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ABSTRACT
We consider the problem of designing an automatic grader for a
laboratory in the area of cyber-physical systems. The goal of this
laboratory is to program a robot for specified navigation tasks. Given
a candidate student solution (control program for the robot), our
grader first checks whether the robot performs the task correctly
under a representative set of environment conditions. If it does not,
the grader automatically generates feedback hinting at possible er-
rors in the program. The auto-grader is based on a novel notion
of constrained parameterized tests based on signal temporal logic
(STL) that capture symptoms pointing to success or causes of fail-
ure in traces obtained from a realistic simulator. We define and
solve the problem of synthesizing constraints on a parameterized
test such that it is consistent with a set of reference solutions with
and without the desired symptom. The usefulness of our grader is
demonstrated using a large data set obtained from an on-campus
laboratory-based course at UC Berkeley.

1. INTRODUCTION
Massive open online courses (MOOCs) [22] and related tech-

nological advances promise to bring world-class education to any-
one with Internet access. Additionally, MOOCs present a range of
problems to which the field of formal methods has much to con-
tribute. These include automatic grading, automated exercise gen-
eration, and virtual laboratory environments. In automatic grad-
ing, a computer program verifies that a candidate solution pro-
vided by a student is “correct”, i.e., that it meets certain instructor-
specified criteria (the specification). In addition, and particularly
when the solution is incorrect, the automatic grader (henceforth,
auto-grader) should provide feedback to the student as to where
he/she went wrong. Automatic exercise generation is the process
of synthesizing problems (with associated solutions) that test stu-
dents’ understanding of course material, often starting from instructor-
provided sample problems. Finally, for courses involving labo-
ratory assignments, a virtual laboratory (henceforth, lab) seeks to
provide the remote student with an experience similar to that pro-
vided in a real, on-campus lab.
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Lab-based courses that are not software-only pose a particular
technical challenge. An example of such a course is Introduction
to Embedded Systems at UC Berkeley [13]. In this course, students
not only learn theoretical content on modeling, design, and anal-
ysis [14], but also perform lab assignments on programming an
embedded platform interfaced to a mobile robot [9]. What would
an online lab assignment in embedded systems look like? In an
ideal world, we would provide an infrastructure where students
can log in remotely to a computer which has been preconfigured
with all development tools and laboratory exercises; in fact, pi-
lot projects exploring this approach have already been undertaken
(e.g., see [20]). However, in the MOOC setting, the large numbers
of students makes such a remotely-accessible physical lab expen-
sive and impractical. A virtual lab environment, driven by simula-
tion of real-world environments, appears to be the only solution at
present. For example, the MIT circuits course (MITx 6.002x) uses
rudimentary circuit simulation software [21].

In this paper, we formalize the auto-grading problem for a vir-
tual lab environment in the field of embedded and cyber-physical
systems (CPS). The virtual lab under consideration is the one de-
signed for EECS149.1x [15], a MOOC on Cyber-Physical Systems
offered on the edX platform, based on the afore-mentioned on-
campus course, and described in more detail in Sec. 2. The main
point we make here is that the dynamical model for the virtual lab is
so complex that simulation is currently the only verification method
that can be practically employed. Thus, the auto-grader is based on
simulation-based verification. The high-level approach, previously
hinted at in a position paper [10], is as follows. Correctness proper-
ties are formalized in signal temporal logic (STL) [19]. Simulation
test benches are created by a combination of manual environment
setup and simulation-based falsification implemented in tools such
as Breach [5]. For each lab assignment, there is an end-to-end cor-
rectness property, hereafter referred to as the goal property. If the
goal is satisfied, the student solution (hereafter referred to as a con-
troller) is deemed correct. Otherwise, it is incorrect, and more anal-
ysis must be performed to identify the mistake (fault) and provide
feedback. This latter analysis is based on monitoring simulation
traces of the student controller on a library of known faults, also
formalized in STL. If any of these “fault properties” hold for a stu-
dent controller, they are provided to the student as feedback.

This approach, though straightforward on the surface, requires
further technical advances to be effective. The first problem is that
the STL properties that encode both goal and fault properties ref-
erence parameters that can vary over the set of environments and
student controllers; in fact, such variation must be allowed. For
example, in a real lab, students may program robots to move at dif-
ferent velocities while performing obstacle avoidance. If the goal
of the lab is only to correctly avoid an obstacle, the speed at which
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it does so is irrelevant. However, given the variations in the con-
trollers students design, setting a reasonable range for parameters
such as time or velocity in STL properties can be tricky. Similarly,
environments can also be parametric (for example, the location of
obstacles) and tests should be synthesized in a manner that accounts
for these variations. Thus, an effective approach to auto-grading
CPS labs requires one to solve a certain parameter synthesis prob-
lem.

We formalize this parameter synthesis problem and give an al-
gorithm to solve it. First, we define the notion of a parametrized
test which is a combination of a parametrized environment and a
parametrized STL (PSTL) property. A parametrized test is thus a
collection of tests. However, as discussed above, one needs to im-
pose a constraint on this collection to capture “legal” variations in
student solutions. Such a constraint, termed a sub-domain, defines
the allowed set of parameter valuations. However, manually com-
puting this sub-domain is tedious and error-prone. We therefore
give an algorithmic approach to synthesize the sub-domain from
reference controllers that should/should not pass the test bench. In
practice, it is easier for instructors to provide such reference con-
trollers than it is to manually compute sub-domains. The resulting
constrained parameterized test bench then becomes the “specifica-
tion” that determines whether a student solution is correct, and, if
not, which fault is present. Further, we identify a property, mono-
tonicity, under which we can efficiently compute the sub-domain,
and which holds for the lab of interest.

Any auto-grader must have at least two desirable properties: ac-
curacy and efficiency. The former means that the auto-grader must
correctly classify right and wrong student solutions, and for wrong
solutions, correctly explain the mistake (fault). The latter means
that it must run efficiently in practice. For efficiency, we show how
monotonicity can be exploited again to avoid the need to run the
entire constrained parametric test bench. Instead, we define the no-
tion of an adequate test sample and show that it is much smaller in
practice than the entire constrained test bench. We also provide an
experimental evaluation on the on-campus lab demonstrating that
our approach is both accurate and efficient in practice.

To summarize, the main novel contributions of this paper are:

• A formalization of the auto-grading problem for simulation-
based virtual laboratories in cyber-physical systems;
• A formalization of the problem of synthesizing a constrained

parametric test bench for the auto-grader along with an efficient
solution approach based on monotonicity, and
• An empirical evaluation demonstrating the accuracy and effi-

ciency of CPSGrader, the auto-grader for the on-campus em-
bedded systems lab, on a database of actual student solutions.

The outline of the rest of the paper is as follows. We begin in
Sec. 2 by describing the motivating application for this work, the
lab assignments in the course. We introduce basic terminology and
background results in Sec. 3. In Sec. 4, we describe the main the-
oretical contributions, including our formalization and solution ap-
proach. Experimental results are given in Sec. 5. We discuss related
work in Sec. 6 and conclude with future directions Sec. 7.

2. MOTIVATING APPLICATION
The embedded systems laboratory course offered at University

of California, Berkeley employs a custom mobile robotic platform
called the Cal Climber [8, 7]. The Cal Climber is based on the
commercially-available iRobot Create (derived from the iRobot-
Roomba autonomous vacuum cleaner) (Fig. 1a), and the National
Instruments myRIO embedded controller. This off-the-shelf plat-
form is capable of driving, sensing bumps and cliffs, executing
simple scripts, and communicating with an external controller. This
configuration demonstrates the composition of cyber-physical sys-
tems, where a robotics platform is modeled as a sub-system and

(a) (b)

Figure 1: (a) Cal Climber laboratory platform. (b) Cal Climber in the
LabVIEW Robotics Environment Simulator.

treated as a collection of sensors and actuators potentially located
beyond a network boundary. The problem statement centers on
model-based design and is given as follows (paraphrased from [9]):

Design a StateChart to drive the Cal Climber. On level
ground, your robot should drive straight. When an ob-
stacle is encountered, such as a cliff or an object, your
robot should navigate around the object and continue
in its original orientation. On an incline, your robot
should navigate uphill, while still avoiding obstacles.
Use the accelerometer to detect an incline and as in-
put to a control algorithm that maintains uphill orien-
tation.

Source files distributed with the Cal Climber laboratory are struc-
tured such that students only need to implement a function that re-
ceives as arguments the most recent values of the accelerometer
and robot sensors and returns desired wheel speeds. This function
is called repeatedly at short regular intervals of time (60 ms in our
case) with most recent sensor and accelerometer data. Students
implement this function for controlling the Cal Climber. In the
on-campus course, students first prototype their controller to work
within a simulated environment (without any auto-grading) based
on the LabVIEW Robotics Environment Simulator by National In-
struments. The simulator is based on the Open Dynamics En-
gine [27] rigid body dynamics software that can simulate robots in a
virtual environment(Fig. 1b). In EECS149.1x, the afore-mentioned
online version of the course, the same simulator, extended with the
auto-grader described in the present paper, has been used.

We refer to the functions implemented by students as solutions,
or controllers. A solution is evaluated in a collection of environ-
ments against a collection of goal and fault properties, forming
test benches (a notion formalized in the following sections). For
this purpose, the simulator allows to define customized environ-
ments (with walls, objects, obstacles, ramps, etc) described in XML
files and we further extended its API to facilitate the exportation of
traces of simulation to external property monitoring tools. For the
experiments reported in Section 5, traces were written in files and
monitored offline against STL properties in the publicly-available
Breach toolkit [5].

3. PRELIMINARIES

3.1 Signals, Controllers, and Environments

Definition 1. (Signal) A (uni-dimensional) signal is a function
mapping the time domain T = R≥0 to the reals R.

Boolean signals, used to represent discrete dynamics, are sig-
nals whose values are restricted to false (denoted ⊥) and true (de-
noted >). Vectors in Rn with n > 1 are denoted in bold fonts
and their components are indexed from 1 to n, for example, p =
(p1, · · · , pn). Likewise, a multi-dimensional signal x is a function



from T to Rn such that ∀t ∈ T, x(t) = (x1(t), · · · , xn(t)). We
will use the term “signal” to also refer to multi-dimensional signals.

Definition 2. (Controller) A controller C is a (deterministic) dy-
namical system that takes as input a signal y(t) and computes an
output signal u(t). It is common to drop time, and say u = C(y).

Note that we make no assumption about how a controller com-
putes its output. A controller can have discrete or continuous dy-
namics or it can be a hybrid system. As an example, a program run-
ning on the Cal Climber is a controller that takes bumps and cliff
sensors signals, and accelerometer data as input y(t) = (bump(t),
cliff(t), accel(t)), and responds with the desired left and right wheel
speeds as output u(t) = (lws(t), rws(t)).

Definition 3. (Environment) An environment E for a controller
C is a dynamical system generating all inputs to C.

As before, we make no assumptions about the form of the envi-
ronment. All we assume is the existence of a simulator that can take
representations of E and C, compose them, and produce execution
traces of the composite system. In other words, the simulator is an
oracle that gives semantics to the composite system E‖C.

We only consider deterministic environments, i.e., the composi-
tion of a controller and an environment has deterministic behavior.
For example, an arena composed of obstacles and hills on level
ground is an environment for the Cal Climber controller. Formally,
a trace sim(C,E) is a multi-dimensional signal (x(t),y(t),u(t))
consisting of the inputs y and outputs u of the controller and op-
tionally other signals x regarding the state of the environment. For
example, the position and orientation (in the plane of the ground)
of the robot in the arena x(t) = (pos(t), angle(t)) are a part of
the observable environment state. By varying the environment, or
the property being verified on the composition (see Sec. 3.2), the
instructor can test different features of the controller.

3.2 Signal Temporal Logic
Since propositional (linear) temporal logic was introduced by

Amir Pnueli [23], variants have also been proposed. Temporal log-
ics to reason about real-time signals, such as Timed Propositional
Temporal Logic [2], and Metric Temporal Logic (MTL) [12] were
introduced later to deal with dense-time signals. More recently,
Signal Temporal Logic [19] was proposed in the context of analog
and mixed-signal circuits to deal with dense-time signals taking
values over both discrete and continuous domains. We use STL as
the specification language for the Embedded Systems lab assign-
ment. Goals that the robotic controller must achieve are expressed
as STL properties.

The primitive constraints, or predicates, in STL take the form
µ
.
= f(x) ∼ π, where f is a scalar-valued function over the signal

x, ∼∈ {<,≤,≥, >,=, 6=}, and π is a real number. Temporal for-
mulas are formed using temporal operators, “always” (denoted as
2), “eventually” (denoted as 3) and “until” (denoted as U). Each
temporal operator is indexed by intervals of the form (a, b), (a, b],
[a, b), [a, b], (a,∞) or [a,∞) where each of a, b is a non-negative
real-valued constant. If I is an interval, then an STL formula is
written using the grammar:

ϕ := > | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

The always and eventually operators are defined as special cases of
the until operator in the standard way: 2Iϕ , ¬3I¬ϕ,3Iϕ ,
>UI ϕ. When the interval I is omitted, we use the default interval
of [0,+∞). The semantics of STL formulas are defined informally
as follows. The signal x satisfies f(x) > 10 at time t (where
t ≥ 0) if f(x(t)) > 10. It satisfies ϕ = 2[0,2) (x > −1) if for
all time 0 ≤ t < 2, x(t) > −1. The signal x1 satisfies ϕ =
3[1,2) x1 > 0.4 iff there exists time t such that 1 ≤ t < 2 and

x1(t) > 0.4. The two-dimensional signal x = (x1, x2) satisfies
the formula ϕ = (x1 > 10) U[2.3,4.5] (x2 < 1) iff there is some
time u where 2.3 ≤ u ≤ 4.5 and x2(u) < 1, and for all time v
in [2.3, u), x1(u) is greater than 10. The formal semantics of STL
can be found in [19] and is given in Appendix A.

Parametric Signal Temporal Logic (PSTL) is an extension of
STL introduced in [3] to define template formulas containing un-
known parameters. Syntactically speaking, a PSTL formula is an
STL formula where numeric constants, either in the constraints
given by the predicates µ or in the time intervals of the temporal
operators, can be replaced by symbolic parameters.

An STL formula is obtained by pairing a PSTL formula with a
valuation function that assigns a value to each symbolic parameter.
For example, consider the PSTL formula ϕ(π, τ) = 2[0,τ ]x > π,
with symbolic parameters π (scale) and τ (time). The STL formula
2[0,10]x > 1.2 is an instance of ϕ obtained with the valuation v =
{τ 7→ 10, π 7→ 1.2}.

3.3 Defects and Faults
A controller is usually designed to meet certain goals. For exam-

ple, the Cal Climber controller should be able to navigate around
obstacles and climb hills. To talk about grading and feedback gen-
eration, we introduce some relevant terminology from the fault test-
ing and diagnosis literature.

Definition 4. (Defect, symptom and fault) Given a controller and
an environment with some desired goals,

• A defect is a bug in the controller implementation that leads to
failure in meeting goals;
• A symptom is an interesting pattern in a simulation trace of the

controller-environment composition that can be characterized,
for example, using STL, and
• A fault is a symptom that is present in a trace as a result of some

defect in the controller.

A general symptom, such as the inability to meet an end-to-
end correctness goal (for example, obstacle avoidance), is a fault
that could be the result of multiple defects in the controller. On
the other hand, certain specific faults could be mapped to specific
kinds of defects. As an example, consider an obstacle avoidance
strategy for the Cal Climber controller, implemented in a language
like C. The strategy states that every time the bump sensor sig-
nal indicates a bump, the robot backs up, moves some distance
to either right or left and then re-orients by turning in-place until
the heading direction is same as the original direction angle0. A
controller will check the guard |angle(t) - angle0| ≤ ε for some
small ε > 0 to determine when to stop turning in the re-orientation
mode. A defect can be introduced by replacing this guard by the ex-
act equality check angle(t) == angle0. This modification usually
leads to failure in practice, because the controller implementation
polls its sensors at certain intervals, and therefore, it is highly un-
likely that the sensor value at some polled time t, angle(t), will be
exactly angle0. The fault resulting from this defect is that in the
re-orientation mode, the robot keeps turning in-place while mak-
ing full circles multiple times. We call this the circle fault and will
revisit it again in the paper.

The ability to classify traces that present a fault from those that
don’t is important for auto-grading. Using this classification, we
can not only separate correct solutions from incorrect ones but also
generate diagnostic feedback for failed traces by monitoring for
relevant faults that will likely correspond to known defects.

4. FORMALISM AND APPROACH
We now formally define the auto-grading problem, the technical

challenge in synthesizing a constrained parametrized set of tests,
and our approach to solve this problem.



For the purpose of examples in this section, we always assume
the controller is a Cal Climber program and the environment is an
arena with one robot, multiple obstacles and fixed inclines (flat rect-
angular planks) placed on level ground. Positions in the arena are
given using x, y, and z coordinates (in meters). Orientation in the
x − y plane is given by the yaw angle varying from −180 to 180
degrees, increasing in counter-clockwise direction with 0 aligned
with y-axis. The initial position and orientation of the robot is also
a part of the environment.

4.1 Constrained Parametrized Tests
One of the fundamental notions for auto-grading is that of a test.

Definition 5. (Test) A pair (E,ϕ) of an environment E and an
STL formula ϕ is called a test. A test passes for a controller C if
and only if sim(C,E) |= ϕ.

For the end-to-end correctness property (goal), we will employ
the convention that the STL formula ϕ in a test for this goal is the
negation of the property that we want to hold. In other words, if
a test “passes,” it actually means that the correctness property did
not hold for that test case. The reason for this convention is that
it allows us to treat STL formulas encoding correctness goals and
fault symptoms in a symmetric fashion, something that is required
for the main technical results of this paper. Hereafter we will treat
the STL property as specifying a fault unless explicitly stated oth-
erwise.

Example 1. Consider an environment E0 with a square obstacle
occupying the region [4.5, 5.5] × [5.0, 5.5]. The initial position of
the robot is 〈5.0, 4.9〉 and the initial orientation is 0. Consider the
STL property ϕ = 2(pos.y ≤ 5.5) which states that the robot is
never able to reach a point with y coordinate more than 5.5. If the
test (E0, ϕ) passes, we can assert that the robot did not meet the
goal of being able to avoid the obstacle.

Consider a vector of symbolic parameters p = (p1, p2, · · · , pn).
A valuation function v maps each symbolic parameter to a concrete
value (for example, in Rn) and v(pi) denotes the value of parameter
pi in v. The set of all possible valuations of p, its domain, is U.

Definition 6. (Parametrized Test) A parametrized environment
is an environment with unknown parameters, denoted E(p). A
parametrized test Γ(p) = (E(p), ϕ(p)) is a pair of a parametrized
environmentE(p) and a PSTL formula ϕ(p). Given any valuation
v ∈ U, Γ(v(p)) = (E(v(p)), ϕ(v(p))) is a concrete test.

Example 2. Consider the same environmentE0 from Example 1
except that the initial orientation of the robot is an unknown param-
eter θinit that can take one of two possible values {−45, 45}. (See
Figure 2a.) Consider the PSTL property ϕ0(π) = 2(pos.y >
5.5 ⇒ πl < pos.x < πu), where π = (πl, πu), with unknown
parameters πl and πu that can take one of three possible values
{−∞, 5.0,∞} each. The property states that if the robot is able
to get around the obstacle and reach a point pos.y > 5.5, then
pos.x is always in the interval (πl, πu). The pair Γ0(θinit, π) =
(E0(θinit), ϕ0(π)) is an example of a parameterized test.

Definition 7. (Satisfaction Region) The satisfaction region Ω(C,
Γ(p)) of a controller C on a parametrized test Γ(p) is the set of all
valuations v of p such that Γ(v(p)) passes forC, i.e., Ω(C,Γ(p)) =
{v ∈ U|Γ(v(p)) passes for C}.

Definition 8. (Test Bench) Given a parameterized test Γ(p) and
a set of valuations ρ ⊆ U, the pair (Γ(p), ρ) is called a constrained
parametrized test, simply referred to as test bench. The set of valu-
ations ρ is called the sub-domain of the test bench. We say that test
bench (Γ(p), ρ) succeeds for a controller C iff there exists a v ∈ ρ
such that Γ(v(p)) passes for C or equivalently, Ω(C,Γ(p)) ∩ ρ is
non-empty.

Since a test bench typically includes both the goal properties (de-
termining whether a student controller is correct or not) and the
fault properties (determining the mistakes the student made), the
crux of the auto-grading problem is to synthesize a test bench that
can accurately classify an “unlabeled” controller as correct/incorrect
and with the fault(s), if any. Treating goal and fault properties uni-
formly, we seek to synthesize a test bench to classify whether an
unlabeled controller exhibits faulty behaviors.

To auto-grade, for every known fault, we create a test bench. If
the test bench succeeds for an unlabeled controller, we can conclu-
sively label it as one exhibiting faulty behavior. The sub-domain
of a test bench essentially identifies the set of tests that indicate the
presence of the fault. As mentioned earlier, a test bench can also
be used in a similar way to check if a given controller meets goal
requirements by formulating the failure to meet the goal as a fault.

Example 3. Consider the parameterized test Γ0 from Example 2.
Consider the sub-domain ρ0 = {[θinit 7→ 45, π 7→ (5.0,∞)],
[θinit 7→ −45, π 7→ (−∞, 5.0)]}. For a controller, if either of
valuations in ρ0 leads to a test that passes, it provides good evi-
dence that the robot is either unable to avoid the obstacle or it is not
able to proceed in the initial direction. (See Figure 2a.) So the test
bench (Γ0(θinit, π), ρ0) can be used to capture this failure to meet
desired goals.

Example 4. Consider an environment E1 with a fixed incline
s.t. the uphill direction is along the orientation 0. The initial lo-
cation of the robot is fixed at the center of the bottom boundary
of the incline. The initial orientation of the robot is a parame-
ter θinit ∈ [−180, 180]. We wish to determine whether a given
controller (in an initial orientation pointing towards the incline)
fails to climb within reasonable time. This can be expressed via
the STL property ϕ1(h, τ) = 2[0,τ ](pos.z ≤ h), that states that
the robot is not able to reach the height h, within time τ . The
parametrized test bench Γ1(θinit, h, τ) = (E1(θinit), ϕ1(h, τ)),
combined with the sub-domain ρ1 = {[θinit 7→ vθinit , h 7→
vh, τ 7→ vτ ]s.t. |vθinit | < 90 ∧ vτ > 60 ∧ vh ≤ 0.4} can re-
liably capture the failure to climb to a height above 0.4 m within
60 secs for some initial orientation pointing towards the hill.

4.2 Synthesis of Test Bench Constraints
Designing a test bench for a fault involves (i) creating a parametrized

test bench, and (ii) finding a sub-domain of the parameters such
that it reliably captures the fault. While creating a parametrized
test bench by hand is easy, in our experience manually coming up
with the sub-domain is tedious. It not only requires the instructor
to be a relative expert in STL and run-time verification, but also
requires careful observation of traces where the fault is known to
be present and not present, and a number of iterations of trial and
error. On the other hand, instructors can easily come up with a
set of reference controllers: a set C+ of positive-labeled controllers
that are all known to exhibit the faulty behavior, and a set C− of
negative-labeled controllers that are all known to not exhibit the
faulty behavior.

We define below the problem of synthesizing a sub-domain from
a set C+ of positive-labeled controllers and a set C− of negative-
labeled controllers.

Problem 1. Given the following: (1) a parameterized test Γ(p)
with a domain U for parameters p, and (2) two sets C+ and C−
of controllers. Synthesize a sub-domain ρ ⊆ U s.t. test bench
(Γ(p), ρ) does not succeed for any C ∈ C− and succeeds for all
C ∈ C+.

We can see that any sub-domain that does not intersect with
Ω(C, Γ(p)) for any C ∈ C− and has a non-empty intersection
with Ω(C,Γ(p)) for every C ∈ C+ satisfies the requirements in



Problem 1. From amongst all these possibilities, we choose the
following (also illustrated in Figure 2b)

ρ =
⋃

C∈C+
Ω(C,Γ(p)) \

⋃
C∈C−

Ω(C,Γ(p)) (1)

For convenience, we use Ω(C+,Γ(p)) (and Ω(C−,Γ(p))) to re-
fer to

⋃
C∈C+

Ω(C,Γ(p)) (and
⋃

C∈C−
Ω(C,Γ(p))). The rationale be-

hind this choice of ρ is two-fold:
1. To increase coverage of fault detection for unlabeled controllers,

we wish to include as much of Ω(C+,Γ(p)) in ρ as possible be-
cause every parameter valuation in that set corresponds to a test
that passed on some positively-labeled controller, i.e. a con-
troller that exhibits the faulty behavior.

2. For the tests corresponding to valuations that are not in either
one of Ω(C+,Γ(p)) or Ω(C−,Γ(p)), we choose a lenient grad-
ing route and do not include them in ρ. This means that if
an unlabeled controller does not pass on any test that lies in
Ω(C+,Γ(p)), it will not be labeled as one exhibiting the fault.
This is how instructors often grade labs in practice, i.e., if tests
conclude that a solution may or may not be faulty, it is consid-
ered to be non-faulty, pending a more detailed manual review.
Here we are also assuming that we have a good range of posi-
tive and negative labeled controllers that cover a wide variety of
ways in which the fault may or may not be exhibited.

To generate ρ as in Eqn. 1, we compute Ω, as discussed next.

4.3 Computing the Function Ω

Given a controller C and a parametrized test Γ(p) with p =
(p1, p2, · · · , pk), we wish to compute Ω(C,Γ(p)). We assume
that all parameters are numerical. Every parameter that is not fi-
nite valued is discretized by sampling uniformly at some granular-
ity within reasonable lower and upper bounds. By this construc-
tion, the domain U is now a finite k-dimensional array and can be
written as a Cartesian product of finite sets U1 × U2 × · · · × Uk,
where pi takes values in the set Ui. We assume some indexing
on each Ui such that U[j1, j2, · · · , jk] refers to the element of U
formed by picking the ji-th element from each Ui. Moreover, we
assume that this indexing is consistent with the natural order de-
fined over each Ui (i.e., a lower index implies a smaller value). Let
N = max

i
(|Ui|). The size of U is O(Nk). Given this represen-

tation of U, Ω(C,Γ(p)) can be represented by a k-dimensional
bit-array, such that, Ω(C,Γ(p))[j1, j2, · · · , jk] = 1 iff the test
Γ(U[j1, j2, · · · , jk](p)) passes on the test Γ(U[j1, j2, · · · , jk](p))
passes onC. The most naïve way to compute Ω(C,Γ(p)) is to per-
form the test Γ(v(p)) for every valuation v(p) ∈ U. We describe
a more efficient approach to do this in cases where the test bench is
monotonic in one or more parameters.

Definition 9. (Monotonicity) Given an order 4 on a parameter
pi in the parameter vector p = (p1, p2, · · · , pk), a parameterized
test Γ(p) is monotonic in pi if for every controller C

∀v, v′ v(pi) 4 v′(pi), ∀j 6= i · v′(pj) = v(pj)

Γ(v(p)) passes for C ⇒ Γ(v′(p)) passes for C (2)

Example 5. Consider the parameterized test Γ1(θinit, h, τ) from
Example 4. Consider the order ≤ over h and two values vh ≤ v′h.
For any controller C, if Γ1(vθinit , vh, vτ ) passes, it means that the
pos.z always stays below vh for the time interval [0, vτ ], which
implies that it stays below v′h as well and hence Γ1(vθinit , v

′
h, vτ )

will pass. Thus Γ1(θinit, h, τ) is monotonic in h.
Similarly, for the order ≥ on the parameter τ and two values

vτ ≥ v′τ , if a test Γ1(vθinit , vh, vτ ) passes for any controller, it
means that the pos.z always stays below vh for the time interval

[0, vτ ], which implies that the same is true for the time interval
[0, v′τ ] and hence the test Γ1(vθinit , vh, v

′
τ ) will also pass.

We can extend the definition of monotonicity to sets of parame-
ters by defining required orders on tuples of parameter values. For
example, Γ1(θinit, h, τ) is monotonic in (h, τ) if we consider 4
as the order, where (vh, vτ ) 4 (v′h, v

′
τ ) iff vh ≤ v′h and vτ ≥ v′τ .

Note that we do not need separate monotonically increasing and de-
creasing parameterized tests since we can always invert the order
on the parameter and keep the definition consistent.

Note that the definition of monotonicity allows a parameterized
test to be monotonic in environment parameters but, so far in prac-
tice we have never encountered cases when this happens. Checking
that a parameterized test is monotonic in certain parameters that
only occur in the PSTL part of the test can be done by reduction
to satisfiability modulo theories (SMT) as described in more detail
by Jin et al. [11]. This is an offline step carried out at the time of
design of a parameterized test.

Definition 10. (Monotone Bit-Array) For two indices j = [j1, j2,
· · · , jk] and j′ = [j′1, j

′
2, · · · , j′k] of a k-dimensional bit-array A,

we say j ≤ j′ iff j1 ≤ j′1, j2 ≤ j′2, · · · , jk ≤ j′k. The array A is
said to be monotone if for any indices j and j′ s.t. j ≤ j′, A[j] = 1
implies that A[j′] = 1.

We now describe how monotonicity proves to be a useful prop-
erty to efficiently compute Ω(C,Γ(p)). First consider the case
when Γ(p) is monotonic in all k parameters p1, p2, · · · , pk. Owing
to monotonicity, we can index the valuations using their respective
orders s.t. for any controller C, the k-dimensional bit-array repre-
sentation of Ω(C,Γ(p)) is monotone. We describe an algorithm to
compute Ω(C,Γ(p)) in three separate cases.

4.3.1 Case: k=1
For the single parameter p1 we can perform a binary search

within its domain to determine the index b such that Γ(U[j1 =
b](p)) does not pass on C while Γ(U[j1 = b + 1]) passes. We
would have to perform O(logN) tests.

4.3.2 Case: k=2
For two parameters p1 and p2, say we have the 2-d array of in-

dices [1 · · ·U ] × [1 · · ·V ]. We start at the index 〈row = 1, col =
V 〉. At each step we perform the test Γ(U[j1 = row, j2 = col](p))
onC. If the test passes, we mark the complete column Ω(C,Γ(p))[j1 ≥
row, j2 = col] with 1s (we can do this because of monotonicity)
and decrement col by 1. If the test does not pass, we mark the
complete row Ω(C,Γ(p))[j1 = row, j1 ≤ col] with 0s and incre-
ment row by 1. We do this until we have covered the whole array.
We would have to perform O(max(U, V )) = O(N) tests since
we mark out a complete row or column after every test. Figure 3a
shows an intermediate step in a run of this algorithm.

4.3.3 Case: k≥3
For more than 2 parameters, we enumerate over all possible val-

uations of first k − 2 parameters and use the case for k = 2 for the
2-d sub-array obtained by fixing p1, p2, · · · , pk−2. We would have
to performO(Nk−1) tests. We cannot hope to do (asymptotically)
better than this as it is shown in [18] that searching in a monotone
d-dimensional array where each dimension is of size at most n is
lower bounded by c2(d)nd−1, where c2(d) = O(d

−1
2 ) for d ≥ 2.

For the general case, let Γ(p) be non-monotonic in the first k−d
parameters and monotonic in the d others. We enumerate over all
possibilities of the first k − d parameters and apply the algorithm
for monotonic parameters to the d dimensional sub-array obtained
by fixing p1, p2, · · · , pk−d.

Using the above approach, we can compute Ω(C+,Γ(p)), Ω(C−,
Γ(p)) and ρ = Ω(C+,Γ(p))\Ω(C−,Γ(p)), all represented in the
form of k-dimensional bit-arrays.
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Figure 2: (a) Environment E0 from Examples 1, 2, and 3 with robot R and obstacle O. The two trajectories shown by dotted lines meet the
goals for the cases θ = 45 and θ = −45. (b) The hatched region is the sub-domain ρ obtained from satisfaction regions of positive and
negative controller examples.

4.4 Adequate Test Samples for Grading
Checking whether a new controller C succeeds on a test bench

(Γ(p), ρ) amounts to searching for a valuation in ρ such that Γ(v(p))
passes for C. The naive approach to solve the search problem is to
enumerate all valuations in ρ. We describe a more efficient search
strategy when Γ(p) is monotonic in one or more parameters.

Definition 11. (Adequate Test Sample) An adequate test sample
α ⊆ ρ is a set of valuations s.t. for any controller C, (Γ(p), ρ)
succeeds on C iff there is at least one v ∈ α for which Γ(v(p))
passes for C.

Definition 12. (Corner) A corner in a monotone k-dimensional
bit-array A is an index j = [j1, j2, · · · , jk] s.t. A[j] = 0 and
∀1 ≤ l ≤ k, if the index [j1, j2, · · · , jl+1, · · · , jk] lies within the
bounds of A, then A[j1, j2, · · · , jl + 1, · · · , jk] = 1.

First consider the case when a parameterized test Γ(p) is mono-
tonic in all parameters p = (p1, p2, · · · , pk). Say we have com-
puted Ω(C+,Γ(p)), Ω(C−,Γ(p)) and ρ = Ω(C+,Γ(p))\Ω(C−,Γ(p))
in k-dimensional bit-array form.

PROPOSITION 1. The set α comprising of all valuations U[j]
s.t. j is a corner of Ω(C−,Γ(p)) and Ω(C+,Γ(p))[j] = 1, is a
minimal adequate test sample for (Γ(p), ρ).

PROOF. We first show that α is adequate then we show α is
also minimal. For this proof, we refer to Ω(C+,Γ(p)) by Ω+ and
Ω(C+,Γ(p)) by Ω−.

Assume Γ(v(p)) passes for C for some v ∈ α. Let the index
of this valuation be jv . By definition of α, Ω+[jv] = 1 and jv is a
corner of Ω− implying Ω−[jv] = 0. From the way we have defined
ρ, we can say that ρ[jv] = 1 or v ∈ ρ which means (Γ(p), ρ) suc-
ceeds for C. For reverse implication, assume (Γ(p), ρ) succeeds
forC, it means that it is possible to find an index j = [j1, j2, · · · , jk]
s.t. U[j] ∈ ρ (equivalently, ρ[j] = 1) and Γ(v(p)) passes for C
(equivalently, Ω(C,Γ(p))[j] = 1). Since j ∈ ρ, we have Ω+[j] =
1 and Ω−[j] = 0. If j is a corner of Ω−, then we have U[j] ∈ α
and we are done. If not, then there exists 1 ≤ l ≤ k, j′ =
[j1, j2, · · · , jl + 1, · · · , jk] s.t. Ω−[j′] = 0. By monotonicity, we
also have Ω+[j′] = 1 and Ω(C,Γ(p))[j′] = 1. If j′ is a corner
of Ω−, then U[j] ∈ α and we are done. Else we set j to j′ and
proceed again in the same way. Since U is finite, this procedure is
guaranteed to terminate at a corner of Ω−.

To show minimality, we remove some arbitrary valuation v from
α and show that it becomes inadequate. Say jv is the index cor-
responding to v. Consider a controller C s.t. Ω(C,Γ(p))[j] = 1

iff j ≥ jv . Since jv is a corner of Ω−, for every index j 6= jv and
j ≥ jv , we have that Ω−[j] = 1. This means there is no corner
of Ω− in Ω(C,Γ(p)) apart from jv . Hence, we will not be able to
find another v′ ∈ α, v′ 6= v s.t. Γ(v′(p)) passes onC, even though
(Γ(p), ρ)) succeeds onC. This means α becomes inadequate if we
remove any of its elements, thus making it minimal.

Figure 3b shows an example of a minimal adequate test sample
for the 2-d case. To compute α, similar to Sec. 4.3; in case k = 1,
we can do a binary search to find the corner; in case k = 2, we
can we can find corners by starting at the boundary of the 2-d array
and eliminating rows and columns; and in case k ≥ 3, we can
enumerate over first k− 2 parameters and apply the case for k = 2
on the rest. For the general case of k − d non-monotonic and d
monotonic parameters, we enumerate over all possibilities of first
k − d parameters, and keep accumulating the adequate test sample
calculated for the d-dimensional monotone sub-array obtained by
fixing the first k − d parameters.

We conclude this section with a remark about an alternative math-
ematical formulation. If we treat a monotone bit-array as a partially-
ordered set (poset) O, then, the satisfaction region Ω(C,Γ(p)) of
some controller C is an upward closed subset of O. The sub-
domain ρ is now the intersection of an upward-closed (Ω+) and
another downward-closed set (U \ Ω−). With some effort, we can
show that the minimal adequate test sample α corresponds to the
maximal elements of ρ. However, we find the monotone bit-array
formulation more useful for our purposes because it is a special
case of a poset that allows for efficient algorithms (as given in
Sec. 4.3.1 and 4.3.2) for computation of α, which is not obvious
with the general poset formulation.

5. EXPERIMENTAL RESULTS
We designed and experimentally evaluated our auto-grader using

a collection of solutions implemented by 50 groups of students as
part of the laboratory component of the Fall 2013 instance of the
EECS 149 class at UC Berkeley.

The code was anonymized and collected automatically using post-
build commands so that each group provided a variable number
of versions, most of which being intermediate non-final solutions.
The lab was organized in two sessions, one focusing on the obstacle
avoidance problem, and another focusing on the hill climbing. In
this section, we describe the set of test benches that we used to es-
tablish diagnostics with respect to each goal. For each test bench,
we first manually label a set T of 100 randomly selected student
solutions. We select 30 solutions out of the 100 while maintain-
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Figure 3: (a) An intermediate step in a run of the algorithm used to compute Ω(C,Γ(p)) for two monotonic parameters p = (p1, p2). The
arrows indicate the tests that are performed. Monotonicity allows us to compute whole of Ω(C,Γ(p)) by performing O(max(U, V )) tests.
(b) For the case of two monotonic parameters (increasing in the directions shown by arrows), the dashed (and dotted) lines represent the
boundary between cells containing 0s and 1s for Ω(C+,Γ(p)) (and Ω(C−,Γ(p))). The shaded part is ρ. The hatched cells are corners of
Ω(C−,Γ(p)) and the shaded hatched cells comprise the minimal adequate test sample.

ing balance between the number of positive and negative examples
which are input to the synthesis algorithm. To elaborate, if we have
more than 15 each of positive and negative examples (say 45 posi-
tive and 55 negative) then we select some 15 examples of each type
arbitrarily. If either one of positive or negative examples is less than
15 (say 5 positive and 95 negative), then we select all instances of
the type of example that is scarce and select the remainder of the
30 from the other type (in the example, we will take 5 positive
and 25 negative). This is a standard technique in machine learning
done to improve coverage and reduce bias in case a fault is rare [4].
In Sec. 5.1 and 5.2, for each test bench, we describe (1) the fault
symptom and the corresponding PSTL formula, (2) environment
and STL parameters, and their monotonic nature, (3) synthesized
sub-domain and adequate test sample, and (4) synthesis time per
training example. In Sec 5.3, we measure accuracy of the grader
by comparing labels generated by the auto-grader against another
set of manually graded solutions (disjoint from T ). We also demon-
strate efficiency in terms of the average grading time per solution.

Experiments are performed using a single core of a 2.3 GHz pro-
cessor with 8 GB of memory. Since more than one tests share the
same environment configuration, we run simulations for all solu-
tions in all the environment configurations as needed for our eval-
uation in a pre-processing step and store traces to files. Each sim-
ulation is run for 60 secs of virtual time with a step size of 5 ms
which takes about 10 secs of system time. For each test bench,
in Sec. 5.1 and 5.2, we report running times of the synthesis al-
gorithm that computes the sub-domain and the adequate test sam-
ple, and in Sec. 5.3, we report running times of the auto-grader
which checks for existence of a passing test in the adequate test
sample. These running times do not include time required for sim-
ulation since we are reading traces from files. When using the
auto-grader in loop with the simulator, we need one simulation
for every environment in each test bench per solution (the aggre-
gate is lower in practice because more than one test benches share
the same environment). All simulations are run using NI Robotics
Simulator. STL monitoring is performed using Breach [5]. The
synthesis modules and grading software with an extended library
of faults is made available at http://www.eecs.berkeley.
edu/~garvitjuniwal/MOOC149.html.

5.1 Obstacle Avoidance
In assessing faults in obstacle avoidance, we use an environ-

ment E3(θinit) which contains an obstacle occupying the region
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Figure 4: Test bench avoid_front. Green (lightly shaded) region is
the computed sub-domain. Red (dark shaded) region is the set of
tests excluded from the sub-domain because they are triggered on
at least one negative example. White (unshaded) region is the set
of tests that are not triggered on any negative or positive example.
Little black squares are the points in the adequate test sample.

[4.5, 5.5]× [5.0, 5.5]. Initial position of the robot is (5.0, 4.9). The
parameter θinit encodes the initial orientation of the robot.

5.1.1 Failing simple obstacle avoidance (avoid_front)
This test bench checks whether the robot can get past the obsta-

cle when started with the initial orientation θinit = 0, facing the
obstacle directly.
• Parameterized Test: (E3(0), ϕorient) withϕorient = 2[0,τ ](pos.y <
ymin). If ϕorient is satisfied for suitable values of τ and ymin, it
indicates failure to avoid the obstacle.
• Parameters: (τ, ymin)

• Domain:1 (τ, ymin) ∈ {60 : −5 : 10} × {3.0 : 0.1 : 7.0}
• Monotonicity: τ monotonic for ≥ and ymin monotonic for ≤.
• Synthesized sub-domain: See Figure 4
• Adequate Test Sample: {(60, 5.7), (55, 4.9), (50, 4.6)}
• Average synthesis time per training example: 1.9 sec

1The notation {a : d : b} denotes the set {a, a+d, a+2d, · · · , a+
kd}, where k is the greatest integer s.t. if d ≥ 0 then a + kd ≤ b
else if d < 0 then a+ kd ≥ b

http://www.eecs.berkeley.edu/~garvitjuniwal/MOOC149.html
http://www.eecs.berkeley.edu/~garvitjuniwal/MOOC149.html
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Figure 5: Test bench circle

5.1.2 Failing re-orienting after obstacle avoidance
(avoid_left/avoid_right)

This test bench checks whether the robot can get past the obstacle
and keep heading in the initial heading direction. We perform the
test in two possible initial orientations; facing left (θinit = 45) or
right (θinit = −45). We show details for the case θinit = 45.
• Parameterized Test: (E3(45), ϕreorient) with ϕreorient = 2[0,τ ]

(pos.y < ymin ∨ pos.x > xmax). If ϕreorient is satisfied for
suitable values of τ , xmax and ymin, it indicates either failure
to avoid the obstacle or failure to re-orient in the correct heading
direction.
• Parameters: (τ, ymin, xmax)
• Domain: (τ, ymin, xmax) ∈ {60 : −5 : 10} × {3.0 : 0.1 :

7.0} × {6.0 : −0.1 : 3.0}
• Monotonicity: τ monotonic for ≥; ymin monotonic for ≤ and
xmax monotonic for ≥.
• Synthesized sub-domain: Due to more than 2 parameters, it is

not possible to show it in a figure.
• Adequate Test Sample: {(60, 5.4, 4.2), (55, 5.4, 5.0), (50, 4.8,

5.8), (10, 4.4, 5.8)}
• Average synthesis time per training example: 26.2 sec

5.1.3 Strict equality check (circle)
This test bench investigates the circle fault mentioned in Sec-

tion 3.3. The purpose of the test is to detect that at some time
instant t0, the robot bumps into the obstacle, then turns about itself
with a maximum period of τ , while remaining close to its position
at t0 with a margin of δ.
• Parameterized Test: (E3(0), ϕcircle)
ϕcircle(t0, δ, τ) = 3(ϕbump(t0) ∧3[0,2τ ](ϕfullturn(t0, δ)))
where ϕbump(t0) = bump(t0) ≡ TRUE and ϕfullturn is given
by ϕfullturn(t0, δ, τ) = (ϕθ∼0 ∧ ϕclose(t0, δ)U[0,τ ](ϕθ∼180 ∧
ϕclose(t0, δ)U[0,τ ]ϕθ∼0)) whereϕclose(t0, δ) = dist(pos(t0), pos)
< δ for some distance function dist andϕθ∼0 andϕθ∼180 assess
that angle is close to 0 degrees and 180 degrees, respectively.
The suitable value for the parameter t0 can be determined by
the first collision instant with the obstacle, which is common
to all solutions since they all start moving forward in the same
direction (say this common value is t0). We fix t0 to t0.
• Parameters: (τ, δ)
• Domain: (τ, δ) ∈ {1 : 1 : 10} × {−0.025 : 0.01 : 0.2}
• Monotonicity: τ monotonic for ≤ and δ monotonic for ≤
• Synthesized sub-domain: See Figure 5
• Adequate Test Sample: {(5.5, 0.195), (10.0, 0.075)}
• Average synthesis time per training example: 2.7 sec

5.2 Hill Climbing
To assess faults in the hill climbing part of the assignment, we

use an environment E4(β) which contains a hill. The parameter β
encodes the initial configuration of the robot. It can take two values
B and M . In B the robot starts at the bottom of the hill facing 45
degrees rightwards of uphill and in M the robot starts on the hill
(midway between bottom and top) facing downhill.

5.2.1 Failing simple hill climb (hill_climb)
This test bench checks whether the robot fails to reach near the

top of the hill. We perform this test for both possible values of β.
• Parameterized Test: (E4, ϕhill) with ϕhill = 2[0,τ ](pos.z ≤ h).

If ϕhill is satisfied for suitable values of τ and h, it indicates
failure to reach near top of the hill.
• Parameters: (β, τ, h)
• Domain: (β, τ, h) ∈ {B,M} × {60 : −5 : 10} × {−0.1 :

0.01 : 0.7}
• Monotonicity: τ monotonic for ≥ and h monotonic for ≤
• Synthesized sub-domain: See Figure 6
• Adequate Test Sample: {(M, 55, 0.41), (M, 50, 0.37), (M, 35,

0.35), (M, 15, 0.33), (M, 10, 0.31), (B, 55, 0.45), (B, 50, 0.34),
(B, 45, 0.18), (B, 40, 0.07)}
• Average synthesis time per training example: 6.2 sec
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Figure 6: (a) Test bench hill_climb (β = M ) (b) Test bench
hill_climb (β = B)

5.2.2 Failure to detect hill (what_hill)
This test bench checks the failure of robot to detect when it is oh

a hill. This is a specific bug which leads to failure in hill climbing.
We use the environment E4 with β = B.
• Parameterized Test: (E4(B), ϕhilldet) withϕhilldet = 3[0,τ1](ϕfwd
U[τ2,+∞]ϕcliff), where ϕfwd assesses that the robot is moving
forward and ϕcliff assess firing of cliff sensor. If this property is
satisfied for suitable values of τ1 and τ2, it means that the robot
keeps driving straight until it hits a cliff even if it is on a hill
instead of re-orienting towards uphill direction.
• Parameters: (τ1, τ2)
• Domain: (τ1, τ2) ∈ {0 : 1 : 60} × {60 : −1 : 0}
• Monotonicity: τ1 monotonic for ≥ and τ2 monotonic for ≤
• Synthesized sub-domain: See Figure 7
• Adequate Test Sample: {(1, 0), (41, 12), (60, 13)}
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Figure 7: Test bench what_hill

• Average synthesis time per training example: 8.3 sec

5.2.3 No filtering (filter)
This test bench checks whether the reason for a failure to climb a

hill is the absence of a low-pass filter applied to the accelerometer
data to smoothen it. We check this by performing the test hill_climb
with E4 but applying a low-pass filter to the accelerometer data
externally (before it is fed into the controller). If the robot is able
to climb the hill with an external filter but fails to do so without it,
we can conclude that absence of the filter is the bug.

5.3 Accuracy of Classification
To measure accuracy we use the synthesized test benches to label

a set of student solutions (disjoint from the training set) and com-
pare the labels assigned by the auto-grader to manually assigned
labels. Table 1 shows obtained accuracy results and average run-
ning times for 8 test benches. The running times do not include
time needed for simulation. For each solution, simulation in a total
of 6 environment configurations is collectively needed for the 8 test
benches (2 environments are shared). Note that we find a majority
of solutions that are not able to meet goals but that is expected be-
cause our solution set has preliminary and intermediate versions of
the solutions as well. We also find that accuracy is poorer in the
hill climbing cases, which shows that variation in student solutions
is higher in that part of the lab.

Test Bench N+ N++ N− N−− Tavg

avoid_front 74 74 27 27 0.119
avoid_left 78 78 23 23 0.158
avoid_right 82 82 19 19 0.148
circle 2 2 99 99 0.382
hill_climb (β = B) 49 36 345 345 0.111
hill_climb (β = M ) 35 32 359 359 0.120
what_hill 220 216 174 156 0.288
filter 8 7 354 339 0.412

Table 1: N+ is the number of solutions with fault (manually la-
beled). N++ is the number of solutions that the auto-grader cor-
rectly labeled as faulty. N− and N−− are defined similarly for
solutions without fault. Tavg is the average labeling time per solu-
tion in seconds.

5.4 Discussion
The experimental evaluation indicates that the auto-grader is both

accurate and efficient. The test benches used in our evaluation cap-
ture common mistakes made by students, as observed in an on-
campus offering, and even simply identifying these mistakes can

be valuable feedback.
The parameter synthesis requires a set of “good” and “bad” so-

lutions. We show that a small number of labeled examples (30)
is enough to get reasonable accuracy. The overhead of providing
these solutions is small: an instructor manually labels a small num-
ber of solutions by viewing the robotics simulator video and avoids
the tedious process of parameter tuning.

6. RELATED WORK
Related work falls into two main categories: the use of formal

methods and programming languages techniques for (online) edu-
cation, and parameter synthesis for STL.

There is a growing number of efforts to incorporate formal meth-
ods into technologies for education. Singh et al. [25] present an
approach to automatically generate problems in high-school alge-
bra. Sadigh et al. [24] show how the problem of generating vari-
ants of exercises in an Embedded Systems textbook [14] can be
mapped to standard problems in formal methods and apply some
of these methods to classes of exercises. Singh et al. [26] present
an auto-grader for a Python programming course, where, similar
to the present paper, feedback is generated based on a library of
common mistakes, but, differently, the technical approach uses an
encoding to SAT-based program synthesis. Alur et al. [1] consider
auto-grading DFA construction problems, providing a novel blend
of three techniques for assigning partial grades for incorrect an-
swers. The present work proposes different formalisms and algo-
rithms, and represents the first auto-grader for lab assignments in
the area of embedded, cyber-physical systems.

Parameter synthesis for PSTL formulas has been studied before [3,
11]. Unlike our work, these efforts seek to find specific parameter
values rather than sub-domains, and are not directly usable in the
auto-grading context of this paper. A symbolic approach to PSTL
parameter synthesis has been discussed in [3], which reports that
an enumerative approach outperforms the symbolic one.

We also note related work in the area of fault localization only
using execution traces (black-box localization) [16, 17]. However,
these tehcniques apply to digital systems and are not directly usable
in our context of hybrid systems with continuous variables.

7. CONCLUSIONS & FUTURE WORK
In this paper, we have formalized the auto-grading problem for

laboratory assignments in cyber-physical systems, and presented a
formal, algorithmic approach to solve it based on parameter synthe-
sis. The approach is general and can apply beyond the particular
motivating lab setting considered here. The theoretical treatment
makes no assumptions about the form of the controller, environ-
ment, and simulation model. Note also that our approach can be
used with any black-box simulator.

There are several interesting directions for future work. One
direction is to introduce cost or reward metrics into the model to
quantify the quality of a student solution. Monitoring these met-
rics over a set of tests can help assign partial credit or extra credit
to student solutions. For example, in a problem involving robot
navigation to a goal location, a controller that gets closer, or takes
less time, should intuitively receive more credit than one that does
not. Additionally, for student controllers that do not satisfy the goal
property, but which also do not exhibit any known fault, we need
an approach to explain the student mistake, potentially by synthe-
sizing an (P)STL formula that serves as a defining symptom.

As mentioned, the auto-grader has already been successfully de-
ployed in an actual MOOC, EECS149.1x [15], and we plan to run
user studies on its effectiveness in the future and use it in other
classes and labs. One interesting topic is analog and mixed signal
circuits, for which Time Frequency Logic (TFL [6]) could be used
instead of STL.



Finally, beyond the application to education, we note that our
technique can be applied to debugging problems for embedded con-
trollers where we can assume a plausible fault model and where
monotonicity holds; e.g., for industrial control systems where mono-
tonicity of PSTL has already been found widespread [11].
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APPENDIX
A. STL SEMANTICS

The formal semantics of signal temporal logic (STL) are given
as follows:

Definition 13. The satisfaction of an STL formula relative to a
signal x at time t is defined inductively as

(x, t) |= µ iff x satisfies µ at time t
(x, t) |= ¬ϕ iff (x, t) |=/ ϕ
(x, t) |= ϕ1 ∧ ϕ2 iff (x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1 U[a,b] ϕ2 iff ∃t′ ∈ [t+ a, t+ b] s.t.
(x, t′) |= ϕ2 and
∀t′′ ∈ [t+ a, t′), (x, t′′) |= ϕ1

Extension of the above semantics to other kinds of intervals (open,
open-closed, and closed-open) is straightforward. We write x |= ϕ
as a shorthand of (x, 0) |= ϕ.
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