
UC Riverside
2017 Publications

Title
End-to-End Navigation in Unknown Environments using Neural Networks

Permalink
https://escholarship.org/uc/item/9td7006d

Authors
Karydis, Konstantinos
Khan, A.
Zhang, C.
et al.

Publication Date
2017-07-24
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9td7006d
https://escholarship.org/uc/item/9td7006d#author
https://escholarship.org
http://www.cdlib.org/


End-to-End Navigation in Unknown Environments
using Neural Networks

Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Daniel D. Lee, Vijay Kumar

Abstract—We investigate how a neural network can
learn perception actions loops for navigation in unknown
environments. Specifically, we consider how to learn to navigate
in environments populated with cull-de-sacs that represent
convex local minima that the robot could fall into instead
of finding a set of feasible actions that take it to the goal.
Traditional methods rely on maintaining a global map to solve
the problem of over coming a long cul-de-sac. However, due
to errors induced from local and global drift, it is highly
challenging to maintain such a map for long periods of time.
One way to mitigate this problem is by using learning techniques
that do not rely on hand engineered map representations and
instead output appropriate control policies directly from their
sensory input. We first demonstrate that such a problem
cannot be solved directly by deep reinforcement learning due
to the sparse reward structure of the environment. Further,
we demonstrate that deep supervised learning also cannot be
used directly to solve this problem. We then investigate network
models that offer a combination of reinforcement learning and
supervised learning and highlight the significance of adding
fully differentiable memory units to such networks. We evaluate
our networks on their ability to generalize to new environments
and show that adding memory to such networks offers huge
jumps in performance.

Keywords : Deep Reinforcement learning, Neural Network
memory, Sensor based planning

I. INTRODUCTION

Designing autonomous perception-action loops for robot
navigation remains a challenging problem. In real world
scenarios, the robot has access to limited information about
its environment. Traditional methods such as Simultaneous
Localization and Mapping (SLAM) solve this problem by
creating a representation of the environment [1]. Inside this
representation, control commands are generated by solving
for the most optimal path. Due to accumulated errors along
the trajectory, the reconstructed map tends to be inconsistent
with the ground truth map. This problem is compounded
in large scale unstructured environments [2]. The advent of
neural networks in the past few years provide an interesting
alternative to solve this problem [3],[4]. However, most of
these works rely on incorporating the neural network into
some part of the SLAM pipeline. It has been shown that
training perception and control system end to end performs
better than individually training each component [5]. Policy
search methods rely on learning from an expert. Thus, for
the case of robot navigation, given an expert policy, a neural
network can be trained to directly map sensor information to
control commands.

In this work we investigate the effectiveness of solving this

problem with deep reinforcement learning and deep supervised
learning. Specifically, we investigate a recently proposed ap-
proach for approximating value iteration with convolutional
networks, termed value iteration networks (VIN) [6]. In the
original VIN paper, the evaluation is done by presenting the
full map to the robot. However for most robot navigation
problems, the environment is often unknown. Our experiments
indicate that directly using VINs for navigating complex
obstacles such as cul-de-sacs, fails when the only input is the
immediate sensor information. We then investigate the impact
of adding memory to these networks and show that adding
memory drastically improves performance and the network
learns the concept of cul-de-sac by generalizing to longer
lengths not seen in the training set.

II. BACKGROUND

Consider a bounded connected set X representing the
workspace of a robot. Let X obs and X goal, called the ob-
stacle region and the goal region, respectively, be subsets
of X . Denote the obstacle-free portion of the workspace as
X free := X\X obs. The dynamics of the robot are specified
by the Probability Density Function (PDF) pf (· | xt, ut) of
the robot state xt+1 ∈ X at time t+1 given the previous state
xt ∈ X and control input ut ∈ U . We assume that the control
input space U is a finite discrete set.1 The robot perceives
its environment through observations zt ∈ Z generated from
a depth sensor (e.g., lidar, depth camera), whose model is
specified by the PDF ph(· | X obs, xt). The information
available to the robot at time t to compute the control input
ut is it := (x0:t, z0:t, u0:t−1,X goal) ∈ I, consisting of current
and previous observations z0:t, current and previous states x0:t
and previous control inputs u0:t−1.
Problem. Given an initial state x0 ∈ X free and a goal
region X goal ⊂ X free, find a function µ : I → U , if one
exists, such that applying the control ut := µ(it) results in
a sequence of states that satisfies {x0, x1, . . . , xT } ⊂ X free

and xT ∈ X goal.
In the rest of the paper we consider a 2-D grid world,

an instance of the feasible planning problem in which X is
restricted to two dimensions and U :=down, right, up, left.
Planning needs sequential decision making. To investigate the
ability of networks to react to sequential tasks we consider
the case of cul-de-sacs as shown in Figure 1. We learn a

1For instance, the control space U for a differential-drive robot in SE(2)
can be a set of motion primitives, parameterized by linear velocity, angular
velocity and duration. For a quadrotor, U may be a set of short-range
dynamically feasible motions.

ar
X

iv
:1

70
7.

07
38

5v
1 

 [
cs

.R
O

] 
 2

4 
Ju

l 2
01

7



Fig. 1: Simulated cul-de-sacs. The robot only sees the sensor
input. Partial map represents the stitched images the robot has
seen so far. In the full map the red dot represents the goal and
the blue dot represents the robot

feasible policy by using the outputs of an A∗ path planner
for supervision [7].

A. Simulator

For our task, we construct a simulation environment as
seen in Fig 1. The robot at any point observes its immediate
environment through the sensor input. We feed this patch of
sensory information to our networks along with a reward prior
that encodes information about the goal. We also construct a
partial map by stitching together all the images the robot has
seen till the current timestep. Every time the robot observes
some new part of the environment, it is added to the partial
map. Ideally, we want our robot to learn a representation of
this partial map so that it can backtrack the cul-de-sac when
it meets a dead end. The full map represents a top down view
of the entire map where the blue dot represents the robot and
the red dot represents the goal. The partial map represents a
stitched together version of all states explored by the robot.
The sensor input is the data available to the robot.

III. SIMULATION AND RESULTS

Solving this problem with deep reinforcement learning is
extremely hard due to the sparsity of rewards, i.e the robot
only gets a reward when it reaches the goal. We implement
the DQN architecture used in [8] to successfully play Atari
games. However, due to the sparse reward structure of the
environment, even after training for 1 million iterations
the robot does not converge to the optimal policy. Using a
supervised approach with a fully convolutional network does
not work either. This is because some of the inputs from
the sensor are mapped to two different control actions. For
example, the sensor input while going into the cul-de-sac
is the same when exiting the cul-de-sac. Value iteration
networks offer some promise of solving this with their
inherent ability to solve sequential tasks. Unfortunately, these
do not work when given only the sensor input. An interesting
observation is that when the value iteration networks are
provided with the partial map instead of the sensor input
alone, they perform very well and are able to work on lengths
of up to 500 units when trained on lengths of 20 units. This
indicates that there is a need for memory in our task since
the partial map represents past state memory being fed into

Model Success (%) Maximum generalization length

DQN 0 0

CNN 0 0

CNN + LSTM 40 20

VIN 0 0

VIN + Partial Map 100 500

VIN + LSTM 100 190

TABLE I: RESULTS: All models are trained on cul-de-sac’s
of length 20 units. The success percentage represents the
number of times the robot reaches the goal position in the test
set. Maximum generalization length is the length of the longest
cul-de-sac that the robot is able to successfully navigate after
being trained on cul-de-sacs of length 20 units.

the network by the user. Since we are pursuing an end to end
approach, we would like to have our network learn this map
representation on its own.

We go back and try adding a LSTM to the convolutional
network architecture tried above. We observe that this model
performs poorly and is only able to get to the goal in some
cases. Further, the model trained on small cul-de-sacs does
not generalize to longer cul-de-sacs. On longer cul-de-sacs
the robot does not explore the cul-de-sac all the way to the
end. Instead, it turns around at a distance of 20 units implying
that it has learned to turn around at a fixed distance of 20
units and hasn’t learned the structure of the cul-de-sac. This
turn around at a fixed distance behavior is consistent when
the CNN+LSTM model is trained on cul-de-sacs of different
lengths. Our next experiment involves adding a LSTM layer
in the VIN architecture. We observe that the LSTM layer
performs best when added after the attention module described
in the VIN paper [6]. With 256 hidden states, the LSTM is
able to navigate cul-de-sacs of length upto 200 units when
only being trained on lengths of 20 units.

IV. FUTURE WORK AND CONCLUSION

The value iteration networks augmented with LSTMs per-
form poorly when trained on cul-de-sacs of different ori-
entations. Further, they are limited by the number of This
represents the need for a smarter memory structure. Our
initial experiments with the Differentiable Neural Computer
[9] have offered better results than just the LSTM. This
indicates the significance of a smarter memory architecture
geared specifically towards solving robot navigation tasks. In
our future work, we would like to extend this work from
simulation to a real robot. The input to the network would then
be a lidar scan. The model can still be trained in simulation
by modelling lidar noise and motion noise. Thus, in this work
we have highlighted how an end to end navigation model can
be used for goal driven navigation even in the presence of
convex local minima. Another avenue to pursue would be to
extend this planning scheme to 3 dimensional environments.
Three dimensional environments present the robot with a lot of
information not all of which is necessary for planning. In such



(a) Training Error

(b) Test Error

Fig. 2: The VIN + Partial Map is the case where a hand
engineered map is presented to the network. Ideally, we want
our networks to do as well as this model when presented with
only the sensor input.

a scenario learning to differentiate between what is redundant
and what is not would be interesting.

REFERENCES

[1] G. Dissanayake, S. Huang, Z. Wang, and R. Ranasinghe,
“A review of recent developments in simultaneous lo-
calization and mapping,” in Industrial and Information
Systems (ICIIS), 2011 6th IEEE International Conference
on. IEEE, 2011, pp. 477–482.

[2] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The slam
problem: a survey,” in Proceedings of the 2008 confer-
ence on Artificial Intelligence Research and Development:
Proceedings of the 11th International Conference of the
Catalan Association for Artificial Intelligence. IOS Press,
2008, pp. 363–371.

[3] S. Saeedi, L. Paull, M. Trentini, and H. Li, “Neural
network-based multiple robot simultaneous localization
and mapping,” IEEE Transactions on Neural Networks,
vol. 22, no. 12, pp. 2376–2387, 2011.

[4] M. Choi, R. Sakthivel, and W. K. Chung, “Neural
network-aided extended kalman filter for slam problem,”

in Robotics and Automation, 2007 IEEE International
Conference on. IEEE, 2007, pp. 1686–1690.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end
training of deep visuomotor policies,” Journal of Machine
Learning Research, vol. 17, pp. 1–40, 2016.

[6] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel,
“Value iteration networks,” in Advances in Neural Infor-
mation Processing Systems, 2016, pp. 2154–2162.

[7] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Any-
time a* with provable bounds on sub-optimality.” in NIPS,
2003, pp. 767–774.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[9] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Dani-
helka, A. Grabska-Barwińska, S. G. Colmenarejo,
E. Grefenstette, T. Ramalho, J. Agapiou et al., “Hybrid
computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.


	I Introduction
	II Background
	II-A Simulator

	III Simulation and Results
	IV Future Work and Conclusion



