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Abstract

Data with multivariate count responses frequently occur in modern applications. The commonly 

used multinomial-logit model is limiting due to its restrictive mean-variance structure. For 

instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit 

model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and 

complicated correlation structures among multivariate counts calls for more flexible regression 

models. In this article, we study some generalized linear models that incorporate various 

correlation structures among the counts. Current literature lacks a treatment of these models, partly 

due to the fact that they do not belong to the natural exponential family. We study the estimation, 

testing, and variable selection for these models in a unifying framework. The regression models 

are compared on both synthetic and real RNA-seq data.

Keywords

analysis of deviance; categorical data analysis; Dirichlet-multinomial; generalized Dirichlet-
multinomial; iteratively reweighted Poisson regression (IRPR); negative multinomial; reduced 
rank GLM; regularization

1 Introduction

Multivariate count data abound in modern application areas such as genomics, sports, 

imaging analysis, and text mining. When the responses are continuous, it is natural to adopt 

the multivariate normal model. For multivariate count responses, a common choice is the 

multinomial-logit model (McCullagh and Nelder, 1983). However, the multinomial model is 

limiting due to its specific mean-variance structure and the implicit assumption that 

individual counts in the response vector are negatively correlated. In this article, we examine 

regression models for multivariate counts with more flexible mean-covariance and 

correlation structure. Parameter estimation in these models is typically hard because they do 

not belong to the exponential family. We propose a unifying iteratively reweighted Poisson 
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regression (IRPR) method for the maximum likelihood estimation. IRPR is stable, scalable 

to high dimensional data, and simple to implement using existing software. Testing and 

regularization methods for these models are also studied. Our methods are implemented in 

the R package and Matlab toolbox mglm (Zhang and Zhou, 2015).

The remaining of the paper is organized as follows. Section 2 motivates our study with 

analysis of count data in modern genomics. Section 3 introduces a class of GLM models for 

multivariate count responses. A unifying maximum likelihood estimation procedure is 

proposed in Section 4. Testing and regularized estimation are treated in Sections 5 and 6 

respectively, followed by numerical examples in Section 7.

2 Motivation

Our study is motivated by the analysis of high-throughput data in genomics. Next generation 

sequencing technology has become the primary choice for massive quantification of 

genomic features. The data obtained from sequencing technologies are often summarized by 

the counts of DNA or RNA fragments within a genomic interval. A prime example is the 

RNA-seq data.

In most mammalian genomes, one gene is composed of multiple exons and different 

combinations of exons lead to different protein products. One such exon combination is 

called an RNA isoform. The left panel of Figure 1 depicts a gene with 3 exons and all 

possible isoforms for that gene. Current RNA-seq platforms are able to deliver the 

expression counts of each exon set (Wang et al., 2009). An exon set includes contiguous 

portions isoforms. Here we use the number of RNA-seq reads from exon sets instead of 

exons because some RNA-seq fragments may overlap with multiple exons (Sun et al., 2015).

Data for one gene with d exon sets takes the form

Subject Exon Set 1 Exon Set 2 ⋯ Exon Set d Treatment Gender Age ⋯

1 15 0 ⋯ 3 Yes M 43 ⋯

2 0 52 ⋯ 0 Yes F 35 ⋯

⋮ ⋮

n 124 45 ⋯ 73 No F 25 ⋯

The primary interest is to identify differential expression profiles and their relation to the 

covariates. The total expression of a gene in an individual can be obtained by summing the 

counts across exon sets. Negative binomial regression models have been developed to 

associate the total expression count with the covariates of interest (Anders and Huber, 2010; 

Robinson et al., 2010). This approach ignores the RNA isoform expression. More 

sophisticated methods have been developed to estimate RNA isoform expression and then 

assess association between isoform expression and covariates of interest. Nevertheless 

accounting for RNA isoform estimation uncertainty in the association step is a nontrivial 

task, since the responses in the association step are obtained from variable selection (Sun et 

al., 2015). An attractive alternative is to treat exon counts as multivariate responses and fit a 
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generalized linear model (GLM). The multinomial-logit model is a popular choice, due to its 

wide availability in statistical software. However, it assumes negative correlation between 

counts. Two exon sets may belong to one or a few RNA isoforms, leading to complicated 

correlation structures among their counts. The middle panel of Figure 1 displays the 

pairwise scatter plots of exon counts for a pseudogene SPCS2P4 with 5 exon sets and the 

right panel depicts the corresponding correlations in a grayscale image. Notably the 

correlations can be both positive and negative.

We simulated RNA-seq read counts based on the mouse gene Phlda3 and the RNA-seq data 

collected from a mouse study (Sun et al., 2015). This gene has 4 exons and 6 exon sets that 

have non-zero observed read counts. The number of RNA-seq fragments per exon set was 

simulated by a negative binomial distribution with the mean equal to a linear combination of 

underlying RNA isoform expression and with the over-dispersion estimated from RNA-seq 

data. In the generative model, the RNA isoform expression is associated with covariate 

treatment, but not with age and gender. n = 200 observations were generated. We fit a 

negative binomial regression (NegBin) using the total read counts from the 6 exon sets as 

responses; we also fit the multinomial-logit (MN) model using the multivariate count vectors 

as responses. The predictor log(TotalReads) is included as routinely done in RNA-seq data 

analysis. Based on 300 simulation replicates, the empirical rejection rates of the Wald test 

for testing each predictor are reported in Table 1. NegBin regression has well controlled type 

I error rate for the null predictors age and gender. However, it has almost no power for 

detecting the treatment effect. The multinomial-logit model has seriously inflated type I 

error for the two null predictors age and gender. As a prelude, we also fit three other GLMs 

to the same data sets: Dirichlet-multinomial regression (DM), generalized Dirichlet-

multinomial (GDM) regression, and negative multinomial (NM) regression. Details of these 

models are given in Section 3. We find that GDM shows both well controlled type I error for 

age and gender and high power for detecting the treatment effect. Model selection criteria 

AIC (Akaike information criterion) and BIC (Bayesian information criterion) also indicate 

appropriateness of GDM. AIC/BIC of negative binomial regression is not listed because it 

uses sum of counts and is incomparable to the multivariate models. We remark that the 

generative model has a marginal negative binomial distribution and it has nothing to do with 

the GDM model. Success of GDM results from its ability to learn the complex correlation 

between counts.

3 Models

Table 2 lists four regression models for multivariate count responses. They impose different 

correlation structures on the counts. Except for the multinomial-logit model, none of the 

other three belongs to the natural exponential family. We denote the data by (yi, xi), i = 1, …, 

n, where yi ∈ ℕd are d-dimensional count vectors and xi ∈ ℝp are p-dimensional covariates. 

Y = (y1, …, yn)⊤ ∈ ℕn×d and X = (x1, …, xn)⊤ ∈ ℝn×p are called the response and design 

matrix respectively. For each model, we introduce the response distribution, propose a link 

function, and derive the score and information matrices (listed in Supplementary Materials 

S.2), which are essential for statistical estimation and inference.
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Multinomial Regression (MN)

To be self-contained, we start with the classical multinomial-logit model (McCullagh and 

Nelder, 1983). The response y is modeled as multinomial with  trials and 

success probability parameter p = (p1, …, pd), pj > 0, . The probability mass 

function is

It is well known that the multinomial distribution belongs to the natural exponential family. 

Parameter p is linked to the covariates x ∈ ℝp via the multinomial-Poisson transformation 

(Baker, 1994)

where β1, …, βd ∈ ℝp are the regression coefficients. Because of the constraint Σj pj = 1, we 

set βd = 0p for identifiability and only estimate β1, …, βd−1, which are collected in the 

regression coefficient matrix B ∈ ℝp×(d−1). Log-likelihood of n independent observations (yi, 

xi) is

(1)

The mapping (η1, …, ηd)⊤ ↦ − ln Σj eηj is concave; thus the log-likelihood function (1) is 

concave.

Dirichlet-multinomial Regression (DM)

Multinomial model is not sufficient when there is observed over-dispersion. Dirichlet-

multinomial distribution models the variation among the percentages p in the multinomial 

distribution by a Dirichlet distribution (Mosimann, 1962). The probability mass of a d-

category count vector y over m = |y| = Σj yj trials under Dirichlet-multinomial with parameter 

α = (α1, …, αd), αj > 0, is
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(2)

where (a)(k) = a(a + 1) ⋯ (a + k − 1) denotes the rising factorial and |α| = Σj αj. Because the 

data yj and parameter αj are intertwined in the gamma terms and do not factorize, Dirichlet-

multinomial distribution does not belong to the natural exponential family. The first two 

moments of DM are

It is clear that the counts are negatively correlated and the quantity (|α| + m)/(|α| + 1) 

measures over-dispersion. To incorporate covariates, the inverse link function αj = ex⊤βj 

relates the parameter α = (α1, …, αd) of Dirichlet-multinomial distribution to the covariates 

x. The log-likelihood for n independent data points (yi, xi) takes the form

(3)

where B = (β1, …, βd) ∈ ℝp×d collects all regression coefficients. The log-likelihood, as a 

difference of two concave terms, is not concave in general.

Negative Multinomial Regression (NM)

Negative correlation of the multinomial and Dirichlet-multinomial models prevents their use 

for positively correlated counts. The negative multinomial distribution provides a model for 

such data. The probability mass of a count vector y ∈ ℕd under a negative multinomial 

distribution with parameter (p1, …, pd+1, β), , pj, β > 0, is

Parameter β and data m do not factorize; thus negative multinomial does not belong to the 

exponential family when β is unknown. Denote p = (p1, …, pd). Then the first two moments 

are
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showing positive pairwise correlation between Yj. We use the link functions

to relate covariates x ∈ ℝp to distribution parameter (p1, …, pd+1, β). Let B = (α1, …, αd, β) 

∈ ℝp×(d+1) collect all the regression coefficients. Given n independent data points (yi, xi), the 

log-likelihood is

(4)

When the over-dispersion parameter β is not linked to covariates, the log-likelihood becomes

(5)

where . Neither log-likelihood (4) nor (5) is necessarily 

concave.

Generalized Dirichlet-multinomial Regression (GDM)

It is possible to relax the restrictions of pairwise negative correlation in MN and DM or 

pairwise positive correlation in NM by choosing a more flexible mixing distribution as a 

prior for the multinomial. Connor and Mosimann (1969) suggest a generalized Dirichlet-

multinomial distribution, which provides a flexible model for multivariate categorical 

responses with general correlation structure.

The probability mass of a count vector y over m trials under the generalized Dirichlet-

multinomial model with parameter (α, β) = (α1, …, αd−1, β1, …, βd−1), αj, βj > 0, is
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(6)

where . The Dirichlet-multinomial (DM) distribution is a special case of GDM 

by taking βj = αj+1 + ⋯ + αd. GDM does not belong to the exponential family. The moments 

of the GDM are recorded in Lemma 1. A distinctive property of the GDM is that the 

correlations between counts can be simultaneously positive or negative, yielding the most 

modeling flexibility among the models in Table 2. Below (a)[k] = a(a − 1) ⋯(a − k + 1) 

denote the falling factorial.

Lemma 1—The falling factorial moments of GDM are

where δj = rj + ⋯ + rd for j = 1, …, d. Specifically the first two moments are

and

for j ≤ j′.

We employ the link functions

to relate covariates x to distribution parameters (α1, …, αd−1, β1, …, βd−1) of the GDM 

model. Here we slightly abuse notation and use scalar αj and βj to denote parameters of the 

GDM distribution. Boldfaced vectors αj and βj, both of dimension p, denote regression 
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coefficients. Let B = (α1, …, αd−1, β1, …, βd−1) ∈ ℝp×2(d−1) collect all the regression 

coefficients. Given n independent data points (yi, xi), the log-likelihood is

(7)

which is not concave in general.

Model Choice

Multinomial is a limiting case of Dirichlet-multinomial by taking α/|α| → p as |α| → ∞. 

Dirichlet-multinomial is a special case of generalized Dirichlet-multinomial by taking βj = 

αj+1 +⋯+αd. Therefore for distribution fitting, standard tests such as the likelihood ratio test 

(LRT) help choose the best one among the three nested models: MN ⊂ DM ⊂ GDM. 

However, this nesting structure is lost in regression models. For instance, in presence of 

predictors, multinomial regression is not a sub-model of the Dirichlet-multinomial 

regression model, and the latter is not a special case of the generalized Dirichlet-multinomial 

(GDM) regression model. Information criteria such as the AIC and BIC can be used to 

determine a best regression model for the data.

4 Estimation

In this section we consider the MLE when sample size is greater than the number of 

parameters. In Section 6 we consider regularized estimation that is useful for model 

selection. MLE for the DM, NM and GDM models is nontrivial as they do not belong to the 

natural exponential family and the classical IRWLS (iteratively re-weighted least squares) 

machinery is difficult to apply, as explained in Section 4.1.

4.1 Difficulties

We illustrate the difficulties using Dirichlet-multinomial (DM) regression as an example. 

Given iid data (yi, xi), let X = (x1, …, xn)⊤ ∈ ℝn×p be the design matrix and A = (αij) ∈ 

ℝn×d, where , be the matrix of distribution parameters at each observation. The 

observed information matrix is

where v ∈ ℝn has entries , w ∈ ℝn has entries 

, and K = (kij) ∈ ℝn×d has entries

Zhang et al. Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2018 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here ⊗ denotes the Kronecker product and ⊙ denotes the Khatri-Rao product. See 

Supplementary Materials S.2.2 for the derivation.

Traditional optimization methods encounter difficulties when maximizing the DM log-

likelihood. The Newton-Raphson method can be unstable because of the non-concavity of 

the log-likelihood (3). The observed information matrix −d2ℓn(B) is not necessarily positive 

definite and the Newton iterates may diverge. This issue is serious in regression problems 

because often there is no good starting point available. The Fisher scoring algorithm, also 

known as the iteratively re-weighted least squares (IRWLS), replaces the observed 

information matrix by its expectation, i.e., the Fisher information matrix E[−d2ℓn(B)]. The 

Fisher information matrix is always positive semidefinite and, combined with line search, is 

guaranteed to generate nondecreasing iterates. However, evaluation of the Fisher information 

matrix involves computing

where (Yi1, …, Yid) is a Dirichlet-multinomial random vector with parameter (αi1, …, αid) 

and batch size mi. Marginal Beta-binomial tail probabilities P(Yij > k) have to be evaluated 

for each combination of i ∈ {1, …, n}, j ∈ {1, …, d}, and k ∈ {0, …, mi − 1}, making 

Fisher scoring method computationally expensive for even moderate sample size n and d. 

Even when the information matrix is positive definite and can be evaluated, a p(d − 1) by p(d 
− 1) linear system needs to be solved in each Newton or scoring iteration. Finally, Quasi-

Newton methods such as BFGS updates (Nocedal and Wright, 2006) may alleviate some of 

the issues but suffer from slow convergence and instability in many examples.

Table 3 reports results from a simple numerical experiment. DM data are generated with d = 

3, 15, 20, 30 response categories, p = 6 predictors, and sample size n = 200. The true 

parameter value is set at B = 3 × 1p×d. Entries of the design matrix X are drawn from 

independent standard normals. For each d, 100 replicates are simulated. For each replicate, 

we use the nlminb function in R to fit DM regression using Newton (with analytical gradient 

and Hessian) and quasi-Newton (BFGS with analytical gradient) methods. The starting point 

for each run is set at B(0) = 0p×d. For small dimensional problem d = 3, Newton method 

converges in 72% of replicates. As d increases, Newton’s method fails more and more often. 

The Quasi-Newton method apparently suffers from both instability and slow convergence.

The same difficulties, namely instability, high cost of evaluating Fisher information matrix, 

and high dimensionality of parameters, beset the MLE for the negative multinomial (NM) 

and generalized Dirichlet-multinomial (GDM) regressions.
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4.2 MLE via IRPR

We propose a unifying framework, the iteratively reweighted Poisson regression (IRPR), for 

the MLE of the four regression models. The plain version of the IRPR scheme is 

summarized in Algorithm 1. At each iteration, we update some working responses  and 

weights  and then perform de weighted Poisson regressions to update the regression 

parameters. Here de = d − 1 for MN, d for DM, 2(d − 1) for GDM, and d + 1 for NM. 

Therefore IRPR is extremely simple to implement using existing software such as R and 

Matlab with a sound Poisson regression solver. Specific choice of the working responses and 

weights for each model is listed below.

Algorithm 1

Iterative reweighted Poisson regression (IRPR) scheme for MLE. Working responses  and 

weights  for each model are specified in Section 4.2.

• Multinomial-Logit Regression (MN).

Given , we update βj, j = 1, …, d − 1, by solving a Poisson 

regression with working weights and responses

• Dirichlet-multinomial Regression (DM).

Given , we update βj, j = 1, …, d, by solving a Poisson 

regression with working weights and responses

• Generalized Dirichlet-multinomial Regression (GDM).
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Given , we update αj, j = 1, …, d− 1, by 

solving a weighted Poisson regression with working weights and responses

and update βj, j = 1, …, d− 1, by solving a weighted Poisson regression with 

working weights and responses

• Negative multinomial Regression (NM)

Given , we update β by solving a weighted Poisson 

regression with working weights and responses

Updating αj, j = 1, …, d, is a weighted Poisson regression with working weights 

and responses

IRPR is derived in Supplementary Materials S.3. Most importantly, IRPR iterations always 

increase the log-likelihood and thus enjoy superior stability.

Lemma 2 (Monotonicity)—The IRPR algorithmic iterates B(t) satisfy ℓ(B(t+1)) ≥ ℓ(B(t)) for 

t ≥ 0.

Monotonicity and simplicity of IRPR are reminiscent of the celebrated expectation-

maximization (EM) algorithm (Dempster et al., 1977). Derivation of the IRPR hinges upon 

the minorization-maximization (MM) principle (Lange et al., 2000), a powerful 

generalization of the EM algorithm. The same principle has been successfully applied to 

distribution fitting (Zhou and Lange, 2010; Zhou and Zhang, 2012). Monotonicity of the 

algorithm does not guarantee the convergence of the iterates. The following proposition 

specifies conditions for the global convergence of the IPRP algorithm.

Proposition 1—Assume that (i) the design matrix X has full column rank, (ii) the log-

likelihood ℓ is bounded above, (iii) the set {B: ℓ(B) ≥ ℓ(B(0))} is compact, and (iv) the set of 
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stationary points of ℓ are isolated. Then the IRPR iterates B(t) converge to a stationary point 

of ℓ.

In practice, EM and MM algorithms may suffer from slow convergence. Their convergence 

rate is linear at best. We combine stability of IRPR and fast convergence of Newton method 

by using a mix-and-match strategy. During each iteration, we choose either the IRPR or the 

Newton update that yields a higher log-likelihood. This strategy works very well in practice, 

as exemplified by the exceptional stability and competitive run times in Table 3. Another 

pleasant observation is that the de Poisson regressions within each iteration are separated, 

making IRPR amenable to parallel computing. This is a common feature of many EM or 

MM algorithms that are able to divide a high-dimensional optimization problem into many 

small ones (Zhou et al., 2010).

5 Testing

Scientific applications often involve testing the significance of covariate(s). Although the 

regression models in Table 2, except for the multinomial, do not belong to the exponential 

family, they are regular in many statistical senses as their densities are quadratically mean 

differentiable (qmd) (Lehmann and Romano, 2005). Hence the standard asymptotic tests 

(LRT, score, Wald) apply.

With p covariates, each covariate involves de regression parameters, leading to a total of pde 

parameters. The likelihood ratio test (LRT) for two nested models is asymptotically 

distributed as a chi-square distribution with deΔp degrees of freedom, where Δp is the 

difference in the numbers of covariates. To apply the LRT, optimizations have to be 

performed under the null and alternative hypotheses separately. The score test avoids 

computing the MLE at the alternative hypothesis and the Wald test avoids optimization at 

the null hypothesis.

6 Regularization

The asymptotics fail when the sample size n is only moderately larger than or even less than 

the number of regression parameters pde. In such cases, regularization is a powerful tool for 

reducing the variance of estimate and improving its mean squared error. In general we 

consider regularized problem

(8)

where ℓ is the log-likelihood function and J is a regularization functional. Choice of J 
depends on specific applications.

• Different covariates may be associated with different category. Sparsity in terms 

of ||vecB||0 is sought in this situation. For instance, in a sparse Dirichlet-

multinomial regression model proposed by Chen and Li (2013), βkj being non-
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zero indicates association of predictor k with bacterial taxon j. In general, 

elementwise shrinkage and sparsity can be achieved by the regularization term

where the set  indexes the covariates subject to regularization, Pη(|x|, λ) is a 

scalar penalty function, λ is the penalty tuning parameter, and η is an index for 

the penalty family. Widely used penalties include: power family (Frank and 

Friedman, 1993), where Pη(|x|, λ) = λ|x|η, η ∈ (0, 2], and in particular lasso 

(Tibshirani, 1996) (η = 1) and ridge (η = 2); elastic net (Zou and Hastie, 2005), 

where Pη(|x|, λ) = λ[(η − 1)x2/2 + (2 − η)|x|], η ∈ [1, 2]; SCAD (Fan and Li, 

2001), where ∂/∂|x|Pη(|x|, λ) = λ {1{|x|≤λ} + [(&eegr; λ − |x|)+/(η − 1) 

λ]1{|x|>λ}}, η > 2; and MC+ penalty (Zhang, 2010), where Pη(|x|, λ) = {λ|x| − 

x2/(2η)} 1{|x|<ηλ} + 0.5λ2η1{|x|≥ηλ}, among many others.

• Predictor selection can be achieved by the group penalty (Yuan and Lin, 2006; 

Meier et al., 2008)

where λ is the penalty tuning constant, β[k] is the vector of regression 

coefficients associated with the k-th covariate, and ||v||2 is the ℓ2 norm of a vector 

v. In other words, β[k] is the k-th row of the regression parameter matrix B ∈ 
ℝp×de.

• Sparsity at both the predictor level and within predictors can be achieved by the 

ℓ2,1 penalty (Zhao et al., 2009)

Shrinkage and sparsity in terms of the rank of B is achieved by regularization 

term

where the nuclear norm ||B||* = Σj σj(B), and σj(B)’s are the singular values of 

the matrix B. The nuclear norm ||B||* is a suitable measure of the ‘size’ of a 

matrix parameter, and is a convex relaxation of rank(B) = ||σ(B)||0. This extends 

the reduced rank multivariate linear regression (Yuan et al., 2007) to multivariate 

GLM.
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The non-smooth minimization problem (8) is nontrivial. The MM principle underlying the 

IRPR algorithm in Section 4 is able to separate the columns of parameter matrix B. 

Unfortunately both the group and nuclear norm regularization terms are not separable in 

columns. The success of the coordinate descent algorithm, which is efficient for ℓ1 

regularization in univariate GLM models (Friedman et al., 2010), suggests the block descent 

algorithm for minimizing (8). However, updating each block is a possibly nonconvex 

problem and nontrivial.

We use the accelerated proximal gradient method that has been successful in solving various 

regularization problems (Beck and Teboulle, 2009). The accelerated proximal gradient 

algorithm as summarized in Algorithm 2 consists of two steps per iteration: (a) predicting a 

search point S based on the previous two iterates (line 11) and (b) performing gradient 

descent from the search point S, possibly with a line search (lines 3–7). We first describe 

step (b). The gradient descent step effectively minimizes the surrogate function

(9)

where the constant c(t) collects terms irrelevant to the optimization. Here we abuse the 

notation to use ∇ℓ(S(t)) ∈ ℝp×de to denote the matrix of first derivatives . These 

gradients are given in Propositions S.1–S.3 of Supplementary Materials as the score 

functions for the models considered. The ridge term  in the surrogate 

function (9) shrinks the next iterate towards S(t), which is desirable since the first order 

approximation is good only within the neighborhood of current search point. Minimizing the 

surrogate function g(B|S(t), δ) is achieved by simple thresholding. Let Atemp = S(t) + δ∇ℓ(S(t)) 

be the intermediate matrix with rows . The minimizer of g, denoted by Btemp, for various 

J are listed below (line 5).
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Algorithm 2

Accelerated proximal gradient method for regularized estimation (8).

• Lasso penalty J(B) = λ||vec(B)||1. Btemp has entries (1 − δλ/|aij|)+aij.

• Group penalty J(B) = λΣk||β[k]||2. The rows of Btemp are given by (1− δλ/||

a[k]||2)+a[k].

• ℓ2,1 penalty does not have analytic solution for the minimizer g. Btemp can be 

solved by weighted lasso regression (Xu et al., 2010).

• Nuclear norm J(B) = λ||B||*. Suppose Atemp admits singular value decomposition 

Udiag(a)V⊤. Then Btemp = Udiag[(a − δλ)+]V.

Suppose the loss −ℓ(B) has gradient Lipschitz constant ℒ, i.e., ||∇ℓ(B1) − ∇ℓ(B2)|| ≤ ℒ||B1 − 

B2||F for all B1,B2. Then we can fix δ = ℒ−1 and the line search described in Algorithm 2 

terminates in a single step. Using a larger δ leads to a bigger gradient descent step (line 4), 

which sometimes must be contracted to send the penalized loss downhill.

In step (a) of Algorithm 2. The search point S is found by an extrapolation based on the 

previous two iterates B(t) and B(t−1). This trick accelerates ordinary gradient descent by 

making this extrapolation. Without extrapolation, Nesterov’s method collapses to a gradient 

method with the slow non-asymptotic convergence rate of O(k−1) rather than O(k−2).

Assume the loss −ℓ has gradient Lipschitz constant ℒ(ℓ). For convex loss such as in the 

multinomial-logit model, if the global minimum of the penalized loss h(B) occurs at the 

point B*, then the following non-asymptotic bound for the convergence of the objective 

values
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applies (Beck and Teboulle, 2009). For non-convex losses such as in the DM, NM and GDM 

regressions, convergence theory is hard. In general, it is only guaranteed that ||B(t+1)−B(t)||F 

converges to 0. In practice the algorithm almost always converges to at least a local 

minimum of the objective function.

7 Numerical Examples

We conducted extensive simulation studies to assess the finite sample performance of four 

regression models. Specifically we demonstrate that misspecification of the model can cause 

serious errors in hypothesis testing and variable selection. This is of practical importance as 

practitioners routinely rely on the multinomial-logit (MN) model to analyze data with 

multiple categorical responses.

7.1 Hypothesis Testing

We generate polytomous responses from each of the four models, MN, DM, GDM and NM, 

and then fit the data with all four regression models.

In the generative model, there are d = 5 categories and p = 6 predictors. The first three 

predictors have nonzero effects size α0 and the last three are null predictors. Therefore the 

true parameter matrix is . The number of parameters to 

estimate is 24, 30, 48, 31 for MN, DM, GDM and NM respectively. Entries of the covariate 

matrix X are generated from independent standard normal. We vary the effect size α0 at 

values 0, 0.05, 0.1, 0.5, 1, 2, and 5 and the sample size n at 50, 100, 200 and 500. The batch 

size mi of MN, DM, GDM response vectors are generated from Binomial(200, 0.8). We 

simulate 300 replicates at each combination of effect size and sample size. Empirical type I 

error and power of the Wald test for testing the significance of the first predictor are 

reported.

Table 4 shows the results when responses are generated from the GDM model. The fact that 

using a wrong model, MN, DM or NM in this case, causes highly inflated type I error is 

cautionary, as practitioners routinely rely on the multinomial-logit model to analyze count 

data. Similar patterns are observed when the responses are generated from the MN, DM or 

NM models. Their results are presented in Tables 1–3 of Supplementary Materials.

7.2 Variable Selection by Regularization

The simulation design for sparse regression is similar to the previous section, except that the 

response matrix has d = 10 categories and there are p = 100 predictors. Only the first 5 

predictors are associated with the responses with effect size α0 ∈ {0.1, 0.3, 0.5, 0.8, 1}. 

Sample sizes are n = 25, 50, 75, 100. 300 replicates are simulated at each combination of 

effect size and sample size. For each data replicate, we perform predictor selection by fitting 

the group penalized estimation.

The variable selection performance is summarized by the receiver operating characteristic 

(ROC) curves that result from the solution path. At each tuning parameter value λ, we 

calculate the true positive rate (TPr) and false positive rate (FPr) of the regularized estimate 

B̂(λ):
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At λ = ∞, TPr and FPr are 0. Both increase as λ decreases, approaching 1 at λ = 0. Thus 

each solution path produces an ROC curve. For each regression model, the 300 ROC curves 

is summarized by an average ROC curve obtained from fitting an isotonic regression.

Figure 2 displays the summary ROC curves of the four regression models, when the 

responses are generated from the generalized Dirichlet-multinomial distribution (GDM). 

GDM regression demonstrates the best variable selection performance, followed by the DM 

regression. The multinomial (MN) and negative multinomial (NM) model have little 

discriminatory power at various effect sizes and sample sizes. To appreciate the Monte carlo 

errors, we also calculate the area under curve (AUC) of the ROC curve from each replicate. 

Larger AUC indicates better variable selection performance. The box plots of AUCs are 

displayed in Figure 3. Again the correct model GDM shows superior performance, while the 

MN and NM models are no better than random guess.

Supplementary Materials contain the corresponding summery ROC curves and box plots for 

AUCs when data were generated from multinomial (MN), Dirichlet-multinomial (DM), and 

negative multinomial (NM) models. In general we observe a similar pattern: using an 

incorrectly specified model leads to poor performance in variable selection.

7.3 Real Data

We apply the regression models to an RNA-seq data set of 60 HapMap CEU samples 

(Montgomery et al., 2010). Genotype data are also available for these samples and we aim to 

assess the association between the genotype of each SNP (Single Nucleotide Polymorphism) 

with the counts of multiple exon sets of each gene.

We demonstrate results by gene ST13P6 (suppression of tumorigenicity 13 pseudogene 6), 

which has been related to B-Cell leukemia, multiple myeloma, and prostate cancer in 

previous studies (Sossey-Alaoui et al., 2002). ST13P6 has 3 exon sets and is located on 

chromosome 8. Expression counts of the 3 exon sets are regressed on covariates, namely 

three principle components, log(TotalReads), and each of the 45,587 SNPs on chromosome 

8, using the four models in Table 2. The total expression counts are also regressed on the 

same covariates using the negative binomial (NegBin) model. Thus each model generates 

45,587 p-values, which are summarized by the QQ plot and Manhattan plot. In reality 

association of expression levels and SNPs is rare. Therefore we expect none or at most a few 

SNPs that are significant after adjusting for multiple testing.

Figure 4 shows the QQ plots of the quantiles of the observed −log10(p-value) versus the 

theoretical quantiles under the null hypothesis of no association. Departure from the 

theoretical quantiles implies systematic bias in the data or statistical methods (Laird and 

Lange, 2011). Specifically bending upward indicates there are too many false positives. Also 

reported is the genomic control (GC) inflation factor λ (Laird and Lange, 2011), which is 
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the ratio of the median of the observed test statistics to the median of chi-square distribution 

with de degrees of freedom. λ > 1 indicates inflation of type I error. QQ plots and inflation 

factors in Figure 4 show serious inflation of type I errors under MN and NM models and 

moderately inflated type I error under DM and NegBin.

Manhattan plots in Figure 5 plot −log10(p-value) of each SNP under different models 

(Ziegler and König, 2006). The dashed lines in Manhattan plots indicate the chromosome-

wide significance level after Bonferroni correction for multiple testing. MN and NM have 

numerous SNPs that pass the chromosome-wide significance level, indicating inflated type I 

error. GDM and DM seem to have well controlled type I error and identify some signals on 

chromosome 8, while NegBin identifies none. Table 8 of Supplementary Materials tabulates 

the names, positions, minor allele frequency (MAF), and functional annotation of the 

identified SNPs under the GDM model. Most of the detected SNPs are located in or close to 

the candidate genes for obesity, cardiovascular diseases, or cancers.

It is hard to draw conclusions based on a sample size of 60. However, the results seem to 

conform with our findings in the simulation study in Section 2: (1) choosing a limiting 

multivariate count model such as multinomial (MN) and negative multinomial (NM) models 

may inflate type I errors and (2) collapsing counts by simple sums such as in the negative 

binomial (NegBin) model compromises power for detecting differential expression profiles.

8 Discussion

We have investigated GLMs with multivariate categorical responses that, compared to the 

multinomial-logit model, admit more flexible correlation structures among counts. The 

RNA-seq simulation example exposes the limitation of the widely used multinomial-logit 

model. Then we examine three more flexible models for count data: Dirichlet-multinomial, 

generalized Dirichlet-multinomial, and negative multinomial. Although they do not belong 

to the exponential family, we show that MLE and regularized estimation can be treated in a 

unifying framework. The IRPR scheme for MLE is stable, efficient, simple to implement, 

and enjoys favorable convergence properties. The accelerated proximal gradient algorithm 

for regularized estimation incorporates various penalties, permitting variable selection, low 

rank regularization, and entry-wise selection arising from different applications. These 

regression models provide practitioners more flexible tools for analyzing complex, 

multivariate count data.

The MLE, testing, and regularized estimation for all four models in Table 2 are implemented 

in the R package mglm, which is available on CRAN, and a Matlab toolbox, which is 

available at http://hua-zhou.github.io/softwares/mglm/. We refer readers to the companion 

paper (Zhang and Zhou, 2015) for more implementation and usage details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left: A gene with 3 exons and 7 possible isoforms. Middle and right: Pairwise scatter plots 

and correlations of exon counts of a gene with 5 exon sets.
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Figure 2. 
ROC curves from the group penalized estimation by the multinomial (MN), Dirichlet-

multinomial (DM), and generalized Dirichlet-multinomial (GDM) regression models. ROC 

curves are summarized from 300 simulation replicates. Responses are generated from the 

generalized Dirichlet-multinomial (GDM) model.
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Figure 3. 
Box plots of AUCs from the group penalized estimation by the multinomial (MN), Dirichlet-

multinomial (DM), generalized Dirichlet-multinomial (GDM) and negative multinomial 

(NM) regression models, based on 300 simulation replicates. Responses are generated from 

the GDM model.
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Figure 4. 
QQ plots of eQTL analysis of ST13P6 using MN, DM, GDM and NM regressions. λ̂s are 

the estimated genomic control (GC) inflation factor.
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Figure 5. 
Manhattan plots of GDM, DM, MN, NM and NegBin regressions for eQTL analysis of 

ST13P6. Dashed lines are chromosome-8-wide significance level.
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