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Hierarchical Data Representations Based on Planar Voronoi Diagrams
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Abstract

Multiresolution representations of high-dimensional scat-
tered data is an outstanding problem in the field of scien-
tific visualization. This paper introduces a data hierarchy of
Voronoi diagrams as a versatile solution. We implemented
two programs to demonstrate this, the first of which uses
a constant function to approximate the data within each
Voronoi tile and the second program uses the Sibson inter-
polant within each tile [5].

1 Introduction

This paper presents a new solution for constructing mul-
tiresolution data representations: data hierarchies based on
Voronoi diagrams. This approach is motivated by the need
to interactively render very large data sets that consist of
scattered or arbitrarily gridded data. A hierarchy of Voronoi
diagrams is a natural solution for a number of reasons. First,
Voronoi diagrams provide a “natural mesh” for scattered
data, data without explicit point connectivity. Second, point
insertion and deletion operations on a Voronoi diagram are
constant-time operations [3]. In addition, Voronoi tiles can
be sorted in depth in linear time for volume visualization
and Voronoi diagrams can be extended to n dimensions. Al-
though the Voronoi diagram’s dual the Delaunay triangula-
tion has the same properties, the Voronoi diagram provides
a more intuitive tesselation.

2 Related Work

The most common methods for visualizing massive data sets
are based on mesh reduction. Many algorithms reduce the
meshes well for surface data, but do not extend to higher-
dimensional data sets [4]. Some algorithms accelerate either
isosurface extraction and decimation or volume rendering,
but do not extend to other visualization techniques [2, 6].
Subdivision for Delaunay triangulations [1] and tetrahedral
meshes [7] has been explored, but with severe restrictions.

3 Voronoi Hierarchies

A Voronoi hierarchy consists of a set of Voronoi diagrams
that represent different resolutions, and different approxi-
mations of a given data set. As a result, there is a lot of
room for variation in an implementation. Implementations
define a method for selecting points to define a level in the
hierarchy, to select an interpolant within each Voronoi tile,
and to choose an error metric to determine the overall accu-
racy of each level in the Voronoi hierarchy.

3.1 Refinement of a Voronoi Diagram

Given a Voronoi diagram V' defined by k original data points,
the remaining original data points po,...,pm, and a cor-
responding set of function values fy,..., f;,, 2 method for
refining V' to better represent all n original data points is
outlined.

Refinement is based on an error €; that is calculated for
each tile t; in the Voronoi diagram, where each tile overlaps
ne; original data points. Since a constant function f(p;) is
used to represent the region of space in the tile t;, an error
is associated with each point in that region. The l; error
norm is used to calculate the error e.; for all points within
the tile.
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This result is compared with the global average error eqygq
for all n = k + m original data points.
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If the tile error ¢; exceeds the average tile error €qv4, then
a point puworst, associated with eyorst, is inserted into it.

Eworst = max ”f(Pt) s fl” (3)
pi€t;

As a result, only the areas in the Voronoi diagram with
high error are refined.

Figure 1: Example of vertex insertion. Black lines: cur-
rent Voronoi diagram; blue lines: convex hull of Voronoi
vertices; grey region: Voronoi tile with maximal error; red
point: vertex of maximal error pyorst; red lines: Voronoi tile
to be inserted.
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3.2 Constant Function Based Implementation

A variation of the general algorithm was used for the con-
stant function based implementation. Before points are in-
serted into a Voronoi diagram, a predetermined threshold for
point insertion is calculated using a percentage of the cur-
rent Voronoi diagram’s average error, €avg. All tiles with an
average error that exceeds this threshold are inserted. Typ-
ically, a threshold of 1.1 * €404 was used, so that only tiles
with average errors that are worse than the global error are
refined.

The value used for the constant function in a given tile
is the function value of the point that defines that tile. As
a result, all piecewise constant function values appearing in
the Voronoi diagram are original data values.

3.3 Sibson's Interpolant Based Implementation

The implementation based on the Sibson’s interpolant varies
the general algorithm in a different manner. Rather than
identifying a set of tiles with high error, a single tile with
the worst area-weighted average is inserted. The error €;; is
redefined for each tile t; with area a:; to be:
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This approach calculates one point at a time to insert,
and then updates the Voronoi diagram. Unlike the general
algorithm, updating the Voronoi diagram doesn’t mean that
a new level in the hierarchy has been calculated. Instead,
points are inserted and the Voronoi diagram is updated un-
til either an error bound or a certain number of points is
reached. The resulting set of points is used to define the
level in the hierarchy.

A better interpolant was used within each tile, the Sibson
interpolant [5]. The Sibson interpolant is based on blend-
ing function values f; associated with the points that define
a Voronoi diagram. The resulting interpolation defines a
smooth function that is C'-continuous everywhere except at
the points which define the Voronoi diagram. The function
f(z,y) is evaluated by inserting a point (z,y) temporary
into the Voronoi diagram and by estimating the areas a; cut
away from Voronoi tiles ¢;. The value of Sibson’s interpolant
at (z,y) is defined by

- Z,‘ a; f;
f(l‘,y) e ZJ aJ .

4 Results

The image of the Cats Eye Nebula (Figure 2), courtesy of
the NASA’s Hubble telescope, show results from the two
implementations. Even with 580 points, both algorithms
pick up the characteristics of the nebula, which results from
the manner in which points are inserted. Because puworst in
a tile t; corresponds to either the brightest or darkest point
in the tile t;, bright and dark regions are represented first.

5 Conclusions and Future Work

This paper introduced a method for hierarchical, gridless
representation of planar data, which is straightforward and
can be to generalized to higher dimensions. We plan to ex-
tend the algorithm to volumetric data, and eventually to

(d) (e)

Figure 2: (a) An image of the Cats Eye Nebula approximated
with 580 points using the constant function; (b) Sibson’s
interpolant used to estimate same image with 580 points;
(c) and (d) show corresponding Voronoi meshes for (a) and
(b), respectively

time-varying data. In addition, efficient ray-casting and iso-
surface extraction methods for Voronoi diagram hierarchies
will be developed.
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