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Abstract

Our goal is to develop a hybrid cognitive model of how
humans acquire skills on complex cognitive tasks. We
are pursuing this goal by designing hybrid computa-
tional architectures for the NRL Navigation task, which
requires competent sensorimotor coordination. In this
paper, we describe results of directly fitting human ex-
ecution data on this task. We next present and then
empirically compare two methods for modeling con-
trol knowledge acquisition (reinforcement learning and
a novel variant of action models) with human learning
on the task. The paper concludes with an experimen-
tal demonstration of the impact of background knowl-
edge on system performance. Our results indicate that
the performance of our action models approach more
closely approximates the rate of human learning on this
task than does reinforcement learning.

Introduction

Our goal is to develop a hybrid cognitive model of how
humans acquire skills by explicit instruction and re-
peated practice on complex cognitive tasks. We are pur-
suing this goal by designing hybrid computational ar-
chitectures for the NRL Navigation task, which requires
sensorimotor coordination skill. In this paper, we de-
velop a novel method based on parametric‘action mod-
els for actively learning visual-motor coordination. Al-
though similar to previous work on action models, our
method is novel because it capitalizes on available back-
ground knowledge regarding sensor relevance. We have
confirmed the existence and use of such knowledge with
extensive verbal protocol data collected from human sub-
jects. In our action models approach, the agent actively
interacts with its environment by gathering ezecution
traces (time-indexed streams of visual inputs and motor
outputs) and by learning a compact representation of an
effective policy for action choice guided by the action
model.

This paper begins by describing the NRL Navigation
task, as well as the types of data collected from human
subjects performing the task. We next present the re-
sults of fitting the data directly. Then, two learning
methods are described: our model-based method and a
benchmark reinforcement learning algorithm that does
not have an explicit model. Prior results reported in
the literature of empirical comparisons of action mod-
els versus reinforcement learning are mixed (Lin, 1992;
Mahadevan, 1992); they do not clearly indicate that one
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method is superior. Here we compare these two meth-
ods empirically on the Navigation task using a large col-
lection of execution traces. Qur primary goal in this
comparison is to determine which performs more like
human learning on this task. Both methods include sen-
sor relevance knowledge from the verbal protocols. The
results of this empirical comparison indicates that our
action models method more closely approximates the
time-scales and trends in human learning behavior on
this task.

The NRL Navigation and Mine
Avoidance Domain

The NRL navigation and mine avoidance domain, devel-
oped by Alan Schultz at the Naval Research Laboratory
and hereafter abbreviated the “Navigation task,” is a
simulation that can be run either by humans through
a graphical interface, or by an automated agent. The
task involves learning to navigate through obstacles in
a two-dimensional world. A single agent controls an au-
tonomous underwater vehicle (AUV) that has to avoid
mines and rendezvous with a stationary target before ex-
hausting its fuel. The mines may be stationary, drifting,
or seeking. Time is divided into episodes. An episode
begins with the agent on one side of the mine field, the
target placed randomly on the other side of the mine
field, and random mine locations within a bounded re-
gion. An episode ends with one of three possible out-
comes: the agent reaches the goal (success), hits a mine
(failure), or exhausts its fuel (failure). Reinforcement, in
the form of a binary reward dependent on the outcome,
1s received at the end of each episode. An episode is
further subdivided into decision cycles corresponding to
actions (decisions) taken by the agent.

The agent has a limited capacity to observe the world
it is in; in particular, it obtains information about its
proximal environs through a set of seven consecutive
sonar segments that give it a 90 degree forward field of
view for a short distance. Obstacles in the field of view
cause a reduction in sonar segment length; one mine may
appear in multiple segments. The agent also has a range
sensor that provides the current distance to the target, a
bearing sensor that indicates the direction in which the
target lies, and a time sensor that measures the remain-
ing fuel. A human subject performing this task sees vi-
sual gauges corresponding to each of these sensors. The
turn and speed actions are controlled by joystick mo-



tions. The turn and speed chosen on the previous deci-
gion cycle are additionally available to the agent. Given
its delayed reward structure and the fact that the world
is presented to the agent via sensors that are inadequate
to guarantee correct identification of the current state,
the Navigation world is a partially observable Markov
decision process (POMDP).

Data from Human Subjects

In the experiments with humans, seven subjects were
used, and each ran for two or three 45-minute sessions
with the simulations. We instrumented! the simulation
to gather execution traces for subsequent analysis (Gor-
don et al., 1994). We also obtained verbal protocols by
recording subject utterances during play and by collect-
ing answers to questions posed at the end of the individ-
ual sessions.

Fitting the Human Data

Our first task was to directly fit the execution trace data
from a human subject who had become an expert at the
task. In other words, our goal was to learn a stimulus-
response controller that represents the expert policy used
by the subject. This control policy can be expressed as
the function F', where:

F : sensors — actions

The task was configured with a small (5%) amount
of sensor noise and 25 stationary mines. We used 312
time-indexed execution trace snapshots collected from
an expert subject. Each snapshot had the sensor val-
ues plus the corresponding action taken by the subject
under these conditions. Four supervised inductive learn-
ing paradigms induced controllers from this data: CART
(Breiman et al., 1984), C4.5 (Quinlan, 1986), MDL (Ris-
sanen, 1983), and backpropagation in neural networks
(Rumelhart & McClelland, 1986). For all of these meth-
ods the 12 inputs were the sensor values plus the value
of the last turn and last speed, and the output was an
action chosen by our subject. One decision tree or neu-
ral net was constructed for predicting the subject’s next
turn. A comparison of the accuracies of the four methods
on this prediction task is shown in Table 1. The neural
network function fitter had the smallest mean-squared
error. We experimented with a wide range of parame-
ters for the neural networks and report the results with
the best settings (sweeps = 10°, 9 hidden units, learning
rate a = 0.1). Although the mean-squared error of fit
for the symbolic learning methods was higher, the struc-
tures produced by them (especially C4.5) revealed inter-
esting aspects of the control strategy used by the subject

!Note that although human subjects use a joystick for
actions, we do not model the joystick but instead model ac-
tions at the level of discrete turns and speeds (e.g., turn 32
degrees to the left at speed 20). Human joystick motions
are ultimately translated to these turn and speed values be-
fore being passed to the simulated task. Likewise, the learn-
ing agents we construct do not “see” gauges but instead get
the numeric sensor values directly from the simulation (e.g.,
range is 500).
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Method | Accuracy | MSE | Rep. Complexity
CART | 85.3 0.25 | 5 leaves In tree
C4.5 87.8 0.22 | 10 leaves in tree
MDL 82.05 0.27 | 17 leaves in tree
NN 92.0 0.11 | 9 hidden units

Table 1: Results of the construction of stimulus-response
controllers from execution trace data collected from hu-
man subjects.

that were remarkably consistent with the subject’s ver-
bal protocol data. For instance, it demonstrated that the
subjects did not give equal importance to all the sonar
information. In addition, the last turn action played a
crucial role in determining current turn. The insights
about the differential relevance of various pieces of in-
formation, which was obtained by examining these deci-
sion trees inspired us to continue working with C4.5 for
modeling action choice (see below).

Methods for Modeling Action Selection
Learning

After having fit the data from a human expert at the
task, our next goal is to build a model that most closely
duplicates the human subject data in learning perfor-
mance, i.e., in transitioning from a novice to an ex-
pert. With no sensor noise and only 25 mines, all of
our subjects became experts at this task after only a
few episodes. Modeling such an extremely rapid learn-
ing rate presents a challenge. In developing our learning
methods, we have drawn from both the machine learning
and cognitive science literature. By far the most widely
used machine learning method for tasks like ours is re-
inforcement learning. Reinforcement learning is mathe-
matically sufficient for learning policies for our task, yet
has no explicit world model. More common in the cog-
nitive science literature are action models, e.g., (Arbib,
1972), which require building explicit representations of
the dynamics of the world to choose actions.

Reinforcement learning

Reinforcement learning has been studied extensively in
the psychological literature, e.g., (Skinner, 1984), and
has recently become very popular in the machine learn-
ing literature, e.g., (Sutton, 1988; Lin, 1992; Gordon &
Subramanian, 1993). Rather than using only the differ-
ence between the prediction and the true reward for the
error, as in traditional supervised learning, (temporal
difference) reinforcement learning methods use the dif-
ference between successive predictions for errors to im-
prove the learning. Reinforcement learning provides a
method for modeling the acquisition of the function F,
described above.

Currently, the most popular type of reinforcement
learning is g¢-learning, developed by Watkins, which is
based on ideas from temporal difference learning, as well
as conventional dynamic programming (Watkins, 1989).
It requires estimating the g-value of a sensor configura-
tion s, 1.e., g(s,a) is a prediction of the utility of taking



action a in a world state represented by s. The ¢g-values
are updated during learning based on minimizing a tem-
poral difference error. Action choice is typically stochas-
tic, where a higher ¢-value implies a higher probability
that action will be chosen in that state.

While g¢-learning with explicit state representations
addresses the temporal credit assignment problem, it is
standard practice to use input generalization and neural
networks to also address the structural credit assignment
problem, e.g., (Lin, 1992). The g¢-value output node of
the control neural network corresponding to the chosen
action a is given an error that reflects the difference be-
tween the current prediction of the utility, ¢(s;, a;), and
a better estimate of the utility (using the reward) of what
this prediction should be:

error; =

ifa;=a

(r+ v maz{g(s2, k)|k € A}) — q(s1,a:)
0 otherwise

where r is the reward, A is the set of available actions, a
is the chosen action, s; is the state achieved by perform-
ing action a in state s;, i indexes the possible actions,
and 0 < ¥ < 1 is a discount factor that controls the
learning rate. This error is used to update the neural
network weights using standard backpropagation. The
result is improved g¢-values at the output nodes.

We selected g-learning as a benchmark algorithm with
which to compare because the literature reports a wide
range of successes with this algorithm, including on tasks
with aspects similar to the NRL Navigation task, e.g.,
see (Lin, 1992). Our implementation uses standard ¢-
learning with neural networks. One network corresponds
to each action (i.e., there are three turn networks corre-
sponding to turn left, turn right, and go straight; speed
is fixed at a level frequently found in the human exe-
cution traces, i.e., 20/40). Each turn network has one
input node for every one of the 12 sensor inputs (e.g.,
one for bearing, one for each sonar segment, etc.), one
hidden layer? consisting of 10 hidden units, and a single
output node corresponding to the g-value for that action.
A Boltzmann distribution is used to stochastically make
the final turn choice:

probability(als) = e?(**)/T /" ea(#2)/ T (1)

where s is a state and the temperature T controls the
degree of randomness of action choice.

We use a reward r composed of a weighted sum of
the sensor values.> Qur reward models sensor relevance

?We ran initial experiments to try to optimize the rein-
forcement learning parameters. For the neural networks, the
chosen learning rate is 0.5, momentum 0.1, 10 hidden units,
and 10 training iterations for the neural networks and a dis-
count factor of 0.9.

3Ron Sun suggested a reward of sensor values for this task
(personal communication). Our choice of sensor weights for
the reward is 30 for bearing and 10 for each of the three mid-
dle sonar segments, and the scale for the reward is between
-1.0 and 0.

information derived from the human subjects data we
collected. These subjects appeared to learn relevance
knowledge and action selection knowledge simultane-
ously. Here, we assume the relevance is known. Future
work will involve methods for acquiring relevance knowl-
edge.

The verbal protocols from human subjects reveal that
the sonar and bearing sensors appear to be critical for
action selection. Furthermore, the middle three sonar
segments (which show what is directly ahead) appear
to be the most critical of the sonar segments. This is
logical: after all, the middle three sonar segments show
a mine straight ahead so you can avoid collisions, and the
bearing tells you whether you are navigating toward or
away from the target. Based on the verbal protocol data,
we have implemented a reward function that weights the
bearing equally to the three sonar segments and gives
other sensors zero weight. Thus, if the bearing shows
the target straight ahead and the middle three sonar
segments show no obstacles, then the reward is highest.

The verbal protocols also indicate heuristics for focus-
ing attention on different sensors at different times. This
knowledge is implemented in our novel variant of action
models, described next. Nevertheless it is not imple-
mented in the g-learner because to do so would require a
departure from the standard g-learning architecture re-
ported in the literature, with which we wish to compare
as a benchmark.

Learning action models

One of the more striking aspects of the verbal pro-
tocols we collected was that subjects exhibited a ten-
dency to build internal models of actions and their con-
sequences, i.e., forward models of the world. These ex-
pectations produced surprise, disappointment, or pos-
itive reinforcement, depending on whether or not the
predictions matched the actual results of performing the
action. For example, one subject had an expectation
of the results of a certain joystick motion: “Why am I
turning to the left when I don’t feel like I am moving the
joystick much to the left? Another expressed surprise:
“It feels strange to hit the target when the bearing is not
directly ahead.” Yet a third subject developed a specific
model of the consequences of his movements: “One small
movement right or left seems to jump you over one box
to the right or left,” where each box refers to a visual
depiction of a single sonar segment in the graphical in-
terface.

Action models (i.e., forward models) have appeared in
multidisciplinary sources in the literature. Arbib (1972)
and Drescher (1991) provide examples in the psychologi-
cal literature, STRIPS (Nilsson, 1980) is a classic exam-
ple in the Al literature, and Sutton uses them in DYNA
(Sutton, 1988). The learning of action models has been
studied in the neural networks (Moore, 1992), machine
learning (Sutton, 1990; Mahadevan, 1992), and cogni-
tive science (Munro, 1987; Jordan & Rumelhart, 1992)
communities.



Our algorithm uses two functions:

A : sensors X actions — sensors
P : sensors — R

A is an action model, which our method represents as
a decision tree. The decision trees are learned using
Quinlan’s C4.5 system (Quinlan, 1986).% P rates the de-
sirability of various sensor configurations. P embodies
background (relevance) knowledge about the task. For
sonars, high utilities are associated with large values (no
or distant mines), and for the bearing sensor high utili-
ties are associated with values closer to the target being
straight ahead. Currently, P is supplied by us. At each
time step, actions are selected using P and A by perform-
ing a 1-step lookahead with model A and rating sensory
configurations generated using P. The action models
algorithm has the same action set as the g-learning algo-
rithm, i.e., turn right, turn left, or go straight at a fixed
speed (20/40).

First, our algorithm goes through a training phase,
during which random turns are taken and the execution
traces saved as input for C4.5. C4.5 models the learning
of the function A. In particular, it constructs two deci-
sion trees from the data: one tree to predict (from (s, a))
the next composite value of the middle three sonar seg-
ments (prediction choices are no-mines, mine-far, mine-
mid, mine-fairly-close, or mine-close, where these nomi-
nal values are translations from the numeric sonar read-
ings) and one tree to predict the bearing on the next time
step. Note that the choice of these two trees employs
the same relevance information used in the reinforcement
learning reward function, namely, that the middle three
sonar segments and bearing are the relevant sensors. The
training phase concludes after C4.5 constructs these two
decision trees.

During the testing phase, these trees representing the
world dynamics (A) are consulted to make predictions
and select turns. Given the current state, a tree is cho-
sen. The tree selection heuristic for focus of attention
states: if the middle three sonar segments are below a
certain empirically determined threshold (150/220), the
sonar prediction tree selects the next turn. Otherwise,
the bearing prediction tree selects the next turn. To
make a prediction, the agent feeds the current sensor
readings (which include the last turn and speed) and a
candidate next turn to the decision tree and the tree re-
turns the predicted sonar or bearing value. The agent
chooses the next turn which maximizes P.5

It is unlikely that humans recompute the consequences
of actions when the current state is similar to one seen
in the past. Therefore, our future work will focus on

“We are not claiming humans use decision trees for ac-
tion models; however, we use this implementation because
it appears to have a computational speed that is needed for
modeling human learning. We are also investigating connec-
tionist models as in Jordan & Rumelhart (1992). Currently,
C4.5 learning is in batch. To more faithfully model human
learning, we are planning to use an incremental version of
decision tree learning in future implementations.

°If the next turn is considered irrelevant by the decision
tree, a random action choice is made.
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memorizing cases of successful action model use so that
memory can be invoked, rather than the trees, for some
predictions.

Empirical Evaluation of the Methods

To make our comparisons fair, we include a training
phase for the reinforcement learner with Boltzmann tem-
perature at 0.5, which results in random actions.® A
testing phase follows in which the turn with the best
g-value is selected deterministically at each time step.
In summary, the reinforcement learner takes random ac-
tions and learns its g-values during training.” It uses
these learned g-values for action selection during test-
ing. The action models method takes the same random
actions as the g-learner during training (i.e., it experi-
ences exactly the same sensor and action training data
as the g-learner), and then from this training data it
learns decision tree action models. A heuristic uses the
learned trees for action selection during testing. Neither
of the two methods learns during testing. Both methods
have the same knowledge regarding which sensors are
relevant.

We denote the g-learning scheme described above as
Qre and the action model scheme with decision trees
described above as A,,;. Two schemes in which we have
removed sensor relevance knowledge are denoted Qremrei
and A;emre respectively and are described below.

We empirically test the following hypotheses:

e Hypothesis 1: The slope of Ay.’s learning curve is
closer than Qr./'s to the slope of the human learning
curve, for the Navigation task.

e Hypothesis 2: The slope of A,.mrei’s learning curve
(respectively, Qremrer) is lower than that of A, (re-
spectively, Qr.1), for the Navigation task.

The justification for Hypothesis 1 is that our action mod-
els method uses an action choice policy specially de-
signed to capitalize on sensor relevance knowledge. The
justification for Hypothesis 2 is that removal of relevance
knowledge should degrade performance.

In our experimental tests of these hypotheses, the
training phase length is varied methodically at 25, 50,
75, and 100 episodes. The testing phase remains fixed at
400 episodes.® Each episode can last a maximum of 200
time steps, i.e., decision cycles. In all experiments, the
number of mines is fixed at 25, there is a small amount
of mine drift, and no sensor noise. These task param-
eter settings match exactly those used for the human
subject whose learning we wish to model.® Performance
is averaged over 10 experiments because the algorithms

®We also tried an annealing schedule but performance did
not improve.

T Arbib (1972) provides convincipg cognitive justification
for the role of random exploration of actions in the acquisition
of motor skill.

® We experimented with the number of episodes and chose
a setting where performance improvement leveled off for both
algorithms.

®Both algorithms go straight (0 turn) for the first three
time steps of every episode during training. This not only
matches performance we observed in the execution traces
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are stochastic during training, and testing results de-
pend upon the data seen during training. Graphs show
mean performance, and error bars denote the standard
deviation.

To test Hypothesis 1, we used data from a typical (the
variance between subjects was surprisingly low) subject
for a single 45-minute session. Note that we cannot di-
vide the human learning into a training phase and a
testing phase during which the human stops learning.
Therefore, we have averaged performance over a sliding
window of 10 previous episodes. We considered averag-
ing performance over multiple subjects, but that would
entail significant information loss.

Figure 1 shows the results of testing Hypothesis 1. The
action models method outperforms reinforcement learn-
ing at a statistically significant level (using a paired,
two-tailed t-test with a = 0.05). Thus, Hypothesis 1
is confirmed.!® Apparently, our novel method for cou-
pling action models with an action choice policy that
exploits sensor relevance has tremendous value for this
task. We believe that one of the chief reasons for the su-
perior performance of the action models method is the
action choice heuristic for deciding when to pay attention
to which sensor. Another likely reason for the dominance
of action model-based methods is that neural networks
with backpropagation tend to learn slowly (Chapman &
Kaelbling, 1991).

To test Hypothesis 2, we made all seven, rather than

from human subjects, but also aids the learning process by
quickly moving the AUV into the mine field.

19t is unclear why the performance of the g-learner drops
slightly with more training episodes, though perhaps overfit-
ting explains this.
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just the three middle, sonar segments relevant for both
algorithms, thereby creating A;emrer and Qpemret- Fig-
ure 2 shows the results of testing Hypothesis 2. Qremrel
performs slightly worse than Q... The performance
drop is not statistically significant (a = 0.10) for training
lengths of 25, 50, and 100, but is significant (a = 0.10)
with a training length of 75. The surprise is that Aremre!
outperforms Ape. The differences are statistically signif-
icant at o = 0.05 for training lengths of 75 and 100, but
only at a = 0.20 for training lengths of 25 and 50. Our
results refute Hypothesis 2. Apparently, both methods
are knowledge sensitive, though action models is more
sensitive. We conjecture that the reason the action mod-
els method improves with more sensory information is
that the extra sonar segments carry some useful infor-
mation. The action models heuristic, which separates
sonar and bearing information, is able to take advantage
of the added sonar information. Because the g-learning
method lumps all knowledge into one reward it prob-
ably needs longer training to do likewise. Further ex-
periments are needed to test this hypothesis. (Although
these results with A;.mrer and Qremrer refute Hypoth-
esis 2, they provide further confirmation of Hypothesis
1 because the performance improvement of A, ¢mr.l OVer
that of Q,emrer is statistically significant with o = 0.05).

Discussion and Future Work

The most immediate pressing question is: why are both
methods slower learners than the human? We believe hu-
mans have more knowledge when they begin this task,
perhaps from driving or walking experience. We are
presently working to make these forms of knowledge
explicit, so we can more closely match human perfor-
mance using our computational models. Another issue



that we are currently investigating is whether the power
law of practice holds for human subjects in this task, and
whether our models conform to it. Performance levels off
rather quickly both for humans and our models, making
this determination challenging.

Future work will also focus on studies to determine the
source of power of our action models approach over the
g¢-learner for this task. As mentioned above, strong can-
didate explanations are (1) the focus of attention knowl-
edge in the action models heuristic, (2) the use of an
action model per se, and (3) the decision tree represen-
tation.
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