
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
System-Level Electromigration-Induced Dynamic Reliability Management

Permalink
https://escholarship.org/uc/item/9tc8w0b9

Author
Kim, Taeyoung

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9tc8w0b9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

System-Level Electromigration-Induced Dynamic Reliability Management

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Taeyoung Kim

June 2017

Dissertation Committee:

Dr. Sheldon X.-D. Tan, Chairperson
Dr. Nael Abu-Ghazaleh
Dr. Zizhong Chen
Dr. Daniel Wong

Copyright by
Taeyoung Kim

2017

The Dissertation of Taeyoung Kim is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This thesis could not have been completed without the great support that I have received

from so many people over the years. I wish to offer my most heartful thanks to the following

people.

I would like to thank my advisor, Dr. Sheldon X.-D. Tan for guiding and support-

ing me over years. He has set an example of excellence as researcher, mentor, instructor

and role model. His kindness, insight and suggestions always lead me to the right way.

I would like to thank my thesis committee members, Dr. Nael Abu-Ghazaleh, Dr.

Zizhong Chen, Dr. Daniel Wong for their direction, dedication and invaluable advice. In

addition to committee members, I would like to thank two other faculties, Dr. Hyoseung

Kim and Dr. Qi Zhu for the discussion, ideas and feedback on Chapter 7 and Chapter 3 in

this thesis.

I would like to thank all the members in our VSCLAB (VLSI System & Com-

putation Laboratory) at University of California at Riverside (UCR). I thank especially

Xin, Kai, Hao-Bao, Yan, David, Yue, Hengyang, Zhongdong, Chase, Zeyu, Han, Lebo, and

Shaoyi for the collaborative research works, discussion and help, which lead to the presented

works in this thesis. I appreciate the friendship of my fellow students in UCR.

Last but not least, I would like to thank my family, Yunji, Jihu (Theodore), and

Sunghu (Edward), and my parents for the love, support, and constant encouragement during

the years of my study. I undoubtedly could not have done this without them.

iv

To Yunji, Jihu (Theodore), Sunghu (Edward) and my parents for all the support.

v

ABSTRACT OF THE DISSERTATION

System-Level Electromigration-Induced Dynamic Reliability Management

by

Taeyoung Kim

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2017

Dr. Sheldon X.-D. Tan, Chairperson

Technology scaling has led to further processor integration, and future manycore

chips will have more cores integrated. However, due to the diminishing of Dennards scaling,

the power density of chips starts to increase for current and future technology nodes. Be-

cause of this, only a certain percentage of a manycore processor can be powered on because

of power and temperature limitations. These trends have resulted in so-called dark silicon

manycore processors. Additionally, reliability is becoming a limiting constraint in high-

performance nanometer VLSI chip designs due to the high failure rates in deep submicron

and nanoscale devices. It is expected that future chips will show signs of reliability-induced

aging much faster than the previous generations. Among of many reliability effects, elec-

tromigration (EM)-induced reliability has become a major design constraint due to the

aggressive transistor and interconnect scaling and increasing power density.

This thesis focuses on developing new system level EM-induced dynamic reliability

managements on many different systems. Specifically, first, I develop system level manage-

ment for real-time embedded systems. I investigate a new lifetime optimization technique

vi

for real-time embedded processors considering the electromigration-induced reliability. The

new approach is based on a recently proposed physics-based electromigration (EM) model

for more accurate EM assessment of a power grid network at the chip level. Second, I de-

velop a new energy and lifetime optimization techniques for emerging dark silicon manycore

microprocessors considering both hard long-term reliability effects (hard errors) and tran-

sient soft errors. To optimize EM-induced lifetime, I apply the adaptive Q-learning based

method, which is suitable for dynamic runtime operation as it can provide cost-effective yet

good solutions. Third, I develop a new dynamic reliability management (DRM) techniques

at the system level for emerging low power dark silicon manycore microprocessors operat-

ing in near-threshold region. I mainly consider the electromigration (EM) recovery effects.

To leverage the EM recovery effects, which was ignored in the past, at the system-level, I

develop a new equivalent DC current model to consider recovery effects for general time-

varying current waveforms so that existing compact EM model can be applied. Fourth, I

develop a new approach for cross-layer electromigration (EM) induced reliability modeling

and optimization at physics, system and data center levels. To speed up the online opti-

mization for energy in a data center, I investigate a new combined data center power and

reliability compact model using a learning based approach in which a feed-forward neural

network (FNN) is trained to predict energy and long term reliability for each processor under

data center scheduling and workloads. Lastly, I develop long-term reliability management

for GPU architectures using spatial multitasking, which allows GPU computing resources

to be partitioned among multiple applications. I find that the existing reliability-agnostic

thread block scheduler for spatial multitasking is effective in achieving high GPU utilization,

vii

but poor in reliability. I develop and implement a long-term reliability-aware thread block

scheduler in GPGPU-sim, and compare it against the existing reliability-agnostic scheduler.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1

1.1.1 Reliability issue for real-time embedded systems 3
1.1.2 Reliability issue for dark silicon processors 4
1.1.3 Reliability issue for near-threshold dark silicon processors 7
1.1.4 Reliability issue for data center systems 8
1.1.5 Reliability issue for general-purpose graphics computing units 10

1.2 Dissertation contributions . 11
1.3 Organization . 16

2 Electromigration reliability model 17
2.1 Review of the physics-based EM modeling 17

2.1.1 Void dynamics: nucleation and growth phases 20
2.1.2 EM assessment at power grid level 24

2.2 Summary . 26

3 Reliability-aware lifetime optimization for real-time embedded systems 27
3.1 System-level EM-induced reliability model 28
3.2 Real-time embedded system models . 29
3.3 Proposed new lifetime optimization method 31

3.3.1 The new lifetime optimization flow 32
3.3.2 Formulation one: continuous constrained nonlinear optimization . . 36
3.3.3 Formulation two: mixed-integer linear programming 37

3.4 Numerical results and discussions . 44
3.4.1 Experimental setup . 50
3.4.2 Evaluation of proposed lifetime optimization 51
3.4.3 Core utilization effects and trade-off on energy and lifetime 52
3.4.4 Solution quality study and analysis 53

ix

3.4.5 Trade-off between performance and lifetime 54
3.5 Summary . 55

4 Learning-based reliability management and energy optimization for mary-
core dark silicon processors 57
4.1 Review of system-level EM and soft error reliability models 58

4.1.1 System-level EM reliability model 58
4.1.2 Soft error reliability model considering DVFS impacts 59
4.1.3 Impact of process technology on soft error reliability model 61

4.2 New dynamic lifetime and energy optimization methods for dark silicon . . 62
4.2.1 Q-learning based formulation and solution for lifetime and energy

optimizations . 63
4.2.2 MILP based formulation and solution for lifetime optimization . . . 69
4.2.3 Implementation of the dark silicon evaluation platform 70
4.2.4 Time complexity analysis . 74
4.2.5 Practical application of the proposed DRM with reliability models . 74

4.3 Numerical results and discussions . 76
4.3.1 Experimental setup . 76
4.3.2 Evaluation of the proposed Q-Learning lifetime optimization method 77
4.3.3 Accuracy and convergence rate of proposed Q-learning DRM method 78
4.3.4 Hard and soft errors in dark silicon manycore processor 83
4.3.5 Evaluation of proposed Q-Learning based energy optimization method 85

4.4 Summary . 94

5 Recovery-aware dynamic reliability management for near-threshold dark
silicon processors 96
5.1 Recovery-aware Electromigration modeling at system levels 97

5.1.1 New equivalent DC current based modeling for EM recovery effects . 97
5.1.2 EM modeling for varying temperature effects 103

5.2 New learning-based reliability management for near threshold dark silicon
for EM recovery effects . 106
5.2.1 Near threshold dark silicon . 106
5.2.2 Framework of dark silicon in near-threshold computing region 107
5.2.3 SARSA-based learning algorithm for DRM considering long-term re-

covery . 110
5.3 Numerical results and discussions . 115

5.3.1 Evaluation of the lifetime impacts considering EM recovery effects . 115
5.3.2 Evaluation of the DRM for near-threshold dark silicon processors . . 116
5.3.3 DRM considering recovery effects . 117

5.4 Summary . 117

6 Cross-layer modeling and optimization for electromigration-induced reli-
ability 119
6.1 EM-induced reliability model for a manycore processor in datacenter 120
6.2 EM-induced reliability-aware datacenter model 121

x

6.3 New reliability-constrained energy optimizatoin for datacenter 123
6.3.1 Neural networks for datacenter energy and reliability models 123
6.3.2 Q learning optimization for datacenter 126
6.3.3 Proposed new datacenter framework for energy and reliability 129

6.4 Numerical results and discussions . 130
6.4.1 Experimental setup . 130
6.4.2 Evaluations of proposed new modeling and optimization 131

6.5 Summary . 133

7 Long-term reliability management for multitasking GPGPUs 135
7.1 System-level reliability resource consumption model 135
7.2 GPGPU Architecture and Stream Multiprocessor Scheduling 140
7.3 Simulation Framework for EM Assessment on GPGPU 141
7.4 Resource consumption rate-aware thread block scheduler for long-term reli-

ability . 145
7.5 Numerical results and discussions . 149

7.5.1 Fixed Scheduling Performance . 150
7.5.2 Monitoring-Aware Scheduling Evaluation 151
7.5.3 Sensitivity to SM partitioning . 151
7.5.4 Threshold Exploration . 152

7.6 Summary . 154

8 Conclusion 155
8.1 Summary of research contributions . 156

8.1.1 Reliability-aware lifetime optimization for real-time embedded systems156
8.1.2 Learning-based reliability management and energy optimization for

mary-core dark silicon processors . 157
8.1.3 EM Recovery-aware dynamic reliability management for near-threshold

dark silicon processors . 158
8.1.4 Cross-layer modeling and optimization for EM-induced reliability in

data center . 159
8.1.5 Long-term reliability management for multitasking GPGPUs 159

Bibliography 161

xi

List of Figures

1.1 Evolution of current densities: Jmax, the maximum equivalent DC current
density and JEM , the current density for targeted lifetime [1] 2

1.2 (a) Total datacenter cost by primary causes of unplanned outage (Thousand
dollars) (b) Power consumption breakdown for one server 9

2.1 Interconnect tree confined by diffusion barriers/liners [2]. 19
2.2 (a) EM-stress distribution change over time in a simple metal wire in nucle-

ation phase. (b) EM-stress evaluation on cathode versus time using physics-
based model [3]. 22

2.3 EM-stress distribution change over time in simple metal wire for void growth [3]. 23
2.4 Voltage of the first failed node in different simulation time [4]. 25

3.1 Single-rate and multi-rate task scheduling models 31
3.2 Multi-rate preemption . 35
3.3 Core utilization effect - energy savings . 44
3.4 Core utilization effect - lifetime improvement 46
3.5 The comparisons of simulated annealing and mixed-integer linear program-

ming methods for the lifetime optimization for single-rate with 6, 12, and 24
tasks per one task set under different core utilizations (0.3 to 0.8 in x-axis) 50

3.6 The comparisons of simulated annealing and mixed-integer linear program-
ming methods for the lifetime optimization for multi-rate with 6, 12, and 24
tasks per one task set under different core utilizations (0.3 to 0.8 in x-axis) 50

3.7 Trade-off between lifetime and performance (each triangle is different set of
core utilization) . 55

4.1 Q-Learning model with reliability-aware dark silicon framework 65
4.2 (a) SPLASH2 benchmark 64 multithreaded tasks power traces with 44 cores

off(b) Thermal (color:degree) and EM lifetime (number:yrs) analysis on 64
cores . 73

4.3 Lifetime improvements given power budget and performance deadline on 64-
core dark silicon chip (a) PARSEC small task set (b) SPLASH-2 large task
set . 79

xii

4.4 Q-learning result for performance deadline from (a,b) PARSEC tasks and
light (c,d) SPLASH-2 tasks in 64-core dark silicon chip 80

4.5 Q-learning result for power constraints from heavy 4 PARSEC tasks and light
64 SPLASH-2 tasks in 64-core dark silicon chip 81

4.6 Post-validation with MILP for Q-learning accuracy (a) 4 heavy task PARSEC
workloads (b) 64 light tasks SPLASH-2 workloads 82

4.7 Comparison between EM-induced lifetime and system-level soft error rate at
different powers (by different DVFS configurations) on (a) PARSEC small
tasks and (b) SPLASH-2 tasks . 84

4.8 Impact of different process technologies on system-level soft error rate, from
left bar, case A) Global DVFS, case B) our proposed DRM with only EM
constraint, our proposed DRMs with both EM and SER constraints of case
C) 45nm, case D) 32nm, and case E) 22nm 85

4.9 Energy optimization results (Global DVFS, proposed with EM, and with/without
tight and loose soft error constraint from small task set on PARSEC bench-
marks (different performance deadlines in (a) and (b)) 87

4.10 Energy optimization results (Global DVFS, proposed with EM, and with/without
tight and loose soft error constraint from large task set on SPLASH-2 bench-
marks (different power budgets in (a) and (b)) 88

4.11 Constraint violation cases . 90
4.12 Convergence rate of proposed DRM method with EM-induced lifetime con-

straint in 64-core Dark Silicon (SPLASH-2 Tasks) 91
4.13 (a) The scalability analysis for our proposed DRM (case 1: two p-states

with dark silicon, case 2: three p-states with dark silicon (b) Total average
iteration number for both two cases . 93

5.1 Stress evolution caused by periodical current density 98
5.2 Stress evolutions caused by actual currents and traditional effective DC current 99
5.3 (a) Original input driving current density. (b) Calculated EM DC equivalent

current density with tnuc . 102
5.4 (a) Original input driving current density. (b) Calculated EM DC equivalent

current density with two methods . 104
5.5 Comparing the nucleation time of two equivalent methods and original stress 105
5.6 The DRM and NTC Framework . 108
5.7 (a) two cases of power traces from proposed framework and (b) and the

resulting MTTF without/with recovery effects 113
5.8 Performance, energy and EM-induced lifetime from proposed DRM consid-

ering recovery effects for three cases (1) Recovery effects with Trecovery = 50s
(first column) (2) Recovery effects with Trecovery = 1000s (the second col-
umn) (3) Only DRM without recovery effects (the third column) 114

6.1 Feed-forward neural network structure and data configuration 125
6.2 The evaluation platform for datacenter and energy and reliability manage-

ment algorithms . 129

xiii

6.3 Validating violations with constraint limits (a) Average socket MTTF (b)
Average cluster power (c) Tail latency . 134

7.1 Consumption Rate of Rodina Benchmarks 138
7.2 GPU Architecture . 139
7.3 Off-chip PDN (a), On-chip PDN (b), and details of PDN of each SM (c) . . 142
7.4 Simulation framework for long-term reliability assessment on GPGPU . . . 144
7.5 Consumption Rate of Rodina Benchmarks 149
7.6 Normalized Consumption Rate with Fixed Scheduling Policy 151
7.7 Sensitivity to rotation threshold for migration-aware scheduling 152

xiv

List of Tables

1.1 High performance computing (HPC) reliability and power issues [5, 6]) . . . 2

3.1 A preliminary measurement for preemptive effect on lifetime 35
3.2 Optimization method evaluation for low core utilization single-rate task (SA

and MILP) . 45
3.3 Optimization method evaluation for high core utilization single-rate task (SA

and MILP) . 47
3.4 Optimization method evaluation for low core utilization multi-rate task (SA

and MILP) . 48
3.5 Optimization method evaluation for high core utilization multi-rate task (SA

and MILP) . 49
3.6 Elapsed CPU Time to solve the proposed Simulated Annealing and MILP

problems (second per one taskset) . 53

4.1 Raw SEU Rate Per Microprocessor on different technologies [7] 62
4.2 An example of control states for a 3-core processor 64
4.3 Elapsed CPU Time to solve the proposed Q-learning and MILP problems . 92
4.4 Large-scale experiments with five p-state on 128-core and 256-core 94

5.1 Results for dynamic reliability management for 64-core near-threshold dark
silicon . 115

6.1 Accuracy analysis (RMSE) of the feed-forward neural network (FNN) model 132
6.2 Energy optimization for datacenter . 132

7.1 Parameters used in EM analysis . 144
7.2 Benchmarks separated into Consumption Groups 150
7.3 Sensitivity to SM partition for Backprop-Myocyte 153

xv

Chapter 1

Introduction

1.1 Motivation

Long-term reliability is becoming a limiting constraint for high performance and

embedded real-time system designs due to the high failure rates in deep submicron and

nanoscale devices. The increase in failure rates is caused by high integration levels and

higher power densities, which leads to excessive on-chip temperatures. The introduction

of new materials, processes and devices, coupled with voltage scaling limitations and in-

creasing power density will impose many new reliability challenges. The Exascale Roadmap

from United States Department of Energy (U.S. DOE) reported potential power increasing

issues in the future high performance computing (HPC) as seen in Table 1.1 [5]. Moreover,

failure rates of large-scale HPC will dramatically increase, thus, it is expected to be order

of magnitude of hours in the future in Table 1.1 [6]. The semiconductor industry faces the

challenges to maintaining reliability such as the continued increase in die size and number of

transistors and the constant scaling of transistors for performance [8]. Increasing transistor

1

Table 1.1: High performance computing (HPC) reliability and power issues [5, 6])

Year 2009 2012 2016 2020

Mean Time to Interrupt 1-4 days 5-19 hours 50-230 min 22-120 min

Power 6MW ∼ 10MW ∼ 10MW ∼ 20MW

density and thus power density is causing higher temperatures on chip, resulting in failure

acceleration. Scaling to smaller transistors increases failure rates by shrinking the thick-

ness of dielectrics. This has led the International Technology Roadmap for Semiconductor

(ITRS) to predict the onset of significant reliability problems in the future, and at a pace

that has not been seen in the past [9].

Figure 1.1: Evolution of current densities: Jmax, the maximum equivalent DC current
density and JEM , the current density for targeted lifetime [1]

Moreover, an interconnect reliability is becoming a more serious issue of the semi-

conductor industry in the future. Fig. 1.1 describes the comparison of the evolution of the

2

maximum equivalent DC current density (from device requirement), Jmax, and the current

density for targeted lifetime, JEM . Jmax increases with scaling due to the reduction in in-

terconnect cross-section and increasing operating frequency. Due to the continued scaling of

interconnects, Jmax will exceed the JEM limits, (target limit-yellow and critical limit-red),

as seen in Fig. 1.1

1.1.1 Reliability issue for real-time embedded systems

For safety-critical real-time embedded systems (such as satellite and surveillance

systems) where reliability is as important as energy efficiency, reliability-aware energy man-

agement becomes a necessity. Some initial efforts have been carried out for system level

reliability analysis for SoCs (system-on-a-chip). RAMP [10] is the first architecture level

tool for modeling the long-term processor reliability of microprocessors at the design stage.

The follow-up work by the same authors proposed a dynamic reliability management (DRM)

concept by dynamic voltage and frequency scaling (DVFS) [11]. It showed that it was not

sufficient to just manage the temperature or power from the reliability perspective. For

real-time embedded systems, many existing works focus on minimizing energy consumption

while meeting all the deadlines for various real-time task models. Existing works include

power management schemes, which exploits the available static and/or dynamic slack in

the systems [12, 13, 14, 15, 16, 17]. For long-term reliability effects, reducing power will

implicitly improve the reliability of a processor. However, the two objectives, increasing life-

time and reducing power, are still not the same. Some reliability-aware power management

works have been proposed recently [18, 19] by using low power techniques such as DVFS.

However, most of those existing works focus on the transient errors instead of long-term

3

wearout failures. Recently a reliability-aware task allocation and scheduling method for

multi-core embedded processors were proposed [20]. This work considers long-term failure

mechanisms using general reliability models. However, such general models will not be

accurate for specific failure mechanisms. Also, task allocation and scheduling are not best

methods to manage the long-term wearout failures as they will not significantly change the

temperatures of the chip as our study shows. Low power techniques like DVFS are more

desired.

A method in [21] shows that the power/performance and reliability are intrinsi-

cally conflicting metrics and have strong interactions in SoC designs, and proposes a joint

policy optimization method. Another dynamic reliability management method was pro-

posed in [22], in which a simple PID based run-time control was applied to optimize the

performance subject to the long-term reliability constraints. Recently, DVFS techniques

considering negative bias temperature instability (NBTI), and time dependent dielectric

breakdown (TDDB) effects were proposed for microprocessors [23, 24, 25]. A supply voltage

scheduling technique was proposed for optimizing energy subject to NBTI constraints [26].

1.1.2 Reliability issue for dark silicon processors

For the last several decades, technology scaling has led to the continuous integra-

tion of devices, and microprocessors will have more cores integrated in the future. However,

due to the failure of Dennard’s scaling [27], chip power density is increasing on technology

nodes since transistor and voltage scaling is no longer linear. The consequence is the emer-

gence of so-called dark silicon manycore microprocessors, which mean only a percentage of

4

cores can be powered on the chip due to the power and temperature limitations. Recently,

architecture researchers predicted that future many-core (100-1000 cores) silicon dies can

only be powered up partially (so-called dark silicon) as power constraints will not allow all

the cores to be active at the same time. Such manycore systems pose new challenges and

opportunities for power/thermal and reliability management of those chips [28].

Existing works for dark silicon research mainly have been focused on the core orga-

nization, optimal number of cores, task allocation, migration, and scheduling [28, 29, 30, 31].

Moreover, those existing works focus on performance latency, bandwidth and energy effi-

ciency for dark silicon chips. Recently, the reliability management methods for dark silicon

manycore scaling have been studied [32, 33]. However, all of these works considered general

reliability models, which will not be accurate for specific failure mechanisms. Recently, a

new EM model has been used for energy optimization as a DRM but it only considered

the EM model [34]. For dynamic power and thermal management, learning based methods

have recently become popular. Many proposed methods applied Q-learning based method,

which is a reinforcement machine learning method for the adaptive control [35, 36, 37, 38].

Energy-efficient or green computing is important for sustainability and environ-

mental responsibility. This is also true for dark silicon many-core microprocessors as

they may power many IT equipment and data centers in the near future. Power, per-

formance and temperature limitations are traditional dominant factors for energy efficient

high-performance and mobile computing. As technology advances, reliability starts to be-

come another limiting factor in high-performance nanometer microprocessors due to the

high failure rates in deep submicron and nanoscale devices. It is expected that future chips

5

will show signs of reliability-induced aging much sooner than the previous generations based

on the prediction of ITRS 2014 [39].

Among many reliability effects, we consider electromigration (EM) and soft error-

induced reliability effects as they have become major concerns for designers due to aggres-

sive transistor scaling and increasing power density. EM effect is the dominant interconnect

failure mechanism in the 22nm and below technology due to the shrinking wire width and

thermal elevation due to FinFET devices [40], which will have immediate impacts on the

metals above the FinFET devices. We want to stress that there exist many other long-term

reliability effects such as NBTI (negative-bias temperature instability), hot carrier injection

(HCI), TDDB (time dependent dielectric breakdown) for devices and stress migration and

thermal migration for interconnects. However, in this work, we only consider EM reliability

for the demonstration of the proposed reliability management techniques. The proposed

techniques are orthogonal to other long-term reliability managements as those long-term

reliability effects generally behave similarly or in a similar trend under their stressing con-

ditions in terms of voltage, current and temperature [41].

On the other hand, soft-error related reliability has quite different impacts on

VLSI chips (from the long-term reliability). This is especially true for chips operating in

the very low voltage or even near threshold voltage regions. For practical chips, we have

to consider both reliability effects at the same time. Although there are many soft-error

mitigation techniques ranging from redundancy based design to software-based methods,

it is important to study their impacts in the context of long-term reliability optimization

techniques such as DVFS and on/off switching of cores from dark silicons.

6

As a result, in this work, we consider the energy or reliability optimization subject

to the two kinds of reliability (long term and soft errors) and the power, performances, and

temperature constraints. We look at the two system level control knobs: core status knobs

to enable or disable a core due to dark silicon requirement, and dynamic voltage frequency

scaling (DVFS) knobs for traditional power and thermal management. Hence, in this work,

we try to solve the resulting optimal control problems to seek the best policies for DVFS

and core status in the context of the two kinds of reliability constraints.

1.1.3 Reliability issue for near-threshold dark silicon processors

To further reduce powers for many applications, ultra-low power designs become

necessary. Recent research has led to sub-threshold region where CMOS circuits are found

to be capable of operating with a supply voltage of less than 200mV. The theoretical lower

limit of Vdd has been determined to be 36 mV [42]. But at such low voltages, a leakage

power dissipation increases drastically making the reduction in dynamic power insignificant.

Also the circuit delay increases rapidly as the supply voltage is scaled down, resulting in

decreased operation frequency or performance of the circuits.

For dark silicon manycore processors operating in near threshold voltage, reliabil-

ity becomes quite significant for the long-term reliability such electromigration. To address

the increasing reliability issues, a system-level and run-time approach becomes more ap-

pealing. There are some existing works on dynamic reliability managements for dark silicon

in the past [34, 43]. These works have been proposed to leverage the dark silicon many-core

processors in order to save energy while maintaining performance considering reliability.

7

Run-time management of the heterogeneous dark silicon processors and optimal policy of

core status have been addressed. Dynamic voltage frequency scaling method have been

employed as energy saving techniques in those works. However, dynamic reliability man-

agement for near-threshold dark silicon processors has not been studied.

1.1.4 Reliability issue for data center systems

Datacenter downtime has become a major concern as every minute equates to

money lost. An unplanned outage can easily cost a datacenter $8,000 dollars per minute

of downtime and can even reach costs of $16,000 per minute of downtime. The main root

causes of unplanned failures are largely attributed to power system failure and human error.

Hardware failures, such as server failures, only account for about 4%-5% of unplanned

downtime. However, these types of failures are often much more difficult and costly to

recover from. As a result, unplanned datacenter outages caused by server failures are

responsible for the highest incurred costs, compared to downtimes attributed to other root

causes, despite their low rate of occurrence as seen in Fig. 1.2(a) [44]. This presents much

of the motivation behind the work in this chapter as we develop a framework for reducing

this hardware failure subject to performance constraints.

Although the servers consist of multiple components, existing works for datacen-

ter hardware failure research have been mainly focused on the large scale studies in a hard

disk [45] and memory failures [46]. However, in a typical server, the processor accounts for

the majority of the power consumption at nearly 40% compared to other component such

as memory and peripherals [47] in Fig. 1.2(b). Furthermore, a recent study found that pro-

cessors are the leading cause of single node hardware failure in high performance computing

8

0 500 1000 1500

Hardware failure

Cyber crime

Power failure

Water/heat failures

Generator failure

Weather related

Human error

2013 yr 2010 yr

(a)

CPU

37%

Memory

17%

Disk

6%

PCI

slots

23%

Mothe

rboard

12%

Fan

5%

Power Consumption

(b)

Figure 1.2: (a) Total datacenter cost by primary causes of unplanned outage (Thousand
dollars) (b) Power consumption breakdown for one server

clusters [48]. This trend is expected to become increasingly common as processor reliability

is becoming a limiting constraint in high-performance processor designs due to high failure

rates in deep submicron and nanoscale devices. Technology scaling has led to the contin-

uous integration of devices, and processors will have more cores integrated. This growing

trend for large scale many-core devices was brought upon by the increase in transistor den-

sity and the subsequent breakdown of Dennard Scaling. The result of which is the loss of

power distribution scaling with transistor sizes, leading to increased chip temperatures, and

the movement from utilization of a single powerful machine to a large cluster of machines

which can help distribute workloads. However, large cluster system generates reliability

concerns as we no longer can consider the reliability of just a single device or chip. This is

especially true as each node in the datacenter begins to utilize highly integrated processors

with their own reliability concerns. It is increasingly obvious that single server, or even chip

level, reliability needs to be a large factor in how we address the reliability of numerous

devices employed on a larger scale. In order to address these concerns, the relationship

9

between datacenter and processor reliability should be examined. The reliability issue for

datacenter presents the challenge of correlating processor and datacenter cluster reliability.

We examine reliability effects of processors under practical datacenter workloads and model

the effects that the operating parameters of the servers have on the processor reliability.

1.1.5 Reliability issue for general-purpose graphics computing units

The use of general-purpose graphics computing units (GPGPUs) for high-performance

computing has recently gained much attention. Due to the massive parallelism of GPG-

PUs, they can deliver significant performance improvement over traditional CPU-based

computing devices. As the complexity of high-performance computing systems continues

to increase, the probability of failure in one of the machines is also expected to increase.

This naturally brings up the necessity of research in reliability, especially with the focus on

GPGPUs.

While long-term reliability of computing systems has emerged as a serious problem,

to the best of our knowledge, no prior work has assessed its impact on GPGPUs. Only

some initial efforts on soft errors have been carried out for GPGPUs [49, 50, 51, 52, 53],

where most of the radiation-induced (soft error) failure are caused by the corruption of

memory resources. Our main contribution in this work is the quantification of the EM-

induced interconnect reliability of GPGPUs using spatial multitasking, with widely-used

GPGPU benchmarks. Spatial multitasking is a technique commonly used in GPUs to

improve GPU utilization [54]. Under spatial multitasking, thread blocks from different

applications are allocated to their own exclusive sets of Streaming Multiprocessors (SMs),

enabling simultaneous execution of multiple kernels.

10

In the literature, several approaches to the EM assessment of chip interconnect

have been proposed. Among them, one approach [55] proposed that the on-chip intercon-

nects should be divided into a set of interconnect trees and the void nucleation time and

void growth kinetics should be calculated for each tree. While being physically correct,

this approach misses the dynamical nature of the failure development; the nucleated and

growing voids in a number of limbs/segments of different trees affect the current densities in

other void-less segments by changing the resistances of the void-containing segments. The

latter undermines a validity of any steady state out filtration of the “immortal” trees. A

more precise approach for the full-chip EM assessment would be to calculate the coopera-

tive void evolution dynamics, which derives the continuously changing cross on-chip power

delivery network (PDN) and current density distribution that captures changes in the void

population. An interconnect time-to-failure (TTF) should be calculated as an instant in

time when a change in VDD/ VSS reaches a threshold, here say 12% in the GPU case [56],

however, this number can be changed by the different design specification and off-chip in-

ductive effects. This time-iterative approach requires repeated calculation of the current

densities in each PDN segment at each time-step.

1.2 Dissertation contributions

This dissertation presents new system-level EM-induced dynamic reliability man-

agement for many different systems. The major contributions of this dissertation are sum-

marized as follows:

11

• For real-time embedded systems, a new lifetime optimization technique considering the

electromigration-induced reliability has been developed. The new approach is based

on a recently proposed physics-based electromigration (EM) model for more accurate

EM assessment of a power grid network at the chip level [57]. A dynamic voltage and

frequency scaling has been applied (by selecting the performance states or p-states

of the tasks to manage the power), which lead to different lifetimes of the processor

running different tasks over their periods. Both single-rate and multi-rate embedded

systems with preemption is considered. The goal of the optimization is to maximize

the EM-induced reliability (lifetime) of the embedded processor subject to the timing

constraints. The resulting problem is a constrained nonlinear optimization problem.

To solve the resulting problem, Two problem formulations and corresponding solutions

are explored. First, the optimization problem is formulated as the continuous con-

strained nonlinear optimization problem using task’s MTTFs as the variables, which

is further solved by simulated annealing method. To find the optimal solutions with

regard to the proposed EM-induced reliability model and assumptions, a different set

of variables, and linearize both objective functions and constraints are selected. The

resulting problem is solved by the mixed-integer linear programming (MILP) method,

which however higher computational costs for large-scale optimization problems.

• A new energy and lifetime optimization techniques has been developed for emerg-

ing dark silicon manycore microprocessors considering both hard long-term reliability

effects (hard errors) and transient soft errors. I consider a recently proposed physics-

based EM reliability model to predict the EM-induced long-term reliability. For sys-

12

tem level soft error modeling, I consider the DVFS-aware soft error rate (SER) model

and the Sum Of the Failure Rates (SOFR) method are employed. To model dark

silicon, I consider thermal design power (TDP) as the power constraint for dark sili-

con manycore microprocessors. I employ both dynamic voltage and frequency scaling

(DVFS) and dark silicon core state using On/Off switching action as the two con-

trol knobs. I show that on-chip power consumption has different (even contradicting)

impacts on soft and hard reliability effects. Our study also shows that soft-error

should be mitigated by other techniques if aggressive low power and high long-term

reliability are pursued. I focus on two optimization techniques for improving lifetime

and reducing energy. To optimize EM-induced lifetime, I first apply the adaptive

Q-learning based method, which is suitable for dynamic runtime operation as it can

provide cost-effective yet good solutions. The second lifetime optimization approach is

the mixed-integer linear programming (MILP) method, which typically yields better

solutions but at higher computational costs. To optimize the energy of a dark silicon

chip subject to the both hard and soft reliability effects and performance constraints,

the Q-learning method has been applied as well. A large class of multithreaded ap-

plications is used as the benchmark to validate and compare the proposed dynamic

reliability management methods.

• For recovery-aware system-level EM management, I develop a new dynamic reliability

management (DRM) techniques at the system level for emerging low power dark silicon

manycore microprocessors operating in near threshold region. I mainly consider the

EM failures. To leverage the EM recovery effects, which was ignored in the past, at

13

the system level, I develop a new equivalent DC current model to consider recovery

effects for general time-varying current waveforms so that existing compact EM model

can be applied. The new equivalent DC current is calculated in two steps: firstly,

the equivalent square waveform is calculated so that peak and terminal stresses are

matched, secondly, the parameterized equivalent DC current is derived in terms of the

parameters of the fitted periodic square waveforms from the first step. The significance

of the new EM current model is that it allows EM recovery effects can be considered

at the system level for the first time and thus allow EM-induced lifetime of chips to be

better managed at the system level. The system level energy optimization problems

considering recovery-aware EM-induced reliability subject to power and performance

constraints was framed by seeking the best dark silicon cores’ voltage and on/off

status. The resulting problem was solved by the State-Action-Reward-State-Action

(SARSA) reinforcement learning algorithm.

• For data center reliability management, I develop a novel cross-layer approach to

optimize the energy of a datacenter subject to long-term reliability and performance

constraints. I consider a recently proposed physics-based EM reliability model to

predict the EM reliability of full-chip power grid networks for long-term failures.

EM has been previously identified as a major contributor to processor reliability in

datacenters due to challenges of thermal management [58]. I stress the proposed

method is orthogonal to other long-term reliability issues such as NBTI (negative

biased temperature instability, TDDB (time-dependent dielectric breakdown), hot

carriers etc. I show how the new physics-based dynamic EM model at the physics

14

level can be abstracted at the system level and even at the datacenter level. Our

datacenter system-level power model is based on the BigHouse simulator, which is

recently proposed and uses a combination of queuing theory and stochastic modeling.

To speed up online optimization for energy in a datacenter, I develop a new combined

datacenter power and reliability model using a learning based approach in which

a feed-forward neural network (FNN) is trained to predict energy and long term

reliability for each processor under datacenter scheduling and workloads. To optimize

the energy and reliability of a datacenter model, I apply the efficient and adaptive

Q-learning based reinforcement learning method.

• For general-purpose graphics computing units (GPGPUs), I develop long-term re-

liability management for GPGPUs using spatial multitasking for executing general-

purpose workloads. I develop a distributed power delivery network model at functional

unit granularity. I utilize this PDN model for our EM analysis of GPU architectures

using a recently proposed physics-based EM reliability model [59] and consider the

EM-induced time-to-failure (TTF) at the GPU system level as a reliability resource.

For GPU scheduling, I focus on spatial multitasking, which allows GPU computing

resources, i.e., SMs, to be partitioned among multiple applications. I find that the

existing reliability-agnostic thread-block scheduler for spatial multitasking is effective

in achieving high GPU utilization, but ineffective for reliability. I develop a long-term

reliability-aware thread-block scheduler in GPGPU systems and evaluate with widely-

used GPGPU benchmarks. I find our proposed spatial multitasking scheduling shows

a reliability improvement of up to 30%.

15

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides the re-

view of fundamentals of EM model. Chapter 3 describes new lifetime task optimization

techniques for real-time embedded processors considering the electromigration-induced re-

liability. Chapter 4 develop a new energy and lifetime optimization technique for emerging

dark silicon manycore microprocessors considering hard and soft errors. In Chapter 5, I de-

velop a new recovery-aware dynamic reliability management (DRM) techniques for emerging

near-threshold dark silicon manycore microprocessors considering electromigraion (EM) re-

liability. In Chapter 6, I develop a novel cross-layer approach to optimizing the energy of

a datacenter subject to long-term reliability and performance constraints. Lastly, in Chap-

ter 7, I develop long-term reliability management for GPGPUs using spatial multitasking

for executing general-purpose workloads.

16

Chapter 2

Electromigration reliability model

This chapter gives a review of the fundamental physics-based electromigration

(EM) model and explains void dynamics, such as nucleation and growth phases. Stress

evolution of void nucleation and growth phases can be represented as physics-based model.

An accurate estimation of the void nucleation and growth times can be obtained from

the hydrostatic stress evolution kinetics. For the full chip analysis, EM-induced reliability

analysis method for power grid network is introduced.

2.1 Review of the physics-based EM modeling

EM is the physical phenomenon of the migration of metal atoms along a direction of

applied electrical field. Atoms (either lattice atoms or defects/impurities) migrate toward

the anode end of metal wire along the trajectory of conducting electrons. During the

migration process, hydrostatic stress will be generated inside the embedded metal wire due

to momentum exchange between lattice atoms and conduction electrons and is a prime cause

17

of void and hillock formation at the opposite ends of the wire. Indeed, when metal wire is

embedded into a rigid confinement, which is the case with interconnect metallization, the

wire volume changes (induced by the atom depletion and accumulation due to migration)

create tension at the cathode end and compression at the anode ends of the line. Over

time, the lasting unidirectional electrical load increases these stresses, as well as the stress

gradient along the metal line. In some cases, usually when a line is long, this stress can

reach a critical level, resulting in a void nucleation at the cathode and/or hillock formation

at the anode end of line. The EM effects are mainly modeled and heavily used by empirical

Black’s equation [60] and Blech limit [61]. However, those models are not physics-based and

they do not fully consider the predictability for varying stressed conditions and complicated

interconnect wire structures. Additionally, they do not address the inherent redundancy in

the power grid networks, which are the most vulnerable wires in a chip.

Traditional physics-based EM assessment models and simulation flows are at-

tributed to a single interconnect line confined by the liners serving as barriers for atomic

diffusion. However, modern power/ground (P/G) networks consist of large segments rep-

resenting a continuously connected, highly conductive metal (copper, Cu) lines within one

layer of metallization, terminated by diffusion barriers. These segments, which are also

known as interconnect trees [55], may have multiple voltage input/output and current source

ports represented by interlayer vias and contacts. The major difference between iso-lines

and individual limbs of interconnect trees, is an absence of blocking boundaries at one or

both ends of the limbs. It prevents atoms from accumulation/depletion, and eliminates

related stress buildup at the branch ends, and, hence, makes tree decomposing on individ-

18

ual segments and a consequent traditional immortality assessment and mean-time-to-failure

(MTTF) calculation as a groundless [57].

Figure 2.1: Interconnect tree confined by diffusion barriers/liners [2].

A physically viable approach to the EM assessment in chip interconnect was pro-

posed in a number of publications, see for example [55], representing connected, high con-

ductive metal lines within one layer of metallization, terminated by diffusion barriers as

shown in Fig. 2.1 [2]. In their approach the on-chip interconnects should be divided into a

set of interconnect trees and the void nucleation time and void growth kinetics should be cal-

culated for each tree. While being physically correct (in the scope of used approximations),

this approach has missed a dynamical nature of the failure development; the nucleated and

growing voids in a number of limbs/segments of different trees affect the current densities in

other void-less segments by changing the resistances of the void-containing segments. The

later undermines a validity of any steady state out filtration of the “immortal” trees. A

correct approach to the full-chip EM assessment requires calculating the cooperative void

evolution dynamics resulting in the continuously changing cross P/G network current den-

19

sity distribution that in turn results in a change in the void population. An interconnect

MTTF should be calculated as an instant in time when a change in VDD/ VSS reaches a

threshold, say 10%. This time-iterative approach requires repeated calculation of the cur-

rent densities in each P/G segment at each time-step. Here, we use 10% to simplify our

work [4], however, this number can be changed by the different design specification and

off-chip inductive effects.

2.1.1 Void dynamics: nucleation and growth phases

An accurate calculation of the void nucleation time inside an interconnect tree can

be done based on resolving the hydrostatic stress evolution kinetics inside a multi-branch

tree. The hydrostatic stress is an isotropic stress when an interconnect tree is under equal

compressive or tensile stress in all directions. It can be done by solving the system of second

order partial differential equations, [62], describing the hydrostatic stress (σi
Hyd) evolution

in each individual segment,

∂σi
Hyd

∂t
=

∂

∂x

[

Di
aB

iΩ

kBT i

(

eZiρji

Ω
+

∂σi
Hyd

∂x

)]

(2.1)

Here, Da is the effective atomic diffusivity, eZ is the effective charge of migrating

atoms, B is the effective bulk elasticity modulus, Ω is the atomic lattice volume, ρ is the

copper resistivity, j is the current density, kB is the Boltzmann constant, T is the temper-

ature, x is the coordinate along the segment length, and t is time. Boundary conditions

for these equations reflect the continuities of stresses at the limb joints, and the zero flux

conditions at the terminating limb ends. Analytic solution of (2.1) allows one to extract the

20

void nucleation time (tnuc), which is determined as an instant in time when the develop-

ing stress reaches the critical value (σcrit) needed for nucleation of the thermodynamically

stable void [57, 63],

tnuc ≈τ⋆e
EV
kT e−

fΩ
kT (σRes+

eZρl
4Ω

j)

ln

{

eZρl
4Ω j

σRes +
eZρl
4Ω j − σCR

} (2.2)

where τ⋆ = l2

D0
eED/kT kT

ΩB . Here, j is the current density, T is temperatures, kB is the

Boltzmann’s constant, l is the segment length, EV and ED are the activation energies of

vacancy formation and diffusion, f is the ratio of volumes occupied by vacancy and lattice

atom, σcrit is the critical stress needed for the failure precursor nucleation (void/hillock).

σRes is the residual stress of the metal segment from the cooling process and other factors.

Stress evolution of nucleation phase based on the model is shown in Fig. 2.2 [3].

Fig. 2.2(a) shows the EM-induced stress development for a single metal wire over time

from the finite element analysis for a given current density and temperature setting [3].

Fig. 2.2(b) shows the stress evaluation over time. Each time unit here is 107 seconds.

During this process, tensile stress (positive stress) will be developed at the cathode side

(the left node), while compressive stress (negative stress) will be generated at the anode

side of the wire (right node). When the tensile stress hits critical stress, a void will be

generated, which is called nucleation time (tnuc).

The second phase is the void size growth: voids are formed at tnuc and grow at

t > tnuc. The wire resistance starts to increase over the time in the growth phase. In

Fig. 2.3, the evolution of stress starting from the void nucleation time t = 0 till the steady

state is achieved [3].

21

0 0.2 0.4 0.6 0.8 1 1.2 1.4
5

4

3

2

1

0

1

2

3

4

5

Scaled Distance

S
tr

e
s
s
 (

in
 1

0
0

M
P

a
)

t
1
=0

t
2
=0.05

t
3
=0.1

t
4
=0.2

t
5
=0.3

t
6
=0.5

t
7
=1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Scaled Time

S
tr

e
s
s
 (

in
 1

0
0

M
p

a
)

Critical Stress

(b)

Figure 2.2: (a) EM-stress distribution change over time in a simple metal wire in nucleation
phase. (b) EM-stress evaluation on cathode versus time using physics-based model [3].

22

Scaled Distance
0 0.2 0.4 0.6 0.8 1

S
tr
es
s(
in

10
0M

P
a)

-30

-25

-20

-15

-10

-5

0

5

time=0.0005
time=0.01
time=0.04
time=0.1
time=0.2
time=1

Figure 2.3: EM-stress distribution change over time in simple metal wire for void growth [3].

Since the drift velocity of the void edge relates to atomic flux as ϑ = Ωj, [64] we

can express it as

ϑ =
Da

kBT
eZρCuj. (2.3)

Kinetics of the line resistance change can be approximately described as:

∆r(t) = ϑ(t− tnuc)

[

ρTa

hTa

(

1

2H
+

1

W

)

− ρCu

HW

]

(2.4)

Here ρTa and ρCu are the resistivity of the barrier material (Ta/TaN) and copper, W is the

line width, H is the copper thickness, and hTa is the barrier layer thickness. As a result,

the p/g network becomes a time-varying network and its voltage drops will keep changing

over the time [57].

The saturated void size and the instant in time when saturation happens, is deter-

mined by a computation of the EM induced atomic flux by the back-flux of atoms generated

23

by the developed stress gradient, [65, 57]. Knowledge of the void kinetics and its saturated

volume developed in a particular segment allows calculating the segment resistance evolution

caused by passing current density. Upon the void saturation the further resistance change is

stopped until the current density is changed due to other voids developed somewhere inside

the same interconnect tree or in other trees.

2.1.2 EM assessment at power grid level

Because of the concern with the long-term average effects of the current, in EM

related work, such as [66], a DC model of the power grid is generally assumed. At the chip

level, EM failure typically is defined not by the failure of a single wire, but by the voltage

drop of a power grid network as power grid network is most vulnerable to EM failures. In

our problem formulation, each mortal wire, which is subject to the EM effect, will start to

change its resistance value upon achieving the nucleation time. Finally, we end up with the

power grid systems, which is linear, time-varying, and driven by the DC effective currents,

which is modeled as G(t)v(t) = Ieff , where, G(t) is a n × n time-varying conductance

matrix; Ieff is the effective DC current source vector; v(t) is the corresponding vector of

nodal voltages and n is the size of unknown voltages. Because EM is a long term effect, the

time scale used in this thesis is measured in months or years. In the EM-induced reliability

analysis at a power/ground level, the voltage drops of the grid can be computed at the

fixed time step for each core. Specifically, the resistance of one or more wires begins to

increase after the nucleation time defined in (2.2) and then the resistance of a wire will

start to increase based on (2.4). At each time step, we collect new wires whose nucleation

times were reached, and compute the new resistance for existing wires in the growth phase

24

and the corresponding voltage drops of the whole grid. This process is repeated until the

voltage drop of one or more nodes exceeds the critical voltage drops allowed (defined as

10% of VDD) [59].

Fig. 2.4 shows one example in which the voltage of one node in a p/g network varies

time after the creation of the first void in the network and its value can be tracked [4].

Time(yrs)
0 5 10 15 20 25 30

V
o
lt
a
g
e
 d

ro
p
(V

)

0.155

0.16

0.165

0.17

0.175

0.18

max voltage drop

voltage drop of the first failed node

first void nucleated,
system starts to
degrade

reaches threshold,
TTF

Figure 2.4: Voltage of the first failed node in different simulation time [4].

In the new EM-induced reliability analysis algorithm for p/g networks, we compute

the voltage drops of the grids at fixed EM time step. The resistance of one or more wires

begins to change (increase) starting with their nucleation times. At each time step, we

collect new wires whose nucleation times were reached, and compute the new resistance

for existing wires in the growth phases and corresponding voltage drops of the whole grids.

This process is repeated until the voltage drop of one or more nodes exceeds the critical

voltage drops allowed (defined as 10% of VDD).

25

2.2 Summary

This chapter presented a review of the fundamental physics-based EM model and

explained void dynamics, such as nucleation and growth phases. Stress evolution of void

nucleation and growth phases can be represented as the physics-based model. An accurate

estimation of the void nucleation and growth times have been obtained from the hydrostatic

stress evolution kinetics. For the full chip analysis, EM-induced reliability analysis method

for power grid network has been introduced.

26

Chapter 3

Reliability-aware lifetime

optimization for real-time

embedded systems

This chapter presents a new lifetime optimization techniques for real-time embed-

ded processors considering the electromigration-induced reliability. This chapter aim at

maximizing the EM-induced reliability of the embedded processor subject to the hard tim-

ing constraints. System-level EM reliability model will be introduced. To optimize at the

system-level, dynamic voltage frequency scaling (DVFS) is applied. To solve the resulting

problem, two problem formulations and corresponding solutions will be explored. First, We

formulate the optimization problem as the continuous constrained nonlinear optimization

problem using task’s mean time to failure as the variables, which is solved by the simu-

lated annealing (SA) method. In the second formulation, the linearized resulting problem

27

is solved by the mixed-integer linear programming (MILP) method to find the optimal

solutions with regard to the proposed EM-induced reliability model and assumptions.

3.1 System-level EM-induced reliability model

At the system level, the embedded system will run on different tasks under different

p-states. Let’s assume that have a set of different time intervals ∆pk characterized by

different workloads or p-state in terms of current density jk and temperature Tk for a

processor or a core. It means that P =
∑n

k=1∆pk is the total execution time. Each kth

workload, if it lasts till imaginary failure, provides time to failure TTFk. Thus the failure

rate at the kth workload, which last ∆pk is λk = 1/TTFk. Then the average failure rate

for the considered set of workloads is

λavg =
n
∑

k=1

∆pk
∑n

j=1∆pj
λk =

n
∑

k=1

∆pk
P

λk (3.1)

As a result, the expected time to failure or average lifetime of the whole processor, TTF is

[67],

MTTF =
1

λavg
=

1

(
∑n

k=1(∆pk
1

MTTFR,k
))/P

(3.2)

where MTTFR,k is the actual MTTF under the k-th power and temperature settings for

∆pk period, assuming the chip works through n different power and temperature settings

and P =
∑n

k=1∆pk. Each MTTFR,k will be computed based on the EM models discussed

in the previous section.

28

3.2 Real-time embedded system models

In this section, we review the real-time task models considered in this work. Most

of the embedded systems are real-time systems, where tasks are activated periodically, so

timing and deadline should be carefully considered. We mainly consider two kinds of models

for real-time systems: (1) Single-rate model, where all tasks in the system have the same

activation period and deadline, and (2) Multi-rate model, where each task can have its

own activation period and deadline. A task set is represented as T = {τ1, τ2, τ3, . . . , τn}

where all tasks in the system are independent of each other. All tasks are scheduled on

a single-core processor. For single-rate system, every task has the same activation period

T . For multi-rate system, every task has its period and we use Ti to denote the period of

task τi. In this work, we consider the deadline of each task as its activation period, where

every task must finish the execution before its next activation, or missing deadline may

have detrimental impacts on the whole system.

In single-rate system, every task has the same period and deadline, so the worst

case for timing is that one task has to wait for all the other tasks to finish execution.

As long as the sum of all task execution times is no greater than deadline T , the system

is schedulable. We use ∆ti to represent the execution time of each task, so the timing

constraints for single-rate system is expressed as
∑

i∆ti ≤ T .

In multi-rate system, the task scheduling is repeated at a hyper period that is

the LCM (least common multiple) of all periods, so we just need to consider the p-state

selection for tasks within a hyper period for multi-rate system. Thus, we assume that for

every activation the task uses the same p-state in the hyper period. We apply a fixed-

29

priority scheduling method, in which higher priority tasks can preempt lower priority tasks,

so the order of tasks is obtained from the priority. This scheduling method is widely used

and is supported by standards like OSEK [68].

Task response time is an important metric to analyze timing in multi-rate system.

It represents the time between the task is ready to execute and it finishes the execution.

In fixed-priority scheduling, higher priority tasks can preempt lower priority tasks, so the

response time of one task contains the time it is preempted by higher priority tasks besides

its execution time. We use ri to represent the response time of task τi and it is expressed

as (3.3) where hp(τi) denotes the task set containing higher priority tasks than task τi. The

first term of (3.3) represents the execution time of task τi and the second term denotes the

preemption time of higher priority tasks.

ri = ∆ti +
∑

τk∈hp(τi)

⌈ ri
Tk
⌉∆tk (3.3)

The timing constraints for multi-rate system is that the response time of any task should

be no greater than its period: ∀i : ri ≤ Ti. Every task must finish its execution before its

next activation. In our real-time system model, we use Rate Monotonic scheduling, which

is a common preemptive fixed-priority scheduling method. As an illustration, a real-time

system model for single- and multi-rate is shown in Fig. 3.1 where task 2 has the highest

priority due to its smallest period and task 3 has been preempted two times by task 2

within its response time. Further, we use core utilization to measure the percentage of total

execution time in the processor, which has significant impacts on the lifetime improvement

by the different slack time from DVFS. The core utilization u is expressed as u =
∑

i

∆ti
Ti

,

where ∆ti is the execution time for task i and Ti is the period of the task.

30

Multi periods

Task 1

Task 3

Task 2

Task 1

Task 3

Task Execution

Task Preempted

Hyper Period

(a) Single Rate

(b) Multi Rate

One period

Task 2

Figure 3.1: Single-rate and multi-rate task scheduling models

3.3 Proposed new lifetime optimization method

In this section, we introduce the proposed lifetime optimization method for real-

time embedded systems considering EM effects. The goal is to optimize the EM-based

lifetime of the embedded system subject to the timing and performance constraints. To

effectively manage the lifetime of the chips due to EM effect, we still apply the dynamic

voltage and frequency scaling (DVFS), which is implemented by performance-state (p-state)

selections for a processor [69]. We assume that a task scheduling for an embedded system

has been finished already with Rate Monotonic as described in Section 3.2.

First, we formulate continuous nonlinear objective function and use a heuristic

optimization solution, this we can find a feasible solution. However, due to the limitation of

heuristic global optimization solution, which can hardly find the optimal solutions, we show

a linearization of the formulation to solve with linear solution easily. We build continuous

31

nonlinear and discrete linear objective functions and use Simulated Annealing (SA) and

Mixed Integer Linear Programming (MILP), respectively.

To solve the resulting optimization problem, we first formulate the problem as

continuous constrained nonlinear programming problem and solve it by the simulated an-

nealing method. However, due to the limitation of SA, global optimality is not guaranteed.

Second, we reformulate the same problem into a mixed-integer linear programming (MILP)

problem and find the optimal solutions with regard to the same assumptions of the above

nonlinear programming problem. We also compare the two solving solutions.

3.3.1 The new lifetime optimization flow

In this subsection, we first explain the new optimization flow and its major steps.

The whole algorithm flow is shown in Algorithm 1. First, we start with a single- or multi-rate

task set in either single-rate or multi-rate model. The tasks have non-optimized initial p-

state, which has a pair of highest operating frequency and voltage. The temperature values

from the profiled power and execution time can be measured by running HotSpot [70] with

respect to every possible p-state selection for each task.

Once we have all the power and temperature information, we compute the MTTF

for each p-state for the task based on the after-mentioned EM simulator discussed in the

previous section. As a result, for each p-state pj of a task i, the execution time ∆ti is the

function of its MTTFi = MTTF (pj) under the p-state pj . We then build a continuous

function of ∆ti(MTTFi) using the response surface method (RSM) [71]. We may use up

to 3rd order polynomials for our RSM method to handle the nonlinearity. The function

is important for the lifetime optimization as shown later. Then, we solve a constrained

32

nonlinear optimization problem to find the best p-state for each task. To show the quality of

this original solution (P1 in Algorithm 1), we use an alternative method (P2 in Algorithm 1).

We linearize the objective and the constraints of the nonlinear problem as a MILP problem.

We solve a discrete linear optimization problem. Then, we compare two solutions in the

experiment.

33

Lifetime optimization for real-time embedded systems

Input: A task set with execution time (∆ti), power, and available p-states (pj)

Output: Optimized p-state selection for a task set (Two methods, P1 with the objective

function (3.4) and P2 with the objective function (3.23))

Compute scaling voltage and frequency for each task with every p-state;

Compute a period Ti or hyper period Thyper for single- or multi-rate system. Compute

scaled power and measured temperature for each task with every p-state pj ;

With given power and temperature, MTTFi = MTTF (pj) can be calculated for each

p-state pj ;

Calculate the task execution time ∆ti and MTTF (lifetime) for each task for every p-state ;

if Simulated Annealing (P1) then

(P1) Build continuous function of ∆ti(MTTFi) for each task i. ;

(P1) Perform the MTTF optimization as shown in (3.4) with timing constraint to find

best p-state for each task. ;

(P1) Output each selected p-state for each task as the first solution. ;

end

else if MILP (P2) then

(P2) Linearize the continuous function in (3.4) with timing constraint. ;

(P2) Perform P-state optimization as shown in (3.23) with linearized timing

constraints to find best p-state for each task. ;

(P2) Output each selected p-state for each task as the second solution. ;

end

Algorithm 1: EM-induced lifetime optimization algorithm flow

For a multi-rate system, one important problem is that preemption can lead to

interruption of a task execution. Fig. 3.2 shows an example of the mechanism of preemp-

tion in which task 1 has been preempted by task 2. Since each task has its power (thus

temperature profile), does such re-ordered task execution will affect the EM-induced relia-

34

bility? It turns out that such task re-ordering or task preemption has marginal impacts on

the EM-induced reliability. Table 3.1 shows the results for the MTTF of two executions:

one for non-preemption and one for preemption. As we can see that the MTTFs for both

cases are almost the same. The reason is that the temperature of the each task execution is

mainly determined by its power, its transient thermal effects between task transition are not

significant. Thus, the lifetime formulation in (3.2) remains the same for multi-rate system.

(b) Preemption

Task 2

Task 1

Task Execution

Task Preempted

Task 2

Task 1

(a) Non−preemption

Figure 3.2: Multi-rate preemption

Table 3.1: A preliminary measurement for preemptive effect on lifetime

Non-preemption Task1 Task2 Lifetime

MTTFi 0.47 83 0.71

Preemption Task1 (Divided) Task2 Lifetime

MTTFi 0.47,0.47 84.3 0.71

35

3.3.2 Formulation one: continuous constrained nonlinear optimization

In this subsection, we first show the resulting problem formulation for continuous

constrained nonlinear optimization. Specifically, the whole optimization can be formulated

in (3.4).

Max Lifetime(m) =
1

(
∑i=1

n (∆ti
1

MTTFi

Thyper

Ti
))/Thyper

Subject to:

ri = ∆ti +
∑

k∈hp(i)

⌈

ri
Tk

⌉

∆tk ≤ Ti

MTTFi,l ≤MTTFi ≤MTTFi,u

(3.4)

where m = [MTTF1,MTTF2, . . . ,MTTFn]
T , which is the variable vector, i is the task id,

∆ti is the execution time for task i , n is the total number of task, MTTFi is the segment

MTTF for task i ri is the response time of task i, hp(i) is the task set containing the

higher priority tasks than the current task i. Ti is the period of task i, which is a deadline.

Thyper is the hyper period for all tasks. At the single-rate Thyper is equal to Ti. Ttotal is the

total execution time of all tasks. MTTFi,l is the minimum bound of MTTF for task i and

MTTFi,u is the maximum bound of MTTF for task i.

We note that each frequency in the DVFS settings is tighten to each p-state. For

instance, we used five p-sate pj = {(1.6Ghz, 1.484V),(1.4Ghz, 1.409V), (1.22Ghz, 1.339V),

(1.07Ghz, 1.272V), (930Mhz, 1.208V)} were chosen from ACPI standard and Enhanced

Intel Speedstep Technology [69, 72]. As a result, once we know the MTTFi for a task, its

p-state and the associated frequency and execution time can be determined by finding the

p-state giving the closest MTTF to the MTTFi.

36

To solve the constrained nonlinear optimization problem, the simulated annealing

method (SA) is applied. We use the Matlab’s global optimization toolbox, which provides

the simulated annealing function code based on adaptive simulated annealing (ASA) [73].

The simulated annealing begins with an initial MTTFi obtained by a median of MTTFi,l

and MTTFi,u for each task i. The algorithm allows a large number of moves to gradually

improve MTTF. The step length equals to the current temperature, and the moving di-

rection is uniformly random. The problem type is set as bound constrained with a set of

bounds, which are MTTFi,l and MTTFi,u for each task i. The regression coefficients in our

RSM model can be parameterized by the variables (MTTFi) of our objective function and

act as constants during the optimization. The temperature will be lowered by 0.95k at each

iteration, where k is the annealing parameter, which is the same as the iteration number

before the annealing. The stopping criterion is set to 10−6, where the iteration stops when

the average lifetime variation in the objective function is smaller than this tolerance. The

maximum number of evaluation is set to 3000. Once a solution m is found, the correspond-

ing p-state pj for each MTTFi for each task is calculated by finding the shortest-distance

between MTTFi(pj) and computed MTTFi.

3.3.3 Formulation two: mixed-integer linear programming

Since global optimality is not guaranteed in the first problem formulation, a better

solution is desired. In this subsection, we try to solve the same optimization problem

using an alternative method. The idea is to linearize the nonlinear objective function

in (3.4). The resulting problem becomes a constrained linear optimization problem and

can be solved by the mixed-integer linear programming (MILP) method, which can lead

37

to the optimal solutions with regard to the proposed EM-induced reliability model and

assumptions. However, MILP will be more expensive to solve for large-scale problem.

Nevertheless, it can be used to show the quality of the solutions obtained from the previous

constrained nonlinear optimization method.

Multi-rate System: We first calculate the task execution time and MTTF for each task

under every p-state, and store the results in the corresponding look-up table. ∆tτi,pk rep-

resents the execution time of task τi under p-state pk. MTTFτi,pk represents the MTTF

of task τi under p-state pk. The output p-state selection can be denoted by the boolean

variable aτi,pk , which equals to 1 if p-state pk is selected for task τi and 0 otherwise. Since

one task can only choose one p-state, τi,
∑

k aτi,pk = 1 for each task. With the boolean

variable, the execution time cτi of task τi can be formulated as (3.5) and the MTTF mτi of

task τi can be formulated as (3.6).

cτi =
∑

k

aτi,pk ·∆tτi,pk (3.5)

mτi =
∑

k

aτi,pk ·MTTFτi,pk (3.6)

Then, the lifetime in (3.4) can be re-formulated as follows:

max: lifetime(mτ) =
Thyper

∑

τi∈T

cτi
mτi

Thyper

Tτi

=
1

∑

τi∈T

cτi
mτi

1

Tτi

(3.7)

The optimal solution remains the same if we minimize the inverse of lifetime lifetime−1,

and we will prove lifetime−1 can be further linearized into (3.8). The intuition is that both

cτi and mτi are decided by the same variable aτi,pk .

38

min: lifetime−1(aτ,p) =
∑

τi∈T

∑

k

aτi,pk
∆tτi,pk

MTTFτi,pk · Tτi

(3.8)

cτi
mτi

=
∑

k

aτi,pk
∆tτi,pk

MTTFτi,pk

(3.9)

To show that such a linearization is valid, we need to prove that (3.9) is true.

Proof. As we discussed, aτi,pk is the boolean variable and
∑

k aτi,pk = 1, so τi has only one

p-state. If pγ is the possible p-state, aτi,pγ is 1, all other a for task τi is 0. So,

LHS =
cτi
mτi

=

∑

k aτi,pk ·∆tτi,pk
∑

k aτi,pk ·MTTFτi,pk

=
aτi,pγ∆tτi,pγ

aτi,pγ∆MTTFτi,pγ

=
∆tτi,pγ

∆MTTFτi,pγ

(3.10)

RHS =
∑

k

aτi,pk
∆tτi,pk

MTTFτi,pk

= aτi,pγ
∆tτi,pγ

MTTFτi,pγ

=
∆tτi,pγ

∆MTTFτi,pγ

(3.11)

Thus, LHS equals to RHS, and we proved that (3.9) was true.

Therefore, if we plug Equation (3.9) into Equation(3.7), we can obtain lifetime−1

as follows:

lifetime−1(aτ,p) =
∑

τi∈T

cτi
mτi

1

Tτi

=
∑

τi∈T

∑

k

aτi,pk
∆tτi,pk

MTTFτi,pk · Tτi

(3.12)

39

Equation (3.8) is proved. Therefore, the resulting optimizing problem is shown

below. The constraint (3.14) ensures that every task chooses only one p-state. We treat

the deadline of each task as its period and this leads to constraint (3.15).

min: lifetime−1(aτ,p) =
∑

τi∈T

∑

k

aτi,pk
∆tτi,pk

MTTFτi,pk · Tτi

(3.13)

subject to:

∀i:
∑

k

aτi,pk = 1 (3.14)

∀i: rτi = cτi +
∑

τj∈hp(τi)

⌈ rτi
Tτj

⌉cτj ≤ Tτi (3.15)

However, the constraint (3.15) is still not linear. We first plug in Equation (3.5), and the

constraint becomes

∀i: rτi =
∑

k

aτi,pk∆tτi,pk +
∑

τj∈hp(τi)

∑

k

⌈ rτi
Tτj

⌉aτj ,pk∆tτj ,pk ≤ Tτi (3.16)

We can observe the nonlinearity comes from the ceiling function. Therefore, we use integer

variable xτi,τj to represent the ceiling function ⌈rτi/Tτj⌉ with a newly added constraint

∀i, j: 0 ≤ xτi,τj − rτi/Tτj < 1. Constraint (3.15) further becomes

∀i: rτi =
∑

k

aτi,pk∆tτi,pk +
∑

τj∈hp(τi)

∑

k

xτi,τjaτj ,pk∆tτj ,pk ≤ Tτi (3.17)

However, the nonlinearity still exists as an integer variable is multiplied by a binary variable

xτi,τj ∗aτj ,pk . We introduce a non-negative integer variable δτi,τj ,pk to represent xτi,τj ∗aτj ,pk

and use ‘big M’ method to linearize the multiplication of an integer variable and a binary

variable as follows.

40

∀i, j, k: xτi,τj −M ∗ (1− aτj ,pk) ≤ δτi,τj ,pk (3.18)

∀i, j, k: δτi,τj ,pk ≤ xτi,τj (3.19)

∀i, j, k: 0 ≤ δτi,τj ,pk ≤M ∗ aτj ,pk (3.20)

The ‘big M’ is a large integer M in a set of linear inequalities to represent the equation

δτi,τj ,pk = xτi,τj ∗aτj ,pk . Simply put, we want to guarantee that if aτj ,pk = 1, δτi,τj ,pk = xτi,τj ,

and if aτj ,pk = 0, δτi,τj ,pk = 0. In inequality (3.18), if aτj ,pk = 1, xτi,τj ≤ δτi,τj ,pk . Combined

with (3.19) xτi,τj ≥ δτi,τj ,pk , we can guarantee δτi,τj ,pk = xτi,τj . In inequality (3.18), if

aτj ,pk = 0, xτi,τj −M ≤ δτi,τj ,pk . Combined with constraints (3.20) 0 ≤ δτi,τj ,pk ≤ M ∗ 0,

we can guarantee that δτi,τj ,pk = 0. Therefore, constraints (3.18) to (3.20) are equivalent to

equation δτi,τj ,pk = xτi,τj ∗ aτj ,pk , and thus constraint (3.15) can be further written as

∀i: rτi =
∑

k

aτi,pk∆tτi,pk +
∑

τj∈hp(τi)

∑

k

δτi,τj ,pk∆tτj ,pk ≤ Tτi (3.21)

with constraints (3.18) to (3.20) added. One last thing is to represent the set of higher

priority tasks. Constant Pτi,τj represents the priority between task τi and τj . Constant

Pτi,τj equals to 1 if τj has higher priority than τi and 0 otherwise. Finally, constraint (3.15)

becomes a linear equation with the above constraints added.

∀i: rτi =
∑

k

aτi,pk∆tτi,pk +
∑

τj∈T

∑

k

δτi,τj ,pkPτi,τj∆tτj ,pk ≤ Tτi (3.22)

After all these linearization steps, we have the following linear objective function

with linear timing constraints, which can be solved by the mixed-integer linear program-

ming (MILP) method:

41

minimize: lifetime−1(aτ,p) =
∑

τi∈T

∑

k

aτi,pk
∆tτi,pk

MTTFτi,pk · Tτi

(3.23)

subject to:

∀i:
∑

k

aτi,pk = 1 (3.24)

∀i, j: 0 ≤ xτi,τj − rτi/Tτj < 1 (3.25)

∀i, j, k: xτi,τj −M ∗ (1− aτj ,pk) ≤ δτi,τj ,pk (3.26)

∀i, j, k: δτi,τj ,pk ≤ xτi,τj (3.27)

∀i, j, k: 0 ≤ δτi,τj ,pk ≤M ∗ aτj ,pk (3.28)

∀i: rτi =
∑

k

aτi,pk ∗∆tτi,pk +
∑

τj∈T

∑

k

δτi,τj ,pk ∗ Pτi,τj ∗∆tτj ,pk ≤ Tτi (3.29)

Note that, The linearization techniques in this work do not change optimality as

shown above and no approximation is conducted during the derivation. Therefore, we can

guarantee our solution is exactly optimal with regard to our lifetime model.

Single-rate System: As discussed in Section 3, the timing constraints of single-

rate system is simply
∑

i∆tτi < T . So, there is no ceiling function for linearization, and

the optimization is much simpler. For single-rate system, we can simplify the problem as

follows to make the execution much faster.

42

minimize: lifetime−1(aτ,p) =
∑

τi∈T

∑

k

aτi,pk
∆tτi,pk

MTTFτi,pk · Tτi

(3.30)

subject to:

∀i:
∑

k

aτi,pk = 1 (3.31)

∑

τi∈T

∑

k

aτi,pk ∗∆tτi,pk ≤ T (3.32)

We note that in this work, we only consider the EM effects reliability. But there are many

other reliability effects for back end of the lines such as TDDB (time dependent dielectric

breakdown) and TC (thermal cycling). We want to stress that the proposed optimization

method is orthogonal to other reliability effects as long as they can be modeled properly in

terms of system level parameters such as temperature and p-state. Our work can be viewed

as a demonstration of considering long-term reliability and performance for embedded sys-

tems and it can be easily extended to deal with other reliability effects. Actually considering

TDDB effect is a trivial as TDDB induced time to failure based on TDDB models such as

1/E and
√
E models [74] shows similar trend with respect to the power/temperature with

respect to the temperature. We should expect to see the similar tradeoff between lifetime

and the performance. For thermal cycling, the effects may contradict the EM effects as

number of cycling and temperature ranges will make differences as shown in [75]. On the

other hand, these effects are more significant for package and die interface (solder joints).

Experiments show that very large thermal cycles (more than 140 degrees Celsius) are re-

quired to cause any damage to the silicon substrate and interconnects [10]. As a result, it

seems less concern for normal chip working conditions as we assumed in this work.

43

3.4 Numerical results and discussions

Core Utilization

0.3 0.4 0.5 0.6 0.7 0.8

E
n
e
rg

y
 S

a
v
in

g
 R

a
ti
o

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Energy

Single Rate = 50ms

Single Rate = 20ms

Single Rate = 10ms

Multi Rate = 100ms

Multi Rate = 100ms

Multi Rate = 100ms

Figure 3.3: Core utilization effect - energy savings

We first show the experimental setups for evaluating the proposed optimization

algorithms. Then we show the reliability and performance results on a number of real-time

embedded systems. Finally, we study the results from the two optimization methods to

analyze the solution quality of the two proposed methods. We also provide some insight

look at the resulting trade-off between performance and lifetime.

44

Table 3.2: Optimization method evaluation for low core utilization single-rate task (SA and
MILP)

Non optimized 6 Tasks at 40% core utilization at single-rate

i (task id) 1 2 3 4 5 6

Pk (p-state) 1 1 1 1 1 1

∆ti(ms) 3.70 5.82 2.43 5.10 0.92 1.99

Periodi (ms) 50 50 50 50 50 50

MTTF (year) 0.47 0.47 0.46 0.47 0.47 0.47

Energy (Wh) 0.11 0.17 0.07 0.15 0.02 0.05

Total Energy 0.59 Lifetime 1.19

SA Optimized

i (task id) 1 2 3 4 5 6

Pk (p-state) 5 5 5 5 5 5

∆ti (ms) 6.32 9.93 4.15 8.69 1.57 3.40

Periodi (ms) 50 50 50 50 50 50

MTTFi (year) 44.8 44.7 48 44.7 50 48

Energyi (Wh) 0.07 0.11 0.04 0.10 0.01 0.04

Total Energy 0.40 Lifetime 66.97

MILP Optimized

i (task id) 1 2 3 4 5 6

Pk (p-state) 5 5 5 5 5 5

∆ti (ms) 6.32 9.93 4.15 8.69 1.57 3.40

Periodi (ms) 50 50 50 50 50 50

MTTFi (year) 44.8 44.7 48 44.7 50 48

Energyi (Wh) 0.07 0.11 0.04 0.10 0.01 0.04

Total Energy 0.40 Lifetime 66.97

45

Core Utilization

0.3 0.4 0.5 0.6 0.7 0.8

L
if
e

ti
m

e
 I

m
p

ro
v
e

m
e

n
t

(T
im

e
s
)

0

10

20

30

40

50

60

70
Lifetime

Single Rate = 50ms

Single Rate = 20ms

Single Rate = 10ms

Multi Rate = 100ms

Multi Rate = 100ms

Multi Rate = 100ms

Figure 3.4: Core utilization effect - lifetime improvement

46

Table 3.3: Optimization method evaluation for high core utilization single-rate task (SA
and MILP)

Non optimized 6 Tasks at 80% core utilization at single-rate

i (task id) 1 2 3 4 5 6

Pk (p-state) 1 1 1 1 1 1

∆ti(ms) 6.81 5.49 8.37 5.25 7.45 6.51

Periodi (ms) 50 50 50 50 50 50

MTTFi (year) 0.47 0.47 0.46 0.47 0.47 0.47

Energyi (Wh) 0.20 0.16 0.25 0.15 0.22 0.19

Total Energy 1.19 Lifetime 0.59

SA Optimized

i (task id) 1 2 3 4 5 6

Pk (p-state) 2 3 3 3 2 3

∆ti (ms) 7.79 7.18 10.93 6.86 8.52 8.50

Periodi (ms) 50 50 50 50 50 50

MTTFi (year) 0.95 3.06 3.06 3.06 0.95 3.06

Energyi (Wh) 0.18 0.13 0.20 0.13 0.20 0.16

Total Energy 1.027 Lifetime 1.78

MILP Optimized

i (task id) 1 2 3 4 5 6

Pk (p-state) 2 3 3 3 3 2

∆ti (ms) 7.79 7.18 10.93 6.86 9.74 7.44

Periodi (ms) 50 50 50 50 50 50

MTTFi (year) 0.95 3.06 3.06 3.06 3.06 0.954

Energyi (Wh) 0.18 0.13 0.20 0.13 0.18 0.17

Total Energy 1.025 Lifetime 1.83

47

Table 3.4: Optimization method evaluation for low core utilization multi-rate task (SA and
MILP)

Non optimized 6 Tasks at 40% core utilization at multi-rate

task id i 1 2 3 4 5 6

Pk (p-state) 1 1 1 1 1 1

∆ti (ms) 6.93 4.02 4.19 1.91 1.64 3.03

Periodi (ms) 100 100 50 20 20 100

MTTFi (year) 0.47 0.47 0.46 0.47 0.47 0.47

Energyi (Wh) 0.20 0.12 0.25 0.28 0.24 0.09

Total Energy 1.20 Lifetime 1.18

SA Optimized

task id i 1 2 3 4 5 6

Pk (p-state) 5 5 5 5 5 5

∆ti (ms) 11.8 6.58 7.15 3.27 2.79 5.18

MTTFi (year) 44.7 44.8 44.8 48.2 49 48

Energyi (Wh) 0.14 0.08 0.17 0.19 0.16 0.06

Total Energy 0.82 Lifetime 68.02

MILP Optimized

task id i 1 2 3 4 5 6

Pk (p-state) 5 5 5 5 5 5

∆ti (ms) 11.8 6.58 7.15 3.27 2.79 5.18

MTTFi (year) 44.7 44.8 44.8 48.2 49 48

Energyi (Wh) 0.14 0.08 0.17 0.19 0.16 0.06

Total Energy 0.82 Lifetime 68.02

48

Table 3.5: Optimization method evaluation for high core utilization multi-rate task (SA
and MILP)

Non optimized 6 Tasks at 80% core utilization at multi-rate

i (task id) 1 2 3 4 5 6

Pk (p-state) 1 1 1 1 1 1

∆ti (ms) 9.33 7.25 16.38 13.94 10.05 3.30

Periodi (ms) 100 50 100 100 100 20

MTTF (year) 0.47 0.47 0.46 0.47 0.47 0.47

Energy (Wh) 0.27 0.43 0.49 0.41 0.30 0.49

Total Energy 2.42 Lifetime 0.58

SA Optimized

i (task id) 1 2 3 4 5 6

Pk (p-state) 3 4 3 1 2 2

∆ti (ms) 12.18 10.82 21.39 13.94 11.49 3.77

MTTF (year) 3.06 15.2 3.06 0.47 0.95 0.95

Energy (Wh) 0.23 0.16 0.40 0.41 0.27 0.09

Total Energy 2.10 Lifetime 1.36

MILP Optimized

i (task id) 1 2 3 4 5 6

Pk (p-state) 2 2 3 3 2 3

∆ti (ms) 10.66 8.28 21.39 18.21 11.49 4.31

MTTF (year) 0.95 0.95 3.06 3.06 0.95 3.06

Energy (Wh) 0.25 0.19 0.40 0.34 0.27 0.08

Total Energy 2.09 Lifetime 1.65

49

0.3 0.4 0.5 0.6 0.7 0.8

Tasks = 6

0

10

20

30

40

50

60

A
ve
ra
ge

L
if
et
im

e
Im

p
ro
ve
m
en
t
(T

im
es
)

MILP
SA

0.3 0.4 0.5 0.6 0.7 0.8

Tasks = 12

0

10

20

30

40

50

60
MILP
SA

0.3 0.4 0.5 0.6 0.7 0.8

Tasks = 24

0

10

20

30

40

50

60

MILP
SA

Figure 3.5: The comparisons of simulated annealing and mixed-integer linear programming
methods for the lifetime optimization for single-rate with 6, 12, and 24 tasks per one task
set under different core utilizations (0.3 to 0.8 in x-axis)

0.3 0.4 0.5 0.6 0.7 0.8

Tasks = 6

0

10

20

30

40

50

60

A
ve
ra
ge

L
if
et
im

e
Im

p
ro
ve
m
en
t
(T

im
es
)

MILP
SA

0.3 0.4 0.5 0.6 0.7 0.8

Tasks = 12

0

10

20

30

40

50

60

70

MILP
SA

0.3 0.4 0.5 0.6 0.7 0.8

Tasks = 24

0

10

20

30

40

50

60

70

MILP
SA

Figure 3.6: The comparisons of simulated annealing and mixed-integer linear programming
methods for the lifetime optimization for multi-rate with 6, 12, and 24 tasks per one task
set under different core utilizations (0.3 to 0.8 in x-axis)

3.4.1 Experimental setup

The proposed new lifetime task optimization method has been implemented in

Matlab and C++. We applied the recently proposed physics-based EM model and analysis

method for our EM analysis [57]. We use simple mesh-structured power grid for embedded

50

processor. We used the interconnect material is copper and the power grid fails when the

largest voltage drop exceeds 10% of VDD. Hotspot [70] is used for the temperature modeling.

We used 60 different task sets and each taskset has a different number of tasks per one task

set (6 tasks, 12 tasks, and 24 tasks). To generate task sets, we implement a random real-

time task generator based on the core utilization factor (different ratio from 0.3 to 0.8). The

core utilization is defined as the percentage of total execution time in the processor for the

tasks in the real-time system for single- and multi-rate. We notice that core utilization is

not considered as a constraint on our work, implicitly, instead, it was considered implicitly

as it is a function of the task execution times and its given deadlines, which are considered

as constraints. For single rate task sets, the period is set to be 100ms. For multi-rate task

sets, we randomly choose task period among 100ms, 50ms, 20ms, and 10ms. The hyper

period for both cases is 100ms. Based on the period, we randomly generate task execution

time between 0 to its period considering target core utilization. All tasks are independent

with each other. All benchmarks and Matlab environment are running on a 4-core 3.0Ghz

Xeon server with 16GB RAM running Linux. Five p-states pj = {(1.6Ghz, 1.484V),(1.4Ghz,

1.409V), (1.22Ghz, 1.339V), (1.07Ghz, 1.272V), (930Mhz, 1.208V)} are chosen from ACPI

standard and Enhanced Intel Speedstep Technology [69, 72]. Lastly, IBM ILOG CPLEX

optimizer [76] is used for mixed-integer linear programming.

3.4.2 Evaluation of proposed lifetime optimization

First, we evaluate our lifetime optimization method (see Section 3.3) by comparing

its lifetime and energy with non-optimized p-state tasks to the optimized p-state tasks.

Here, we use 6 tasks per one task set and 36 task sets. In the evaluation of our lifetime

51

optimization (SA method), we consider four different task sets (low and high core utilization,

and single and multi-rates) for comparison. Table II and III summarize the results for 40%

and 80% core utilization of single-rate real-time tasks. As we can see, for the low core

utilization tasks, the optimization method finds the lowest-energy p-state solution for each

task and total energy consumption decreases about 67% as each task p-state is selected as

5, which is the lowest-energy DVFS for each task execution. With SA optimization method,

the lifetime is improved to 66.97 years from 1.19 years. However, for the high utilization

case, lifetime improvement will be limited as shown in the 80% utilization case. In this case,

the most of the p-states are moved to the middle range (3 in this case). However, there

is still 85% energy saving and 3X lifetime improvement achieved by the proposed lifetime

optimization method. This indicates the significant improvement can be made for both

energy and reliability from the simple task scheduling.

In addition to single-rate task sets, we also show results for multi-rate task sets

summarized in Table IV and V. Again, depending on the core utilization, the energy and

lifetime can be both improved and the improvement can be significant.

3.4.3 Core utilization effects and trade-off on energy and lifetime

As we can see, the core utilization factor can have significant impacts on the final

results. Fig. 3.3 and Fig. 3.4 show the core utilization versus energy and lifetime for the

SA method. The experiments are simulated with single rate tasks at 50 ms, 20 ms, and

10 ms periods, and three random multi-rate tasks at 100 ms hyper period. In the low core

utilization, the system can run the task under higher p-state as the core utilization is the

ratio of the task execution time and its period. In the higher utilization, energy saving

52

and lifetime improvements decrease as the higher utilization leads to less number of p-state

selection.

3.4.4 Solution quality study and analysis

In this subsection, we compare the both optimization algorithms on a number of

examples. The results are shown in Fig 3.5 and Fig 3.6, which show lifetime improvement for

both single- and multi-rate real-time embedded systems under different core utilization with

different tasksets solved by the MILP method and simulated annealing method respectively.

To show the scalability of our proposed algorithm, we used different tasksets with 6 tasks

per one task set (36 task sets), 12 tasks per one (12 task sets) and 24 tasks per one (12 task

sets). MILP formulation can deliver the optimal results but at high computational costs for

large-scale optimization. For the lower utilization cases, both results from both MILP and

continuous simulated annealing are almost same. But, for the higher utilization and higher

taskset cases, MILP show better results as expected as the optimization becomes more

difficult to reach optimal solutions. These results indicate that the proposed constrained

optimization can lead to near-optimal results in general.

Table 3.6: Elapsed CPU Time to solve the proposed Simulated Annealing and MILP prob-
lems (second per one taskset)

Multi-Rate Task Case Simulated Annealing (P1) MILP (P2)

6 tasks per one taskset (80% core utilization) 3.29 s 1.54 s

12 tasks per one taskset (80% core utilization) 6.18 s 155.40 s

24 tasks per one taskset (80% core utilization) 15.19 s 6003.98 s

53

We remark that it is rather difficult to fairly compare CPU times for these two

optimization methods as the simulated annealing method was running on MATLAB Tool-

box, whereas the MILP was running on commercial CPLEX Optimizer. For the large case,

however, MILP will be very expensive as it basically uses the branch-and-bound algorithm,

which involves constructions of a search tree as seen in Table 3.6. It shows MILP is more

expensive with larger scale tasks and its running time was 6003.98s with 24 tasks, whereas

the simulated annealing method can only take 15.19s to solve the large scale tasks. Due

to the exponential growth in the size of the search trees, MILP method would quickly be-

come computationally expensive [77]. Moreover, due to the nature of the search tree usage,

it results in excessive memory usage [77]. Thus, MILP does not scale very well for large

problem sizes.

3.4.5 Trade-off between performance and lifetime

Finally, we show the Pareto-like trade-off between the performance (core utiliza-

tion) and lifetime obtained from the proposed lifetime optimization as shown in Fig. 3.7.

We assume that the higher utilization implies more tasks can be scheduled and executed in

the given time, thus it can be considered as higher performance in Fig. 3.7. For long-term

reliability, such as electromigration effects, high performance will always lead to the shorter

lifetime and vice versa. But, this is not true for soft error short term reliability, in which low

performance/power lead to much worse reliability [78]. With low utilization, we can have

more room for such performance/power and reliability trade-off. The proposed method can

lead to the best (Pareto-like) trade-off.

54

Performance (Core Utilization)

0.55 0.6 0.65 0.7 0.75 0.8 0.85

L
if
e
ti
m

e
 I
m

p
ro

v
e
m

e
n
t

0

5

10

15

20

25

30

35

40

45
Trade-off between Performance and Lifetime

Figure 3.7: Trade-off between lifetime and performance (each triangle is different set of core
utilization)

3.5 Summary

In this chapter, we have developed new lifetime task optimization techniques for

real-time embedded processors considering the electromigration-induced reliability. The

new approach was based on a recently proposed physics-based electromigration (EM) model

for more accurate EM assessment of a power grid network at the chip level. We applied

the dynamic voltage and frequency scaling (DVFS) (by selecting the performance states or

p-states of the tasks to manage the power) and thus the lifetime of the processor running

different tasks over their periods. We considered both single-rate and multi-rate embedded

systems with preemption. We explored to problem formulations and found the correspond-

ing solutions with different solution qualities and computational costs. Experimental re-

55

sults have shown that for low utilization systems, significant reliability improvement can be

achieved with even smaller power consumption than existing reliability-ignore scheduling

method. We also compared the results from the two formulations and showed that the

solutions given by the constrained nonlinear optimization method is close to the ones given

by the MILP-based method, which is considered to be an optimal solution with regard to

the proposed EM-induced reliability model and assumptions.

56

Chapter 4

Learning-based reliability

management and energy

optimization for mary-core dark

silicon processors

In this chapter, we develop a new energy and lifetime optimization techniques

for emerging dark silicon manycore microprocessors considering both long-term reliability

effects (hard errors) and transient single event upset errors (soft errors). We employ both

dynamic voltage and frequency scaling (DVFS) and dark silicon core state using On/Off

switching action as two control knobs. We develop on two optimization techniques for

improving lifetime and reducing energy. To optimize EM-induced lifetime, we first apply

the adaptive Q-learning based method, which is suitable for dynamic runtime operation as

57

it can provide cost-effective yet good solutions. The second lifetime optimization approach

is the mixed-integer linear programming method, which typically yields better solutions but

at higher computational costs.

4.1 Review of system-level EM and soft error reliability mod-

els

4.1.1 System-level EM reliability model

At the system-level EM reliability, the manycore system will run on different tasks

under different p-states. Let’s assume that we have a set of different time intervals ∆pk

characterized by different workloads or p-state in terms of current density jk and tempera-

ture Tk for a processor or a core. It means that P =
∑n

k=1∆pk is the total execution time.

Each kth workload, if it lasts till imaginary failure, provides time to failure TTFk. Thus

the failure rate at the kth workload, which last ∆pk is λk = 1/TTFk. Then the average

failure rate for the considered set of work loads is

λavg =
n
∑

k=1

∆pk
∑n

j=1∆pj
λk =

n
∑

k=1

∆pk
P

λk (4.1)

As a result, the expected time to failure or average lifetime of the whole processor, TTF is

[67],

MTTF =
1

λavg
=

1

(
∑n

k=1(∆pk
1

MTTFR,k
))/P

(4.2)

whereMTTFR,k is the actual MTTF under the k-th power and temperature settings for ∆pk

period, assuming the chip works through n different power and temperature settings and

P =
∑n

k=1∆pk. Each MTTFR,k will be computed based on the EM models in Section 2.1.

58

To consider a system-level EM reliability on a manycore dark silicon processor,

we use the shortest lifetime among all the cores as the lifetime for all manycore proces-

sors [79]. We want to stress that the proposed techniques are orthogonal to other long-term

reliability effects (such as NBTI, HCI, TDDB for devices and stress and thermal migration

for interconnects). The proposed techniques are orthogonal to other long-term reliability

managements as those long-term reliability effects generally behave similarly or in a similar

trend under their stressing conditions in terms of voltage, current and temperature [41].

Specifically, the power and temperature typically have the same impacts on the NBTI, HCI

and TDDB as those failure effects follows the Arrhenius equation for the relationship be-

tween the failure rate and temperature (which is a function of powers or energy) [80], as a

result, those long-term reliability effects will become worse when temperature increases. As

a result, DVFS based optimization will lead to similar trade-off between long-term reliability

and soft errors.

4.1.2 Soft error reliability model considering DVFS impacts

Soft errors, or single event upset, are defined as the transient faults inside the

logic or memory on a chip, and result in an incorrect system output. The soft errors can

be caused by cosmic radiation, alpha particle decay, and thermal neutrons. Soft error rate

(SER) is the rate in which a chip or system encounters soft errors and typically can be

expressed as the number of failures in the given time. Although there is still a lack of

consensus on the exact soft error rate (SER) of specific chips and systems, it is obvious that

the SER per chip is practically increasing due to the increasing number of components or

cores on a chip. Recently it has been reported that the dynamic voltage frequency scaling

59

(DVFS) method, used for energy saving, negatively affects the system reliability because

the transient fault rate increases and the critical charge decreases by lowering the voltage

and frequency. As a result, new exponential soft error models have been introduced to

account for those effects [81, 82].

For our problem, we employ an existing exponential model considering DVFS

effects on soft error rate, which assumes that the radiation-induced failure follows a Poisson

distribution, so the average soft error rate can be express as terms of operating frequency

f , supply voltage Vdd, where SER0 is the average failure rate at the maximum frequency

fmax and voltage Vmax, (so, fmin < f < fmax , Vmin < V < Vmax) in (4.3) [81].

SER(f, Vdd) = SER0e
d(fmax−f)

(fmax−fmin) (4.3)

where d is an architecture dependent constant, which is the sensitivity of failure rate with

DVFS. We also employ the previous work to model the relationship between operating

frequency and supply voltage to further simplify (4.3) from [83].

f = β
(Vdd − Vth)

2

Vdd

(4.4)

where β is a technology-related constant, and Vth is the threshold voltage. By substitut-

ing (4.4) into (4.3), DVFS-aware SER equation can be derived as the function of only supply

voltage Vdd only [82]:

SER(Vdd) = SER0e

d(fmax−βVdd−2Vth+
V 2
th

Vdd
)

fmax−fmin
(4.5)

60

System-level soft error model for dark silicon manycore processor

To estimate system-level soft error reliability, the sum of failure rate (SOFR)

with architecture vulnerability factor (AVF) method has been widely accepted in the semi-

conductor industry [84, 85] for combining soft error rates from each core to estimate whole

system-level soft error. The AVF is used to express the probability that a visible soft error

will occur with given a raw error event in a core [86]. The previous study shows the SOFR

model can be used to show the whole system soft error rate (SERSY S) [85]:

SERsys = SOFR =
m
∑

i=0

AV Fi × SERi(Vdd) (4.6)

where, m is the total number of cores in a processor and SERi(Vdd) is the soft error rate

for given voltage setting (Vdd) and AV Fi is architecture vulnerability factor for i-th core.

4.1.3 Impact of process technology on soft error reliability model

In the past, soft errors in microprocessor logic have not been greatly concerned as

the number of flops/latches in a microprocessor is much fewer than the number of SRAM

cells and microprocessor single event upset (SEU) rates were lower than SRAM SEU rates.

After 90nm technology, however, microprocessor SEU rates are larger than SRAM SEU rates

because flop protection mechanisms (machine encoding and invariant checking) are more

difficult to implement than simple memory protection mechanisms (parity, error correction

code) [87]. Thus, the SEU in microprocessor will be the dominant factor to system soft error

rate as technology scales to smaller feature size. Table 4.1 shows that the normalized SEU

rate in microprocessor reported from the real silicon data [7]. As technology scales to smaller

61

Table 4.1: Raw SEU Rate Per Microprocessor on different technologies [7]

Technology Normalized SEU rate per microprocessor (over 45nm)

45nm 1X

32nm 1.38X

22nm 1.59X

feature size, SEU rates keep increasing for different technologies. To assess technology

scaling impacts, we used different raw SER values and other parameters (different threshold

voltage (Vth) and supply voltage (Vdd)) in (4.5) based on the experimental data from [7, 88].

The technology scaling impact on our proposed dynamic reliability management method

will be discussed in Subsection 4.3.4.

4.2 New dynamic lifetime and energy optimization methods

for dark silicon

In this section, we formulate our dynamic reliability management (DRM) problem

as maximizing the (EM-induced) lifetime of dark silicon manycore processors by controlling

the number of active cores and the suitable performance state (p-state) subject to the

performance and temperature constraints.

To improve EM-induced lifetime, We first present the Q-learning based solution to

this problem. Then we re-formulate the same problem as mixed-integer linear programming

(MILP) problem. Moreover, for energy saving, we re-formulate our dynamic reliability man-

62

agement (DRM) problem with a Q-learning method as the minimizing energy consumption

considering EM-induced lifetime and soft error-induced lifetime of dark silicon manycore

processors by controlling number of active cores and the suitable performance state (p-state)

subject to the performance and temperature constraints.

4.2.1 Q-learning based formulation and solution for lifetime and energy

optimizations

State and action determination

Q-learning [89] , a reinforcement learning method, performs the control by max-

imizing expected long-term rewards [90]. Q-learning can handle problems with stochastic

transition without any adaptation and is a method to be able to converge close to the

optimal solution of a state-action function for an arbitrary policy [91]. In our problem,

the state (s) consists of the configurations of DVFS and active status (power on/off) for

each core. DVFS uses performance state (p-state) which can represent operating voltage

and frequency. Action (a) is defined as a state transition from one state to the another

state. An action updates the learning agent’s Q-value with the reward/penalty calculation

in the Q-table, also known as the state-action table. Transiting an action in a state makes

the agent with a reward (negative penalty) scoring that is calculated with the quantity of

state-action combination (Q). Q can be defined as a set of states (S) and a set of action

(A) table, S ×A, which is Q-table. Q-table can be updated by a Q-value function which a

long-term penalty function with state and action.

63

Fig. 4.1 shows the proposed learning-based (Q-learning) reliability-aware lifetime/energy

optimization framework (both lifetime and energy optimizations use Q-learning method).

The framework consists of an environment containing the dark silicon manycore micropro-

cessor, and the learning agent which is the Q-learning algorithm. The learning agent obtains

the environment state, calculates the penalty function, and finally decides the next action.

Table 4.2 illustrates an example of state, p-state, and active-core for small 3-core

dark silicon chip. In p-state, 1 is low power mode, 2 is full power mode, and 0 means the

core is turned off. Clearly, state 0 is the state with a minimum number of active cores,

which are in the lowest power modes and state 8 is the state with a maximum number of

active core, which are in the highest power modes.

Table 4.2: An example of control states for a 3-core processor

State p-state active-core State p-state active-core

0 0,0,1 off,off,on 1 0,0,2 off,off,on

2 0,1,1 off,on,on 3 0,1,2 off,on,on

4 0,2,2 off,on,on 5 1,1,1 on,on,on

6 1,1,2 on,on,on 7 1,2,2 on,on,on

8 2,2,2 on,on,on

Q-value function and Q-learning process

In the Q-learning process, one critical issue is to define the Q-value function with

penalty term. Specifically, let’s formally define State i: si = {PSi, CSi). PSi is the set of

64

Figure 4.1: Q-Learning model with reliability-aware dark silicon framework

65

p-state (DVFS) statuses for all the cores. CSi is the set of core status for all cores. Each

state si will determine the total power of the whole chip Power(si), worse case perfor-

mances of all cores Perfmax(si), the maximum temperature incurred Tempmax(si), total

core energy consumption in the whole chip E(si), and the minimum lifetime among cores

EMmin(si), which is defined as the EM-induced lifetime of the chip. SERmin(Si) is defined

as system-level soft error rate (SERsys) of the chip. The total core energy consumption

can be obtained from
∑

k Ek(si) which is k-th core’s core energy, each core’s energy can be

calculated by Powerk(si) × Perfk(si) where Powerk(si) is average k-th core’s power and

Perfk(si) is each k-th core’s performance. An action ai,j , can be viewed as the transition

from state i to state j. Then the penalty function Q determines a penalty and a new state

which is related to the previous state and selected action. Q-value is updated at every step

∆t.

Qt+1(s(t), a(t)) = Qt(s(t), a(t))+

α(t)×
(

PT (t+ 1) + γmin
a

(∀Qt(s(t+ 1), a))
)

−α(t)×Qt(s(t), a(t))

(4.7)

where α(t) is learning rate between 0 and 1 which determines how much newly calculated

Q-value will be applied. For instance, for α is 0, the agent is not learning anything, or for

1, the agent is always considering the most recent state-action. In practice, the constant

learning rate is used (α(t)) = 0.1, ∀t) as the algorithm needs to converge, so it requires a

learning rate close to zero [90]. s(t+ 1) is determined by action a(t), so Qt(s(t+ 1), a) are

all possible actions’ Q-values from future state. So the discount factor γ (between 0 and

1) affects the importance of future penalty. A small discount factor gives more penalties in

66

the near future penalty, and high discount factor accounts more for the far future penalty.

This parameter needs to be tuned experimentally. min(∀Qts(t+ 1), a) can be viewed as the

estimate of the optimal future value. The difference between old Q-value (Qt) and learned

value (PT (t+1)+γmin
a

(∀Qt(s(t+1), a))) updates the new Q-value (Qt+1) with the learning

rate.

The penalty term, (PT (t+1)) in (4.7) at t+1 time, is the penalty obtained after

performing action a(t) in state s(t) on the dark silicon manycore processor. In our problem,

we have three main constraints: total core power, performance deadline of all the tasks, and

temperature upper limit. EM-induced lifetime is what we want to maximize. As a result,

we define the penalty function PT in [37, 34] to consider multiple constraints.

We can build a penalty term (PT) as shown in (4.8) for each EM-induced and

energy optimization. PTE is a penalty term for total core energy, PTEM is a penalty term

for EM-induced lifetime, PTSER is a penalty term for system-level soft error rate, PTpower

for power, PTtemp for temperature, and PTperf for performance deadline of all tasks. Each

penalty term (PTx) is normalized in (4.8). We use the feature scaling method to bring all

values between 0 and 1. For instance PTE = E(t+1)−E(t)
EMax−EMin

for energy related penalty, where

E(t) is the total energy consumption in the previous time t and E(t + 1) is energy of the

system at current t+ 1. For the EM lifetime, PTEM = MTTF (t)−MTTF (t+1)
MTTFMax−MTTFMin

for EM related

penalty where MTTF (t) is the MTTF of the system for EM-induced in the previous time

t and MTTF (t+ 1) is the MTTF of system at current t+ 1. Similarly, for the soft errors,

PTSER = SER(t+1)−SER(t)
SERMax−SERMin

for soft error related penalty where SER(t) is the soft error

rate of the system in the previous time t and SER(t + 1) is the soft error rate of system

67

at current t + 1. Energy and EM terms can be interchangable, so both energy and life

optimizations can be achieved with similar penalty term as seen in (4.8).

PT = PTE + C
∑

x={EM,SER,power,temp,perf}

δxPTx

for energy optimization

PT = PTEM + C
∑

x={E,power,temp,perf}

δxPTx

for EM-induced lifetime optimization

δx =















0 if PTx ≤ Bx +∆x

1 if PTx > Bx +∆x

(4.8)

where δx is a binary function to active (δx = 1) or inactive (δx = 0) of user defined or given

constraint bounds, Bpower, Bperf , and Btemp in the penalty term. They are also normalized

power, performance, temperature bounds respectively. Each ∆x is the difference between

each bound and average penalty (PT) for power, performance, and temperature. ∆x is

negative if the system violates the given constraint, otherwise, it is positive and the system

is bounded and performs well. Therefore, if the system violated the user constraints in the

past, then the penalty can be quite significant (due to large value for constant C in (4.8)).

Our learning-based lifetime/energy optimization algorithm steps can be explained

as follows: the input is an initial state set for each core with p-state and core status and

output is the selected p-state and core states. First, all the Q-values in the Q-table are

initialized to zero. The current state, denoted as s(t), finds an action a(t) with the lowest

Qt in (4.7) and switches to next state with corresponding p-states and active cores. For

68

every step, EM lifetime, soft error rate, performance, temperature, and power are evaluated

and thus, the whole environment can be updated. Then, it calculates the new corresponding

penalty PT (t+ 1) in (4.8) and Qt+1 can be updated (learning process). After the update,

the current state is discarded in exchange for a new action and subsequent iterations yield

more updates with new states. Finally, when all the Q-values changes are less than a certain

threshold, the best policy will be chosen.

4.2.2 MILP based formulation and solution for lifetime optimization

The second approach for lifetime optimization that we apply is the mixed-integer

linear programming (MILP) method. MILP formulation of the performed constrained life-

time optimization method is more straightforward than the Q-learning based method. MILP

also deliver better results than Q-learning based method as shown in this work. However,

in general, MILP has higher computation costs than the Q-learning method. Also, MILP

solver is very heavier, so it is not suitable for online management method. Hence we can

use MILP solution to measure the solution quality of the Q-learning based method.

We know that the MTTF of a core (or lifetime) stressed by different periods with

different temperature can be approximated by formula (4.2). For the manycore processor,

we assume that the MTTF of the overall chip is determined by the minimum MTTF of all

cores [79]. Let’s define the lifetime of a core k for a given state si as L(k, si), which will be

built as a look-up first. Then the lifetime optimization problem for dark silicon manycore

processor can be formulated as the following MILP problem:

69

max
i

min
k

∑

i

∑

k

bick L(k, si)

subject to ∀i:
∑

i

bi = 1, ∀k:
∑

k

ck = 1,

∑

k

Powerk ≤ Bpower, T empmax ≤ Btemp, Perfmax ≤ Bperf

(4.9)

where Powerk is k-th normalized core power, Tempmax is maximum normalized tempera-

ture among cores, and Perfmax is maximum normalized performance deadlines among cores

(or all the tasks). Bconst, Bconst, and Bconst are normalized performance, temperature, and

power bounds allowed. Note that a selection for a chip lifetime can be denoted by a boolean

variable bk, which equals to 1 if the k-th core’s lifetime is selected and 0 otherwise. Simi-

larly, a state selection for a core is also denoted by a Boolean variable ci, which equals to 1

if state si is selected for the chip and 0 otherwise.

4.2.3 Implementation of the dark silicon evaluation platform

To evaluate the proposed DRM algorithms, we implement a simulation-based plat-

form for dark silicon processor. The platform is shown in Fig. 4.1. We first describe the

major component models of the framework such as microarchitecture, power estimation,

thermal and reliability models. Our proposed framework uses Sniper as a microarchitec-

ture model, which is an accurate and fast application-level interval-based microarchitecture

simulation [92]. The interval simulation is a recently proposed multi/manycore simulation

framework at a higher level of abstraction which is faster than cycle-accurate full-system

simulation. The interval simulation uses mechanistic analytical model, which is constructed

from the mechanism of a superscalar processor core. The cycle-accurate full-system simu-

70

lator, such as gem5 (full-system mode) [93], GEMS [94], MARSSx86 [95] and SimFlex [96]

can run both application and operating system (OS). These frameworks have the merit of

having an accurate evaluation of I/O activities and OS extensive kernel function. However,

these full-time simulations are extremely slow and not very suitable for our framework be-

cause they rely on the existing OS systems, which currently do not support manycore and

dark silicon architectures in their simulators [97]. Thus, to support dark silicon and may-

core processor, we choose application-level Sniper simulator. This Sniper interval-based

model is accurately matching well with the Intel x86 multi-core architecture [92]. PAR-

SEC [98] and SPLASH-2 [99] benchmarks are used for our platform workloads. PARSEC

benchmark is recently released multithreaded benchmarks, which provide an up-to-date

collection of modern workloads for multi/manycore systems, and SPLASH-2 has been used

many multi/manycore research for a long time. We use both workloads to evaluate our

proposed framework and algorithm in Section 4.3.

For the power estimation, we use McPAT (multicore power, area, and timing),

which is a recently proposed full integration modeling framework. McPAT can provide

dynamic and static, even short-circuit power dissipation and provides multi-threaded and

multi-core processor models. For the thermal model, we use HotSpot to accurately charac-

terize the thermal traces from the given multithreaded task run in each core [70]. To enable

the dark silicon feature, the floor plan and power trace are dynamically controlled by the

dark silicon DRM module in Fig. 4.1

As shown in Fig. 4.1, once the cycle per instruction (CPI) stacks and power/energy

traces are achieved in the microarchitecture model with the power model, the thermal model

71

can generate thermal traces for given task run. With each core’s power trace, thermal trace,

core voltage, core frequency, and active cores, we can perform EM and soft-error reliability

effects analysis and the system-level assessment for microprocessor lifetime based on the

reliability models. Fig. 4.2(a) and 4.2(b) show the results from the proposed framework,

which are the power traces, thermal measurement, and EM lifetime on a 64-core dark silicon

chip. There are 20-core-enabled at the normal DVFS setting (2.0Ghz, 1.2V) and 64 multi-

threaded tasks (16x CHOLESKYs, 16x RADIXs, 16x RAYTRACEs, 16x VOLRENDs) on a

64-core dark silicon chip. Fig. 4.2 only shows the core area. Power budgeting is not applied

here.

We remark that the soft error affects the short term hardware functionality and

it has a different way to impact the reliability of the circuits than the long-term reliability.

However, both effects hurt the reliability of a chip and we think it is necessary to consider

both as the power/energy and performance have contradicting impacts on them. The trade-

off has to be found among the robustness, costs and performance of the many-core processor

systems to mitigate the both soft and hard reliability effects.

In our formulation, both soft errors and EM-induced reliability are modeled in

terms of system soft error rates (SER) and mean time to failure (MTTF) respectively and

parameterized by the chip and system parameters such as VDD/frequency, temperature, p-

state, etc. As shown in (4.7) and (4.8). The SER and MTTF will contribute the constraints

of the optimization in terms of penalty terms. As seen in Fig. 4.1, our framework imple-

mented two reliability models, such as EM [57] for long-term reliability and DVFS-aware

soft-error effects [81, 82, 85] for short-term reliability. Each reliability has been assessed

72

0
10

20
30

40
50

60
70

0

50

100

150

200

250
0

2

4

6

8

10

12

CoreTime

P
o
w
e
r

(a)

Core_0

Core_1

Core_2

Core_3

Core_4

Core_5

Core_6

Core_7

Core_8

Core_9

Core_10

Core_11

Core_12

Core_13

Core_14

Core_15

Core_16

Core_17

Core_18

Core_19

Core_20

Core_21

Core_22

Core_23

Core_24

Core_25

Core_26

Core_27

Core_28

Core_29

Core_30

Core_31

Core_32

Core_33

Core_34

Core_35

Core_36

Core_37

Core_38

Core_39

Core_40

Core_41

Core_42

Core_43

Core_44

Core_45

Core_46

Core_47

Core_48

Core_49

Core_50

Core_51

Core_52

Core_53

Core_54

Core_55

Core_56

Core_57

Core_58

Core_59

Core_60

Core_61

Core_62

Core_63

334.53

333.28

332.04

330.80

329.56

328.32

327.08

326.26

11

11

58.8

76.7

15.1

8.81

20.8

19.6

10.6

11

20.6

24

11.2

11.1

20.6

24

11.2

11.1

24

24.5

10.6

11

24.4

24.5

(b)

Figure 4.2: (a) SPLASH2 benchmark 64 multithreaded tasks power traces with 44 cores
off(b) Thermal (color:degree) and EM lifetime (number:yrs) analysis on 64 cores

73

for DRM module to provide constraints in our Q-learning. We also stress that DVFS and

task scheduling may not be the most effective way to mitigate the soft errors and other

techniques are required when the soft errors are high due to the conflicting requirement

from hard reliability.

4.2.4 Time complexity analysis

It has been proved that MILP problems are NP hard. Though branch and bound

techniques can be used to solve the problem, the time complexity is not easy to analyze

as we use commercial CPLEX as the solver. For the Q-learning, each value iteration can

be performed in O(|A||S|2) steps, or faster if there is sparsity in the transition function

(where A is a number of actions and S is a number of states). In practice, policy iteration

converges in fewer iterations than value iteration, and there is no known tight worst-case

bound available [100]. As a result, we report the running CPU times of Q-learning and

MILP in our experiments with more p-states in Table 4.3 in Section 4.3 to compare the

time complexities of the two methods. We further remark that it is rather difficult to fairly

compare CPU times for these two optimization methods as the Q-learning was running

on Python, whereas the MILP was running on commercial CPLEX Optimizer. We only

measure solving overhead time for Q-learning and MILP. Nevertheless, the numerical results

still show that MILP has much higher computation cost than the Q-learning method.

4.2.5 Practical application of the proposed DRM with reliability models

Currently, it is very hard to build on-chip EM sensor to directly measure time to

EM failure of a core for its current temperature and power consumption (Although we have

74

made some early efforts on on-chip EM sensors recently [101]). But at the full chip level,

as far as power grid is concerned, EM can be measured by the voltage drops in power grids

as we discussed in Section 2.1. In our many-core dark silicon simulation framework, the

EM-induced time to failure (TTF) assessment technique at circuit level discussed in this

chapter (which was proposed in [57, 59]) was used for each core.

For practical application of proposed reliability management method for a real

chip, such EM and SER assessment techniques need to know the detailed of the power grid

networks and power consumptions of gates or function modules for some real workloads.

As a result, it can be built when the chip was designed and then power grid voltage drop

sensors (for EM measurement) or look-up table/other behavior models can be constructed

for time to failure as the function of temperature and power inputs, which can be measured

or estimated accurately. The accuracy of the reliability assessments with respect to the

real silicon data need to be calibrated in the accelerated testing conditions for real chip

under practical workloads, which will go beyond the scope of this works and can be future

research. We further stress that the on-chip temperature and the powers, which actually

can be measured or accurately predicted. For instance, Intel’s multi-core CPU has the one

thermal sensor per core [102]. The power or functional block of the cores can be measured

or estimated accurately using the performance counters [103]. Then our models proposed

in this work can be applied to core-level reliability management.

We notice that the learning-based DVFS managements have been used before to

deal with difficulty of controlling the dynamics of the multi/many core processors [104, 105].

Recently, reinforcement learning have been successfully applied for DVFS management of

75

multi/many core systems [35, 33, 106]. These approaches employ a simple type of reinforce-

ment learning (Q-learning) because this method has a relatively low overhead in terms of

execution time and memory foot print. In this work, we assume the similar light scheduling

overheads or time costs by the Q-learning methods. We have added the execution time for

the proposed Q-learning method in Section 4.3.5.

Furthermore, as the state space of many core systems become large, we can explore

overhead-aware scheduling method [106], the discrete lookup table method [107, 108] or

pretraining based method [33] during the Q-learning to avoid expensive Q-value updating

operations. In our work, we use lookup table based method.

4.3 Numerical results and discussions

4.3.1 Experimental setup

The proposed new energy optimization algorithm in the dark silicon framework

has been implemented in Python 2.7.9 with the numerical libraries (Numpy 1.9.2 and Scipy

0.15.1). For dark silicon framework, we modified the architectural simulator (Sniper 6.1),

power estimator (McPAT 1.0.32), and thermal simulator (HotSpot 5.02 [70]) to estimate

EM-induced lifetime and system-level soft error rate on top of the new physics-based EM

model [57] and DVFS-aware soft error model [81, 82, 85]. In the proposed framework as

shown in Fig 4.1, each simulator module is connected with a plugin connector, so that

one simulator’s result can dynamically feed the other’s inputs. The learning agent and

Q-learning method have been implemented in Python 2.7.9 with extensive solutions from

Python Numpy Extension.

76

Our energy optimization method is validated with a 64-core processor on the PAR-

SEC and SPLASH-2 multi-threaded benchmarks. A small number of tasks with PARSEC

(1 BLACKSCHOLES, 1 CANNEAL, 1 FREQMINE, and 1 VIPS), and for a large number

of tasks with SPLASH-2 (16 CHOLESKYs, 16 RADIXs, 16 RAYTRACEs, 16 VOLRENDs)

are used with the same 64 threads.

We chose two performance states (p-state) with the clustered DVFS [109], which

have been employed to reduce the simulation time with small solution quality degradation

due to the large number of cores in our experiment. To show that our method can find the

lowest possible energy optimization, we compare our results with the global DVFS method,

in which all active cores have the same p-state.

The full power mode (2.0GHz, 1.2V) and the low power mode (1.0GHz, 0.9V) have

been set for our framework. For the soft error model, we use system-level soft error rates,

the architecture constant (β = 1.5 × 1010 and d = 2), AVF (a constant = 0.5) for each

core and the threshold voltage (Vth = 0.9) have been obtained from [85] and Enhanced Intel

Speedstep Technology [69] with 45nm technology.

4.3.2 Evaluation of the proposed Q-Learning lifetime optimization method

First, we evaluate our learning-based DRM method (see Section 4.2) by show-

ing lifetime improvements with different sets of power budgets and performance deadline.

Fig. 4.3 shows the lifetime improvements given power budget and performance deadline for

a small and large task set on 64-core dark silicon chip. As we can see in 4.3(a), for the

small task set case our method finds relatively high lifetime improvement (87.9 yrs) as the

task loads are small and more cores can be in low power mode or turned off (dark silicon)

77

with the given power budget and performance deadline. In small performance deadline

(42ms), there is still chance to improve lifetime (11.2 yrs) in the high power budgets (200-

350W). However, for the large task set case, lifetime improvement will be limited as shown

in Fig. 4.3(b). The highest lifetime improvement is 28 yrs with highest power budget, and

there are still 10.5 yrs lifetime improvement in the middle range of power budget and per-

formance deadline (40ms-80ms). This indicates significant improvement can be made for

both small and large tasks with given and power budget and performance deadline.

Fig. 4.4 and Fig. 4.5 show the power consumptions and performances from our

proposed DRM method and it indicates all the results can meet the given power budgets

and performance deadline. Furthermore, no violations were found in either small or large

task set results.

4.3.3 Accuracy and convergence rate of proposed Q-learning DRM method

Now we show some results from our second method for lifetime optimization

method, MILP solver. To see the accuracy, we use MILP formulation (4.9) with the given

solver, which is limited to post-validation as MILP method is very expensive to solve for

large-scale problem. Nevertheless, it can be used to show the quality of the solution obtained

from the learning-based DRM method.

A comparison of the Q-learning DRMmethod and the MILP method shows lifetime

improvement for both small and large cases with results shown in Fig. 4.6. MILP method

can deliver better results but with higher computational costs for large scale optimization.

To see the accuracy comparison, 100 iterative tests are carried out for each case. For small

and large cases in Fig. 4.6, our proposed Q-learning DRMmethod can achieve relatively high

78

100 150 200 250 300 350
Total Core Power Budget (W)

0

50

100

150

L
if
et
im

e
Im

p
ro
v
em

en
t

Performance deadline = 32ms
Performance deadline = 42ms
Performance deadline = 53ms
Performance deadline = 107ms

(a)

100 150 200 250 300 350

Total Core Power Budget (W)

0

5

10

15

L
if
et
im

e
Im

p
ro
v
em

en
t

Performance deadline = 16ms
Performance deadline = 40ms
Performance deadline = 80ms
Perofrmance deadline = 160ms

(b)

Figure 4.3: Lifetime improvements given power budget and performance deadline on 64-core
dark silicon chip (a) PARSEC small task set (b) SPLASH-2 large task set

79

200 250 300 350

P
er
fo
rm

an
ce

(m
s)

21

23

25

27

29

32

34

36

Deadline = 32.0ms
(4 heavy tasks)

200 250 300 350

41.9

42.3

42.7

43.2

Deadline = 42.7ms
(4 heavy tasks)

250 300 350
0

8.0

16.0

24.1

32.1

40.2

48.2

Deadline = 40.2ms
(64 light tasks)

Power Budget (W)
200 250 300 350

0

16

32.1

48.2

64.3

80.4

96.5

Deadline = 80.4ms
(64 light tasks)

Performance Constraint Performance Constraint

Performance Constraint Performance Constraint

Figure 4.4: Q-learning result for performance deadline from (a,b) PARSEC tasks and light
(c,d) SPLASH-2 tasks in 64-core dark silicon chip

80

53.4 106.9

T
ot
al

C
or
e
P
ow

er
C
on

os
u
m
p
ti
on

0

50

100

150

Power Budget = 150W
4 heavy tasks

32.0 42.7 53.4 106.9
0

50

100

150

200

Power Budget = 200W
4 heavy tasks

84.5 160.9
0

50

100

150

200

Power Budget = 200W
64 light tasks

Performance Deadline (ms)
40.2 80.4 160.9

0

100

200

Power Budget = 250W
64 light tasks

Power Constraint Power Constraint

Power Constraint
Power Constraint

Figure 4.5: Q-learning result for power constraints from heavy 4 PARSEC tasks and light
64 SPLASH-2 tasks in 64-core dark silicon chip

81

0 20 40 60 80 100

Number of test

87

87.5

88

O
p
ti
m
iz
ed

li
fe
ti
m
e

Heavy 4 tasks

Q-Learning DRM

MILP post-validation

(a)

0 20 40 60 80 100

Number of test

0

5

10

15

O
p
ti
m
iz
ed

li
fe
ti
m
e

Light 64 tasks

Q-Learning DRM
MILP post-validation

(b)

Figure 4.6: Post-validation with MILP for Q-learning accuracy (a) 4 heavy task PARSEC
workloads (b) 64 light tasks SPLASH-2 workloads

82

accuracy, 95% and 94% respectively. It also shows that system violation can be effectively

prevented by our proposed penalty function (4.8).

4.3.4 Hard and soft errors in dark silicon manycore processor

For the both reliability effects, we show the different impacts that power con-

sumption has on both EM and soft error related reliability effects. We try to observe two

reliability effects (EM-induced lifetime and system-level soft error rate) on the 64-core dark

silicon manycore processor with the different task sets. Fig. 4.7 shows how two failure

rates (1/MTTFEM and SERsys) change over power determined by different DVFS settings

when 12 cores are turned on with a 64 thread multi-threaded benchmarks. As we can see,

for long-term hard reliability (electromigration effect), high power leads to short lifetime.

However, for short-term/transient soft errors, low power will lead to much worse reliability

issues. As a result, the system level optimization subject to both reliability constraints is

no longer simple trade-off between performance/power versus reliability effects.

Fig. 4.8 shows that our DRMmethod in the different process technologies can affect

to our soft error reliability model. Also, as we discussed in Subsection 4.1.3, technology

scaling can be impacted on soft error rate and its constraint. Smaller technology has higher

soft error rate. As we seen in Fig. 4.8, with smaller technology nodes, our DRM method

under loose EM (5 years) and loose SER (0.6) constraints finds less energy saving as smaller

technology can affect higher soft error rate for 32nm and 22nm cases (case D and E) than

45nm cases (case C). However, our method still can find better energy saving point.

83

200 250 300

Power consmption (W)

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

1
/E

M
li
fe
ti
m
e
a
n
d
S
E
R

sy
s

EM
Soft error

(a)

200 250 300

Power consumption (W)

0

0.1

0.2

0.3

0.4

N
or
m
al
iz
ed

1
/E

M
li
fe
ti
m
e
an

d
S
E
R

sy
s

EM

Soft error

(b)

Figure 4.7: Comparison between EM-induced lifetime and system-level soft error rate at
different powers (by different DVFS configurations) on (a) PARSEC small tasks and (b)
SPLASH-2 tasks

84

Figure 4.8: Impact of different process technologies on system-level soft error rate, from
left bar, case A) Global DVFS, case B) our proposed DRM with only EM constraint, our
proposed DRMs with both EM and SER constraints of case C) 45nm, case D) 32nm, and
case E) 22nm

4.3.5 Evaluation of proposed Q-Learning based energy optimization method

To evaluate the proposed Q-learning based energy optimization method in Section

4.2, we show the total energy consumption with the different sets of EM-induced lifetime

constraint, system-level soft error rate constraint, power budgets, and performance dead-

lines. Energy optimization results for a small task set and a large task set cases are shown

in Fig. 4.9 and Fig. 4.10, respectively. Each figure includes two groups with loose and tight

EM, where the left 4 bars are loose EM constraints and the right 4 bars are tight EM

85

constraints. In each group, the third bar is tight soft error constraints and the fourth bar

is loose soft error constraints. As we can see, if we consider only EM constraints for the

different EM lifetimes, power budgets and performance deadlines for small task set case,

the proposed method finds relatively high energy saving with both large and small perfor-

mance deadlines (see Fig. 4.9(a) and Fig. 4.9(b)) than the global DVFS method because

more cores can be in low power mode or turned off (dark silicon constraint) with the given

power budgets and performance deadlines. When the loose soft error constraint is further

considered (SERsys = 0.6), our proposed method can still find good energy savings (similar

or slightly higher than the method considering only EM constraint as shown in Fig. 4.9 and

Fig. 4.10).

However, for the tight soft error constraint (SERsys = 0.15) with tight EM con-

straint cases, our method violates the given EM constraints because soft errors and EM

constraints have a contradictory relationship as seen in Fig. 4.7. For the large task set

case in Fig. 4.10, more violations and less energy savings are observed. Those violations

are caused by the higher task utilization of active cores, tight EM lifetime constraints, and

power budget. However, our method can still find relatively good energy savings with the

loose soft error constraints and tight EM constraints even at the large task sets. Thus,

with exception to the violation cases (where both EM and soft error constraints are tight),

our proposed method can find decent energy savings satisfying both EM and soft errors

reliability constraints.

In Fig. 4.11, we further show the EM (a) and soft error (b) constrain violation

cases under different EM and soft error constraints and power constraints (case 1,2,3,4 for

86

10 20

EM Constraint (yrs)

0

2

4

6

8

10

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(J
)

Deadline=64.1ms
Power budget=200W
PARSEC small tasks

Gloabl DVFS
Proposed Method with EM
Proposed Method with EM and tight SER (0.15)
Proposed Method with EM and loose SER (0.6)

Constrain violation
due to tight EM or
tight SER bound

(a)

10 20

EM Constraint (yrs)

0

2

4

6

8

10

E
n
er
gy

C
on

su
m
p
ti
on

(J
) Deadline=42.7ms

Power budget=200W
PARSEC small tasks

Global DVFS
Proposed Method with EM
Proposed Method with EM and tight SER (0.15)
Proposed Method with EM and loose SER (0.6)

Constrain violation
due to tight EM or tight SER bound

(b)

Figure 4.9: Energy optimization results (Global DVFS, proposed with EM, and
with/without tight and loose soft error constraint from small task set on PARSEC bench-
marks (different performance deadlines in (a) and (b))

87

3 8
EM Constraint (yrs)

0

2

4

6

8

10

12

14

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(J
)

Deadline=40.2ms
Power budget=300W
SPLASH-2 large tasks

Global DVFS
Proposed Method with EM
Proposed Method with EM and tight SER (0.15)
Proposed Method with EM and loose SER (0.6)

Constrain violation
due to tight EM or tight SER bound

(a)

8 20
EM Constraint (yrs)

0

2

4

6

8

10

12

E
n
er
g
y
C
on

su
m
p
ti
on

(J
)

Deadline=40.2ms
Power budget=350W
SPLASH-2 large tasks

Global DVFS
Proposed Method with EM
Proposed Method with EM and tight SER (0.15)
Proposed Method with EM and loose SER (0.6)

Constrain violation
due to tight EM or tight SER bound

(b)

Figure 4.10: Energy optimization results (Global DVFS, proposed with EM, and
with/without tight and loose soft error constraint from large task set on SPLASH-2 bench-
marks (different power budgets in (a) and (b))

88

small task sets, 5,6,7,8 for large task sets). In all the case, (1-8), the soft error constraints

are all tight. For case 2,4,8 cases, the EM constraints are tight. First, as we can see, both

EMs and soft errors are violated in cases 6 and 8 due to the tight soft error constraint with

large task sets. For cases 2 and 4, only EMs are violated due to both tight EM and soft

error constraints with small task sets. More interesting is in case 5 where EM is violated

even the EM constraint is not tight. The reason is that we have very small power budget

(tight power constraint). For case 7, which is large case, the soft error is very tight. As a

result, soft error constraint is still violated even with large power budget. Therefore, as we

can see, for energy-efficient computing on many-core systems with power constraints (dark

silicon), and competing hard and soft error constraints, the results are no longer simple

trade-off among different factors, and instead, depend on those factors in a complicated

way. In other words, under tightened power and performance constraints, we cannot satisfy

both hard and soft errors at the same time and some other soft-error mitigation techniques

become necessary in this case.

The proposed Q-learning method converges around 8% of explorations out of all

possible state-action solution space as shown in Fig. 4.12. It also shows that system violation

can be effectively prevented by our proposed penalty function (4.8).

To show the scalability of our proposed algorithm, we have added one more per-

formance state on 64-core dark silicon chip with 64 tasks SPLASH-2 multi-threaded bench-

mark. The full power mode (2.0GHz, 1.2V) and the low power mode (1.0GHz, 0.9V), and

very low power mode (800MHz, 0.7V) have been set for our framework. We compare two

different numbers of p-states, case 1 has two p-states (full power and low power) and dark

89

1 2 3 4 5 6 7 8

Test Cases

0

10

20

E
M

li
fe
ti
m
e
(y
rs
)

EM lifetime constraints
EM lifetime results

(a)

1 2 3 4 5 6 7 8

Test Cases

0

0.05

0.1

0.15

0.2

S
E
R

sy
s

Soft error rate
constraint bound

(b)

Figure 4.11: Constraint violation cases

90

0 0.05 0.1 0.15 0.2

Normalized explorations

0

10

20

30

40

L
if
et
im

e

Constraints Violations

Converged

Figure 4.12: Convergence rate of proposed DRM method with EM-induced lifetime con-
straint in 64-core Dark Silicon (SPLASH-2 Tasks)

silicon states, and case 2 has three p-states (full power, low power, very low power) and dark

silicon states. Due to very low power mode, we choose relatively loose constraints (deadline

= 12ms, power budget = 350W, EM = 5 years, SER = 0.6). As seen in Fig. 4.13(a), our

proposed algorithm can find low energy consumption with lower p-state cases. We chose

three performance states (p-state) with the clustered DVFS [109], which have been em-

ployed to reduce the simulation time with small solution quality degradation due to a large

number of cores in our experiment, so, the case 1 is 150 states, and the case 3 is 192 states.

As seen in 4.13(b), case 3 has 28% more states, but the iteration requires only 6.58% more

steps. Table 4.3 showed elapsed CPU time to solve the proposed Q-learning and MILP

problem for each case.

Q-learning elapsed CPU time was obtained on iPython 5.1.0 with using only single

core of Intel Xeon E5 system (clock 2.3 GHz) platform. Moreover, in order to show more

91

higher scalability of the proposed algorithm, we increase p-states to five different ones for

two large cases (128-core and 256-core), and their voltage and frequency (V ,f) sets are

(2.0GHz, 1.2V), (1.6GHz, 1.1V), (1.2GHz, 1.0V), (1.0GHz, 0.9V), and (800MHz, 0.7V) on

64 tasks SPLASH-2 multi-threaded benchmark. We used 16-core as one cluster for the

clustered DVFS. Also, we use 32-core as one cluster for dark silicon states in 128-core case

and 64-core in 256-core case, which have been employed for a very large number of cores

in our experiment. Table 4.4 shows the elapsed CPU time results for solving the proposed

Q-learning result and energy savings over global DVFS. 128-core with 5 p-states (case 3)

has 775 different states, which is 516% more states than case 1, but the iteration requires

only 406% more steps. 256-core with 5 p-states (case 4) has 7160 states, which is 4773%

more states than case 1, but only 4081% more steps are required. Thus, our proposed DRM

can be a scalable solution for large number of cores and higher p-states cases since iteration

steps and CPU times are close to increase linearly with respect to the total number of states.

Both large cases also can find decent energy savings. Due to extremely high cost of MILP

method for large-case (128-core and 256-core with 5 p-states), the elapsed CPU times of

Q-learning method have been only shown in Table 4.4.

Table 4.3: Elapsed CPU Time to solve the proposed Q-learning and MILP problems

64 tasks in 64-core dark silicon Q-learning MILP

(total states) time (s)

Case 1 - 2 p-states (150 states) 0.172 s 9.1 s

Case 2 - 3 p-states (192 states) 0.183 s 88.08 s

92

(a)

(b)

Figure 4.13: (a) The scalability analysis for our proposed DRM (case 1: two p-states with
dark silicon, case 2: three p-states with dark silicon (b) Total average iteration number for
both two cases

93

Table 4.4: Large-scale experiments with five p-state on 128-core and 256-core

number of core with 64 tasks Q-learning

with 5 p-states (total states) time (s)

Case 3 - 128-core (775 states) 0.699 s

Case 4 - 256-core (7160 states) 7.02 s

4.4 Summary

In this chapter, we developed a new energy and lifetime optimization technique for

emerging dark silicon manycore microprocessors considering hard and soft errors. The new

approach was based on a newly proposed physics-based electromigration (EM) reliability

model to predict the EM reliability of full-chip power grid networks for hard error. DVFS-

aware soft-error rate (SER) model and the Sum Of the Failure Rates (SOFR) method

were employed for system-level soft-error model, which has been widely used to estimate

microprocessor level soft errors. We employed both dynamic voltage and frequency scaling

(DVFS) and dark silicon core state using On/Off pulsing action as the two control knobs.

The impact on DVFS for hard and soft errors was investigated.

We focused on two optimization techniques for improving lifetime and reducing

energy. To optimize lifetime, we first applied the adaptive Q-learning based method, which

was suitable for dynamic runtime operation as it was able to provide cost-effective yet

good solutions. The second lifetime optimization approach was the mixed-integer linear

94

programming (MILP) method, which typically yields better solutions but at higher com-

putational costs. To optimize the energy of a dark silicon chip, we applied the Q-learning

reinforcement learning method, which was suitable for our reliability management for the

energy optimization considering hard and soft errors. Experimental results on a 64-core

dark silicon chip showed that proposed methods work well for performance and lifetime

optimizations considering the both soft and hard reliability constraints.

95

Chapter 5

Recovery-aware dynamic reliability

management for near-threshold

dark silicon processors

This chapter presents a new dynamic reliability management (DRM) techniques

at the system level for emerging low power dark silicon manycore microprocessors operat-

ing in near-threshold region. We mainly consider the electromigration (EM) failures with

considering recovery effects. To leverage the EM recovery effects, which was ignored in

the past, at the system-level, we develop a new equivalent DC current model to consider

recovery effects for general time-varying current waveforms so that existing compact EM

model can be applied. The new recovery EM model can allow EM-induced lifetime to be

better managed at the system level.

96

5.1 Recovery-aware Electromigration modeling at system lev-

els

5.1.1 New equivalent DC current based modeling for EM recovery effects

For EM failures, one of the important phenomenon is that the EM-induced stress

can go down when the stressing current becomes small. This effect is called “EM recovery

effect” as it represents important transient effects due to time-varying currents. Fig. 5.1

shows the EM-induced stress changes over time over a periodic current pulse. As we can

see the stress can go down significantly. The net effect for such recovery effect is that the

lifetime of wire due to EM can be extended significantly as it will take longer time for the

stress to reach to the critical stress over time.

However, EM recovery effects were ignored completely in the existing EM models

as most of those models assume constant current or current density. To mitigate this

problem, a physics-based EM recovery model was proposed recently [110, 111] by obtaining

an analytical solution of the Korhonen’s equation describing the stress evolution kinetics

of EM effects. Although the accuracy of this model is high, it is still too complicated for

practical use.

For practical chip design, EM assessment and signoff still uses simple EM models

like Black’s model [60] or recently proposed, more accurate EM model in (2.2), which takes

constant current and temperature as inputs. In order to consider practical no-DC currents,

a simple time-varying equivalent DC current is computed as following,

jtrans,EM,eff =
1

P
(

∫ P

0
j+(t)dt− γ

∫ P

0
|j−|(t)dt); (5.1)

97

Normalized Time
0 2 4 6 8 10

C
u
rr
en
t
D
en
si
ty

(A
/m

2
)

×109

-1

0

1

2

3

4

5

6

(a)

Normalized Time
0 2 4 6 8 10

S
tr
es
s
(P

a)

×10
8

0

1

2

3

4

5

6

(b)

Figure 5.1: Stress evolution caused by periodical current density

98

where j+(t) and j−(t) are the current densities of the positive and negative phases of the

bipolar current, γ is the EM recovery factor, P is the period of the current waveform. When

the current density is unidirectional, jtrans,EM,eff essentially the time averaged current

density. However, using the effective current formula in (5.1) will create a number of

problems [112]. First of all, the recovery factor depends on the specific current waveforms

which is not constant. Also, it ignores important transient effects such as the recovery and

peak stress effects. Fig. 5.2 shows the stress evolutions over time driven by two current

waveforms, the actual one and the time-varying equivalent DC current. As we can see,

the peak stress due to the actual current waveform can exceed the critical stress while the

average current never leads to void nucleation (wire is immortal).

Normalized Time
0 2 4 6 8 10

S
tr
es
s
(P

a)

×108

0

1

2

3

4

5

6

real stress
traditional DC equvilent stress

Critical stress

Figure 5.2: Stress evolutions caused by actual currents and traditional effective DC current

In order to solve the problems of these models, we propose a new and novel equiv-

alent DC current method to consider the transient EM recovery effects. The new model

99

is based on first-principle based numerical analysis of EM effects. Here we use nucleation

phase to compute the time to failure of a wire as a demonstration of this proposed method.

The idea is that for a given EM model, the DC equivalent current will lead to the same

time to failure (TTF) computed from the detailed numerical EM analysis of stress diffusion

equation. This is better illustrated in Fig. 5.3(b) in which the periodic current density and

a DC current gives the same nucleation time tnuc. Unlike the traditional method which

could ignore the case that the peak stress exceeds the critical stress but the equivalent

current density never leads to void nucleation, so the transient effects are explicitly taken

into account in this method.

That model works well for standard periodic square waveforms with one high

current density (j1) and one low current density (j2). As shown in Fig. 5.3(a), j1, j2,

period (P) and duty cycle(D) are used as the variables in the model. Also we find that the

temperature (T) is one of the dominant parameters for the equivalent EM DC equivalent

current density (jem).

To further derive the parameterized equivalent DC current in terms of two cur-

rents, period and duty cycle and temperature, response surface methodology (RSM) [71]

is carried out over many different waveforms from measured or detailed numerical analysis

information. (5.2) is the fitted model to obtain equivalent DC current in terms of the five

parameters.

100

jem =4.988 ∗ 109 − 0.0663 ∗ 109 ∗X2
1 − 1.114 ∗ 109 ∗X1 ∗X2 − 0.9981 ∗ 109 ∗X1 ∗X3

− 0.1390 ∗ 109 ∗X1 ∗X4 − 0.3485 ∗ 109 ∗X1 ∗X5 − 0.0315 ∗ 109 ∗X2
2

− 0.1728 ∗ 109 ∗X2
3 − 0.3461 ∗ 109 ∗X3 ∗X4

+ 0.0181 ∗ 109 ∗X2
4 + 0.0934 ∗ 109 ∗X2

5

(5.2)

where

X1 =
j1 − 7.5 ∗ 109(A/m2)

2.5 ∗ 109(A/m2)
X2 =

j2 − 1.75 ∗ 109(A/m2)

2.75 ∗ 109(A/m2)

X3 =
D − 70%

25%
X4 =

P − 5.5 ∗ 103(s)
4.5 ∗ 103(s)

X5 =
T − 380(K)

20(K)

However, this model can only handle regular square waveforms, but for practical

cases, the current waveforms are arbitrary. To mitigate this problem, one of the ideas

is to convert the arbitrary current waveform to an equivalent square waveform before we

apply the aftermentioned parameterized equivalent DC current modeling. In this conversion

process, we make sure that the stresses derived by the square waveform and the actual

current waveform will match at both the highest peak stress and the final stress (end of

period or time) as shown in Fig. 5.4(b). By matching the two stress points, we can find

the two currents j1 for highest stress point and j2 for the end of period stress as shown

in Fig. 5.4. During this conversion process, we assume that the given current waveform

will repeat itself over time so that it becomes a periodic waveform. This assumption is

reasonable as the future current or power of a chip cannot be predicted precisely in general

and the recurrent assumption is a good guess.

101

(a)

Normalized Time ×107
0 2 4 6 8 10

S
tr
es
s
(P

a)

×108

0

1

2

3

4

5

6

real stress
DC equivalent stress

t
nuc

(b)

Figure 5.3: (a) Original input driving current density. (b) Calculated EM DC equivalent
current density with tnuc

102

The other idea is to convert the arbitrary current waveform directly to a DC

equivalent current so that the stresses from two waveforms match at the end of period time

as shown in Fig. 5.4(b). But this approach may lead to large errors for time to failure

estimation as it ignores the peak stress, which can be significant to determine the time

reaching the critical stress (time to failure).

To study the accuracy of the two modeling methods, the two-step method (square

waveform modeling and RSM fitting and the direct equivalent DC current method) is pro-

posed. We compare stress generated by two-step method and the stress given by direct

equivalent DC current method against the stress generated by the original current wave-

form. The results are shown in Fig. 5.5. As we can see, equivalent square DC current

density (two-step method) has smaller error compared to the direct DC equivalent method

in terms of time to failure estimation. As a result, we will use the two-step method to

compute the parameterized equivalent DC current.

5.1.2 EM modeling for varying temperature effects

At the system-level EM reliability, the manycore system will run on different tasks

under different voltages and frequencies. As a result, its temperature and current densities

will change with time. However existing EM models including the new physics-based model

can only take a constant temperature. The previous study shows that whole system MTTF

or lifetime under different temperature can be approximated by [67]:

MTTFEM =
1

(
∑n

m=1(∆tm
1

MTTFm
))/T

(5.3)

103

0 200 400 600 800 1000 1200

Normalized Time

0

5

10

15

C
u
rr
en
t
D
en

si
ty

(A
/
m

2
)

×109

T1=373K T2=383K T3=393K
T4=370K T5=380K T6=375K

T2

T1

T3

T4

T5 T6

(a)

0 200 400 600 800 1000 1200

time(s)

0

50

100

150

200

250

st
re
ss
(M

P
a
)

original waveform
equivalent square waveform
equivalent DC

(b)

Figure 5.4: (a) Original input driving current density. (b) Calculated EM DC equivalent
current density with two methods

104

time(s)
0 5000 10000 15000

st
re
ss
(M

P
a
)

0

200

400

600

original waveform
equivalent square waveform
equivalent DC

critical stress

Figure 5.5: Comparing the nucleation time of two equivalent methods and original stress

where MTTFm is the actual MTTF (mean time to failure) under the m-th power and

temperature settings for ∆tm period, assuming the chip works through n different power

and temperature settings and T =
∑n

m=1∆tm. Each MTTFm will be computed based on

the EM models discussed in the previous section. To consider a system-level EM reliability

on a manycore dark silicon processor, we use the shortest lifetime among all the cores as

the lifetime for all manycore processors [79].

105

5.2 New learning-based reliability management for near thresh-

old dark silicon for EM recovery effects

5.2.1 Near threshold dark silicon

Near-Threshold Computing (NTC) has been proposed as a viable solution to over-

come the limit of energy efficient computing by using optimal near-threshold voltage between

super-threshold and sub-threshold region.

NTC cores are operated at or near their threshold voltage Vth. By reducing supply

voltage Vdd from nominal 1.1 V to 500 mV, a 10X energy efficiency gain can be achieved at

the expense of 10X performance degradation [113]. Compared to the sub-threshold region

where 20X energy efficiency can be achieved, but the 50X performance degradation due to

increased circuit delay is too big a factor to ignore for large-scale applications. Applications

with significant standby times benefit greatly from NTC. Memories have to retain their

contents even though digital logic is to be powered off. Thus supply voltage scaling results

in a significant reduction in leakage power.

On the other hand, NTC is also a promising technique to mitigate the effects of

dark silicon as cores can reduce power and temperature under a given power budget, thus,

allowing a larger number of cores to be turned on simultaneously at costs of allowed perfor-

mance losses. Recently, instead of operating the entire cores at either nominal voltage or

near-threshold voltage (NTV), voltage islands have been defined such that only partial cores

are operated at NTV and the rest is operating at a nominal voltage for more flexible trade-

off between power and performance [114]. Supply voltage is proportional to the threshold

106

voltage of the transistors in the core. The core with the highest threshold can determine

supply voltage for the voltage island. However, the different types of parallel workloads

can lead to performance degradation and energy waste. Efficient dynamic management and

scheduling to find suitable NTC regions are needed.

In addition to energy and performance, NTC has an effect on reliabilities. NTC

may exhibit better long-term EM reliability, as a lower voltage can lead to lower tempera-

ture, current density and residual stresses, which are the major factors of EM effects [57].

The NTV, which is a lower supply voltage, can improve EM-induced lifetime of dark sili-

con processors. However, using NTV for many-core can make significant performance issue

since NTV still use some cores operated at the nominal voltage and a many core system’s

reliability can be highly affected by those core’s reliability [79].

5.2.2 Framework of dark silicon in near-threshold computing region

We present the framework for Dynamic Reliability Management (DRM) at NTC

region in dark silicon. The DRM framework employs several simulator models (microarchi-

tecture, power, thermal), a policy optimization module, all in conjunction with EM recovery

model. Additionally, the DRM has policy optimizer that cores can choose the best NTC

policy to maximize energy efficiency while meeting performance limit and power budgets.

This work uses a 45nm-based 64-core dark silicon simulation framework with the threshold

voltage of Vth = 0.20V , core On/Off knobs, and NTV capabilities.

The DRM module sets the voltage and frequency policy for the chip. Each core

(k) can be assigned a voltage (Vk), nominal (V nom
k = 1.0v) or near threshold (V nt

k) which

is defined as 0.40v ≤ V nt
k < V nom

k . Additionally, the DRM can turn a core off (V off
k) and

107

Figure 5.6: The DRM and NTC Framework

108

then turn a core back on(V
nom/nt
k). The DRM makes these decisions based on an on-line

policy optimization module that employs the SARSA algorithm which is explained later.

In the framework, the DRM receives the new policy from the optimization module. It

then sets each Vk or turns the core off. Additionally, each core operating frequency (fk)

is affected by Vk, because of this we use 5.4 as a relation to calculate fk based on its

respective Vk. This ensures that the performance degradation from NTV is reflected in the

simulation framework. This policy is then propagated to the architecture, thermal, and

power simulators as well as the EM recovery model, and optimizer.

fk ∝
(Vk − Vth)

2

Vth

(5.4)

The framework uses the Sniper architecture simulator [92] to generate system

performance for given workloads on a specified architecture. Parameters (chip floorplan,

number of cores, frequency, and cache design) describing the architecture are passed to

Sniper. Benchmarks representing the desired workloads are also used as inputs to sniper

to simulate the system’s functionality. Sniper then outputs system performance, such as

performance characteristics, instruction per cycle, of the chip for each given benchmark run.

This is repeated in our experimental setup for several different set of workloads. The whole

near threshold dark silicon framework is illustrated in Fig. 5.6.

Once architectural system performance is generated and transferred to the physical

simulators Hotspot [115] and MCPAT [116]. Based on the architecture of the chip, its system

performance from Sniper, and the voltage scheduling from the DRM, MCPAT (Multi-Core

Power Area and Timing simulator) will generate a power trace for each chip component

109

including each core Pk. Hotspot then uses the chip floorplan in conjunction with the power

trace generated by MCPAT, to produce a thermal trace for each chip component and core

Tk.

After the power/thermal/voltage characteristics have been generated by the var-

ious simulators, the EM Recovery model can use these parameters (Pk, Tk, and Vk) to

estimate the chip’s time to failure considering any recovery effects the chip may experience,

from V nt
k and V off

k for that given policy.

Lastly, all the information generated, in addition to the current policy enacted by

the DRM, are passed to the policy optimizer which will generate a new policy. This new

policy will find the best voltage schedule for the various cores to optimize the energy of the

chip while meeting MTTF, performance, and power budgets.

5.2.3 SARSA-based learning algorithm for DRM considering long-term

recovery

We can model our DRM problem as a Markov Decision Process (MDP) with states

s(t), and actions a(t) where states are the parameters of the framework for the time-step

∆t, e.g., fk(t), Tk(t), MTTF (t), Pk(t), and Vk(t). Actions are defined as changes to these

parameters which in our case is the tuning of Vk(t). In our case, our goal is to achieve the

best policy that minimizes energy E while meeting all constraints and budgets.

The reinforcement learning algorithm used to optimize the DRM policy is the

State Action Reward State Action algorithm, or SARSA, first presented in [117]. SARSA

is a combination of Q-learning and the traditional Temporal Difference method (TD) [117].

This algorithm exchanges the greedy updates of Q-learning with a policy driven update that

110

is closer to the TD method. The result is an on-policy reinforcement learning algorithm

with faster convergence when compared to Q-learning [117].

The major differences with traditional Q-learning, is that the maximum reward

(minimum penalty) for the next state is not used for updating the Q-values. Instead, a new

action is selected using the same policy that determined the original action.

The SARSA algorithm works first by populating a Q-table Q(s(t), a(t)), where

s(t) is a state and a(t) is an action for time-step ∆t. It then selects an action from the

states using some policy. This action is taken and the penalty PT (t+1) (negative reward)

and new state s(t+1) are generated. From this new state, another action a(t+1) is selected

from s(t+ 1). The Q-table is then updated using a penalty function shown below.

Qt+1((s(t), a(t)) = Qt(s(t), a(t))+

α(t)× (PT (t+ 1) + γQ(s(t+ 1), a(t+ 1))−Q(s(t), a(t)))

(5.5)

Here, α is the learning rate and γ is the discount factor. In our DRM, we em-

ploy multiple-constrained penalty function (PT (t + 1), [34]) and modify to accommodate

each value (EM, power, temperature, and performance) and to also incorporate the power

budgets, performance/thermal limits assigned as constraints.

In order to provide long-term shut-off time for leveraging EM recovery effects, our

DRM have a recovery selection scheduler. It is a periodic scheduler on the top of SARSA

for long-term recovery cycle (Trecovery), which is the required time for recovery effects. The

selected cores can be turned off long-term recovery cycle as recovery effects needs some

long-term as seen in Subsection 5.1.1. Every Trecovery cycle, we use greedy-based selection

algorithm by EM-induced lifetime evaluation and find the worst lifetime core set below the

111

certain lifetime threshold (EMthreshold), then SARSA will work only for the cores except

recovering cores for Trecovery. After each long-term cycle, we find new long-term recovery

core set.

The proposed new energy optimization algorithm in the near-threshold dark silicon

framework has been implemented in Python 2.7.9 with the numerical libraries (Numpy 1.9.2

and Scipy 0.15.1). For near-threshold dark silicon framework, we used the architectural

simulator (Sniper 6.1), power estimator (McPAT 1.0.32), and thermal simulator (Hotspot

5.02 [70]) to estimate recovery-considered EM-induced lifetime on top of the new physics-

based EMmodel [57]. In the proposed framework as shown in Fig 5.6, each simulator module

is connected with a plugin connector, so that one simulator’s result can dynamically provide

the other’s inputs. The learning-based SARSA method and recovery selection scheduler

have been implemented for our dynamic reliability management (DRM).

The DRM module assigns each core as the near-threshold or nominal voltage, and

calculates its frequency from 5.4. The near threshold voltages as 0.45V, and a nominal

voltage of 1.2V are defined [118]. Additionally, each core can be turned off completely, or

turned back on for dark-silicon. Once the simulation runs, the optimization module can

then send a new policy to the DRM which it will use to schedule the core voltages. Our

energy optimization method is validated with a near-threshold 64-core processor on the

SPLASH-2 multi-threaded benchmarks.

112

(a)

without with

Recovery Effects

0

50

100

150

200

250

M
T
T
F
(y
ea
r)

(b)

Figure 5.7: (a) two cases of power traces from proposed framework and (b) and the resulting
MTTF without/with recovery effects

113

0

0.05

0.1

P
er
fo
rm

a
n
ce

(s
/
ta
sk
s)

0

50

100

L
if
et
im

e
(y
ea
r)

With Recovery (50s) With Recovery (1000s) No Recovery
0

1

2

E
n
er
g
y
(J
/
ta
sk
s)

Figure 5.8: Performance, energy and EM-induced lifetime from proposed DRM considering
recovery effects for three cases (1) Recovery effects with Trecovery = 50s (first column)
(2) Recovery effects with Trecovery = 1000s (the second column) (3) Only DRM without
recovery effects (the third column)

114

Table 5.1: Results for dynamic reliability management for 64-core near-threshold dark
silicon

64-Core

DRM (No

recovery

baseline)

All NTV

cores

Half-

NTV/Half-

Dark

Half-

Nominal/Half-

Dark

Performance

(s/tasks)
0.014 0.23 0.48 0.03

EM lifetime

(year)
9.03 221 221 7.1

Energy

(Joule/tasks)
0.942 14.54 29.05 2.07

5.3 Numerical results and discussions

5.3.1 Evaluation of the lifetime impacts considering EM recovery effects

In order to evaluate system-level EM-induced lifetime considering recovery effects,

a single core long-term task example case from our framework is shown here. Our proposed

framework, shown in Fig. 5.6, can properly manage and control for both power-on and shut-

down of each core, so we can significantly extend the system-level reliability by leveraging the

EM recovery effects introduced in subsection 5.1.1. We present two different simple power

traces and calculate EM-induced MTTF (mean time to failure) in Fig. 5.7. In this example,

the time period is 1000 seconds and switch off for 500 seconds that can be recognized as

a sufficient period for recovery effect. The original power traces (5.72 W) is converted to

an equivalent power, which equals to 2.122W using our recovery model. Our duty cycle for

115

turning-off is 50% in the recovery case. As a result, it leads to 50% performance degradation.

On the other hand, the EM-induced lifetime considering recovery effect is 9.16X higher than

that of the original case without recovery effect case, which is quite significant.

5.3.2 Evaluation of the DRM for near-threshold dark silicon processors

To evaluate the proposed learning-based energy optimization method in Section

5.2, we show the comparison results of performance, EM-induced lifetime, energy con-

sumption on processing 64 multi-threaded tasks on a 64-core near-threshold dark silicon

processor. Our experiment uses performance and energy metrics as s/tasks and J/tasks,

which are total execution time and energy consumption for selected 64 multi-threaded tasks

(16 CHOLESKYs, 16 RADIXs, 16 RAYTRACEs, 16 VOLRENDs) on our framework. The

results are shown in Table 5.1. We compare our DRM case (without recovery effects) with

all-NTV cores (64 cores are near-threshold voltages(NTV)), half-NTV/half-dark (32 cores

are NTV and 32 cores are turned off), and half-nominal/half-dark (32 cores are nominal

and 32 cores are turned off) cases. The optimization results show the energy consumption

improvements for the given budget constraints (power budget is 250W , performance limit

5s per given tasks, and EM-induced lifetime limit is more than 5 years). For all-NTV and

half NTV/dark cases, EM lifetimes are significantly improved, but their performance re-

sults are 16X and 35X slower than the DRM baseline result. On the other hand, for only

half nominal/half dark case, energy and performance are quite improved but EM lifetime is

relatively short. Therefore, our DRM result effectively finds better EM lifetime (9.03 years)

with significantly high performance with the lowest energy.

116

5.3.3 DRM considering recovery effects

Finally, we evaluate our proposed DRM method considering the EM recovery

effects. As seen in Fig. 5.8, we evaluate two different recovery cycles (Trecovery = 50s and

1000s), so all the cores’ MTTFs are periodically evaluated for every Trecovery to determine

which core needs to be turned off for the whole period when the core is below the certain

lifetime threshold, EMthreshold. For our experiment, we set 8 years as the EMthreshold in

the recovery selection scheduler. As we can see, both DRM cases with recovery effects

can significantly improve our EM-induced lifetime (8.6X longer compared to the baseline

results, which are shown in the third column in Fig. 5.8). However, the costs are the 2.0X

more energy consumption (1.9J/tasks vs 0.94j/tasks) and 3.3X performance degradations

(0.05s/tasks vs 0.014s/tasks). But this is still a better trade off for the higher EM lifetime

(64.7 years and 78.1 years for Trecovery = 50s and 1000s, respectively) compared with the

baseline case in Fig. 5.8.

5.4 Summary

In this chapter, we developed a new dynamic reliability management (DRM) tech-

niques for emerging near-threshold dark silicon manycore microprocessors considering elec-

tromigraion (EM) reliability. To leverage the EM recovery effects, which was ignored in

the past, at the system level, we developed a new equivalent DC current model to con-

sider recovery effects for general time-varying current waveforms so that existing compact

EM model can be applied. The new EM current model allows EM recovery effects to be

effectively considered at the system level for the first time.

117

To leverage the EM recovery effects, we considered the energy optimization prob-

lem for dark silicon manycore processors with Near-Threshold Voltage (NTV) capabilities

considering EM reliability. We showed that the on-chip power consumptions have different

impact on reliability. The resulting optimization problem was solved with State-Action-

Reward-State-Action (SARSA) reinforcement learning algorithm to optimization the near-

threshold dark silicon cores’ voltage policy to minimize energy considering reliability. Ex-

perimental results on a 64-core near-threshold dark silicon processor showed that the new

equivalent EM DC currents model was able to fully exhibit the recovery effects at the sys-

tem level so that trade-off between EM lifetime and energy/performance were easily made.

We further showed that the proposed learning-based energy optimization can effectively

manage and optimize energy subject to reliability, given power budget and performance

limits.

118

Chapter 6

Cross-layer modeling and

optimization for

electromigration-induced reliability

This chapter presents we develop a new approach for cross-layer EM-induced re-

liability modeling and optimization at physics, system and datacenter levels. We consider

a recently proposed physics-based EM reliability model to predict the EM reliability of

full-chip power grid networks for long-term failures. We show how the new physics-based

dynamic EM model at the physics level can be abstracted at the system level and even at

the datacenter level. Our datacenter system-level power model is based on the BigHouse

simulator. To speed up the online optimization for energy in a datacenter, we develop a new

combined datacenter power and reliability compact model using a learning based approach

in which a feed-forward neural network is trained to predict energy and long term reliability

119

for each processor under datacenter scheduling and workloads. To optimize the energy and

reliability of a datacenter, we apply the efficient adaptive Q-learning-based reinforcement

learning method.

6.1 EM-induced reliability model for a manycore processor

in datacenter

An existing EM model, including the new physics-based model, can only take a

constant temperature. The previous study shows that system-level time-to-failure (TTF)

or lifetime under different temperature can be approximated by [67]: EM reliability model

for individual core can be expressed as follows

TTFi−core =
1

(
∑n

k=1(∆ti,k
1

TTFi,k
))/T

(6.1)

where TTFi,k is the actual TTF under the k-th power and temperature settings for ∆tk

period, assuming i-th core works through n different power and temperature settings and

T =
∑n

k=1∆ti,k. Each TTFi,k will be computed based on the recently proposed physics-

based EM model and assessment techniques [57].

A manycore processor lifetime can be defined as the shortest lifetime among the

cores [119, 79]. The individual core lifetime can be obtained from (6.1). Recently, one

study used performability as the ratio of number of non-failure cores over total number

of cores [120] to explain chip multiprocessor (CMP). But the specific mechanism was not

introduced and is too abstract, so we use the shortest lifetime in this chapter, however, our

framework easily extends to support performability later.

120

6.2 EM-induced reliability-aware datacenter model

To evaluate datacenter-level EM-induced reliability, we use the BigHouse simu-

lator [121], a simulation infrastructure for datacenter. BigHouse is based on stochastic

queueing simulation, a validated methodology for simulating the power/performance be-

havior of datacenter workloads. The BigHouse simulator is widely used in academia, as

well as in Google datacenter research [121, 122, 123].

BigHouse uses synthetic arrival/service traces that are generated through empir-

ical interarrival and interservice distributions collected from real systems [121, 122]. We

evaluate two major workloads, Domain Name Service (DNS) and Apache World Web Ser-

vice (WWW), provided with the BigHouse simulator. These workloads are modeled by

workloads distribution, which represents the average, standard deviation(σ), and coefficient

of variation(Cv) for the interarrival and service time distributions of the workloads. The

interarrival distribution is used to drive the queueing model, while the service time distri-

bution is used for the service nodes. These synthetic arrival/service traces are fed into a

discrete-event simulation of a G/G/k queueing system that models active and idle low-power

modes through state-dependent service rates.

During simulation time, measures of interest, such as power consumption and

99-th percentile latency, are obtained by sampling the output of the simulation until each

measurement reaches a normalized half-width 95% confidence interval of 5%. The simulation

ends when the sample statistics are considered converged, that is, once the observed sample

size is sufficient to achieve the desired confidence interval of 95%. The sample size required

to achieve a certain confidence is given by:

121

Nm =
Z2
1−α/2 ∗ σ2

ǫ2
(6.2)

where σ is the standard deviation of the samples, ǫ is the half-width of the desired confidence

interval, and Z1−α is the value of the standard normal distribution at the (1−α/2)th quantile.

For 95% confidence, this value is 1.96.

To explore the EM effect on datacenter-level reliability, we integrate the EM model

into BigHouse simulator. Additionally, we added thermal modeling into BigHouse, and drive

the EM model using power, voltage, and temperature measurements. The thermal modeling

is achieved using the HotSpot thermal model [115]. This thermal model offers a compact

solution with relatively good accuracy and speed. HotSpot is integrated into BigHouse and

fed a power trace of each simulated core using the method described above. Each core is

then modeled and simulated to produce a thermal trace. It is this thermal trace that is

used as the temperature measurements for the EM model.

To explain server-level reliability on datacenters, we use average socket lifetime

(Mean-time-to-failure, MTTF). One socket lifetime can be defined as the shortest lifetime

among the processors in one server.

We use tail latency as most important service latency for the datacenter since the

tail flow completion time (FCT), 99-th or 99.9-th percentile FCT, can be more than 10x

larger than the mean FCT. So tail latency is a very crucial performance metric for datacenter

as the service response needs to wait for the slowest flow/workload to complete [124].

122

6.3 New reliability-constrained energy optimizatoin for dat-

acenter

In this section, we introduce new reliability-constrained energy optimization for

datacenter. To speed up the online optimization for datacenter energy and reliability, we

use feed-forward neural network (FNN), which is trained to predict energy and long-term re-

liability for each processor under datacenter scheduling and workloads. To further optimize

energy and reliability of a datacenter model, we formulate a learning-based optimization

method, Q-learning, as minimizing datacenter energy subject to reliability, given power

budget and performance.

6.3.1 Neural networks for datacenter energy and reliability models

Review of feed forward neural network

To build a compact energy and reliability model for datacenter systems, learning

based techniques such as neural network, which is composed of multiple processing lay-

ers, can learn representations of data with multiple levels of abstraction. Processor power

consumption and EM-induced lifetime can be considered as supervised learning in neural

networks. One advantage of neural networks is its wide applications for nonlinear systems.

The universal approximation capability of feed-forward neural networks (FNN) has been

proved to show that any Borel measurable function can be approximated with any arbi-

trary accuracy by an FNN using squashing activation functions [125]. If we have an input

vector u = {u1, u2, · · · , up} and an output vector y = {y1, y2, · · · , yq}, then the layer-wise

structured FNN without bias node has the form

123

a1 = f1(uW
(IN,1)), a2 = f2(a1W

(1,2)), · · · ,

ai = f i(aiW
(i−1,i)), · · · , y = akW

(k,OUT)

(6.3)

where the activation function f is element-wise squashing operator such as a sigmoid or a

hyperbolic tangent function; vector ai is the intermediate activation result of each layer;

W (·,·) is the weighting matrix connecting adjacent layers. FNN with bias node requires

each activation result vector ai to be appended with a fixed unit value before it is fed into

next level of calculation, and the dimensions of W (·,·) also need to be adjusted accordingly.

Neural network training for datacenter reliability-aware energy model

As seen in (6.3), in theoretical aspect, training a neural network is equivalent to the

optimization problem to minimize cost function (without bias node or connections, without

regulation terms):

J
(

W (IN,1),W (1,2), · · · ,W (k,OUT)
)

=
m
∑

j=1

∥

∥yj − ŷj

∥

∥ (6.4)

where ŷi is a neural network output which can be explicitly written in a nested activation

form

ŷ =fk(fk−1(fk−2(· · ·f2(f1(uW
(IN,1))W (1,2))W (2,3) · · ·)

W (k−2,k−1))W (k−1,k))W (k,OUT) (6.5)

Therefore, the training problem of neural networks can be solved by applying existing

optimization methods such as gradient descent, Broyden-Fletcher-Goldfarb-Shanno (BFGS)

124

algorithm [126], and the Quasi-Newton method with the cost function J . In practice,

an algorithm with lower computational cost, Back-propagation, has been widely used for

solving the training problem [127].

Neural network structure and data configuration

Figure 6.1: Feed-forward neural network structure and data configuration

As shown in Fig. 6.1, the feed-forward neural network (FNN) can be constructed to

predict energy and long-term reliability for each processor under datacenter scheduling and

workloads. We separately construct and train networks for each individual workloads. The

inputs to the neural networks are average load rate, power mode (quantified), and a number

of servers in the datacenter. With these inputs, the neural networks can estimate average

cluster power, average processor temperature, tail latency, and average socket MTTF. To

train the neural networks more efficiently with less numerical stability issues, the scaling

of the inputs is required. Otherwise, it can have a large effect on the quality of the final

solution. As shown in Fig. 6.1, the number of servers is normalized. The average load rate

125

can be used without scaling since it already has a good distribution. In the same way, the

output data set can be scaled and converted into logarithmic scale since they are served as a

part of the training input set in the back-propagation algorithm [127]. We use three hidden

layers with sigmoid activation functions, with all layers having 15 nodes respectively. The

input and output layer sizes are 3 and 5 respectively.

6.3.2 Q learning optimization for datacenter

State and action determination

Q-learning is a reinforcement learning method used as a controller to maximize

long-term rewards. It can converge close to the optimal result of a state-action function

for arbitrary policies while handling problems with stochastic transition [91]. In this case,

state(s) used in this work consists of workload model, average load rate, power model, and a

number of servers. Action (a) is used to describe transitions between two states. Executing

an action in a certain state provides a learning agent contained in the model whose goal is to

minimize penalty with updated Q-value by penalty calculation in the Q-table, also known

as the state-action table. The environment part is reliability-aware BigHouse model, whose

learning agent is Q-learning algorithm. The learning agent can obtain the environment

state, calculate penalty function, and finally, decide the next action.

Q-value function and Q-learning process

In the Q-learning process, one critical issue is to define the Q-value function with

penalty term. Each state si will determine average cluster power Power(si), tail latency of

datacenter latency(si), the average processor temperature, Temp(si). EMmin(si), which is

126

defined as average socket MTTF in datacenter. E(si) is energy per request in datacenter.

An action, say ai,j , can be viewed as the transition from state i to state j. The penalty

function Q determines a penalty and a new state which is related to the previous state and

selected action. Q-value is updated at every step ∆t.

Qt+1(s(t), a(t)) = Qt(s(t), a(t))+

α(t)×
(

PT (t+ 1) + γmin
a

(∀Qt(s(t+ 1), a))−Qt(s(t), a(t))
)

(6.6)

where α(t) is learning rate between 0 and 1 which determines the percentage of newly

calculated Q-value applied. s(t + 1) is determined by action a(t), and Qt(s(t + 1), a) are

all possible action’s Q-values from future state. The discount factor γ (between 0 and

1) determines the importance of future penalty. min(∀Qts(t+ 1), a) is considered to be

estimated optimal future value. The difference between old Q-value (Qt) and learned value

(PT (t+1)+γmin
a

(∀Qt(s(t+1), a))) updates the new Q-value (Qt+1) with the learning rate.

A penalty term (PT) is shown in (6.7). PTE is a penalty term for total datacenter energy,

PTEM is a penalty term for average socket MTTF, PTpower for average cluster power,

PTtemp for average processor temperature, and PTlatency is tail latency of datacenter. Each

penalty term (PTx) is normalized in (6.7). This feature scaling method to bring all values

between 0 and 1. For instance, PTE = E(t+1)−E(t)
EMax−EMin

is for energy related penalty, where

E(t) is the energy per request in the previous time t and E(t+ 1) is energy per request of

the datacenter at current time t+ 1. For the EM MTTF, PTEM = MTTF (t)−MTTF (t+1)
MTTFMax−MTTFMin

is

for EM related penalty where MTTF (t) is the average socket MTTF of the datacenter for

EM-induced in the previous time t and MTTF (t + 1) is the average socket MTTF of the

datacenter at current time t+ 1.

127

PT = PTE + C
∑

x={EM,power,temp,latency}

δxPTx

δx =















0 if PTx ≤ Bx +∆x

1 if PTx > Bx +∆x

(6.7)

where δx is a binary function to active (δx = 1) or inactive (δx = 0) of user defined

or given constraint bounds, Bpower, Blatency, and Btemp in the penalty term. They are

also normalized average cluster power, tail latency, average processor temperature bounds

respectively. Each ∆x is the difference between each bound and average penalty (PT) for

the power, latency, and temperature. ∆x is positive if the whole datacenter violated the

given constraint, otherwise, it is negative which means the system is bounded and working

in acceptable condition. If the datacenter violated user’s constraints in the past, penalty

would be significant due to large value for constant C in (6.7).

The proposed learning-based energy optimization algorithm goes with the follow-

ing flow: First, all the Q-values in the Q-table are initialized to zero. Current state s(t)

finds an action a(t) with the lowest Qt in (6.6) and switches to next state corresponding to

input values. For every step, average socket MTTF, latency, average processor temperature,

average cluster power, and energy per request are evaluated and thus, all environments can

be updated. Then, new corresponding penalty PT (t+ 1) would be calculated in (6.7) and

Qt+1 would be updated (learning process). After the update, the current state could be

replaced by a new action and it would iterate with a newly updated state. Finally, when all

the Q-value changes are less than a certain threshold, the best policy will be chosen based

on the result.

128

6.3.3 Proposed new datacenter framework for energy and reliability

Figure 6.2: The evaluation platform for datacenter and energy and reliability management
algorithms

To evaluate the proposed new reliability-constrained energy optimizatoin for dat-

acenter, we use BigHouse model, which can provide cluster power and performance models

with different datacenter scheduling and workloads, such as average load rate, power model

(Low, Mid, and High), a number of active servers in datacenter. Once BigHouse model gen-

129

erate the performance and power traces of each core in the server of datacenter, HotSpot

can generate each core’s temperature from the power traces. For the EM-induced reliability,

we use the power traces, the thermal traces, and the core’s voltage as input to generate the

individual core EM-induced lifetime of a manycore processor. As explained in Section 6.1,

system-level (a processor) EM-induced lifetime can be calculated. For the datacenter level

lifetime, we use average processor MTTF.

The training data can be obtained from BigHouse simulator with all the possible

datacenter scheduling and workloads to train the neural network to speed up online opti-

mization for datacenter power and reliability model. With the trained network, Q-learning

method can find the optimal policies for datacenter scheduling and workloads to achieve

minimizing energy subject to given reliability, power performance constraints as seen in

Fig. 6.2.

6.4 Numerical results and discussions

6.4.1 Experimental setup

The proposed new compact model (FNN-based) and optimization (Q-Learning)

for the datacenter framework have been implemented in Python 2.7.9 with the numerical

libraries (NumPy 1.9.2 and Scipy 0.15.1). Thermal model (HotSpot 6.0 [115]) to estimate

EM-induced lifetime. BigHouse utilizes a simple system-level power model, as shown in

figure 6.2, which takes in a server utilization and outputs the power consumption of each

server. Two major workloads (DNS and WWW) have been used to evaluate our proposed

models. The server power model is based on a highly energy proportional server (Huawei

130

XH320) derived from reported SPECpower benchmark results [128]. Our EM model re-

quires per core energy. In order to extract per core energy, we instrumented a high energy

proportional server to measure per-component power, with component breakdown as shown

in Fig. 6.2.

We instrumented each individual component by intercepting the power rails and

measuring the current with LTS 25-NP current sensors. The outputs of the current sensors

are sampled at 1kHz using a DAQ and logged using LabView. To measure CPU power,

we inserted a current sensor in series with the 4-pin ATX power connector. To measure

memory power, we inserted a current sensor in series with pins 10 and 12 of the 24-pin

ATX power connector which supplies power to the mother board. To measure the power of

the hard drive, we inserted a current sensor in series with the hard drive backplane power

connector. We use the per-component power breakdown to derive the per core power from

the server.

6.4.2 Evaluations of proposed new modeling and optimization

First we evaluate our learning-based datacenter modeling (see Section 6.2) We get

normalized root mean square error (RMSE) by calculating 1
max(yref)−min(yref)

√

1
n

∑

(yest − yref)2,

where yref and yest are obtained from the reliability-aware BigHouse model (reference) and

FNN-based model (estimated), respectively. TABLE 6.1 shows each training error and val-

idation error of the proposed compact model. In validation phase, both estimations have

good accuracy on DNS and Web datacenter workloads, where RMSEs are lower than 10%.

Second, we evaluate our learning-based optimization method (see Section 6.3.2)

by optimizing for energy savings with different sets of average processor MTTF, average

131

Table 6.1: Accuracy analysis (RMSE) of the feed-forward neural network (FNN) model

Training Error Validation Error

DNS WWW DNS WWW

Tail latency 3.97% 6.53% 2.83% 9.37%

Avg. cluster power 2.64% 2.45% 3.02% 3.50%

Avg. proc. temp. 0.549% 2.91% 0.497% 2.92%

Avg. proc. MTTF 5.59% 6.78% 5.70% 7.40%

Energy per request 0.671% 0.738% 1.57% 1.20%

Table 6.2: Energy optimization for datacenter

Energy per Request (J) Energy Saving (%)

Max State (DNS) 67.63

Case 1 (DNS) 18.76 72.25

Case 2 (DNS) 24.08 64.39

Case 3 (DNS) 35.04 48.18

Max State (WWW) 23.71

Case 4 (WWW) 8.44 64.37

Case 5 (WWW) 8.44 64.37

Case 6 (WWW) 12.25 49.30

132

cluster power, and tail latency. Table. 6.2 and Fig. 6.3 shows the energy savings given

constraint for average processor MTTF , average cluster power and tail latency, with DNS

and WWW workload on the proposed datacenter framework. As we can see, energy savings

for the different constraints have been evaluated in Fig. 6.3, case 1-3 is DNS workload and

case 4-6 is WWW workload with tight MTTF constraints (case 1 and 4) and loose MTTF

constraints (case 3 and 6). In Table. 6.2, our method finds relatively high energy savings

for each case.

6.5 Summary

In this chapter, we developed a novel cross-layer approach to optimizing the energy

of a datacenter subject to long-term reliability and performance constraints. We considered

a recently proposed physics-based EM reliability model to predict the EM reliability of

full-chip power grid networks for long-term failures. We showed how the new physics-based

dynamic EM model at the physic level can be abstracted at the system level and even at

in a datacenter level. To speed up the online optimization for energy for datacenter, we

developed a new combined datacenter power and reliability model using a learning based

approach in which a feed-forward neural network (FNN) was trained to predict energy and

long term reliability for each processor under datacenter scheduling and workloads. To

optimize the energy and reliability of a datacenter model, we applied the Q-learning based

reinforcement learning method. Experimental results showed that the proposed compact

models for the datacenter system trained with different workloads under different cluster

power modes and scheduling policies are able to build accurate energy and lifetime.

133

1 2 3 4 5 6
0

20

40

60
Avg socket MTTF(yrs)

MTTF Constrain
Avg Processor MTTF

(a)

1 2 3 4 5 6
0

1000

2000

3000
Average cluster power (W)

Average Power Constrain
Average Cluster Power

(b)

1 2 3 4 5 6
0

0.5

1

1.5
Tail latency

Tail Latency Constrain
Tail Latency

(c)

Figure 6.3: Validating violations with constraint limits (a) Average socket MTTF (b) Av-
erage cluster power (c) Tail latency

134

Chapter 7

Long-term reliability management

for multitasking GPGPUs

This chapter presents a new long-term reliability management for GPU architec-

tures using spatial multitasking. For GPU scheduling, we mainly focus on spatial multitask-

ing, which allows GPU computing resources to be partitioned among multiple applications.

We find that the existing reliability-agnostic thread block scheduler for spatial multitasking

is effective in achieving high GPU utilization, but poor in reliability. We develop and im-

plement a long-term reliability-aware thread block scheduler in GPGPU-sim, and compare

it against the existing reliablity-agnostic scheduler.

7.1 System-level reliability resource consumption model

Given the new physics-based EM model, we now introduce our system level EM-

reliability resource consumption model. Based on the EM model discussed in the previous

135

section, instead of using the EM-induced stress and resistance values, we can view the

interconnect time to failure (TTF) as a resource. TTF occurs when the interconnect tree

resistance has significant change due to the EM process so that the resulting voltage drops

in the power delivery network exceed 12% [56] (or other predefined value). Once electrical

current starts to flow through the wire, the EM process starts to spend the resource at a

rate, which is a function of the temperature and current density. We notice that treating the

EM as a resource was first introduced in [67]. But this work is still based on the traditional

Black’s equation.

Specifically, the reliability of a component is a probability function R(t), defined

on the interval [0, inf], that the component (system) operates correctly with no repair up

to time t. The failure rate of a component, λf , is the conditional probability that the

component (or system) fails in the interval [t, t+∆t] while assuming correct operation up

to time t. The mean time to failure MTTF is the expected time at which a component fails,

i.e. MTTF =
∫

R(t)dt. If the failure rate λf is constant with time, then MTTF is 1
λf

and

the reliability is R(t) = e−λf t. In general, failure rates are time dependent. In the following,

the TTF is still used instead of MTTF as explained before.

Let us assume that we have a set of different time intervals ∆pk characterized by

different workloads in terms of current density jk and temperature Tk for a processor or a

core. It means that P =
∑n

k=1∆pk is the total execution time. Each kth workload, if it

lasts till imaginary failure, provides time to failure TTFk. Thus the failure rate at the kth

workload, which last ∆pk is λk = 1/TTFk. Then the average failure rate for the considered

set of work loads can be expressed as follows.

136

λavg =
n
∑

k=1

∆pk
∑n

j=1∆pj
λk =

n
∑

k=1

∆pk
P

λk (7.1)

As a result, the expected time to failure or average lifetime of the whole processor,

TTF is [67],

TTF =
1

λavg
=

1

(
∑n

k=1(∆pk
1

TTFk
))/P

(7.2)

Based on the (7.2), we can treat the lifetime of the processor specified by TTF as

a resource that could be consumed as the SM works. We first define the specified TTF as a

nominal value, denoted as TTFN , which is the intended or required life of the SM under a

typical temperature and power setting for a core or system. For example, one microprocessor

has nominal TTF of 10 years under 70oC and power of 20W as a specification. However, in

reality, TTF varies under different temperature and power settings. For the kth workload,

its time to failure is TTFk and the overall time to failure for the whole set of workloads is

given in (7.2).

In reality, depending on different workload settings, the consumption rate could be

either higher or lower than its nominal rate, and we define consumption rate for workload

k as

crk =
TTFN

TTFk
(7.3)

in which the lifetime in real case (TTFk under the kth workload) could be estimated by the

new proposed reliability model in the previous sub-sections. In the nominal case, the SM

is working under its specified temperature and power setting, and it has lifetime given by

137

Figure 7.1: Consumption Rate of Rodina Benchmarks

TTFN . Hence, the amount of lifetime consumed by the SM in each second is 1 EM second,

that is to say, the nominal average consumption rate is crN = 1. If TTFk > TTFN , then

crk < crN , which indicates that the SM is consuming its nominal lifetime at a lower rate,

and thus the real lifetime is longer than the nominal one. Conversely, if TTFk < TTFN ,

then crk > crN , which indicates that the SM is consuming its nominal lifetime at the higher

rate, and thus the real lifetime is shorter than the nominal one. Hence, instead of saying

TTF changes, we perceive TTF as a constant resource, which is given by TTFN , and (7.3)

is the consumption rate (crk) of TTF that determines the real lifetime of the SM. If the

time integration of EM slacks over a period is zero, then the lifetime or TTF of the core

during that period will the TTFN as predicted by (7.2).

In figure 7.1 we show the consumption rate of a range of common GPU applica-

tions. Clearly, there is a wide range of consumption rate behavior across benchmarks. As

we will show later, when running applications concurrently, this imbalance in consumption

rate can lead to premature failures of GPUs.

138

Figure 7.2: GPU Architecture

According to the definition of average TTF consumption rate defined by (7.3),

if crk > crN persistently, it will introduce excessive consumption of TTF, which would

possibly lead to early failure of the core if no compensation is made. In real application,

it is common that crk > crN during the period when heavy tasks are assigned to the core,

and the lifetime is excessively consumed during this period, while on the other hand, when

light tasks are assigned to the core, crk < crN , and less lifetime is consumed during this

period.

139

7.2 GPGPUArchitecture and Stream Multiprocessor Schedul-

ing

Figure 7.2 provides an overview of the GPU architecture in this work. This work

uses a Nvidia GTX480 Fermi GPGPU as the baseline architecture. The GTX480 consists

of a set of 15 Streaming multiprocessors (SMs). Each SM is comprised of a 128KB register

file, 2 warp schedulers. The SM core clock is 700MHz, with each SM with two SP execution

units, one SFU, and 16 LDST unit per SM. Each SP unit contains 16 double frequency

CUDA cores, each with individual integer and floating point pipelines (total of 32 CUDA

cores per SM).

Each SM has its own 64KB shared memory and L1 cache. Fermi supports up to

48 active warps per SM. Each warp comprises of 32 threads executing in a lockstep manner,

also called Single Instruction Multiple Thread (SIMT) execution model. There are a total

of 1,536 active threads per SM. The SMs are all connected to an interconnection network

which leads to 6 memory partitions, containing a shared L2 cache and memory controller.

We evaluate the GPU using GPGPU-Sim [129] which models this GTX480-like

architecture. The default warp scheduler is the greedy-than-oldest (GTO) warp scheduler

with 48 warps per SM and capable of issuing a total of two warps per cycle per SM. The

GTO scheduler greedily schedules from a single warp until that warp reaches a long-latency

instruction, such as memory load. At which point, the warp scheduler will then issue

from the next oldest warp. The goal of the GTO scheduler is to improve L1 cache local-

ity by giving priority to a single warp during execution. To estimate power, we utilized

GPUWattch [130]. In our experiments, we observed the total on-chip power of 95W (in-

140

cluding SM, interconnect, and caches) with per SM peak power of 7W. We also simulate the

temperature of the chip by utilizing HotSpot [131] using a GTX480 floorplan from [132].

GPU applications are processed on the GPU as CUDA contexts that consist of

kernels. Kernels are further broken up into thread blocks, which are scheduled to individual

SMs. These thread blocks are further broken up into warps, which are executed upon. GPUs

are able to run multiple independent kernels from the same application simultaneously,

or from multiple applications through multi-process service [133]. This enables spatial

multitasking [54] where applications can run concurrently on different SMs to improve the

utilization and efficiency of the GPU.

The goal of this work is to optimize the GPU for long-term reliability. In order

to achieve this, we add a lightweight on-chip EM-aging sensor [101] to each SM. This EM-

based aging sensor exploits the natural aging/failure mechanism of interconnect wires to

time the aging of the chip. Compared with existing aging sensors, this sensor provides a

more accurate prediction of the chip usage time at smaller area footprints due to its simple

structure. By utilizing the EM-aging sensor, we estimate the reliability consumption rate

(crk) of each SM in order to make fine-grain scheduling decisions.

7.3 Simulation Framework for EM Assessment on GPGPU

For the EM assessment of GPGPUs, PDN should be designed and simulated as

discussed in 2.1.2. The PDN consists of two parts, off-chip network and on-chip network.

The off-chip part is shown in Fig 7.3(a). It takes account of the resistors between on-chip

PDN and the power source, which are the resistors of PCB, package, and pad. The on-chip

141

(a)

SM0

SM8

SM1

SM5

SM2

SM6

SM3

SM7

SM12

Connected to

off-chip grid

L2 Cache, NoC, MC

SM9 SM10 SM11

SM13 SM14

SM4

(b)

(c)

Figure 7.3: Off-chip PDN (a), On-chip PDN (b), and details of PDN of each SM (c)

part is built based on the dimensions of the publicly available specification and die photo

for GTX480, same with the approach used in [134, 56]. The description explains that the

142

L2 cache, Network on Chip (NoC), and memory controllers (MC), which are located in

the middle take approximately the area of 8 SMs. Thus, we split the PDN for the whole

chip to 24 sections (4 horizontally and 6 vertically), which are shown in Fig 7.3(b). The

20 grid points on the edges, which are emphasized by dots, are connected to off-chip PDN

respectively. Additionally, it is also shown in the die photo that the aspect ratio of each

SM is about 2. Based on the fact that resistors of interconnects are proportional to their

length, we model the PDN for each SM by a simple network consisting of 12 resistors shown

in Fig 7.3(c). Besides the 12 resistors for V DD and GND networks, there are 6 current

sources connecting two corresponding grid points in the two networks, which model the

current that flows through the SM. We assume that the overall current of each SM is evenly

distributed to these six current sources. For the current flowing through L2 cache, NoC and

MC, it is modeled by 15 evenly distributed current sources as this part is modeled by 15

grid points. For the grid points at the border of two, or four SMs (or L2 cache, NoC, MC),

the value of the current source is calculated by summing the two, or four SMs’ currents,

and then as stated above, dividing by 6. It is assumed in GPGPU-Sim that the operation

voltage for the chip is 1V , so we can easily get the current that flows through each part

from the simulated power trace by GPGPU-Sim.

The EM reliability model is implemented in PDN simulator written in C++ with

IT++ linear algebra library, which can parse RC power grid network. For EM model, the

parameters used for the EM reliability model are listed in table 7.1 [4].

Figure 7.4 shows an overview of our long-term reliability simulation framework

for GPUs. Benchmarks are run on GPGPU-Sim, in which activity traces are fed into

143

Table 7.1: Parameters used in EM analysis

Paras Value Paras Value Paras Value

EV 0.674eV ED 0.65eV EA 0.86eV

kB 1.38e− 23J/K D0 7.56e− 5m2/s B 1e11Pa

ρ 3e− 8Ω/m σCR 5e8Pa Ω 1.66e− 29m3

f 0.6 Z 10

Figure 7.4: Simulation framework for long-term reliability assessment on GPGPU

GPUWattch. GPUWattch extracts a power trace with a sampling rate of 500 cycles. This

power trace is then fed into HotSpot in order to derive a thermal trace of the GPU. Both

the power trace and the thermal trace are fed into the long-term reliability framework,

144

which simulates the PDN along with the EM to output the expected lifetime and resource

consumption rate of the GPU.

7.4 Resource consumption rate-aware thread block scheduler

for long-term reliability

In spatial multitasking, we assume that it is up to the user to specify or identify

the number of SMs allocated for each application. For example, prior work [54] utilizes

compile-time application profiling or programmer input to partition applications among

SMs. Finding the optimal SM partitioning is beyond the scope of this work. Instead, for

a given application partitioning, our goal is to schedule applications to SMs in a way to

improve long-term reliability.

As shown in figure 7.1, the consumption rate (crk) of benchmarks varies greatly.

Under spatial multitasking, the difference among the consumption rates of co-scheduled

applications can lead to significant wear imbalance across the SMs. As we consider the

system-level EM reliability, we focus on the lifetime of the entire GPU, instead of individual

SMs, and use the shortest lifetime among all the lifetimes of SMs as a metric [79]. There-

fore, in a spatial multitasking environment with a mix of high and low consumption-rate

applications, the goal is to balance the wear-out of all SMs. To do this, we place consump-

tion rate monitors into each SM, and feed this monitoring information to the thread block

scheduler.

We have made two key observations for the long-term reliability of GPUs: (i) the

computational performance of applications depends only on the number of SMs allocated,

145

not on the exact indices of the SMs, and (ii) wear-out balancing can be easily achieved by

rotating applications across SMs. Based on these observations, we find that shifting each

application’s designated SM subset by one is a simple but effective balancing method. For

example, suppose that there are two GPU applications, app1 and app2, and the GPU has 15

SMs. Assume that app1 is assigned 5 SMs and app2 is assigned 10 SMs. Initially, app1 and

app2 are mapped to (SM0-4) and (SM5-15), respectively. When rebalancing is triggered,

the SMs of each application are shifted by one, which remaps app1 and app2 to (SM1-5)

and (SM0,SM6-15), respectively. When the thread block scheduler swaps the target SMs for

each application’s kernel, we ensure that the already-executing thread blocks in an SM will

continue until completion and will not be preempted or migrated in the middle of thread

execution. This is due to that many of GPU architectures as yet do not support preemption

at an arbitrary point and doing so causes high overhead for GPU context switching. The

latter is particularly important because such overhead can diminish the benefit of spatial

multitasking.

The main challenge in designing our consumption rate-aware thread block sched-

uler is in determining the triggering condition. To this end, we will explore the following

thread block mapping schemes.

Baseline: In the baseline, by default the thread block scheduler utilizes a loose

round-robin scheme. Therefore, once given an application’s SM partitioning, the thread

blocks of an application are scheduled to a static subset of SMs. Due to this mapping, the

GPU’s long-term reliability is directly tied to the consumption rate of the high consumption

rate workload.

146

Fixed scheduling: In the fixed scheduling case, we trigger rotation after a fixed

number of cycles has elapsed. For fixed scheduling, we evaluated various fixed period lengths

depending to the runtime. However as we will see in later section, fixed scheduling can lead

to sub-optimal consumption rate balancing due to its fixed nature and applications’ dynamic

behavior.

Monitoring-aware scheduling: In the monitoring-aware scheduling scheme we

utilize the embedded EM sensor to make triggering decisions. The EM sensors enable

us to detect and measure consumption rate. The monitoring-aware scheduler is given in

algorithm 2.
We measure the accumulated consumption of each SM i (denoted as AccumulatedCRi

in the algorithm), until the difference between the maximum and minimum accumulated

consumption of two SMs exceed a certain threshold, rotation threshold. The index of each

SM starts from 1 and ends at N ; hence, the total number of SMs is N . We specify the

threshold as a unit normalized to nominal average consumption rate. For example, if the

threshold is 4, then we trigger rotation when the maximum and minimum consumption

rates (CRmax and CRmin, respectively) differ by 4 or more. Upon triggering rotation, the

accumulated consumption of each SM (AccumulatedCRi) will be cleared. This algorithm

ensures that the difference of consumption rate between the SMs does not diverge too

greatly from each other, leading to a more balanced long-term reliability. Unlike fixed

scheduling, the EM sensors are able to capture the dynamic application behaviors and their

time-varying consumption rate usage.

Optimal scheduling: We compare against an optimal scheduling scheme that

uniformly spreads out the thread blocks of applications across all SMs. This scheduling

147

Monitoring-aware Scheduling;

while Application is running do

foreach SMi in all SMs do

CRi ← Current EM sensor reading for SMi ;

AccumulatedCRi ← AccumulatedCRi + CRi ;

end

CRmax ← max1≤i≤N (AccumulatedCRi) ;

CRmin ← min1≤i≤N (AccumulatedCRi) ;

if CRmax − CRmin ≥ threshold then

Rotate application’s SM subset by 1 ;

∀i : 1 ≤ i ≤ N , clear AccumulatedCRi ;

else

Schedule round-robin to current subset ;

end

end

Algorithm 2: Monitoring-aware Scheduling

148

B
P
_
M

B
P
_
P

B
P
_
N

W

B
P
_
G

H
3
D

_
M

H
D

_
P

H
3
D

_
N

W

H
3
D

_
G

P
F
_
M

P
F
_
P

P
F
_
N

W

P
F
_
G

H
S
_
M

H
S
_
P

H
S
_
N

W

H
S
_
G

g
e
o
_
m

e
a
n0.5

0.6

0.7

0.8

0.9

1

1.1

Baseline
Fixed
Monitoring-
Aware
Optimal

C
o
n
s
u
m

p
ti
o
n
 R

a
te

Figure 7.5: Consumption Rate of Rodina Benchmarks

policy does not take into account SM partitioning with the goal of maximizing consumption

rate balance across SMs. This scheme essentially serves are our target goal for long-term

reliability.

7.5 Numerical results and discussions

To evaluate our long-term reliability GPU approach, we utilize various benchmarks

from the Rodinia [135] benchmark suite. The consumption rate of 16 Rodinia benchmarks

was shown previously in figure 7.1. We group the Rodinia benchmarks into two categories;

high consumption and low consumption. Our scheduler was tested using a subset of these

groups which can be seen in Table 7.2. We selected 8 benchmarks consisting of the 4 highest

and lowest consumption rates. We then mix the benchmarks from each group to evaluate

a multitasked GPU running a high consumption and a low consumption application. This

resulted in 16 mixes. Since each benchmark will run for different amounts of time, we

repeat the short running job until the long running job completes, similar to [54]. As

149

Table 7.2: Benchmarks separated into Consumption Groups

High Consumption Low Consumption

Backprop (BP) Myocyte (M)

Hotspot3D (H3D) Particlefilter (P)

Pathfinder (PF) NW (NW)

Hotspot (HS) Gaussian (G)

mentioned previously, our work does not perform SM partitioning among applications,

rather, our goal is to minimize the consumption rate given a partition. For our mixes,

we simply allocate 8 SMs for the higher consumption application and 7 SMs for the lower

consumption application. In section 7.5.2, we explore how our proposed techniques fair

under different partitioning.

7.5.1 Fixed Scheduling Performance

Figure 7.6 shows the results of our fixed scheduling policy. The x-axis shows the

number of rotations triggered using fixed intervals, and the y-axis shows the consumption

rate, normalized to the baseline. In this experiment, we choose the period to trigger as

the total runtime of the longer application, divided by the x-axis. This figure demonstrates

both the effectiveness of a fixed scheduling technique along with the sensitivity to the period

length. The right-most data points show the optimal consumption rate with the given mix.

Using our 16 mixed benchmarks, as shown in figure 7.6, when the frequency of rotations

increase (and the rotation period decreases), the consumption rate of each benchmark gets

150

Figure 7.6: Normalized Consumption Rate with Fixed Scheduling Policy

closer to the optimal. Figure 7.5 shows that the fixed scheduler geometric mean has a 17.9%

average improvement over the baseline.

7.5.2 Monitoring-Aware Scheduling Evaluation

In figure 7.5 we show the results of the baseline, fixed scheduling, monitor-aware

scheduling, and optimal. Here we select a rotation threshold of 7 for our monitor-aware

scheduler. We will later present a sensitivity analysis with our threshold value. Here, our

monitoring-aware scheduler is able to reduce the consumption rate by 30%. Our scheme is

able to come within 99% of the optimal scheme, which is able to reduce consumption rate

by 31%.

7.5.3 Sensitivity to SM partitioning

Table 7.3 shows the consumption rate normalized to baseline of a Backprop-

Myocyte mixed workload. The top row shows the ratio of SMs provisioned for Backprop

151

and Myocyte, respectively. This table shows several notable trends. First, reliability-aware

scheduling is most effective when the number of SMs allocated to each application is rela-

tively balanced, with a 11 to 4 ratio at most. Furthermore, it is also more effective if the

low consumption rate application has more SMs allocated. This means that there are more

lightly used SMs to balance out the heavier used application across. The trends highlighted

here can further be included in SM partitioning optimizations to also account for reliabil-

ity. In addition, this table utilized the fixed scheduling policy in order to demonstrate the

variance in benefits due to the static policy. In many of the scenarios, the consumption

rate impact is variable as the fixed rotation cycle length decrease. This further supports

the need for a dynamic reliability monitoring aware scheduler.

Figure 7.7: Sensitivity to rotation threshold for migration-aware scheduling

7.5.4 Threshold Exploration

In figure 7.7 we show the results of varying the rotation threshold with the migration-

aware scheduler. The x-axis shows the threshold value and the y-axis show the consumption

152

Table 7.3: Sensitivity to SM partition for Backprop-Myocyte

1:14 2:13 3:12 4:11 5:10 6:9 7:8

optimal 1.2079 1.1863 1.3825 1.3743 0.8122 0.6183 0.6796

16 1.2048 1.1587 1.2895 1.3066 0.8436 0.6796 0.6119

8 1.4017 1.4443 1.6696 1.6558 1.0514 0.8485 0.7456

4 1.2156 1.3135 1.5632 1.6358 1.0998 0.9383 0.8923

2 0.9252 0.845 1.1264 1.4427 1.1471 0.9082 0.7568

1 0.9982 0.9466 0.8854 1.2234 1.1695 1.0491 0.8823

baseline 1 1 1 1 1 1 1

8:7 9:6 10:5 11:4 12:3 13:2 14:1

optimal 0.7669 0.6052 0.6121 0.5795 0.9831 1.0713 1.0238

16 0.7816 0.6497 0.6457 0.6443 0.9935 1.0884 1.0146

8 0.9007 0.7055 0.6987 0.6482 0.9895 1.1402 1.0661

4 1.0182 0.7943 0.8283 0.807 1.1017 1.1492 1.0587

2 1.03 0.8453 0.784 0.7849 1.0197 0.9904 0.9267

1 1.0128 0.9384 0.9416 0.8606 1.0728 1.0239 0.9087

baseline 1 1 1 1 1 1 1

153

rate normalized to the baseline. A smaller threshold leads to more rotations, therefore,

leading to more balanced wear across the SMs. In general, as the threshold increases, the

consumption rate also increases due to less rotation. The consumption rate typically begins

increasing with a threshold value of 10. This value means that we will trigger rotation when

the maximum and minimum consumption rate differs by 10 times the nominal consumption

rate.

7.6 Summary

This chapter presented long-term reliability management for GPU architectures

using spatial multitasking. We focused on electromigration (EM)-induced long-term fail-

ure of the GPU’s power delivery network. A distributed power delivery network model

at functional unit granularity were developed and used for our EM analysis in the GPU

architecture. We considered a recently proposed physics-based EM reliability model and

the EM-induced time-to-failure (TTF) at the GPU system level is modeled as a reliability

resource. For GPU architecture, we majorly focused on spatial multitasking, which allows

GPU resources to be partitioned among multiple applications simultaneously, which was

recently introduced by Nvidia in their Pascal architecture. We found that the existing

spatial multitasking scheduling can utilize GPU resources fully regarding performance, not

reliability. We implemented long-term reliability-aware spatial multitasking in GPGPU-sim

and compare it to the existing scheduling.

154

Chapter 8

Conclusion

Technology scaling has led to further processor integration, and reliability has

become a more design challenge for the nanometer VLSI, especially more serious in 7nm

technology. It is expected that future chips will show signs of reliability-induced aging much

faster than the previous generations. Among of many reliability effects, electromigration

(EM)-induced reliability has become a major design constraint due to the aggressive tran-

sistor and interconnect scaling and increasing power density. In this dissertation, I have

developed many different new system-level EM-induced dynamic reliability managements

from embedded system to high-performance systems. In this chapter, the main contribu-

tions of the thesis are summarized.

155

8.1 Summary of research contributions

8.1.1 Reliability-aware lifetime optimization for real-time embedded sys-

tems

Chapter 3 described new lifetime task optimization techniques for real-time embed-

ded processors considering the electromigration-induced reliability. The new approach was

based on a recently proposed physics-based electromigration (EM) model for more accurate

EM assessment of a power grid network at the chip level. I applied the dynamic voltage and

frequency scaling (DVFS) (by selecting the performance states or p-states of the tasks to

manage the power) and thus the lifetime of the processor running different tasks over their

periods. I considered both single-rate and multi-rate embedded systems with preemption.

I explored to problem formulations and found the corresponding solutions with different

solution qualities and computational costs. Experimental results have shown that for low

utilization systems, significant reliability improvement can be achieved with even smaller

power consumption than existing reliability-ignore scheduling method. I also compared the

results from the two formulations and showed that the solutions given by the constrained

nonlinear optimization method is close to the ones given by the MILP-based method, which

is considered to be an optimal solution with regard to the proposed EM-induced reliability

model and assumptions. The proposed methods can lead to near Pareto’s front trade-off

between the performance and the lifetime compared to the existing task scheduling method.

156

8.1.2 Learning-based reliability management and energy optimization for

mary-core dark silicon processors

Chapter 4 presented a new energy and lifetime optimization technique for emerging

dark silicon manycore microprocessors considering hard and soft errors. The new approach

was based on a newly proposed physics-based electromigration (EM) reliability model to

predict the EM reliability of full-chip power grid networks for hard error. DVFS-aware soft-

error rate (SER) model and the Sum Of the Failure Rates (SOFR) method were employed

for system-level soft-error model, which has been widely used to estimate microprocessor

level soft errors. I employed both dynamic voltage and frequency scaling (DVFS) and dark

silicon core state using On/Off pulsing action as the two control knobs. The impact on

DVFS for hard and soft errors was investigated. I focused on two optimization techniques for

improving lifetime and reducing energy. To optimize lifetime, we first applied the adaptive

Q-learning based method, which was suitable for dynamic runtime operation as it was able

to provide cost-effective yet good solutions. The second lifetime optimization approach

was the mixed-integer linear programming (MILP) method, which typically yields better

solutions but at higher computational costs. To optimize the energy of a dark silicon

chip, we applied the Q-learning reinforcement learning method, which was suitable for

our reliability management for the energy optimization considering hard and soft errors.

Experimental results on a 64-core dark silicon chip showed that proposed methods work well

for performance and lifetime optimizations considering the both soft and hard reliability

constraints.

157

8.1.3 EM Recovery-aware dynamic reliability management for near-threshold

dark silicon processors

In Chapter 5, I developed a new dynamic reliability management (DRM) tech-

niques for emerging near-threshold dark silicon manycore microprocessors considering elec-

tromigraion (EM) reliability. To leverage the EM recovery effects, which was ignored in

the past, at the system level, we developed a new equivalent DC current model to consider

recovery effects for general time-varying current waveforms so that existing compact EM

model can be applied. The new EM current model allows EM recovery effects to be effec-

tively considered at the system level for the first time. To leverage the EM recovery effects,

we considered the energy optimization problem for dark silicon manycore processors with

Near-Threshold Voltage (NTV) capabilities considering EM reliability. I showed that the

on-chip power consumptions have different impact on reliability. The resulting optimiza-

tion problem was solved with State-Action-Reward-State-Action (SARSA) reinforcement

learning algorithm to optimization the near-threshold dark silicon cores’ voltage policy to

minimize energy considering reliability. Experimental results on a 64-core near-threshold

dark silicon processor showed that the new equivalent EM DC currents was able to fully

exhibit the recovery effects at the system level so that trade-off between EM lifetime and

energy/performance were easily made. I further showed that the proposed learning-based

energy optimization can effectively manage and optimize energy subject to reliability, given

power budget and performance limits. When the recovery effects were considered, the new

optimization method was able to achieve 8.6X longer lifetime at the costs of 2.0X more

energy and 3.3X more performance degradation.

158

8.1.4 Cross-layer modeling and optimization for EM-induced reliability

in data center

In Chapter 6, I developed a novel cross-layer approach to optimizing the energy

of a datacenter subject to long-term reliability and performance constraints. I considered

a recently proposed physics-based electromigration (EM) reliability model to predict the

EM reliability of full-chip power grid networks for long-term failures. I showed how the

new physics-based dynamic EM model at the physic level can be abstracted at the system

level and even at in a datacenter level. To speed up the online optimization for energy for

datacenter, we investigated a new combined datacenter power and reliability model using

a learning based approach in which a feed-forward neural network (FNN) was trained to

predict energy and long term reliability for each processor under datacenter scheduling and

workloads. To optimize the energy and reliability of a datacenter model, we applied the

Q-learning based reinforcement learning method. Experimental results showed that the

proposed compact models for the datacenter system trained with different workloads under

different cluster power modes and scheduling policies were able to build accurate energy and

lifetime. Moreover, the proposed optimization method effectively managed and optimized

datacenter energy subject to reliability, given power budget and performance.

8.1.5 Long-term reliability management for multitasking GPGPUs

Lastly, in Chapter 7, I developed long-term reliability management for GPU archi-

tectures using spatial multitasking. I focused on electromigration (EM)-induced long-term

failure of the GPU’s power delivery network. A distributed power delivery network model

159

at functional unit granularity were developed and used for our EM analysis in the GPU

architecture. I considered a recently proposed physics-based EM reliability model and the

EM-induced time-to-failure (TTF) at the GPU system level was modeled as a reliability

resource. For GPU architecture, we majorly focused on spatial multitasking, which al-

lows GPU resources to be partitioned among multiple applications simultaneously, which

was recently introduced by Nvidia in their Pascal architecture. I found that the existing

spatial multitasking scheduling can utilize GPU resources fully regarding performance, not

reliability. I implemented long-term reliability-aware spatial multitasking in GPGPU-sim

and compare it to the existing scheduling. I evaluated several cases for partitioning GPU

streaming multiprocessors (SMs) among parallel applications and find our proposed spatial

multitasking scheduling shows a reliability improvement of up to 30%.

160

Bibliography

[1] “International technology roadmap for semiconductors (ITRS) interconnect, 2015 edi-
tion,” 2015. http://public.itrs.net.

[2] X. Huang, V. Sukharev, J.-H. Choy, M. Chew, T. Kim, and S. X.-D. Tan, “Electro-
migration assessment for power grid networks considering temperature and thermal
stress effects,” Integration, the VLSI Journal, vol. 55, pp. 307 – 315, 2016.

[3] C. Cook, Z. Sun, T. Kim, and S. X.-D. Tan, “Finite difference time domain analysis
of stress evolution and void growth for general interconnect wires,” in TECHCON,
Sept. 2016.

[4] X. Huang, A. Kteyan, X. Tan, and V. Sukharev, “Physics-based electromigration
models and full-chip assessment for power grid networks,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 35, pp. 1848–1861, Nov. 2016.

[5] “Exascale computing initiative update, 2012 united states, department of energy,”
2012. https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/aug12/

2012-ECI-ASCAC-v4.pdf.

[6] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels, and F. H.
Streitz, “Extending stability beyond cpu millennium: a micron-scale atomistic simu-
lation of kelvin-helmholtz instability,” in Supercomputing, 2007. SC ’07. Proceedings
of the 2007 ACM/IEEE Conference on, pp. 1–11, Nov 2007.

[7] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Scaling effects on neutron-
induced soft error in SRAMs down to 22nm process,” in Third Workshop on Depend-
able and Secure Nanocomputing, 2009.

[8] “Critical Reliability Challenges for The International Technology Roadmap for Semi-
conductors (ITRS),” 2003. In International Sematech Technology Transfer Document
03024377A-TR, 2003.

[9] “International technology roadmap for semiconductors (ITRS), 2015 edition,” 2015.
http://public.itrs.net.

161

[10] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Ramp: A model for Reliability Aware
Microprocessor Design,” IBM Research Report, 2003.

[11] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime reliability-
aware microprocessors,” in Computer Architecture, 2004. Proceedings. 31st Annual
International Symposium on, pp. 276–287, 2004.

[12] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-aware scheduling for
periodic real-time tasks,” Computers, IEEE Transactions on, vol. 53, pp. 584–600,
May 2004.

[13] J.-J. Chen and T.-W. Kuo, “Multiprocessor energy-efficient scheduling for real-time
tasks with different power characteristics,” in Parallel Processing, 2005. ICPP 2005.
International Conference on, pp. 13–20, June 2005.

[14] J.-J. Chen and T.-W. Kuo, “Procrastination determination for periodic real-time tasks
in leakage-aware dynamic voltage scaling systems.,” in Computer-Aided Design, 2007.
ICCAD 2007. IEEE/ACM International Conference on, pp. 289–294, Nov 2007.

[15] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded
operating systems,” in Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, SOSP ’01, (New York, NY, USA), pp. 89–102, ACM, 2001.

[16] S. Saewong and R. Rajkumar, “Practical voltage-scaling for fixed-priority rt-systems,”
in Real-Time and Embedded Technology and Applications Symposium, 2003. Proceed-
ings. The 9th IEEE, pp. 106–114, May 2003.

[17] C. Scordino and G. Lipari, “A resource reservation algorithm for power-aware schedul-
ing of periodic and aperiodic real-time tasks,” Computers, IEEE Transactions on,
vol. 55, pp. 1509–1522, Dec 2006.

[18] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power management and
fault recovery in real-time systems,” Computers, IEEE Transactions on, vol. 53,
pp. 217–231, Feb 2004.

[19] O. Unsal, I. Koren, and C. Krishna, “Towards energy-aware software-based fault
tolerance in real-time systems,” in Low Power Electronics and Design, 2002. ISLPED
’02. Proceedings of the 2002 International Symposium on, pp. 124–129, 2002.

[20] L. Huang, F. Yuan, and Q. Xu, “On Task Allocation and Scheduling for Lifetime Ex-
tension of Platform-Based MPSoC Designs,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, no. 12, pp. 2088–2099, 2011.

[21] T. Simunic, K. Mihic, and G. Micheli, Optimization of Reliability and Power Con-
sumption in Systems on a Chip, vol. 3728 of Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[22] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, “Reliability modeling and manage-
ment in dynamic microprocessor-based systems,” in Proc. Design Automation Conf.
(DAC), pp. 1057–1060, 2006.

162

[23] M. Basoglu, M. Orshansky, and M. Erez, “NBTI-aware DVFS: A new approach to
saving energy and increasing processor lifetime,” Low-Power Electronics and Design
(ISLPED), 2010 ACM/IEEE International Symposium on, pp. 253–258, 2010.

[24] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini, “Workload and
user experience-aware dynamic reliability management in multicore processors,” in
Proceedings of the 50th Annual Design Automation Conference, DAC ’13, (New York,
NY, USA), pp. 2:1–2:6, ACM, 2013.

[25] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini, “A linux-governor
based dynamic reliability manager for android mobile devices,” in 2014 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pp. 1–4, March 2014.

[26] A. Calimera, E. Macii, and M. Poncino, “Energy-optimal SRAM supply voltage
scheduling under lifetime and error constraints,” in Design Automation Conference
(DAC), 2013 50th ACM / EDAC / IEEE, pp. 1–6, 2013.

[27] R. Dennard, F. Gaensslen, H. Yu, V. Rideout, E. Bassous, and A. LeBlanc, “Design
of ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of
Solid-State Circuits, vol. 9, pp. 256–268, October 1974.

[28] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, ISCA ’11, (New York, NY, USA),
pp. 365–376, ACM, 2011.

[29] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer, vol. 41,
pp. 33–38, July 2008.

[30] K. Chakraborty, Over-provisioned Multicore Systems. PhD thesis, University of
Wisconsin-Madison, Madison, WI, USA, 2008. AAI3327881.

[31] S. Cho and R. Melhem, “Corollaries to amdahl’s law for energy,” IEEE Comput.
Archit. Lett., vol. 7, pp. 25–28, Jan. 2008.

[32] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Maestro: Orchestrating lifetime re-
liability in chip multiprocessors,” in Proceedings of the 5th International Conference
on High Performance Embedded Architectures and Compilers, HiPEAC’10, (Berlin,
Heidelberg), pp. 186–200, Springer-Verlag, 2010.

[33] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and B. Veeravalli,
“Reinforcement learning-based inter- and intra-application thermal optimization for
lifetime improvement of multicore systems,” in Proceedings of the 51st Annual Design
Automation Conference, DAC ’14, (New York, NY, USA), pp. 170:1–170:6, ACM,
2014.

[34] T. Kim, X. Huang, V. S. H.-B. CHen, and S. X.-D. Tan, “Learning-based dynamic
reliability management for dark silicon processor considering EM effects,” in Proc.
Design, Automation and Test In Europe. (DATE), Mar. 2016.

163

[35] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using reinforcement
learning,” in Proceedings of the 2009 International Conference on Computer-Aided
Design, ICCAD ’09, (New York, NY, USA), pp. 461–467, ACM, 2009.

[36] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia applications using
machine learning,” in Proceedings of the 48th Design Automation Conference, DAC
’11, (New York, NY, USA), pp. 95–100, ACM, 2011.

[37] H. Shen, J. Lu, and Q. Qiu, “Learning based dvfs for simultaneous temperature,
performance and energy management,” in Quality Electronic Design (ISQED), 2012
13th International Symposium on, pp. 747–754, March 2012.

[38] R. Ye and Q. Xu, “Learning-based power management for multi-core processors via
idle period manipulation,” in Design Automation Conference (ASP-DAC), 2012 17th
Asia and South Pacific, pp. 115–120, Jan 2012.

[39] “International technology roadmap for semiconductors (ITRS), 2014 update,” 2014.
http://public.itrs.net.

[40] C. Prasad, L. Jiang, D. Singh, M. Agostinelli, C. Auth, P. Bai, T. Eiles, J. Hicks,
C. Jan, K. Mistry, S. Natarajan, B. Niu, P. Packan, D. Pantuso, I. Post, S. Ramey,
A. Schmitz, B. Sell, S. Suthram, J. Thomas, C. Tsai, and P. Vandervoorn, “Self-heat
reliability considerations on intel’s 22nm tri-gate technology,” in Reliability Physics
Symposium (IRPS), 2013 IEEE International, pp. 5D.1.1–5D.1.5, April 2013.

[41] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel, “Towards interde-
pendencies of aging mechanisms,” in 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 478–485, Nov 2014.

[42] R. M. Swanson and J. D. Meindl, “Ion-implanted complementary mos transistors in
low-voltage circuits,” IEEE Journal of Solid-State Circuits, vol. 7, pp. 146–153, Apr
1972.

[43] M. Shafique, S. Garg, T. Mitra, S. Parameswaran, and J. Henkel, “Dark silicon as
a challenge for hardware/software co-design: Invited special session paper,” in Pro-
ceedings of the 2014 International Conference on Hardware/Software Codesign and
System Synthesis, CODES ’14, (New York, NY, USA), pp. 13:1–13:10, ACM, 2014.

[44] “2013 cost of data center outages,” 2013. http://www.emersonnetworkpower.com.

[45] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large disk drive
population,” in Proceedings of the 5th USENIX Conference on File and Storage Tech-
nologies, FAST ’07, (Berkeley, CA, USA), pp. 2–2, USENIX Association, 2007.

[46] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild: A large-
scale field study,” in Proceedings of the Eleventh International Joint Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’09, (New York,
NY, USA), pp. 193–204, ACM, 2009.

164

[47] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized
computer,” in Proceedings of the 34th Annual International Symposium on Computer
Architecture, ISCA ’07, (New York, NY, USA), pp. 13–23, ACM, 2007.

[48] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and W. Kramer,
“Lessons learned from the analysis of system failures at petascale: The case of blue
waters,” in Proceedings of the 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN ’14, (Washington, DC, USA), pp. 610–
621, IEEE Computer Society, 2014.

[49] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell, “Reliability lessons
learned from GPU experience with the Titan supercomputer at Oak Ridge leadership
computing facility,” Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC ’15, pp. 1–12, 2015.

[50] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale assessment of
real-world error rates in GPGPU,” in CCGrid 2010 - 10th IEEE/ACM International
Conference on Cluster, Cloud, and Grid Computing, pp. 691–696, IEEE, 2010.

[51] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of GPUs parallelism
management on safety-critical and HPC Applications reliability,” in Proceedings of the
International Conference on Dependable Systems and Networks, pp. 455–466, IEEE,
jun 2014.

[52] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira,
D. Londo, N. Debardeleben, P. Navaux, L. Carro, and A. Bland, “Understanding
GPU errors on large-scale HPC systems and the implications for system design and
operation,” in 2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture, HPCA 2015, pp. 331–342, IEEE, feb 2015.

[53] P. Rech, L. Carro, N. Wang, T. Tsai, S. Kumar, S. Hari, and S. W. Keckler, “Mea-
suring the Radiation Reliability of SRAM Structures in GPUs Designed for HPC,”
2014.

[54] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case for gpgpu
spatial multitasking,” in Proceedings of the 2012 IEEE 18th International Symposium
on High-Performance Computer Architecture, HPCA ’12, (Washington, DC, USA),
pp. 1–12, IEEE Computer Society, 2012.

[55] S. P. Hau-Riege and C. V. Thompson, “Experimental characterization and modeling
of the reliability of interconnect trees,” Journal of Applied Physics, vol. 89, pp. 601–
609, January 2001.

[56] J. Leng, Y. Zu, M. Rhu, M. Gupta, and V. J. Reddi, “Gpuvolt: Modeling and charac-
terizing voltage noise in gpu architectures,” in Proceedings of the 2014 International
Symposium on Low Power Electronics and Design, ISLPED ’14, (New York, NY,
USA), pp. 141–146, ACM, 2014.

165

[57] X. Huang, T. Yu, V. Sukharev, and S. X.-D. Tan, “Physics-based electromigration
assessment for power grid networks,” in Proc. Design Automation Conf. (DAC), June
2014.

[58] S. Biswas, M. Tiwari, T. Sherwood, L. Theogarajan, and F. T. Chong, “Fighting
fire with fire: modeling the datacenter-scale effects of targeted superlattice thermal
management,” in Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, pp. 331–340, IEEE, 2011.

[59] X. Huang, A. Kteyan, X. Tan, and V. Sukharev, “Physics-based Electromigration
Models and Full-chip Assessment for Power Grid Networks,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Feb. 2016. DOI.

[60] J. R. Black, “Electromigration-A Brief Survey and Some Recent Results,” IEEE
Trans. on Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.

[61] I. A. Blech, “Electromigration in Thin Aluminum Films on Titanium Nitride,” Journal
of Applied Physics, vol. 47, no. 4, pp. 1203–1208, 1976.

[62] M. A. Korhonen, P. Borgesen, K. N. Tu, and C. Y. Li, “Stress Evolution Due to
Electromigration in Confined Metal Lines,” Journal of Applied Physics, vol. 73, no. 8,
pp. 3790–3799, 1993.

[63] V. Sukharev, “Beyond Black’s Equation: Full-Chip EM/SM Assessment in 3D IC
Stack,” Microelectronic Engineering, vol. 120, pp. 99–105, 2014.

[64] Z. Suo, Reliability of Interconnect Structures, vol. 8 of Comprehensive Structural In-
tegrity. Amsterdam: Elsevier, 2003.

[65] J. He and Z. Suo, “Statistics of electromigration lifetime analyzed using a deterministic
transient model,” AIP Conference Proceedings, vol. 741, no. 1, pp. 15–26, 2004.

[66] S. Chatterjee, M. Fawaz, and N. F. Najm, “Redundancy-Aware Electromigration
Checking for Mesh Power Grids,” in Proc. Int. Conf. on Computer Aided Design
(ICCAD), 2013.

[67] Z. Lu, W. Huang, J. Lach, M. Stan, and K. Skadron, “Interconnect lifetime prediction
under dynamic stress for reliability-aware design,” in Proc. Int. Conf. on Computer
Aided Design (ICCAD), pp. 327–334, IEEE, November 2004.

[68] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Springer Publishing Company, Incorporated, 2nd ed., 2010.

[69] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba, “Advanced configuration
and power interface specification 5.0a,” 2013. http://www.acpi.info.

[70] K.Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan,
“Temperature-aware microarchitecture,” in International Symposium on Computer
Architecture, pp. 2–13, 2003.

166

[71] R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and
Product Optimization Using Designed Experiments. Wiley-Interscience, 2002.

[72] Intel, “Enhanced intel speedstep technology for the intel pentium m processor,” 2004.
http://download.intel.com/design/network/papers/30117401.pdf.

[73] L. Ingber, “Adaptive simulated annealing (asa): Lessons learned,” Control and cyber-
netics, vol. 25, pp. 33–54, 1996.

[74] J. W. McPherson, “Time Dependent Dielectric Breakdown Physics - Models Revis-
ited,” Microelectronics Reliability, vol. 52, no. 9, pp. 1753–1760, 2012.

[75] A. K. Coskun, R. Strong, D. M. Tullsen, and T. Simunic Rosing, “Evaluating the
impact of job scheduling and power management on processor lifetime for chip mul-
tiprocessors,” in Proceedings of the Eleventh International Joint Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS ’09, (New York, NY,
USA), pp. 169–180, ACM, 2009.

[76] IBM, “Ilog cplex optimizer,” 2015. http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer.

[77] E. Klotz and A. M. Newman, “Practical guidelines for solving difficult mixed integer
linear programs,” Surveys in Operations Research and Management Science, vol. 18,
no. 1, pp. 18–32, 2013.

[78] M. Salehi, M. K. Tavana, S. Rehman, F. Kriebel, M. Shafique, A. Ejlali, and J. Henkel,
“Drvs: Power-efficient reliability management through dynamic redundancy and volt-
age scaling under variations,” in Proceedings of the 2005 international symposium on
Low power electronics and design, (New York, NY, USA), ACM, 2015.

[79] A. Das, A. Kumar, and B. Veeravalli, “Reliability-driven task mapping for lifetime
extension of networks-on-chip based multiprocessor systems,” in Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’13, (San Jose, CA,
USA), pp. 689–694, EDA Consortium, 2013.

[80] “Failure mechanisms and models for semiconductor devices, JEDEC publication
JEP122C .” http://www.jedec.org.

[81] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management on reliability
in real-time embedded systems,” in Proceedings of the 2004 IEEE/ACM International
Conference on Computer-aided Design, ICCAD ’04, (Washington, DC, USA), pp. 35–
40, IEEE Computer Society, 2004.

[82] L. Tan, S. Song, P. Wu, Z. Chen, R. Ge, and D. Kerbyson, “Investigating the interplay
between energy efficiency and resilience in high performance computing,” in Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE International, pp. 786–
796, May 2015.

167

[83] Y. Zhang, K. Chakrabarty, and V. Swaminathan, “Energy-aware fault tolerance
in fixed-priority real-time embedded systems,” in Computer Aided Design, 2003.
ICCAD-2003. International Conference on, pp. 209–213, Nov 2003.

[84] J. Srinivasan, S. V. Adve, P. Bose, J. Rivers, and C.-K. Hu, “Ramp: A model for
reliability aware microprocessor design,” IBM, Poughkeepsie, NY, 2003.

[85] X. Li, S. Adve, P. Bose, and J. Rivers, “Architecture-level soft error analysis: Ex-
amining the limits of common assumptions,” in Dependable Systems and Networks,
2007. DSN ’07. 37th Annual IEEE/IFIP International Conference on, pp. 266–275,
June 2007.

[86] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A systematic
methodology to compute the architectural vulnerability factors for a high-performance
microprocessor,” in Proceedings of the 36th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 36, (Washington, DC, USA), pp. 29–, IEEE
Computer Society, 2003.

[87] A. Dixit and A. Wood, “The impact of new technology on soft error rates,” in 2011
International Reliability Physics Symposium, pp. 5B.4.1–5B.4.7, April 2011.

[88] Y. Cao, Predictive technology model for robust nanoelectronic design. Springer Science
& Business Media, 2011.

[89] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[90] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge,
MA, USA: MIT Press, 1st ed., 1998.

[91] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of stochastic iterative
dynamic programming algorithms,” Neural Computation, vol. 6, pp. 1185–1201, Nov.
1994.

[92] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulations,” in International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC),
pp. 52:1–52:12, Nov. 2011.

[93] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News,
vol. 39, pp. 1–7, Aug. 2011.

[94] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s general
execution-driven multiprocessor simulator (gems) toolset,” SIGARCH Comput. Ar-
chit. News, vol. 33, pp. 92–99, Nov. 2005.

168

[95] K. Ghose and et al, “Marssx86: Micro architectural systems simulators,” in ISCA
Tutorial Session, 2012.

[96] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C. Hoe,
“Simflex: Statistical sampling of computer system simulation,” IEEE Micro, vol. 26,
pp. 18–31, July 2006.

[97] J. H. Ahn, S. Li, O. Seongil, and N. Jouppi, “Mcsima+: A manycore simulator with
application-level+ simulation and detailed microarchitecture modeling,” in Perfor-
mance Analysis of Systems and Software (ISPASS), 2013 IEEE International Sym-
posium on, pp. 74–85, April 2013.

[98] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Char-
acterization and architectural implications,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’08, (New
York, NY, USA), pp. 72–81, ACM, 2008.

[99] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-2 programs:
characterization and methodological considerations,” in Computer Architecture, 1995.
Proceedings., 22nd Annual International Symposium on, pp. 24–36, June 1995.

[100] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity of solving
markov decision problems,” in Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence, UAI’95, (San Francisco, CA, USA), pp. 394–402, Morgan
Kaufmann Publishers Inc., 1995.

[101] K. He, X. Huang, and S. X.-D. Tan, “EM-Based on-chip aging sensor for detection
and prevention of counterfeit and recycled ICs,” in Proc. Int. Conf. on Computer
Aided Design (ICCAD), Nov. 2015.

[102] M. Berktold and T. Tian, “Cpu monitoring with dts/peci,” 2010.
http://www.intel.com/content/www/us/en/embedded/testing-and-validation/cpu-
monitoring-dts-peci-paper.html.

[103] W. Wu, L. Jin, J. Yang, P. Liu, and S. X.-D. Tan, “A systematic method for functional
unit power estimation in microprocessors,” in Proc. Design Automation Conf. (DAC),
pp. 554–557, June 2006.

[104] G. Dhiman and T. S. Rosing, “Dynamic power management using machine learning,”
in Proceedings of the 2006 IEEE/ACM International Conference on Computer-aided
Design, ICCAD ’06, (New York, NY, USA), pp. 747–754, ACM, 2006.

[105] H. Jung and M. Pedram, “Supervised learning based power management for multicore
processors,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, pp. 1395–1408, Sept 2010.

[106] Z. Chen and D. Marculescu, “Distributed reinforcement learning for power limited
many-core system performance optimization,” in Proceedings of the 2015 Design, Au-
tomation & Test in Europe Conference & Exhibition, DATE ’15, (San Jose, CA, USA),
pp. 1521–1526, EDA Consortium, 2015.

169

[107] M. Sridharan and G. Tesauro, Multi-agent Q-learning and Regression Trees for Au-
tomated Pricing Decisions, pp. 217–234. Boston, MA: Springer US, 2002.

[108] G. Tesauro and J. O. Kephart, “Pricing in agent economies using multi-agent q-
learning,” Autonomous Agents and Multi-Agent Systems, vol. 5, no. 3, pp. 289–304,
2002.

[109] T. Kolpe, A. Zhai, and S. Sapatnekar, “Enabling improved power management in
multicore processors through clustered dvfs,” in Proc. Design, Automation and Test
In Europe. (DATE), pp. 1–6, March 2011.

[110] V. Sukharev, X. Huang, and S. X.-D. Tan, “Electromigration Induced Stress Evolu-
tion Under Alternate Current and Pulse Current Loads,” Journal of Applied Physics,
vol. 118, pp. 034504–1–034504–10, 2015.

[111] X. Huang, V. Sukharev, T. Kim, and S. X.-D. Tan, “Electromigration recovery model-
ing and analysis under time-depdendent current and temperature stressing,” in Proc.
Asia South Pacific Design Automation Conf. (ASPDAC), pp. 244–249, 2016.

[112] K.-D. Lee, “Electromigration Recovery and Short Lead Effect under Bipolar- and
Unipolar-Pulse Current,” in IEEE International Reliability Physics Symposium
(IRPS), pp. 6B.3.1–6B.3.4, April 2012.

[113] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-
threshold computing: Reclaiming moore’s law through energy efficient integrated cir-
cuits,” Proceedings of the IEEE, vol. 98, pp. 253–266, Feb 2010.

[114] C. Silvano, G. Palermo, S. Xydis, and I. Stamelakos, “Voltage island management
in near threshold manycore architectures to mitigate dark silicon,” in 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1–6, March 2014.

[115] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R. Stan,
“HotSpot: A compact thermal modeling methodology for early-stage VLSI design,”
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 14, pp. 501–513,
May 2006.

[116] S. Li, J. H. Ahn, R. D. Strong, B. J. B, D. M. Tullsen, and N. P. Jouppi, “Mcpat: an
integrated power, area, and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 469–480, ACM, 2009.

[117] G. A. Rummery and M. Niranjan, On-Line Q-learning using connectionist systems.
University of Cambridge, Department of Engineering, 1994.

[118] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, “Near-
threshold voltage (ntv) design: Opportunities and challenges,” in Proceedings of
the 49th Annual Design Automation Conference, DAC ’12, (New York, NY, USA),
pp. 1153–1158, ACM, 2012.

170

[119] S. Wang and J.-J. Chen, “Thermal-aware lifetime reliability in multicore systems,” in
Quality Electronic Design (ISQED), 2010 11th International Symposium on, pp. 399–
405, March 2010.

[120] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Architectural reliability: Lifetime
reliability characterization and management of many-core processors,” Computer Ar-
chitecture Letters, vol. PP, no. 99, pp. 1–1, 2014.

[121] D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simulation infrastructure for
data center systems,” in Performance Analysis of Systems and Software (ISPASS),
2012 IEEE International Symposium on, 2012.

[122] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch, “Power
management of online data-intensive services,” in International Symposium on Com-
puter Architecture, 2011.

[123] D. Wong and M. Annavaram, “Implications of high energy proportional servers on
cluster-wide energy proportionality,” in Proceedings of the 19th IEEE International
Symposium on High Performance Computer Architecture, HPCA-19 ’14, 2014.

[124] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker,
“pfabric: Minimal near-optimal datacenter transport,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, (New York, NY, USA),
pp. 435–446, ACM, 2013.

[125] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[126] M. T. Heath, Scientific Computing: An Introductory Survey. McGraw-Hill, 1997.

[127] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Net-
works, 1989. IJCNN., International Joint Conference on, pp. 593–605, IEEE, 1989.

[128] www.spec.org/power ssj2008/, “Specpower ssj2008,” 2012.

[129] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in 2009 IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pp. 163–174, April 2009.

[130] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and
V. J. Reddi, “Gpuwattch: Enabling energy optimizations in gpgpus,” in Proceedings
of the 40th Annual International Symposium on Computer Architecture, ISCA ’13,
(New York, NY, USA), pp. 487–498, ACM, 2013.

[131] “HotSpot Program.” http://lava.cs.virginia.edu/HotSpot/versions.htm.

[132] NVIDIA, “GTX480 Architecture,” 2010. https://www.bjorn3d.com/2010/03/

nvidia-gtx-480-fermi-gf100/.

[133] NVIDIA, “Multi-process service,” tech. rep., May 2015.

171

[134] R. Thomas, N. Sedaghati, and R. Teodorescu, “Emergpu: Understanding and mitigat-
ing resonance-induced voltage noise in gpu architectures,” in 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 79–89,
April 2016.

[135] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Proceedings of the
2009 IEEE International Symposium on Workload Characterization (IISWC), IISWC
’09, (Washington, DC, USA), pp. 44–54, IEEE Computer Society, 2009.

172

