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ABSTRACT

BACKGROUND: South Asians are at higher risk for cardiometabolic disease than many other 

racial/ethnic minority groups. Diet patterns in U.S. South Asians have unique components 

associated with cardiometabolic disease.

OBJECTIVES: We aimed to characterize the metabolites associated with three representative 

diet patterns.

METHODS: We included 722 participants in the Mediators of Atherosclerosis in South Asians 

Living in America (MASALA) cohort study aged 40-84 years without known cardiovascular 

disease. Fasting serum specimens and diet and demographic questionnaires were collected at 

baseline and diet patterns previously generated through principal components analysis. LC-MS-

based untargeted metabolomic and lipidomic analysis was conducted with targeted integration 

of known metabolite and lipid signals. Linear regression models of diet pattern factor score and 

log-transformed metabolites adjusted for age, sex, caloric intake and body mass index and 

adjusted for multiple comparisons was performed, followed by elastic net linear regression of 

significant metabolites.

RESULTS: There were 443 metabolites of known identity extracted from the profiling data. The 

‘Animal protein’ diet pattern was associated with 61 metabolites and lipids; including 

glycerophospholipids PE(O-16:1/20:4) and/or PE(P-16:0/20:4) ( 0.13; 95% Confidence 

Interval (CI) [0.11, 0.14]) and N-acyl phosphatidylethanolamines (NAPE) NAPE(O-

18:1/20:4/18:0) and/or NAPE(P-18:0/20:4/18:0) (: 0.13; 95%CI [0.11, 0.14]), LPI (22:6/0:0) ( 

0.14; 95% CI [0.12, 0.17]) and fatty acids FA (22:6) (: 0.15; 95% CI [0.13, 0.17]. The ‘Fried 

snacks, sweets, high-fat dairy’ pattern was associated with 12 lipids; including PC(16:0/22:6) 

(: -0.08; 95%CI[-0.09, -0.06]) and FA(22:6) ( 0.14; 95%CI [-0.17, -0.10]). The ‘Fruits, 
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Vegetables, Nuts and Legumes’ pattern was associated with five metabolites including proline 

betaine (: 0.17 [0.09, 0.25]) [p < 0.0002]. 

CONCLUSIONS: Three predominant dietary patterns in U.S. South Asians are associated with 

circulating metabolites differentiated by lipids including glycerophospholipids and 

polyunsaturated fatty acids and the amino acid proline betaine. 

Keywords: diet patterns; South Asian; cardiovascular risk; metabolomics; lipids
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BACKGROUND

South Asians (individuals of Indian, Pakistani, Bangladeshi, Nepali, and Sri Lankan 

descent) are at higher risk for cardiovascular disease and diabetes than many other racial and 

ethnic groups.(1-3) About 23% of South Asians have diabetes, which often precedes coronary 

heart disease.(4) On average, South Asians develop coronary heart disease 10 years earlier than 

people identifying as a different race or ethnic group, and 50% of heart attacks in South Asians 

occur before the age of 50.(5)

In this population, diet quality and pattern of intake is a strong, modifiable risk factor for 

cardiometabolic disease.(6, 7) Prior investigations with South Asian populations in the diaspora 

have characterized unique diet patterns influenced by both heritage and emigration.(8, 9) We 

previously examined diet patterns in the Mediators of Atherosclerosis in South Asians Living in 

America (MASALA) cohort, in which habitual dietary intake was characterized with a 

culturally-concordant food frequency questionnaire.(10)  We identified three major diet patterns: 

Animal Protein; Fried snacks, Sweets, High-fat Dairy, and Fruits, Vegetables, Nuts, Legumes, 

(11) which have unique associations with traditional risk factors for cardiometabolic disease. The 

increased risk associated with certain diet patterns may be tied to intermediate metabolic markers 

seen in South Asians, such as a pattern of atherogenic dyslipidemia, tendency towards larger 

ectopic adipose tissue deposits and lower muscle mass and poor beta cell function.(2, 12). Little 

is known about the mechanisms and process by which these particular diet profiles translate into 

metabolic phenotypes that cause higher cardiometabolic risk.

The identification of metabolites, easily measurable and present in serum, urine or tissue 

can help to shed light on the phenotypic links between diet and cardiometabolic disease in this 
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high-risk population.(13) A panel of metabolites may both be able to serve as a biomarker for 

diet intake and help clarify and measure the metabolic effects of that diet intake. 

In this analysis, we aimed to establish representative metabolites for predominant diet 

patterns in South Asians who are part of the full MASALA study.

METHODS

Participants

Data were from South Asians who participated in the MASALA community-based cohort 

study and had complete diet and metabolomic data.  The detailed methods have been described 

elsewhere.(10)  Briefly, MASALA is a prospective cohort study which enrolled community-

dwelling individuals living in the San Francisco Bay Area and the greater Chicago areas from 

2010-2013. Participants self-identified as having South Asian ancestry and were aged 40-84 

years and without known cardiovascular disease. Those on nitroglycerin, with active cancer, with 

impaired cognitive ability, a life expectancy less than five years, who lived in a nursing home, or 

who had plans to relocate were excluded. The University of California, San Francisco and 

Northwestern University Institutional Review Board approved the study protocol and all study 

participants provided written informed consent. 

Demographic and diet data

Each participant underwent in-person interviews to determine age, sex, medical history, 

physical activity, smoking status and alcohol intake. Food group intake was collected with the 

Study of Health Assessment and Risk in Ethnic (SHARE) groups South Asian Food Frequency 

Questionnaire, which was developed and validated in South Asians in Canada.(14) The food 

frequency questionnaire included 163 items, with 61 items unique to the South Asian diet, and 

assessed usual eating habits, frequency and serving sizes over the prior 12 months.
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Dietary pattern creation

Individual food items from the SHARE food frequency questionnaire were divided into 

29 predefined subgroups reflecting likeness, underlying nutrient composition and South Asian 

culinary usage. Several foods (e.g. coffee) were kept as individual categories given their high 

reported intake. We excluded 1 individual with incomplete food frequency questionnaire data 

and another 6 who did not meet a priori criteria of daily caloric ranges (600-6000 kcal/24 h).

Principal components analysis with varimax rotation was previously used to identify the 

most prevalent groupings of major food group categories in our population.(15) After identifying 

three patterns that explained the majority of variance, the patterns were named according to their 

major components: “Animal protein” (9.3% variance), “Fried snacks, sweets, high-fat dairy” 

(7.4% variance) “Fruits, vegetables, nuts legumes” (6.5% variance). Each participant was 

assigned a factor score for each dietary pattern based on the correlation of his or her food 

frequency questionnaire data with the food groupings in the three prevalent patterns. The diet 

patterns: Animal Protein, Fried Snacks, Sweets, High-fat Dairy each had continuous factor 

scores which were divided into tertiles for ease of interpretation.

Metabolic Profiling by UPLC-MS

A total of 754 serum samples obtained at the baseline exam (2010-2013) were analyzed 

by ultra performance liquid chromatography mass spectrometry (‐ UPLC-MS) using previously 

described analytical and quality control procedures.(16, 17) Sample analysis was performed in an 

order designed to be orthogonal to clinical and demographic data metadata. For quality control 

assessment and data pre-processing, a study reference (SR) sample was prepared by pooling 

equal parts of each study sample. 
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Serum samples were prepared and analyzed using UPLC-MS as previously published.

(16, 17) In brief, 50 μL aliquots were taken from each sample, diluted 1:1 with ultrapure water 

for lipid profiling and 1:1.4 for small molecule profiling. Protein was removed by addition of 

organic solvent to the diluted sample (four volumes isopropanol per volume of diluted sample for 

lipidomic profiling and three volumes of acetonitrile per volume of diluted sample for small 

molecule profiling) followed by mixing and centrifugation to yield a homogenous supernatant. 

Aliquot sets of prepared samples were subjected to chromatographic separation using an 

ACQUITY UPLC (Waters Corp., Milford, MA, USA) system. Lipidomic profiling was 

performed using reversed-phase chromatography (RPC) with a 2.1 × 100 mm Acquity BEH C8 

column maintained at 55°C. The chromatographic separation was performed using a binary 

mobile phase system consisting of (A) a 50:25:25 mixture of H2O:ACN:IPA with 5mm 

ammonium acetate, 0.05% acetic acid, and 20µM phosphoric acid and (B) 50:50 ACN:IPA with 

5mm ammonium acetate, 0.05% acetic acid. Polar metabolite profiling was performed using 

hydrophilic interaction liquid chromatography (HILIC) with a 2.1 × 150 mm Acquity BEH 

HILIC column maintained at 40°C. The chromatographic separation was performed using a 

binary mobile phase system consisting of (A) acetonitrile with 0.1% formic acid and (B) 20 mM 

ammonium formate in water with 0.1% formic acid. Both separation types were coupled to high 

resolution mass spectrometry (Xevo G2 S TOF mass spectrometers, Waters Corp., Manchester, ‐

UK) via a Z spray electrospray ionization source. The lipidomic profiling assay was conducted in‐  

both positive and negative ion modes (generating Lipid RPC+ and Lipid RPC- datasets), while 

the HILIC assay was performed in the positive ion mode only (generating the HILIC+ dataset). 

A SR sample was acquired every 10 study samples throughout the analysis. In addition, a 
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dilution series was created from the SR and analyzed immediately prior to and after the study 

sample analysis for use in signal filtering as described previously (16). 

Raw data was converted to the mzML open source format and signals below an absolute 

intensity threshold of 100 counts were removed using the MSConvert tool in ProteoWizard.(18) 

Metabolite signal extraction was performed using PeakPantheR, an open-source package to 

detect, integrate and report pre-defined and annotated lipids and metabolites from an in-house 

database.(19) Elimination of potential run-order effects and filtering of the extracted metabolites 

was performed using the nPYc-Toolbox, an open-source package for data pre-processing.(20) 

Only those measured with high accuracy (relative coefficient of variance in SR samples less than 

20%) and high precision (correlation to dilution in SR dilution series greater than 0.8) were 

retained and put forward for biological analysis. Of the 754 total study samples, 32 were not 

included in our analysis due to insufficient sample volume and five were excluded due to missed 

injection in the HILIC assay. 

Cardiometabolic factors measured at baseline:

Weight was determined using a digital scale, height with a stadiometer, and waist 

circumference using a measuring tape halfway between the lower ribs and the anterior superior 

iliac spine, at the site of greatest circumference.  Blood samples were obtained after a requested 

12-hour fast.  Fasting plasma glucose was measured using the hexokinase method (Quest 

diagnostics, San Jose, CA). An oral glucose tolerance test was performed, in which participants 

consumed a 75g oral glucose solution, and blood samples for plasma glucose and insulin were 

taken after 120 minutes. Type 2 diabetes was defined as a fasting glucose ≥126 mg/dl, 2-hour 

post-challenge glucose ≥200 mg/dl or use of a glucose-lowering medication. 717 participants 

were included in our analysis.
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Statistical methods

Before modeling, relative abundance of metabolites were log-transformed to reduce the 

potential for outliers to influence the model. Multivariable linear regression analyses were used 

to determine associations of diet pattern factor score and relative abundance of each independent 

metabolite. The analyses were adjusted for age, sex, calories per day, body mass index in Model 

1 and further adjusted for presence of diabetes, hypertension, use of statin medication, smoking 

and alcohol intake of > 1 drink/wk as categorical variables and exercise (metabolic-equivalent-

minutes/week) as a continuous variable. We applied the conservative Bonferroni method to 

adjust for multiple comparisons, with an alpha<0.00002 deemed significant. To adjust for 

unreliable parameter estimates that may occur when using multiple regression models in the 

setting of multicollinearity, we performed an elastic net regularized regression model to evaluate 

metabolites that were significant in independent analyses. The elastic-net model allowed for a 

penalized logistic regression on all biomarkers simultaneously to identify the metabolites most 

highly associated with diet pattern score. Optimal parameters for the penalty value () and the 

regularization penalty (λ) were determined by 10-fold cross-validation. Briefly, data in the full 

dataset were randomly assigned to one of two equal sized datasets. Model performance was 

judged based on root mean square error, with the model chosen minimizing mean cross-validated 

error. Optimazationw as complete using STATA’s “elasticnet” and postestimation commands for 

model prediction. We then further adjusted these linear regression models for physical activity, 

diabetes, and family history of diabetes.

The analysis was completed using STATA (version 16.1, 2021, College Station, TX, USA).

RESULTS
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In total, 443 metabolites and lipids were examined in this analysis (Supplemental Table 

1). MASALA participants in the highest tertile of factor score of the Animal Protein pattern were 

less likely to be women, had lower total daily energy intake but were of similar BMI than those 

who most often consumed the Fried snacks, Sweets, High-fat dairy or Fruits, Vegetables, Nuts, 

Legumes patterns (Table 1). A similar proportion of women most often consumed the Fried 

snacks, Sweets, High-fat dairy pattern and Fruits, Vegetables, Nuts, Legumes diet patterns 

(47%). 

After elastic net regularized regression, and further adjustment for relevant covariates, the 

Animal Protein diet pattern was associated with 61 metabolite and lipid species. It was positively 

associated with phospholipids, sphingomyelins, ceramides and other lipid species including 

omega-3 fatty acids, and negatively associated with long-chain acylcarnitines and trigonelline. 

The metabolites most highly associated with the Animal Protein diet pattern were: PE(O-

16:1/20:4) and/or PE(P-16:0/20:4) (0.13; 95% Confidence Interval [0.11, 0.14]) and NAPE (O-

18:1/20:4/18:0) and/or NAPE(P-18:0/20:4/18) (0.13; 95%CI [0.11, 0.14]), LPI (22:6/0:0) (0.14; 

95% CI [0.12, 0.17]) and fatty acids FA (22:6) (0.15; 95% CI [0.13, 0.17]. (Table 2) The Fried 

snacks, Sweets, High-fat dairy pattern was associated with 12 lipids, the top two hits of which 

were PC(16:0/22:6) (-0.08; 95%CI[-0.09, -0.06]) and FA(22:6) (0.14; 95%CI [-0.17, -0.10]) 

(Table 3). The Fruits, Vegetables, Nuts, Legumes diet was associated with five metabolites, 

including a positive association with proline betaine (0.17 [0.09, 0.25]) (Table 4). 

DISCUSSION

Participants in the MASALA study consumed three predominant dietary patterns: Animal 

Protein; Fried Snacks, Sweets, High-Fat Dairy; Fruits, Vegetables, Nuts, Legumes, which were 

each associated with particular metabolite and lipid patterns. The metabolic profile associated 
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with Animal Protein pattern was represented by glycerophospholipids, acylcarnitines and 

ceramides, which carry high metabolic risk. The Fried snacks, Sweets, High-fat dairy pattern was 

inversely associated a number of lipids, including an omega-3 fatty acid derived from seafood 

and linked to lower cardiovascular risk.(21) Higher consumption of the Fruits, Vegetables, Nuts, 

Legumes pattern was associated with higher abundance of proline betaine, a marker of citrus 

consumption and lower risk for type 2 diabetes in prior studies(22), and lower relative abundance 

of several lipid subspecies.

The metabolite and lipid patterns associated with high consumption of each diet pattern 

have implications for metabolic health. In particular, proline betaine was positively associated 

with the most “prudent” diet pattern, Fruits, Vegetables, Nuts, Legumes, and negatively 

associated with the Animal Protein diet pattern. There is a correlation between proline betaine 

and fruit intake in this sample (Supplemental Table 4). This amino acid, and its analogue, glycine 

betaine, have been associated with lower risk for diabetes in the Diabetes Prevention Program 

and other trials and cohort studies.(22, 23) Betaine is derived from the amino acid glycine, and 

acts as a methyl donor to allow the conversion of homocysteine to methionine. (24) Proline 

betaine is also a biomarker of citrus consumption.(25) Deficiency of betaine is additionally 

linked with increased severity of non-alcoholic fatty liver disease (NAFLD).(26) In our prior 

work, the Fruits, Vegetables, Nuts, Legumes was associated with lower prevalence of metabolic 

syndrome.(11) Despite these positive observational findings and promising preclinical data from 

animal studies, direct supplementation of betaine in humans during a randomized, controlled trial 

showed only minor improvements in fasting glucose, and no changes in dynamic measurements 

of Insulin sensitivity and intrahepatic triglycerides.(27) All together, this suggests that an 
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exploration of the choline-betaine metabolic pathways and downstream metabolites may yield 

insights into the pathogenesis of prediabetes and NAFLD.

Long and short-chain acylcarnitines have previously been associated with prevalent and 

incident diabetes.(28, 29) Short-chain acylcarnitines, specifically CAR(3:0)  and CAR(5:0)  

acylcarnitines, are breakdown products of BCAA metabolism and are associated with insulin 

resistance.(30) In a previous assessment diet patterns and metabolites in the MASALA pilot 

study (N=150), a similar “Western/non-vegetarian” diet pattern was associated with short-chain 

acylcarnitines.(31) In our study, there was a direct association between increased consumption of 

the Animal Protein pattern and propionylcarnitine (CAR(3:0)). There have been conflicting 

associations between long-chain acylcarnitines and the presence of diabetes. Impaired fatty acid 

oxidation and oxidative stress due to peripheral insulin resistance may cause a buildup of long-

chain acylcarnitines (29) resulting in a decrease in insulin synthesis and associations with 

prevalent diabetes. Conversely, several cohort studies, including the PREDIMED study and our 

prior work in the MASALA study, show inverse associations between long-chain acylcarnitine 

abundance and both prevalent diabetes and future glucose intolerance.(32, 33) The current 

investigation found a positive association between the Animal Protein pattern and CAR(18:0) 

and an inverse association with CAR (14:2), CAR (18:3), CAR(20:2) and CAR (20:3). In 

support of the association between this diet pattern and circulating CAR (18:0), a randomized 

trial of red meat intake also revealed positive associations with CAR(18:0). (34) Our prior work 

in the MASALA cohort identified a relationship between higher baseline CAR(18:0) and 

subsequent lower HbA1c at 5-year follow-up (33) in cohort members without baseline diabetes. 

These findings suggest that animal protein intake is associated with CAR(18:0), however further 
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associations with diabetes are varied in this population, and may depend on the prevalence of 

other diet components.

The Animal Protein pattern was also associated with a higher abundance of multiple 

ceramides and sphingomyelins, including Cer(d18:1/26:1) and SM(d18:1/18:0). Ceramides, 

which are bioactive sphingolipids, have strong ties with diabetes risk (35, 36). Both circulating 

ceramides and sphingomyelins have been associated with impaired glucose homeostasis. (37, 38) 

Ceramides are also associated with intake of saturated fats, and with non-alcoholic fatty liver 

disease.(39)

In our investigation, NAPEs were associated with consumption of the Animal Protein 

pattern, and were correlated with red meat, poultry, fish, eggs and coffee intake (Supplemental 

Table 2). NAPEs hydrolysis generates N-acylethanolamines that are precursors of 

endocannabinoids synthesized in phospholipid membranes. Endocannabinoids may be involved 

in signaling between gut microbiotia and adipose tissue, and have been implicated in metabolic 

disorders such as obesity and type 2 diabetes.(40) In some reports NAPEs have been shown to be 

increased in plasma after high-fat feeding and regulate food intake.(41) 

Phosphotidylethanolamines PE(O-16:1/20:4) and/or PE(P-16:0/20:4) were significantly and 

positively associated with intake of the Animal Protein pattern, and is an essential bioactive lipid 

abundant in mammalian cells.(42) One study has shown a potential link between this broader 

lipid species class and decreased odds of acute coronary syndrome,(43) however the particular 

risk conferred by the lipids found in our analysis are not known.

Several important polyunsaturated fatty acids differed between patterns, including lipids 

with docosahexaenoic acid (DHA) FA(22:6) moieties. These omega-3 fatty acids are correlated 

with the major non-vegetarian components, including red meat, poultry, eggs and fish 
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consumption in the Animal Protein pattern (Supplemental Table 2), negatively correlated with 

butter/ghee and legume intake in the Fried Snacks, Sweets, High-fat Dairy diet pattern 

(Supplemental Table 3) and have previously been linked with lower risk of cardiovascular 

disease.(44) Lipids with these moieties are lower in abundance with greater consumption of the 

Fried snacks, sweets and high-fat dairy pattern, suggesting that there may be lower consumption 

of these potentially beneficial fatty acids in this unhealthful vegetarian pattern. Omega-6 fatty 

acids found in lean meat, milk and eggs contain arachidonic acid FA (20:4), which is abundant in 

phospholipids, and important for cellular signaling in the brain and skeletal muscle, and was 

higher with consumption of the Animal Protein pattern. High levels of this fatty acid may be 

affected by oxidative stress and play a role in the pathogenesis of fatty liver and diabetes (45) 

and cardiovascular disease.(46)

In conclusion, our findings suggest that prevalent diet patterns in the MASALA study are 

associated with groups of metabolites and lipids linked with cardiometabolic disease. The Fruits, 

Vegetables, Nuts, Legumes patterns associated with proline betaine which has been linked with 

reduced risk for diabetes. The Animal Protein pattern was associated with NAPEs, 

sphingomyelins and ceramides and long- and short-chain acylcarnitines. Furthermore, the 

Animal Protein and Fried snacks, Sweets, High-fat dairy patterns had opposite associations with 

long-chain omega 3 fatty acids, which have been linked with lower risk of cardiovascular 

disease. These conclusions are limited by the absence of data on intra-individual variability of 

metabolites. These findings support the next steps in investigation of diet and metabolites: the 

study of metabolites as biomarkers for measuring diet quality and to determine targeted dietary 

advice to reduce risk of cardiometabolic disease.
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Table 1: Baseline characteristics of MASALA Study participants by tertile of diet pattern1

¹Values are mean (SD), median [IQR], or frequency (percent)
2Metabolic-equivalent (MET) minutes per week

Animal Protein Fried snacks, Sweets, High-fat 
dairy

Fruits, Vegetables, Nuts 
Legumes

alcohol, coffee, eggs, fish, pasta, 
pizza, poultry, red meat, refined 

grains 

added fat, butter/ghee, fried 
snacks, high-fat dairy, sugar-

sweetened beverages, legumes, 
potatoes, refined grains, rice, 

whole grains 

fruit, fruit juice, legumes, nuts, 
vegetable oil, vegetables, 

wholegrain 

Tertile 1 Tertile 2 Tertile 3 Tertile 1 Tertile 2 Tertile 3 Tertile 1 Tertile 2 Tertile 3
245 233 225 234 238 231 229 239 235

Women, (%) 141 (58) 105 (45) 70 (31) 122 (52) 112 (47) 82 (36) 97 (42) 115 (48) 104 (44)
Age, years 56 (9) 56 (9) 54 (9) 56 (10) 56 (10) 55(9) 54 (9) 55 (9) 57 (9)
BMI, (kg/m2) 26 (4) 26 (4) 26 (4) 26 (4) 26 (4) 26 (4) 26 (4) 26 (4) 26 (4)
Smoker, (%)

Never 228 15 2 85 83 81 182 (79) 202 (85) 199 (85)
Former 192 36 5 13 13 15 33 (14) 35 (15) 29 (12)
Current 163 46 16 3 4 3 14 (6) 2 (1) 7 (3)

Alcohol use, n (%) 33 (13) 74 (31) 133 (59) 86 (37) 78 (33) 76 (33) 82 (36) 77 (32) 81 (34)
Exercise2, MET-min/wk 983 

[1515]
1080 

[1523]
945 

[1300]
1170 

[1845]
960 

[1560]
735 

[1542]
690 

[1365]
1035 

[1523]
1373 

[1665]
Energy intake, kcal/d 1630 

(461)
1613 
(444)

1820 
(555)

1366 
(354)

1662 
(413)

2035 
(470)

1348 
(342)

1664 
(393)

2037 
(480)

Diabetes, n (%) 77 (26) 75 (25) 72 (24) 64 (27) 60 (25) 50 (22) 65 (28) 60 (25) 49 (21)
Hypertension, n (%) 96 (39) 97 (42) 90 (40) 95 (41) 105 (44) 83 (36) 93 (41) 104 (44) 86 (37)
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Table 2: Metabolites Associated with Animal Protein Diet Pattern, Elastic Net Regularized Regression

Model 1, adjusted for age, sex, 
body mass index, energy intake 2,3 

Model 2, fully adjusted4

  ß2 95% CI 
(Lower)

95% CI 
(Upper)

p-value ß3 95% CI
(Lower)

95% CI 
(Upper)

p-value

Creatine 0.08 0.06 0.1 1.21 x 10-15 0.08 0.06 0.10 1.47 x 10-14

Carnitine 0.02 0.01 0.03 2.79 x 10-07 0.02 0.01 0.03 9.13 x 10-07

CAR(3:0) (Propionylcarnitine) 0.03 0.02 0.05 1.89 x 10-05 0.04 0.02 0.06 8.99 x 10-06

Proline betaine -0.11 -0.17 -0.06 1.41 x 10-05 -0.12 -0.17 -0.06 3.34 x 10-05

Pipecolate/N-methyl proline -0.07 -0.1 -0.03 1.34 x 10-04 -0.07 -0.10 -0.03 3.67 x 10-04
Taurine 0.03 0.02 0.05 3.28 x 10-05 0.04 0.02 0.05 8.82 x 10-05

Trigonelline -0.16 -0.19 -0.12 1.89 x 10-17 -0.17 -0.21 -0.13 7.93 x 10-18

Trimethylaminoacetone 0.04 0.03 0.06 1.55 x 10-06 0.04 0.02 0.06 5.51 x 10-05

Methyladenosine -0.01 -0.02 -0.01 1.79 x 10-04 -0.01 -0.02 -0.00 1.60 x 10-03

CAR14:2 -0.05 -0.07 -0.03 4.91 x 10-05 -0.04 -0.06 -0.01 6.62 x 10-03

CAR18:0 0.03 0.02 0.05 1.47 x 10-06 0.03 0.02 0.05 4.82 x 10-05

CAR18:3 -0.04 -0.06 -0.02 1.03 x 10-04 -0.03 -0.05 -0.01 0.01
CAR20:1 -0.04 -0.05 -0.02 3.33 x 10-05

CAR20:2 -0.06 -0.07 -0.04 4.72 x 10-11 -0.05 -0.07 -0.04 4.47x10-09

CAR20:3 -0.05 -0.07 -0.03 3.56 x 10-08 -0.05 -0.07 -0.03 3.13 x 10-07

CE20:4 0.03 0.02 0.04 1.79 x 10-06 0.03 0.01 0.04 4.42 x 10-05

CE20:5 0.1 0.07 0.12 4.08 x 10-15 0.08 0.06 0.11 3.20 x 10-10

Cerd18:1/26:1 0.07 0.05 0.09 4.51 x 10-12 0.06 0.04 0.08 1.17 x 10-08



Cerd20:1/24:0 0.07 0.05 0.09 8.36 x 10-10 0.07 0.05 0.09 3.33 x 10-08

SulfoHexCerd18:1/18:0 0.05 0.03 0.06 1.25 x 10-08 0.05 0.03 0.06 1.51 x 10-07

SulfoHexCerd18:1/22:0OH 0.05 0.03 0.07 2.48 x 10-09 0.05 0.03 0.07 2.19 x 10-08

SulfoHexCerd18:1/24:0OH 0.03 0.01 0.05 1.40 x 10-04 0.03 0.01 0.05 3.57 x 10-04

CERd18:2/18:0 0.05 0.03 0.07 3.62 x 10-07

LPC17:1/0:0 0.03 0.01 0.04 6.36 x 10-05 0.03 0.01 0.04 5.00 x 10-04

LPC20:0/0:0 -0.04 -0.06 -0.02 1.23 x 10-06 -0.03 -0.05 -0.02 1.19 x 10-04

LPC20:1/0:0 -0.04 -0.06 -0.03 1.35 x 10-06 0.04 -0.06 0.02 3.63 x 10-05

LPC22:6/0:0 0.1 0.08 0.12 4.78 x 10-26 0.09 0.07 0.11 5.76 x 10-19

LPE18:1/0:0 -0.04 -0.06 -0.02 1.73 x 10-06 -0.04 -0.06 -0.02 4.43 x 10-06

LPE18:2/0:0 -0.05 -0.07 -0.04 1.23 x 10-10 -0.05 -0.06 0.03 3.76 x 10-08

PE16:0/20:3 and PE18:1/18:2 
and PE18:0/18:3

-0.07 -0.09 -0.05 2.57 x 10-12 0.07 -0.09 -0.05 6.63 x 10-10

PC16:0/18:3 -0.05 -0.07 -0.03 2.92 x 10-06 0.05 -0.07 -0.03 6.42 x 10-06

PC16:0/20:4_2 0.02 0.01 0.04 1.21 x 10-05 0.02 0.01 0.03 3.21 x 10-03

PC16:0/22:4 -0.03 -0.05 -0.02 1.15 x 10-04 -0.03 -0.05 -0.01 3.55 x 10-04

PC18:1/20:3 -0.06 -0.07 -0.04 9.17 x 10-14 -0.05 -0.07 -0.04 1.20 x 10-11

PC34:0 PC18:0/16:0 and 
PC16:0/18:0

0.02 0.01 0.04 5.01 x 10-05 0.02 0.01 0.03 1.92 x 10-04

PE16:0/18:1 -0.05 -0.07 -0.03 2.13 x 10-04 -0.06 -0.08 -0.04 1.51 x 10-06

PE18:1/18:2 -0.07 -0.09 -0.05 1.21 x 10-10 -0.07 -0.09 -0.04 8.29 x 10-09

PE20:1/20:4 -0.07 -0.09 -0.05 1.29 x 10-04 -0.08 -0.10 -0.06 3.90 x 10-11

LPCP-18:0/0:0 0.07 0.06 0.09 5.58 x 10-21 0.07 0.05 0.09 3.85 x 10-17



PCO-16:0/18:2 0.07 0.06 0.09 8.72 x 10-21 0.08 0.06 0.09 1.96 x 10-24

PE18:0/16:0 -0.05 -0.07 -0.03 1.15 x 10-08 -0.06 -0.07 0.04 4.25 x 10-09

SMd18:1/18:0 0.03 0.02 0.04 5.00 x 10-09 0.03 0.02 0.04 2.72 x 10-07

SMd35:1 0.03 0.02 0.04 3.96 x 10-06 0.03 0.02 0.05 6.53 x 10-07

TG52:4 -0.03 -0.05 -0.02 1.72 x 10-04 -0.02 -0.04 -0.01 0.01
FA18:4 0.05 0.03 0.08 3.28 x 10-05 0.05 0.03 0.08 1.50 x 10-04

FA20:4 0.03 0.01 0.04 1.47 x 10-04

FA22:5_2 0.09 0.06 0.11 2.36 x 10-13 0.08 0.05 0.10 3.68 x 10-10

FA22:6 0.15 0.13 0.17 1.41 x 10-32 0.14 0.11 0.16 8.90 x 10-25

FA24:5 0.07 0.05 0.1 3.86 x 10-07 0.07 0.04 0.10 8.25 x 10-06

LPI16:1/0:0 0.1 0.07 0.13 1.07 x 10-09 0.09 0.06 0.13 1.19 x 10-07

LPI20:4/0:0 0.04 0.03 0.06 9.51 x 10-08 0.04 0.02 0.05 1.98 x 10-06

LPI22:6/0:0 0.14 0.12 0.17 1.14 x 10-31 0.14 0.11 0.16 6.41 x 10-25

PEO-16:1/20:4 and/or PEP-
16:0/20:4

0.13 0.11 0.14 3.35 x 10-63 0.13 0.11 0.14 2.44 x 10-56

PAO-18:1/20:4 and/or PAP-
18:0/20:4

0.13 0.11 0.15 3.11 x 10-36 0.13 0.11 0.15 2.32 x 10-30

NAPEO-18:1/18:1/16:0 and/or 
NAPEP-18:0/18:1/16:0

0.03 0.02 0.05 4.60 x 10-07

PEO-18:2/20:4 and/or PEP-
18:1/20:4

0.1 0.09 0.11 8.18 x 10-40 0.1 0.09 0.12 6.93 x 10-36

PEO-16:0/22:6 0.11 0.09 0.12 8.78 x 10-41 0.11 0.09 0.12 1.23 x 10-35

PEO-18:1/18:2 and/or PEP-
18:0/18:2

0.04 0.03 0.06 6.30 x 10-09 0.05 0.03 0.06 1.51 x 10-09



NAPEO-18:1/20:4/16:0 and/or 
NAPEP-18:0/20:4/16:0

0.1 0.09 0.11 6.58 x 10-43 0.1 0.08 0.11 3.95 x 10-35

PEO-18:1/18:1 and/or PE-P-
18:0/18:1

0.09 0.07 0.1 9.05 x 10-25 -0.05 -0.07 -0.04 1.20 x 10-11

NAPEO-18:1/20:4/18:0 and/or 
NAPEP-18:0/20:4/18:0

0.13 0.11 0.14 4.63 x 10-47 0.12 0.11 0.14 9.35 x 10-39

1 All metabolites significant at p<0.0002
2 Adjusted for age, sex, body mass index, energy intake
3 Increase in log-metabolites per 1-point increase in dietary pattern scores
4 Further adjusted for diabetes, normoglycemic prediabetes or diabetes, hypertension, statin use, physical activity (MET-min/wk), 
alcohol use > drink/wk, smoking
Metabolic-Equivalent minutes per week = MET-min/wk
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Table 3: Metabolites Associated with Fried snacks Sweets High-fat Dairy Diet Pattern Elastic Net Regularized Regression adjusted for 
age sex body mass index energy intake1

1 

All metabolites significant at p<0.0002
2 Adjusted for age, sex, body mass index, energy intake
3 Increase in log-metabolites per 1-point increase in dietary pattern scores

Model 1, adjusted for age, sex, 
body mass index, energy intake 2,3 

Model 2, fully adjusted4

  ß2 95% CI 
Lower

95% CI 
Upper

p-value ß3 95% CI 
Lower

95% CI 
Upper

p-value

PC16:0/22:6 -0.09 -0.11 -0.06 1.16  x 10-08 -0.07 -0.10 -0.04 1.30 x 10-05

LPE18:2/0:0 0.05 0.02 0.07 4.37  x 10-05 0.03 0.01 0.06 4.13 x 10-03

LPI22:6/0:0 -0.08 -0.12 -0.04 1.00 x 10-05 -0.07 -0.11 -0.03 3.08 x 10-04

PC16:0/22:4 0.07 0.04 0.09 1.73 x 10-08 0.05 0.03 0.08 1.48 x 10-05

PC18:0/22:4 0.08 0.05 0.11 1.71 x 10-07 0.07 0.04 0.10 6.49 x 10-06

PC16:0/20:5 -0.09 -0.13 -0.06 1.65 x 10-08 -0.07 -0.11 -0.04 8.54 x 10-06

PC16:0/22:6 -0.08 -0.09 -0.06 1.71 x 10-16 -0.06 -0.08 -0.05 1.22 x 10-11

PA16:0/18:1 -0.04 -0.06 -0.02 8.83 x 10-05 -0.04 -0.06 -0.01 2.59 x 10-03

FA22:6 -0.14 -0.17 -0.1 1.96 x 10-13 -0.11 -0.15 -0.07 7.22 x 10-09

PC18:0/22:5 0.07 0.04 0.11 1.52 x 10-05 0.07 0.03 0.10 9.11 x 10-05

SulfoHexCerd18:1/24:0-
OH

-0.05 -0.07 -0.02 6.15 x 10-05 -0.05 -0.07 -0.02 5.74 x 10-05

SulfoHexCerd18:1/24:1-
OH

-0.05 -0.07 -0.03 3.55 x 10-05 -0.04 -0.07 -0.02 2.72 x 10-04
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4 Further adjusted for diabetes, normoglycemic prediabetes or diabetes, hypertension, statin use, physical activity (MET-min/wk), 
alcohol use > drink/wk, smoking
Metabolic-Equivalent minutes per week = MET-min/wk
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Table 4: Metabolites Associated with Fruits Vegetables Nuts Legumes Diet Pattern Elasticnet Regularized Regression adjusted for age 
sex body mass index energy intake1

Model 1, adjusted for age, sex, 
body mass index, energy intake 2,3 

Model 2, fully adjusted4

  ß2 95% CI 
Lower

95% CI 
Upper

p-value ß3 95% CI 
Lower

95% CI 
Upper

p-value

Proline betaine 0.17 0.09 0.25 1.0 x 10-04 0.18 0.09 0.26 3.65 x 10-05

LPC22:4/0:0 -0.08 -0.11 -0.04 5.86 x 10-06 -0.07 -0.10 -0.03 1.17 x 10-04

PC18:0/22:4 -0.06 -0.09 -0.03 1.0 x 10-04 -0.05 -0.09 -0.20 1.67 x 10-03

SMd19:1/16:0 -0.07 -0.1 -0.04 7.40 x 10-05 -0.06 -0.09 -0.03 1.42 x 10-05

LPE22:4/0:0 -0.12 -0.18 -0.07 1.36 x 10-05 -0.11 -0.17 -0.05 1.43 x 10-04

1 All metabolites significant at p<0.0002
2 Adjusted for age, sex, body mass index, energy intake
3 Increase in log-metabolites per 1-point increase in dietary pattern scores
4 Further adjusted for diabetes, normoglycemic prediabetes or diabetes, hypertension, statin use, physical activity (MET-min/wk), 
alcohol use > drink/wk, smoking
Metabolic-Equivalent minutes per week = MET-min/wk
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