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Purpose: To (1) use All of Us (AoU) data to validate a previously published single-center model 

predicting need for surgery among individuals with glaucoma, (2) train new models using AoU 
data, and (3) share insights regarding this novel data source for ophthalmic research.

Design: Development and evaluation of machine learning models.

Methods: Electronic health record data were extracted from AoU for 1231 adults diagnosed with 

primary open-angle glaucoma. The single-center model was applied to AoU data for external 

validation. AoU data were then used to train new models for predicting need for glaucoma surgery 

using multivariable logistic regression, artificial neural networks, and random forests. Five-fold 

cross-validation was performed. Model performance was evaluated based on area under the 

receiver operating characteristic curve (AUC), accuracy, precision and recall.

Results: The mean (standard deviation) age of the All of Us cohort was 69.1 (10.5) years, with 

57.3% women and 33.5% Black, significantly exceeding representation in the single-center cohort 

(p=0.04 and p<0.001, respectively). Of 1231 participants, 286 (23.2%) needed glaucoma surgery. 

When applying the single-center model to AoU data, accuracy was 0.69, and AUC was only 0.49. 

Using AoU data to train new models resulted in superior performance: AUCs ranged from 0.80 

(logistic regression) to 0.99 (random forests).

Conclusions: Models trained with national AoU data achieved superior performance compared 

to using single-center data. Although AoU does not currently include ophthalmic imaging, it offers 

several strengths over similar big-data sources such as claims data. AoU is a promising new data 

source for ophthalmic research.

INTRODUCTION

The digitization of healthcare data offers an outstanding opportunity to better understand the 

complex relationships between systemic disease and glaucoma, the leading cause of 

irreversible blindness globally.1,2 Understanding these relationships is critical to enabling 

precision management of glaucoma patients, who are often elderly and have co-morbid 

conditions such as hypertension and diabetes.3 Several studies suggested that systemic 

diseases and medications may influence the development or progression of glaucoma.4–8 

Electronic health records (EHRs) contain a vast amount of clinical data that may help further 

our understanding of these associations. EHR data have been employed to develop predictive 

models in a wide range of clinical applications.9,10 Within ophthalmology, several models 

have been developed to predict glaucoma onset and progression based on structural and 

functional data related to the eye,11–20 but few have used systemic data from the EHR. To 

address this gap, we previously developed a single-center model predicting glaucoma 

progression using systemic data from the EHR at our institution.21 Its predictive 

performance suggested that systemic EHR data could help predict patients at risk for 

progressing into glaucoma surgery, even in the absence of ophthalmic data. The results of 

that study also provided the rationale for further investigation and model refinement, 

particularly since the initial model was derived from a small sample.

To test generalizability, in this study we leveraged nationwide data from the All of Us 
Research Program (“All of Us”) to further examine the utility of systemic EHR data for 

prediction of glaucoma progression. Motivated by the success of other large-scale national-
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level cohort studies such as the UK Biobank,22 the Million Veteran Program,23 and the 

China Kadoorie Biobank,24 All of Us aims to collect data for 1 million persons living in the 

United States to advance precision medicine.25 Data collected include health questionnaires, 

EHRs, physical measurements, and data derived from digital health technology. The 

program also performs collection and analysis of biospecimens. The program emphasizes 

enrollment of diverse participants traditionally underrepresented in biomedical research. 

Enrollment opened in May 2018; as of June 2020, All of Us had enrolled >345,000 

participants from both clinic-based and community-based recruitment sites.26 In October 

2019, the program began an alpha demonstration phase for the Researcher Workbench, 

allowing selected research teams to have access to some participant data within the All of Us 
Researcher Workbench as the Workbench was being refined. Ours was the only alpha 

demonstration project related to ophthalmology.

The aims of our study were to: (1) externally validate our single-center model’s performance 

with All of Us data, (2) develop models trained by the All of Us data and compare their 

performance to our single-center model, and (3) share insights from our experience using All 
of Us data and the Researcher Workbench with other ophthalmology researchers who may 

be interested in using this novel data source.

METHODS

Study Population, Data Source, and Demonstration Project Information

The methods underlying our initial single-center model were described in detail previously.
21 In short, we examined data from a cohort of adult participants from a single academic 

center with primary open-angle glaucoma over a 5-year period; we extracted their systemic 

EHR data from our institution’s clinical data warehouse, and developed predictive models 

using multivariable logistic regression, random forests, and artificial neural networks 

(ANNs).

The goals, recruitment methods and sites, and scientific rationale for All of Us have been 

described previously.25 Demonstration projects were designed to describe the cohort, 

replicate previous findings for validation, and avoid novel discovery in line with the program 

value to ensure equal access by researchers to the data.26 The work described here was 

proposed by Consortium members, reviewed and overseen by the program’s Science 

Committee, and was confirmed as meeting criteria for non-human subjects research by the 

All of Us Institutional Review Board. The initial release of data and tools used in this work 

was published recently.26 Results reported are in compliance with the All of Us Data and 

Statistics Dissemination Policy disallowing disclosure of group counts under 20.

This work was performed on data collected by the previously described26 All of Us 
Research Program using the All of Us Researcher Workbench, a cloud-based platform where 

approved researchers can access and analyze All of Us data. The All of Us data currently 

includes surveys, EHRs, and physical measurements (PM). The details of the surveys are 

available in the Survey Explorer found in the Research Hub, a website designed to support 

researchers.27 Each survey includes branching logic and all questions are optional and may 

be skipped by the participant. PM recorded at enrollment include systolic and diastolic blood 
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pressure, height, weight, heart rate, waist and hip measurement, wheelchair use, and current 

pregnancy status. EHR data was linked for those consented participants. All three datatypes 

(survey, PM, and EHR) are mapped to the Observational Health and Medicines Outcomes 

Partnership (OMOP) common data model v 5.2 maintained by the Observational Health and 

Data Sciences Initiative (OHDSI) collaborative. To protect participant privacy, a series of 

data transformations were applied. These included data suppression of codes with a high risk 

of identification such as military status; generalization of categories, including age, sex at 

birth, gender identity, sexual orientation, and race; and date shifting by a random (less than 

one year) number of days, implemented consistently across each participant record. 

Documentation on privacy implementation and creation of the Curated Data Repository 

(CDR) is available in the All of Us Registered Tier CDR Data Dictionary.28 The Researcher 

Workbench currently offers tools with a user interface built for selecting groups of 

participants (Cohort Builder), creating datasets for analysis (Dataset Builder), and 

Workspaces with Jupyter Notebooks (Notebooks) to analyze data. The Notebooks enable use 

of saved datasets and direct query using R and Python 3 programming languages.

Figure 1 depicts our study workflow. At the time of the alpha demonstration phase, there 

were 242,070 adult participants in All of Us. Queries using Systematized Nomenclature of 

Medicine (SNOMED) codes for “Glaucoma” and subsequently “Primary open-angle 

glaucoma” narrowed the cohort. Finally, to maintain consistency in cohort definition with 

the initial single-center model, our final study cohort consisted of adult (age 18 years and 

above) participants with International Classification of Diseases (ICD)-9 code 365.11 or any 

variants of ICD-10 code H40.11, derived from 26 distinct enrollment sites.

Data Processing

We used the Researcher Workbench to extract relevant data for the analysis. Within the 

Workbench, we first defined the cohort according to the criteria above. Next, we built 

concept sets for the outcome and each predictor in the Workbench by selecting relevant 

codes (e.g. ICD and/or SNOMED codes for conditions, Logical Observation Identifiers 

Names and Codes [LOINC] for measurements and observations, RxNorm codes for 

medications, and Current Procedure Terminology [CPT] codes for procedures). Because a 

key aim was to validate the prior single-center model, we extracted the same data types for 

this cohort. For example, we defined the outcome of interest equivalently to the initial 

single-center model (i.e., need for glaucoma procedural intervention – laser or surgery – 

within 6 months of diagnosis) based on qualifying CPT codes.21 The rationale for this was 

that need for surgery serves as a surrogate for advancing/progressive disease. This approach 

was also used by Zheng et al. in examining associations between systemic medications and 

glaucoma.5 We then built concept sets for all predictors, such as vital signs (pulse, blood 

pressure), physical measurements (height, weight, body mass index [BMI]), and co-morbid 

conditions (ICD and SNOMED codes in categories included in the prior single-center 

model). These concept sets were linked to the study cohort to create “datasets,” or analysis-

ready tables linking participants with the values of the selected concept sets. For participants 

who underwent glaucoma surgery intervention, data regarding predictors were restricted to 

the time period before the occurrence of the qualifying procedure code. In other words, all 

data with a timestamp occurring after the glaucoma procedure were censored and not 
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included in modeling procedures in order to establish an appropriate temporal relationship 

between predictors and the outcome. We then exported these datasets to a Python 3.0 

notebook within the All of Us Workbench environment to conduct the analyses. During the 

export process, the Workbench generated structured query language (SQL) codes to extract 

the data of interest for the selected cohort and populated these directly into the notebook. All 

data extraction and cleaning procedures can be found in the referenced Python 3.0 

notebook29 in our publicly available workspace.30

Of note, the OMOP Visits table was not included in the Workbench interface during the 

alpha demonstration phase. Therefore, to extract data on predictors related to visits (e.g. total 

days of contact with the healthcare system, which was a predictor in our original model), we 

manually constructed a custom SQL query within the notebook. Similarly, we performed a 

custom SQL query to extract all medications in order to group them within therapeutic 

classes that we used in the original model. The Workbench interface allowed search and 

selection of individual medications, but not of medication classes.

The original single-center model did not include ophthalmic data, as the focus was on 

examining the predictive value of systemic data alone. Here, we also did not include 

ophthalmic data. One reason was to maintain the same data structure as the original model. 

Another was because ophthalmic data (beyond diagnosis codes) were sparse in the current 

All of Us data repository. As an illustration, despite 6665 All of Us participants having a 

SNOMED code including “glaucoma,” structured intraocular pressure (IOP) data (LOINC 

code 56844-4) were available for less than 20 participants. Ophthalmic data coverage in All 
of Us is detailed in Supplemental Table 1.

Data Analysis and Modeling

General cohort characteristics—We generated descriptive statistics of the All of Us 
study cohort for age, gender, race, and need for glaucoma surgery (Table 1). These 

characteristics were compared to the initial single-center cohort using t-tests for continuous 

variables and Chi-squared tests for categorical variables. We considered p-values < 0.05 as 

statistically significant.

Using All of Us Data to externally validate the published single-center model—
Out of the models developed in the initial study, the best-performing and most interpretable 

model was the multivariable logistic regression model (Supplemental Table 2).21 We 

therefore developed a dataset from All of Us with the top 15 predictors from the single-

center model and used it as an external validation set for this regression model. To evaluate 

performance, we measured area under the receiver operating characteristic curve (AUC) as 

well as accuracy, sensitivity, and specificity. These performance measures were compared to 

the performance measures achieved in the original analysis of the single-center datasets, 

which were generated with leave-one-out cross-validation. This validation was performed in 

R in the referenced notebook31 using tidyverse and dplyr.

Development of new models trained by All of Us data—Next, we developed a 

broader dataset from All of Us using 56 predictors, rather than limiting to only the 15 

predictors included in the single-center model. This dataset was used to train multiple 
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models, including multivariable logistic regression, random forests, and ANNs using the 

scikit-learn and keras libraries in Python.32,33 Data were split into 80% for training and 20% 

for testing. The test dataset was separated prior to any training procedures, and 5-fold cross-

validation was used for all modeling approaches to reduce the risk of overfitting. We 

evaluated various feature selection techniques such as using Pearson correlation, backward 

elimination, recursive feature elimination, and Lasso regularization. Because the feature 

selection methods did not improve performance, the full complement of features were used 

for subsequent modeling. Using the test dataset, we evaluated performance metrics such as 

AUC, accuracy, precision (also known as positive predictive value), and recall (also known 

as sensitivity). For ANNs, we compared a variety of neural network architectures (e.g., 

varying the number of epochs, the number of hidden layers, and the number of nodes within 

each layer) using a grid search method. Because of class imbalance of the outcome label in 

the dataset (286 participants with surgery out of 1231 total in the cohort), we also evaluated 

models incorporating minority upsampling or majority downsampling for balancing the 

classes. Variables of importance were evaluated for the best-performing random forests 

model.

We also evaluated models trained with data from All of Us that were limited to only the 15 

predictors available in the original single-center model. Again, we developed models using 

multivariable logistic regression, random forests, and ANNs using an 80%/20% training/

testing split and 5-fold cross-validation. The same ANN architecture was used as the best-

performing ANN developed using the broader dataset. Details of all modeling procedures 

and execution are described in the referenced Python 3.0 notebook.34

RESULTS

General Cohort Characteristics

There were significant differences between the cohorts of participants with glaucoma from 

the initial single-center study with that using All of Us (Table 1). The All of Us cohort was 

over triple the size of the single-center cohort and consisted of EHR data derived from 26 

distinct enrollment sites. The mean (standard deviation, SD) age was 69.1 (10.5) years, 

which was significantly younger than the single-center cohort, where the mean (SD) age was 

73.1 (12.2) years (p<0.001). Participants identifying as female comprised more than half of 

both cohorts and were significantly better-represented in the All of Us cohort (57.3% vs. 

51.4% in the single-center cohort, p=0.04). The proportion of participants identifying as 

Black or African American was 33.5% in the All of Us cohort, over five times that in the 

single-center cohort. However, the single-center cohort had a much higher proportion of 

Asian participants (12.7% compared to 2.2% in All of Us). In both cohorts, about a quarter 

of participants did not indicate a single racial category, e.g. answering “other” or “mixed” or 

not providing any answer. In total, 286 (23.2%) participants in the All of Us cohort 

underwent some kind of glaucoma procedure. This was a significantly lower percentage than 

the 45.2% of participants in the single-center cohort (p<0.001).
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External Validation of the Single-Center Model

To externally validate a previously published single-center model,21 we used data from All 
of Us as an independent test set using the same coefficients included in the initial model 

(Supplemental Table 2). The overall accuracy of the model when validated on All of Us data 

was 0.69, exceeding the accuracy of the single-center model when using leave-one-out 

cross-validation (0.62). The overall discriminative ability (demonstrated by the AUC) of the 

single-center model when applied to the All of Us cohort was only 0.49, indicating no 

discrimination between those who progressed and did not progress to surgery. This was 

lower than the AUC of the single-center model when previously validated with data from the 

same center (0.67).

Development of New Models using All of Us Data

We then used All of Us data with an expanded set of predictors to train new models 

predicting need for glaucoma surgery using multivariable logistic regression, random forests, 

and ANNs. The predictive performance of multivariable logistic regression models trained 

with All of Us data was better than the performance of the model trained with single-center 

data, with the best-performing logistic regression model trained with All of Us achieving an 

AUC of 0.80 and accuracy of 0.87, although recall was only 0.51 (Table 2). Variables in the 

logistic regression model are detailed in Supplemental Table 3. The best-performing ANN 

was a deep learning network consisting of 4 dense layers trained over 25 epochs on a 

minority upsampled dataset, resulting in an AUC of 0.93.

Predictive modeling using random forests yielded the best performance. With minority 

upsampling as a class-balancing procedure on the training dataset, random forests achieved 

an AUC of 0.99 in identifying participants who needed glaucoma surgery (Figure 2). In 

addition, the random forests model had excellent accuracy, precision, and recall (Table 2).

Based on an analysis of feature importance in the random forests model, predictors related to 

days of contact with the healthcare system, systolic blood pressure, diastolic blood pressure, 

pulse, and body measurements (e.g. BMI) were of highest relative importance 

(Supplemental Table 4). These carried more importance in predictions than co-morbid 

conditions or medications.

To evaluate whether predictive performance could be maintained with a narrower set of 

predictor variables, we also trained models using data from All of Us using only the 15 

significant predictor variables from the original single-center model. Even with a narrower 

training dataset, these models achieved comparable AUCs (0.81 for logistic regression, 0.94 

for ANNs, and 0.97 for random forests). However, their precision, recall, and accuracy were 

generally not as strong as the models trained with the broader dataset (Table 2).

DISCUSSION

Here, we report findings from a demonstration project leveraging early access to the All of 
Us Research Program, a large-scale prospective nationwide cohort study, centered on 

predictive modeling of need for glaucoma surgery among adults with primary open-angle 

glaucoma. This is the first analysis of data related to ophthalmology from All of Us.
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Our first key finding was that All of Us offered a larger number and generally greater 

diversity of participants compared to our cohort for the original model, which was derived 

from a single academic center. Notably, the representation of women and of participants 

identifying as Black or African American was significantly higher. This is highly relevant 

for glaucoma, since women and minorities – and particularly individuals of African descent 

– bear a disproportionate burden of disease and blindness.34–37 However, about a quarter of 

each cohort (for both the single-center and All of Us) had incomplete race information, i.e. 

“other race” or not indicated/completed. Missing data in EHRs is a well-known limitation.9 

For studies aimed at understanding healthcare disparities or differential risk based on race, 

excluding individuals with incomplete race information may negatively affect the 

generalizability of results. The inclusion of genomic data in All of Us, anticipated for release 

at a future date, will enable determination of racial admixtures via sequencing analyses 

rather than by self-report and may help address some of these gaps.

The initial model trained with data from a single academic center demonstrated weaker 

performance when using All of Us data for external validation, compared to the internal 

validation.21 This demonstrated that the model developed with data sampled from one 

population could not necessarily be applied to patients from another population. This was 

not surprising for several reasons. First, the initial model was based on a relatively small 

number of participants originating from a single center. Second, comparing the two cohorts 

revealed significant differences in demographics and incidence of glaucoma surgery. The 

single-center cohort was older and had higher rates of surgery, which was expected for a 

clinic-based population at a tertiary referral center. In contrast, All of Us includes 

community-based recruitment sites in addition to clinic-based sites, reflecting an overall 

younger and healthier population. Using data from this population may therefore offer 

additional insights for primary prevention efforts, by including individuals beyond clinic- or 

hospital-based populations alone.

Finally, decreased performance of predictive models on external validation is not 

uncommon, especially when the sample size for developing the model is small.38 However, 

a systematic review of 120 clinical risk prediction models found that there is a relative 

dearth of well-conducted and clearly reported external validation studies on independent 

data, which limits the translation of predictive models to clinical guidelines and practice.38 

All of Us can serve as a data source for external validation studies to help address this issue.

Models trained with All of Us data achieved superior predictive performance than the single-

center models, even when trained with data limited to only 15 predictor variables from the 

original single-center model. The best-performing model overall was the random forests 

model trained with the broader All of Us dataset, achieving an AUC of 0.99. Variables in 

this model with the highest relative importance for driving predictions included 

measurements related to blood pressure. This supports findings from the initial single-center 

model, where predictions were also heavily influenced by blood pressure measurements. 

Several prior studies have demonstrated relationships between blood pressure, intraocular 

pressure, and glaucoma.8,39,40 However, these relationships are complex and not completely 

understood. With rapidly evolving blood pressure management guidelines recommending 

more aggressive blood pressure reduction,41 and the potential for increased glaucoma 
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progression events secondary to optic nerve hypoperfusion,3 improving understanding of 

these relationships is critically important. Our study results provide additional support for 

further investigation in this area.

Another advantage of models such as these is that they facilitate integration of systemic data 

into clinical decision-making. Ophthalmology is known to be a high-volume specialty that 

demands high efficiency during patient encounters.42 As such, time spent in reviewing the 

medical record for each patient is minimal, which has been demonstrated in several prior 

studies.43,44 In light of these time pressures and the lack of detailed medical record review, 

clinical decision support (CDS) tools that are embedded into EHR systems and have 

programmed logic to automatically extract relevant data elements (such as medications, 

comorbidities, and blood pressure measurements) and calculate risk scores directly for 

ophthalmologists to view would enable these important factors to be considered in the 

assessment and management of patients. Therefore, ophthalmologists would not need to 

extract these data elements themselves or perform any manual calculations. For a given 

patient, they could theoretically view the risk calculated by the model based on these 

systemic factors in the EHR and incorporate that information into their overall assessment of 

the patient. In general, CDS tools that calculate risk scores in real-time within EHRs to 

enable predictive analytics are increasingly common,45 although several implementation 

challenges are present.46,47 Moreover, a recent systematic review did not find any 

publications describing predictive models related to ophthalmology that had been embedded 

into EHRs for real-time use.48 Therefore, developing best practices for implementing these 

models for routine use by ophthalmologists is a nascent area ripe for ongoing investigation.

Although we have highlighted some of the strengths of All of Us data in the context of our 

study findings above, there are certainly limitations as well. Data on ophthalmic 

observations (e.g., intraocular pressure) are sparse (Supplemental Table 1), and this could be 

secondary to many ophthalmology observations being captured in clinical notes rather than 

in discrete data fields mapped to LOINC codes. Although free-text clinical notes are not 

currently available in All of Us, future inclusion of these notes and the use of natural 

language processing techniques may allow more ophthalmic data to be extracted and 

analyzed. Although All of Us includes procedure codes for imaging and visual fields, the 

data repository does not currently include images or visual fields themselves. Figure 3 

delineates current strengths and limitations of All of Us data for ophthalmic research in 

greater detail.

Regarding limitations of our specific study, we recognize that the outcome of glaucoma 

surgery is a crude proxy of glaucoma progression, and that other factors (e.g. surgeon 

preference) may factor into the decision to pursue surgery other than disease severity alone. 

The lack of visual field and imaging data precluded a more precise measure of glaucoma 

progression.

Overall, All of Us offers many opportunities for ophthalmic research. Despite the scarcity of 

ophthalmic observations and lack of imaging, many high-quality studies in ophthalmology 

have been performed using claims data or data from other cohorts which also lacked this 

information. Furthermore, this data repository offers a much wider array of data types than 
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claims data. All of Us will be of particular benefit to ophthalmic researchers interested in 

studying interactions between systemic disease and eye conditions, traditionally 

underrepresented populations, social determinants of health, and those using big-data 

analytic techniques. This demonstration project illustrated the diversity of the participants, 

the wealth of data, and the improved performance of predictive models using national-level 

diverse data.

Table of Contents Statement

This study describes an alpha phase demonstration project using data from the nationwide 

All of Us Research Program to validate and develop machine learning models predicting 

need for glaucoma surgical intervention in adults with primary open angle glaucoma. 

Models developed using national data from diverse participants performed better than those 

previously trained with data from a single academic medical center. All of Us is a novel data 

source offering exciting opportunities for ophthalmic research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study workflow and cohort definition for evaluating predictive models for participants with 

primary open-angle glaucoma in the All of Us Research Program.
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Figure 2. 
Composite receiver operating characteristic (ROC) curves for multivariable Logistic 

Regression (LR) model with area under the curve (AUC) of 0.80, Artificial Neural Network 

(ANN) model with AUC of 0.93, and Random Forests (RF) model with AUC of 0.99 

predicting need for surgery among All of Us research participants with glaucoma.
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Figure 3. 
Strengths and limitations of All of Us data for ophthalmic research.
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APPENDIX 1:

All of Us Research Program Investigators

First Name Last Name Degrees Institutional Affiliation

Confidence Achilike MBBS, MPH
Boston University School of Medicine, Department of Obstetrics and Gynecology, 
Boston, MA, USA

Brian Ahmedani PhD Henry Ford Health System, Duluth, MN, USA

Habibul Ahsan
MD,
MMedSc

Institute for Population and Precision Health, University of Chicago, Chicago, IL, 
USA

Toluwalase
(Lase) Ajayi MD

The Participant Center / Scripps Research, La Jolla, CA,
USA

Alvaro Alonso MD, PhD
Department of Epidemiology, Rollins School of Public Health, Emory University, 
Atlanta, GA, USA

Amit Arora MPH
University of Arizona, Mel and Enid Zuckerman College of Public Health, Tucson, 
AZ, USA

Briseis Aschebrook-Kilfoy
PhD,
MPH Department of Public Health Sciences, University of Chicago, Chicago, IL, USA

Sally L. Baxter MD, MSc

University of California San Diego Viterbi Family Department of Ophthalmology and 
Shiley Eye Institute; University of California San Diego Health Department of 
Biomedical Informatics, La Jolla, CA, USA

Dean Billheimer PhD
Department of Epidemiology and Biostatistics / University of Arizona, Tucson, AZ, 
USA

Eugene R. Bleeker MD Department of Medicine / University of Arizona Health Sciences, Tucson, AZ, USA

Luca Bonomi PhD
University of California San Diego Health Department of Biomedical Informatics, La 
Jolla, CA, USA

Olveen Carrasquillo MD, MPH University of Miami, Department of Medicine, Miami, FL, USA

Paulette Chandler MD Brigham & Women’s Hospital, Department of Medicine, Boston, MA, USA

Qingxia Chen PhD
Vanderbilt University School of Medicine, Department of Biostatistics, Nashville, 
TN, USA

Dave Chesla Spectrum Health, Temple, TX, USA

Cheryl Clark MD, ScD Brigham & Women’s Hospital, Department of Medicine, Boston, MA, USA

Andrew Craver MPH, MS
Institute for Population and Precision Health, University of Chicago, Chicago, IL, 
USA

Robert Cronin MD, MS
Vanderbilt University School of Medicine, Department of Biomedical Informatics, 
Internal Medicine, and Pediatrics, Nashville, TN, USA

Zubin Dastur MS, MPH

Stanford University School of Medicine, Department of Obstetrics and Gynecology, 
Palo Alto, CA, USA

The PRIDE Study/PRIDEnet, Palo Alto, CA, USA

John Ehiri PhD
Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, 
AZ, USA

Mara M. Epstein ScD

Department of Medicine, University of Massachusetts Medical School;
The Meyers Primary Care Institute, a joint venture of Reliant Medical Group, Fallon 
Health, and the University of Massachusetts Medical School, Worcester, MA, USA

Xiaoke Feng MS
Vanderbilt University Medical Center, Department of Biostatistics, Nashville, TN, 
USA

Annesa Flentje PhD

University of California, San Francisco, School of Nursing, Department of 
Community Health Systems, San Francisco, CA, USA

Alliance Health Project, Department of Psychiatry and Behavioral Sciences, School 
of Medicine, University of California, San Francisco, San Francisco, CA, USA

The PRIDE Study/PRIDEnet, Palo Alto, CA, USA
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First Name Last Name Degrees Institutional Affiliation

Lawrence Garber MD Reliant Medical Group, Worcester, MA, USA

Nicholas Giangreco
MA,
MPhil Columbia University Irving Medical Center, New York, NY, USA

Yi Guo PhD University of Florida, Gainesville, FL, USA

Alese Halvorson MS
Vanderbilt University School of Medicine, Department of Biostatistics, Nashville, 
TN, USA

Robert A. Hiatt MD, PhD
University of California, San Francisco, Department of Epidemiology & Biostatistics, 
San Francisco, CA, USA

Kai Yin Ho MPhil Northwestern University, Department of Preventive Medicine, Chicago, IL, USA

Joyce Ho PhD Northwestern University, Department of Preventive Medicine, Chicago, IL, USA

William Hogan MD, MS University of Florida, Gainesville, FL, USA

George Hripcsak MD, MS Columbia University Irving Medical Center, New York, NY, USA

Carolyn Hunt MPA

University of California, San Francisco, School of Nursing, Department of 
Community Health Systems, San Francisco, CA, USA

The PRIDE Study/PRIDEnet, Palo Alto, CA, USA

Rosario Isasi JD, MPH

John P. Hussman Institute for Human Genomics, Miller School of Medicine, 
University of Miami; The Dr. John T. Macdonald Foundation Department of Human 
Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA

Xinzhuo Jiang MS
Department of Biomedical Informatics, Columbia University Medical Center, New 
York, NY, USA

Christine C. Johnson PhD Henry Ford Health System, Public Health Sciences, Detroit, MI, USA

Christina D. Jordan PhD
All-of-Us Research Program Director of Operations, Biobank, The University of 
Mississippi Medical Center, Jackson, MS, USA

King Jordan PhD School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Christine LM Joseph PhD Henry Ford Health System, Detroit, MI, USA

Hooman Kamel MS, MD Weill Cornell Medicine, Neurology & BMRI, New York, NY, USA

Elizabeth Karlson MD, MS Brigham & Women’s Hospital, Department of Medicine, Boston, MA, USA

Jason H. Karnes PharmD, PhD
University of Arizona College of Pharmacy, Department of Pharmacy Practice and 
Science, Tucson, AZ, USA

Theresa H. Keegan PhD University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA

Karen Kim MD, MS Illinois Precision Medicine: University of Chicago, Chicago, IL, USA

Katherine K. Kim

PhD,
MPH,
MBA

University of California Davis, Betty Irene Moore School of Nursing, Sacramento, 
CA, USA

Jihoon Kim MS
University of California San Diego Health Department of Biomedical Informatics, La 
Jolla, CA, USA

Paula King MPH The Participant Center / Scripps Research, La Jolla, CA, USA

Yann C. Klimentidis PhD
University of Arizona, Mel and Enid Zuckerman College of Public Health, Tucson, 
AZ, USA

Irving L. Kron MD University of Arizona Health Sciences, Tucson, AZ, USA

Tsung-Ting Kuo PhD
University of California San Diego Health Department of Biomedical Informatics, La 
Jolla, CA, USA

Helen Lam PhD, RN Illinois Precision Medicine: University of Chicago, Chicago, IL, USA

James P. Lash MD University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA

Micah E. Lubensky PhD

University of California, San Francisco, School of Nursing, Department of 
Community Health Systems, San Francisco, CA, USA
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First Name Last Name Degrees Institutional Affiliation

The PRIDE Study/PRIDEnet, Palo Alto, CA, USA

Mitchell R. Lunn MD, MAS

Stanford University School of Medicine, Department of Medicine, Division of 
Nephrology, Palo Alto, CA, USA

The PRIDE Study/PRIDEnet, Palo Alto, CA, USA

Yves A. Lussier MD The University of Arizona Health Sciences, Tucson, AZ, USA

Jacob L. McCauley PhD

John P. Hussman Institute for Human Genomics, Miller School of Medicine, 
University of Miami; The Dr. John T. Macdonald Foundation Department of Human 
Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA

Robert Meller D.Phil Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA

Lizette Mendez MPH
Boston University School of Medicine, Department of Obstetrics and Gynecology, 
Boston, MA, USA

Deborah A. Meyers PhD Department of Medicine / University of Arizona Health Sciences, Tucson, AZ, USA

Raul A.
Montanez
Valverde University of Miami, Department of Medicine, Miami, FL, USA

Julia L.
Moore
Vogel PhD The Participant Center / Scripps Research, La Jolla, CA, USA

Shashwat D. Nagar MS School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Kartnik Natarajan PhD Columbia University Irving Medical Center, New York, NY, USA

Nyia L. Noel MD, MPH
Boston University School of Medicine, Department of Obstetrics and Gynecology, 
Boston, MA, USA

Juno Obedin-Maliver

MD,
MPH,
MAS

Stanford University School of Medicine, Department of Obstetrics and Gynecology, 
Palo Alto, CA, USA

The PRIDE Study/PRIDEnet, Palo Alto, CA, USA

Lucila Ohno-Machado MD, PhD University of California San Diego Health Department of Biomedical Informatics, La 
Jolla, CA, USA

Paulina Paul MS
University of California San Diego Health Department of Biomedical Informatics, La 
Jolla, CA, USA

Pamala A. Pawloski Pharm.D. Health Partners Institute, La Jolla, CA, USA

Cathryn Peltz-Rauchman PhD Henry Ford Health System, Public Health Sciences, Detroit, MI, USA

Priscilla Pemu MD Morehouse School of Medicine, Atlanta, GA, USA

Fornessa T. Randal Asian Health Coalition, Chicago, IL, USA

Ana Rescate MBA
Stanford University School of Medicine, Department of Obstetrics and Gynecology, 
Palo Alto, CA, USA

Ana C. Ricardo
MD,
MPH, MS University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA

M. Elizabeth Ross MD, PhD Weill Cornell Medicine, Brain & Mind Research Institute, New York, NY, USA

Brittney Roth-Manning MPH University of Florida, Gainesville, FL, USA

Madhi Saranadasa University of Illinois at Chicago, School of Public Health, Chicago, IL, USA

Sheri D. Schully PhD National Institutes of Health, All of Us Research Program, Bethesda, MD, USA

Ning Shang PhD Columbia University Irving Medical Center, New York, NY, USA

Emily G. Spencer PhD The Participant Center / Scripps Research, La Jolla, CA, USA

Cassie Springer MPH Vanderbilt University Medical Center, Nashville, TN, USA

Alan Stevens PhD Baylor Scott & White Research Institute, Dallas, TX, USA

Vignesh Subbian PhD College of Engineering, University of Arizona, Tucson, AZ, USA

Amy Tang PhD Henry Ford Health System, Public Health Sciences, Detroit, MI, USA
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First Name Last Name Degrees Institutional Affiliation

Rhonda K. Trousdale MD

NYC Health + Hospital/Harlem, Department of Medicine Columbia University 
Vagelos College of Physicians & Surgeons, Department of Medicine, New York, NY, 
USA

Jill Waalen MD, MPH The Participant Center / Scripps Research, La Jolla, CA, USA

Stephen Waring
DVM,
PhD Essentia Institute of Rural Health, Duluth, MN, USA
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Table 1.

Comparison of demographic characteristics and primary outcome between cohorts of adults with primary 

open-angle glaucoma derived from a single academic center and derived from the All of Us data repository.

Single-center Cohort (N=385) All of Us Cohort (N=1231) p-value

Mean (SD) Age 73.1 (12.2) years 69.1 (10.5) years <0.001

Female 198 (51.4%) 705 (57.3%) 0.04

Self-Reported Race <0.001

 White 214 (55.6%) 508 (41.3%)

 Black or African American Asian 23 (6.0%) 412 (33.5%)

 Asian 49 (12.7%) 27 (2.2%)

 Other Race or Mixed Race 70 (18.2%) 21 (1.7%)

 None or Skipped 29 (7.5%) 263 (21.4%)

Participants who underwent glaucoma surgery 174 (45.2%) 286 (23.2%) <0.001
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Table 2.

Predictive performance of models predicting need for glaucoma surgery trained with data from All of Us.

AUC Precision Recall Accuracy

Models trained with dataset containing broad set of predictor variables (56 predictors)

 Multivariable Logistic Regression 0.80 0.90 0.51 0.87

 Artificial Neural Networks 0.93 0.83 0.84 0.92

 Random Forests 0.99 1.00 0.88 0.97

Models trained with dataset containing predictor variables restricted to those from the 
original single-center model (15 predictors)

 Multivariable Logistic Regression 0.81 0.40 0.75 0.68

 Artificial Neural Networks 0.94 0.84 0.74 0.91

 Random Forests 0.97 0.91 0.75 0.93
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