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Proteoglycans in Biomedicine:
Resurgence of an Underexploited
Class of ECM Molecules
Tanaya Walimbe and Alyssa Panitch*

Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA,
United States

Proteoglycans have emerged as biomacromolecules with important roles in matrix
remodeling, homeostasis, and signaling in the past two decades. Due to their
negatively charged glycosaminoglycan chains as well as distinct core protein
structures, they interact with a variety of molecules, including matrix proteins, growth
factors, cytokines and chemokines, pathogens, and enzymes. This led to the dawn of
glycan therapies in the 20th century, but this research was quickly overshadowed by
readily available DNA and protein-based therapies. The recent development of
recombinant technology and advances in our understanding of proteoglycan function
have led to a resurgence of these molecules as potential therapeutics. This review focuses
on the recent preclinical efforts that are bringing proteoglycan research and therapies back
to the forefront. Examples of studies using proteoglycan cores and mimetics have also
been included to give the readers a perspective on the wide-ranging and extensive
applications of these versatile molecules. Collectively, these advances are opening new
avenues for targeting diseases at a molecular level, and providing avenues for the
development of new and exciting treatments in regenerative medicine.

Keywords: proteoglycans, small leucine rich proteoglycans, decorin, fibromodulin, chondroitin sulphate, dermatan
sulphate, heparan sulphate, extracellular matrix
INTRODUCTION

As researchers try to harness the therapeutic potential of biopolymers for new treatments,
proteoglycans (PGs) and their glycosaminoglycan (GAG) side chains remain underexploited due
to their complex nature and involvement in multiple biological processes. Glycosaminoglycans are
linear long chains of anionic glycan molecules that comprise one of the three major biopolymers
found in the body, other than nucleic acids and proteins. GAGs are primarily made up of monomers
of either glucuronic or iduronic acid and N-acetylglucosamine. These glycan monomers are not
directly encoded by the genome and have a high degree of heterogeneity in terms of their monomer
sequences, chain lengths, and sulfation patterns due to posttranslational modifications regulated in
the golgi apparatus, leading to a large structural diversity with no defined glycan code (Hudak and
Bertozzi, 2014). Six major types of GAGs are currently identified in mammals—chondroitin sulfate
(CS), dermatan sulfate (DS), keratan sulfate (KS), heparan sulfate (HS), heparin (Hep), and
hyaluronic acid (HA) (Köwitsch et al., 2018). Except for HA, all other GAGs are sulfated and
in.org January 2020 | Volume 10 | Article 16611
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exist as anionic molecules conjugated to core proteins, making
them a component of proteoglycans (PGs). In addition to direct
conjugation to core proteins, GAGs interact with other proteins
through electrostatic or hydrophobic interactions, as well as
hydrogen bonds, further adding to their broad repertoire
and complexity.

PGs are a heterogenous family of macromolecules with 43
members, differing in their core protein as well as the nature and
number of GAG chains bound to the core (Iozzo and Schaefer,
2015), reaching an unprecedented level of sophistication. These
intriguing molecules have been conserved through millions of
years of evolution to reach new heights of functional
significances. Iozzo and Schaefer (2015) proposed a
comprehensive classification and nomenclature for PGs based
on their location, genetic homology, and use of protein modules.
They classified PGs into four major classes with distinct forms
and functions: Class 1 consists of intracellular secretory granules,
class 2 consists of cell surface PGs that are classified as either
transmembrane or GPI-anchored, class 3 consists of pericellular
basement membrane zone PGs, and class 4 consists of
extracellular PGs classified as hyalectan-lectincan (HA binding
and lectin binding), spock, and small leucine rich PGs (SLRPs).

Early studies conducted on PGs focused on one of the PGs of
the vertebrate cartilage extracellular matrix, now known as
Aggrecan. Cartilage extracellular matrix is uniquely made with
the majority of the non fibrillar ECM composition consisting of
PGs and HA (Sophia Fox et al., 2009). PGs as structural
components are known to hydrate, protect, and lubricate
cartilage tissue (Lohmander, 1988); leading to a vast majority
of therapeutics targeted to treating osteoarthritis harnessing
these properties. Further PG research revealed that all cells in
the body are covered by a gel like glycocalyx (Luft, 1966), which
consists of PGs and GAGs involved in a myriad of signaling and
growth factor sequestering activities (Weinbaum et al., 2007).
Healthy endothelial glycocalyx is the only known blood
contacting surface that prevents blood clotting continuously,
due to the PGs in it creating a barrier for protein adsorption
and fibrin formation. Altering of the glycocalyx has been
implicated in various disease conditions (Tarbell and Cancel,
2016; Liew et al., 2017), making it a key target for development of
therapeutics. Multifaceted functions of PGs are now known to
include growth factor sequestering (Gubbiotti et al., 2016),
providing adhesive properties, inducing or inhibiting
angiogenesis (Järveläinen et al., 2015; Poluzzi et al., 2016),
modulating cell adhesion, proliferation, and regulation
(Christensen et al., 2019), as well as interacting with other
ECM molecules and controlling collagen fibrillogenesis (Weber
et al., 1996; Chen et al., 2010; Kalamajski and Oldberg, 2010).
Researchers began recognizing the ubiquitous nature and
essential functions of PGs, discovering their role as essential
bioactive components of the ECM with sophisticated functions
in maintaining homeostasis. However, PGs remained largely
untapped as a class of potential therapeutics in comparison to
recombinant antibodies and DNA technologies until the last
decade. This lag in harnessing the potential of PGs is partially
due to the complexity inherent to the synthesis, regulation, and
Frontiers in Pharmacology | www.frontiersin.org 2
assembly of these molecules. However, advances in carbohydrate
biopolymer synthesis, recombinant technology, and the
recognition of the enormous potential of PGs as treatments
have led to an exciting reemergence of PG engineered
therapeutics . PGs represent the most complex and
multifunctional class of molecules, making them one of the
most versatile and exciting classes of therapeutic candidates.

The focus of this review is limited to recent advances and
preclinical studies on naturally occurring proteoglycan molecules
and proteoglycan mimetics as ECM based therapeutics. Built on
decades of information about the complex signaling pathways
and their downstream effectors, scientists are using PG core
proteins, glycanated PGs, neo-PGs and PG mimetics to tackle
human health and disease. To stay within the scope of the review,
developments on GAGs alone as therapeutics, or detailed
descriptions of the complex functions of all proteoglycans were
not included. In order to provide context for harnessing the
therapeutic value of PGs, structures of common proteoglycans
are depicted in Figure 1. Readers are directed to read about the
current developments in the use of GAGs alone as glycan
therapeutics in Paderi and coworkers’ recent review, which
discusses the clinical relevance, applications and clinical stage
pharmaceutical developments of these entities (Paderi et al.,
2018). For in-depth information about the biological functions
of PGs, readers are encouraged to read Izzo and Schaefer’s recent
review (Iozzo and Schaefer, 2015).
CELL SURFACE PGS

Glypicans
Glypicans are heparan sulfate proteoglycans (HSPGs) that are
bound to the cell surface by glycophosphatidylinositol (GPI)
anchors (see Figure 1). Glypican 1 nanoliposomes have been
used to potentiate therapeutic angiogenesis for ischemic wound
healing by the Baker group (Monteforte et al., 2016). Co-delivery
of glypican-1 with FGF-2 markedly increased the recovery of
perfusion and vessel formation in ischemic hind limbs of wild
type and diabetic mice in comparison to mice treated with FGF-2
alone, proving that the proteoglycan played an important role in
potentiating the activity of FGF-2. Han et al. (2016) showed that
lower levels of glypican-3 were detected in patients with gastric
cancer than in healthy gastric tissue, showing an inverse
correlation between GP-3 levels and metastasis. Targeting
glypican-3 or its downstream signaling pathways, or
supplementation with adenoviral overexpression of glypican-3
in such cases might therefore, have the potential to suppress
metastasis related to gastric cancer.

Syndecans
Syndecans are also HSPGs that act as transmembrane receptors
capable of signaling independently or in combination with other
receptors and integrins (Morgan et al., 2007; Elfenbein and
Simons, 2013). Das and coworkers from the Baker research
group have researched the use of syndecan 4 for the treatment
January 2020 | Volume 10 | Article 1661
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of diabetic wound healing because of FGF2 coreceptor activity of
syndecans (Elfenbein and Simons, 2013). Syndecan 4
encapsulated in proteoliposomes as a delivery system showed
promise in the treatment of diabetic ischemia in mice (Das et al.,
2016a). Co-therapy of Syndecan with FGF-2 successfully
enhanced therapeut ic ang iogenes i s and sus ta ined
revascularization in the ischemic hind limb of diabetic, obese
mice in comparison to the use of FGF2 alone (Das et al., 2016b).
They also went on to test the effects of these proteoliposomes on
PDGF-BB activity (Das et al., 2016b). Wounds treated with both
syndecan-4 proteoliposomes and PDGF-BB had increased re-
epithelization and angiogenesis in comparison to wounds treated
with PDGF-BB alone. Moreover, the wounds treated with
syndecan-4 proteoliposomes and PDGF-BB also had increased
M2 macrophages and reduced M1 macrophages, suggesting
syndecan-4 delivery induces immunomodulation within the
healing wounds. These results demonstrate the promise of
proteoglycans, in particular syndican-4, as a co-therapy for
tissue regeneration and the treatment of nonhealing wounds.

Many glycan–protein interactions take place at the cellular
interface, and cell surface PGs, especially syndicans, are heavily
involved in growth factor interactions and cellular response to
wound healing (Gallo et al., 1996; Brooks et al., 2012; Elfenbein
and Simons, 2013). Given importance of membrane bound
glycans including the syndicans and glypicans, future work to
address key mechanistic queries such as whether the liposomes
containing cell surface PGs fuse with cells, or is the mere
Frontiers in Pharmacology | www.frontiersin.org 3
presence of HS near the membrane surface a key factor in
driving therapeutic potential at the cellular interface, could
drive key developments in this burgeoning field.
LECTICANS

Aggrecan
Aggrecan is of great interest to many researchers due to its load
bearing and water retaining ability to protect and hydrate
cartilage tissue. Aggrecan exhibits a bottlebrush like structure
in which chondroitin sulfate and keratan sulfate GAG chains are
attached to a core protein consisting of 3 globular structural
domains (see Figure 1) (Kiani et al., 2002). The Marcolongo
group has done extensive characterization of bottle brush
polymers using chondroitin sulfate and other synthetic
polymers (instead of a core protein) as core-bristle aggrecan
mimetics. By establishing a method to functionalize chondroitin-
4-sulfate at the reducing end and incorporating it into either poly
(acrylic acid) (PAA) or poly(acryloyl chloride), they were able to
achieve large 1.6 MDa polymers with enhanced water uptake as
compared to aggrecan alone. By modulating the size of the PAA
and number of CS chains bound to it, they were able to
successfully form polymers with tunable osmotic pressures for
the treatment of osteoarthritis. These mimetics were also shown
to diffuse through the cartilage matrix into the pericellular area,
FIGURE 1 | Proteoglycan structures. The horseshoe shaped SLRPs (decorin, biglycan, lumican, and fibromodulin) and bottlebrush structured hyaluronan (HA)
binding proteoglycans (aggrecan, versican, and brevican) are located in the extracellular matrix, whereas glypicans and syndecans are cell surface proteoglycans.
G1, G2, and G3 are globular structural domains located at the N- and C-terminus of HA binding proteoglycan cores. Glypicans are bound to the cell surface by
glycophosphatidylinositol (GPI) anchors. All proteoglycans differ in the GAG side chains attached to the core protein, as well as the lengths and sulfation patterns of
the GAGs, thus adding to their complexity.
January 2020 | Volume 10 | Article 1661
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and integrate into rabbit tissue before and after static loading,
demonstrating the ability to engineer ECM on a molecular level
(Sarkar et al., 2012; Prudnikova et al., 2017; Prudnikova et al.,
2018; Phillips et al., 2019).

The Kipper research group designed graft copolymer
nanoparticles of cationic polysaccharides such as chitosan with
anionic GAGs like CS and Hep to form polyelectrolyte complex
nanoparticles mimicking the size and chemistry of aggrecan.
These nanoparticles were shown to maintain FGF-2 activity after
21 days of encapsulation and are superior to aggrecan alone as a
delivery vehicle for growth factors (Place et al., 2014b). In a
separate study to mimic PGs, they also generated copolymers
using a heterobifunctional crosslinker to combine HA to the
reducing ends of Hep/CS. They also reported successful grafting
of these polymers to chitosan for the delivery of FGF2 (Place
et al., 2014a).

Our lab has taken a different approach by mimicking the
function of aggrecan, but not its structure. We have designed an
aggrecan mimetic that is composed of chondroitin sulfate
decorated with HA-binding peptides in an effort to mimic key
aggrecan function for the treatment of osteoarthritis. These
aggrecan mimetics have been shown to penetrate aggrecan-
depleted cartilage, contribute to its overall compressive
strength, and reduce catabolic activity in in vivo and ex vivo
models of osteoarthritis (Bernhard and Panitch, 2012; Sharma
et al., 2013; Sharma et al., 2016). Unlike hyaluronan and
chondroitin sulfate, these mimetics were able to promote type
II collagen synthesis and aggrecan expression when encapsulated
with bovine chondrocytes in collagen hydrogels. The mimetic
was also shown to be resistant to the enhanced proteolytic
activity found in OA cartilage, since it lacks the known
aggrecan cleavage sites.

From the above studies, two major approaches stand out in
efforts to harness the biological activity of aggrecan—mimicking
its structure, vs targeting GAGs to tissue locations; for example,
by targeting HA binding to augment surrounding ECM. Both
approaches have extensive potential to achieve improved tissue
function and healing. Clinical applications for osteoarthritis
treatment using these PG mimicking polymers appear on the
near horizon as advanced synthesis and scale up techniques for
protein conjugation and polymer synthesis become more
readily available.
SMALL LEUCINE RICH PGS

By far the most widely researched class of PGs, SLRPs share
structural similarities in their core protein of leucine rich tandem
repeats flanked by cysteine rich repeats. The biological functions
of SLRPs are too vast to be summarized in a single review, hence,
we refer readers to recent comprehensive reviews focusing
specifically on SLRPs (Iozzo, 1997; Iozzo, 1999; Schaefer and
Iozzo, 2008; Chen and Birk, 2013; Hultgårdh-Nilsson et al.,
2015; Nastase et al., 2018; Appunni et al., 2019). It is widely
accepted that the horseshoe-shaped core protein of SLRPs is
responsible for its binding to collagen, modulating collagen
Frontiers in Pharmacology | www.frontiersin.org 4
fibrillogenesis and protecting collagen from enzymatic cleavage
(Karamanos et al., 2018). As new information comes to the
forefront of SLRP research, researchers have discovered that the
functionality of SLRPs changes based on whether the core protein
is attached to its GAG chains, or as unmodified core protein (Yu
et al., 2018). Multiple forms of these PGs are thus used as
therapeutic candidates.

Decorin
Decorin is the archetypal, most extensively studied SLRP, and
has been vastly characterized for its influence on collagen
fibrillogenesis (Danielson et al., 1997) and involvement in
scarless wound healing. Decorin is not just a structural entity,
it plays a pivotal biological role in angiogenesis (Järveläinen et al.,
2015), inflammation (Nastase et al., 2018), fibrosis (Ahmed et al.,
2014), wound healing (Grisanti et al., 2005), oncosuppression
(Sainio and Järveläinen, 2019), and endothelial cell health and
autophagy (Neill et al., 2017) to name some. Due to this
involvement in an enormous range of biological functions,
decorin has aptly been termed as a “guardian from the matrix”
(Neill et al., 2012). Decorin consists of a core protein with small
leucine rich tandem repeats, with a dermatan sulfate or
chondroitin sulfate GAG chain attached to it through the N
terminus of the protein. Through its GAG side chain and core
protein, it can bind to various growth factors such as TGFb, as
well as collagen and other ECM molecules, whereby it likely
serves as a reservoir for TGFb and stabilizes inter fibrillar
organization of the collagen (Orgel et al., 2009).

Since the invention of human recombinant decorin core
protein expressed in CHO cells , this PG has been
manufactured using cGMP conditions and is being tested as a
therapeutic for multiple disease indications, arguably bringing it
closest to clinical implementation. Galacorin, the trademark
name for the decorin drug produced through Catalent pharma,
is being tested for the treatment of macular degeneration,
diabetic retinopathy, and diabetic macular edema (Devore
et al., 2010).

From a therapeutic research perspective, decorin has been
investigated for its use in corneal wound healing. Grisanti et al.
used decorin in an experimental glaucoma filtration surgery pilot
study on rabbits (Grisanti et al., 2005). Postoperative results
showed that rabbits treated with decorin had significantly less
ECM deposition 14 days after surgery, as well as suppressed
conjunctivital scarification. Hill et al. (2018) designed gellan
based fluid gels for sustained delivery of human recombinant
decorin through eye drops for corneal regeneration and found
improved ocular function. Due to its ability to delay collagen
fibrillogenesis, decorin is an attractive therapeutic candidate for
anti-scarring treatments. It also acts as a TGF- b1/2 antagonist,
and has been used as a treatment against spinal scarring. Ahmed
et al. (2014) showed that treatment of acute and chronic dorsal
funicular spinal cord lesions (DFL) in adult rats with decorin
resulted in a reduction in wound cavity area, suppression of
inflammatory fibrosis, and dissolution of mature scars due to
decorin’s fibrolytic activity and neutralization of TGF- b1/2. In
an independent study, decorin treatment reduced hypertrophic
January 2020 | Volume 10 | Article 1661

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Walimbe and Panitch Proteoglycans in Biomedicine
scarring through inhibition of the TGF-b1/Smad signaling
pathway in a rat osteomyelitis model (Wang et al., 2016).

Decorin is also considered a potent oncosuppresor due to its
ability to function as an endogenous pan‐receptor tyrosine
kinase inhibitor, a regulator of both autophagy and mitophagy,
as well as a modulator of the immune system (Ahmed et al.,
2014). Oncolytic adenovirus expressing decorin significantly
inhibited the progression of bone metastases in MDA-MB-231
metastasis model of breast cancer (Yang et al., 2015). Adenovirus
overexpression of IL-12 and decorin have demonstrated potent
antitumor effects in a weakly immunogenic murine model of
breast cancer (Oh et al., 2017a). Along similar lines, adenoviral
overexpression of decorin and Granulocyte Macrophage Colony
Stimulating Factor has shown anti-tumor potential in a model of
murine colorectal cancer (Liu et al., 2017) (Wang et al., 2016).
Shen and coworkers engineered a recombinant decorin fusion
protein with an extended C-terminus comprised of a vascular
homing peptide that recognizes inflamed blood vessels and
penetrates deep into the vessel wall, known as CAR. In a study
to evaluate its efficacy as a treatment for abdominal aortic
aneurysm (AAA), they delivered the CAR-DCN molecule to
mice with angiotensin-II induced AAAs, and found increased 28
day survival and reduced severity of AAA post treatment (Shen
et al., 2017).

In addition to using the native decorin core protein and
GAG-decorated molecules, synthetic mimetics of decorin have
been developed. In an effort to mimic the collagen modulating
function of decorin, our lab has designed a decorin mimetic
made of collagen-binding peptides conjugated to a dermatan
sulfate backbone (Paderi and Panitch, 2008). Similar to decorin,
this molecule influences the fibril diameter of type I collagen on a
nanoscale. Stuart et al. showed that these mimetics reduce
dermal scarring in a rat linear incision model, due to their
ability to mask existing collagen from matrix metalloprotease
(MMP-1 and MMP-3) mediated proteolytic degradation while
modulating collagen organization (Stuart et al., 2011). In
addition, it was reported that similar to the anticoagulant, anti-
thrombotic function of the glycocalyx, this mimetic was able to
bind to exposed collagen in denuded arteries within minutes to
suppress platelet binding and activation, and thus prevent
resulting vascular intimal hyperplasia that would normally
occur after percutaneous coronary intervention (PCI) sans
mimetic (Scott and Panitch, 2014; Scott et al., 2017). The
mimetic, termed DS-SILY, was able to reduce smooth muscle
cell proliferation and migration, as well as reduce intimal
hyperplasia in vivo in Ossabaw pigs by 60% as compared to
controls (Paderi et al., 2011; Scott et al., 2013). After extensive in
vitro and in vivo validation, DS-SILY is licensed through Symic
bio, and is being tested in clinical trails for the treatment of
peripheral vascular disease.

Lumican
Lumican has been extensively studied as a keratan sulfate
proteoglycan responsible for corneal transparency and wound
healing. Like other SLRPs, it is involved in modulating collagen
fibrillogenesis and interacts with growth factors through its core
protein (Rada et al., 1993). Lum(–/–) knockout mice have given
Frontiers in Pharmacology | www.frontiersin.org 5
way to an enormous amount of research diving into the unique
functions of lumican in tendon and skin health, and corneal
transparency (Chakravarti, 2002). The Chakravarti group has
used these knockout mice to bring forth the importance of
lumican in various indications such as bacterial phagocytosis,
innate immunity, and corneal clearing. In a mouse corneal Lum
(–/–) model infected with Pseudomonas aeruginosa, lumican was
shown to be responsible for bacterial clearing and facilitation of
an innate immune response. In P. aeruginosa lung infections,
lumican-deficient Lum(–/–) mice failed to clear the bacterium
from lung tissues, and showed poor survival rates (Shao et al.,
2013a). Lumican modulates wound healing and innate immunity
by interacting with receptors and immune cells such as
macrophages (Shao et al., 2013b).

Soluble lumican core protein isolated from human amniotic
membranes has been shown to effectively promote epithelial
proliferation and migration in a study by Yeh et al. (2005).
Lumican modulates fibroblast contact through the a2b1 integrin,
a finding that has been exploited for therapeutic development.
Recombinant lumican application on mice skin wounds showed
enhanced wound healing in a study by Liu et al. (2013), possibly
due to lumican promoting the contractility offibroblasts through
the a2b1 integrin. In an independent study, adenoviral
overexpression of lumican in hypertrophic scarring rabbit
models and fibroblasts effectively thinned the scar area and
inhibited fibroblast proliferation, as well as successfully
reduced focal adhesion kinase (FAK) phosphorylation as a
result of binding to a2b1 integrin (Zhao et al., 2016).

Gesteira et al. (2017) designed a peptide mimicking the
activity of lumican based on 13 C-terminal amino acids of
lumican (LumC13). They showed that the peptide effectively
forms a complex with type I receptor for TGFb1 (ALK5) and
promoted corneal wound healing in mice (Yamanaka et al.,
2013). Lumican derived peptides–lumcorin, have been tested
against melanoma and show therapeutic potential by inhibiting
cell chemotaxis and melanoma growth through MMP-14
inhibition (Zeltz et al., 2009; Pietraszek et al., 2013). The vast
array of studies showing the biological activity of lumican
underscore the importance of proteogycans in homeostasis and
disease and highlight the potential of targeting these ECM
molecules to treat disease.

Biglycan
Biglycan shares structural similarities with decorin and comprises
12 leucine-rich repeats flanked by cysteine-rich domains. It is a
major component of bone, cartilage, tendon andmuscle. Biglycan
has been studied as a potential therapeutic for musculoskeletal
disorders, due to its involvement in modulating collagen
fibrillogenesis as well as its role in modulating and maintaining
musculoskeletal organization (Young and Fallon, 2012). Biglycan
is predominantly expressed as a proteoglycan, but a mature form
lackingGAG side chains, known as “nonglycanated” biglycan, has
recently been shown to have specific functions inmuscle andWnt
signaling (Amenta et al., 2011).

Duchenne muscular dystrophy (DMD) is caused by the loss
of dystrophin in muscles, leading to membrane fragility and
impaired signaling. Non-glycanated recombinant biglycan
January 2020 | Volume 10 | Article 1661
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delivered to dystrophic mice has been shown to recruit utrophin,
an autosomal paralog of dystrophin, and a NOS-containing
signaling complex to the muscle cell membrane to improve
muscle health and function (Amenta et al., 2011). In an
independent follow up study, Ito et al. hypothesized that
biglycan expressed in a small number of muscle fibers was
likely to have been secreted and anchored to the cell surface
throughout the whole muscular fibers to improve motor function
(Ito et al., 2017). An optimized version of the nonglycanated
biglycan, “TVN-102”, is under development as a candidate
therapeutic for DMD (Fallon and McNally, 2018).

Fibromodulin
Fibromodulin (Fmod) has been widely investigated for its role in
fetal-like scarless wound healing and angiogenesis. The Soo
research group demonstrated that Fmod stimulated capillary
infiltration into Matrigel plugs, enhanced angiogenesis in chick
chorioallantoic membrane (CAM) assays, and restored the
vascularity of fmod−/− mouse wounds (Jian et al., 2013; Zheng
et al., 2014). These results suggest enhanced angiogenesis during
cutaneous wound healing, proving that Fmod is an attractive
therapeutic candidate for wound management especially in cases
where angiogenesis is impaired, such as diabetic wounds. They
also went on to use Fmod to reprogram fibroblasts into a
multipotent cell type as a means to bypass mutation and
malignancy risks associated with genetically modified iPS cells
(Zheng et al., 2012; Li et al., 2016). Testing these reprogrammed
cells in vitro and in a clinically relevant critical-sized calvarial
defect model, they demonstrated strong osteogenic capacity of
these cells without tumorigenesis, showing that Fmod
reprogrammed cells present potential for bone regeneration.

Adenoviral transfection of fibromodulin (ad-Fmod) has
gained popularity in the past decade, and multiple studies have
utilized ad-Fmod to target wound healing and cancer. Jazi et al.
(2016) probed the therapeutic effects of recombinant adenoviral
vectors expressing Fmod for the treatment of diabetic
nephropathy in streptozotocin induced diabetic rats. They
found reduced expression of TGFb1 in rats transfected with
Fmod gene transfer, suggesting a mechanism of action for
fibromodulin therapy. Given its potent role in promoting
angiogenesis and wound healing, a study by Ranjzad et al.
(2009) demonstrated significant reduction in neointimal
thickness and area in an ex vivo human saphenous vein organ
culture model following adenovirus mediated fibromodulin gene
transfer. Delalande et al. (2015) used non-viral histidylated
vectors for Fmod gene transfer and local Fmod expression to
enhance achilles tendon healing; they demonstrated promising
improvements in biomechanical and histological parameters in a
rat achilles tendon injury model. Fmod has been shown to
successfully inhibit the nuclear factor-kB (NF-kB) signaling and
induce fibroblast apoptosis (Lee and Schiemann, 2011). Dawoody
Nejad et al., 2017 demonstrated that recombinant Fmod was able to
suppress TGFb1 and NF- kB activity in vitro in a highly metastatic
breast cancer cell line (Dawoody Nejad et al., 2017).

In summary, it is evident from the wide body of research
reviewed above, that SLRP core proteins and their GAG
Frontiers in Pharmacology | www.frontiersin.org 6
components have important, and sometimes distinct, activities.
The numerous approaches to use recombinant core proteins and
functional mimetics highlight the diversity of strategies that can
be employed in the use of SLRPs to enhance tissue regeneration
and wound healing. To learn more about the recombinant
production of PGs and their different domains, readers are
encouraged to read Lord and Whitelock (2013) concise review.
Further work in this field is warranted to better delineate the
biological function of the core proteins, GAGs and synergies of
the two to design therapies that focus on cell-ECM interactions,
and are effective on a molecular level.
OTHER PGS

Proteoglycan 4/Lubricin
Proteoglycan 4 (PRG4) or lubricin is a mucin like proteoglycan/
glycoprotein found in the synovial fluid of cartilage. It is
responsible for lubricating the surface boundary of cartilage in
synergy with HA. Interestingly, inflammation and osteoarthritis
progression show an inverse relationship to lubricin expression,
suggesting that it is directly involved in reducing inflammation
and boundary friction levels (Iqbal et al., 2016).

Exploiting this information, the Schmidt and Tannin groups
have extensively shown that PRG4 supplementation can restore
normal cartilage boundary lubrication function to osteoarthritic
SF (Schmidt et al., 2007; Ludwig et al., 2012). They have since,
established a method for recombinant lubricin production, and
are testing the functional effects of lubricin in other therapeutic
areas such as intraabdominal lesions and contact lenses for
ocular applications (Oh et al., 2017b; Samsom et al., 2018b).
Lubris biopharma is a clinical stage start up company that is
testing human recombinant lubricin for the treatment of dry eye
(Lambiase et al., 2017) and osteoarthritis due to its role as a
boundary lubricant. In an independent study by Larson et al.
(2016), recombinant lubricin effectively reduced the coefficient of
friction of bovine cartilage explants inflamed using IL1b. This
further adds to the body of literature displaying the potential of
lubricin in the treatment of osteoarthritis.

We and others have taken an approach that mimics the
lubricating function of lubricin, but not its structural properties.
We have designed a lubricin mimetic (mLub) by attaching type
II collagen and HA binding peptides to a chondroitin sulfate
backbone. Work done by Lawrence et al. (2015) demonstrated
the ability of the mimetic to bind to articular cartilage and
reduce the coefficient of friction on a macroscale. The Grinstaff
lab designed anionic hydrophilic bottle-brush polymer
lubricants using poly(7-oxanorbornene-2-carboxylate) as
biolubricants for the treatment of osteoarthritis (Wathier
et al., 2010). Synthesized via ring-opening metathesis
polymerization, the polymer biolubricant showed promise in
reducing friction and offering chondroprotection in ex vivo
plug-on-plug and rat models of osteoarthritis (Wathier et al.,
2013; Wathier et al., 2018). Further efforts to improve the
polymer to make it better match the osmolarity of synovial
fluid are being conducted by making it less anionic and
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covalently conjugating pendent triethylene glycol (TEG) chains
to it (Lakin et al., 2019). A note about lubricin—it is debated
whether this molecule is a glycoprotein or a proteoglycan, since
it is a glycosylated protein that does not have traditional glycans
such as CS, DS, or heparin attached to a protein core, and the
protein itself is glycosylated.

Perlecan (Heparan Sulfate Proteoglycan 2)
Perlecan is a large HSPG with a protein core composed of five
distinct domains, which impart it with a wide range of
functionalities to interact with other biological molecules
(Douglass et al., 2015). The GAG-bearing domain I of Perlecan
has been shown to promote chondrogenesis (French et al., 2002).
Using this information, researchers have synthesized hydrogels
containing the perlecan domain I along with HA (Jha et al., 2009)
or type II collagen (Yang et al., 2006) to demonstrate enhanced
binding and activity of bone morphogenic protein 2 (BMP2).
BMP2 is considered a primary stimulant of chondrogenesis, and
both studies showed robust stimulation of a cartilage specific
ECM in comparison to controls not containing perlecan.
Additionally, injectable microgels made up of HA and perlecan
domain I showed enhanced activity of BMP2 in promoting
cartilage matrix synthesis in a mouse early osteoarthritis model
(Srinivasan et al., 2012). These results demonstrate that
combining specific PG domains with hydrogels to drive growth
factor activity may provide a higher level of control over cell fate
and disease modulation.

Primarily considered a proangiogenic molecule, perlecan
interacts with FGF2 and VEGF to regulate angiogenesis
(Aviezer et al., 1994; Zoeller et al., 2009), making it an
attractive potential therapy for wound healing where
angiogenesis is impaired. Domain V (DV) of perlecan has been
heavily investigated for its role in angiogenesis. The Bix group
has investigated the potential of DV of perlecan to counteract the
effects of amyloid-b (Ab), which causes neurovascular
dysfunction (Parham et al., 2014). Results from their studies
showed improved endothelial proliferation, migration, and
tubule formation despite treatment with Ab by directly
interfering with the a2 and a5 integrins (Clarke et al., 2012;
Parham et al., 2016), thus promoting angiogenesis and
supporting DV’s potential as an anti-amyloid therapeutic.
Among other neurovascular applications, DV has been
suggested as a potential treatment for stroke and vascular
dementia (Marcelo and Bix, 2015). A study by Lee et al. (2011)
demonstrated enhanced post-stroke angiogenesis in rat and
mouse models of stroke after DV treatment, suggesting it as a
neuroprotective approach for stroke treatment. As a strategy to
develop bioactive vascular grafts, Rnjak-Kovacina et al. (2016)
functionalized silk with perlecan DV decorated with heparan
sulfate and chondroitin sulfate chains to enhance endothelial cell
adhesion and proliferation while inhibiting platelet binding
effectively. These studies highlight the complicated balance
between proteoglycan activity with and without their attached
sidechains and emphasize the implications of these variations in
therapeutic developments.
Frontiers in Pharmacology | www.frontiersin.org 7
NeoPGs
The Godula research group synthesized HSPG neoPGs that
completely circumvented the limitations of HSPG synthesis
such as heterogeneity and batch to batch variability by
incorporating disaccharides (diGAGs) generated by
depolymerization of HS by bacterial heparinases into a poly
(acry lamide) sca ffo ld decorated wi th pendant N -
methylaminooxy groups, which are reactive toward the
hemiacetal functionality of the reducing glycans (Huang et al.,
2014). By synthesizing a library of neoPGs and designing a
microarray for testing binding to FGF-2, they were able to
shortlist neoPGs with affinity to FGF2, which showed
enhanced promotion of neural specification in embryonic stem
cells deficient in HS biosynthesis.

The Hsieh-Wilson lab specializes in synthesis of
glycomimetics to research the influence of GAG position and
density on their avidity and specificity to interact with other
proteins. Using end-functionalized ring-opening metathesis
polymerization (ROMP) based polymers that mimic the
native-like, multivalent architecture found on chondroitin
sulfate (CS) proteoglycans, Lee et al. (2010) used norborene
based backbones with biotin functionalized pendant sugars to
create glycomimetics of various molecular weights and sulfation
motifs. By controlling the sulfation patterns and display of these
pendant sugars, novel mimetics for CS proteoglycans can be
designed for targeted regeneration (Sotogaku et al., 2007; Miller
and Hsieh-Wilson, 2015; Stopschinski et al., 2018).

The Pashkuleva group has designed mimimalistic PG
mimetics by coassembly of aromatic peptides and carbohydrate
amphiphiles. The amphiphiles Fmoc-glucosamine-6-sulfate
(GlcN6S) and Fmoc-glucosamine-6-phosphate (Fmoc-GlcN6P)
provided the functional element through the sulfate and
phosphate groups, while fluorenylmethoxycarbonyl-
diphenylalanine (Fmoc-FF) acted as a structural component,
forming self-sustained macroscopic gels that are biocompatible
and mimic the PG growth factor sequestering action, making
these gels attractive for tissue engineering applications (Brito
et al., 2019). In a separate study, Novoa-Carballal et al. (2018)
synthesized star-like PG mimetics by grafting high molecular
weight GAGs such as heparin and CS to hyperbranched
synthetic cores like polyglycerol using oxime condensation.
These mimetics showed enhanced binding to proteins by
forming microfiber complexes instead of spherical
nanocomplexes that form with linear GAGs, thus showing a
larger degree of potential for modulating protein activity
and presentation.

The Hudalla group is focused on creating self-assembling
beta sheet nanofibers using synthetic glyco-peptides as
supramolecular mimetics of glycoproteins. Hydrogels formed
by these glycopeptides contain decorated n-acetylglucosamine
and n-acetyllactosamine residues, which impart the gels with
avidity to various proteins, especially galectins, a carbohydrate
binding class of proteins involved in modulating cell
proliferation, adhesion and apoptosis (Restuccia et al., 2015;
Restuccia and Hudalla, 2018). By optimizing the content of
January 2020 | Volume 10 | Article 1661

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Walimbe and Panitch Proteoglycans in Biomedicine
n-acetyllactosamine residues, they aim to inhibit protein-glycan
interactions implicated in autoimmune and cancer
disease progressions.

Overall, these synthetic approaches summarized in Figure 2
bring new knowledge on structure function relationships as well
as a powerful approach to design cell-ECM interactions to
improve tissue function and healing.
CONCLUSIONS AND PERSPECTIVES

While pioneering researchers have been focused on the roles of
GAGs and proteoglycans for years, it has only been within the
last two decades that the staggering potential of PGs to modulate
tissue environments has been more broadly appreciated. Their
multifunctional biological processes, in particular, their ability to
bind and sequester growth factors and interact with various
ECM molecules and influence cellular signaling events, makes
them extremely attractive drug conjugates for multiple disease
indications. Table 1 summarizes common proteoglycans and
their therapeutic applications.. Clinical translation of these
molecules, however, remains a challenge. Due to the advent of
recombinant technology, adenoviral and non-viral gene
transfers are attractive alternatives to purifying native PGs, a
task that is considered extremely difficult and time intensive.
However, while recombinant technology can synthesize core
proteins of PGs fairly consistently, their post-translational GAG
chain modifications remain a challenge. Some GAG chain
Frontiers in Pharmacology | www.frontiersin.org 8
structures require enzymes in the Golgi apparatus only found
in mammals, and absent in single celled organisms used to
synthesize recombinant PGs. Effectively conveying the
mechanism of action of these drugs also remains a significant
challenge, due to the diverse processes with which these
molecules interact.

PG mimetics that convey similar bioactivity as their native
counterparts are gaining popularity due to larger level of control
over synthesis and optimization as well as cost effectiveness.
Synthetic methodology, however, has its own challenging
barriers toward manufacturing commercially relevant
quantities. Rapid progress in synthetic GAG synthesis and
sequencing, and current understanding of kinetics of PG
binding interactions with growth factors are helping scientists
create the next generation of PG therapies to control and target a
variety of diseases. Key features of GAG length and sulfation
alongside core protein interactions are being modulated to
enhance binding interactions.

Focus on targeted and controlled release of these PGs is also
gaining interest. Engineering PGs to sequester and control
growth factor release are being explored for enhanced
therapies. Approaches to target specific tissues, such as
exploiting the binding ability of core proteins to collagen, or to
HA, are being explored to create localized and functional
treatments. Synthetic approaches to circumvent the
heterogeneity of native PGs are being employed to control and
tune specific sulfation patterns, binding potential, and specificity
of mimetics to establish novel ways of modulating disease state.
FIGURE 2 | Structures of recombinant PG cores and PG mimetics. Recombinant production of PG cores and variants in many cell lines has accelerated discovery
of the therapeutic potential of PGs. Peptide-GAG conjugates and nano-GAG complexes are being used to mimic PG functions and binding ability. PG – Scaffold
complexes are being explored as tissue engineering constructs for regenerative medicine, and bottle brush mimetics of PGs such as aggrecan are being explored to
circumvent increased degradation of PGs to provide enhanced healing potential.
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Furthermore, chemists and cell biologists are establishing novel
mimetics that don’t just necessarily mimic the structure of PGs,
but also their function. There is still much to learn about the
structure function relationships of PGs. Nevertheless, nascent
preclinical developments have shown the promise of PG
therapeutics to pioneer future treatments and breakthroughs in
multiple disease indications such as wound healing, cancer,
angiogenesis and hypertrophic scarring. Overall, advances in
PG and GAG-based therapeutic development are putting a
renewed focus on the importance of the ECM for tissue health
and cell function, and opening the door for new classes of
bioinspired and targeted drugs.
Frontiers in Pharmacology | www.frontiersin.org 9
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