 ≈ 0 , (II.25)

where κ∗ = κλ/U , the non-dimensional bottom friction. Solving (II.25) and choos-

ing the positive root gives

κ1

ℓζ
λ

≈ Q(κ∗) , (II.26)

where

Q(κ∗) ≡
1

2

[

c

2κ∗
+

√

c2

4κ2
∗

+ 2
√

2κ1κ2

]

,

=
1

2

[

1

8κ∗
+

√

1

64κ2
∗

+ 0.9

]

. (II.27)

In the second expression the numerical values are obtained using c = 0.25, κ1 =

0.60 and κ2 = 0.53.

The goal is to find a scaling for D, so we return to D = cV ℓmix, and

express V in terms of ℓζ and ℓmix using (II.17). With c = 1/4 this leads to

D ≈ Uℓ2mix

4λ
×

(

κ1

ℓζ
λ

)

, (II.28)

or using (II.26)

D ≈ Uℓ2mix

8λ

[

1

8κ∗
+

√

1

64κ2
∗

+ 0.9

]

. (II.29)

A complete expression for D solely in terms of external parameters re-

quires another relation connecting ℓmix and to known quantities. Unfortunately we

have not found a physical argument for this relationship. Instead in section II.7 we

propose an empirical fit for ℓmix. The main result obtained from those empirical

considerations is that in the local regime

ℓloc
mix ≈ 4λ exp

(

3U

10κλ

)

, (II.30)

(see (II.38) and the surrounding discussion). Eliminating ℓmix from (II.29) using

(II.30) gives the energy-balance scaling, D ≈ Dloc
EB, where

Dloc
EB ≡ 2 exp

(

3

5κ∗

)

[

1

8κ∗
+

√

1

64κ2
∗

+ 0.9

]

Uλ . (II.31)
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This equation is the smooth curve in Figure II.1. Furthermore, panel (a) of Figure

II.5 shows the ratio of the simulated D to DEB within the local mixing regime. For

data within the global mixing regime, ℓmix is set equal to πL in (II.29). The ratio

is close to unity in the local mixing regime, and even does reasonably well in the

global mixing regime where c, κ1 and κ2 are variable. Further discussion of the

transition from local to global mixing appears in section II.7.

II.6 The large-scale limit and the cross-invariant

Our analysis of the energy balance equation in section II.5 relies crucially

on the approximation (II.23) which enables us to relate 〈|∇τ |2〉 to vortex prop-

erties. To understand this approximation we consider the large-scale, slow-time

limit of the equations of motion i.e., the dynamics on length scales much greater

than λ. To extract this limit we first non-dimensionalize length with λ and time

with λ/U . Then if ǫ ≡ λ/ℓmix ≪ 1, one obtains the large-scale limit with ∂x → ǫ∂x

and ∂t → ǫ∂t. In order to retain the proper balance of terms, the amplitudes of

ψ and τ are boosted by a factor of 1/ǫ. The result of this maneuver is the scaled

evolution equations:

∇2ψt + J
(

ψ,∇2ψ
)

+ J
(

τ,∇2τ
)

+ ∇2τx = −κ∗
ǫ
∇2

(

ψ −
√

2τ
)

+O(ǫ2) , (II.32)

τt + J (ψ, τ) − ψx = −
√

2ǫκ∗∇2
(√

2τ − ψ
)

+O(ǫ2) , (II.33)

where κ∗ = κλ/U . The left of (II.32) and (II.33) is familiar from earlier studies

of large-scale quasi-geostrophic turbulence (Salmon 1980, LH95). The right hand

sides of (II.32) and (II.33) reveal the large-scale effects of bottom friction. In

(II.32) the O(ǫ−1κ∗) dissipative terms on the right are significant, if not dominant,

depending on the size of κ∗. Notice also that the largest coupling of ψ into (II.33)

is due to bottom friction, rather than the O(ǫ2) non-linear terms.

If κ∗ = O(1), we must have ψ −
√

2τ = O(ǫ) to control the ǫ−1 term

on the right of (II.32). This is Arbic and Flierl’s (2004a) equivalent barotropic
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flow, where the lower layer is almost spun down4. Roughly speaking ψ −
√

2τ =

O(ǫ) is characteristic of most of the local regime. We resisted this conclusion and

attempted to control the ǫ−1 term on the right of (II.32) by making κ∗ sufficiently

small. But this victory is pyrrhic because once κ∗/ǫ = O(1) the system is in the

global regime. Thus in the local regime, where the concept of an eddy diffusivity is

relevant, the bottom friction is always painful in the large-scale barotropic vorticity

equation (II.32). This is a fundamental reason for the failure of the dual-cascade

theory.

The non-linear terms in (II.32) and (II.33) conserve the cross-invariant

〈∇ψ · ∇τ〉 = −〈τζ〉 . (II.34)

The strong anti-correlation between τ and ζ within the vortex cores motivates

this analysis of the cross-invariant. To obtain the cross-invariant conservation law,

multiply (II.32) by τ and (II.33) by ζ and add the results. Averaging over space,

one finds that to leading order

∂

∂t
〈τζ〉 =

κ∗
ǫ

(

〈∇ψ · ∇τ〉 −
√

2
〈

|∇τ |2
〉

)

. (II.35)

We emphasize that (II.35) is a new conservation law of the large-scale dynamics

— there is no clear relation between (II.35) and the energy and enstrophy con-

servation laws of the full system. Now in statistical steady state there can be no

net production of the cross-invariant 〈τζ〉. This requires that the right hand side

of (II.35) is zero (or take a time average). This prediction is well verified in the

simulations, and crucial in simplifying the energy balance equation in section II.5

(see (II.23) and subsequent discussion).

II.7 Empirical expressions for the mixing length

To eliminate the mixing length from (II.29) we need to express ℓmix in

terms of external parameters. We are unable to find a satisfactory physical ar-

4Notice that if ψ is precisely proportional to τ then the energy production 〈ψxτ〉 also precisely
vanishes. Thus the residual ψ −

√
2τ is certainly non-zero and very important.
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Figure II.11: According to the energy-balance relation and vortex-gas scaling,
the local-mixing regime is characterized by V λ/QUL ≈ ℓmix/L ∝ exp(ℵ) and
(Dλ/QUL2) ∝ exp(2ℵ). These predictions are confirmed above by the collapse of
the data to straight lines in the local regime where ℵ < 0. ℵ also collapses the
data in global regime where ℵ > 0. The variable ℵ is defined in (II.36), and the
function Q(κ∗) in (II.27).

gument and instead we indulge in some curve fitting. In Figure II.6(b), ℓmix has

an independent dependence on two dimensionless parameters, L/λ and κλ/U . We

found empirically that the introduction of the combination ℵ, defined by

ℵ ≡ 3

10

U

κλ
− ln

(

πL

4λ

)

, (II.36)

collapses the data in both the local and global regimes (see Figure II.11).

The definition (II.36) is constructed so that ℵ = 0 is roughly the border

between local and global mixing. The factor 3/10 is a simple fraction which best

collapses the ℓmix data in the local mixing regime. The combination ℵ accounts
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for the observation that for increasing L/λ, the global-local transition occurs at

smaller and smaller values of κλ/U . However the dependence is very weak, and

this motivates the logarithm of L/λ in (II.36).

Using ℵ, we propose the empirical formula

ℓmix ≈ πL
eℵ√

1 + e2ℵ
≡ πLF(ℵ) . (II.37)

Panel (c) of Figure II.6 shows that (II.37) collapses the ℓmix data. Formula (II.37)

is constructed so that

ℓmix ≈











πL , in the global regime, e2ℵ ≫ 1 ,

πL exp(ℵ) = 4 λ exp(3U/10κλ) , in the local regime, e2ℵ ≪ 1 .

(II.38)

In the global mixing regime ℓmix saturates at πL, or roughly half the domain size.

In the local regime ℓmix is independent of L and exponentially sensitive to κλ/U .

It is our consistent experience that this exponential dependence of ℓmix

on U/κλ is more convincing than a power law in the local regime. For example,

the ℓmix/L points in Figure II.11 fall cleanly on the straight line corresponding to

eℵ. This observation is the most compelling motivation for the introduction of eℵ

in (II.37) and (II.38).

In the local mixing regime the vortex-scaling theory in (II.13) and (II.14)

predicts that V ∝ rcoreℓmix and D ∝ rcoreℓ
2
mix. Since rcore ∼ ℓζ ∝ Q(κ∗) we can

eliminate the dependence on rcore by considering V/Q and D/Q, where Q(κ∗) is

defined in (II.27). Thus in the local mixing regime vortex scaling predicts that

V

Q ∝ ℓmix ∝ eℵ . (II.39)

and
D

Q ∝ ℓ2mix ∝ e2ℵ . (II.40)

Figure II.11 shows the ratios above plotted against ℵ. The straight lines in the

local regime (ℵ < 0) further confirm vortex-scaling. Figure II.11 also shows that
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all the major properties of this dilute vortex gas are exponentially sensitive to the

bottom drag.

II.8 Resolution and hyperviscosity

To prevent build-up of enstrophy at small scales, it is necessary to include

a dissipative term acting selectively on high wavenumbers. Arbic and Flierl (2003,

2004b) have shown that geostrophic turbulence simulations do not depend strongly

on the form of this small-scale dissipation, e.g. hyperviscosity or wavenumber filter.

Regardless of form, though, the dissipation of energy due to this term should be

relatively small.

In our simulations we follow LH95 and use a hyperviscous term of the form

∇8 (see Appendix A). The rationale for this high-order operator is that it limits

dissipation to the very largest wavenumbers, and leaves as much spectral room as

possible for the direct enstrophy cascade. In order to compare our results with

those reported in LH95 we repeated their main experiment, namely experiment I,

which has the following parameters:

L

λ
= 50,

κλ

U
= 0.08,

ν

UL7
= 1.024 × 10−13, nn = 2562 .

Above, nn is the number of grid points.

In this simulation 22.2% of the total energy extracted from the mean flow

in the statistically steady state was balanced by the hyperviscous term hypν in

(A.16) and (A.17). In LH95 hyperviscosity contributed to 19.9% of the dissipation;

this discrepancy is most likely due to differences in the Ekman dissipation term in

the layer and modal formulations. However, in a simulation where L/λ was reduced

to a value of 25, with κλ/U , ν/UL7 and nn remaining fixed, the hyperviscous

dissipation dropped to 7.13%.

This latter simulation has a finer resolution per deformation radius. In

other words, given the same number of grid points, the flow is better resolved for
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Table II.1: Overview of small-scale dissipation parameters in all of the simulations.
The symbols corresponding to each group of simulations are the same in all figures.
The number of grid points per deformation radius was determined by taking the
number of grid points on one side of the domain and dividing by 2πL/λ.

Symbol L/λ ν/UL7 Grid points Grid points/λ

+ 6.25 2.048 × 10−13 1282 3.26
∗ 12.5 2.048 × 10−13 1282 1.63
× 12.5 6.55 × 10−12 1282 1.63
△ 25.0 1.024 × 10−13 2562 1.63
◦ 50.0 1.024 × 10−13 5122 1.63
• 50.0 1.024 × 10−13 2562 0.815
� 100.0 1.60 × 10−15 5122 0.815

smaller values of L/λ. We found that the resolution is at least as important as

the actual coefficient of hyperviscosity, ν, in determining hypν. Table II.1 gives an

overview of the various small-scale dissipative parameters used in this study, and

Figure II.12(a) shows Ekman dissipation εEkman divided by total dissipation εtotal

(Ekman and hyperviscous) for all the simulations. It is reassuring to see that as

the resolution increases the hyperviscous contribution decreases.

In our earliest large-domain simulations (i.e. L/λ = 100 with nn = 5122

and L/λ = 50 with nn = 2562), the hyperviscous energy dissipation was roughly

20% to 30% of the total. We regard this as an uncomfortably large contribution

from the hyperviscosity. Thus we performed a second series at L/λ = 50, doubling

the resolution to nn = 5122. The hyperviscous parameter ν was also reduced as

the resolution was increased as described in Table II.1. Within the global mixing

regime, smaller times steps are necessary for stability and a longer averaging time is

necessary to remove turbulent fluctuations. This computational burden prevented

the four global-mixing runs from being completed at 5122 and so the comparison

is limited to the local mixing regime. Comparing the •’s with the ◦’s in Figure

II.12(a) shows that increasing the resolution to 5122 drops the hyperviscous energy
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Figure II.12: (a) The ratio of the dissipation due to Ekman drag to the total
dissipation (Ekman and hyperviscous). The two circle experiments (L/λ = 50)
have different resolutions: 5122 (open) and 2562 (closed). Two series of simulations
with L/λ = 12.5 were completed with different values of ν: 2.05e-13 (*) and 6.55e-
12 (×). (b) Values of D for runs with L/λ = 50. (c) Values of D with L/λ = 12.5.
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dissipation considerably.

Other quantities are also sensitive to resolution. One example of this

is the correlation coefficient c. Simulations with a fine resolution show that c is

approximately constant and equal to 1/4 in the local mixing regime. Values of

c for the reduced resolution sequences with L/λ = 100 and 50 collapsed onto a

single curve with values between 0.27 and 0.37 in the local regime (not shown).

This systematic variation due to insufficient resolution was limited to data within

the local mixing regime. This led us to omit data for simulations with L/λ = 100

for some plots. Also, in Figure II.8(a), 〈ζ2〉 is shown to be sensitive to simulation

resolution.

Considering the effect resolution has on hypν, c, κ1 and other properties,

it is somewhat surprising that varying resolution makes only a small change in D.

Figure II.12(b) compares the values of D for the two series with L/λ = 50. All the

simulations in the local mixing regime have been performed at both resolutions,

and the values of D are so similar that it is difficult to distinguish the •’s from

the ◦’s in Figure II.12(b). This result gives us confidence in our L/λ = 100 results

for D despite the large hyperviscous energy dissipation in this sequence ( Figure

II.12(a)).

As a further test, Figure II.12(c) shows that varying ν at fixed resolution

has a small effect on D. Figure II.12(c) shows two sequences, ∗ and ×, with

L/λ = 12.5 and ν× = 32ν∗, with nn = 1282 in both cases. Again, the large

change in ν has little impact on D, especially in the local mixing regime. In the

global regime there is a systematic decrease in D for the simulations with increased

hyperviscosity. This discrepancy may be due to the fact that the simulations with

increased ν spin up faster, and are also less volatile.
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II.9 Discussion and Conclusions

In this article we have shown that the main predictions of the dual-cascade

theory of equilibrated baroclinic turbulence on an f -plane are inaccurate e.g., the

ratios Dk2
0λ/U and V λ/Uℓmix are not constant. We have identified the underlying

physical reasons for the failure of this theory, e.g., the dominance of bottom drag

in the large-scale barotropic vorticity equation (II.32), and the prominence of co-

herent vortices. We have proposed an alternative theory for baroclinic eddy fluxes

based on vortex-gas scaling (Carnevale et al., 1991) and energy balance. Anima-

tions of equilibrated simulations show that vortices persist and travel across the

domain. The baroclinic heat flux is evident in these animations as a systematic ten-

dency for hot anti-cyclonic vortices to move northwards, and cold cyclonic vortices

southwards. However a great difference from the barotropic problem studied by

Carnevale et al. (1991) is that in the equilibrated state same-signed vortex-merger

is rare.

An important feature of the vortex theory is that there are at least four

relevant length scales. In the local regime these four adhere to the relationships

λ < rcore ≪ ℓmix ≪ L . (II.41)

Scale separation between L and ℓmix is necessary for the validity of diffusive pa-

rameterizations, but there is also an important scale separation between ℓmix and

rcore. In section II.4 we showed that the diffusivity D depends on both the mixing

length and the core radius through

D ∼ Uℓ2mixrcore
λ2

. (II.42)

In section II.5 the mechanical energy equation (III.2) is used to express ℓζ (and

therefore rcore) in terms of κλ/U e.g., see (II.26). And in section II.7 we proposed

an empirical expression for ℓmix in terms of κλ/U e.g., see (II.38). The exponential

sensitivity of ℓmix to κλ/U enters through this empirical relation. But a compelling
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physical explanation for this exponential relation has eluded us. We believe that

the answer is again related to the long-lived coherent vortices that dominate the

flow. A full understanding of homogeneous quasi-geostrophic turbulence on an f -

plane will require an analysis of how these coherent structures are created, how they

work to halt the linear baroclinic instability, and how they interact in statistical

equilibrium.

Of course, introduction of a planetary potential vorticity gradient, β,

would make this model more applicable to the ocean and also provide a mecha-

nism for halting, without damping, the inverse cascade and suppressing vortices.

Held & Larichev (1996) and Lapeyre & Held (2003) have shown that β can indeed

halt the inverse cascade, and they have presented scalings for the diffusive flux

again applying the dual-cascade model. Danilov & Gurarie (2002) have presented

barotropic simulations that include both bottom friction and β and have docu-

mented a transition between friction-dominated and β-dominated regimes. Still,

an understanding of how these two mechanisms influence the eddy fluxes and the

formation of coherent structures is incomplete. This will be one focus of a forth-

coming study based on a new suite of simulations that include the effects of β

and bottom friction. Preliminary results suggest that coherent structures can be

prominent features even in simulations with moderate values of β. Thus the work

presented here lays a foundation for understanding the role of coherent structures

and eddy fluxes that will apply to more realistic models.
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III

Assessment of a theory for eddy
heat fluxes

III.1 Abstract

The eddy heat flux generated by the statistically equilibrated baroclinic

instability of a uniform, horizontal temperature gradient is studied using a two-

mode β-plane quasigeostrophic model. A summary of the dependence of the eddy

diffusivity of temperature Dτ on β, bottom friction κ, the deformation radius λ and

the vertical shear of the large-scale flow 2U is provided by numerical simulations

at 110 different values of the non-dimensional parameter space β∗ = βλ2/U and

κ∗ = κλ/U . The diffusivity Dτ has a complicated dependence on both β∗ and κ∗,

highlighted by the fact that reducing κ∗ leads to increases (decreases) in Dτ if β

is less than (greater than) βpiv
∗

= 11/16. Previous parameterizations of Dτ , based

on Kolmogorovian cascade theories and dependent only on β∗, are shown to be

unreliable.

A strong correlation between the barotropic vorticity ζ and the baroclinic

mode (or temperature) τ , which exceeds 0.9 in the zonal mean flow, provides a

source of energy to the barotropic mode at scales larger than the λ-scale forcing

associated with baroclinic instability. The baroclinic mode also plays an active role

in energizing the zonal mean flow through non-zero Reynolds stress correlations

caused by eddy shearing along the jet flanks. Local inhomogeneity generated by

54
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the spontaneous formation of zonal jets leads to limitations on the traditional use

of turbulent diffusivities to describe domain-averaged eddy fluxes.

III.2 Introduction

Rhines (1977) and Salmon (1980) characterize energy transfers in baro-

clinic turbulence as a direct cascade of the baroclinic mode and a simultaneous

inverse cascade of the barotropic mode. This dual cascade scenario serves as an

interpretive framework for recent parameterizations of meridional eddy heat and

potential vorticity fluxes (Larichev & Held 1995, Held & Larichev 1996, Lapeyre

& Held 2003). In these theories the barotropic inverse cascade proceeds to small

wavenumbers till the cascade halts at a wavenumber k0. The length k−1
0 charac-

terizes the largest barotropic eddies and k−1
0 is also the mixing length of heat and

potential vorticity. There are two mechanisms which might determine k0 by slow-

ing or halting the inverse cascade: the planetary potential vorticity (PV) gradient,

β, and bottom friction.

Because the β-effect does not dissipate energy, β alone cannot halt the

inverse cascade and determine k0. Thus bottom drag plays an essential role at

the terminus of the inverse cascade by dissipating the kinetic energy continually

supplied by release of available potential energy. In other words, truly halting

the inverse cascade requires dissipation at large scales, and only bottom drag can

accomplish this. An extreme case which makes this point is the problem of statis-

tically steady baroclinic turbulence with β = 0. At this β = 0 end-point, the eddy

heat flux is exponentially sensitive to the strength of the bottom drag coefficient

(Thompson & Young 2006).

In view of the importance of bottom drag, it is dismaying that the bottom

drag coefficient does not play an explicit role in the heat-flux parametrizations

proposed by Held & Larichev (1996) and Lapeyre & Held (2003, LH03 hereafter).

A defense of these dragless heat-flux parametrizations is that β directs energy into
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zonal flows (Rhines 1975, Williams 1979, Panetta 1993, Vallis & Maltrud 1993, Lee

1997), which do not contribute to meridional eddy diffusion. In this view the strong

zonal flows spontaneously generated by baroclinic turbulence, see Figure III.1 and

Figure III.2, serve as a non-diffusive reservoir of barotropic kinetic energy and,

through bottom friction, as the energy sink at the terminal wavenumber of the

inverse cascade (Smith et al. 2002). Thus it is possible to maintain, following

LH03, that with β 6= 0 the amplitude of eddy heat fluxes is insensitive to the

bottom drag coefficient.

This seems too good to be true, and it is: a main goal in this compu-

tational study of baroclinic instability is to document the importance of bottom

drag in limiting baroclinic eddy heat fluxes. We consider the combined effects of

β and bottom friction on meridional eddy heat fluxes and report results based on

a suite of 110 statistically equilibrated simulations of baroclinic turbulence. These

simulations significantly extend and augment the parameter regimes of previous

studies. Although the dependence on bottom drag is not nearly as strong as the ex-

ponential relation found by Thompson & Young (2006) in the β = 0 limit, the new

simulations show that even with substantial β, bottom drag remains an important

control parameter.

In section III.3 we introduce the energy balance integral and define the

eddy diffusivities that are used to summarize the suite of simulations. In section

III.4 we review and assess the LH03 theory of baroclinic eddy fluxes. Section III.5

provides two specific examples of how the barotropic inverse cascade is modified

in the baroclinic system. In section III.6 we confirm that eddy diffusivities and

the heat fluxes are insensitive to the domain scale L, and to the the hyperdiffusiv-

ity. Our conclusions are presented in section III.7. The equations of motion are

summarized in Appendix A.
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Figure III.1: Overview of the baroclinically unstable β-plane simulations. (a)
Growth rates of the linear baroclinic instability for three values of β∗ ≡ βλ/U all
with κ∗ ≡ κλ/U = 0.02; bottom friction produces instability at the frictionless
critical value β∗ = 1. (b) Three time series of the eddy diffusivity Dτ/Uλ all at
κ∗ = 0.02. The “instantaneous” diffusivity is defined by taking 〈〉 in (III.1) only
as an (x, y) average. (c) Hovmoller diagram of the zonally averaged barotropic
velocity −ψ̄y with β∗ = 1/2, κ∗ = 0.02. (d) Snapshot of the eddy streamfunction
ψ′ = ψ − ψ̄ for the simulation in panel (c); ψ′ is dominated by isotropic eddies
with the same scale as the zonal jets in panel (c). Panels (e) and (f ) are the same
as (c) and (d) but for a simulation with β∗ = 1 and κ∗ = 0.02.
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Figure III.2: Zonal mean fields at the parameter values indicated in panels (c) and
(f ). Panels (a) and (d) show the velocities, Un = Un − ψ̄ny in the upper (solid)
and lower (dashed) layers. The basic-state velocity jump between the layers, 2U ,
is indicated by the dotted lines. Panels (b) and (e) show the PV gradients in the
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III.3 Eddy fluxes and diffusivities

To summarize the results of our simulations, we calculate an eddy diffu-

sivity of temperature, Dτ , and obtain the dependence of Dτ on external parameters

such as the domain size L, the bottom drag coefficient κ, the Rossby deformation

radius λ, the imposed velocity jump 2U and β. Our notation is introduced sys-

tematically in Appendix A and is largely the same as that of Larichev & Held

(1995): τ(x, y, t) and ψ(x, y, t) are the disturbance stream functions of the baro-

clinic and barotropic modes respectively. The baroclinic stream function τ plays

the role of an interface displacement or a thermal field. The large scale gradient

of the baroclinic mode is −U , and thus a precise definition of the eddy diffusivity

of temperature, Dτ , is

Dτ ≡ U−1 〈ψxτ〉 . (III.1)

Here 〈〉 denotes both a horizontal average over the square 2πL × 2πL domain,

and an additional time average to remove residual turbulent fluctuations. An

important point is that Dτ is useful only if it is insensitive to the domain size

L (Haidvogel & Held 1980). In this case one can hope that Dτ inferred from a

spatially homogeneous calculation can be employed in a more realistic flow with

scale separation between a slowly varying mean and baroclinic eddies (Pavan &

Held 1996).

The quantity 〈ψxτ〉 in (III.1) is the product of the barotropic meridional

velocity, ψx, and the thermal field τ i.e., the meridional heat flux is proportional

to 〈ψxτ〉. Moreover, the mechanical energy balance in a statistically steady state

(see Appendix A) is

Uλ−2 〈ψxτ〉 = κ
〈

|∇ψ −
√

2∇τ |2
〉

+ hypν , (III.2)

where “hypν” indicates the hyperviscous dissipation of energy. The first term

on the right hand side of (III.2) is the mechanical energy dissipation (Watts per
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kilogram) by bottom drag, κ. We will refer to dissipation by bottom friction as

ε ≡ κ
〈

|∇ψ −
√

2∇τ |2
〉

, (III.3)

which neglects the hyperviscous contribution in (III.2). The left hand side of

(III.2) is the energy extracted from the unstable horizontal temperature gradient

by baroclinic instability. Enstrophy budgets also identify 〈ψxτ〉 as the large-scale

source balancing the hyperviscous enstrophy sink at high wavenumbers.

As an alternative to the baroclinic-barotropic decomposition, the system

can be represented in terms of two layers; the layerwise velocities and potential

vorticities are defined in terms of ψ and τ in Appendix A. The domain-averaged

PV fluxes in the upper and lower layers are linearly related to the eddy heat flux

by the Taylor-Bretherton relationship

−〈v1q1〉 = 〈v2q2〉 = λ−2 〈ψxτ〉 . (III.4)

The basic state gradients of upper and lower layer PV are β +U/λ2 and β −U/λ2

respectively. Thus the upper (n = 1) and lower (n = 2) layer PV diffusivities are

related to Dτ by

Dτ = D1

(

1 +
βλ2

U

)

, (III.5)

Dτ = D2

(

1 − βλ2

U

)

. (III.6)

Thus a single quantity, conveniently defined as Dτ in (III.1), summarizes all of the

important quadratic power integrals and fluxes in homogeneous baroclinic turbu-

lence.

Dimensional considerations (Haidvogel & Held 1980) show that

Dτ = Uλ×Dτ∗

(

L

λ
,
κλ

U
,
βλ2

U
,
ν

UL7

)

, (III.7)

where Dτ∗ is a dimensionless function. The final argument of Dτ∗, involving the

hyperviscosity ν, is relatively small (see section III.6). For brevity we suppress
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reference to this hyperviscous parameter. We also focus on a single value L/λ = 25,

however, we check for dependence on L as described in section III.6.

Figure III.3(a) summarizes a suite of 110 numerical simulations revealing

the main features of the function Dτ∗(25, β∗, κ∗), where β∗ ≡ βλ2/U and κ∗ ≡
κλ/U . Dτ∗ varies over five orders of magnitude in response to much smaller changes

in β∗ and κ∗. Some trends in Figure III.3 are clear: Dτ∗ decreases monotonically

with increasing β∗. However, other trends are more complicated, particularly the

role of bottom friction. Close to the special “pivot” value β∗ = βpiv
∗

≈ 11/16,

Dτ∗ has a weak dependence on bottom friction. For β∗ < βpiv
∗

, increasing bottom

friction reduces Dτ∗, whereas for β∗ > βpiv
∗

, increasing bottom friction increases

Dτ∗. This behavior is shown in Figure III.3(b) where five values of β∗ illustrate

the bottom friction dependence. The same trend is seen in Figure 14 of Panetta

(1993).

III.4 Assessment of LH03

The energy balance in (III.2) provides one relationship between the dis-

sipation ε and the energy production, or equivalently, the eddy diffusivity Dτ .

Specifically, using the definitions of Dτ and ε in (III.1) and (III.3), and neglecting

the hyperviscous dissipation, we obtain

U2

λ2
Dτ ≈ ε . (III.8)

Figure III.4(a) shows that (III.8) is an excellent approximation; the small deviation

of the ratio ελ2/U2Dτ from 1 is due to the hypν contribution to the dissipation.

The hyperviscous dissipation is never more than 12% and can be reduced further

by increasing the resolution (see section III.6).

Held & Larichev (1996) propose a closure obtained from cascade argu-

ments in which β halts the barotropic inverse cascade by directing energy into

zonal modes. Forming a diffusivity from β and the inverse cascade rate (which
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by (III.10) (with c = 1.25). At β∗ = βpivot = 0.72, there is weak dependence on
κ∗. For β∗ < βpivot, increasing κ∗ decreases Dτ , while for β∗ > βpivot, increasing
κ∗ increases Dτ . Data at five values of β∗ (indicated by the dotted lines) are
expanded in panel (b) to illustrate the weaker but still significant dependence on
κ∗. The point at β∗ = 1/4 and κ∗ = 0.02 is flagged with a “?” to indicate possible
dependence on domain size (see section III.6).



63

0 0.2 0.4 0.6 0.8 1 1.2
0.85

0.9

0.95

1

βλ2/U

ελ
2 /U

2 D
τ

(a)

0 0.2 0.4 0.6 0.8 1 1.2
10

−1

10
0

10
1

βλ2/U
ε3/

5 /β
4/

5 D
2

(b)

κλ /U = 0.02
κλ /U = 0.04
κλ /U = 0.08
κλ /U = 0.16
κλ /U = 0.32
κλ /U = 0.64

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

βλ2/U

ε2/
5 /β

1/
5 V

(c)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

βλ2/U

ε2/
5 /(

κ/
λ)

1/
5 V

(d)

Figure III.4: (a) Ratio of terms in the energy balance approximation U2Dτ/λ
2 ≈ ε.

The systematic departure from 1 is because the hyperviscous dissipation is not
included in definition of ε in (III.3). (b) The ratio D2 ∝ ε3/5β−4/5. (c) The ratio
ε2/5/V β1/5. (d) The ratio ε2/5λ1/5/V κ1/5. The collapse in panel (d) is better than
the LH03 proposal in panel (c).



64

is assumed to be equivalent to ε in a steady state), dimensional analysis gives

Dτ = cε3/5β−4/5, where c is a dimensionless constant. This relation between D,

ε and β is supported by the arguments and numerical simulations of Smith et al.

(2002), which employ a barotropic model. Combining Dτ = cε3/5β−4/5 with (III.8)

gives the Held & Larichev (1996) result, namely Dτ = c5/2U3/(λ3β2).

One immediate problem with Held & Larichev’s argument is that there

are three diffusivities: in addition to Dτ we have the PV diffusivities D1 and D2 in

(III.5) and (III.6). If one argues that one of these three diffusivities involves only

ε and β, then the other two will have additional dependence on other parameters.

Thus the association of the dimensional combination cε3/5β−4/5 with Dτ , as op-

posed to D1 or D2, is a significant hypothesis. Indeed LH03 updated the theory of

Held & Larichev by identifying the eddy diffusivity cε3/5β−4/5 with the lower layer

PV diffusivity D2, rather than Dτ :

D2 ≈ cε3/5β−4/5 . (III.9)

The motivation for (III.9) is that the weaker PV gradient in the lower layer allows

larger meridional particle excursions so that lower layer PV behaves more like a

passive tracer. The ratio β−4/5ǫ3/5D−1
2 is shown in Figure III.4(b): there is strong

dependence on both β and κ indicating that c in (III.9) is not constant.

Using (III.6) and (III.8), D2 and ε are eliminated from (III.9), which

yields the prediction

Dτ/Uλ ≈ c5/2β−2
∗

(1 − β∗)
5/2 , (III.10)

where β∗ ≡ βλ2/U . The relation above is the dotted curve in Figure III.3 with

c = 5/4 1. Given the quantitative problems with (III.9), it is not surprising that

(III.10) fails to condense the simulations.

The absence of κ∗ in (III.10) leads to poor agreement at both small values

of β∗, and also when β∗ is close to 1. Thompson & Young (2006) discuss the case

1LH03 tested (III.9) with simulations only at κ∗ = 0.16. At this particular value of κ∗ our
results agree with theirs.
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β∗ = 0 in detail. Their conclusion is that a well-defined Dτ — independent of

domain size — exists provided that κ∗ is not too small2. When β∗ is close to 1,

(III.10) does not account for the fact that bottom friction destabilizes the system

beyond the frictionless critical value β∗ = 1 (Holopainen 1961; Pedlosky 1987;

Arbic & Flierl 2004). Equation (III.10) predicts Dτ → 0 as β∗ approaches 1 from

below, whereas statistically steady, small non-zero values of Dτ are achievable out

to at least β∗ ≈ 1.5. Finally, if β∗ < βpiv
∗

then Dτ decreases with increasing κ∗.

But if β∗ > βpiv
∗

then Dτ increases with increasing κ∗. Thus the simple remedy of

making c in (III.10) a function of κ∗ cannot collapse the data.

A consequence of the dimensional arguments leading to (III.9) is that

other important descriptors of the flow also remain independent of bottom friction.

Thus another prediction of LH03 is

V = cV ε
2/5β−1/5 , (III.11)

where

V ≡
√

〈ψ2
x〉 , (III.12)

is the RMS meridional velocity of the barotropic mode. However, when we plot

the ratio ε2/5/(β1/5V ) in Figure III.4(c), we find that the result is not independent

of κ∗. An empirical scaling obtained by replacing β−1/5 with (κ/λ)−1/5 in (III.11)

results in a much better collapse of the data, shown in Figure III.4(d).

We conclude that the major predictions of LH03, (III.10) and (III.11),

are not quantitatively reliable, and that the theory has no skill at predicting eddy

transports.

As a standard against which future heat-flux parameterizations might be

judged it is useful to have a compact formula for Dτ∗ in terms of β∗ and κ∗. Thus

we advocate the empirical expression

Dτ∗ ≈ β−4
∗

[1.7 + (3 − 4β∗) κ∗]
−4 , provided 0.25 ≤ β∗ ≤ 1.25 . (III.13)

2The β∗ = 0 points in Figure III.3 satisfy this condition and are in Thompson & Young’s local
mixing regime.
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Figure III.5: The ratio of the LHS of (III.13) to the RHS.

Equation (III.13) is constructed using βpiv
∗

= 3/4 and this fits Dτ∗ to within ±10%

over a broad range of β∗ and κ∗ values (see Figure III.5). The fit (III.13) still

has the problem that Dτ∗ grows to infinity as β∗ → 0. At small values of β∗ a

different expression, tending towards the exponential dependence on κ∗ observed

by Thompson & Young (2006), is required.

III.5 The barotropic cascade rate

A main assumption in the LH03 heat-flux closure is that the inverse

cascade rate of the barotropic mode,

εψ ≡ κ
〈

|∇ψ|2
〉

, (III.14)

is nearly equal to (or proportional to) the total cascade rate ε defined in (III.3).

This assumption is used to construct (III.9) and is motivated by the results of Smith

et al. (2002). These authors conducted a series of forced-dissipative barotropic

simulations showing that in the β-dominated regime of barotropic turbulence, the

meridional eddy diffusivity is proportional to ε
3/5
ψ β−4/5.
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A logical application of the results of Smith et al. to the baroclinic prob-

lem begins by writing the barotropic mode equation (A.6) in the form

ζt + J(ψ, ζ) + βψx = fψ − κζ − ν∇8ζ , (III.15)

where ζ ≡ ∇2ψ, and the forcing of the barotropic mode by the baroclinic mode is

fψ ≡
√

2κ∇2τ − U∇2τx − J(τ,∇2τ) . (III.16)

The barotropic energy equation is formed by multiplying (III.15) by ψ and aver-

aging. Thus we find that the energy supplied to the barotropic inverse cascade is

〈ψfψ〉 and that the dissipation of barotropic energy is εψ in (III.14) (neglecting

hyperviscous contributions). The assumption is that the theory and simulations

of Smith et al. (2002) identify a universal scaling regime of barotropic turbulence

in which all important physical quantities are determined by dimensional analysis

based on only β and the cascade rate εψ ≈ 〈ψfψ〉. All other details of the forcing

function fψ are supposedly irrelevant. Thus in applying the results of Smith et

al. (2002) to the baroclinic problem one should use εψ, rather than ε, in scaling

relations such as (III.9).

Figure III.6(a) shows that the ratio εψ/ε is not constant. It is striking

that throughout much of the parameter space εψ/ε in Figure III.6(a) is significantly

larger than one. This is expected because bottom drag retards the lower-layer flow

so that estimates of the dissipation using the barotropic velocity are too large

(Arbic & Flierl 2004). However the sensitivity of εψ/ε is notable, and one can

further explain this by expanding ε in (III.3) as

ε = εψ + κ
(

−2
√

2 〈∇ψ·∇τ〉 + 2
〈

|∇τ |2
〉

)

. (III.17)

The second term on the right hand side of (III.17) is negative because there is a

strong anti-correlation between τ and ζ ≡ ∇2ψ:

−2
√

2 〈∇ψ · ∇τ〉 = 2
√

2 〈ζτ〉 < 0 , (III.18)
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Figure III.6: (a) Ratio of the dissipation by the barotropic mode εψ defined in
(III.14) to the total dissipation ε defined in (III.3). (b) Ratio of the predicted
diffusivity Dψ

τ in (III.20) to the observed diffusivity Dτ . The constant c in (III.20)
is taken to be 1.25.

(see Figure III.7). This anti-correlation means that ε is significantly less than the

barotropic cascade rate εψ.

Although Figure III.6(a) shows that there is not a simple relation between

ε and εψ, one can still attempt to use Smith et al.’s scaling by modifying (III.9) to

D2 ≈ cε
3/5
ψ β−4/5 . (III.19)

Combining (III.6) with (III.19), one then arrives at a modified version of (III.10):

Dτ/Uλ = cβ−4/5
∗

(1 − β∗)
(

εψλ/U
3
)3/5

. (III.20)

We test (III.20) diagnostically in Figure III.6(b) with disappointing results. Thus

this attempt to resuscitate LH03 is unsuccessful and we conclude that the baro-

tropic diffusion regime identified by Smith et al. (2002) does not apply to the

baroclinic problem.

The spontaneous formation of strong zonal-mean flows is a prominent

feature of both the baroclinic problem and the barotropic problem. Therefore,

it is tempting to think that the zonal mean dynamics of the baroclinic problem

are dominated by the barotropic mode, especially since the zonal jets are almost
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barotropic. However the zonal mean energy balance reveals some problems with

this view. We obtain the zonal energy balance, in layer form, by multiplying the

upper and lower layer PV equations (A.10) and (A.11) by ψ̄1 and ψ̄2 respectively,

and averaging over both space and time. This yields

Zt =
〈

ū1y

(

u′1v
′
1

)

+ ū2y

(

u′2v
′
2

)

+ 1
2
(ū2 − ū1)

(

ψ′
1ψ

′
2x

)〉

− κ

2

〈

|
(√

2 − 1
)

ψ̄1y −
(√

2 + 1
)

ψ̄2y|2
〉

, (III.21)

where Z is the zonal energy

Z ≡ 1
2

〈

ψ̄2
1y + ψ̄2

2y + 1
2
λ−2

(

ψ̄1 − ψ̄2

)2
〉

. (III.22)

The first three terms on the RHS of (III.21) are exchanges of energy between zonal

and eddy components. The first two are sources of zonal energy due to non-zero

Reynolds stress correlations caused by eddy tilting on the jet flanks. This process

has been described as a type of negative viscosity (McIntyre 1970; Manfroi &

Young 1999; Dritschel et al. 2006) responsible for the remarkable persistence and

stability of zonal jets. The third term is a sink of zonal-mean energy representing

extraction of potential energy stored in the mean temperature gradient through

baroclinic instability. The final terms are dissipation of Z by bottom friction.

Figure III.8(a), which shows the upper and lower layer energy transfer

terms for the simulation with β∗ = 3/4 and κ∗ = 0.08, illustrates the motivation

for writing (III.21) in terms of layers. Nearly all energy transfer from the eddies

into the zonal modes occurs in the upper layer. This behavior is characteristic of

all simulations in which steady zonal jets form. Figure III.8(a) also confirms that

the regions where upper layer energy transfer is largest are located on both flanks

of the eastwards jets. Here the meridional shear is greatest and the eddies are

sheared. The scaled barotropic zonal velocity −ψ̄y is given by the dotted line for

reference.

Figure III.8(a) implies that baroclinic and barotropic eddies make equal

contributions to the energy in zonal modes. The lower layer transfer term has a
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Figure III.8: (a) Zonal and time averages of the energy transfer terms in upper
(solid line) and lower (dashed line) layers for the simulation with β∗ = 3/4 and
κ∗ = 0.08. The barotropic zonal velocity divided by a factor of 2 is given by
the dotted line. (b) Zonal and time averages of the transfer of energy into the
barotropic zonal modes by the barotropic eddies (solid line) and the baroclinic
eddies (dashed line) for the same simulation as panel (a). The barotropic zonal
velocity divided by a factor of 10 is given by the dotted line.
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complicated expansion in terms of modes:

ū2y

(

u′2v
′
2

)

=
(

ψ̄ − τ̄
)

yy

(

−ψ′

xψ
′

y + ψ′

xτ
′

y + ψ′

yτ
′

x − τ ′xτ
′

y

)

. (III.23)

This term vanishes if ψ̄ − τ̄ ≈ 0, but our simulations show that ψ̄ > τ̄ , i.e. the

zonal flow is largely barotropic (see Figure III.2). Since the terms on the RHS

of (III.23) must cancel, we conclude that both barotropic and baroclinic eddy

components make important contributions to forcing the zonal mean component.

This is confirmed by comparing, for example, the terms ψ̄yy
(

ψ′

xψ
′

y

)

and τ̄yy
(

τ ′xτ
′

y

)

,

which represent forcing of the barotropic zonal flow by barotopic and baroclinic

eddies respectively. Figure III.8(b) shows that energy transfer by these two terms

is roughly the same.

From Figure III.8 we conclude that the dual cascade view, where transfer

between ψ and τ only occurs near λ, is incorrect. Instead, a substantial amount

of energy can “jump” directly from baroclinic eddies into zonal modes at scales

much larger than λ, thus bypassing the barotropic inverse cascade.

III.6 Domain size, resolution and hyperviscosity

To this point we have suppressed reference to the non-dimensional pa-

rameter L/λ. However, a diffusive parameterization is well-founded only if Dτ is

independent of domain size and of the hyperviscosity and resolution (Haidvogel &

Held 1980). Thus before one trusts the data in Figure III.3 one must show that

large changes in the domain size L make only small changes in Dτ .

Some results of this sensitivity study are summarized in Figure III.9 which

shows the barotropic jet velocity uJ(y) ≡ −ψ̄y and Dτ for six simulations at

β∗ = 1/2 and κ∗ = 0.02. In each case the time averaging was completed for

at least 1000λ/U . The length of the uJ-profile indicates the size of the domain,

which varies between 2π×(12.5λ) and 2π×(50λ). The curves have been translated

so that the dotted lines mark the zero crossings of uJ(y). Run XI, which is the
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simulation in Figure III.3, has five stable jets. The other five uJ-profiles show some

indication of vacillation in nJ . Since run XI is stable with five jets, it is perhaps not

surprising that runs XII and XIII, which halve the domain size, have between two

and three jets. Still, the magnitude of the zonal flow is similar in each simulation

and the indicated values of Dτ∗ in Figure III.9 are within 10% of the DXI
τ = 2.217.

Motivated by these results we have adopted the policy of trusting a data point in

Figure III.3 if the variation in Dτ resulting from halving and doubling the domain

size is ±10%. Thus according to this criterion run XI is trustworthy.

Runs with the smallest values of bottom friction in Figure III.3, namely

κ∗ = 0.02 and 0.04, fail the ±10% criterion if β is also sufficiently small. Thus in

Figure III.3 we have not extended our survey of Dτ to β∗ < 1/4 and κ∗ ≤ 0.04.

Indeed with κ ≤ 0.04 and β = 0 we are firmly in the global mixing regime described

by Thompson & Young (2006). In this regime there are only a few vortices in the

domain and statistical descriptions based on an eddy diffusivity are meaningless

because there is no scale separation between L and the mixing length. The data

points in Figure III.3(a) that extend to values of β∗ < 1/4 all have largish values of

κ∗ so that these simulations are within Thompson & Young’s local mixing regime

even at β∗ = 0.

To further probe sensitivity to domain size, resolution and hyperviscosity,

we conducted the suite of 24 simulations summarized in Table III.1; the main

simulations appearing in Figure III.3 are shown Table III.1 in boldface type. In 22

of these simulations we take κ∗ = 0.02 and we obtain at least five runs at each of

β∗ = 1/4, 1/2, 3/4 and 1. This study tests different combinations of domain size L,

numerical resolution, and hyperviscosity ν. For example, at β∗ = 1/2, runs VIII,

XI and XIII have the same resolution, whereas runs IX, X and XII have double

resolution.

Table III.1 lists domain-averaged statistics for a number of key quantities.

With the exception of the run at β∗ = 1/4 and κ∗ = 0.02, domain-averaged

statistics are constant to within roughly ±10% and for simulations with β∗ ≥
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Figure III.9: Zonal and time-averaged barotropic velocities uJ(y) ≡ −ψ̄y for sensi-
tivity studies (VIII-XIII) listed in Table III.1 with β∗ = 1/2. For clarity the curves
have been translated horizontally; intersections with the dotted lines indicate zero
crossings uJ . The five runs correspond to varying domain sizes and resolutions.
Most runs suffer from quantization problems that may be related to differences in
the hyperviscosity parameter. Run XI is stable and has an odd number of jets,
therefore a quantization problem may be expected when halving the domain size
(Runs XII and XIII). The domain-averaged heat flux is indicated for each simu-
lation; domain-averaged statistics are within ±5% for all runs with β∗ > 1/4 (see
Table III.1).
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Table III.1: Eddy statistics for sensitivity study simulations. All runs have κλ/U =
0.02 except for two runs in italics which have κλ/U = 0.04. The bold entries
indicate the main simulations shown in Figure III.3.

βλ2/U L/λ ν/UL7 Grid Dτ/Uλ V/U uJ/U εν/εtot.

points

I 1/4 50 10−17 5122 39.48 19.42 35.38 0.0493
II 1/4 25 10−15 5122 36.50 20.53 33.13 0.0443
III 1/4 25 10−15 2562 34.43 18.89 33.20 0.0575
IV 1/4 12.5 10−13 2562 34.72 20.75 34.28 0.0285
V 1/4 12.5 10−13 1282 31.39 18.26 31.32 0.109
VI 1/4 50 10−17 512 2 35 .68 17 .35 18 .65 0 .0538
VII 1/4 25 10−15 256 2 34 .00 16 .04 20 .72 0 .0557

VIII 1/2 50 10−17 5122 2.056 5.092 8.848 0.0562
IX 1/2 25 10−17 5122 2.276 5.478 9.398 0.0148
X 1/2 25 10−15 5122 2.085 5.170 8.911 0.0395
XI 1/2 25 10−15 2562 2.217 5.534 9.182 0.0562
XII 1/2 12.5 10−13 2562 1.933 5.143 8.540 0.0380
XIII 1/2 12.5 10−13 1282 1.990 5.176 8.635 0.0563

XIV 3/4 50 10−17 5122 0.268 2.567 3.536 0.0575
XV 3/4 25 10−15 5122 0.269 2.608 3.539 0.0480
XVI 3/4 25 10−14 2562 0.251 2.577 3.422 0.0927
XVII 3/4 25 10−15 2562 0.277 2.590 3.591 0.0601
XVIII 3/4 12.5 10−13 2562 0.287 2.825 3.593 0.0456
XIX 3/4 12.5 10−13 1282 0.274 2.610 3.600 0.0588

XX 1 50 10−17 5122 0.0659 1.756 2.202 0.0772
XXI 1 25 10−15 5122 0.0640 1.713 2.178 0.0581
XXII 1 25 10−15 2562 0.0620 1.681 2.132 0.0821
XXIII 1 12.5 10−13 2562 0.0671 1.884 2.192 0.0673
XXIV 1 12.5 10−13 1282 0.0622 1.668 2.167 0.1121
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1/2, all quantities are constant to within ±5%. Deviation between the different

simulations are most likely related to differences in the hyperviscous contribution

to the dissipation which is listed in the final column of Table III.1. Naturally

the higher resolution runs have a smaller ratio of hyperviscous dissipation to total

dissipation (although the coefficient ν is adjusted for domain size). It is satisfying

that if the domain size is fixed and ν is varied by an order of magnitude, eddy

statistics change only a little.

The exceptional run in Table III.1 is at β∗ = 1/4 and κ∗ = 0.02. In this

case doubling L increases Dτ by 20%. This is the most sensitive data point in

Figure III.3(a)3 and accordingly we have flagged this data point Figure III.3(b)

with a question mark. To confirm that a well defined eddy diffusivity exists at

β∗ = 1/4, we tested the data point with κ∗ = 0.04 by doubling the domain size

(see the two italic rows in table 1). This results in a 5% increase in Dτ and supports

the view that the run at β∗ = 1/4 and κ∗ = 0.04 is trustworthy.

To summarize, based on the results in Table III.1 we conclude that the

eddy diffusivity Dτ is independent of domain size to within ±10% for simulations

with β∗ > 1/4 or κ∗ > 0.02.

III.7 Conclusions

In this computational study we have shown that Dτ depends on both

β∗ and κ∗ over a broad region of parameter space. Although Dτ has a greater

sensitivity to changes in β∗ than in κ∗, especially in simulations where steady

zonal jets form, scalings based on energy cascade arguments are inaccurate: see

Figure III.4(b) and (c). While increases in β∗ result in a monotonic decrease in

the eddy heat flux, the κ∗ dependence is more complicated with Dτ increasing

(decreasing) in response to increasing κ∗ at β∗ greater than (less than) βpiv
∗

.

3The fact that Dτ/Uλ is larger in the large-domain simulation (run I in Table III.1) suggests
that the leveling off of the slope at κ∗ = 0.02 in the β∗ = 1/4 series of Figure III.3(b) is the first
indication of domain dependence.
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Perhaps the most novel result presented here is the importance of the

baroclinic mode in determining the eddy heat flux and other important descrip-

tors of the equilibrated flow. In simulations in which β leads to the spontaneous

generation of zonal jets, it is inappropriate to view the baroclinic mode as simply

an innocuous deformation-scale mechanism for energizing the inverse cascade of

the barotropic mode. This view fails in at least two important respects:

(a) total dissipation ε cannot be easily related to the barotropic dissipation εψ;

(b) barotropic and baroclinic eddies make equal contributions to forcing the zonal

flow.

With respect to point (a), we show in section III.5 that there is a strong

correlation between the barotropic vorticity ζ and the baroclinic streamfunction

τ . Thus the cross-term in ε, which is equal to 2
√

2κ 〈ζτ〉, is an energy source for

the barotropic mode. Regarding point (b), previous theories (Vallis & Maltrud

1993; Lapeyre & Held 2003) assume that all energy in the zonal modes results

from transfers out of the barotropic eddies at a wavenumber kβ determined by the

strength of β. However, results from our simulations summarized in Figure III.8

show that upper layer Reynolds stress correlations are responsible for almost all of

the energy transfer into the zonal mean component. If one expresses this upper-

layer transfer in terms of modes then it projects in a complicated fashion on both

the barotropic and baroclinic modes. Thus it is misleading to view the excitation

of zonal mean flows as a purely barotropic process.

The importance of the baroclinic mode is in some ways not too surpris-

ing since differences in PV transport between upper and lower layers have been

reported prior to this study (Lee & Held 1993). The upper layer is more wavelike

and zonal jets are more efficient barriers to transport at upper levels (Greenslade

& Haynes 2006). The lower layer, on the other hand, appears more turbulent and

allows larger excursions across the jet paths. This behavior led Lapeyre & Held
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(2003) to make the sensible choice of applying a turbulent diffusivity to the lower

layer flow.

While the lower layer is more turbulent and perhaps more amenable to a

diffusive parameterization, the results of our simulations also highlight important

limitations in applying turbulent diffusivities in β-plane turbulence. Haidvogel &

Held (1980) stressed the importance of scale separation between mean-flow vari-

ations and eddies in defining a physically meaningful, horizontally-homogeneous

problem. To illustrate this point, Haidvogel & Held contrast quasigeostrophic

turbulence with Bénard convection as shown in their Figure 1 (and reproduced in

panels (a) and (c) of Figure III.10). Haidvogel & Held argue that quasigeostrophic

turbulence is a homogeneous problem because (1) a steady state exists and (2) eddy

statistics remain insensitive to changes in domain size. Bénard convection does not

satisfy criterion (2) and is therefore not a homogeneous turbulence problem.

Under the influence of β, though, zonal jets develop spontaneously leading

to local inhomogeneity. In this case, the diagram shown in panel (b) of Figure

III.10, following Haidvogel & Held (1980), is a more relevant picture of β-plane

quasigeostrophic dynamics. The sketch in panel (b) is also analogous to Dritschel

et al.’s (2006) comparison of β-plane turbulence to layering in a weakly-mixed

stratified fluid, or what they refer to as the Phillips effect. In panel (b), the mean

flow can be identified in one of two ways. If the mean flow includes both the basic

state gradient (solid line) and the gradient arising from the zonal jets, then the

assumption of scale separation between mean and eddy quantities is not satisfied.

In this case the dominant eddies are the storms embedded within the jets, and

these eddies have scales comparable to the jet width. The alternative, then, is to

view the mean as the basic state and include the jets as part of the eddy field.

There are two striking examples as to why this description of the flow may be

misleading.

If we consider the zonally-averaged upper layer PV equation (A.10) in
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Figure III.10: Diagrammic sketch of homogeneous and inhomogeneous turbulence
examples based on Haidvogel & Held’s (1980) Figure 1. (a) In quasigeostrophic
turbulence where β = 0 or is weak, there is sufficient scale separation between
the mean temperature gradient and the eddies so that far from boundaries, the
system tends towards homogeneity. (b) Under the influence of β, zonal jets are
spontaneously generated leading to local inhomogeneity. The spacing between the
jets is insensitive to changes in domain size. (c) Bénard convection is a classical
example of inhomogeneous turbulence in which the size of the system is always
important.
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the limit where all dissipation is in the lower layer4, we find

(

v′1q
′

1

)

y
= 0 . (III.24)

The upper layer PV flux is independent of meridional position; the PV flux is also

proportional to Dτ through the relationship −〈v1q1〉 = λ−2 〈vτ〉 given in (III.4).

Traditional diffusivities, such as Dτ reported in Figure III.3, represent full domain

averages, but we can also consider y-dependent diffusivities with respect to the

zonally averaged PV flux. For example, in the upper layer

v′1q
′

1 ≡ −D1

(

β + Uλ−2 + q̄1y
)

. (III.25)

Because of the zonal jets, q̄1y varies significantly in the meridional direction. Since

v′1q
′
1 = 〈v′1q′1〉 at every point, D1 must also depend on the meridional direction.

Furthermore, v′1q
′

1 = 〈v′1q′1〉 allows us to relate the domain-averaged diffusivity D1,

given in (III.5), to D1 by

D1 = D1

(

1 +
q̄1y

β + Uλ−2

)

. (III.26)

In the upper layer q̄1y is comparable to β+Uλ−2, which produces the bumpy ramps

seen in Figure III.2(c) and (e). The diffusivity D1 is well posed, but only provides

a gross view of transport processes in the upper layer—for example it does not

capture the importance of zonal jets as barriers of transport.

In the lower layer, we can describe the zonally-averaged PV flux in terms

of D2, where

v2q2 ≡ −D2

(

β − Uλ−2 + q̄2y
)

. (III.27)

Although in the lower layer v′2q
′

2 6= 〈v2q2〉, the hope is that q̄2y ≪ β − Uλ−2 so

that D2 = 〈D2〉. While q̄2y ≪ q̄1y, the vanishing PV gradient in the lower layer

means that q̄2y can not be neglected in most cases (see Figure III.2(e)). The

limiting case is when β = Uλ−2. If D2 were simply a constant, integration of

4This corresponds to the case where κ = 1 as described in Appendix A. In our simulations
κ =

√
2, which projects a small amount of dissipation into the upper layer.
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(III.27) with respect to y would imply that 〈v2q2〉 disappears in this special case.

However, because −〈v1q1〉 = 〈v2q2〉 = λ−2 〈vτ〉, Figure III.3 confirms that 〈v2q2〉
has a statistically steady non-zero value at β∗ = 1. Thus especially in the lower

layer, retaining the meridional dependence of the eddy diffusivity is essential for

accurately describing the eddy fluxes.

The strong local gradients associated with zonal jets in β-plane turbu-

lence may mean that turbulent diffusivity parameterizations, which have long been

a important descriptor of quasigeostrophic turbulence, are ultimately insufficient to

describe the complex dependence of meridional eddy fluxes on external parameters

such as bottom friction and β. Furthermore, the failure of barotropic cascade the-

ories to adapt to the baroclinic system suggests that new models of energy transfer

in baroclinic turbulence are needed. The simulations described here suggest that

coherent structures, such as zonal jets and barotropic eddies, are a necessary ingre-

dient in any complete model of baroclinic turbulence. This is the focus of ongoing

work.

Acknowledgements

We thank Lien Hua and Patrice Klein for providing the spectral code

used in this work. We have benefitted from conversations with Paola Cessi, Rick

Salmon, Isaac Held, Guillaume Lapeyre, Geoff Vallis, Shaffer Smith and Boris

Galperin

This work was supported by the National Science Foundation grant OCE-

0220362. AFT also gratefully acknowledges the support of an NDSEG Fellowship.

The text of this chapter, in full, is a reprint with minor modifications of

the paper “Assessment of a theory for eddy heat fluxes,” submitted for publication

to the Journal of Atmospheric Sciences. The dissertation author was the primary

researcher and author of this paper. W. R. Young directed and supervised the

research, which forms the basis of this chapter.



IV

Towards a theory of β-plane
baroclinic turbulence: zonal jets,
storm tracks and eddy fluxes

IV.1 Introduction

Two-dimensional and quasi-geostrophic (QG) turbulence are dominated

by coherent structures. Spin-down simulations of two-dimensional or f -plane baro-

tropic turbulence is governed by successive vortex merger (McWilliams 1984),

whereas in forced-dissipative systems, vortices can persist for many hundreds of

eddy turnover times (Provenzale 1999). In both cases, the flow is largely de-

termined by the summation of the velocity fields created by individual vortices.

Coherent vortices are also prevalant in baroclinic QG turbulence (Larichev & Held

1995) and were shown by Thompson and Young (2006) to have a strong baroclinic

character similar to hetons (Hogg & Stommel 1985).

With the addition of a planetary potential vorticity gradient, or β-effect,

the dominant coherent structures become zonal bands of alternating eastward and

westward flow. Axisymmetric vortices persist, however, and tend to align within

the eastward flowing jets, similar to storm tracks in the atmosphere (Chang et

al. 2002). Zonal flows have been documented in a number of numerical studies

(Williams 1979, Panetta 1993, Vallis & Maltrud 1993, Cho & Polvani 1996, Nozawa

82
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& Yoden 1997, Lee 1997, Lee 2005) and have direct applications to observations

of zonal flows in the large planetary atmospheres (Vasavada & Showman 2005).

Furthermore, recent evidence provided from satellite altimeter data suggests that

with sufficient averaging, the Earth’s ocean and marginal seas are replete with

zonal jets (Maximenko et al. 2005), with mesoscale eddies possibly providing the

oceanic equivalent of atmospheric storms. Despite the ubiquity of these flows,

the relationship between zonal jets and domain-averaged descriptors such as the

energy production, potential vorticity fluxes and total energy content is still poorly

understood.

Both the formation and maintenance of zonal jets in QG baroclinic tur-

bulence are dependent on coherent structures that link small-scale eddies to the

large-scale background flow. The dynamics of this process are summarized in Fig-

ure IV.1. The fastest growing mode of the linear baroclinic instability problem is

independent of the meridional direction (see Figure I.2) and gives rise to what is

termed the “elevator mode”—alternating meridional bands of warm fluid moving

poleward and cold fluid moving equatorward. These bands are shown in Figure

IV.1, where they are also perturbed by a large-scale zonal flow described by the

sinusoidal curve at left. As the meridional bands are tilted by the background flow,

non-zero Reynolds stresses are generated on both flanks of the jet. On the north-

ern flank, the meridional shear, which is characterized by ūy < 0, tilts the elevator

mode such that u′v′ < 0, where bars represent zonal averages. On the southern

flank, shear of sign ūy > 0 creates a tilt that leads to u′v′ > 0. If we apply a stan-

dard diffusive parameterization to describe the Reynolds stresses, u′v′ = −Duy,
we find that D must be negative on both flanks of the jet. This negative viscosity

(McIntyre 1970) provides the zonal mean flow with a source of momentum that

strengthens the jets.

Eddy tilting is also responsible for the remarkable persistence of zonal

jets, both in numerical simulations and geophysical flows. As the magnitude of the

jet velocities grows, the meridional shear becomes stronger. The shear continues
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uy < 0

v′u′ < 0

uy > 0

v′u′ > 0

Figure IV.1: Diagram of the Reynolds stress correlations, which give rise to jet for-
mation and persistence. The thin contours represent the fastest-growing (elevator)
mode of the linear baroclinic instability with warm fluid moving northward and
cold fluid moving southward. The system is perturbed by a large-scale zonal flow
given by the sinusoidal curve to the left. The subsequent tilting of the meridional
bands gives rise to non-zero Reynolds stress terms that have the same sign as the
background shear. This in turn creates a negative viscosity that feeds energy back
into the jets and generates a positive feedback loop whereby the jet strengthens
and the magnitude of both the Reynolds stresses and the shear increases. The
growth of the jet can eventually be balanced by large-scale friction.
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to stretch eddies in a manner that provides a source of energy to the zonal mean

component of the flow. The growth of the jets will eventually equilibrate if a dissi-

pation mechanism such as large-scale friction is included to saturate the negative

viscosity effects.

Figure IV.2 shows three snapshots of the barotropic streamfunction from

a two-mode β-plane QG model forced with a uniform, horizontal temperature

gradient (a description of the two-mode model appears in Appendix A). Accom-

panying each snapshot is the zonally-averaged zonal barotropic velocity uJ ≡ −ψ̄y,
which is non-dimensionalized by U , where 2U is the vertical shear arising from the

basic state temperature gradient. The panels each show a zonal strip of the doubly

periodic 2π × 25λ square domain, where λ is the Rossby deformation radius. The

snapshots occur at the initiation of turbulence just as the linear instability breaks

down. In panels (a) the linear instability and corresponding elevator mode is still

evident, and the zonal flow is weak, although there is some small departure of the

zonal flow away from zero. In panels (b) the meridional bands have begun to tilt,

which leads to rapid growth of the zonal mean flow. Finally, in panels (c) the

dominant variation in the streamfunction contours is now in the meridional direc-

tion, orthogonal to the linear instability mode. The zonal flow has also increased

by approximately an order of magnitude over a period of only 4 to 5 λ/U , where

U/λ is roughly the linear growth rate. Thus there is a rapid exchange of energy in

wavenumber space between modes k 6= 0, l = 0 and k = 0, l 6= 0.

In Chapter II (also Thompson & Young 2006), the dominant contribution

to the meridional heat flux in the two-mode QG model with β = 0 was shown to

come from coherent vortices. The heat flux arises from a systematic northward

(southward) migration of anti-cyclonic (cyclonic) eddies with warm (cold) fluid

trapped in the cores. Scalings for the heat flux were derived that relied heavily on

observations of a strong correlation between the barotropic vorticity ζ and temper-

ature (baroclinic streamfunction) τ fields. The barotropic vorticity–temperature

correlation of the zonal mean flow is discussed in section IV.2.
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Figure IV.2: Zonally-averaged zonal barotropic velocity uJ ≡ −ψ̄y (left) and snap-
shots of the barotropic streamfunction ψ (right), illustrating the initiation of a
zonal jet. (a) The system is initially dominated by the fastest-growing mode of
the linear instability and the zonal flow is weak. (b) The weak flow is sufficient
to tilt the meridional bands, which in turn strengthens the jet (see discussion in
section IV.1). (c) The strength of the zonal flow continues to increase leading to
further tilting of the remaining eddies. After a period of only 4λ/U the jet is well
estabilished. For this simulation βλ2/U = 1/2 and κλ/U = 0.02.
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On the β-plane, the equilibrated temperature field is characterized by

zonal bands comprised of alternating patches of warm and cold fluid. These

patches of fluid represent “storms” in the storm-track view of zonal jets. The

boundary between these storms meanders to accommodate the size of the tem-

perature anomalies, which have a meridional scale much larger than λ (indeed

they are shown to be comparable to the jet spacing in section IV.3). Between

the strong eastward jets, in the region of westward flow, warm anomalies that are

sheared away from the storms are preferentially entrained into the bounding jet to

the north, while cold anomalies are preferentially entrained into the bounding jet

to the south. Figure IV.3 shows an example of one of these events in a series of

snapshots detailing the northward transport of a warm patch of fluid from one jet

to another.

Events similar to the one depicted in Figure IV.3 occur frequently for

both warm and cold fluid patches and may be the primary contribution to the

domain-averaged heat flux of the system. If we accept that these heat transport

events, as well as the mechanism of negative viscosity, are important processes in

the life cycle of a zonal jet, then one must conclude that traditional approaches to

describing β-plane turbulence, which focus only on zonally-averaged properties of

the flow or neglect coherent structures altogether, are incomplete.

In this chapter we re-visit the numerical simulations of Panetta (1993),

who performed the first thorough study of zonal jet properties in a baroclinic QG

system. Panetta (1993) documented in great detail the stability and meridional

structure of the zonal jets that spontaneously form on the β-plane; however, details

of the relationship between the eddy and zonal mean components of the flow were

not discussed. The results of this chapter are obtained using a numerical model

similar to the one used by Panetta (1993) (see Appendix A for details), where we

have significantly increased the resolution and domain size, as well as expanded the

parameter space explored. In section IV.2 we provide further information about

the zonal jets. In particular we show that the version of Rhines scaling proposed
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Figure IV.3: Snapshots of the temperature (baroclinic streamfunction) field τ il-
lustrating β-plane heat transport. Panel (a) shows how warm and cold patches
of fluid align along the jet paths similar to storms along a storm track in the
atmosphere, while panels (b) - (e) show the migration of a warm patch of fluid
northward from one jet to another. The white curves show the zonally-averaged
zonal barotropic velocity at each time step. (b) The upper portion of the warm
eddy on the right hand side of the domain centered at y/λ = 30 is sheared by
the barotropic flow. (c) This causes an eddy of warm fluid to be released into the
westward flow, (d) where it is advected downstream and eventually entrained by
the large warm eddy in the upper jet (e). This process is an important mechanism
for heat transport in the system. Each snapshot is separated by a period λ/U ;
βλ2/U = 1/2 and κλ/U = 0.02 in this simulation.
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by Panetta (1993) successfully relates the jet spacing to the RMS eddy velocity

and β. In section IV.3 we consider the large eddies that develop along the jet

paths and examine their contribution to the eddy heat flux. Section IV.4 presents

conclusions and suggestions for future work.

IV.2 Zonal jets in baroclinic turbulence

Panetta (1993) showed that persistent, quasi-steady, almost barotropic,

zonal jets appear spontaneously in a baroclinically unstable doubly periodic flow.

Zonal jets in baroclinic systems have also been studied in channel flows (Lee 1997)

and on a sphere (Lee 2005). These jets are asymmetric in that mass transport

in the strong, narrow eastward jets is balanced by a weaker and broader flow

in the westward flowing regions. We re-visit Panetta’s jets with the ability to

significantly improve the size of the domain and the horizontal resolution of the

simulations. The majority of Panetta’s simulations had a domain size of 2πL×2πL

with L = 15λ and a grid resolution of 642. At this resolution, there is less than

one grid point per deformation radius. Our main simulations have size 2πL× 2πL

with L = 25λ and a grid resolution of 2562. Discussion of a few larger-domain and

higher-resolution simulations appears in section III.6. Since the domain is doubly

periodic, the simulation must select an integer number of jets. Thus extending

the domain size is an important check on a number of the features described in

Panetta (1993).

Figure III.2 confirms some of the important qualitative observations of

Panetta (1993). First, the jets are largely barotropic, but increases in either β∗ ≡
βλ2/U or κ∗ ≡ κλ/U , while holding the other parameter fixed, results in an

increase in the baroclinicity of the zonal flow. Also, the velocity jump between

the upper and lower layers is largest in the eastward flowing jets. Panels (b) and

(e) of Figure III.2 show that the PV gradients in either layer are always non-zero,

indicating that the mixing is insufficient to completely homogenize the PV between
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the jets. Still, a rough PV staircase (or a bumpy ramp) is evident in the barotropic

mode (panels (c) and (f ) in Figure III.2); the PV is well-mixed in the westward

-flowing regions, while a sharp PV gradient occurs in the eastward jets.

Since the jets are quasi-barotropic, we refer to the zonally-averaged baro-

tropic velocity as the “jet velocity,” and we use the notation

uJ(y, t) ≡ −ψ̄y , (IV.1)

where ψ̄ is the zonal average of the barotropic stream function. We estimate a jet

spacing and wavenumber kJ by counting the number of jets, nJ , in the domain.

In some cases nJ is unambiguous (e.g., five jets in Figure III.2(a) and ten in panel

(d)). In other cases nJ is not clearly defined and in those cases we use a half integer

(e.g., we judge that the profile with κ∗ = 0.04 in Figure IV.4(a) has nJ = 5.5).

Since the domain is 2πL× 2πL square, the jet wavenumber is then given by

kJ ≡ nJ
L
. (IV.2)

Figure IV.4(a) shows uJ at four different values of κ∗, all with β∗ = 1/2.

In addition to the zonal average, the curves represent time-averages over ∆t =

1000λ/U to remove small pulsations in the jet amplitude. The two simulations

shown as bold curves have a steady number of jets, whereas the other two simula-

tions show some fluctuations in jet number due to quantization problems. Figure

IV.4(b) plots the increase in nJ with increasing bottom friction κ∗.

Figure IV.5(a) and (b) illustrates that increasing β∗ with fixed bottom

friction increases nJ . The uJ-profiles in Figure IV.5(a) are again averages over a

period of 1000λ/U . At small values of β∗, the jets are less steady and there is

significant meridional meandering. Consequently, the time-averaged zonal velocity

in these cases is much smaller than the instantaneous velocity. The profile with

β∗ = 1/4 in Figure IV.5(a) suffers from this time averaging.

Figure IV.4(b) shows that at β∗ = 1/2, nJ increases roughly like κ
1/4
∗ ,

while Figure IV.5(b) shows that at κ∗ = 0.08, nJ grows linearly with β∗. The reader
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Figure IV.4: (a) The zonal mean barotropic “jet” velocity uJ(y, t) ≡ −ψ̄y at four
values of κ∗ ≡ κλ/U , with β∗ = 1/2. (b) As κ∗ is reduced the number of jets, nJ ,

decreases and the jet spacing ℓJ ≡ 2πL/nJ increases; nJ ∝ κ
1/4
∗ is not inconsistent

with the data. (c) Both uJ and the RMS meridional velocity V increase as bottom
friction is reduced, but with different dependence on κ∗.
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Figure IV.5: (a) The zonal mean barotropic “jet” velocity uJ(y, t) ≡ −ψ̄y at four
values of β∗ = βλ2/U , with κ∗ = 0.08. (b) As β∗ increases the number of jets,
nJ also increases and the jet spacing ℓJ ≡ 2πL/nJ decreases; nJ ∝ β∗ is not
inconsistent with the data. (c) At κ∗ = 0.08, uJ and the barotropic meridional
velocity V are comparable over a broad range of β∗ values. This is not true for all
simulations, see Figure IV.4(c).
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∗’s in panel (b) correspond to data in Figure IV.5(b). The value nJ is defined by
counting the number of jets in equilibrated simulations.

might be tempted to conclude that nJ ∼ β∗κ
1/4
∗ . However the simple scaling laws

in Figure IV.4(b) and Figure IV.5(b) are special and do not apply except along

those particular slices through the parameter space. Figure IV.6 provides a more

complete survey of the equilibrated value of nJ and shows that the dependence of

nJ on κ∗ and β∗ is not a simple power law such as β∗κ
1/4
∗ .

IV.2.i Panetta’s version of Rhines’ scaling

Although nJ in Figure IV.6 is too complicated to be described by a simple

power law involving the external parameters β∗ and κ∗, the hope is that nJ can

be simply related to other equilibrated statistics of the flow. For example, Figure

IV.4(b) shows that the number of jets nJ scales roughly as κ
1/4
∗ and therefore kJ in

(IV.2) also varies as κ
1/4
∗ . Rhines’ scaling would then suggest uJ ∼ βk−2

J ∼ κ−1/2.

However this version of Rhines’ scaling is not successful: Figure IV.4(c) shows that

uJ depends more strongly on κ∗, with a proportionality closer to κ−1
∗

at this value
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of β∗. Using the meridional velocity V , defined in (III.12), as the velocity scale in

Rhines’ formula is also unsuccessful as the slope is too shallow, V ∼ κ
−1/4
∗ .

Panetta (1993) suggests a different version of Rhines’ scaling by taking

the velocity scale to be the square root of the total eddy kinetic energy. Thus

Panetta defines

kβ ≡
√

β

2VE
, (IV.3)

where

VE =
√

〈|∇ψ′|2 + |∇τ ′|2〉 . (IV.4)

The primes indicate that the zonal mean has been removed, i.e. ∇ψ = ∇ψ′ − uJ .

At small values of bottom friction, Panetta (1993) found good correlation between

kJ and kβ (see his Figure 4). As further confirmation, in Figure IV.7 we show

contours of the ratio kJ/kβ over a range of κ∗ and β∗ values (locations where we

have data points are indicated by the ×’s).

There is particularly good agreement between kβ and kJ when the jets

are strong and quasisteady, which corresponds to small κ∗ and large β∗. The

agreement between kβ and kJ breaks down as the jets become weaker, specifically

in simulations with small β∗ and large κ∗. In simulations where both β∗ and κ∗

are weak, as few as two jets occupy the domain. Quantization is likely responsible

for the poorer agreement between kJ and kβ in this corner of parameter space.

The main conclusion of this subsection is that Panetta’s version of Rhines’

scaling, namely kJ/kβ ≈ 1, is successful at condensing the results. The best value

of the ratio kJ/kβ is actually slightly greater than one, say roughly 1.1. But this

is remarkably good given the complex dependence of nJ on κ∗ and β∗ summarized

in Figure IV.6.

IV.2.ii The ζ̄ − τ̄ anti-correlation

In Chapter III, Figure III.7 indicates that there is a significant anti-

correlation between the barotropic vorticity ζ ≡ ∇2ψ and the temperature field τ .
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Figure III.7 also indicates that this correlation is stronger in the zonal-mean com-

ponent than in the eddy component. This correlation means that the cross-term

〈ζτ〉 implicit in (III.3) makes an important contribution to the total dissipation by

bottom friction.

An examination of the upper and lower layer PV equations provides one

explanation for the observed anti-correlation between ζ and τ . We first assume

that the effects of bottom friction and advection by the basic state zonal flow are

small, and that the flow is largely barotropic. With these approximations, the

layer PV equations (A.10) and (A.11) become

Dq1
Dt

≈ −G1ψx , (IV.5)

Dq2
Dt

≈ −G2ψx , (IV.6)

where D/Dt = ∂t + J (ψ, ) and G1 = β + Uλ−2, G2 = β − Uλ−2 are the upper

and lower layer basic state PV gradients. The prediction of (IV.5) and (IV.6) is

that the upper and lower layer PV behave like passive tracers forced by a mean

PV gradient that differs in the two layers. Multiplying (IV.6) by −G1/G2 and

summing the two equations gives the result

D

Dt

(

q1 −
G1

G2

q2

)

≈ 0 , (IV.7)

or
q1
G1

≈ q2
G2

. (IV.8)

Using the relationships q1 = ζ + ∇2τ − λ−2τ and q2 = ζ − ∇2τ + λ−2τ , we find

that (IV.8) predicts

Uλ−2ζ ≈ −β
(

λ−2τ −∇2τ
)

. (IV.9)

Note that ζ and ∇2τ − λ−2τ are the barotropic and baroclinic PVs respectively.

Figure IV.8 plots profiles of ζ̄λ/U and β∗ (τ̄yy − λ−2τ̄ )λ/U for six different

simulations. Both fields have the same meridional structure explaining the strong

anti-correlation between ζ̄ and τ̄ . Since k−1
J ≫ λ, then λ−2τ̄ ≫ τ̄yy. The prediction
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of (IV.9) is supported well not only by the meridional structure of the two fields,

but also by their amplitudes in panels (a, b, d and e). Inclusion of the τ̄yy term

also introduces some of the large-wavenumber curvature observed in the ζ̄ profile

in regions between the eastward jets.

The agreement is somewhat weaker in the β∗ = 1 simulations, which is

primarily due to the τ̄yy term. We find that at β∗ = 1, λ2ζ̄ ≈ −τ̄ is a much better

approximation. Note that simulations at β∗ = 1 represent a special case since here

G2 = 0. In this case it is most likely a poor assumption to neglect the bottom

friction term on the RHS of (IV.6).

A weaker, but still significant, anti-correlation occurs in the eddy field.

The correlation cζ′τ ′ is defined as

cζ′τ ′ =
〈ζ ′τ ′〉

√

〈

ζ ′2
〉 〈

τ ′2
〉

, (IV.10)

and is shown in Figure III.7 (open symbols). From (IV.9) we also expect ζ ′λ/U ≈
β∗ (∇2τ ′ − λ−2τ ′)λ/U . However, this result is difficult to verify since the correla-

tion of the two eddy fields has a strong dependence on β∗, with cζ′τ ′ increasing in

response to increases in β. The ζ − τ correlation at large values of β is larger than

the ζ − τ correlation observed in the f -plane simulations of Thompson & Young

(2006), where cζτ was approximately a constant equal to 0.53.

The dependence of cζ′τ ′ on β∗ has prevented application of the “cross-

invariant” analysis in Chapter II. Still, just as in the f -plane case, the correlation

between ζ ′ and τ ′ arises through the prevalence of coherent isotropic eddies. As

on the f -plane, these eddies have an important baroclinic component1. In β-plane

simulations the large-scale eddies align along the jet paths and are the dominant

features after removal of the zonal mean. We discuss these eddies further in the

following section.

1The stronger correlation between the zonal averages of ζ and τ is most likely because the
assumption that the flow is predominantly barotropic is a better approximation in the zonal
mean flow.
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Figure IV.8: Zonally-averaged profiles of barotropic vorticity ζ̄λ/U (solid lines)
and −β∗ (λ−2τ̄ − τ̄yy)λ/U (dashed lines).
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IV.3 Jet-scale eddies in baroclinic turbulence

Embedded within the eastward-flowing zonal jets are a series of large

eddies, similar to atmospheric storms in a storm track. These eddies are isotropic

and tend to have roughly the same scale as the jets, i.e. ke ≈ kJ , where ke is the

peak wavenumber of the eddies. This agreement in length scale occurs because each

eddy in a positive-negative vortex pair is comparable to the size of the eastward

jet (the strong eastward flow is observed to meander around these eddies). A more

pronounced asymmetry between the eastward and westward flowing regions would

most likely lead to a larger difference between kJ and ke. Figure IV.9(a) shows

a snapshot of the barotropic eddy streamfunction ψ′ = ψ − ψ̄ for the simulation

β∗ = 1/2, κ∗ = 0.02; the time and zonal mean ψ̄ is given by the solid line for

comparison.

These jet-scale eddies also have an important baroclinic component as

indicated by the snapshot of the eddy baroclinic streamfunction τ ′ = τ − τ̄ in

Figure IV.9(b). The eddies in the τ ′ field tend to be less isotropic than their ψ′

counterparts. This is most likely a reflection of the eddy tilting by the meridional

shear, which gives rise to non-zero Reynolds stresses and a negative viscosity that

forces the zonal mean flow (Robinson 2006, Dritschel et al. 2006 and discussion

in section IV.1). Figure IV.9(c) shows a snapshot of the upper layer Reynolds

stresses u′1v
′

1 with the upper layer zonally-averaged zonal velocity −ψ̄1y overlaid.

Lower layer Reynolds stresses are found to be negligible in the baroclinic system as

discussed in Chapter III. The Reynolds stresses have large amplitudes along the

flanks of the eastward jets and the many tilted structures suggest the importance

of the negative eddy viscosity.

Figure IV.10(a) and (c) show two-dimensional spectra of the eddy tem-

perature field τ ′ from two different simulations. Each spectrum represents an

average of at least 300 realizations of physical fields spanning a period 1000λ/U .

A circle of radius kJλ marked by the bold dashed curve indicates that eddy energy
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is indeed peaked near the jet scale. Also in these panels, the thin white curves

are contours of the linear instability growth rate and the small white dots are the

resolved wavenumbers in the spectral code. The spectrum of the eddy barotropic

streamfunction ψ′ is peaked at the same scales as τ ′.

In the traditional view of baroclinic turbulence, the baroclinic mode ener-

gizes the barotropic inverse cascade at scales comparable to the deformation radius

λ through baroclinic instability. However, here we find that most of the energy in

the τ ′ field occurs at scales much larger than λ. Figure IV.10(a) and (c) also show

that the jet-scale eddies appear in a region of wavenumber space that is predicted

to be linearly stable. The low wavenumber cutoff can be reduced by replacing the

basic state vertical shear, 2U , with the maximum vertical shear in the eastward

jets. The maximum shear is greater than the basic state, and thus reduces the

effective β∗. Even this modification, though, is unable to move the peak wavenum-

ber into a linearly unstable region2. Thus, the jet-scale eddies may in part result

from an inverse cascade, although a significant portion of energy remains in the

baroclinic component of the flow.

In Figure IV.11 we show that the dominant contribution to the eddy

heat flux comes from the jet-scale eddies. Beginning with 300 snapshots of ψ′ and

τ ′, truncated fields, ψ̃ and τ̃ are formed by setting the Fourier coefficients for all

wavenumbers within a given wavenumber radius R (with units of kλ) equal to zero.

The eddy heat flux calculated from an ensemble average of the 300 snapshots of

the truncated fields,

D̃τ ≡ U−1
〈

ψ̃xτ̃
〉

, (IV.11)

is plotted in Figure IV.11 as a function of R for two different simulations. For

wavenumbers less than kJλ, indicated by the dotted lines, D̃τ ≈ Dτ , i.e. eddies

larger than k−1
J do not contribute to the heat flux. Between kJ and 2kJ , D̃τ drops

2Because of the large meridional shear in the zonal flow, the true low wavenumber cutoff
most likely falls between the limits determined by using the basic state vertical shear 2U and the
maximum vertical shear in the eastward jets.
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Figure IV.10: (a) Two-dimensional spectrum of the eddy baroclinic streamfunction
τ ′ for the simulation with β∗ = 1/2 and κ∗ = 0.02. The bold dashed curve marks a
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quickly to roughly 30% of Dτ suggesting that jet-scale eddies are responsible for

nearly all the heat flux in the equilibrated flow. A further confirmation of this

is given in Figure IV.10(b) and (d), which show two-dimensional spectra of the

total eddy heat flux. Here the peaks occur at roughly 2kJ . The heat flux peak

is expected at twice kJ if ψ′ is in phase with τ ′ (see Figure IV.9), since ψ′

x would

then be a quarter cycle out of phase with τ ′.

A snapshot of the eddy heat flux ψ′

xτ
′ is provided in Figure IV.9(d).

Since regions of strong positive (northward) and negative (southward) fluxes align

on the jet path, the zonally averaged flux (given by the solid curve) is much smaller

than the local amplitudes. This can be seen since the contour plot spans a range of

nearly 400Uλ, while the zonally-averaged heat flux given by the solid line in Figure

IV.9(d) has a maximum and minimum of roughly 3Uλ and 2Uλ respectively.

Another remarkable aspect of the large eddies within the eastward flowing

jets is that these features appear to be quasi-stationary. Figure IV.12 presents

Hovmoller diagrams of the eddy potential vorticity in the upper and lower layers

at two fixed meridional positions. In panels (a) and (b) the time series is recorded

along y/λ = 20.2 in Figure IV.9, which is within the core of an eastward jet. The

time series in panels (c) and (d) are taken along y/λ = 36.8 in Figure IV.9, within

a westward flowing region.

Anomalies within the eastward flowing jets are generally stationary al-

though these periods of stasis are interspersed with sharp changes in the slope

indicating a rapid movement to the east. The dashed line in panel (a) marks one

of these events. The slope of the dashed line is equal to the time-averaged zonal

velocity along y/λ = 20.2. The stability of these eddies may arise from a balance

between eastward advection by the zonal flow and westward Rossby wave propaga-

tion. This suggests that within the eastward jets the underlying eddy fields may be

a quasi-stationary lattice of eddies that periodically undergo rapid shifts in their

structure before re-establishing a steady state. The behavior of the upper and

lower layer PVs is qualitatively similar, although the eddy field of the upper layer
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has a larger magnitude within the eastward jets. Thus, although these eddies have

an important baroclinic character, they are influenced primarily by a barotropic

flow.

In the region where the flow is westward, the Hovmoller diagrams shows

that smaller eddies are advected by the zonal mean flow. The slope of the anomalies

in panels (c) and (d) are consistent with velocity of the westward jets (indicated by

the dashed line in panel (c)). This behavior can be observed in animations of the

flow: small coherent features are sheared off the large eddies on the jet flanks and

carried along in the westward flow until they become entrained into another jet

at a different latitude. This is essentially the mechanism for transporting heat as

discussed in section IV.1 and Figure IV.3. It is interesting that the large difference

in amplitude between the upper and lower layer observed in the eastward jets does

not occur within the westward jets. The greater baroclinicity of the eastward jets

indicates that the growth of eddies due to baroclinic instability will be largest in

the eastward jet cores.

The results of this section suggest that a discrete set of eddies, with scales

comparable to the jet spacing, are responsible for the equilibrated meridional heat

flux. These eddies have an important baroclinic component, which may transfer

energy directly into the zonal mean flow (see discussion in section III.5). An

understanding of the quasi-stationary nature of these eddies would be an important

element of a complete model of β-plane baroclinic turbulence.

IV.4 Conclusions and future work

The results presented in this chapter have been mainly descriptive in an

attempt to characterize the major components of baroclinic β-plane turbulence.

The two dominant features are the large-scale (i.e. much greater than the deforma-

tion radius λ) zonal jets and the jet-scale eddies. While the zonal jets are almost

barotropic, especially at small values of bottom friction, the eddies always retain
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an important baroclinic component. The baroclinicity of the eddy field is exem-

plified by the difference in Reynolds stress correlations between the upper layer,

where this mechanism is the primary forcing of the zonal mean flow, and the lower

layer, where the correlation is negligible (see discussion in III.5). The eddy and

zonal mean components are also linked through Panetta’s (1993) scaling in (IV.3),

which relates the jet scale to the eddy kinetic energy.

While persistent zonal jets in β-plane turbulence is a feature that has been

observed since the work of Rhines (1975) and Williams (1978), a complete theory

of how the eddy field interacts with the zonal mean component is still lacking.

At first glance, the observation that the zonal jets have an “almost barotropic”

character (Panetta 1993) suggests that the baroclinic eddies simply act as a small-

scale forcing on the barotropic mode. This view has found support through the

β-plane study of Vallis & Maltrud (1993) and the barotropic simulations on a

sphere by Huang & Robinson (1998). An important observation made by Huang

& Robinson (1998) is that eddies comparable to the forcing scale transfer energy

directly into the large-scale zonal flow. In this case there is no inverse cascade of

energy.

While a type of negative viscosity suggested by Figure III.8 indicates that

non-local spectral transfers are also important in β-plane baroclinic turbulence,

adapting the analysis of Huang & Robinson to the baroclinic system is somewhat

problematic because the forcing scale is no longer specified. Indeed, the discussion

in section III.5 indicates that a significant amount of energy in the zonal mean

component comes directly from the baroclinic mode, bypassing the barotropic

inverse cascade.

Thus the anisotropic nature of β-plane turbulence, brought about by

the spontaneous generation of zonal jets and the resulting inhomogeneities across

a single jet, imply that a full model of baroclinic turbulence must account for

meridional variations in the eddy fluxes and other descriptors of the flow. Figure
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IV.13 shows the y-dependent (a) diffusivity

Di ≡
v′iq

′

i

Gi + q̄iy
, (IV.12)

(b) mixing length

ℓi ≡

√

q′i
2

Gi + q̄iy
, (IV.13)

(c) meridional velocity

Vi ≡
√

ψ′

ix
2 , (IV.14)

and (d) correlation coefficient

ci ≡
v′iq

′

i
√

ψ′

ix
2 q′i

2

, (IV.15)

for a simulation with β∗ = 3/4 and κ∗ = 0.08. The upper layer quantities (i = 1)

are given by the solid curves and the lower layer quantities (i = 2) are given by

the dashed curves; G1 = β + Uλ−2 and G2 = β − U/λ−2 are the upper and lower

layer basic state PV gradients.

The most striking feature of Figure IV.13 is the strong meridional vari-

ations in all the major descriptors of the flow. In panel (a) the upper and lower

layer diffusivities even have significant structure across a single jet. Specifically,

the diffusivities are elevated along the jet flanks, which correspond to regions of

strong meridional shear and a large mixing length (panel (b)). The meridional

velocity is correlated with the jet velocity in this simulation as shown in panel (c)

although there is a significant baroclinic signature. Finally, in panel (d) the corre-

lation coefficient gives further evidence of the different behavior in the upper and

lower layers. The correlation is larger in the lower layer where a weaker PV gradi-

ent allows larger meridional excursions and the flow is more turbulent in nature.

In the upper layer, where the correlation coefficient is smaller, the zonal jets act

as more efficient barriers to transport and the flow is more wavelike in character.

Results such as those in Figure IV.13 and the evidence of a negative vis-

cosity in the simulations of Huang & Robinson (1998) and others have led Dritschel
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et al. (2006) to compare the formation of zonal jets in β-plane turbulence to the

layering phenomena observed in a stratified, weakly mixed fluid (Linden 1979,

Park et al. 1994). Dritschel et al. (2006) refer to jet formation and maintenance

as the Phillips effect since the jets (or layers in the stratified case) are due to

a non-monotonic relationship between the potential vorticity (buoyancy) gradient

and the potential vorticity (buoyancy) flux. The importance of this non-monotonic

flux was first discussed by Phillips (1972) and was elaborated on by Balmforth et

al. (1998) and is shown schematically by the dashed line in Figure IV.13(e).

This model seems especially promising in the upper layer, where the po-

tential vorticity flux is constant despite strong gradients in the zonally-averaged

potential vorticity (Figure IV.13(e)). We have attempted to formulate a “phe-

nomenological” model of the zonal jets based on these observations, but to date

this approach has been unsuccessful. One of the more peculiar and ultimately

frustrating aspects of the eddy fluxes, is that both the eddy flux of temperature

and the lower layer flux of potential vorticity are not only non-monotonic functions

of their respective gradients, but as shown in Figure IV.13(f ), they are not even

single-valued functions of the gradients. This approach warrants further study,

but at the moment there are a number of open questions. For example, to con-

struct a model similar to Balmforth et al. (1998), a physically-based relationship

between the eddy kinetic energy and the mixing length is needed. Not only is this

relationship uncertain, but even our ability to relate the total eddy energy to the

eddy kinetic energy in a simple way from our simulations has proved difficult.

A final remarkable result of the equilibrated zonal flow is its similarity to

the zonal velocities obtained by Manfroi & Young (1999) in their barotropic study

of β-plane turbulence. Manfroi & Young performed a pertubation expansion about

the critical Reynolds number for a sinusiodal meridional flow on a β-plane. The

amplitude equation obtained from this expansion predicts that the most unstable

disturbance is a zonal flow with a much larger length scale than that of the basic

state. Prediction of the jet wavenumber requires analysis of the Cahn-Hilliard
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equation given in Manfroi & Young’s equation (4.1)

ut = −α1u− α2uyy − α3uyyyy − α4

(

u2
)

y
+ α5

(

u3
y

)

y
, (IV.16)

where the coefficients α1 through α5 are determined from the perturbation expan-

sion.

Figure IV.14 shows the barotropic zonal velocity uJ and its second deriva-

tive from (a) our baroclinic quasigeostrophic model and (b) from the solution of

the Cahn-Hilliard equation in (IV.16). The coefficients in (IV.16) have been ad-

justed to improve the agreement with the baroclinic model, but despite this, the

agreement between the two profiles is exceptional. The suggestion is that perhaps

baroclinic instability, the fastest growing mode of which is a meridional sinusoid,

provides a similar type of forcing as in Manfroi & Young (1999). An important

point, however, is that the barotropic zonal flows obtained from the baroclinic

quasigeostrophic model only resembles the Cahn-Hilliard solution in its “large-

friction” regime (their Figure 8). Manfroi & Young show that within the weakly

non-linear analysis that generates the amplitude equations, near-sinusiodal solu-

tions are obtained when the amplitude equations are weakly unstable, i.e. the

critical wavenumber kc in Manfroi & Young’s Figure 1 is only slight greater than

0. The difficulty in adapting the Cahn-Hilliard theory to the results of our numer-

ical simulations is that it is unclear how the coefficients in (IV.16) are determined

for the baroclinic system. This is the focus of ongoing work.
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V

Spatial and temporal patterns of
small-scale mixing in Drake
Passage

V.1 Abstract

Temperature and salinity profiles obtained with XCTD (expendable con-

ductivity, temperature and depth) probes throughout Drake Passage, Southern

Ocean between February 2002 and July 2005 are analyzed to estimate turbulent

diapycnal eddy diffusivities to a depth of 1000 m. Diffusivity values are inferred

from density/temperature inversions and internal-wave vertical strain. Both meth-

ods reveal the same pattern of spatial variability across Drake Passage; diffusivity

estimates from inversions exceed those from vertical strain by a factor of three over

most of Drake Passage.

The Polar Front (PF) separates two dynamically different regions. Strong

thermohaline intrusions characterize profiles obtained north of the PF. South of

the PF, stratification is determined largely by salinity, and temperature is typically

unstably stratified between 100- and 600-m depth. In the upper 400 m, turbulent

diapycnal diffusivities are O(10−3 m2 s−1) north of the PF, but decrease to O(10−4

m2 s−1) or smaller south of the PF. Below 400 m diffusivities typically exceed 10−4

m2 s−1. Diffusivities decay weakly with depth north of the PF, whereas diffusivities

113
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increase with depth and peak near the local temperature maximum south of the

PF. The meridional pattern in near-surface mixing corresponds to local maxima

and minima of both wind stress and wind stress variance. Near-surface diffusivities

are also found to be larger during winter months north of the PF. Wind-driven

near-inertial waves, strong mesoscale eddy activity and double-diffusive convection

are suggested as possible factors contributing to observed mixing patterns.

V.2 Introduction

Observations in the Southern Ocean suggest that mixing is intense and

widespread, even well above rough topography. Naveira Garabato et al. (2004)

analyze velocity fluctuations caused by the internal wave field in Drake Passage and

the Scotia Sea to show that turbulent diapycnal eddy diffusivities κρ can exceed

background values by up to three orders of magnitude. They further find that

values of κρ greater than 10−3 m2 s−1 extend more than 2000 m above the bottom.

From analysis of strain variance in the WOCE hydrographic profiles of the Southern

Hemisphere, Sloyan (2005) shows that enhanced mixing above topography occurs

throughout the Southern Ocean. Also, unlike mid-latitude ocean basins, where

diffusivities return to background levels within 1000 m of the bottom, elevated

diffusivities are found up to depths of at least 1500 m (Sloyan 2005). The detection

of elevated mixing rates in the Southern Ocean suggests that diapycnal mixing

significantly influences local dynamics.

However, the pathways through which mixing influences Southern Ocean

dynamics are not well understood, mainly because the Southern Ocean has many

features that differentiate it from other ocean basins. The Southern Ocean is sub-

ject to wind forcing and mesoscale eddy activity that are well above mid- and

low-latitude levels (Rintoul et al. 2001, Sprintall 2003). Zonal velocities are also

significantly larger in the Southern Ocean because of the strong Antarctic Cir-

cumpolar Current (ACC). Furthermore, within the ACC, isopycnals slope upward
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toward the surface and can outcrop, allowing deep and intermediate waters to be

affected by wind and buoyancy forcing. Speer et al. (2000) describe how surface

fluxes convert upwelled water into Intermediate Water and Subantarctic Mode Wa-

ter, which are then advected away from the outcropping site. Thus the Southern

Ocean is subject to a number of unique forcings, and it is unclear whether mixing

descriptions (e.g., subgridscale parameterizations in large-scale climate models)

based upon mid- and low-latitude physics are appropriate at higher southern lati-

tudes.

This uncertainty about the relative importance of mixing in Southern

Ocean dynamics has led to a disparity in how diapycnal mixing is incorporated in

models of the Southern Ocean’s meridional circulation. Historically, it is thought

that a balance between wind-driven Ekman flow and mesoscale eddies determines

the meridional circulation (Johnson & Bryden 1989, Speer et al. 2000). In the

studies of Karsten et al. (2002) and Bryden & Cunningham (2003), diapycnal

mixing has little effect on Southern Ocean dynamics. Instead, sub-surface mixing

occurs primarily along isopycnals and all diapycnal exchanges are limited to surface

processes. However, Cessi & Fantini (2004) suggest that diapycnal mixing plays a

prominent role in determining the deep stratification of the Southern Ocean. Cessi

& Fantini (2004) also find that the depth of the thermocline can depend on the

magnitude of κρ. A more complete understanding of diapycnal mixing processes

in this region is necessary to assess the validity of the various proposed circulation

models.

Additionally, a better understanding of diapycnal mixing processes in the

Southern Ocean may offer a solution to the long-standing global “missing mixing”

problem. Munk’s (1966) estimate of a uniform diapycnal eddy diffusivity, κρ =

10−4 m2 s−1, assumes that nearly all North Atlantic Deep Water (NADW) upwells

at low latitudes. The discrepancy between this predicted value and observed open-

ocean values, which are an order of magnitude smaller (Gregg 1987, Toole et al.

1994, Kunze & Sanford 1996), is partially explained by the patchiness of low-
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latitude turbulence–i.e., turbulence is elevated over rough topography (Polzin et

al. 1997). As an alternative solution, Toggweiler & Samuels (1995) propose that

conversion of NADW into new water masses through upwelling and mixing in the

Southern Ocean may effectively short circuit the low latitude diapycnal mixing

described by Munk (1966). Conversion of NADW depends on both the magnitude

and distribution of diapycnal mixing and the rate at which upwelled water is

exported to other ocean basins via the meridional circulation. Significant NADW

upwelling in the Southern Ocean would reduce the low-latitude value of κρ needed

for mass conservation.

Unfortunately, mixing rates in the Southern Ocean remain poorly con-

strained, primarily because few direct observations exist in the region. The re-

moteness and harsh conditions of the Southern Ocean have so far prevented exten-

sive microstructure measurements that can explicitly resolve small-scale diapycnal

mixing. Although this leaves some uncertainty in the quantitative description of

mixing rates, the results of previous Southern-Ocean-based studies (Polzin & Fir-

ing 1997, Naveira Garabato et al. 2003, Sloyan 2005) clearly show that mixing

processes in this region are characterized by strong spatial intermittency.

Kunze (2003), Naveira Garabato et al. (2004) and Sloyan (2005) all fo-

cus on abyssal mixing processes and offer little information about the temporal

variability of the mixing events. In fact, few studies have addressed the temporal

variability of mixing events in the open ocean. Gregg (1977) and Finnegan et al.

(2002) present open-ocean mixing measurements repeated at the same location

during different seasons. Gregg (1977) provides some evidence of seasonal depen-

dence, while numerical studies (Nagasawa et al. 2000) have confirmed that the

intensity of internal waves can vary in response to seasonal changes in the wind

stress. Finnegan et al. (2002), who focus on topographic effects, do not comment

on any temporal variability.

With the importance of both spatial and temporal variability in mind, we

analyze a unique data set collected in Drake Passage over the past five years as part
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of Scripps Institution of Oceanography’s (SIO) High Resolution XBT/XCTD Net-

work. This study departs from previous studies in Drake Passage by concentrating

on mixing events in the upper 1000 m of the water column. Small-scale mixing

rates are inferred from finescale observations using the Thorpe scale method (Dillon

1982), which requires detecting turbulent overturns in an otherwise stable density

profile. We also analyze vertical strain spectra as an independent measure of tur-

bulent diffusivities. Our results focus primarily upon the observed spatial mixing

patterns with a view towards understanding what processes dominate upper-ocean

mixing in the Southern Ocean.

To our knowledge, this is the first study that determines small-scale mix-

ing rates from XCTD data. While XCTDs have slightly higher noise than tradi-

tional CTDs, this is compensated by the fact that XCTDs do not suffer the same

error associated with ship roll. We show that, with sufficient coverage, XCTDs

(and possibly XBTs in regions where density is largely independent of salinity)

provide a relatively inexpensive method for estimating the magnitude and spatial

variability of mixing rates. However, XCTDs do not offer the accuracy or physical

insight afforded by more costly microstructure measurements.

We discuss both the Thorpe scale and the vertical strain spectral methods

in section V.3. A description of the data set and our processing techniques appears

in section V.4, which also includes a comparison with other Thorpe scale studies.

We discuss our results in section V.5 with emphasis on spatial and seasonal vari-

ations in mixing intensity. Thorpe scale estimates are also compared to estimates

obtained from the strain spectral analysis. We suggest possible mechanisms for the

observed spatial and temporal patterns in section V.6, and our conclusions appear

in section V.7.
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V.3 Background

V.3.i Thorpe scales

Because of the expensive nature of collecting ocean data at microscale

resolution, many theories have been proposed that allow small-scale mixing rates to

be estimated from coarser-resolution data. A basic goal is to determine the kinetic

energy dissipation rate ε, which is related to the stratification and a turbulent

mixing length, the Ozmidov scale LO (Ozmidov 1965), by

ε = L2
ON

3, (V.1)

where N2 = −gρ−1
0 (dρ/dz) is the squared buoyancy frequency. Ferron et al.

(1998) offer the physical explanation that LO corresponds to the vertical distance

l that a particle of fluid moves if all its kinetic energy is converted to potential

energy (assuming that ε ∼ w3/l, where w is a vertical velocity scale). Therefore

LO is a measure of the maximum size of an overturn in a stratified fluid. It is

difficult to obtain an estimate for LO independently since ε can only be resolved

with centimeter-scale microstructure measurements.

The Thorpe scale LT (Thorpe 1977, Dillon 1982) provides a length as-

sociated with the size of density overturns in an otherwise stably stratified fluid.

The method involves re-ordering a potential density profile that may contain in-

versions into a stable monotonic profile. Anywhere in the initial profile where a

gravitational instability exists, the displacement from the original position to the

re-ordered position, known as the Thorpe displacement d′, is non-zero. The root

mean square of the Thorpe displacements associated with a single overturn region

gives the Thorpe scale LT for that turbulent event, or

LT ≡
√

〈

d′2
〉

, (V.2)

where 〈〉 indicates an average over a single overturn. Although overturns are not

one-dimensional, the Thorpe scale gives a good estimate of an overturn size as long
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as the mean horizontal gradient is much smaller than the vertical gradient, which

is satisfied in the Southern Ocean.

Since LO and LT are two different estimates of overturning lengths, it is

reasonable to expect that a linear relationship exists between the two, although

spatial and temporal variability in the turbulent field means that any relation is

only valid in a statistical sense. Dillon (1982) studies the relationship between LO

and LT and finds that LO = (0.79 ± 0.4)LT . A number of other studies followed,

including Crawford (1986) who proposes a smaller coefficient LO = (0.66±0.27)LT

for an oceanic thermocline and Ferron et al. (1998) who propose a larger coefficient

LO = (0.95 ± 0.6)LT for an abyssal region. The errors of both these studies

overlap Dillon’s (1982) original results, which we will apply in our present analysis.

This then implies that the turbulent dissipation of an individual overturn can be

calculated directly from the buoyancy frequency and the Thorpe scale. Using (V.1)

gives

εi = 0.64L2
T i 〈N〉3i , (V.3)

where subscript i refers to the ith overturn.

Turbulent dissipation is often converted to a diapycnal eddy diffusivity

κρ using the model given in Osborn (1980), where

κρ = ΓεN−2. (V.4)

The mixing efficiency Γ has been shown to vary depending on the origin of the

turbulence (Caldwell & Moum 1995), although most studies assume Γ is a constant

equal to 0.2. We will follow this convention as well.

There is an important distinction between the two values of N used in

the calculation of ε and κρ. In determining the dissipation of a single overturn,

the buoyancy frequency in (V.3) should be the mean value of N in the reordered

region of the overturn, or 〈N〉i, since overturns occur preferentially in regions of

low stratification (Alford & Pinkel, 2000). The calculation of κρ in (V.4) requires

that the background buoyancy frequency N be applied since (V.4) arises from
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a representation of κρ as a turbulent diffusion acting on the background density

gradient (see discussion in Ferron et al. 1998).

From (V.3) and (V.4) we can see that, outside of overturning regions,

both ε and κρ are zero. Calculation of a depth-averaged quantity includes both

overturning and quiet regions. An example is given by

ε =

∑

i εiLzi
H

, (V.5)

where Lzi is the size of the ith overturn and H is the depth over which we choose

to average. It is important to note that ε can be smaller than the minimum

resolvable turbulent dissipation of an individual overturn. To ease notation we will

not use overbars, and unless otherwise stated, all symbols refer to depth-averaged

quantities for the remainder of the paper.

There remains some uncertainly about the validity of the relationships

LO = 0.8LT and Γ = 0.2. Furthermore, the theory surrounding Thorpe scales

assumes that the system is in steady state, which is a difficult condition to verify

in a region as energetic as the ACC. Therefore we view with some caution the

magnitude of the results presented here and focus primarily on the spatial and

temporal patterns that appear to be a robust feature of mixing in Drake Passage.

V.3.ii Strain spectral analysis

An independent method of inferring dissipation rates comes from evidence

that ocean mixing is related to the energy density of the internal gravity wave field.

Nonlinear wave-wave interactions transfer energy and momentum to increasingly

smaller-scale waves, which are more likely to break down into turbulence. Mc-

Comas & Müller (1981) and Henyey et al. (1986) suggest formulas to estimate

turbulent dissipation rates by comparing the shape of energy spectra, which are

influenced by wave-wave interactions, to the energy spectrum of a canonical inter-

nal wave field proposed by Garrett & Munk (1975) and referred to here as GM.

Gregg (1989) verifies that a correlation exists between the internal wave shear and
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mixing rates in the open ocean at vertical scales greater than 10 m. Wijesekera et

al. (1993) test the various internal wave–dissipation models and find that under

certain conditions, scalings comparing the strain rates of the internal wave field

to the GM spectrum provide better agreement with observational data than the

internal wave shear. Wijesekera et al. (1993) also show that reasonable dissipation

estimates are obtained even when the wave field varies significantly from the GM

form, which is likely the case in Drake Passage.

Vertical strain can be obtained from vertical derivatives of properties

such as potential density and temperature (a discussion of our methods appears in

section V.5.iv), and Fourier transforming gives the spectral representation of ver-

tical strain, φλ. Following Kunze (2003) strain variance levels 〈ξ2
z〉 are determined

by integrating φλ from a minimum vertical wavenumber kmin. out to a maximum

wavenumber kmax. such that

〈

ξ2
z

〉

=

∫ kmax.

kmin.

φλdk = 0.2. (V.6)

The constant 0.2 in (V.6) is somewhat arbitrary. We find that varying this constant

has a small effect on mixing amplitudes, and does not affect the spatial pattern

we describe in section V.5.iv. The GM strain variance level is computed over the

same wavenumber band so that

〈

ξ2
z

〉

GM
=
πE0bj∗

2

∫ kmax.

kmin.

k2

(k + k∗)
2
dk, (V.7)

where E0 = 6.3 × 10−5 is the dimensionless energy level, b = 1300 m the scale

depth of the thermocline, j∗ = 3 the reference mode number and 2πk∗ = β∗ =

0.0073 (N/N0) the reference wavenumber withN0 = 0.00524 s−1. These parameters

are given in Gregg and Kunze (1991). Note that the GM strain spectrum given

in (V.7) is flat for k ≫ k∗. In oceanic data a k−1 rolloff is observed at high

wavenumbers, which has led to a modification of the GM spectrum by including

a factor of k−1 to the empirical formula beyond k = 0.1 cpm (Winkel 1998). In

our study, the integrations in (V.6) and (V.7) occur over the flat part of the GM

spectrum.
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Once the strain variance levels have been determined, we follow the results

of Gregg et al. (2003) and calculate the turbulent diffusivity from the formula

κφρ = κ0

〈ξ2
z〉

2

〈ξ2
z〉2GM

H (Rω)J (f,N), (V.8)

where κ0 = 0.05 × 10−4 m2 s−1. The two functions H and J are empirical results

that account for changes in the frequency content of the GM wave field and changes

in latitude respectively. Henyey (1991) shows that frequency content is related to

the shear-strain ratio Rω = 〈V 2
z 〉 / (N2 〈ξ2

z〉), where Vz is the vertical derivative

of horizontal velocity. We do not have velocity data to accompany our profiles;

therefore we rely on shear-strain ratio estimates from previous studies. Naveira

Garabato et al. (2004) report a consistent mean value of Rω between 8 and 12,

independent of location. Kunze (personal communication) also finds values of Rω

between 10 and 20 at high latitudes. Taking Rω = 10 with

H (Rω) =
3Rω (Rω + 1)

4
(

Rω
2
GM

)

√

2

Rω − 1
(V.9)

and RωGM = 3, we find that the turbulent diffusivity is enhanced by nearly a factor

of 5 above regions with typical GM wave fields. Over the range 8 < Rω < 20, H
varies by a factor of 3.5. The formula given in (V.9) is equivalent to equation (4)

of Gregg et al. (2003) multiplied by (Rω/RωGM)2 to convert from shear-variance

ratios to strain-variance ratios.

The latitude dependence also tends to enhance mixing at high latitudes,

although we find that the effect is less influential than the shear-ratio dependence.

The function J is given by

J (f,N) =
f cosh−1 (N/f)

f30 cosh−1 (N0/f30)
, (V.10)

where N0 is defined above and f30 = f (30o) = 7.29 × 10−5 s−1. Applying charac-

teristic Drake Passage values to (V.10), N = 2.5 × 10−3 s−1 and f58 = 1.2 × 10−4

s−1, we find the amplification is small with J ≈ 1.25. The factor J has a stronger

effect at low latitudes and has been used by Gregg et al. (2003) to explain the

observation of reduced mixing near the equator.
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V.4 Measurements

V.4.i Measurement location

Since 1996 the High Resolution XBT/XCTD Network maintained by

SIO has collected temperature and salinity data in Drake Passage along WOCE-

designated transect AX22, between Tierra del Fuego and the Antarctic Penninsula

(Figure V.1). Starting in February of 2002 the Sippican Digital XCTD was intro-

duced, which has an improved vertical resolution of approximately 0.13 meters.

During each subsequent cruise, six XCTDs were released at the following lati-

tudes: 56.0o, 57.0o, 57.5o, 58.0o, 59.0o and 60.5o S.1 Since 2002, 22 transects have

been completed with XCTD data. After discarding erroneous profiles, we analyze

no less than 19 individual profiles at each of the six latitude locations. These

profiles are roughly evenly divided between summer and winter months. Figure

V.1 indicates the position of each of these casts. While the latitudes of the casts

are consistent, the longitude can vary due to the particular scientific mission of

the cruise or inclement weather. Most casts fall along the middle of three typical

routes across Drake Passage (Sprintall 2003) indicated by the dashed line in Figure

V.1. Profiles of temperature and salinity from casts that deviate from this middle

route do not show significant variations from the other casts.

Figure V.1 also shows the bathymetry of Drake Passage. XCTDs only

sample the upper 1000 m of the water column and therefore our measurements are

well above the sill depth of the major topographical features. The most significant

of these features close to our measurement sites is the Shackleton Fracture Zone,

which lies to the east of the southernmost casts. Strong internal waves and eddy

activity may be generated in this region (Cunningham et al. 2003), but it is

unclear if the effects propagate back towards our study area because of the strong

eastward ACC. Naveira Garabato et al. (2004) have also found elevated mixing

1The XBTs, which only measure temperature, have a finer horizontal resolution of 15-20 km.
We only analyze XCTDs since salinity makes an important contribution to the density throughout
Drake Passage.
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Figure V.1: The position (×) of each XCTD cast used in the current study. A
majority of the casts occur along a single cruise track illustrated by the dashed line.
No less than 19 casts were available for analysis at each of six different latitudes.
The mean position of the Polar Front (PF) from Orsi et al. (1995) is given by the
solid line, and the contoured bathymetry (m) is from Smith and Sandwell (1997).
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over topography located roughly 500 km to the west of our current study site and

north of the Sub-Antarctic Front. It is possible that internal waves generated in

this region could radiate towards our measurement sites.

V.4.ii Data acquisition and processing

Data were collected using a Sippican Digital XCTD profiler with a known

fall rate. As an XCTD falls through the water column, thermistor resistance and

conductivity are relayed back to the ship through a copper wire to the Sippican

MK12 data acquisition software. The expendable profilers employ a dual spooling

mechanism that decouples the effects of ship roll that affect typical CTDs. The

dual spooling mechanism allows XCTDs to be viable tools for observing finescale

structure in Drake Passage.

The XCTDs sample to a depth of 1100 m, although the lower 100 m

are prone to error due to wire stretch. The upper 100 m are also noisy due to

weak stratification within the mixed layer. Therefore we present our results for

the region between 100 and 1000 m.

We first formed spectra of the raw temperature and salinity profiles and

determined a noise floor for each quantity. The salinity was found to be consider-

ably noisier than the temperature profiles due to a mismatch between temperature

and conductivity sensors. To eliminate this problem we smoothed the temperature

and salinity profiles with triangular filters that had a vertical scale of 1 m for the

temperature profiles and 4 m for the salinity profiles.2 The smoothed temperature

and salinity profiles were used to form the potential density profile with density

referenced to the surface.

Over much of Drake Passage, only the potential density profiles can be

used to determine overturns because of compensated thermohaline intrusions or

an unstable temperature stratification. However, south of the Polar Front there

2We worried about the effects of smoothing temperature and salinity over different scales,
especially because of observed thermohaline intrusions, but our results were essentially unchanged
when temperature was smoothed out to the same scale as salinity.
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is a persistent temperature maximum between 400 and 600 m, below which tem-

perature steadily decreases. In this region stratification is weak, and noise in the

salinity profiles can produce large spurious overturns. Therefore below the tem-

perature maximum we followed Peters et al. (1995) and analyzed both density

and temperature profiles, only accepting overturns if they are detected in both

properties (see discussion below). Visual inspection of the profiles indicates that

this is an efficient way to eliminate spurious overturns in weakly stratified regions.

After profiles are re-ordered to be gravitationally stable, overturns are

defined to be regions over which the integral of Thorpe displacements is equal to

zero (Dillon 1982). The limiting factor in overturn detection is the noise level of the

potential density profiles. After detrending and analyzing a number of different

sections, the average noise in the XCTDs was determined to be δρ = 0.001 kg

m−3. Following Galbraith and Kelley (1996) the minimum thickness of a resolvable

overturn is given by

Lρmin. ≈ 2
g

N2

δρ

ρ0

, (V.11)

where ρ0 is the mean density. Since N2 can vary by an order of magnitude over

Drake Passage, the resolution size depends strongly on both latitude and depth. In

Figure V.2 we show (a) N and (b) Lρmin. throughout Drake Passage averaged over

all casts. In our detection algorithm, each possible overturn must be thicker than

Lρmin. (with a minimum size of 4 m, the salinity smoothing scale), and the difference

between its maximum and minimum density must be 2δρ before it is accepted

as a valid overturn. Over most of Drake Passage, Lρmin. is only slightly greater

than 4 m, but south of the Polar Front at depths close to 1000 m, stratification

is weak and Lρmin. approaches 20 m. Although Stansfield et al. (2001) show

that the largest overturns make the most important contribution to the turbulent

dissipation, we may underestimate mixing in very weakly stratified regions if many

smaller overturns are discarded.

Galbraith & Kelley (1996) propose two tests, the run-length test and the
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Figure V.2: (a) Buoyancy frequency N divided into 100 m bins and averaged over
all casts at each latitude. (b) Minimum resolvable overturn size Lρmin. in each 100
m bin based on (V.11) using the mean buoyancy frequency in (a) and δρ = 0.001
kg m−3. No overturns smaller than 4 m are accepted due to our data processing.
Buoyancy frequency divided into (c) summer and (d) winter months show little
seasonal signal. The scale is the same in panels (a), (c) and (d).
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water-mass test, to eliminate spurious overturns. Johnson & Garrett (2004) have

since shown that the run-length test is often unreliable for distinguishing between

real overturns and noise, and they suggest that Thorpe scale estimates provide

an upper bound on mixing rates when the run-length test is not applied. The

water-mass test is designed to eliminate spurious overturns due to T/S mismatch

as occurs with XCTDs. Most T/S mismatch is eliminated by our smoothing pro-

cedures. However, we find that most of our overturns are close to or just below

the critical value for acceptance proposed by Galbraith & Kelley (1996). Visual

inspection of these overturn regions on a T -S diagram do not show the looping

structure that is characteristic of T/S mismatch (Galbraith & Kelley 1996). Fol-

lowing Martin & Rudnick (2005) we use a water-mass-test criteria less strict than

Galbraith & Kelley (1996) by a factor of 2. Most overturns that fail our water-mass

test are found at depth, south of the Polar Front, and are also typically eliminated

on the basis of overturns not appearing in both temperature and potential density

profiles.

Figure V.3 shows examples of typical profiles in the northern (upper pan-

els) and southern (lower panels) regions of Drake Passage. The use of temperature

profiles to detect overturns is shown at both sites for comparison, but in general

this method only modifies mixing rates below the temperature maximum south of

the Polar Front. The red curves in panels (a), (b), (f ) and (g) are the reordered

profiles, while the Thorpe displacements due to potential density (black) and tem-

perature (red) are shown in panels (d) and (i). The large overturn in density at

the bottom of panel (i) is a common feature of southern Drake Passage profiles

and is caused by noise in the salinity profile. The resulting values of LT for each

accepted overturn are shown in panels (e) and (j ). An expanded view of one of

the larger overturns in our data set is shown in panels (f-h).

Initially 5686 possible overturns are detected, and after all tests are ap-

plied, 1301 overturns are accepted as real. For each overturn, values for LT , N

and ε are computed (not depth-averaged quantities). Profiles of LT and ε are con-
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Figure V.3: (a), (f ) Potential density, (b), (g) temperature and (c), (h) salinity
profiles at typical profiles north and south of the Polar Front respectively. The cast
shown in the upper panels was collected at 56o S in November of 2004 while the
cast in the lower panels was collected at 60.5o S in June of 2003. In the potential
density and temperature panels the red thick curve indicates the re-ordered profile.
Temperature is only re-ordered outside of regions where double-diffusive convection
may be important. Panels (d) and (i) show the Thorpe displacements for both the
re-ordered density (black curve) and re-ordered temperature (red curve). In panels
(e) and (j ), each block represents a turbulent overturn whose vertical thickness
and horizontal length represents the individual overturn’s vertical size and Thorpe
scale respectively. Panels (f -g) show expanded views of one of the largest overturns
in our data set.
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structed that are zero outside of overturns and nonzero within. Profiles of κρ are

computed from (V.4) using ε and the background buoyancy frequency calculated

over 100 m bins. Depth averaged quantities of LT , ε and κρ are computed over

the same 100 m bins following (V.5), and each bin is averaged over many casts.

V.4.iii XCTD noise effects

Johnson & Garrett introduce the non-dimensional parameters Q and n to

describe the two limiting factors of overturn detection: density resolution and ver-

tical resolution. Using values from our study given in Table V.1, Q, the amplitude

of the noise scaled by the density change over the section, is

Q =
δρ

(dρ/dz)H
= 0.01 − 0.1, (V.12)

and n is given by

n =
H

h
≈ 800, (V.13)

where δρ is the instrument noise, dρ/dz the stratification, H the section length and

h the vertical sampling interval. For nQ > 1, density resolution limits overturn

detection (as in our study), while for nQ < 1, vertical resolution limits overturn

detection (Stansfield et al. 2001).

In Table V.1 we present values for dimensional and non-dimensional noise

parameters of different Thorpe scale studies. The studies listed, with the exception

of Timmermans et al. (2003), include near-surface measurements similar to ours.

Timmermans et al. (2003) consider thermohaline staircase structures in the deep

Canada Basin and analyze temperature profiles as opposed to density so that δρ

and dρ/dz are replaced by δT and dT/dz in Table V.1. Figure V.4 illustrates the

location of these studies in parameter space. Overturn detection improves as Q

decreases and n increases. Johnson & Garrett (2004) find that studies in the upper

left region of Figure V.4 are reliable, whereas true overturns are indistinguishable

from noise in the study of Timmermans et al. (2003). The weak stratification of

Drake Passage pushes the limits of XCTD overturn detection, which is reflected in
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Table V.1: Noise parameters for various Thorpe scale studies, where δρ is the
instrument noise, dρ/dz the stratification, H the depth of the section analyzed
and h the distance between measurements. Timmermans et al. (2003) (Timm.
03) used only temperature profiles for overturns so that δρ and dρ/dz are replaced
by δT and dT/dz. Noise parameters of XCTD temperature profiles in the Pacific
are given for comparison. The two GK96 entries are separate data sets analyzed
by Galbraith & Kelley (1996) and the two values of δρ from Stansfield et al. (2001)
(Stans. 01) represent two different types of CTDs that were utilized. The study
of Finnegan et al. (2002) is given by Finn. 02. The non-dimensional parameters
Q and n are defined in (V.12) and (V.13) and discussed in section V.4.iii.

Study δρ dρ/dz H h Q n
(kg m−3) (kg m−4) (m) (m)

GK96 0.001 0.09 50 0.02 0.0002 2500
(SLE)

GK96 0.001 0.0009 1000 0.25 0.001 4000
(EUBEX)

Stans. 01 0.0006/0.004 0.01 100 0.01 0.0006/0.004 1000

Finn. 02 0.0005 0.005–0.0001 300 0.40 0.0003–0.017 750

XCTDs 0.001 0.001–0.0001 100 0.13 0.01–0.1 800
(Drake P.)

δT dT/dz
(o C) (o C m−1)

Timm. 03 0.00013 0.001 5 0.03 0.02–0.3 20–200

XCTDs 0.005 0.01 100 0.13 0.005 800
(Pacific)
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our comparatively large values of Lρmin. (cf. Finnegan et al. (2002) where Lρmin.

varies between 0.2 and 10 m). However, as discussed below, we find good agreement

between spatial patterns in the Thorpe scale and strain spectral methods. This

latter method depends on scales larger than 15 m that should be unaffected by

noise and gives us confidence in our results.

Figure V.5 (a) presents the cumulative density function of the total dissi-

pation based on the size of all accepted overturns. The solid vertical line represents

the minimum value of Lρmin. (4 m), the dotted line is the mean value of Lρmin. over

Drake Passage (6.5 m) and the dashed line is the maximum value of Lρmin. (19.5

m). Figure V.5 (b) shows that the probability density function of overturn size is

lognormally distributed as described by Ferron et al. (1998) and Stansfield et al.

(2001). The peak in the distribution occurs between 10 and 12 m. Therefore if

Lρmin. > 12 m we might expect a significant portion of the overturns to be indis-

tinguishable from noise. Note that Lρmin. exceeds 12 m in only a small region of

our domain (Figure V.2 (b)).

As a final test we analyzed both density and temperature profiles from

20 XCTD casts in the mid-latitude South Pacific and found κρ values of O(10−5 -

10−4 m2 s−1), comparable to open-ocean levels acquired from microstructure mea-

surements. The parameters for the temperature profiles of these Pacific XCTDs

are included in Table V.1 and Figure V.4 for comparison.

V.5 Results

V.5.i Drake Passage and the Polar Front

While the focus of this study is primarily on mixing, the XCTD data set

offers one of the few multi-year surveys of hydrography available in the Southern

Ocean. For this reason we briefly comment upon some of the temperature and

salinity properties of Drake Passage before discussing our mixing results.

The most striking feature of the XCTD data is that profiles in northern
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Figure V.4: Diagram of Thorpe scale studies and their associated noise parameters
based on Johnson and Garrett’s (2004) Figure 3. The definitions of Q and n are
given in (V.12) and (V.13). The various studies labeled here are described in Table
V.1. Overturn resolution improves as n increases and as Q decreases. The current
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in Timmermans et al. (2003); we find that overturn detection is marginal below
700 m south of the Polar Front.
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Figure V.5: (a) Cumulative density function of total dissipation ε based on over-
turn size and (b) probability density function of overturn size for all accepted
overturns. Originally 5686 inversions were detected, and 1301 of these were ac-
cepted as true overturns. The solid vertical lines mark the minimum value of
Lρmin., the dotted lines mark the mean value of Lρmin. and the dashed lines mark
the maximum value of Lρmin. in our study (Figure V.2).
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and southern Drake Passage exhibit distinct differences, with the transition be-

tween the two regions occurring at the Polar Front (PF). The average position of

the PF, taken as the northernmost extent of the 2o C isotherm at 200 m (Orsi et al.

1995) and shown in Figure V.1, passes our measurement sites at 58.4o S, but the

instantaneous position of the PF can vary by hundreds of kilometers. Figure V.6

(a) shows the position of the PF as determined by the closely-spaced XBTs during

each cruise used in our study. The horizontal lines indicate the measurement lati-

tudes of the XCTDs. To emphasize the importance of the PF transition, we show

σθ, T and S profiles from two casts taken at the same latitude (59o S) and sepa-

rated by only three months, but taken on different sides of the PF. These two casts

show markedly different characteristics despite temporal and spatial proximity.

North of the PF, profiles are characterized by rapid, compensating inver-

sions in temperature and salinity that have a thickness of 20 to 50 m (Figure V.3

(b) & (c) and Figure V.6 (f ) & (g)). Mesoscale eddy energy is significantly larger

north of the PF (Sprintall 2003, Lenn et al. 2005). These eddies give rise to ther-

mohaline intrusions that are persistent features of northern Drake Passage (Joyce

et al. 1978, Toole 1981) and give the region its T/S interleaving signature. South

of the PF eddy energy is much lower and there is little deviation between profiles.

Temperature in the upper 100 m varies seasonally, but a sharp minimum consis-

tently occurs near 100 m (Figure V.6 (c)). Temperature then increases weakly

until it reaches a maximum between 400 and 600 m. Below this depth tempera-

ture steadily decreases. Although temperature is unstably stratified between the

two extrema, the density profile remains stably stratified due to the salinity field.

The unstable temperature and the stable salinity gradients suggest that the water

column could be prone to double diffusive convection, which we discuss further in

section V.6.ii.

Figure V.2 shows buoyancy frequency values averaged over (a) all casts

and also divided into (c) winter (April to September) and (d) summer (October

to March) months. The stratification between 100 and 1000 m of Drake Passage



136

27 27.5

200

400

600

800

1000

σ
θ
 (kg m−3)

D
ep

th
 (

m
)

(b)

−1 0 1 2 3
T (oC)

March 2003, (south of PF)
(c)

33.5 34 34.5
S

(d)

27 27.5
σ

θ
 (kg m−3)

(e)

2.5 3 3.5
T (oC)

May 2003, (north of PF)
(f)

34 34.5
S

(g)

Jan02 Jul02 Jan03 Jul03 Jan04 Jul04 Jan05

−60

−59

−58

−57

−56
Polar Front Position

(a)

La
tit

ud
e
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varies little between winter and summer. Despite the rapid changes in temperature

and salinity north of the PF, the buoyancy frequency is roughly constant with

N ≈ 2.5 × 10−3 s−1, although at depths between 200 and 400 m N is slightly

smaller. In contrast, stratification south of the PF decreases monotonically with

increasing depth. Over the upper 1000 m, N typically drops by a factor of 5.

The sharp change in properties across the PF suggests that different phys-

ical processes may govern mixing in these two regions.

V.5.ii Thorpe scales

Along with buoyancy frequency, the Thorpe scale LT is the fundamental

quantity from which ε and in turn κρ are inferred. The depth-averaged value of

ε depends on the number and size of overturns (that pass the criteria in section

V.4.ii) as well as the magnitude of LT associated with each overturn.

Figure V.7 (a) shows 100 m depth-averaged LT for all casts. In northern

Drake Passage, elevated values of LT up to 5 m are found in the upper 100 to 400

m and decay away from the surface. The surface-intensified values extend as far

south as 58o S and are largest near 57o S. Below 500 m LT is approximately 2 m.

In southern Drake Passage, surface values are considerably smaller with LT ≈ 1

m. Rather than decaying with depth, LT increases to a maximum value of roughly

2.5 m near a depth of 500 m. Below this peak, LT decreases with depth. In Figure

V.7 and Figure V.8 the cross-hatched area indicates a region where Lρmin. > 12

m (Figure V.2 (b)) and overturn detection is marginal. Overall, our LT estimates

are comparable to previous Thorpe scale studies that encountered regions of weak

stratification, such as Ferron et al. (1998) and Finnegan et al. (2002).

Figure V.8 shows that there is a strong seasonal variation in LT . The

surface-intensified LT values observed in Figure V.7 (a) are largely due to winter

mixing events. The dominant spatial pattern is also clearer in winter months

(Figure V.8 (a)), when a relatively quiet region with LT less than 2 m stretches

from the surface in southern Drake Passage to a depth of almost 1000 m in northern
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Drake Passage. During summer months (Figure V.8 (b)), Thorpe scale values are

more vertically uniform although LT generally remains larger in northern Drake

Passage. The mid-depth maximum in LT in southern Drake Passage is observed

in both summer and winter months with a maximum value LT ≈ 3.5 m occurring

at 59o S in the summer and shifting to 60.5o S in the winter.

V.5.iii Thorpe scale estimates of ε and κρ

Figure V.7 (b) presents 100 m depth-averaged values of ε for all casts.

Again the dominant spatial pattern indicates enhanced dissipation at the surface

in northern Drake Passage and a mid-depth maximum at latitudes of 59o and 60.5o

S. Dissipation values span approximately two orders of magnitude ranging from

10−7 to 10−9 W kg−1. The spatial pattern in ε is clearer during winter months

(not shown). During summer months ε has a nearly uniform value of 10−8 W kg−1

across the Passage with the exception of the 100-200 m bins north of the PF where

ε is slightly larger and the 800-1000 m bins at 60.5o S where ε is slightly smaller.

Figure V.7 (c) shows 100 m depth-averaged κρ for all casts; values are

determined from ε and N according to (V.4). In general κρ follows the same

spatial pattern as ε although the pattern here is more distinct. Near the surface

in northern Drake Passage, κρ exceeds 10−3 m2 s−1 and then decays with depth

to a background level of about 4 × 10−4 m2 s−1. In southern Drake Passage the

diffusivities are smaller with minimum rates of 2× 10−5 m2 s−1 at 60.5o S near the

surface and peaking at 2 × 10−3 m2 s−1 at 500 to 700 m depth.

Figure V.8 (c) and (d) show κρ divided into winter and summer months.

Again the dominant spatial pattern in κρ is clearer during winter months. North

of the PF, near-surface values of κρ decrease significantly from winter to summer

months while at depths greater than 400 m, the summer values of κρ are as large

or larger than winter values. The net result is a smoothing of the dominant spatial

pattern in the summer.

In Figure V.9 we present 100 m depth-averaged values (bold lines) of ε
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and κρ for all casts collected (a & c) south of the PF and (b & d) north of the

PF. As described above, a pattern of surface-elevated mixing north of the PF is

clearly shown, as is the trend of increasing mixing with depth to 600 m south of

the PF. Again, the PF appears to delineate regions of differing mixing patterns.

In each 100 m bin the outer vertical lines represent statistical uncertainty based

on the bootstrap method (Efron & Gong 1983).3

The values of ε and κρ shown in Figure V.7 through Figure V.9 are larger

than typically observed open-ocean sub-thermocline background levels, although

they remain smaller than elevated mixing rates observed above rough topography

(as in Drake Passage, Naveira Garabato et al. 2004) and over sills (as in the Ro-

manche Fracture Zone, Ferron et al. 1998). However, open-ocean comparisons

may be inadequate because of the unique characteristics of Drake Passage, such as

strong zonal flow and strong mesoscale eddy activity (Lenn et al. 2005). The dy-

namic pathways between eddies and turbulent dissipation are not well understood,

but it has been suggested that eddies may enhance mixing (Polzin, personal com-

munication). Further discussion appears in section V.6.ii. In the following section

we present an alternative method of inferring κρ to help verify these results.

V.5.iv Strain rate estimates of κρ

Kunze (2003) calculates strain spectra from profiles of buoyancy fre-

quency and the vertical derivative of potential temperature. While the buoyancy

frequency estimate can be sensitive to salinity variations where stratification is

weak, temperature-inferred strain is not expected to work well in regions where

finestructure water-mass variability, such as thermohaline intrusions and inter-

leaving, is strong. Since interleaving is a distinctive feature of Drake Passage,

it is not surprising that temperature-inferred strain produce κρ estimates signifi-

3Values of ε and κρ were binned into 100 m intervals. These binned profiles were subsampled
and averaged 100 times using one-half of the available data in each bin. The error bars in Figure
V.9 represent the 3rd and 97th percentile of the resulting distribution. We use 75 casts collected
north of the PF, and 39 casts collected south of the PF.
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Figure V.9: Turbulent dissipation rate ε averaged over 100 m bins for all casts (a)
south of the Polar Front and (b) north of the Polar Front. The lower panels show
100 m depth-averaged turbulent diffusivity κρ for all casts (c) south of the Polar
Front and (d) north of the Polar Front. In each 100 m bin the width determined
by the two outer vertical lines represents statistical uncertainty as determined by
a bootstrap technique (Efron and Gong 1983, see section V.5.iii).



143

cantly larger than the buoyancy frequency estimates. As an alternative, Finnegan

et al. (2002) analyze strain spectra initially formed from displacement profiles

of potential density. We find that both the buoyancy frequency profiles and the

displacement profiles give spectra with the same amplitude to within 15%, and

more importantly, they show the same spatial distribution of mixing across Drake

Passage.4

We divide the data into 200 m segments so that there are no large changes

in buoyancy frequency within each bin. The uppermost segment is taken to start

at 150 m in order to exclude the mixed layer, which can give anomalously large

strain variances. All other segments begin at multiples of 100 m so they are half-

overlapping. To determine strain we first remove a linear trend, then normalize

the result by the mean buoyancy frequency over each segment. Spectra at each

latitude and from each depth are averaged over all casts.

Figure V.10 shows spectra from two different latitudes and at various

depths. Our vertical wave number spectra for strain agree well with the GM

model (bold curve) with a flat region at intermediate wavenumbers that rolls off

to a slightly red spectra at the highest resolved wavenumbers. The left hand

panels show spectra from casts taken exclusively north of the PF at 56o S, while

the right hand panels are from 60.5o S, exclusively south of the PF. The strain

variance ratios are determined by integrating both the measured spectra and the

GM spectra from kmin. = 0.01 out to kmax. as described in (V.6). The value of

kmax. is given in each panel by the dashed vertical line. Figure V.10 shows that

the amplitude of the strain spectra decreases with depth at locations north of

the PF, while the amplitude increases with depth at locations south of the PF.

The vertical eddy diffusivity based on the strain spectral analysis κφρ is computed

using the formula in (V.8) where we have taken H(Rω)J (f,N) = 5 based on the

4The spectra plotted in Figure V.10 are based on the buoyancy frequency profiles. These
were chosen because there is less noise at high wavenumbers, although we note that this does
not affect our mixing rate estimates which depend on strain variances at low wavenumbers.
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discussion in section V.3.ii. The corresponding value of κφρ is given in each panel.

Figure V.11 (a) shows a representation of κφρ for all casts. The spatial

pattern found using the Thorpe scale method remains the dominant feature. Mix-

ing rates are elevated near the surface north of the PF, whereas mixing rates tend

to be larger away from the surface south of the PF. Although still present, the mid-

depth maximum in mixing south of the PF is not as clearly defined in the strain

rate estimate primarily because κφρ does not decrease rapidly below the tempera-

ture maximum as κρ does in the Thorpe scale analysis. Also, κφρ spans a smaller

range of values than κρ (Figure V.7 (c)).

Figure V.11 (b) gives the ratio of κρ to κφρ . Throughout Drake Passage the

Thorpe scale estimate is generally larger than the strain estimate. This suggests

that the Thorpe scale estimate may provide an upper bound on mixing rates (see

discussion in section V.4.ii). Over most regions of Drake Passage the ratio of the

two estimates is roughly 2-3 and only exceeds 5 in one bin at 59o S. Because of

the assumptions that go into both the Thorpe scale and strain spectral methods,

specifically the reliance on numerical constants Rω and LT/LO, there appears

to be relatively good agreement between the two methods. The fact that both

methods exhibit the same spatial pattern suggests that the dominant contribution

to overturning is internal wave breaking.

V.6 Discussion

The results of the previous section provide evidence that mixing events

north and south of the PF are distinctly different. Mixing estimates from both

Thorpe scale and strain rate methods most likely reflect internal wave breaking.

However, the spatial and seasonal mixing patterns are also correlated with dis-

tinct patterns in winds, thermohaline intrusions and mesoscale eddy activity across

Drake Passage. In this section we discuss the implications of these different pro-

cesses.
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V.6.i Winds

Large diffusivity values near the surface in northern Drake Passage sug-

gest that winds may influence mixing in this region. In a steady state ocean

(which may not be a particularly accurate model for the Southern Ocean), the

rate of energy input by wind must be equal to the turbulent dissipation. Wunsch’s

(1998) study of the wind work on the general ocean circulation shows that the

total energy input is dominated by Southern Ocean winds. Local dissipation of

this energy would help support the high mixing rates we observe in Drake Passage.

While Wunsch (1998) considers the role of low-frequency wind work on the gen-

eral circulation, Alford (2001) describes how higher-frequency fluctuations in the

winds can generate inertial motions in the mixed layer that propagate downward as

near-inertial internal waves and eventually break causing small-scale mixing. This

second process is more likely to explain the spatial patterns and the seasonality

of the upper-ocean mixing signal. Alford (2003) notes that his turbulent dissipa-

tion values for the Southern Ocean are likely under-estimated because data-poor

high-southern-latitude NCEP winds are unreliable.

To study the wind’s influence on mixing in Drake Passage, we analyze

QuikScat mean wind fields obtained from CERSAT at IFREMER5. The winds are

computed from the NASA SeaWinds scatterometer and are provided as monthly

averages on a global 0.5o×0.5o resolution geographical grid. Over our study period,

both wind speed and wind stress exhibit the same spatial and seasonal patterns.

We present the wind stress data here because the energy flux input by wind is

proportional to τ · u, where τ is the wind stress and u is the current velocity.

Figure V.12 (a) shows the average wind stress in Drake Passage for all

months between January 2002 and July 2005. Strong winds give rise to a large

wind stress west of the southern tip of South America. The strong eastward flow of

the ACC may advect near-inertial waves formed in this region towards our study

5http://ifremer.fr/cersat
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Figure V.12: (a) Average wind stress from QuikScat data for all months between
January 2002 and July 2005. The dashed line gives the position of the mean
cruise track. (b) Average wind stress along the mean cruise track for all months
(solid line) and also divided into summer (dash-dot line) and winter (dashed line)
months. The dotted lines give the mean latitudes of the measurement sites.

site. Wind stress decays moving eastward into our study site. Figure V.12 (b)

presents wind stress data along the mean cruise track (given by the dashed line in

panel (a)) averaged over all months as well as winter (April-Sept.) and summer

(Oct.-March) months. Along the cruise track, wind stress peaks just south of

57o S and has a minimum near 59.5o S. The locations of the wind stress extrema

correspond well with the locations of extrema in our surface values of κρ (Figure

V.7 (c)). These results complement the hydrography by providing further evidence

that the region north of the PF is more energetic than south of the PF.

The seasonal change in wind stress amplitude is roughly uniform across
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Drake Passage despite our observations of a seasonal mixing signal north of the

PF (Figure V.8). We expect that storms produce the greatest energy flux into

the surface layer, therefore wind stress variance may provide a better indicator of

the wind’s influence on mixing. Figure V.13 plots wind stress variance along the

mean cruise track using 12-hour QuikScat winds from summer and winter months

between January 2002 and July 2005. In agreement with Gille (2005), we find that

the magnitude of the wind stress variance increases significantly during winter

months throughout Drake Passage. During summer, wind stress variance is nearly

uniform across Drake Passage, whereas during winter months there is a clear peak

in variance at the northern measurement sites (indicated by the dotted lines). This

provides a possible explanation for the seasonal signal in κρ north of the PF.

V.6.ii Other Possible Mixing Mechanisms

North of the PF

Observations of compensating interleaving in temperature (T ) and salin-

ity (S) (Figure V.3 (b) & (c) and Figure V.6 (f ) & (g)) suggest that thermohaline

intrusions play an important role in the dynamics of Drake Passage. Toole (1981)

points out that in Drake Passage, intrusions are typically confined to the upper

1000 m. Therefore our XCTD casts capture the region of strongest thermohaline

variability. Thermohaline intrusions are associated with double diffusive convec-

tion, which may represent an alternative source of mixing. While thermohaline

intrusions can be driven by both fingering (Ruddick & Turner, 1979) and diffu-

sive (Thompson & Veronis, 2005) interfaces, fingering convection tends to be more

vigorous.

Focusing on casts north of the PF, we analyze 60 prominent cases of T/S

interleaving and determine the density ratio for each of these possible intrusions.

We select the region of the intrusion where the T/S profiles are susceptible to

fingering (i.e. T is the stabilizing component), in which case the density ratio is

defined by Rρ ≡ α∆T/β∆S. Here ∆T and ∆S are the T and S differences over
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Figure V.13: (a) Wind stress variance from twice-daily QuikScat data along the
mean cruise track divided into winter (April-Sept.) and summer (Oct.-March)
months. (b) Ratio of the wind stress variance during winter and summer months
which shows a clear peak near 57o S. The dotted lines give the mean latitudes of
the measurement sites.
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the region where S is unstably stratified, and α and β are local coefficients of

expansion for T and S respectively. Mean values of α and β for each intrusion are

calculated using the 1980 equation of state for seawater (UNESCO 1981). Over

these 60 interleaving regions we find that Rρ has a mean value of 1.46 with a

standard deviation of 0.29. The mean thickness of the regions we analyze is 23.5

m, and the maximum thickness is 50 m.

Fingering convection becomes stronger as Rρ approaches 1. Our values

for Rρ suggest that thermohaline intrusions in this region may, in places, exhibit

strong fingering and could be a source of diapycnal mixing. However, strong zonal

flow, eddies and internal waves may act to disrupt finger structures making it

difficult to calculate vertical fluxes. Walsh & Ruddick (2000) show that turbulence

significantly alters the growth and formation of intrusions as well as the associated

fluxes of heat and salt. Larson & Gregg (1983) hypothesize that near-inertial waves

aid in intrusion formation, which may also point to strong internal wave activity

north of the PF.

There is no observational evidence that eddies enhance diapycnal mixing;

still, they have a large influence on Drake Passage dynamics north of the PF.

The ability of Drake Passage eddies to stir large-scale T/S gradients and form

thermohaline intrusions is discussed by Garrett (1982). The intrusions are assumed

to generate fingering convection from which Garrett (1982) calculates a diapycnal

diffusivity. This primitive model predicts κρ to be an order of magnitude smaller

than those inferred from the internal wave field. Ferrari & Polzin (2005) consider

similar dynamics in the North Atlantic and suggest that a better understanding

of the processes that arrest interleaving could determine whether mesoscale eddies

enhance mixing.

While the possibility exists that thermohaline intrusions, mesoscale eddies

and internal waves interact in complicated ways to enhance mixing, these dynamics

are poorly understood. Still, all these processes indicate that the region north of

the PF is more energetic than south of the PF. The complete lack of interleaving
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south of the PF indicates that physical processes governing mixing in this region

are potentially very different.

South of the PF

South of the PF, T and S stratification in the upper 500 m of the water

column is susceptible to the diffusive regime of double diffusive convection (lower

panels of Figure V.3). The T/S profiles in this area are similar to profiles collected

in eastern and central Weddell Sea where thermohaline staircases form (Muench

et al. 1990). Staircase structures, however, are not apparent in the Drake Passage

data set. It is possible that the resolution of the XCTDs is unable to capture this

behavior, although it is more likely that conditions, such as the region’s proximity

to large topographic features, strong currents and frontal systems, are unfavorable

for staircase formation.

We calculate Rρ ≡ β∆S/α∆T , which by convention is the inverse of

the fingering case so that Rρ is always ≥ 1. ∆T is the difference between the T

minimum near the surface and the mid-depth T maximum; ∆S is the S change

over the same depth. Averaging over all casts with similar profiles, we find that

Rρ = 2.66 with a standard deviation of 0.50. This value is larger than those

reported in the Weddell Sea, where Rρ = 1.52 and 1.36 in regions of stronger

and weaker temperature gradients respectively (Muench et al. 1990). Mixing is

enhanced as Rρ → 1, so that our value suggests that double diffusive convection is

generally weak. When Rρ exceeds 3, thermohaline staircases are unlikely to form

(Muench et al. 1990).

Howard et al. (2004) suggest a method for determining diapycnal diffu-

sivities in the absence of staircases, however the fluxes derived from this technique

are swamped by the turbulent mixing inferred from the Thorpe scale and strain

rate. However, it is intriguing that Muench et al. (1990) observe a sharp increase

in eddy diffusivity near the local T maximum, with κT exceeding 10−3 m2 s−1.

Both our Thorpe scale and strain spectral methods predict an increase in κρ near
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the T maximum south of the PF. The fact that double diffusion alone can not

describe mixing south of the PF is, perhaps, not surprising since wind forcing

and eddy activity, while smaller south of the PF, are still elevated above levels in

mid-latitude oceans.

V.7 Summary and open questions

In this paper we use two independent techniques to calculate turbulent

mixing rates in the upper 1000 m of Drake Passage from expendable CTD (XCTD)

probes. Uncertainty in the magnitude of our dissipation ε and diffusivity κρ esti-

mates may arise from our choice of certain numerical constants (see section V.3).

Furthermore, the theoretical basis for both the Thorpe scale and internal wave-

vertical strain techniques is subject to a number of assumptions that are not well-

tested in energetic regions like Drake Passsage. Therefore, our main conclusions

focus on the identification of robust mixing patterns that appear in the two anal-

yses.

The Polar Front (PF) delineates two regions governed by different phys-

ical processes. Profiles collected north of the PF are dominated by compensated

interleaving, whereas strong interleaving is absent from all profiles collected south

of the PF. The clearest spatial signal we observe is an order of magnitude decrease

in surface (upper 400 m) mixing rates moving from north to south across the PF.

The clearest seasonal signal occurs in surface values north of the PF with mixing

rates larger in the winter. Mixing rates decay weakly with depth north of the PF.

South of the PF mixing increases steadily with depth and peaks near the local

temperature maximum. Mixing rates below the temperature maximum are not

well constrained because overturn detection becomes marginal. Where overturns

are well-resolved, our Thorpe scale estimates are consistently larger by a factor of

2-3 than those obtained from the strain spectral method. Strain spectral estimates,

which parameterize mixing caused by internal wave breaking, could underestimate
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mixing rates if other processes, such as salt fingering, make a similar contribution

to the dissipation. However, we suspect that the dominant contribution to mixing

is internal wave breaking, and Thorpe scale estimates provide an upper bound on

mixing rates (see discussion in section V.4.ii).

Figure V.14 summarizes some possible mechanisms that may influence

the spatial and temporal mixing patterns that we observe. Wunsch (1998) indi-

cates that the largest energy input to the oceans due to low-frequency wind work

occurs in the Southern Ocean, which may lead to large turbulent dissipation rates.

Energy input from high-frequency winds can form near-inertial internal waves that

eventually transfer their energy to small scales when they break. In our study, ele-

vated mixing rates near the surface are found at latitudes corresponding to peaks in

both wind stress and wind stress variance. Also, seasonal variations in wind stress

variance and diapycnal diffusivities are largest north of the PF. Double diffusive

processes may also contribute to mixing in Drake Passage. The strong interleaving

found north of the PF suggests that thermohaline intrusions, which give rise to

salt fingering, are prevalent. Weaker mixing may occur due to the diffusive regime

of double diffusive convection in regions where temperature is unstably stratified

south of the PF. Perhaps the most distinguishing feature of Drake Passage is the

persistent influence of mesoscale eddies, but their role in small-scale mixing is not

well understood.

There is insufficient information in the XCTD data set to definitively

determine which of the mechanisms listed above, if any, are responsible for the

mixing patterns we observe. This question and questions surrounding the overall

importance of mixing in Southern Ocean dynamics can only be answered by future

studies. This will partly require development of theoretical models and numeri-

cal techniques to evaluate the types of mixing processes and dynamic pathways

to turbulence that may be unique for the Southern Ocean. One of the more in-

triguing processes is the potential role of energetic eddies in enhancing mixing.

Eddies may produce interleaving that leads to double diffusive convection (e.g.,
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Figure V.14: Schematic of possible mixing processes in Drake Passage. The Polar
Front (depicted schematically here) divides two very different regions. North of
the Polar Front, strong wind forcing generates near-inertial internal waves that
transfer energy to small scales. These waves can break causing small-scale mix-
ing. Thermohaline intrusions are also prevalent north of the Polar Front and may
enhance mixing through salt fingering. Mesoscale eddy activity is large north of
the Polar Front, although the role of eddies in vertical mixing processes is not well
understood. Near the surface south of the Polar Front, temperature and salinity
profiles are susceptible to the diffusive regime of double diffusive convection and
mixing is weak. South of the Front mixing increases to a depth of at least 600
m. Below this depth stratification is weak and our mixing estimates are poorly
constrained.
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Ferrari & Polzin 2005), and they may also interact non-linearly with the internal

wave field to pump energy to small-scale motions (e.g., Zhai et al. 2005). An im-

proved understanding of Southern Ocean mixing processes would also benefit from

a dedicated field program in the region, especially one that includes microstructure

measurements. Such measurements would help to verify evidence, presented here

and in other studies (Naveira Garabato 2004, Sloyan 2005), that small-scale mixing

is intense and widespread throughout the water column and likely influences both

local Southern Ocean circulation and the global themohaline circulation.
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Appendix A

The two-mode equations of
motion

The derivation of the modal equations used in our study is based on Flierl

(1978), and also includes forcing terms that arise when there is a mean shear in the

basic state as discussed in Hua & Haidvogel (1986). Our equations differ from Hua

& Haidvogel only in the form of the hyperviscous term, which is used to absorb

enstrophy cascading to the highest wavenumbers. The main difference between

the modal decomposition used here and the method used by Larichev and Held

(1995) appears in the coefficients of the bottom drag term as shown below.

The continuous quasigeostrophic equations are written as

∂

∂t
Q+ J(Ψ, Q) = −ν∇8Q . (A.1)

Here J represents the Jacobian, J(a, b) ≡ axby − aybx, Ψ is the stream function

such that u = −Ψy and v = Ψx, and

Q = ∇2Ψ + (f/N)2 Ψzz , (A.2)

is the potential vorticity. We consider dynamics on a β-plane, and take the Brunt-

Vaisala frequency N to be constant. The coefficient of hyperviscosity is given by

ν and H is the depth of the ocean. The Rossby deformation radius is λ = NH/π.

Using a truncated modal expansion in the vertical, we consider the baro-
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tropic and first baroclinic modes with a mean shear. We write this as

Ψ(x, y, z, t) = ψ(x, y, t) + [−Uy + τ(x, y, t)]
√

2 cos
(πz

H

)

, (A.3)

where ψ and τ are the perturbation stream functions of the barotropic and baro-

clinic modes respectively. The factor of
√

2 arises from normalization of the modes

(Flierl 1978). The corresponding potential vorticity is

Q = ∇2ψ +
(

∇2τ − λ−2τ + Uλ−2y
)
√

2 cos
(πz

H

)

. (A.4)

We now apply the modal decomposition of Ψ to the the quasigeostrophic

equation and project in the barotropic and baroclinic modes. The frictional, or

Ekman drag, terms arise from the bottom boundary condition,

w(x, y,−H, t) = δE∇2Ψ(x, y,−H, t) , (A.5)

where δE is the Ekman layer depth. In our model the Ekman drag coefficient is

defined by κ = fδE/H .

The resulting modal equations are:

∇2ψt+J(ψ,∇2ψ)+J(τ,∇2τ)+U∇2τx+βψx = −κ∇2(ψ−κτ)−ν∇8(∇2ψ) , (A.6)

and

(

∇2 − λ−2
)

τt + J(ψ, (∇2 − λ−2)τ) + J(τ,∇2ψ) + U
(

∇2 + λ−2
)

ψx + βτx

= κκ∇2(ψ − κτ) − ν∇8(∇2 − λ−2)τ . (A.7)

The variable κ above controls the projection of the bottom drag onto the layers.

The modal projection in (A.3) and (A.4) results in κ =
√

2. To limit the effect of

bottom drag to the lower layer, set κ = 1 (as in Larichev & Held 1995).

To make a comparison with LH03 we introduce equivalent layer variables

ψ1 = ψ + τ , ψ2 = ψ − τ , (A.8)
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and the corresponding potential vorticities

q1 = ∇2ψ1 + 1
2
λ−2(ψ2 − ψ1) = ∇2ψ + (∇2τ − λ−2τ) ,

q2 = ∇2ψ2 + 1
2
λ−2(ψ1 − ψ2) = ∇2ψ − (∇2τ − λ−2τ) . (A.9)

The layer equations are obtained by adding and subtracting (A.6) and (A.7):

q1t + Uq1x +G1ψ1x + J(ψ1, q1) = Diss1 , (A.10)

q2t − Uq2x +G2ψ2x + J(ψ2, q2) = Diss2 . (A.11)

Above, the PV gradients are

G1 = β + λ−2U , G2 = β − λ−2U , (A.12)

and the dissipative terms are

Diss1 ≡ (κ − 1)κ∇2ψ
κ
− ν∇8q1 , (A.13)

Diss2 ≡ −(κ + 1)κ∇2ψ
κ
− ν∇8q2 , (A.14)

with

ψ
κ
≡ ψ − κτ =

κ + 1

2
ψ2 −

κ − 1

2
ψ1 . (A.15)

Notice that the velocity jump between the two layers is 2U .

The energy balance is obtained in the standard manner by multiplying the

barotropic and baroclinic modal equations by ψ and τ respectively and averaging

over space. In a statistically steady state the energy balance requires

Uλ−2 〈ψxτ〉 = κ
〈

|∇ψ
κ
|2

〉

+ hypν , (A.16)

where ψ
κ
≡ ψ − κτ . The hyperviscous term in (A.16) is

hypν = ν
〈

|∇∇4ψ|2
〉

+ ν
〈

|∇∇4τ |2
〉

+ νλ−2
〈

(

∇4τ
)2

〉

. (A.17)

Setting κ =
√

2 we obtain (III.2).
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We record some well known identities which are easily obtained using the

layer variables. First and foremost, the three different fluxes are all related by:

λ−2 〈ψxτ〉 = 1
2
λ−2 〈ψ2xψ1〉 = 〈v2q2〉 = −〈v1q1〉 . (A.18)

The corresponding eddy diffusivities are defined by

〈v1q1〉 = −D1G1 (definition of D1) , (A.19)

〈v2q2〉 = −D2G2 (definition of D2) , (A.20)

〈ψxτ〉 = −DτU (definition of Dτ ) . (A.21)

Using (A.18), the three diffusivities are related by

Dτ = (1 + β∗)D1 = (1 − β∗)D2 , (A.22)

where β∗ ≡ βλ2/U . There are some problems with these diffusivities e.g., when

β∗ = 1 the instability is still active and so the three fluxes are nonzero and related

by (A.18). This forces the conclusion that D2 = ∞, not D2 = 0 as suggested in

Lapeyre & Held (2003). For this reason we prefer to deal exclusively with Dτ .

Another quantity of interest is the action A, where

A ≡ 1

2

(

q2
1

G1

+
q2
2

G2

)

. (A.23)

The action arises from the enstrophy balance, which is obtained by multiplying

(A.10) and (A.11) by q1 and q2 respectively and performing a purely spatial average

over the domain. This yields

1

2

〈

q2
1

〉

t
+G1 〈v1q1〉 = 〈q1Diss1〉 , (A.24)

1

2

〈

q2
2

〉

t
+G2 〈v2q2〉 = 〈q2Diss2〉 . (A.25)

The terms involving the potential vorticity fluxes can be eliminated by dividing

(A.24) and (A.25) by G1 and G2 and using the relationship −〈v1q1〉 = 〈v2q2〉 from
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(A.18). Finally we can expand the dissipation term on the right using (A.13) and

(A.14), which gives the time evolution of the action

At = −κ
2

[

(κ − 1)2

G1

〈

(

∇2ψ1

)2
〉

+
(κ + 1)2

G2

〈

(

∇2ψ2

)2
〉

]

− κ

4

[(

κ − 1

G1

+
κ + 1

G2

)

(

(κ − 1)
〈

|∇ψ1|2
〉

+ (κ + 1)
〈

|∇ψ2|2
〉)

]

− ν

[

1

G1

〈

(

∇4q1
)2

〉

+
1

G2

〈

(

∇4q2
)2

〉

]

+
κ

2

[

(κ − 1) (κ + 1)

(

1

G1

+
1

G2

)

〈

∇2ψ1∇2ψ2

〉

]

+
κ

2

[

κ

(

κ − 1

G1

+
κ + 1

G2

)

〈∇ψ1 · ∇ψ2〉
]

. (A.26)

If κ = 1, (A.26) simplifies greatly to become

At = − κ

[

2

G2

〈

(

∇2ψ2

)2
〉

+
1

G2

〈

|∇ψ2|2
〉

]

+ κ

[

1

G2

〈∇ψ1 · ∇ψ2〉
]

− ν

[

1

G1

〈

(

∇4q1
)2

〉

+
1

G2

〈

(

∇4q2
)2

〉

]

.(A.27)

The cross-invariant analysis of Chapter II is a large-scale analog of the action

equation given in (A.26).
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Vortex census algorithm

The automated vortex census algorithm primarily follows the method

outlined in McWilliams (1990) to identify vortices in a two-dimensional gridded

vorticity field at a given time. The method begins by identifying all points above

a vorticity threshold value ζmin. Following McWilliams (1990) this value is taken

to be 5% of the maximum vorticity magnitude in the field. The vortices are

also required to have a vorticity extrema at their centers. Thus any point whose

magnitude is smaller than one or more of its surrounding points is also excluded.

Because we are interested in counting axisymmetric structures, we added a further

constraint based on the Okubo-Weiss parameter (Okubo 1970, Weiss 1991), which

measures the relative importance of vorticity versus strain. The Okubo-Weiss

parameter is

OW = s2
n + s2

s − ζ2 = 4
(

u2
x + uyvx

)

, (B.1)

where sn = ux − vy is the normal component of strain and ss = uy + vx is the

shear component of strain. The Okubo-Weiss parameter is negative when rotation

dominates and positive when strain dominates. Therefore we require that the

Okubo-Weiss parameter at the center of each of our vorticies be negative and have

a magnitude larger than a threshold OWmin. Similar to the vorticity we take

OWmin to be 5% of the maximum OW magnitude in the field (the value of OW

at the point of maximum magnitude is always negative).

The boundary of each vortex is determined following the method in
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McWilliams (1990), which traces a counterclockwise path around the boundary

based on a vorticity threshold. Using the boundary to measure rcore proved to be

difficult since not all vortices are perfectly axisymmetric and many vortices only

have a core radius of 3-4 grid points. We found that a more effective method for

determining an average vortex radius was to count all the points that had a nega-

tive value of OW and a magnitude greater than OWmin. Considering the physical

fields, these points were found to lie almost exclusively inside the vortex cores.

Dividing the number of points that satisfy the OW threshold by the number of

vortices in that particular snapshot provides an estimate of the area of an average

vortex (this is not the true area since we are only counting points). From observa-

tions of the physical fields, the square root of this number was found to agree well

with a typical core radius and was taken as the value for rcore in Figure II.9(b).

Simulations with L/λ = 25 and κλ/U = [0.16, 0.24, 0.32, 0.48, 0.64, 0.80]

were run for a time tU/λ = 125 in the equilibrated state during which 50 snapshots

of barotropic vorticity and the Okubo-Weiss parameter of the barotropic mode were

saved. The vortex census was completed for each snapshot and the values for N

and rcore plotted in Figure II.9 are the mean of these 50 realizations. The values

for ζmin and OWmin were varied systematically. These changes alter the resulting

values of N and rcore, but the relationship between different values of bottom drag

does not change significantly. For example, changes in threshold values cause the

slope in Figure II.9(a) to vary between -0.52 and -0.62.
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Two-layer invariants with
quadratic bottom friction

Grianik et al. (2004) and Arbic (2006) consider a quadratic bottom fric-

tion in place of the tradiational linear bottom friction to model Ekman bottom drag

in numerical simulations of quasigeostrophic turbulence. An analysis of the effects

of quadratic bottom drag on the formation and persistence of both the vortices

and jets observed in the simulations described in Chapters II-IV was beyond the

scope of this disserations. However, some of the important quadratic invariants,

especially those used in deriving the eddy heat flux parameterization of Chapter

II, can be applied to the case with quadratic bottom friction. This Appendix sum-

marizes these relationships specifically for the case of f -plane turbulence where

the cross-invariant described in section II.6 is crucial.

Limiting dissipation to the lower layer, the two-layer quasigeostrophic

equations on an f -plane are given by

Q1 + J (Ψ1, Q1) = 0, (C.1)

Q2 + J (Ψ2, Q2) = D, (C.2)
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where

Ψ1 = −Uy + ψ1, (C.3)

Ψ2 = ψ2, (C.4)

Q1 = ∇2Ψ1 +
1

2λ2
(Ψ2 − Ψ1) =

Uy

2λ2
+ q1, (C.5)

Q2 = ∇2Ψ2 +
1

2λ2
(Ψ1 − Ψ2) = −Uy

2λ2
+ q2, (C.6)

and D is drag due to bottom friction.

We can re-write (C.1) and (C.2) using (C.3) through (C.6), which yields

q1t +
U

2λ2
ψ1x + Uq1x + J (ψ1, q1) = 0, (C.7)

q2t −
U

2λ2
ψ2x + J (ψ2, q2) = D. (C.8)

The definition of the bottom quadratic drag (Grianik et al. 2004) is then given by

D = −CDk̂ · (∇× |u2|u2) = −CD
[

∂

∂x
(|u2|v2) −

∂

∂y
(|u2|u2)

]

. (C.9)

The first step is to form the energy balance which is accomplished by

multiplying (C.7) and (C.8) by ψ1 and ψ2 respectively and then integrating over

the domain. Assuming the domain is doubly periodic, in steady state the energy

balance gives
U

2λ2
〈ψ1ψ2x〉 = 〈ψ2D〉 . (C.10)

Note that terms like 〈ψiψix〉 = 0 and
〈

ψiψjx
〉

= −〈ψjψix〉 because of the doubly

periodic boundary conditions. We can switch back and forth between layers and

modes using the following formulas:

ψ =
ψ1 + ψ2

2
, τ =

ψ1 + ψ2

2
, ψ1 = ψ + τ, ψ2 = ψ − τ . (C.11)

As a check, re-writing the LHS of (C.10) in terms of modes produces

U

2λ2
〈ψψx − ψτx + τψx − ττx〉 =

U

λ2
〈τψx〉 , (C.12)
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which is the energy production of the modal equations. The rhs of (C.12) can be

viewed as 〈v′T ′〉 where v is the barotropic meridional velocity and the baroclinic

streamfunction τ is proportional to the temperature field.

With a few simple steps the quadratic bottom friction can be reduced to

a more manageable form:

〈ψ2D〉 = −CD
[〈

ψ2

∂

∂x
(|∇ψ2|ψ2x)

〉

+

〈

ψ2

∂

∂y

(

|∇ψ2|ψ2y

)

〉]

, (C.13)

= CD
(〈

|∇ψ2|ψ2
2
x

〉

+
〈

|∇ψ2|ψ2
2
y

〉)

, (C.14)

= CD
〈

|∇ψ2|3
〉

. (C.15)

The projection of bottom friction into the modal equations is more complicated

and takes the form

CD
〈

|∇ψ2|3
〉

= CD
〈

|∇ψ −∇τ |3
〉

= CD

[

(〈

|∇ψ|2
〉

− 2 〈∇ψ · ∇τ〉 +
〈

|∇τ |2
〉)3/2

]

.

(C.16)

If the vortex scaling theory described in Chapter II also applies for a

system with quadratic bottom friction, the first two terms on the rhs of (C.16)

can be written in terms of vortex properties such as the core radius, etc. The

final term, 〈|∇τ |2〉, is more problematic because its magnitude depends on the

entire domain (not just the vortices). This term may also make a significant

contribution to the dissipation (at least in the linear bottom friction case). In

the f -plane analysis of Chapter II, 〈|∇τ |2〉 was determined by considering another

quadratic invariant, referred to as the “cross-invariant”. The cross-invariant is

formed by multiplying the barotropic vorticity equation by τ and the baroclinic

vorticity equation by λ2∇2ψ. After averaging over the domain, terms of O(λ2) in

the baroclinic vorticity equation are neglected. These O(λ2) terms were shown to

be small in the f -plane case.

In the following I obtain the analogous cross-invariant for quadratic bot-

tom friction. First, it is useful to determine what the cross term becomes in the
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layer case. It is simply,

〈∇ψ · ∇τ〉 =

〈∇ψ1 + ∇ψ2

2
· ∇ψ1 −∇ψ2

2

〉

=
1

4

(〈

|∇ψ1|2
〉

−
〈

|∇ψ2|2
〉)

. (C.17)

The equivalent of multiplying the baroclinic streamfunction to the baro-

tropic vorticity equation is to multiply (ψ1 − ψ2) by both the upper and lower

PV equations and sum the resulting equations. Integration by parts eliminates a

number of terms and what remains yields

〈

ψ1∇2ψ1t

〉

+
〈

ψ1∇2ψ2t

〉

−
〈

ψ2∇2ψ1t

〉

−
〈

ψ2∇2ψ2t

〉

− U
〈

ψ2∇2ψ1x

〉

+
〈

ψ1J
(

ψ2∇2ψ2

)〉

−
〈

ψ2J
(

ψ1,∇2ψ1

)〉

= 〈ψ1D〉 − 〈ψ2D〉 . (C.18)

In Chapter II the non-linear terms are eliminated by multiplying the barotropic

vorticity by the baroclinic vorticity equation. Note that only the O (λ−2) terms in

the baroclinic vorticity equation are retained since the cross invariant only holds

for large scales. At O (λ−2) the upper and lower layer vorticity equations are the

same, so there are two independent equations which are

〈

∇2ψ1ψ2t

〉

−
〈

∇2ψ1ψ1t

〉

+ U
〈

∇2ψ1ψ2x

〉

+
〈

∇2ψ1J (ψ1, ψ2)
〉

= 0, (C.19)

〈

∇2ψ2ψ2t

〉

−
〈

∇2ψ2ψ1t

〉

+
〈

∇2ψ2J (ψ1, ψ2)
〉

= 0. (C.20)

Finally, using (C.19) and (C.20) to eliminate the Jacobian terms in (C.18)

we get
∂

∂t

(〈

|∇ψ1|2
〉

−
〈

|∇ψ2|2|
〉)

= 〈ψ2D〉 − 〈ψ1D〉 . (C.21)

The lhs is proportional to the cross invariant and should be approximately con-

stant in the steady state so that

〈ψ1D〉 − 〈ψ2D〉 ≈ 0. (C.22)

The modal form of 〈ψ2D〉 is given (C.16) and 〈ψ1D〉 is equivalent to:

〈ψ1D〉 = −CD
[〈

ψ1

∂

∂x
(|∇ψ2|ψ2x)

〉

+

〈

ψ1

∂

∂y

(

|∇ψ2|ψ2y

)

〉]

, (C.23)

= CD
(

〈|∇ψ2|ψ2xψ1x〉 +
〈

|∇ψ2|ψ2yψ1y

〉)

, (C.24)

= CD 〈|∇ψ2|∇ψ1 · ∇ψ2〉 , (C.25)
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with

CD 〈|∇ψ2|∇ψ1 · ∇ψ2〉 = CD 〈|∇ψ −∇τ | (∇ψ + ∇τ) · (∇ψ −∇τ)〉 (C.26)

= CD
(〈

|∇ψ −∇τ ||∇ψ|2
〉

−
〈

|∇ψ −∇τ ||∇τ |2
〉)

.(C.27)

Recall that the goal is to eliminate 〈|∇τ |2〉 in the energy balance. Using

(C.16), (C.22) and (C.27) we have

〈

|∇ψ −∇τ |
(

|∇ψ|2 − 2∇ψ · ∇τ + |∇τ |2
)〉

=
〈

|∇ψ −∇τ |
(

|∇ψ|2 − |∇τ |2
)〉

,

(C.28)

which leads to the conclusion that

〈|∇ψ −∇τ |∇ψ · ∇τ〉 =
〈

|∇ψ −∇τ ||∇τ |2
〉

. (C.29)

Unfortunately (C.29) does not imply that 〈∇ψ · ∇τ〉 = 〈|∇τ |2〉. The

energy balance can be written in its truncated form

U

λ2
〈τψx〉 = CD

〈

|∇ψ −∇τ |
(

|∇ψ|2 −∇ψ · ∇τ
)〉

, (C.30)

but this still has the “painful” |∇τ |2 kicking around. Therefore it appears that we

can not write the energy balance exclusively in terms of vortex properties.

However, diagnostics of numerical simulations (Arbic 2006) could verify

if the cross-invariant is still valid with quadratic bottom friction. A nice check on

the theory for the layered model would be to compare 〈ψ1D〉 to 〈ψ2D〉. These two

terms should be approximately equal, as (C.22) suggests. The truncated dissipa-

tion in (C.30) could also be compared to to the total dissipation given in (C.16).

Again these should be approximately equal if the theory described here is valid.



Appendix D

β-plane simulation data

The following is a summary of the results of the β-plane simulations. The

data here can be used as a check against the calibration of future simulations. The

quantities in the table are defined as:

Dτ ≡ U−1 〈ψxτ〉 , (D.1)

V ≡
√

〈ψ2
x〉 , (D.2)

ℓmix. ≡ U−1
√

〈τ 2〉 , (D.3)

uJ ≡
√

〈

ψ̄2
y

〉

, (D.4)

ε ≡ κ
〈

|∇ψ −
√

2∇τ |2
〉

. (D.5)
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Table D.1: Summary of results from the β-plane simulations.

βλ2/U κλ/U Dτ/Uλ V/U ℓmix./λ uJ/U ελ/U3

1/4 0.02 34.428 18.894 13.208 33.198 32.449
5/16 0.02 14.490 12.762 9.320 21.420 13.687
3/8 0.02 7.045 8.646 6.998 15.681 6.648
7/16 0.02 3.813 6.707 5.518 11.843 3.601
1/2 0.02 2.215 5.514 4.532 9.211 2.091
9/16 0.02 1.292 4.416 3.665 7.022 1.216
5/8 0.02 0.679 3.258 2.842 5.233 0.640

11/16 0.02 0.424 2.963 2.488 4.280 0.400
3/4 0.02 0.279 2.609 2.200 3.592 0.260

13/16 0.02 0.178 2.291 1.944 3.015 0.166
7/8 0.02 0.124 2.189 1.839 2.650 0.115

15/16 0.02 0.0839 1.861 1.627 2.314 0.0777
1 0.02 0.0642 1.760 1.616 2.167 0.0589

9/8 0.02 0.0408 1.541 1.548 1.971 0.0369
5/4 0.02 0.0249 1.371 1.559 1.843 0.0222

1/4 0.04 34.240 16.151 12.422 20.710 32.313
5/16 0.04 14.405 11.121 8.082 12.745 13.645
3/8 0.04 6.082 7.128 6.242 9.076 5.755
7/16 0.04 3.200 5.295 4.822 6.964 3.026
1/2 0.04 1.824 4.111 3.835 5.558 1.723
9/16 0.04 1.166 3.520 3.260 4.651 1.098
5/8 0.04 0.783 3.215 2.865 3.989 0.735

11/16 0.04 0.501 2.703 2.445 3.273 0.470
3/4 0.04 0.371 2.657 2.285 2.931 0.347

13/16 0.04 0.240 2.265 1.953 2.426 0.223
7/8 0.04 0.182 2.176 1.884 2.221 0.169

15/16 0.04 0.133 1.945 1.748 2.025 0.124
1 0.04 0.106 1.808 1.708 1.914 0.0975

9/8 0.04 0.0763 1.847 1.739 1.808 0.0692
5/4 0.04 0.0416 1.618 1.648 1.722 0.0370
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βλ2/U κλ/U Dτ/Uλ V/U ℓmix./λ uJ/U ελ/U3

0 0.08 2344.170 121.172 72.247 81.392 2204.958
1/32 0.08 2425.062 120.212 64.902 87.402 2283.561
1/16 0.08 2089.737 114.452 61.662 81.435 1914.972
3/32 0.08 764.755 69.540 43.342 43.513 722.160
1/8 0.08 261.773 40.104 27.430 23.990 244.169
3/16 0.08 83.145 22.974 17.215 12.644 78.232
1/4 0.08 26.835 13.463 11.090 7.306 25.451
5/16 0.08 10.425 8.355 7.597 5.684 9.874
3/8 0.08 4.752 5.698 5.502 4.514 4.501
7/16 0.08 2.550 4.273 4.270 3.730 2.413
1/2 0.08 1.524 3.430 3.462 3.184 1.439
9/16 0.08 0.993 2.880 2.915 2.814 0.937
5/8 0.08 0.700 2.541 2.545 2.563 0.659

11/16 0.08 0.526 2.373 2.321 2.357 0.493
3/4 0.08 0.420 2.302 2.233 2.215 0.391

13/16 0.08 0.280 2.008 1.950 1.866 0.261
7/8 0.08 0.249 2.046 1.946 1.855 0.231

15/16 0.08 0.2285 2.112 2.005 1.880 0.210
1 0.08 0.175 1.962 1.893 1.720 0.1602

9/8 0.08 0.129 1.919 1.903 1.672 0.117
5/4 0.08 0.0882 1.793 1.854 1.612 0.0788

0 0.16 172.090 27.356 29.090 9.092 162.926
1/16 0.16 120.967 21.573 21.332 7.677 124.880
1/8 0.16 63.345 15.400 14.760 5.565 59.824
3/8 0.16 29.190 10.971 10.990 2.850 27.632
1/4 0.16 13.700 7.963 8.247 2.563 13.004
5/16 0.16 6.297 5.727 6.140 1.861 5.980
3/8 0.16 3.252 4.351 4.748 1.480 3.095
7/16 0.16 1.854 3.416 3.780 1.564 1.757
1/2 0.16 1.205 2.858 3.160 1.649 1.139
9/16 0.16 0.849 2.498 2.760 1.631 0.798
5/8 0.16 0.6456 2.252 2.458 1.646 0.607

11/16 0.16 0.464 2.021 2.203 1.454 0.433
3/4 0.16 0.419 2.001 2.154 1.538 0.390

13/16 0.16 0.389 2.040 2.180 1.616 0.362
7/8 0.16 0.342 2.040 2.175 1.633 0.316
1 0.16 0.246 1.924 2.062 1.514 0.225

9/8 0.16 0.191 1.905 2.064 1.522 0.173
5/4 0.16 0.129 1.730 2.024 1.443 0.116
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βλ2/U κλ/U Dτ/Uλ V/U ℓmix./λ uJ/U ελ/U3

0 0.32 21.890 8.419 10.980 2.004 20.847
1/32 0.32 20.500 7.620 9.702 1.904 19.562
1/16 0.32 18.645 7.179 9.045 1.819 17.782
3/32 0.32 16.222 6.777 8.512 1.709 15.475
1/8 0.32 13.570 6.346 7.950 1.637 12.952
3/16 0.32 8.748 5.368 6.745 1.358 8.334
1/4 0.32 5.523 4.534 5.698 1.114 5.262
5/16 0.32 3.395 3.802 4.790 0.937 3.231
3/8 0.32 2.060 3.173 3.993 0.771 1.954
7/16 0.32 1.282 2.682 3.372 0.662 1.215
1/2 0.32 0.833 2.301 2.888 0.674 0.786
9/16 0.32 0.637 2.106 2.605 0.842 0.599
5/8 0.32 0.483 1.912 2.365 0.897 0.454

11/16 0.32 0.449 1.897 2.289 1.043 0.420
3/4 0.32 0.422 1.913 2.285 1.145 0.394
7/8 0.32 0.351 1.896 2.257 1.255 0.324
1 0.32 0.287 1.864 2.244 1.290 0.262

9/8 0.32 0.235 1.867 2.285 1.367 0.213
5/4 0.32 0.179 1.791 2.203 1.350 0.161

0 0.64 6.682 4.197 6.310 0.884 6.426
1/32 0.64 6.20 4.128 6.023 0.876 5.964
1/16 0.64 5.735 3.971 5.805 0.8481 5.518
3/32 0.64 5.232 3.824 5.587 0.834 5.031
1/8 0.64 4.67 3.704 5.385 0.776 4.475
3/16 0.64 3.565 3.392 4.945 0.735 3.417
1/4 0.64 2.598 3.093 4.488 0.666 2.485
5/16 0.64 1.752 2.734 3.965 0.579 1.674
3/8 0.64 1.164 2.422 3.507 0.535 1.109
7/16 0.64 0.761 2.126 3.072 0.467 0.723
1/2 0.64 0.522 1.902 2.738 0.478 0.496
9/16 0.64 0.439 1.826 2.545 0.626 0.415
5/8 0.64 0.396 1.804 2.482 0.749 0.373

11/16 0.64 0.371 1.796 2.435 0.845 0.350
3/4 0.64 0.315 1.721 2.482 0.857 0.294
7/8 0.64 0.303 1.810 2.451 1.064 0.281
1 0.64 0.2715 1.835 2.471 1.1565 0.2489
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