
UC Irvine
ICS Technical Reports

Title
Average case analysis of a k-CNF learning algorithm

Permalink
https://escholarship.org/uc/item/9tc777sg

Authors
Hirschberg, Daniel S.
Pazzani, Michael J.

Publication Date
1991-05-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9tc777sg
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

--~ verage Case Analysis
of a k-CNF Learning Algorith~-

Daniel S ... Jlirschberg.
dan@ics.uci.edu ,

Michael J. Pazzani
pazzani@ics.uci.edu

Technical Report 91-50

May 20, 1991

We would like to thank Dennis Kibler for helpful comments on this work and Caroline
Ehrlich for reviewing an earlier draft of this manuscript. This research is supported by a
National Science Foundation Grant IRI-8908260 and by the University of California,
Irvine through an allocation of computer time.

, 1

Average Case Analysis of a k-CNF Learning Algorithm

Daniel S. Hirschberg
Michael J. Pazzani

Department of lnfonnation and Computer Science
University of California, Irvine

IIVine, CA 92717 USA
(dan@ics.uci.edu)

(pazzani@ics. uci. edu)
(714)856-5888

Abstract

We present an approach to modeling the average case behavior of an algorithm for

learning Conjunctive Normal Form (CNF, i.e., conjunctions of disjunctions). Our

motivation is to predict the expected error of the learning algorithm as a function of the

number of training examples. We evaluate the average case model by comparing the

error predicted by the model to the actual error obtained by running the leaming

algorithm, and show how the analysis can lead to insight into the behavior of the

algorithm and the factors that affect the error.

1 lntroduction

A goal of research in machine leaming is to gain an understanding of the capabilities of learning

algorithms. Pazzani & Sarrett (1990) introduced a framework for average case analysis of machine

learning algorithms. Here, we show how this framework can be applied to create an average case

model of an algorithm for learning monotone k-CNF concepts and compare the expected behavior of

the algorithm to the observed behavior. We show how the analysis provides insight into factors that

affect the behavior of the k-CNF algorithm.

The framework attempts to unify the fonnal mathematical and the experimental approaches to

understanding the behavior of machine learning algorithms. In order to achieve this uni:fication, an

average case model is needed since experiments lead to findings on the average accuracy of an

algorithm.

In contrast, the probably approximately correct (PAC) learning model (e.g., Valiant, 1984;

Haussler, 1987) has a much different goal. The PAC model stipulates that a system has leamed a

concept if the system produces a hypothesis consistent with the training data and can guarantee with

high probability that its hypothesis is approximately correct. Approximately correct means that the

error {i.e., ratio of misclassi:fied examples to total examples classified by the hypothesis) is less than e.

The learning system is required to produce an approximately correct hypothesis with probability 1-8.

For a given class of concepts, the P AC model can be used to detennine an upper bound on the number

of training examples required to achieve an error of at moste with probability 1-o. The PAC model

has led to important insights about the capabilities of machine learning algorithms. For example, if

the hypothesis space searched by a learning algorithm is H and IHI is the size of the hypothesis space,

then a bound on the error of the algorithm after N training examples can be given by (Blumer,

Ehrenfeucht, Haussler, & Wannuth, 1989):

InÍ 1-) +In0~)
e ~-.. ~\8 __ _

N

1

The PAC model deals with distribution-free, worst-case analyses. As a consequence, the number of

examples required to guarantee learning a concept in the worst-case does not accurately reflect the

number of examples required to leam an accurate concept in practice. For example, Figure 1 plots the

upper bound on the error predicted by the P AC model (with o = 0.05) for any algorithm that searches a

5-CNF space when the training instances aré represented by 5 variables. The mean error for leaming

the concept a" (b ve) "(b v d ve) with the k-CNF algorithm (k = 5) proposed in Valiant (1984) is

shown as a function of the number of training examples. The error is averaged over 100 random

sequences of positive training examples. The error is obtained by testing the result of the leaming

algorithm on 1000 training examples at each point indicated. In addition, the expected error predicted

by the average case model presented here is shown.

1.0

0.8

5 0.6

s..
s..
~ 0.4

0.2

o.o
1 10 100 1000

Number of Examples

Figure 1: A comparison of the observed error of the k-CNF algorithm to the worst­
case error predicted by the PAC model and the average case error presented in this
paper. The bars are the 95% confidence interval around the mean error. The curves
are the bound predicted by the PAC model and expected error predicted by the
average case model. Note that to facilitate comparison a log scale is used for the
number of training examples.

The experimental result supports the average case model (since the expected error is within a

95% confidence interval around the observed mean error) and the PAC model (since the observed error

is always less than the upper bound on the error). There are a variety of reasons for the gap between

2

the obseived error and the result on the P AC model. The :first, and most important, reason is that the

P AC model is not intended to provide any insight into the mean, obseived error. Rather, the goal of

P AC leaming has been to provide an upper bound on the number of examples to leam a concept with

high probability to a given accuracy.

Second, the bounds predicted by the P AC model may be tightened somewhat. Buntine (1989) has

argued that the V aliant model can produce overly-conservative estimates of error and does not take

advantage of infonnation available in actual training sets.

Finally, the PAC model is a distribution-free model. In our simulation, there was a known, fixed

distribution of training examples. It may be possible to tighten the bounds by specializing the P AC

model for a given distribution. Although there has been sorne research in this area (e.g., Benedek &

Itai, 1987; Keams, Li, Pitt, & Valiant, 1987; Natarajan, 1987), it has concentrated on showing that

certain concepts classes are leamable from a polynomial number of examples given a known or

unifonn distribution of examples, rather than providing tighter bounds on those concepts that are P AC­

leamable.

2 An Average Case Learning Model for k-CNF

A restricted version of conjunctive normal form, k-CNF, provides a more expressive language of

hypotheses than the language of pure conjunctions that we analyzed previously (Pazzani & Sarrett,

1990). Hypothesis in k-CNF can be expressed as conjunctions of disjunctions of length at most k.

Pure conjunctive hypotheses can be viewed as a special fonn of k-CNF (i.e., k=l). For simplicity, we

restrict our attentions to monotone k-CNF (i.e., k-CNF in which no feature is negated).

The goal of the average case model is to predict the expected error as a function of the number of

training examples. The framework requires detennining:

1. The conditions under which the algorithm changes the hypothesis for a concept.

2. How often these conditions occur.

3. How changing a hypothesis affects the accuracy of a hypothesis.

3

In order to calculate the error of a 2-CNF algorithm learning D*, it is necessary to compute the

probability that a randomly drawn example is positive and the probability that a randomly drawn

positive example contains various combinations of features. We introduce the following notation:

P the probability that a randomly drawn example is a member of S under the assumption

that values of each feature are determined independently with probability Pj that feature

Íj has a true value.

P; the probability that a randomly drawn example, X, is a member of S and the i-th

feature of X has a true value. Similarly, P¡ is the probability that X is a member of S

and the i-th feature of X has a false value. Furthermore, P ij is the probability that X

is a member of S and the i-th and the j-th features of X both have true values. This

notation, Pi ... ' generalizes to any number of subscripts and combinations of negated and

unnegated subscripts.

P and P; ... • are calculated in the following manner. LetX be a randomly drawn positive example.

Define the weighted size of a set A of positive examples to be the probability that X is a member of set

A. We will use IAI to denote Pr[X e A]. If A= Be C, where e denotes union of disjoint sets, then

IAI = IBI + ICI. We note that if A= Bu C, where B and C are not necessarily disjoint, then IAI = IBI +

IB n CI. Define { ~(i,j ... ,)} to be the set of examples for which the Boolean expression ~(i,j ... ,) on the

indicated features is true. For example, {ivj} is the set of examples for which either f; is true orfj is

false. Then, 1{~1v~2 } 1 = 1{~1 } e {~1~2} 1=1{~ 1 }1+1{~1~2} l.

To calculate P = Pr[X e /\. (f;vfj)] we need to evaluate:
(j,j) E v•

6

n {iv j} = n {i} EBUi}

(i,j)eD• (i,j)eD•

This intersection can be converted symbolically to the union of a number of disjoint sets. The set is

initialized to { i i} e { i Lid. This set is intersected with { iz} e { i2i2} to form:

{ i 1 iz} e { i ti1 iz} e { i 1 i2i2} e { i 1.h i2i2}. This process is repeated for each (i J) E D *. Although in

* the worst case, this will result in the union of 2c disjoint sets (where c is the cardinality of D), in

practice it is substantially smaller due to cancellation of terms. For example, finding the intersection of

a1l conjunctions of disjunctions of exactly 3 of 5 features requires computing the union of 10 disjoint

sets instead of 210 sets:

Once a CNF has been converted to this form, the probability that the CNF is true for a randomly

drawn example can be found by summing the probabilities that it is a member of one of the disjoint sets

described by a conjunction of features (or the inverses of features). Since we assume that individual

features are independent, the probability that a conjunction of features can be found by multiplying the

corresponding values of P;· Computing P requires converting v* to this format and then summing the

products of the probabilities.

The computation of P;... is similar. For example, P ab is the ratio of

Pr[X e {ah} &X e A (f;vfj)] and PrlX e A (f;vfj)].
(;j) ED• (;j) ED•

The numerator can be calculated by symbolically intersecting db with the union of the disjoint sets

formed from D*. For example, i1í6 n (i1izi3 e í1i2í3i4e Iz14I5) = i1i2i3I6 e i1Iz1i5I6.

The k-CNF algorithm has only one operator to revise a hypothesis. A disjunctive term is dropped

from the hypothesis when the term is false in a positive training example. This is modeled by removing

pairs from In-l to form In. We will use the notation r jn) to indicate the probability that the disjunction

7

corresponding to d = (iJ) remains in In. This occurs only if at least one off; and Íj has hada true

value in all n positive training examples. Similarly, rd1d,J.n) indicares the probability that the

disjunctions corresponding to d1 and d2 both remain in In. Note that rd1(n) = Pr(_X E {i¡vj¡}] and

rd1, ... , dh(n) = Pr(_X e { (i¡vj¡) A··· A (ihvjh) }]. The values can be calculated in the same manner as

P.

Note that misclassifying a positive example as a negative example is the only form of error made

by the k-CNF algorithm. The hypothesis created by the k-CNF algorithm misclassifies a positive test

example if there is at least one pair (iJ) in In such that f; and ~ are both false in the test example.

We will use the notation en to represent the probability that an example is misclassified after n training

examples. en= en(l) - en(2) + en(3) - en(4) ... en(h) where h is the cardinality of 10 and en(a) is the

probability that an example is misclassified after n examples because it is contra-indicated by at least a

of the pairs in I 0.

e n(l) = l rd(n)P¡¡
d = Q,j) E/o

e n(a) =
d¡ ... da = QiJ¡) ... (iaja)

e partitions (/°'a)

r fn)P-- - -di ... da'! iJ.i1 ... iaJa

where partitions(l,a) is the set of all subsets of I with length a. In effect, en(l) calculates the

probability that each pair from 10 is a pair of In weighted by the probability that a randomly drawn

training example would be misclassified by that disjunction corresponding to that pair. For larger

values of i, en(i) corrects en(i-1) by taking into consideration the fact that more than i-1 of the pairs in

1 n result in a misclassification.

Two optimizations simplify the calculation of en. First, if an approximation of the error will

suffice, it is not necessary to calculate the value of en(]) if en(i) is less than a threshold and j is greater

than i. In Figure l, we set this threshold to 0.005. Second, rnany values of PiJ;. .. J
0
¡

0
are O. This

8

occurs if there is a pair (iJ) in D* and T and Tare both subscripts of PiJ,. .. J
0
¡

0
• Furthermore, if

P,:-1}:-
1

,:-
1
:- is O, then for all ia andja, P,:-1}:-

1
,:- 1:- ,:-al:- is O.

... a-1 a-1 • • • a-1 a-1 a

2.2 Extending the model for k-CNF

The generalization of the model to k-CNF is fairly straightfmward. First, D * is now a set of tuples of

at most length k . Each tuple corresponds to a set of features corresponding to one of the terms of the

correct hypothesis. D 0 (the initial hypothesis) is defined to be the set of all tuples of at most k of the

features. From here, the notation of the previous section needs to be extended somewhat, but the

technique for calculating P, r(n), and e(n) remains unchanged.

2.3 Extending the model for negative examples

As in Pazzani and Sarrett (1990), this analysis is easily extended to the case where there are both

positive and negative examples. Recall that the algorithm does not update its hypothesis when

presented with negative examples. Section 3.1 described how to calculate P, the probability that a

randomly drawn example is a positive example, from the values of p ¡· Once P has been determined,

the binomial formula can be used to calculate the error of the k-CNF algorithm by calculating a

weighted sum of the error times the probability that there are exactly n positive examples for each value

of n from O to T:
T L (T }*enPn(l - p)<T-n)
n n

2.4 Experimentally evaluating the average case model

We experimentally evaluate the average case model by comparing the observed error of the k-CNF

algorithm on a given problem to the error predicted by the model for this problem. A problem is

specified by providing D * (the correct answer), m (the number of features used to describe the training

examples) and values for Pj (the probability that each feature has a true value in a randomly drawn

9

example). We have tested the model on a wide variety of problems. Figure 1 provides one such

comparison. The following section shows how the model can be used to predict the influence of

factors that affect the error ofthe learning algorithm and compares the observed and predicted error.

3 lmplications of the Average Case Model for k-CNF

In this section, we show how the average case model for k-CNF can be used to gain an understanding

of sorne factors that affect the error of the learning algorithm. In particular, we address how the error

is increased if an additional irrelevant feature is added to the representation of the training examples.

We consider a relatively simple problem. Consider trying to learn the concept, i 1 " i2 with a 2-

CNF learning algorithm. If there are 3 features, then the 2-CNF algorithm will converge on the

equivalent (but unsimplified) hypothesis: i1 A i2 A (i1 v i2) A (i1 v i3)" (i2 v i3). The set 10 will contain

the singleton {(i3)}. With O training examples, the initial hypothesis will produce an error on (l-p3) of

the positive examples (since an error is made when i3 is false and i3 is false in this proportion of

training examples). After n training examples, the hypothesis will produce an error on (p3f{l-p~ of

the posit:ive training examples (since the probability that i3 is in 10 is (p3'f). Figure 2 Qower curve)

graphs the observed and expected errorunderthese conditions (withp3 = 0.5).

If there are 4 features, then the 2-CNF algorithm will converge on the equivalent (but unsimplified)

hypothesis: i1 "i2 "(i1 v i2)" (i1 v i3)" (i1 v i4)" (i2 v i3)" (i2 v i4). The set of tenns that can cause

errors is now { (i3)(i4)(i3 v i4)}. The initial hypothesis will produce an error on (1 -P?P 4) of the positive

examples (since an error is made when i3 is false or when i4 is false). After n training examples, the

hypothesis will produce an error on {p3f{l-p~ +(p4'f(l-p~ -(p?P4'f(l-pp4) of the posit:ive training

examples. Figure 2 also graphs the observed and expected error with a total of 4, 5, 6, and 7 features

(with all pi = 0.5). Note that for this problem, the analysis is equivalent to learning the always true

* concept (i.e., D ={}) while ignoring the two features i1 and i2. This occurs because both features

must appear in every positive example.

10

1.0

0.8

0.6

~ 0.4

0.2

5 10 15 20

Number of examples

Figure 2. Expected and observed error when learning i1 " i with a 2-CNF algorithm
when there are a total of 3 (lowest curve) 4, (next to lowesd, 5 (middle), 6 (next to
upper) and 7 features (upper curve). The curves represent predicted values and the
bars are 95 % confidence intervals around the mean values. To avoid clutter,
confidence intervals are not shown for 4 and 6 total features.

4 Future Directions for Average Case Modeling

So far, we have provided an analytic method that allows us to predict the average case analysis of

Valiant's k-CNF learning algorithm. In the previous section, we have shown how the analysis can lead

to insight into the effect of increasing the number of features on a given learning learning problem.

In the future, we intend to quantitatively answer questions such as how the error is increased if the

value of k is larger than necessary. For example, a 2-CNF concept can be learned by a 5-CNF learning

algorithm. However, the 5-CNF algorithm searches a larger hypothesis space and one would expect it

to be less accurate than a 2-CNF algorithm on the same data. Figure 3 displays predictions of the

average case model and results obtained by running the algorithm on sample data sets.

11

0.5

0.4

0.3
s. o
t: 0.2 ~

0.1

o.o
o 10 20 30 40 50 60

Number of Examples

Figure 3. Expected and observed error (with 95 % confidence interval) for learning
i1 A i2 when there are a total of 5 features with a 1-CNF algorithm (lower curve), a
2-CNF algorithm (middle curve), and a 5-CNF algorithm (upper curve). To avoid
clutter, confidence intervals are not shown for the 2-CNF case

A second future direction consists of comparing the predictions made by the model to results of

leaming on realistic data sets. We have recently examined the database of congressional voting records

stored at the University of California, Iivine and have found that a 3-CNF algorithm can achieve 100%

accuracy on distinguishing Democrats from Republicans based upon 16 Boolean features representing

votes on certain issues. Such an analysis would provide important feedback on whether the

assumptions made by the model are realistic and provide experimental support for the robustness of the

model when data sets deviate from these assumptions.

Finally, we intend on creating average case models for additional leaming algorithms, such as the

k-DNF algorithm and decision list algorithms.

12

5 Conclusion

We have presented an approach to modeling the average case behavior of an algorithm for leaming k­

CNF. The model predicts the expected error of the algorithm as a function of the number of training

examples. We evaluated the average-case model by comparing the error predicted by the model to the

actual error obtained by running the leaming algorithm. We have shown the analysis can lead to

insight into factors that affect the error of the leaming algorithm.

The average case model requires much more information about the training examples than the P AC

leaming model. The information required by the model is exactly the information required to generate

artificial data to test leaming algorithms. One future research direction would be to relax sorne of these

assumptions. For example, rather than requiring the correct concept definition, it might be possible to

perform a similar analysis for a given probability distribution of possible concepts.

Acknowledgements

We would like to thank Dennis Kibler for helpful comments on this work and Caroline Ehrlich for

reviewing an earlier draft of this manuscript This research is supported by a N ational Science

Foundation Grant IRI-8908260 and by the University of California, Iivine through an allocation of

computer time.

13

References

Benedek, G., & Itai, A. (1987) Leamability by fixed distributions. Proceedings of the 1988 Workshop

on C omputational Learning Theory (pp 81-90). Boston: MA: Morgan Kaufmann.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the Vapnik­

Cheivonenkis dimension. Journal ofthe Association of Computing Machinery, 36, 929-965.

Buntine, W. (1989). A Critique ofthe Valiantmodel. Proceedings ofthe Eleventh Joint Conference on

Artificial Intelligence (pp.837-842). Detroit, MI: Morgan Kaufmann.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine

Learning, 2, 139-172.

Haussler, D. (1987). Bias, version spaces and Valiant's learning framework. Proceedings of the Fourth

lnternational Workshop on Machine Learning (pp. 324-335). Iivine, CA: Morgan Kaufmann ..

Kearns·, M., Li, M., Pitt, L., & Valiant, L. (1987). On the leamability of Boolean fonnula. Proceedings

of the Nineteenth Annual ACM Symposium on the Theory of Computing (pp. 285-295). New York

City: NY: ACMPress.

Pazzani, M., & Sarrett, W. (1990) Average case analysis of conjunctive learning algorithms.

Proceedings of the Seventh lnternational Workshop on Machine Learning, Austin, TX: Morgan

Kaufmann.

Natarajan, B. (1987). On learning Boolean fonnula. Proceedings of the Nineteenth Annual ACM

Symposium on the Theory of Computing (pp. 295-304). New York: ACM Press.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning interna! representations by error

propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel distributed processing:

Explorations in the microstructure of cognition. Volume 1: Foundations (pp 318-362). MIT

Press.

Valiant, L. (1984). A theory of the learnable. Communications of the Association of Computing

Machinery, 27, 1134-1142.

14

