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Abstract

Essays on Bounded Rationality in Games and Markets

by

So Eun Park

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Teck Hua Ho, Chair

In economics, players are assumed to be rational: they exhibit self interested behavior and
play equilibrium strategies. However, in laboratory games or actual markets, players often
manifest behavior that is rather consistent with bounded rationality. This thesis consists of
two chapters, which relax the standard assumptions on rationality and allow for bounded
rationality of players.

The first essay weakens the assumption that players are self interested. In this essay, a
retail market is empirically investigated under the relaxed assumption that firms may not
be purely self interested or profit maximizing. Standard models of price competition stipu-
late that firms are pure profit maximizers; this assumption can be sensible and empirically
useful in inferring product markups in a market with no direct government intervention.
However, in markets for essential goods such as food and healthcare, a government may
wish to address its consumer surplus concerns by imposing regulatory constraints or actively
participating as a player in the market. As a consequence, some firms may have objectives
beyond profit maximization and standard models may induce systematic biases in empirical
estimation. This essay develops the structural model of price competition where some firms
have consumer surplus concerns. Our model is applied in order to understand demand and
supply behaviors in a retail grocery market where the dominant retailer publicly declares
its consumer surplus objective. Our estimation results show that the observed low prices
of this retailer arise indeed as a consequence of its consumer surplus concerns instead of its
low marginal costs. The estimated degree of consumer surplus concerns suggests that the
dominant retailer weighs consumer surplus to profit in a 1 to 7 ratio. The counterfactual
analysis reveals that if the dominant retailer were to be profit maximizing as in the standard
model, its prices would increase by 6.09% on average. As a consequence, its profit would
increase by 1.16% and total consumer surplus would decrease by 7.18%. To the contrary,
competitors lower their prices in response to the dominant retailers increased prices, i.e.,
become less aggressive as if they are strategic substitutes. Interestingly, even though profit
of all firms increases, total social surplus would decrease by 3.21% suggesting that profit
maximization by all firms induces an inefficient outcome for the market.
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The second essay relaxes the rationality assumption that players exhibit equilibrium be-
havior, and develops a model that explains nonequilibrium behavior of players in laboratory
games. In standard nonequilibrium models of iterative thinking, there is a fixed rule hierar-
chy and every player chooses a fixed rule level; nonequilibrium behavior emerges when some
players do not perform enough thinking steps. Existing approaches however are inherently
static. In this essay, we generalize models of iterative thinking to incorporate adaptive and
sophisticated learning. Our model has three key features. First, the rule hierarchy is dy-
namic, i.e., the action that corresponds to each rule level can evolve over time depending on
historical game plays. Second, players rule levels are dynamic. Specifically, players update
beliefs about opponents rule levels in each round and change their rule level in order to
maximize payoff. Third, our model accommodates a continuous rule hierarchy, so that every
possible observed action can be directly interpreted as a real-numbered rule level r. The
proposed model unifies and generalizes two seemingly distinct streams of nonequilibrium
models (level-k and belief learning models) and as a consequence nests several well-known
nonequilibrium models as special cases. When both the rule hierarchy and players rule lev-
els are fixed, we have a static level-r model (which generalizes the standard level-k model).
When only players rule levels are fixed, our model reduces to a static level-r model with dy-
namic rule hierarchy and captures adaptive learning. When only the rule hierarchy is fixed,
our model reduces to a dynamic level-r model and captures sophisticated learning. Since
our model always converges to the iterative dominance solution, it can serve as a model of
the equilibration process. Using experimental data on p-beauty contests, we show that our
model describes subjects dynamic behavior better than all its special cases. In addition, we
collect new experimental data on a generalized price matching game. The estimation results
show that it is crucial to allow for both adaptive and sophisticated learning in predicting
dynamic choice behaviors across games.
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Chapter 1

Consumer Surplus Moderated Price
Competition

1.1 Introduction

“Thirty nine years ago, NTUC FairPrice was formed for one social purpose—to
share the load of rising costs with our customers. Everything we do is driven by
this unique social mission of moderating the cost of living in Singapore.”

“We keep the prices of daily essentials stable to stretch the hard-earned money of
our customers. [...] We have been able to consistently achieve excellence in both
the business and social front.”

— FairPrice Annual Report 2012.

Standard models of price competition assume that firms are driven solely by profit concerns.
With no direct government intervention in a market, such assumption is realistic and pow-
erful because one can then interpret observed market prices as equilibrium behaviors among
profit maximizing firms. This equilibrium interpretation is empirically very useful because it
allows one to systematically infer the product markup and hence the marginal cost of each
product in the market.

This profit-maximization assumption however does not apply to every market. In fact, in
markets for essential goods such as food, healthcare, and housing (i.e., products that satisfy
physiological and safety needs in the Maslow’s hierarchy of needs), a government may wish
to address its consumer surplus concerns by imposing regulatory constraints on price levels.
Sometimes, the government may even take an additional step to actively participate in the
market in order to have better market information and directly serve the consumers. In
these markets, some firms will have different objectives than pure profit maximization and
the nature of market competition may change dramatically. As a result, applying standard
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models to these markets may induce systematic biases in empirical estimation.

There are many examples of consumer surplus moderated price competition. Surplus con-
cerns can arise in at least 3 ways. First, there are countries where a significant portion of the
enterprises are state-owned (e.g., China). China has moved from a communist country with
no market prices to a regulated market where stated-owned enterprises actively participate
in many product markets from housing and food to energy and telecommunications.1 Anec-
dotal evidence suggests that these state-owned enterprises are not pure profit maximizers
since a significant portion of profit is used to increase public surplus and to stabilize cost of
living for people.2 Second, healthcare market in most countries is often heavily regulated
and has active participation by a high number of nonprofit organizations. This is so because
healthcare is considered a basic need to which every human being is entitled. For example,
of the 3,900 nonfederal, short-term, acute care general hospitals in the United States in 2003,
about 62 percent were nonprofit, 20 percent were government hospitals, and 18 percent were
for-profit hospitals.3 Non-profit hospitals are not investor-owned and hence often have dif-
ferent objectives than pure profit maximization. Third, government of countries with high
income inequality may choose to participate in essential good markets in order to keep the
cost of living low and stable. For example, Singapore government builds 85% of the apart-
ments in the country in order to make housing affordable. In all three scenarios, one or more
firms are likely to have a consumer surplus moderated objective and as a consequence will
significantly change the nature of price competition.

Given this wide prevalence of consumer surplus moderated price competition, it is surpris-
ing that little research has investigated its equilibrium implications and that the existing
research to date has been largely confined to the healthcare market. There exist a few works
on consumer surplus concerned players in non-healthcare markets. Shiver and Srinivasan
(2011) consider a duopoly market where one firm is profit maximizing while the other firm is
consumer surplus maximizing given some constraint on its profit level. The competitive game
is two-stage: firms sequentially decide on quality in the first stage and simultaneously decide
on price in the second stage. Their key finding is that when the consumer surplus maximiz-
ing firm is the follower in the first stage, it can significantly improve consumer surplus by
forgoing only small amounts of profit. Miravete, Seim and Thurk (2013) also investigate a
government regulated market where the social planner (i.e., Pennsylvania state) is assumed
to have consumer surplus concerns. Their work is based on the interesting observation that
the Pennsylvania state imposes a statewide uniform markup policy on liquor, and one of its

1Chinese government manages a total of 117 large state-owned conglomerates according to the State-
owned Assets Supervision and Administration Commission of China. Each of these conglomerates owns
hundreds of subsidiaries and they compete actively with non-state-owned enterprises in many markets.

2Keith Bradsher. “China’s Grip on Economy Will Test New Leaders”. The New York Times. November
9, 2012.

3GAO Testimony before Committee on Ways and Means, House of Representatives, by David M. Walker,
Comptroller General of the United States, May 26 2005, p.4.
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key findings is that the uniform markup policy induces cross-subsidization across customers
compared with product-specific pricing scheme. Theoretically, investigating a consumer sur-
plus moderated market is important because it allows a modeler to understand how the
nature of competition changes as a result of some firms having consumer surplus concerns.
Practically, it is relevant because it provides useful guidelines for both the policy makers and
firms on how to compete in such markets.

This paper develops the structural model of retail price competition in which some firms
(i.e., retailers) have consumer surplus concerns. We posit that if a firm has consumer sur-
plus concerns, it optimizes a weighted average of its profit and total consumer surplus (i.e.,
(1−α) · (Profit)+α · (Total Consumer Surplus)), where α measures the degree of the firm’s
consumer surplus concerns and may vary from firm to firm. When α is set to 0 for all firms,
the model reduces to the standard models of price competition. Hence our empirical model
naturally nests standard models as special cases.

The total consumer surplus is modeled as the sum of the net utility of all consumers in
the market, not just the consumers who are served by the firm itself. Unlike most exist-
ing research on healthcare markets, we do not resort to using a proxy for consumer welfare
such as accessibility to patients (e.g., Newhouse, 1970; Frank and Salkever, 1991; Horwitz
and Nichols, 2009).4 Instead, we structurally derive a consumer surplus measure from first
principles and hence, the derived measure is theoretically more sound and empirically more
accurate.

We first investigate the theoretical properties of our model. We prove analytically that the
total consumer surplus always increases when any firm decreases its price. In addition, we
show that a firm’s price and profit always decrease when its concerns for consumer surplus
increase. Both results prove useful for estimating the model and interpreting the key results
in the empirical estimation.

Before describing the main empirical results, let us illustrate how equilibrium prices in a
single-product duopoly market competition may change as a result of one firm having con-
sumer surplus concerns, and how our model can yield meaningful insight on such competition.
Ceteris paribus, the consumer surplus moderated firm will wish to lower its price in order
to increase the total consumer surplus. This lower price has a direct effect of increasing
the firm’s market share as well as an indirect effect on the price of the other firm who is
a pure profit maximizer. This other firm may decrease or increase its price in response to
the lower price set by the consumer surplus moderated firm, depending on whether it is a
strategic complement or substitute. As a consequence, the total effect on total consumer

4An accessibility measure such as the number of beds and quantity of provided medical service is in-
deed relevant to the healthcare industry more than the consumer surplus measure because patients having
insurance pay deductibles and as a consequence, their surplus does not significantly depend on the price
level.
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surplus becomes compounded. Our model is useful in empirically estimating this compound
effect of a firm with consumer surplus concerns. Furthermore, upon observing market prices,
a modeler can also infer the degree to which the firm is consumer surplus concerned, imply-
ing that our model can effectively disentangle the two forces causing low prices: consumer
surplus concerns and price competition.

Is it empirically true, however, that a firm with consumer surplus concerns indeed lowers its
equilibrium price? Let us compare prices of 2 dominant retailers in Singapore: FairPrice
and Dairy Farm. FairPrice has 131 supermarket outlets and is the largest retailer with
49.04% total market share of consumer packaged goods. FairPrice, owned by the national
labor union of Singapore (NTUC), has significantly deep ties with the government5 and has
openly stated its consumer surplus objectives as shown in the above quotations. On the
other hand, Dairy Farm, the second largest retailer with a market share of 15.44%, is a pure
profit maximizing firm.6 Figure 1 shows the average prices of the most popular 3 national
brands that are carried by both retailers in 2 food categories: rice and infant milk. We
choose rice and infant milk because they represent the top 2 spending categories among the
essential goods. As shown, in both categories, FairPrice has a systematically lower price
than Dairy Farm.7 This pattern of lower prices in essential goods is indeed consistent with
FairPrice’s firm objective of “moderating the cost of living” for consumers. However, it is
also consistent with an alternative explanation that FairPrice, as the dominant retailer in
the market, may enjoy lower marginal costs than its competitor.

Figure 2 shows the average price of the most popular 3 national brands carried by both
retailers in the chocolate category. We choose the chocolate category because it has the
highest market share among the discretionary categories in terms of consumer expenditure
(ranked 15th in dollar spending).8 Unlike in Figure 1, FairPrice did not charge a systemat-
ically lower price than Dairy Farm.9 If FairPrice indeed had lower marginal costs due to its
higher market power, one is likely to see the same pattern of low prices in Figure 1 occur

5FairPrice is owned by a cooperative of National Trades Union Congress (NTUC), which has close ties
with the Singapore government. The head of the NTUC is always a cabinet minister. Also, the boards of the
cooperatives owned by NTUC always have government representatives. See Appendix for the summary table
of historical secretary generals and presidents of NTUC and their concurrently held government positions
while incumbent at NTUC.

6Dairy Farm, the 2nd largest grocery retailer in the market, is a private company and is publicly listed
on the Singapore stock exchange. In addition, Dairy Farm’s annual report in 2011 puts forward a slogan
that their main goal is to “satisfy the appetites of Asian shoppers for wholesome food and quality consumer
and durable goods at competitive prices” and it does not specifically mention their consumer surplus goal.

7We conducted Student’s t-test on the quarterly average prices of the two retailers. In both of the two
product categories, we rejected the null hypothesis that the means of price distributions of the two retailers
are equal (p < 0.005).

8The biscuit category is not considered despite higher expenditure because it is too differentiated over
brands, flavor and types.

9We conducted Student’s t-test on the quarterly average prices of the two retailers. We could not reject
the null hypothesis that the mean of price distributions of the two retailers are equal (p > 0.10).
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Figure 1.1: Average Prices: Rice and Infant Milk
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Figure 1.2: Average Prices: Chocolate

2.
2

2.
4

2.
6

2.
8

3
P

ric
e 

pe
r 

1K
g

2008q4 2009q2 2009q4 2010q2 2010q4

FairPrice Dairy Farm

in the chocolate category as well. Thus, we conjecture that standard models of competition
may not be able to account for the differing pattern of average prices between essential and
nonessential food. To account for this differing pattern of prices, one must explicitly account
for FairPrice’s customer surplus concerns in the model. In addition, it will be also interest-
ing to investigate how Dairy Farm’s prices respond to FairPrice’s lower prices arising from
consumer surplus concerns.

To empirically investigate whether FairPrice indeed has consumer surplus concerns and how
such concerns affect the price competition, we apply our structural model to understand
demand and supply behaviors in the Singaporean grocery market. Assuming that FairPrice
possesses consumer surplus concerns while the other retailers do not, we empirically estimate
FairPrice’s consumer surplus moderating parameter α. If FairPrice does not have consumer
surplus concerns, the model would empirically yield a corner solution α = 0, suggesting that
the standard model describes the data well. We obtain a panel dataset from a major mar-
keting research firm, which contains grocery shopping data of 646 households from October
2008 to December 2010 in Singapore. Besides capturing a total of 190,959 shopping trips
and 709,112 product purchase incidences on 118 consumer packaged good categories, the
comprehensive dataset also contains 18 demographic variables including monthly income,
size of the household, and the primary grocery buyer’s age.
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The estimation results and counterfactual analysis based on the rice category show that (the
estimation on infant milk and chocolate categories are currently underway):

1. FairPrice’s low prices on rice are indeed a consequence of its consumer surplus concerns
and its α is estimated to be 0.13 averaged across all markets.

2. If the low prices were to maximize profit as in standard models, the estimated markups
for FairPrice would be implausibly high (and hence their marginal costs would be
implausibly low).

3. If FairPrice were to be profit maximizing, its profit would increase by 1.16% and the
total consumer surplus would decrease by 7.18%. On the other hand, the profit of
Dairy Farm would increase by 5.54%. Interestingly, the total social surplus would
decrease by 3.21% suggesting that that profit maximization by all firms induces an
inefficient outcome for the market.

4. The decrease in total consumer surplus due to all firms’ profit maximization consists
of two components: 1) the direct effect due to FairPrice’s higher prices under profit
maximization objective and 2) the indirect effect due to price competition, i.e., com-
petitors’ response to such higher prices. The indirect effect is positive, suggesting that
competitors respond to FairPrice’s price increase by lowering their prices (i.e. becom-
ing less aggressive in price competition as if they are its strategic substitutes). Despite
the positive indirect effect, the total consumer surplus loss is retained at 97.60% of the
direct effect.

The remainder of paper is organized as follows. Section 2 describes the model of a consumer
surplus moderated price competition. Section 3 describes data on Singapore’s grocery retail
market. Section 4 discusses the empirical results. Section 5 concludes.

1.2 The Model

Notations

We consider M retail markets of a category of products served by I (I ≥ 2) firms. Firms are
indexed by i (i = 1, 2, . . . , I − 1, I) and markets are indexed by m (m = 1, 2, . . . ,M − 1,M).
Each market m consists of Km consumers and offers the set Jm (Jm = {0, 1, . . . , Jm}) of
products (i.e., choice menu) to consumers. Let Jm

i be the set of products offered by firm
i in market m. Consumers are indexed by k (k = 1, 2, . . . , Km − 1, Km) and products are
indexed by j ∈ Jm.

Each firm i may or may not possess consumer surplus concerns and thus has a different
objective Πi(.). Firms choose retail prices simultaneously to maximize their respective ob-
jectives. Let πm

i (.) be firm i’s profit and Φm(.) be the total consumer surplus in market m,
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respectively. Specifically, we posit that firm i maximizes a weighted average of its profit and
total consumer surplus in market m:

Πi(αi) = (1− αi) · π
m
i (p

m
i ,p

m
−i) + αi · Φ

m(pm
i ,p

m
−i).

where αi is the weight assigned to consumer surplus and pm
i is the price vector of all products

of firm i and pm
−i is the price vector of all products of all other firms in market m. Price

equilibrium is realized as a result of each firm’s optimal pricing decision.

Each firm i offers multiple products in a retail market of a grocery category. Firms offer
both national and store brands to compete with each other and firms’ offerings of national
brands may overlap. A product is defined as a brand-retailer combination and thus Jm

i and
Jm

i′ are mutually exclusive for all i 6= i′. A consumer in market m is assumed to choose a
product out of her choice menu Jm. We posit that the consumer choice process follows a
random coefficient discrete choice model. We ignore choice dynamics over time in this paper.

In following 3 subsections, we describe the 3 components of price equilibrium in a consumer
surplus moderated market: 1) demand model, 2) consumer surplus, and 3) supply model.

Demand

Consumer k (k = 1, 2, . . . , Km) chooses a product j ∈ Jm (Jm = {0, 1, 2, . . . , Jm}), where
Jm is the entire product space of market m and j = 0 refers to the outside product. Let
um
kj be the indirect utility that consumer k obtains from consuming product j in market m.

Then,

um
kj = −βk · p

m
j + xm

j · γk + ξmj + ǫmkj

= vmkj + ǫmkj (1.1)

where

vmkj = −βk · p
m
j + xm

j · γk + ξmj

(

βk

γk

)

=

(

β

γ

)

+

(

Ωp

Ωx

)

Dk +

(

Σp

Σx

)

vk

pmj is the price of product j in market m, xm
j is the vector of observed product charac-

teristics of product j in market m, Dk is a vector of consumer k’s observed demographic
variables, and vk are consumer k’s unobserved consumer characteristics. In addition, ξmj is
the product-market level disturbance. ǫmkj is an i.i.d shock which follows a type I extreme
value distribution. Ωp and Ωx are the price and product characteristic coefficients that are
interacted with observed demographic variables, respectively. Σp and Σx are the price and
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product characteristic coefficients that are interacted with unobserved consumer character-
istics, respectively. The mean of indirect utility for the outside product in any market m,
um
k0, is normalized to zero.

The above demand specification is the random coefficient discrete choice model, which is
a generalization of the standard multinomial logit model (Berry, 1994; Berry et al., 1995;
Nevo, 2000). The standard multinomial logit model is parsimonious because it expresses
consumer k’s underlying utility for a product j in terms of its price and characteristics only,
instead of those of all products in the consumer’s choice menu (Luce, 1959; Luce and Suppes,
1965; Marschak, 1960; McFadden, 1974, 2001). This simplification dramatically reduces the
number of parameters to estimate in empirical analyses. However, the standard multino-
mial logit model possesses the independence of irrelevant alternatives (IIA) property that
makes a sharp prediction on price elasticities: if two products have the same market share,
they should have an identical cross-price elasticity with respect to any other product in the
choice menu. This prediction, however, frequently does not describe actual choice substi-
tution well. The above random coefficient discrete choice model overcomes this inadequacy
by allowing for a more flexible and realistic substitution pattern. This is accomplished by
interacting consumers’ demographic variables with price and product characteristics. Hence,
if consumers with similar demographic variables have similar preferences for certain product
characteristics, they will have similar choice and substitution patterns.

Let smj be the market share of product j in market m, smkj be consumer k’s probability of
choosing product j in market m, and Am

kj be the region of i.i.d. shocks (ǫmk0, . . . , ǫ
m
kJm) that

lead to consumer k’s choosing product j. Then, by the random coefficient discrete choice
model, smj is given by:

smj =

∫

D

∫

v

smkj dFv(v) dFD(D)

=

∫

D

∫

v

(

∫

Am
kj

dFǫ(ǫ)

)

dFv(v) dFD(D)

=

∫

D

∫

v

exp(vmkj)
∑

j∈Jm exp(vmkj)
dFv(v) dFD(D)

(1.2)

where Fǫ(ǫ) is a joint distribution function of the consumer-level i.i.d. product shocks, FD(D)
is a joint distribution function of the population’s observed demographic variables, and Fv(v)
is a joint distribution function of the population’s unobserved demographic shocks.
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Consumer Surplus

To derive consumer surplus, we need to define consumer k’s willingness to pay for product j
in market m, denoted by ωm

kj. We posit that ωm
kj is the hypothetical price for product j that

sets um
kj equal to um

k0, which is the utility of the outside product. As a consequence, the unit
of consumer surplus is identical to that of profit. Since the mean of um

k0 is normalized to
zero, we have

−βk · ω
m
kj + xm

j · γk + ξmj + ǫmkj = ǫmk0

and ωm
kj is given by

ωm
kj =

xm
j · γk + ξmj + ǫmkj − ǫmk0

βk
(1.3)

Consumer k purchases product j in market m only if her indirect utility um
kj from product j

is greater than that from the outside product um
k0, suggesting that consumer k was willing

to pay more for product j up to the price point where um
kj becomes equal to um

k0.

We posit that consumer k’s surplus Φm
kj for product j she purchased in market m equals her

willingness to pay for product j less the price she actually paid. That is,

Φm
kj = ωm

kj − pmj

Plugging in equations (1.1) and (1.3), we obtain:

Φm
kj =

xm
j · γk + ξmj + ǫmkj − ǫmk0

βk
− pmj

=
um
kj − ǫmk0

βk

Note that Φm
k0 = 0. Φm

kj is specific to each purchase decision that consumer k makes. Con-
sumer k’s total surplus Φm

k is then defined as the expectation of this purchase decision specific
surplus Φm

kj over all possible purchase scenarios. Specifically,

Φm
k =

∑

j∈Jm

(

∫

Am
kj

Φm
kj dFǫ(ǫ)

)

=
∑

j∈Jm

(

∫

Am
kj

um
kj − ǫmk0

βk

dFǫ(ǫ)

)
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Recall that Am
kj is the region of i.i.d. shocks (ǫmk0, . . . , ǫ

m
kJm) that lead to consumer k’s choosing

product j.

Finally, total consumer surplus Φm in market m with market size Km is defined as the
consumer surplus of the entire population where each consumer k enjoys consumer-specific
surplus Φm

k . That is,

Φm = Km ·

∫

D

∫

v

Φm
k dFv(v) dFD(D)

= Km ·

∫

D

∫

v

(

∑

j∈Jm

(

∫

Am
kj

um
kj − ǫmk0

βk
dFǫ(ǫ)

))

dFv(v) dFD(D) (1.4)

If ǫmkj is distributed i.i.d Type I extreme value, Φm
kj has a closed-form log-sum formula (Small

and Rosen, 1981) and Φm is expressed as:

Φm = Km ·

∫

D

∫

v

(

1

βk

· log
∑

j∈Jm

exp
(

vmkj
)

)

dFv(v) dFD(D) (1.5)

Theorem 1.1. In market m, ceteris paribus, total consumer surplus decreases in pmj , ∀j ∈

Jm, i.e., ∂Φm

∂pmj
< 0, ∀j ∈ Jm.

Proof of Theorem 1.1. See Appendix.

Theorem 1.1 demonstrates that if the price of any product offered in the market becomes
lower, the total consumer surplus increases. This is because the total consumer surplus is
defined as the sum of consumer surplus resulting from possible purchase scenarios of all
products offered in the market, and not necessarily those products offered by the consumer
surplus concerned firm.

Supply

We consider an oligopoly retail market of a product category where each firm i offers multiple
products. Specifically, firm i chooses prices pm

i that maximize a weighted average of its total
profit πm

i from all of its products, and total consumer surplus Φm in market m. That is, firm
i’s objective function is given by

Πm
i (αi) = (1− αi) · π

m
i (pm

i ,p
m
−i) + αi · Φ

m(pm
i ,p

m
−i), (1.6)
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where

πm
i (p

m
i ,p

m
−i) = Km ·

∑

j∈Jm
i

smj · (pmj − cmj )

and cmj is the marginal cost (i.e., wholesale price) of product j in market m. Recall that the
total consumer surplus is given in equation (1.4) as:

Φm = Km ·

∫

D

∫

v

(

1

βk

· log
∑

j∈Jm

exp
(

vmkj
)

)

dFv(v) dFD(D)

Note that firm i considers the total consumer surplus in market m instead of surplus of
only those consumers it serves. αi ∈ [0, 1] is exogenously given for each firm i and is the
weight assigned to the total consumer surplus, capturing the degree to which firm i is con-
sumer surplus concerned, i.e., the higher αi is, the bigger firm i’s concern is. The proposed
weighted objective function necessarily nests the standard objective function. When αi = 0,
∀i, equation (1.6) reduces to the standard objective function and gives rise to the standard
price equilibrium solution. Thus, we set αi′ = 0 for any pure profit maximizing firm i′ in our
empirical estimation in the Section 2.3.

Price equilibrium is realized as a result of each firm’s optimal pricing decision. Thus, for
each firm i, each price pmj , ∀j ∈ Jm

i , must satisfy its first order condition:

0 = (1− αi) ·



smj +
∑

j′∈Jm
i

(pmj′ − cmj′ )
∂smj′

∂pmj



+ αi ·

∫

D

∫

v

(

−smkj
)

dFv(v) dFD(D)

Theoretical Properties

Theorem 1.2. Let pmj (αi) be the price of product j (j ∈ Jm
i ) that optimizes the objective function

of a consumer-surplus concerned firm i in market m, given the other firms’ prices. Then, ∀j ∈ Jm
i ,

pmj (αi) decreases in αi. I.e.,
∂pmj (αi)

∂αi
< 0, ∀j ∈ Jm

i .

Proof. See Appendix.

Theorem 1.3. Given the other firms’ prices, the profit of a consumer surplus concerned firm i

decreases in αi, i.e.,
∂πm

i

∂αi
< 0.
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Proof. See Appendix.

Theorem 1.2 suggests that the more a firm is concerned with consumer surplus, the lower the
prices of all of its products are. It is noteworthy that prices of all products in the firm’s portfolio
decrease unanimously as a result of increased consumer surplus concerns. As a result, theorem 1.3
shows that its profit decreases as well given that other retailers keep their prices unchanged. As
will be shown in Section 1.4, theorems 1.2 and 1.3 provide useful insight on how the total gain on
consumer surplus due to a firm’s consumer surplus concerns decomposes into the direct effect of
these concerns and the indirect effect of competitors’ response to them.

Let us emphasize an interesting feature of this weighted objective function: prices can be strategic
substitutes even under the Hotelling model-like demand. Consider a price competition between two
firms. Firms are denoted by i (i = 1, 2) and produce one product each at price pi with zero marginal
cost. These two products are horizontally differentiated (Hotelling, 1929) and each consumer buys
only one product. In this horizontally differentiated market, demand of firm i can be expressed as
Di(pi, p−i) = 1− pi + p−i. Firm i chooses pi that maximizes its profit πi(pi, p−i) = pi ·Di(pi, p−i).
Then, it can be shown that ∂ p∗i (p−i)/∂ p−i = 1/2 > 0 and p1 and p2 are strategic complements of
each other.

Now consider that firm 1 is consumer surplus concerned and optimizes a weighted objective function:

Π1(p1, p2) = (1− α1) · π1(p1, p2) + α1 · (Consumer Surplus)

where

Consumer Surplus =
(1− p1 + p2)

2

2
+

(1− p2 + p1)
2

2

Then, firm 1’s best response function depending on α1 can be summarized as:

∂ p∗1(p2)

∂ p2

{

≥ 0, if 0 ≤ α1 ≤
1
3 or α1 ≥

1
2

< 0, if 1
3 < α1 <

1
2

This suggests that when firm 1’s level of consumer surplus concerns is too low (α1 ≤ 1
3), p1 is a

strategic complement of p2, and firm 1 becomes more aggressive as firm 2 lowers its price. Note that
when firm 1 weighs consumer surplus more than its profit (α1 ≥ 1

2 ), firm 1 will price at marginal

cost regardless of p2, i.e.,
∂ p∗

1
(p2)

∂ p2
= 0. On the other hand, when α1 is moderate (13 < α1 < 1

2),
firm 1 becomes less aggressive in price competition and p1 increases (decreases) when p2 decreases
(increases). This is because consumer surplus increases in (p1−p2)

2 and aggressive price competition
(i.e., smaller price gap between p1 and p2) will cause reduction in consumer surplus.
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1.3 Data

We use the household panel data in Singapore obtained from a major marketing research company.
The company installed scanners at a representative sample of 646 households in the country and
collected shopping basket data of each household for 9 quarters from October 2008 to December
2010.10 The dataset contains households’ purchasing history of a total of 118 consumer packaged
goods.

The dataset also contains a total of 18 demographic variables for each household. Among those, we
have the full name of the head of the household, household size, zip code, primary grocery buyer’s
age, household monthly income (one of the 11 income brackets), race, type of dwelling (private or
subsidized public housing), work status (1 if primary grocery buyer works), maid (1 if the house-
hold has a maid), child below 4 (1 if the household has a child aged below 4), child between 5 and
14 (1 if the household has a child aged between 5 and 14), family (1 if the household is of family
type and 0 if of singles/couples type), female below 9 (1 if the household has a female aged below
9), female between 10 and 19 (1 if the household has a female aged between 10 and 19), female
between 20 and 29 (1 if the household has a female aged between 20 and 29), female between 30
and 39 (1 if the household has a female aged between 30 and 39), female between 40 and 49 (1
if the household has a female aged between 40 and 49), and female above 50 (1 if the household
has a female aged above 50). Table 1.1 provides summary statistics for these variables. This rich
set of demographic variables allows us to capture individual heterogeneity in product preferences
and price sensitivities in the demand model. In our empirical estimation, we include household
size, income, primary grocery buyer’s age, work status, two race dummies (Chinese and Indian),
child below 4, child between 5 and 14, and family in order to capture individual heterogeneity. The
variable names used in empirical estimation and their corresponding description are listed in the
Appendix.

The primary grocery buyer at each household was instructed to scan all grocery items after each
shopping trip.11 For each product scanned, the dataset contains the following 7 variables: 1) bar-
code, 2) date of scanning, 3) the name of retailer where the item was bought, 4) product category,
5) price, 6) quantity purchased, and 7) product description (a combination of brand, product name,
and packaging size). From the product description, we have created 3 additional variables (brand,
product name, and packaging size), yielding a total of 9 variables for each product. All expenditures
in the summary statistics below are in Singaporean currency (SGD).

Table 1.2 shows the top 20 consumer packaged good categories by expenditures. As shown, the top
10 categories are infant milk (5.84%), rice (5.41%), liquid milk (4.52%), frozen food (4.38%), bread
(3.29%), biscuit (2.73%), yoghurt (2.69%), facial care (2.65%), edible oil (3.26%), and detergent
(2.51%). Note that most of these categories are food items. These top 10 categories accounted for
36.61% of the total spending on consumer packaged goods. Note that chocolate is ranked 15th in

10The company started recruiting panelists in early 2008. We only include households who joined before
October 1, 2008 and who have shopped at least once per month since joining.

11The company uses store-level data to check whether the recruited households scan regularly. It appears
that a significant majority of them do scan their shopping baskets regularly.
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Table 1.1: Summary of Demographic Variables

Number of households 646

Mean Std. Dev. Min Max
Monthly incomea 4552.63 3540.87 500 15000
Household size 3.82 1.38 1 12
Grocery buyer’s age 50.29 8.96 30 81
Type of dwelling 0.86 0.35 0 1
Work status 0.67 0.47 0 1
Child below 4 0.94 0.29 0 1
Child between 5 and 14 0.36 0.48 0 1
Family 0.60 0.49 0 1
Maid 0.16 0.36 0 1
Female below 10 0.10 0.30 0 1
Female between 10 and 19 0.27 0.44 0 1
Female between 20 and 29 0.25 0.43 0 1
Female between 30 and 39 0.24 0.42 0 1
Female between 40 and 49 0.37 0.48 0 1
Female above 50 0.65 0.48 0 1

aMonthly income is in Singaporean dollars. Summary statistics are computed based on the
median value of each of the 11 income brackets. Highest income bracket is “above $10,000” and
its median value is assumed to be $15,000.

terms of expenditure.

Table 1.3 provides the summary statistics of households’ shopping trips. In total, households spent
$4,348,076.54 over the entire period, among which $2,195,455.72 (50.49%) was on consumer pack-
aged goods. They made a total of 190,959 shopping trips to retailers and scanned 709,112 product
purchase incidences. On average, a household made a total of 295.60 trips, spent $22.77 per trip
and $249.29 per month, and recorded 3.71 purchase incidences on each trip. The average inter-
shopping time was 4 days.

In the empirical estimation, we investigate top 2 nondiscretionary product categories (infant milk
and rice), and 1 discretionary product category (chocolate).12 Note that we determine whether
a category is discretionary or nondiscretionary based on Classification of Individual Consumption
According to Purpose (COICOP) provided by the United Nations statistics division.

Table 1.4 provides the distribution of total expenditure, total number of outlets, and total number

12Based on COICOP, we determine that categories such as facial care, laundry detergent and shampoo
among top grossing categories fit more into the semi-discretionary categories, which consumers tend to
downgrade instead of dispense with when facing financial restraint.
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Table 1.2: Top 20 Grossing Categories of Consumer Packaged Goods

Product category Expenditure (SGD) Share of Expenditurea

Infant milk 128237.30 5.84%
Rice 118879.20 5.41%
Liquid milk 99204.29 4.52%
Frozen food 96098.58 4.38%
Bread 72285.25 3.29%
Biscuit 59828.20 2.73%
Yoghurt 59159.21 2.69%
Facial care 58261.02 2.65%
Edible oil 56691.50 2.58%
Laundry detergent 55013.77 2.51%
Coffee 53520.90 2.44%
Juices 47714.16 2.17%
Liquid soap 47685.44 2.17%
Shampoo 46477.65 2.12%
Chocolate 45692.51 2.08%
Instant noodles 43547.46 1.98%
Health food drink 42761.56 1.95%
Sauces 42729.48 1.95%
Toilet rolls 36659.53 1.67%
Diapers 35191.37 1.60%

aShare of expenditure on each product category out of the entire expenditure.

Table 1.3: Summary of Shopping Pattern

Number of households 646
Number of total shopping trips 190,959
Number of total scannings 709,112
Total expenditure $4,348,076.54
Total expenditure on consumer packaged goods $2,195,455.72

Mean Std. Dev. Min Max
Average number of trips 295.60 197.09 63 1467
Average spending per trip $22.77 $34.50 $0.01 $1598.62
Average spending per month $249.29 $292.20 $1.70 $6462.13
Average number of purchase incidences per trip 3.71 3.32 1 52
Average inter-shopping days 3.64 3.67 1 54
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Table 1.4: Expenditure and Shopping Trips by Top Three Retailers

Firm Expenditure Shopping Trips Number of Outletsa

FairPrice $1,497,565 63,021 131
Dairy Farm $572,332 23,950 104
Sheng Siong $322,677 15,910 33
Others $1,955,501 88,078 N/A
Total $4,348,076 190,959 N/A

Firm Rice Infant milk Chocolate
FairPrice $65,428.74 $65,839.86 $24,136.04
Dairy Farm $17,561.04 $20,101.59 $8,516.25
Sheng Siong $16,524.08 $7,541.25 $4,332.50
Others $19,365.34 $34,754.60 $8,707.73
Total $118,879.20 $128,237.30 $45,692.51

aThis data is collected separately by visiting each retailer’s website.

of shopping trips by retailers. The same table also shows the dollar share of the top 3 retailers for
the 3 focused categories (infant milk, rice, and chocolate). The top three retailers are FairPrice,
Dairy Farm, and Sheng Siong. These 3 retailers received 55.03% of the total expenditures where
FairPrice accounted for 34.44%, Dairy Farm 13.16% and Sheng Siong 7.42% respectively. Simi-
larly, the top 3 retailers accounted for 53.88% of the total number of shopping trips. In both total
expenditure and total number of shopping trips, FairPrice is clearly the market leader.

The market leadership of FairPrice is as pronounced when we restrict ourselves to the 3 focused
consumer packaged good categories. As shown, FairPrice is the market leader for all 3 categories
and received 51.34%, 55.04%, and 52.82% from the category-specific total expenditure of infant
milk, rice, and chocolate, respectively. Dairy Farm is the second largest retailer enjoying 15.68%,
14.77%, and 18.64% in the three categories respectively.

1.4 Empirical Results

Estimation of Demand

A market for a product category is defined as a quarter of a year.13 Since a purchase incidence
contains combined information of total quantity purchased and packaging size, each purchase in-
cidence is teased out by unit weight (e.g., 1kg for rice category). As a consequence, a consumer’s
choice problem reduces to the choice of a brand of unit weight. For example, if a household input

13Since we only have national level data and Singapore is a small, well-connected city country, whose
population is 5.3 millions and size is 3.5 times Washington D.C. of the United States, we define the entire
nation as one geographical market.
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a purchase incidence of 2 bags of 5kg Royal Umbrella rice, such purchase incidence is considered
as 10 separate choice incidences of 1kg Royal Umbrella. Note that a choice model posits that a
consumer (i.e., household) makes only one choice out of her choice menu in each market. Thus,
we treat those teased out 10 choice incidences as if 10 households of exactly same demographic
characteristics purchased the same 1kg Royal Umbrella respectively.

Each household’s potential level of consumption is defined as the maximum quantity of unit weight
it ever consumed in a market across all markets. For those households who never purchased the
product category across all markets (but purchased other product categories and thus remain in
the data), their potential level of consumption is defined as the bottom 1 percentile level of con-
sumption of the households who ever purchased the product category.

Each product j ∈ Jm in market m is defined as a combination of retailer and brand. In the rice
category, if the brand Royal Umbrella is offered by both FairPrice and Dairy Farm, then Royal
Umbrella by these two retailers are considered two different products. As a consequence, Jm

i and
Jm
i′ are mutually exclusive for any two firms i 6= i′ in each market m. Consumers’ choice menu

includes the top 19 products with highest market share and the outside product. FairPrice, Dairy
Farm and Sheng Siong carry 7, 5, and 7 of these 19 products, respectively.We adjust prices by
inflation using Singapore’s quarterly CPI data. We derive the representative unit price of each
product in a market (corresponding to the unit weight) as the weighted average of prices that are
input into the scanner by each individual household, where the weight is the quantity of unit weight.

In the full model, price, product dummies and market dummies enter the mean-level utility and
correlation between price and product-market level disturbance (ξmj ) is controlled for by these dum-

mies.14 Product characteristics that are interacted with demographic variables are: price, dummies
of store brands by FairPrice and Sheng Siong, dummies of major national brands (New Moon, Royal
Umbrella, and Songhe), and retailer dummies.15 A total of 12 demographic variables interact with
these product characteristics: household size, grocery buyer’s age, monthly income, work status,
child below 4, child between 5 and 14, family, female, maid, government-housing (HDB) and race
dummies of Chinese and Indian.

Since our dataset contains rich individual level purchase records, we use the simulated maximum
likelihood estimation method to identify the demand model parameters, where the unobserved in-
dependent demographic shock vk is the only variable to be simulated.16 Note that the observed
demographic variables Dk do not need to be simulated since we know exactly what these variables
are for each household.

Since we do not observe vk, we define the expected probability pmkj that household k purchases

14More rigorous parameter estimation using supply-side cost shock data as an instrument is under way.
15The mean level utilities of these dummy variables are estimated by projecting estimated product dum-

mies onto these variables.
16We searched over parameter values to maximize the simulated log-likelihood using unconstrained non-

linear optimization in the MATLAB optimization toolbox.
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product j given its observed demographic variables Dk as17:

pmkj = Ev

[

smkj
]

=

∫

v

exp(vmkj)
∑

j∈Jm exp(vmkj)
dFv(v)

where smkj is defined in equation (1.2) as household k’s probability of purchasing product j given
both its observed and unobserved demographic variables.

Let omk ∈ Jm and om = (om1 , om2 , . . . , omKm) be household k’s observed product choice and the vector
of observed product choices by all Km households in market m, respectively. Then, the likelihood
L(omk ) of observing choice omk by household k is given by:

L(omk ) =
∏

j∈Jm

(

pmkj
)1(j,om

k
)

where

1(j, omk ) =

{

1, if j = omk
0, if j 6= omk

The total log-likelihood of observing entire data, LL(o1,o2, . . . ,oM ), is then given by:

LL(o1,o2, . . . ,oM ) =

M
∑

m=1

Km
∑

k=1

logL(omk )

=

M
∑

m=1

Km
∑

k=1

log





∏

j∈Jm

(

pmkj
)1(j,om

k
)





Table 1.5 list the parameter estimates of the full demand model. It has a total of 17 rows and
5 columns. The 17 rows are respectively labeled mean, standard deviation, each of the 12 demo-
graphic variables that are interacted with product characteristics, maximized log-likelihood, average
price coefficient of the population, and the percentage of price coefficients that are positive in the
model. The 5 columns are respectively labeled the 5 product characteristics the 12 demographic
variables interact with: price, constant, store brand dummy, FairPrice dummy and Dairy Farm
dummy.

The first row, mean, shows the mean level utility coefficient for each product characteristic vari-
able, i.e, how the mean level utility responds to $1 price increase or to each dummy variable. First

17We assume that vk follows the standard normal distribution and is independent between product char-
acteristics it interacts with. Final estimation results are based on 100 random draws of vk. Random draws
are generated using the Halton sequence. We varied the number of draws up to 200 and found similar results.
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column shows that the price coefficient for mean level utility is negative at -1.91 at a statistically
significant level. We estimate the full model with product and market dummies and thus the last 4
product characteristics (constant, store brand dummy, FairPrice dummy and Dairy Farm dummy)
are subsumed in product dummies in the mean-level utility estimation. Hence, we project the
estimated product dummies onto these 4 product characteristic variables to estimate their mean
level utilities. Estimates obtained this way are listed in the last 4 columns of the first row. The
model estimates that baseline utility of any product is 0.73 higher than that of the outside product.
Store brand NTUC induces 4.28 higher mean level utility than non-major national brands. This
is because unlike in most other countries where store brands are usually not popular, store brand
rice occupies highest market shares in Singapore.18 Also, as will be shown in Table 1.5, own price
elasticities of these two brands are lower than other high market share products, suggesting that
the store brands increase households’ utility and makes them less sensitive towards price change.

The second row, standard deviation, captures the effect of unobserved demographic variables. We
see that the unobserved demographic effect is less significant for all 5 product characteristics than
other parameter estimates. This implies that individual heterogeneity is effectively captured by the
12 observed demographic variables that are interacted in the full model.

The 12 demographic variables in the 3rd to the 14th row in general interact significantly with the
5 product characteristic variables. Quite a few parameter estimates are worth highlighting. Higher
income level households are less price sensitive and prefer FairPrice more. They also less prefer
NTUC brand. 16% of Singaporean households hire maids and interestingly, households with maids
are more price sensitive. Chinese are less price sensitive than Indian or Malay (the base group).

The value of maximized log-likelihood is −158380.19, while that of the standard logit model
is −163650.15. Log-likelihood test rejects the standard logit model in favor of the full model
(p < 0.001). About 97.21% of the entire population has negative price coefficients and price in-
crease strictly reduces their utility.

Table 1.6 list the own- and cross-price elasticities of the top 4 brands offered by FairPrice and
Dairy Farm. Price elasticities are estimated at the median price level. We see that own price
elasticities range from -2.20 to -3.48 among top 4 brands of the two retailers, suggesting that for
every 1 percent increase in the price of a major product, its own market share reduces by about
2.20 to 3.48 percent. Given the high market share of FairPrice, it is not surprising that cross-price
elasticities of FairPrice’s products are bigger for the other FairPrice’s own products than for Dairy
Farm’s products.

Estimation of Supply

For notational simplicity, hereafter subscript i′ refers to the profit maximizing firm (i.e., Dairy
Farm and Sheng Siong) and subscript i refers to the consumer surplus concerned firm (i.e., Fair-

18FairPrice’s two major store brands, NTUC and Golden Royal Dragon, have a total of 22.68% of market
share (including outside product), which is about 51.57% of market share conditional on rice consumption.
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Table 1.5: Estimation Results in Rice Category: Demand

Price Constant NTUC FairPrice Dairy Farm
Mean -1.9190∗∗∗ 0.7299∗∗∗ 4.2844∗∗∗ -3.1280∗∗∗ -2.2120∗∗∗

(0.7123) (0.1044) (0.3320) (0.1138) (0.1044)
Standard Deviationa 0.0006 0.0011 0.0023 0.0017 0.0046

(0.0014) (0.1044) (0.3320) (0.1138) (0.1044)
Demographic Variables
HHOLDSIZE -0.0480 -0.1771∗∗ 0.0769∗∗∗ 0.2320∗∗∗ 0.1445∗∗∗

(0.0350) (0.0770) (0.0289) (0.0260) (0.0275)
INCOME 0.0423∗∗∗ 0.0747∗∗ -0.1679∗∗∗ -0.0244∗∗ -0.1191∗∗∗

(0.0139) (0.0308) (0.0115) (0.0103) (0.0108)
CHILD04 0.1185 -1.3423∗∗∗ 1.0047∗∗∗ 0.4550∗∗∗ 0.6041∗∗∗

(0.1481) (0.3275) (0.1166) (0.1121) (0.1167)
CHILD514 -0.5063∗∗∗ 0.6258∗∗∗ -0.3709∗∗∗ 0.7974∗∗∗ 0.3981∗∗∗

(0.1064) (0.2294) (0.0834) (0.0698) (0.0744)
AGE 0.0103 -0.0193 0.0286∗∗∗ -0.0095∗∗ -0.0144∗∗∗

(0.0063) (0.0136) (0.0048) (0.0038) (0.0039)
HDB -0.8379∗∗∗ 2.4885∗∗∗ -2.1051∗∗∗ 0.7852∗∗∗ -0.1841∗∗

(0.1212) (0.2702) (0.1023) (0.0846) (0.0848)
WORK -0.2924∗∗∗ 0.7716∗∗∗ 0.2572∗∗∗ -0.4885∗∗∗ -0.5401∗∗∗

(0.0847) (0.1852) (0.0670) (0.0572) (0.0611)
MAID -1.3321∗∗∗ 3.0250∗∗∗ -1.5975∗∗∗ 0.7637∗∗∗ 0.9101∗∗∗

(0.0978) (0.2088) (0.0775) (0.0733) (0.0764)
CHINESE 0.7632∗∗∗ -2.8738∗∗∗ -0.8130∗∗∗ 1.6220∗∗∗ 1.3200∗∗∗

(0.1290) (0.2655) (0.1016) (0.0875) (0.0956)
INDIAN -0.1857 -0.0901 -0.3401∗∗ 0.8266∗∗∗ -0.0444

(0.1875) (0.3906) (0.1718) (0.1714) (0.2184)
FAMILY 0.3613∗∗∗ 0.4742∗ -0.1259 -0.6978∗∗∗ -0.7544∗∗∗

(0.1171) (0.2590) (0.0963) (0.0796) (0.0850)
FEMALE 0.4363 -2.5602∗∗ -0.6295 2.2131∗∗∗ 2.9543∗∗∗

(0.5824) (1.1610) (0.7226) (0.6857) (1.0220)
Maximized log-likelihoodb -158380.1894
Average price coefficient -1.4614
% of price coefficient > 0 0.0279

aStandard deviation parameters are exponentiated within the log-likelihood function, so that it
can enter log-likelihood function positively and can be estimated unconstrained at the same time.
Listed parameter estimates are transformed (i.e., exponentiated) values of those unconstrained
estimates and standard errors are computed using the delta method.

bStandard logit model yields maximized log-likelihood of -163650.1475 and the log-likelihood
test rejects it in favor of the full model (p < 0.001).
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Brand19 Double Golden
Royal
Dragon

NTUC Royal
Umbrella

Golden
Phoenix

New
Moon

Royal
Umbrella

Songhe

(F ) (F ) (F ) (F ) (D) (D) (D) (D)

Double (F ) -2.6487 0.1405 0.1490 0.1125 0.1261 0.1288 0.0990 0.1269
Golden Royal Dragon (F ) 0.1610 -2.3005 0.1618 0.1459 0.1577 0.1609 0.1440 0.1711
NTUC (F ) 0.3065 0.2904 -2.2043 0.2204 0.2513 0.2523 0.2260 0.2589
Royal Umbrella (F ) 0.0652 0.0738 0.0621 -2.8337 0.0736 0.0731 0.0768 0.0795
Golden Phoenix (D) 0.0039 0.0042 0.0038 0.0039 -3.4843 0.0043 0.0038 0.0044
New Moon (D) 0.0472 0.0515 0.0450 0.0462 0.0516 -2.6647 0.0474 0.0599
Royal Umbrella (D) 0.0208 0.0263 0.0230 0.0278 0.0259 0.0271 -2.9533 0.0311
Sonhe (D) 0.0254 0.0299 0.0252 0.0274 0.0287 0.0327 0.0297 -3.4400
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Price). Setting αi′ = 0 for both Dairy Farm and Sheng Siong,20 we estimate in this section: 1) the
consumer surplus moderating parameter αi for FairPrice and 2) the marginal costs and markups
of all products offered in the market.

In the following 2 subsections, we describe the optimization problem of firms competing in the
consumer surplus moderated market. The first subsection recaps the objective function and opti-
mization problem of a profit maximizing firm (Dairy Farm and Sheng Siong). The second subsection
formulates those of a consumer surplus concerned firm (FairPrice) and discusses how αi can be
identified.

Profit Maximizing Firm

A pure profit maximizing firm i′ maximizes

∑

j∈Jm
i′

smj · (pmj − cmj )

Thus, each product j ∈ Jm
i′ satisfies its first order condition:

0 = smj +
∑

j′∈Jm
i′

(pmj′ − cmj′ )
∂smj′

∂pmj

Let cmi′ be the vector of marginal cost and smi′ be the vector of market share of all products offered
by firm i′ in market m. Let Γm

i′ be the own- and cross-price elasticity matrix of firm i′ in market m,

where Γi′(j, j
′) =

∂sm
j′

∂pmj
, j, j′ ∈ Jm

i′ . Then, the marginal cost vector cmi′ solving the above set of first

order conditions is given by

cmi′ = pm
i′ + (Γm

i′ )
−1 · smi′ (1.7)

Hence, upon observing market prices and correctly identifying the underlying demand model, we
can structurally derive the marginal costs of all products offered by profit maximizing firms, i.e.,
Dairy Farm and Sheng Siong.

Consumer Surplus Concerned Firm

We consider a consumer surplus concerned firm i with consumer surplus moderating parameter αi.
Identifying marginal costs and αi for firm i is not as simple as the above. This is because there
are more degrees of freedom than the number of first order conditions. Specifically, maximizing
equation (1.6) is equivalent to solving:

cmi = pm
i + (Γm

i )−1 ·

(

smi +
αi

(1− αi)
· Λm

i

)

(1.8)

20The estimation of fully general model where αi of all three retailers are identified is under way.
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where Λm
i is a |Jm

i | × 1 vector21 and

Λm
i (j, 1) =

∂Φm

∂pmj
, j ∈ Jm

i .

Note that equation (1.8) is a system of first order conditions that are just as many as the number
of products of firm i. However, what we wish to identify is all of its marginal costs as well as αi,
the total number of which exceeds the number of first order conditions by 1. Thus, identification
becomes infeasible without further information on the firm’s marginal cost or its degree of consumer
surplus concerns.

Empirically, we go about this issue by utilizing a separate dataset that we obtained from the highest
market share national brand rice company: Royal Umbrella . The dataset from the Royal Umbrella
company contains quarterly wholesale prices for all 3 retailers (FairPrice, Dairy Farm, and Sheng
Siong) of its rice brand under the same name, Royal Umbrella. Availability of wholesale prices on
FairPrice’s Royal Umbrella will effectively reduce 1 degree of freedom that needs be identified and
will make feasible identification of the rest of FairPrice’s marginal costs as well as its αi.

The identification process of αi is formulated as follows. Let j denote the product subscript for
FairPrice’s Royal Umbrella. From equation (1.8), we obtain

cmj = pj + (Γm
i )−1

j ·

(

smi +
αi

(1− αi)
· Λm

i

)

(1.9)

where (Γm
i )−1

j refers to the j-th row of (Γm
i )−1. Inverting equation (1.9), we can identify αi as:

α̂i =
pmj − cmj + (Γm

i )−1
j · smi

pmj − cmj + (Γm
i )−1

j · sm
i

− (Γm
i )−1

j · Λm
i

Table 1.7 lists the estimate of αi averaged across all markets and the prices and marginal costs of
products of all three firms. Marginal costs are listed in the parentheses next to the prices. Out
of the 19 products, 4 national brands overlap between FairPrice and Dairy Farm.22 FairPrice’s
consumer surplus moderating parameter α̂i is estimated to be about 0.13 on average, suggesting
that FairPrice weighs consumer surplus to profit in a 1 to 7 ratio. In other words, to FairPrice,
every $7 increase in consumer surplus is worth as much as $1 increase in its profit.

The results show that prices and estimated marginal costs go hand in hand overall. FairPrice’s
marginal costs are lower in general since its prices are lower. Given their high market share, it
is not surprising to see that prices of FairPrice’s store brands (Double, NTUC, and Golden Royal
Dragon) are cheaper than or very similar to the estimated marginal cost of some national brands
such as Royal Umbrella and Songhe. Estimated marginal costs for the same overlapping brands are
in general lower for FairPrice, suggesting that FairPrice enjoys lower wholesale prices due to its
high market share in the grocery market.

21|Jm

i
| refers to the cardinality of product space Jm

i
.

22All national brands except for the store brands are overlapping in the data but some are excluded from
the empirical estimation (e.g., FairPrice’s Golden Pineapple) since its market share is negligible.
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Table 1.7: Estimation Results in Rice Category: Supply

Consumer Surplus Moderating Parameter (α̂i)
FairPrice
0.1262∗∗∗

(0.0168)

Prices (Marginal Costs)a

Brandb FairPrice Dairy Farm Sheng Siong
Double 2.0027 (1.0906) – –
Golden Royal Dragon 1.7284 (0.8451) – –
NTUC 1.6685 (0.8192) – –
Happy – – 1.4970 (0.9282)
Nangrum – – 1.7437 (1.1302)
Royal Golden Grain – – 2.1726 (1.4673)
Golden Phoenix 2.3390 (1.4838) 2.7500 (1.9146) –
New Moon 2.3573 (1.3561) 2.1211 (1.2950) 2.3823 (1.4735)
Royal Umbrella 2.4813 (1.4906) 2.5497 (1.6311) 2.5117 (1.5597)
Songhe 2.4917 (1.5884) 2.5104 (1.7340) 2.4943 (1.6222)
Golden Pineapple – 2.0867 (1.4642) 1.9384 (1.2993)

aPrices and marginal costs are with respect to 1kg.
bFirst 6 rows list storebrands; the rest are national brands.

Counterfactual Analysis

In this section, we conduct a counterfactual analysis of our model setting αi = 0, i.e., FairPrice
is purely profit driven like other firms and our model reduces to the standard model of price com-
petition. We study 3 aspects of this counterfactual analysis: 1) counterfactual equilibrium prices,
2) counterfactual profit level of all firms, and 3) counterfactual consumer surplus level and the
decomposition of surplus gain due to consumer surplus concerns into the direct effect of αi and
indirect effect of price competition among firms.

Let us first briefly investigate why the standard price competition model is not likely to correctly
describe the pricing pattern of FairPrice observed in the data. We test this by artificially setting
αi to zero and estimate FairPrice’s marginal costs. Table 1.8 juxtaposes the marginal costs and
product markups of FairPrice predicted by the standard model with those predicted by our model.
As shown, the marginal costs of the top 2 brands, NTUC and Golden Royal Dragon, are estimated
to be really low at 0.93 and 0.68 respectively, yielding unreasonably high markups of 133.00% and
171.58% respectively. Note that when the same standard model is applied to Dairy Farm and
Sheng Siong, the estimated marginal costs and markups are in a sensible range. Their markups
from 43.49% to 75.79%. Were the standard model to predict the data well, it would not give such
distinctively different ranges of estimated markups between FairPrice and other firms. Thus, the
standard price competition model may not be adequate to capture the underlying pricing behavior



CHAPTER 1. CONSUMER SURPLUS MODERATED PRICE COMPETITION 26

Table 1.8: Estimated Marginal Costs and Markups setting αi = 0.

αi = 0 αi = 0.13
Brand FairPrice FairPrice Dairy Farm Sheng Siong
Double 0.9283 (133.00%) 1.0906 (84.21%) – –
Golden Royal Dragon 0.6850 (171.58%) 0.8451 (106.33%) – –
NTUC 0.6657 (168.34%) 0.8192 (105.04%) – –
Golden Phoenix 1.3298 (84.65%) 1.4838 (57.93%) 1.9146 (43.49%) –
New Moon 1.1757 (115.20%) 1.3561 (74.55%) 1.2950 (63.87%) 1.4735 (61.69%)
Royal Umbrella 1.3152 (102.54%) 1.4906 (66.71%) 1.6311 (56.34%) 1.5597 (61.06%)
Songhe 1.4275 (84.22%) 1.5884 (57.04%) 1.7340 (44.85%) 1.6222 (53.89%)

Table 1.9: Counterfactual Equilibrium Prices setting αi = 0

αi = 0 αi = 0.13
Brand FairPrice Dairy Farm Sheng Siong FairPrice Dairy Farm Sheng Siong
Double 2.1246∗ – – 2.0027 – –
Golden Royal Dragon 1.8508∗ – – 1.7284 – –
NTUC 1.7734∗ – – 1.6685 – –
Happy – – 1.4968 – – 1.4970
Nangrum – – 1.7423 – – 1.7437
Royal Golden Grain – – 2.1679 – – 2.1726
Golden Phoenix 2.4457∗ 2.7315 – 2.3390 2.7500 –
New Moon 2.5179∗ 2.1070 2.3615 2.3573 2.1211 2.3823
Royal Umbrella 2.6427∗ 2.5315 2.4940 2.4813 2.5497 2.5117
Songhe 2.6124∗ 2.5013 2.4844 2.4917 2.5104 2.4943
Golden Pineapple – 2.0790 1.9345 – 2.0867 1.9384

of firms shown in the data.

We now describe each of the 3 aspects of the counterfactual analysis of our model. First, Table 1.9
shows the counterfactual equilibrium prices of all firms when αi is set to zero (i.e., FairPrice only
maximizes its profit) as well as the observed market prices where αi = 0.13. Prices that increase
under the counterfactual analysis are marked with asterisks. The counterfactual analysis reveals
that if FairPrice were to be profit maximizing, prices of all of its products would increase by
6.09% on average. That the store brands’ prices would increase the most suggests that FairPrice
would enjoy much higher markups for store brands but it is letting them go due to its consumer
surplus concerns. On the other hand, prices of Dairy Farm and Sheng Siong all decrease in re-
sponse to FairPrice’s increased prices. As a consequence, price dispersion among firms has widened.

Next, we investigate percentage changes in all firms’ profit, consumer surplus and total surplus.
Table 1.10 compares profits when αi = 0 with those when αi = 0.13. As shown, if FairPrice
were profit maximizing, the profit of FairPrice, Dairy Farm and Sheng Siong would all increase by
1.16%, 5.54% and 6.47% respectively. It is interesting that these profits increase for quite different
reasons: FairPrice’s profit increases because it increases prices for almost all of its products as in
Table 1.9. Note that higher prices induce two opposite effects on the profit: the market share effect
and surplus extraction effect. First, the market share effect means that higher prices decrease mar-
ket share. Second, the surplus extraction effect means that the firm extracts more surplus for each
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Table 1.10: Counterfactual Analysis: Profit, Consumer Surplus and Total Surplus

αi = 0.13 αi = 0 % Change
Profita

FairPrice 0.3014 0.3049 +1.16%
Dairy Farm 0.0325 0.0343 +5.54%
Sheng Siong 0.0433 0.0461 +6.47%

Consumer Surplusb 0.5091 0.4725 −7.18%

Total Surplusc 0.8862 0.8578 −3.21%
aExpected per capita profit for unit weight (1kg) products in dollar terms is listed.
bExpected per capita consumer surplus resulting from consumption of a unit weight (1kg) product is

computed. The unit is in dollar terms, the same as profit.
cTotal surplus is defined as the sum of producer surplus and consumer surplus. The quantity sold at each

retailer under the counterfactual policy scenario remains unchanged. Robustness checks where quantities
change according to quantity discount scheme yielded similar results.

product sold due to higher price. Under the profit maximization objective, FairPrice increases its
prices so that the surplus extraction effect overrides the market share effect, which in turn increases
its profit. On the contrary, the other two firms’ profit increases despite their lower prices due to
the market share effect.

In addition, Table 1.10 shows that consumer surplus would decrease by 7.18% and the total surplus,
which is defined as the sum of profit (i.e., retailer surplus) and consumer surplus, would decrease
by 3.21%. The latter is particularly worth highlighting since it suggests that profit maximization
by all three retailers decreases total surplus in the market in spite of increase profit level of all
retailers, and thus induces an inefficient outcome for the market.

Lastly, we decompose the loss in consumer surplus into two effects: direct and indirect effects. In a
nutshell, the direct effect captures the sole effect of profit maximizing behavior of FairPrice. That
is, it captures how much the consumer surplus would decrease due to loss of consumer surplus con-
cerns by FairPrice. As shown in theorem 1.1, FairPrice would increase prices of all of its products
as it becomes more profit concerned. Note that this will then be followed by price competition
among firms and the new price equilibrium will be reached ultimately. The indirect effect captures
the effect of such price competition that follows.

Let us formulate the direct and indirect effect. Let pm
i (αi) and pm

−i(αi) be respectively the equi-
librium prices of FairPrice and those of the other firms in market m when FairPrice’s consumer
surplus moderating parameter is αi. Further, let BRi(p

m
−i |αi) be FairPrice’s prices that best re-

spond to pm
−i given αi, i.e., BRi(p

m
−i |αi) optimizes its objective function given pm

−i and αi. Then,

Direct Effect = Φm(BRi(p
m
−i(αi) | 0),p

m
−i(αi)))− Φm(pm

i (αi),p
m
−i(αi)))

Indirect Effect = Φm(pm
i (0),pm

−i(0))) − Φm(BRi(p
m
−i(αi) | 0),p

m
−i(αi)))
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Table 1.11: Decomposition of Consumer Surplus

Total Effect -0.0366
Direct Effect -0.0375
Indirect Effect +0.0009

Table 1.12: Validity Check of Consumer Surplus Moderated Model

(Unit: SGD per 1kg) 2008 2009 2010
Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Wholesaler’s marginal cost 1.17 1.14 1.17 1.17 1.15 1.20 1.11 1.04 1.06
Retailer’s marginal cost 0.95 1.03 0.90 1.01 1.09 1.11 1.11 1.05 1.07
(from standard model)
Retailer’s marginal cost 1.39 1.25 1.27 1.39 1.44 1.42 1.44 1.19 1.30

(from our model)

Table 1.11 shows the direct and indirect effect of decreasing in αi from 0.13 to 0. Two aspects are
worth highlighting. First, the size of indirect effect (0.0009) is marginal so that the total surplus
loss at the new price equilibrium (0.0375) is 97.60% of the direct effect (0.0366), which is what
FairPrice would achieve due to αi decreasing to 0 were other firms’ prices to remain unchanged,
i.e., no subsequent price competition. Second, we see that the indirect effect is positive at +0.0009.
This is because Dairy Farm and Sheng Siong decrease its prices as shown in Table 1.9, and behave
as if they are strategic substitutes of FairPrice.

Validity Check

In this section, we conduct a validity check using a separate dataset on the quarterly aggregate
import price of rice obtained from the International Enterprise of Singapore.23 Through this valid-
ity check, we confidently reject the standard model of price competition in favor of the consumer
surplus moderated model.

Singapore is a small city country that does not have enough land to produce rice. Thus, it imports
its entire rice from other countries, mostly from Thailand. As a consequence, the import price
of rice represents the (minimum) marginal cost for wholesalers, which is listed in the 1st row of
Table 1.12. On the other hand, the marginal costs of retailers recovered from the standard model
(listed in the 2nd row) or our model (listed in the 3rd row) represent the (maximum) price at which
the wholesalers may sell rice to the retailers. Considering the wholesalers’ positive markup, these
recovered marginal costs of retailers must be higher than the import price of rice.

23International Enterprise of Singapore is a statutory board under the Ministry of Trade and Industry
of the Singapore Government that facilitates the overseas growth of Singapore-based companies and pro-
motes international trade. All prices and quantities of rice imported into Singapore should be reported to
International Enterprise of Singapore.
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Nonetheless, as shown in Table 1.12, the marginal costs recovered from the standard model are lower
than the import price of rice in almost all quarters, or only marginally bigger. To the contrary,
marginal costs recovered from our consumer surplus moderated model are reasonably bigger than
the import price of rice, likely reflecting the wholesalers’ markup. As a consequence, we confidently
reject the standard model of price competition in favor of our model and validate that our model
better explains the retailers’ pricing pattern of rice in the Singaporean grocery retail market.

1.5 Conclusion

The assumption that firms are interested only in maximizing their own profit has been the pillar
of standard price competition models. However, when government actively intervenes or partici-
pates in a market, this assumption may not capture the behavior of firms well because some firms
may choose prices to maximize a weighted sum of profit and consumer surplus. In such markets,
standard models may wrongly predict the outcome of competition or produce systematic biases in
parameter estimates.

This paper develops a new structural model of consumer surplus moderated price competition.
Since the measure for consumer surplus is explicitly derived as the sum of consumers’ net utility
from all possible purchase scenarios, it is theoretically more sound and empirically more accurate
than other surplus measures used in prior literature. Our model nests standard price competition
models as special cases. It allows one to empirically estimate not only the degree of consumer
surplus concerns a firm has but also the associated gain in total consumer surplus. Theoretically,
our model predicts that total consumer surplus increases whenever the price of any product de-
creases, and ceteris paribus, a firm would always decrease all of its product prices as its concerns
for consumer surplus increase. The competitive response by other firms may be either more or less
aggressive.

We also apply our model to the Singapore grocery retail market data, where the dominant retailer,
FairPrice, publicly commits to consumer surplus concerns. Particularly, we investigate the rice
category, which is one of the primary nondiscretionary categories within the country. We find that
1) FairPrice’s consumer surplus concern is estimated to be about 0.13, 2) standard price competition
model would predict FairPrice’s product marginal costs to be implausibly low compared with those
of its competitors, 3) under the profit maximization objective, FairPrice’s profit would increase by
1.16% and the total consumer surplus would decrease by 7.18%. 4) the indirect effect of FairPrice’s
profit maximization is positive, suggesting that competitors respond to FairPrice’s higher price
level by lowering their prices, i.e., behave as FairPrice’s strategic substitutes. Even though the
total consumer surplus gain is mitigated by the negative indirect effect, the total consumer surplus
gain is retained at 97.60% of the direct effect.
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Chapter 2

Level-r Model with Adaptive and
Sophisticated Learning1

2.1 Introduction

In dominance solvable games, standard game theory prescribes that players should iteratively re-
move dominated strategies. At each iteration, players’ strategy space becomes smaller because
some strategies are eliminated. This iterative process continues until each player’s strategy space
is left with only one action, and this surviving action is the unique iterative dominance solution
that every player should choose. Such a prescription, however, hinges on the crucial assumption
that every player is certain that all other players will remove dominated strategies at each step of
the iterative process (Bernheim 1984; Pearce 1984). If players believe that some player may stop
this iterative process prematurely, then the unique iterative dominance solution may poorly predict
players’ actual behavior.

Indeed, there is accumulating experimental evidence that casts doubt on this sharp iterative dom-
inance prediction (Nagel, 1995; Stahl and Wilson, 1994, 1995; Ho et al., 1998; Costa-Gomes et
al., 2001; Bosch-Doménech et al., 2002; Costa-Gomes and Crawford, 2006; Costa-Gomes and
Weizsäcker, 2008). Despite nontrivial financial incentives, subjects frequently do not play the
unique iterative dominance solution. A well-studied example is the p-beauty contest game. In this
game, players simultaneously choose numbers ranging from 0 to 100, and the winner is the player
who chose the number closest to the target number, defined as 0 < p < 1 times the average of all
players’ choices. A fixed reward goes to the winner, and is divided evenly among winners in the
case of a tie. It is straightforward to show that the only number that survives the iterative elimi-
nation process is 0, which is the unique iterative dominance solution.2 In laboratory experiments,

1This chapter is a joint work with Teck Hua Ho and Xuanming Su.
2To illustrate, let us assume p = 0.7. Strategies between 70 and 100 are weakly dominated by 70 and

thus are eliminated at the first step of elimination of dominated strategies. Likewise, strategies between 49
and 70 are eliminated at the second step of elimination as they are weakly dominated by 49. Ultimately,
the only strategy that survives the iterative elimination of dominated strategies is zero, which is the unique
iterative dominance solution of the game.
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however, subjects’ choices are initially far from equilibrium but move closer to it over time (Ho et
al., 1998).3

Cognitive hierarchy (Camerer et al., 2004) and level-k (Nagel, 1995; Stahl and Wilson, 1994, 1995;
Costa-Gomes et al., 2001; Costa-Gomes et al., 2009; Costa-Gomes and Crawford, 2006; Crawford,
2003; Crawford and Iriberri, 2007b) models have been proposed and used to explain nonequilib-
rium behaviors in experimental games (for a comprehensive review, see Crawford et al., 2013).
Both models assume players choose rules from a well-defined discrete rule hierarchy. The rule hier-
archy is defined iteratively by assuming that a level-k rule best-responds to lower level rules (e.g.,
level-(k − 1), where k ≥ 1). The level-0 rule can be specified a priori either as uniform random-
ization among all possible strategies or as the most salient action derived from the payoff structure.4

Let us illustrate how this class of nonequilibrium models works in the p-beauty contest game with
p = 0.7 and n = 3 players, using the standard level-k model where a level-k rule best-responds
only to the level-(k − 1) rule. Assume that the level-0 rule randomizes between all possible choices
between 0 and 100 and thus chooses 50 on average. Best-responding to the level-0 opponents, the
level-1 rule seeks to hit the exact target number in order to maximize her payoff. Specifically, the
level-1 rule’s choice x∗ solves:

x∗ = p ·
x∗ + (n − 1) · 50

n
.

Hence,

x∗ =
p · (n− 1)

n− p
· 50 =

0.7 · 2

3− 0.7
· 50 = 30.4

and the level-1 rule chooses x∗ = 30.4 as a best response to its level-0 opponents, taking into ac-

count her own influence on the group mean.5 In general, a level-k rule will choose
(

p·(n−1)
n−p

)k
· 50 =

(

0.7·2
3−0.7

)k
· 50.

As a consequence, standard level-k models predict that we should see spikes in the distribution of
choices at 50, 30.4, 18.5, 11.3, 6.9, 4.2, and so forth if the level-0 rule chooses 50. That is, only
a limited number of numbers will be chosen by subjects. Figure 2.1 shows the data of first-round
choices from Ho et al. (1998). As opposed to the prediction, we do not see clear spikes in the first
round choices except for the single peak around 50. In fact, the proportion of choices falling into

3Specifically, 2% of the choices were iterative dominance solution plays in the first round and the pro-
portion grew to 13% in the last (10th) round in Ho et al. (1998).

4The level-k and cognitive hierarchy models have also been applied to study games with asymmetric
information such as zero-sum betting or auctions or strategic information disclosure (e.g., Camerer et al.,
2004; Crawford and Iriberri, 2007a.; Brocas et al., 2010; Brown et al., 2010; Östling et al., 2011). Crawford
et al. (2009) employ level-k models to determine the optimal design for auction when bidders are boundedly
rational. Goldfarb and Yang (2009) and Goldfarb and Xiao (2011) apply the cognitive hierarchy model
to capture heterogeneity in firms’ or managers’ ability and use it to predict a firm’s long-term success in
oligopolistic market.

5Some prior research (e.g., Nagel, 1995) ignores one’s own influence on the group average by simply
assuming that level-1 chooses 35 = 0.7 · 50 and level k chooses pk · 50 in general. This approximation is good
only when n is large. For example, when n = 100, level-1’s exact best response is 34.89, which is close to 35.
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Figure 2.1: First Round Data

rule levels 0 and above including the unique iterative dominance solution (i.e., choices in the inter-
vals, [49.5, 50.5], [29.9, 30.9], [18.0, 19.0], [10.8, 11.8], [6.4, 7.4], [3.7, 4.7] and so forth, down to [0, 0.5])
is only 25.0%.6 Put differently, the distribution of choices appears rather continuous with choices
sprinkled around all possible numbers in the strategy space. The only way to account for numbers
which do not correspond to discrete rules (e.g., choice such as 20) is to assume error in players’
choices. It would however require a high error rate in subjects’ choices and one must allow for
different error rates for different rule levels in order to match the data well.

An alternative way to account for the observed data pattern is to allow players to choose from a
continuous, instead of discrete, rule hierarchy. Under the continuous rule hierarchy, a level-(r + 1)

rule best-responds to a level-r rule, where r ∈ R
+
0 . That is, a level-r rule will choose

(

p·(n−1)
n−p

)r
· 50

if the level-0 rule is assumed to choose 50. As a consequence, any chosen number that is less than
the level-0 rule will always correspond to a rule in the continuous rule hierarchy. For example,
20 corresponds to rule level logp·(n−1)/(n−p)(

20
50) = 1.85 in the 3-player p-beauty contest game with

p = 0.7 (note that number 20 would not be admissible if players are restricted to choose from a
discrete rule hierarchy). The continuous rule hierarchy nests the discrete rule hierarchy as a special
case and makes the level-k model better suited for games with a continuous strategy space. Also,
the distribution of choices is interpreted more as heterogeneity in players’ rule levels rather than as
error rates in their choices. For these reasons, we employ a continuous rule hierarchy throughout
this paper.

The static rule hierarchy models, either continuous or discrete, face another challenge in explaining

6If we maximize the proportion of choices that fall within integral rule levels by varying the level-0 rule,
we find that the optimal level-0 rule is 89.8 and the maximized proportion is 28.6%.
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Figure 2.2: First and Last Round Data

the p-beauty contest game data. All static rule hierarchy models posit that players’ rule levels are
fixed. This implies that if a player is level-r, she will choose the same rule in every round. As a
result, these models predict that the distribution of choices should remain fixed as the proportion
of players choosing each rule level remains unchanged over time. Figure 2.2 compares the data of
the first round with that of the last round from Ho et al. (1998). As shown, subjects’ choices move
much closer to equilibrium over time. A Kolmogorov-Smirnov test rejects the null hypothesis that
the two distributions of choices are identical (p < 0.001). As a consequence, any model seeking to
capture this shift in behavior over time needs to be dynamic in nature.

One way to capture subjects’ dynamic behavior is to allow the level-0 players to change their choices
over time by adapting to their environment. Formally, level-0 players in each round are assumed to
choose a weighted average of past ex post best responses so that level-1 players will follow an adap-
tive learning process similar to that of the weighted fictitious play model (Fudenberg and Levine,
1998). As a result of level-0 players’ adaptation, the choices of level-1 and higher rule levels change
over time, so we have an adaptive rule hierarchy mapping that adapts to historical game plays.
Specifically, in the p-beauty contest game, the ex post best responses are the target numbers. As
long as the target number becomes smaller over time, this static level-r model with an adaptive rule
hierarchy predicts that choices will converge to 0 over time, explaining the main feature of the data.

Nevertheless, the static level-r model with an adaptive rule hierarchy continues to assume that
players’ rule levels remain fixed over time. The fixed rule levels constrain level-r’s adaptation over
time in a specific way. Let us consider an example. Suppose that the level-0 rule’s choice was 50 in
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Figure 2.3: Distribution of First, Last, and Normalized Last Round Data

the first round and it became 25 in the last round. Hence, the level-r players choose
(

p·(n−1)
n−p

)r
· 50

in the first round and
(

p·(n−1)
n−p

)r
· 25 in the last round. If we normalize level-r’s choices in the

last round by 50
25 (i.e., ratio of level-0 choices in the first and last rounds), we observe that level-

r’s first-round choices and normalized last-round choices become identical. Put differently, the
static level-r model with an adaptive rule hierarchy makes a sharp prediction: the distribution of
first-round choices and the normalized last-round choices are identical. We can readily test this
sharp prediction using data from Ho et al. (1998). A Kolmogorov-Smirnov test rejects the null
hypothesis that data from the first round and the normalized data from the last round come from
the same distribution (p < 0.001). Figure 2.3 shows the distributions of the first-round choices, the
last-round choices, and the normalized last-round choices. Contrary to the prediction of the static
level-r model with an adaptive rule hierarchy, the distribution of the normalized last-round choices
is to the left of that of the first-round choices, suggesting that players’ rule levels are higher in the
last round than in the first round and that weighted fictitious play models under-predict the speed
of convergence towards dominance solvable solution.

A sensible way to account for the systematic shift in players’ normalized choices is to allow players
to become more sophisticated (i.e., increase their rule levels) over time. Specifically, players are
assumed to form beliefs about what rules opponents are likely to use, update their beliefs after each
round based on their observations, and best-respond to their updated belief in the following round.
Consequently, the distribution of players’ rule levels change over time. To the extent that players
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move up the rule hierarchy over time, this dynamic level-r model with an adaptive rule hierarchy
will be able to explain the leftward shift of the normalized last round choices.7

In this paper, we propose a model that generalizes the standard level-k model in 3 significant ways:

1. Our model utilizes a continuous rule hierarchy. This rule hierarchy is a natural extension of
the integral rule levels to all of R+

0 . As before, rule levels are iteratively defined such that a
level-(r + 1) rule is a best response to a level-r rule, where r ∈ R

+
0 .

2. We define the level-0 rule’s choice in each round as the weighted average of ex post best
responses in previous rounds. Since the level-0 rule’s choice evolves according to historical
game play in each round, the entire rule hierarchy mapping becomes dynamic in an adaptive
manner.

3. Players’ rule levels are dynamic and vary over time. Specifically, players update their beliefs
about opponents’ rule levels based on past observations and best-respond to their beliefs in
each round. Allowing for dynamic rule levels also fixes a drawback of weighted fictitious
play models, which often predict a slower convergence than actual behaviors observed in
experiments.

The proposed model unifies and generalizes two seemingly distinct streams of research on nonequi-
librium models: 1) level-k models and 2) belief-based learning models. As a consequence, it is quite
general, nesting many well-known nonequilibrium models as special cases. For instance, when
players’ rule levels are static and the rule hierarchy mapping is fixed over time, we have a static
level-r model (which generalizes the standard level-k model). When the rule hierarchy is allowed
to change but players’ rule levels remain fixed, our model captures the notion of adaptive learning;
in particular, when all players are level-1 and best-respond to level-0 players, the model becomes
the weighted fictitious play model. When the level-0 rule is fixed, our model reduces to a dynamic
level-r model with a fixed rule hierarchy (which generalizes a dynamic level-k model developed by
Ho and Su, 2012). This nested model captures the notion of sophisticated learning, i.e., players
learn about opponents’ rule levels and change their own rules over time.8 Moreover, our model
always converges to the unique iterative dominance solution through adaptive or sophisticated
learning process. Hence, the proposed model can be considered as a model of equilibration process
in dominance solvable games.

We apply our model to explain players’ dynamic behavior in the p-beauty contest game, and show
that the general model describes subjects’ behavior better than all its special cases. In addition, the
estimation results reveal that prior adaptive learning models (which ignore sophisticated learning)

7Ho and Su (2012) is the first to develop a dynamic level-k model to account for subjects’ dynamic
behavior in repeated games. In their model, however, the rule hierarchy is discrete and fixed over time.
They show that their model can explain learning behavior in the centipede game well.

8Camerer, Ho and Chong (2002) study ‘sophistication and strategic teaching’ in games. Their notion of
sophistication is very different from the notion of sophisticated learning discussed here. Sophisticated players
in their paper do not learn and change their rule level over time. They behave like equilibrium players in
that they take into account the fact that one segment of players are adaptive and another segment of players
are sophisticated like themselves.
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might have produced systematically biased parameter estimates, which would have characterized
the underlying adaptive learning dynamics wrongly. We further examine the robustness of our
results by applying our model to a generalized price matching game. We fit our model to freshly
generated experimental data of this game, and show that our general model again fits the data best.

The rest of the paper is organized as follows. Section 2 formulates the general model and describes
its well-known special cases. Section 3 applies the model to the p-beauty contest game and presents
empirical results of the best fitted model and its special cases. Section 4 applies the model to a
generalized price matching game and explains players’ dynamic behavior in the game. Section 5
concludes.

2.2 Model

Notations

We consider the class of n-player p-beauty contest games where p ∈ (0, 1). Players are indexed
by i (i = 1, . . . , n), and their strategy space is a closed interval denoted by S = [L,U ] where
0 ≤ L < U . Players play the game repeatedly for a total of T rounds. Player i’s choice at time t
is denoted by xi(t) ∈ S. The vector of all players’ choices at time t excluding player i’s is denoted
by x−i(t) = (x1(t), . . . , xi−1(t), xi+1(t), . . . , xn(t)).

Rule Hierarchy Mapping

Players choose rules from a well-defined rule hierarchy. The rule hierarchy mapping at round t
associates player i’s rule level ri(t) ∈ R

+
0 with her choice xi(t) ∈ S. The rule hierarchy mapping

is defined iteratively and begins with specifying the level-0 rule’s corresponding choice x0(t). For-
mally, given the level-0 player’s choice x0(t), the rule hierarchy mapping is defined as a function
M(·|x0(t)) : R

+
0 → S, where xi(t) = M(ri(t)|x0(t)). Hence, if player i chooses a rule level ri(t) at

round t, her choice implied by the rule hierarchy mapping is xi(t) = M(ri(t)|x0(t)).

In the rule hierarchy mapping, rule level r(t) + 1 best-responds rule level r(t) (Stahl and Wilson,
1994; Nagel, 1995; Crawford et al., 2013)9. Therefore, in the n-player p-beauty contest game, rule
r(t) + 1 is defined iteratively as a function of rule r(t) as follows10:

M(r(t) + 1|x0(t)) = p ·
M(r(t) + 1|r0(t)) + (n− 1) ·M(r(t)|r0(t))

n
.

Hence,

M(r(t) + 1|x0(t)) =
p · (n− 1)

n− p
·M(r(t)|r0(t)).

9Stahl (1996 and 2000) posits a rule learning theory where players adjust rules over time based on past
experience. His model does not distinguish between adaptive and sophisticated learning and does not nest
the standard static level-k model as a special case.

10Like standard level-k models, our rule r(t) + 1 assumes all other players are of rule r(t).



CHAPTER 2. LEVEL-r MODEL WITH ADAPTIVE AND SOPHISTICATED

LEARNING 37

Thus, defining rule levels as iterative best responses, we posit the following rule hierarchy mapping:

M(r(t)|x0(t)) =

(

p · (n− 1)

(n− p)

)r(t)

· x0(t)

Note the following:

1. This rule hierarchy mapping is a one-to-one function from R
+
0 to S.11 As a result, any rule

in the continuous rule space is always mapped to a unique action in the strategy space.

2. The standard level-k rule hierarchy as iterative best responses is typically defined similarly

as M(k|x0(t)) =
(

p·(n−1)
(n−p)

)k
· x0(t) where k are nonnegative integers. As a consequence, the

standard level-k rule hierarchy is a special case of the level-r rule hierarchy. While the former
only admits discrete rule values, the latter admits all possible rule values in the continuous
space.

3. Unlike the standard level-k rule hierarchy (where the level-0 rule is the only anchor), the
level-r rule hierarchy has any rule r(t) ∈ [0, 1) as a possible anchor to generate the rules
r(t) + 1, r(t) + 2, r(t) + 3, and so on. For instance, if x0(t) = 50, p = 0.7 and n = 3, then

M(0.5|x0(t)) =
(

0.7·2
3−0.7

)0.5
· 50 = 39.01. Then, one can easily generate actions corresponding

to rules 1.5, 2.5, 3.5, and so forth through iterative best responses by using rule level 0.5 as
the anchor.

Payoff-Relevant Statistic

In the p-beauty contest game, player i does not need to know the entire vector of x−i(t) in order
to formulate her best response that maximizes her payoff in round t. Instead, player i only needs
to know a payoff-relevant statistic z−i(t), which is a function of x−i(t), in order to determine her
best response. As a consequence, player i can derive her best response from simply knowing z−i(t).
Conceptually, we can think of this as if each player groups her opponents into a single aggregate
opponent. The aggregate opponent of player i chooses an action z−i(t) ∈ S at time t, which contains
all the payoff-relevant information for player i.

In the p-beauty contest game, each player seeks to win by exactly hitting the target number that

is equal to p ·
∑n

i=1
xi(t)

n . Hence, player i’s best response x∗i (t) to her opponents’ choices solves:

x∗i (t) = p ·
x∗i (t) +

∑

j 6=i xj(t)

n
.

11Here we slightly abuse the term “one-to-one” meaning that the rule hierarchy mapping is one-to-one in
the subspace [0, rmax] ∈ R

+
0 where the level-rmax rule is the lowest rule level corresponding to the iterative

dominance solution. Note that if L = 0 and S = [0, U ], the iterative dominance solution is 0 and rmax = ∞,
so the rule hierarchy mapping is indeed one-to-one in R

+
0 . However, if L > 0, the rule hierarchy mapping is

one-to-one in [0, rmax] where rmax < ∞, and the rule hierarchy mapping maps all higher rule levels r > rmax

to the iterative dominance solution as well.
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Then, player i’s payoff maximizing strategy12 is:

x∗i (t) =
p · (n− 1)

n− p
·

∑

j 6=i xj(t)

n− 1
,

which is a function of 1
n−1 ·

∑

j 6=i xj(t). As a consequence, we define the payoff-relevant statistic as
the average of the opponents’ choices:

z−i(t) =
1

n− 1
·
∑

j 6=i

xj(t).

In other words, in order to figure out their best responses that maximize the payoff in the p-beauty
contest game, players only need to know their opponents’ average choice. As a result, players only
need to predict the likely payoff-relevant statistic or the likely average choice of their opponents
in each round in order to maximize their payoff (how this prediction is modeled will be described
shortly). Conceptually, we can think of the payoff-relevant statistic as an action coming from an
aggregate opponent, which summarizes the behavior of all opponents.

Belief and Best Response

Players form beliefs about what rules their aggregate opponents choose and use these beliefs to
develop a best response in each round. Let player i’s belief about the aggregate opponent’s rule
level at the end of time t be bi(t). Based on this belief, player i predicts that her aggregate opponent
at time t+ 1 will choose

ẑ−i(t+ 1) = M(bi(t)|x0(t+ 1)) =

(

p · (n− 1)

(n− p)

)bi(t)

· x0(t+ 1).

Then, player i’s best response is given by

xi(t+ 1) =
p(n− 1)

n− p
· ẑ−i(t+ 1) =

(

p · (n− 1)

(n− p)

)bi(t)+1

· x0(t+ 1).

Closely resembling the iterative nature of the rule hierarchy mapping, player i’s adopted rule level
at time t+1 is exactly 1 rule level higher than her belief at the end of time t (i.e., ri(t+1) = bi(t)+1).

In the next few subsections, we shall consider 3 increasingly general versions of the standard level-k
model. First, we restrict x0(t) ≡ x0(1) and bi(t) ≡ bi(0) and consider the static level-r model with
a fixed but continuous rule hierarchy. Note that this is a generalization of the standard level-k
model. Next, we extend this static level-r model by allowing x0(t) to adapt to past observations so
that we now have a rule hierarchy mapping function that varies over time. Finally, we extend the
model further by allowing players to learn and update their beliefs bi(t) so that players may use
different rules over time. We term this most general model the dynamic level-r model with adaptive
rule hierarchy.

12If this payoff maximizing strategy is in a tie with some other player’s strategy, player i always loses by
deviating and hence winning in a tie is indeed player i’s payoff maximizing outcome.
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Static Level-r with Fixed Rule Hierarchy (Lr Model)

The static level-r model with fixed rule hierarchy serves as the first step to generalize the standard
level-k model. The former utilizes a continuous rule hierarchy, whereas the latter uses a discrete
rule hierarchy. The continuous rule hierarchy is iteratively defined in the same manner as the
discrete rule hierarchy, with a level-(r + 1) rule best-responding to a level-r rule, but the rule level
r is defined over the continuous space of nonnegative real numbers R

+
0 (i.e., r ∈ R

+
0 ). Note that

the rule space is Z+
0 in the standard level-k model.

The continuous level-r rule hierarchy has 2 benefits. First, since R
+
0 is a strict superset of Z+

0 ,
more choices in the continuous strategy space S will be associated with their corresponding rule
levels in R

+
0 . As a consequence, the distribution of players’ observed choices can be interpreted as

heterogeneity in rule levels rather than as error rates in players’ choices. Second, the continuous
rule hierarchy conceptually nests the discrete rule hierarchy as a special case. We shall show below
that allowing continuous rule hierarchy indeed helps to better predict observed behaviors.

In the static level-r model with fixed rule hierarchy, both the players’ beliefs about the aggregate
opponent’s rule level and the rule hierarchy mapping are fixed over time. As a consequence, both
the players’ rule levels and their implied choices remain unchanged over time. Formally, the static
level-r model with fixed rule hierarchy posits:

1. Player i’s belief about her aggregate opponent’s rule level at the end of time t is static and
given by bi(t) = bi(0), ∀t;

2. Rule hierarchy mapping is static at M(·|x0(t)) = M(·|x0(1)), ∀t;

3. Player i will choose the payoff maximizing strategy that best-responds to her aggregate
opponent’s predicted choice, i.e., the predicted payoff-relevant statistic ẑ−i(t) = M(bi(t −

1)|x0(t)) = M(bi(0)|x0(1)) =
(

p(n−1)
(n−p)

)bi(0)
· x0(1), ∀t. Specifically, player i will adopt rule

level bi(0) + 1, and choose xi(t) =
p(n−1)
(n−p) · ẑ−i(t) =

(

p(n−1)
(n−p)

)bi(0)+1
· x0(1), ∀t.

Note that all players are strategic thinkers in our model. Specifically, players choose their best re-
sponse rules based on their beliefs about the aggregate opponent’s rule level and as a consequence,
the lowest level rule they can adopt is a level-1 rule (as a best-response to the level-0 belief). On the
contrary, the standard level-k rule hierarchy allows the existence of non-strategic level-0 players.13

Static Level-r with Adaptive Rule Hierarchy (Lr(t) Model)

As discussed above, players’ behaviors change over time. As a consequence, the Lr model cannot
capture the dynamics of players’ choices. In this subsection, we extend the Lr model to the Lr(t)

13Ho and Su (2013) makes the similar assumption. Studies which allow the proportion of level-0 players
to be independently estimated often find the level-0 proportion to be negligible (Crawford et al., 2013).
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model by considering an adaptive rule hierarchy mapping. Specifically, we allow the level-0 rule’s
choice x0(t) to change over time. Consequently, the entire rule hierarchy mapping changes because
the mapping M(·|x0(t)) is uniquely determined given x0(t).

The Lr(t) model posits that the level-0 rule’s choice in each round is the weighted average of the
ex post best responses in the preceding rounds. The ex post best response in a round is defined
as the ex post payoff maximizing strategy given all players’ choices in that round. For example, in
the p-beauty contest game, the ex post best response in a round is the announced target number

because the player who had chosen the target number (i.e., p·
∑n

i=1 xi(t)
n ) would have been the winner

in that round.

Let the ex post best response at time t be denoted by ω(t). We assume that the ex post best
response is known to all players after each round.14 Let x0(1) = ω(0), which is the hypothetical
ex post best response in round 0 (i.e., level-0 player’s predicted choice in round 1) and it is to be
estimated empirically. Then, the level-0 rule’s choice x0(t) at time t is specified as :

x0(t) =
ρ0 · φ0

t−1 · ω(0) + φ0
t−2 · ω(1) + . . .+ φ0 · ω(t− 2) + ω(t− 1)

ρ0 · φ0
t−1 + φ0

t−2 + . . . + φ0 + 1
, (2.1)

where 0 ≤ ρ0 and 0 ≤ φ0 ≤ 1 are the initial prior strength and the memory decay factor, respec-
tively. Therefore, the level-0 rule’s choice at time t is the weighted average of the past ex post best
responses from time 0 up to t− 1, where ω(0) is to be estimated and ω(1), ω(2), . . ., and ω(t− 1)
are observed. Note that level-0 rule’s updating rule is similar to the belief updating rule of the
weighted fictitious play model (see Fudenberg and Levine, 1998), and higher level rules iteratively
best-respond to the level-0 rule.15

The dynamics of the level-0 rule’s choice makes the entire rule hierarchy mapping adaptive and it
has 3 distinct benefits:

1. In the p-beauty contest game, choices converge to the iterative dominance solution over time
(i.e., they get smaller over time). Allowing the rule level 0’s choice to adapt to that trend
seems a sensible way to capture such choice dynamics. Note that higher level rules will
best-respond to lower level rules and hence will also generate smaller choices over time. As
a result, as long as average choices get smaller over time, all rule level players will iteratively
choose smaller numbers, capturing the key feature of the data that choices converge to the
iterative dominance solution.

2. The model nests familiar cases of adaptive learning in the literature. When ρ0 = 1 and φ0 = 1,
level-0 players weight all past ex-post best responses equally to determine their choice in each

14In most p-beauty contest experiments, the target number is always announced publicly in order to
determine individual player’s payoff after every round. Similarly, in the generalized price matching game to
be discussed later, the ex post best response can be inferred easily from the minimum of opponents’ choice
provided to each individual player.

15In particular, the level-1 rule best-responds to the adaptively generated level-0 rule; this process is
similar to Selten’s (1991) model of anticipatory learning.
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round. As a result, level-1 players can be naturally interpreted as the simple fictitious play
learners who believe that level-0 players simply mimic past ex post best responses with equal
probability (Brown, 1951). When φ0 = 0, level-0 players simply repeat the latest ex post
best response. Here, the level-1 players can be viewed as following Cournot best-response
dynamics.

3. In the next subsection, we will also allow players to change their rule levels over time (i.e.,
players engage in sophisticated learning). To study the extent of sophisticated learning
empirically, we need to control for the potential existence of adaptive learning. We choose
the weighted fictitious play model (Fudenberg and Levine, 1998) to model adaptive learning
because of its analytical tractability. We shall show later that players empirically exhibit
both adaptive and sophisticated learning in games.

In the Lr(t) model, the rule hierarchy mapping adapts to game history but players’ beliefs about
aggregate opponents’ rule levels remain fixed over time. As a result, even though players’ rule levels
remain the same, these same rule levels may imply different choices over time. In sum, the Lr(t)
model posits:

1. Player i’s belief about her aggregate opponent’s rule level at the end of time t is static and
given by bi(t) = bi(0), ∀t;

2. Level-0 rule’s corresponding choice x0(t) is the weighted average of the ex post best responses
in the preceding rounds, and as a consequence, the rule hierarchy mapping M(·|x0(t)) is
adaptive;

3. Player i will choose the payoff maximizing strategy that best-responds to her aggregate oppo-
nent’s predicted choice, i.e., the predicted payoff-relevant statistic ẑ−i(t) = M(bi(0)|x0(t)) =
(

p(n−1)
(n−p)

)bi(0)
· x0(t). Specifically, player i will adopt rule level bi(0) + 1 and choose xi(t) =

p(n−1)
(n−p) · ẑ−i(t) =

(

p(n−1)
(n−p)

)bi(0)+1
· x0(t).

Dynamic Level-r with Adaptive Rule Hierarchy (DLr(t) Model)

In this subsection, we extend the Lr(t) model to the DLr(t) model by allowing players to dynam-
ically change their rule levels in response to the feedback they receive. Besides allowing for an
adaptive rule hierarchy, the DLr(t) model posits that players infer their aggregate opponent’s rule
level from the observed payoff-relevant statistic after each round, and use it to update their belief
about what rule the aggregate opponent is likely to choose in the next round. Specifically, players
update their belief after each round by forming a weighted sample average of all past inferred rule
levels up to that round. Using these individually updated beliefs, players subsequently predict
the likely choice of their aggregate opponent (i.e., the payoff-relevant statistic) in the next round.
They then best-respond to it by choosing a payoff-maximizing strategy, which is a function of the
payoff-relevant statistic.
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Denote player i’s belief about her aggregate opponent’s rule level at the end of time t by bi(t) and
player i’s aggregate opponent’s rule level inferred from her payoff-relevant statistic z−i(t) at time
t by r(z−i(t)). Formally, z−i(t) = M(r(z−i(t))|x0(t)) and hence r(z−i(t)) = M−1(z−i(t)|x0(t)).
Since M(·|x0(t)) is a one-to-one function, its inverse M−1(z−i(t)|x0(t)) always exists. We posit
that player i’s updated belief at the end of time t is given by:

bi(t) =
ρd · φd

t · bi(0) + (n− 1) · φd
t−1 · r(z−i(1)) + . . .+ (n− 1) · r(z−i(t))

ρd · φd
t + (n− 1) · φd

t−1 + . . .+ (n− 1)

(2.2)

where bi(0) is player i’s initial belief about her aggregate opponent’s rule level. We assume the
initial belief is heterogenous among players.16 Next, the aggregate opponent’s inferred rule level
r(z−i(t)) at each time t is multiplied by (n − 1) to capture the fact that the inference is based on
aggregate actions of (n− 1) individual opponents. Finally, the parameters ρd and φd are the initial
belief strength and the memory decay factor, respectively.

Given the updated belief bi(t) at the end of time t, player i predicts the payoff-relevant statistic
at round t+ 1 to be ẑ−i(t+ 1) = M(bi(t)|x0(t+ 1)), and best-responds to it by choosing a payoff-

maximizing strategy. Specifically, at time t+1, player i will choose xi(t+1) = p(n−1)
(n−p) · ẑ−i(t+1) =

M(bi(t) + 1|x0(t+ 1)), which corresponds to the level-(bi(t) + 1) rule.

In sum, the DLr(t) model posits:

1. Player i’s belief about her aggregate opponent’s rule level at the end of time t is dynamic
and given by bi(t);

2. Level-0 rule’s corresponding choice x0(t) is the weighted average of the ex post best responses
in the preceding rounds and as a consequence, the rule hierarchy mapping M(·|x0(t)) is
adaptive;

3. Player i predicts her aggregate opponent’s choice (i.e., the payoff-relevant statistic) to be
ẑ−i(t+ 1) = M(bi(t)|x0(t+ 1)) at time t+ 1.

4. Player i chooses xi(t+1) in order to maximize her payoff given ẑ−i(t+1). Formally, xi(t+1)
is uniquely determined from ẑ−i(t+ 1) as follows:

xi(t+ 1) =
p · (n− 1)

n− p
· ẑ−i(t+ 1) =

(

p · (n− 1)

n− p

)bi(t)+1

· x0(t+ 1).

16Empirically, we assume that bi(0) follows a beta distribution, Beta(α, β), scaled by a constant factor.
Since the beta distribution has continuous support [0,1], scaling it by a multiplicative factor implies that
bi(0) may range between 0 and the scaling factor. In other words, the scaling factor can be interpreted as
the maximum rule level a player may adopt (i.e., it corresponds to the iterative dominance solution play). In
the estimation, we set this maximum rule level large enough so that the corresponding choice approximates
the level-∞ choice well.
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Hence, xi(t+ 1) changes over time due to dynamics in ẑ−i(t), which arises from both belief
dynamics (i.e., bi(t)) and the adaptive rule hierarchy (i.e., x0(t)).

The DLr(t) model can be thought of as a unified framework that captures both adaptive and
sophisticated learning (Milgrom and Roberts, 1991) simultaneously. Adaptive learning is modeled
through dynamics in the rule hierarchy. Specifically, the level-0 rule adapts to historical game
outcomes, and higher level rules are defined iteratively. In this way, the entire rule hierarchy
mapping shifts over time. Hence, a player choosing the same rule level exhibits adaptive learning
and adjusts actions according to historical game play. On the other hand, sophisticated learning
is modeled through dynamics in players’ rule levels. Specifically, players observe their aggregate
opponents choose different rule levels over time, update their beliefs about opponents’ rule levels,
and best-respond to their beliefs. Consequently, players may move up and down the rule hierarchy
(i.e., choose different rule levels) depending on how sophisticated they think their opponents are
and how sophisticated they think they should optimally be. In the empirical analysis that follows,
we show that both adaptive and sophisticated learning are crucial in capturing subjects’ dynamic
behaviors in p-beauty contest games.

Special Cases

Level-k Models

The standard level-k model has been used to explain nonequilibrium behaviors in applications in-
cluding auctions (Crawford and Iriberri, 2007b), matrix games (Costa-Gomes et al., 2001), and
signaling games (Brown et al., 2012). For a comprehensive review, see Crawford et al. (2013). If
x0(t) = x0(1), ∀t and bi(t) = bi(0), ∀t, then the DLr(t) model becomes the Lr model. The Lr

model becomes standard level-k models if bi(0) is restricted to have probability masses only at dis-
crete nonnegative integers. As a result, our model will naturally capture the empirical regularities
in the above games as well.

Recently, Ho and Su (2012) generalize the standard level-k model to allow players to dynamically
adjust their rule level. Their discrete model is shown to explain the dynamic behaviors in the
centipede game and sequential bargaining game well. If x0(t) = x0(1), ∀t and bi(t) is allowed to
vary over time, the resulting model (which we call DLr) captures this dynamic change in rule levels
and as a result can explain behaviors in these games too.

Weighted Fictitious Play

The weighted fictitious play model (which includes Cournot best-response dynamics and simple
fictitious play as special cases) has been used to explain learning behavior in a wide variety of
games (Ellison and Fudenberg, 2000; Fudenberg and Kreps, 1993; Fudenberg and Levine, 1993).17

If bi(t) = 0, ∀t and ∀i, but x0(t) is allowed to adapt as specified in our model, then the DLr(t)

17Note that weighted fictitious play is a special case of experienced-weighted attraction (EWA) learning
(Camerer and Ho, 1999; Ho et al. 2007). To choose the former is to keep the model analytically tractable.
As a consequence, DLr(t) model does not nest EWA learning as a special case.
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model becomes weighted fictitious play models because all players are restricted to have level-0
beliefs and thus they use only the level-1 rule. Note that all players learn the same way because
they share the common belief about the level-0 rule’s choice (i.e., see the same target number in
each round).

Other Nonequilibrium Models

Ho et al. (1998) propose a model of iterative best responses to explain dynamic behaviors in p-
beauty contest games. In their model, the level-0 rule adapts over time (which induces an adaptive
rule hierarchy) but players do not adjust their rule levels. Moreover, the model uses a discrete rule
hierarchy. As a consequence, their model is analogous to our Lr(t) model. Put differently, their
model only captures adaptive learning but does not allow for sophisticated learning. As a result,
their model will predict slower learning than the DLr(t) model. Empirically, the DLr(t) model
allows one to assess the importance of incorporating sophisticated learning in explaining players’
choice dynamics.

Iterative Dominance Solution

The DLr(t) model nests the iterative dominance solution as a special case when bi(t) = ∞, ∀i and
∀t. As a result, we can use our model to evaluate the iterative dominance solution empirically.
Besides, as the next result shows, the DLr(t) model always converges to the iterative dominance
solution as long as either adaptive learning or sophisticated learning is present.

Theorem 2.4. (Repetition Unraveling) E[xi(t)] → L as t → ∞ if ρ0 < ∞ or ρd < ∞.

Proof. See Appendix.

In the experimental p-beauty contest game, players do not choose the unique iterative dominance
solution initially, but their behavior converges toward it over time, a behavioral regularity we call
repetition unraveling. Hence, Theorem 2.4 states that the DLr(t) model can explain the repetition
unraveling property in the experimental game through either adaptive or sophisticated learning of
players. Below we will empirically assess the relative importance of these two forms of learning.

One intuitive way to interpret Theorem 1 is to contrast it with the iterative dominance solution,
which requires many levels of iterative reasoning instantly. The DLr(t) model recognizes that some
players may stop this iterative reasoning prematurely, but predicts that players will ultimately
reach the limiting point or equilibrium if the game is played repeatedly. In this regard, DLr(t)
model can be considered as a tracing procedure for the equilibrium and thus serves as a structural
model of the equilibration process.
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2.3 Estimation and Results

Experimental Data

We fit the DLr(t) model and its special cases using the p-beauty contest data collected by Ho et
al. (1998). The experiment consisted of a 2 × 2 factorial design with p = 0.7 or 0.9 and n = 3 or
7. Players chose any numbers from [0, 100]. The prize in each round was $1.5 for groups of size 3
and $3.5 for groups of size 7, keeping the average prize at $0.5 per player per round. A total of 277
subjects participated in the experiment. Each subject played the same game for 10 rounds with a
fixed matching protocol.18 There were 14 groups of size 7 and 14 groups of size 3 with p = 0.7; and
there were 14 groups of size 7 and 13 groups of size 3 with p = 0.9. As a consequence, we have a
total of 55 groups and 2770 observations.

Likelihood Function

Let x̂i(t) be player i’s predicted choice, and xi(t) be player i’s actual choice. We assume that the
actual choice occurs with a normally distributed i.i.d. error so that xi(t) = x̂i(t) + ǫi(t) where
ǫi(t) ∼ N(0, σ2).

Let xi(t) = (xi(1), xi(2), . . . , xi(t)) be player i’s choice vector and z−i(t) = (z−i(1), z−i(2), . . . , z−i(t−
1), z−i(t)) be player i’s history of payoff-relevant statistics for the first t rounds of the game plays.
Let ω(t) = (ω(0), ω(1), . . . , ω(t)) be the history of ex post best responses for the first t round
(including the level-0 player’s predicted choice in round 1 ω(0)) that is common to all players. Fur-
thermore, let fit(xi(t) |ω(t − 1), z−i(t − 1), bi(0)) be the probability density of player i’s choosing
xi(t) at time t, given the history of ex post best responses up to time t − 1, the history of her
payoff-relevant statistics up to time t − 1 and her initial belief bi(0). The likelihood of observing
player i’s vector of choices for the entire experiment (i.e., xi(10)) is denoted by Li(xi(10)) and
given as follows19:

Li(xi(10)) =

∫

(

10
∏

t=1

fit (xi(t) |ω(t− 1), z−i(t− 1), bi(0))

)

dG(bi(0)),

where G is a well-defined distribution function of the initial belief. In the estimation, G is assumed
to be a scaled beta distribution, described in more detail below.

As a consequence, the total log-likelihood of observing all players’ choice vectors is:

LL =
N
∑

i=1

log (Li(xi(10)))

=

N
∑

i=1

log

(

∫

(

10
∏

t=1

fit (xi(t) |ω(t− 1), z−i(t− 1), bi(0))

)

dG(bi(0))

)

.

18Reputation building is unlikely because the p-beauty contest game is a constant-sum game where players’
interests are strictly opposite.

19Note that fit is truncated at 0 and 100.
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Estimated Models

The DLr(t) model consists of 8 parameters: 1) initial belief parameters α and β for the scaled beta
distribution; 2) level-0 player’s predicted choice in round 1, ω(0); 3) updating parameters for the
adaptive rule hierarchy, ρ0 and φ0; 4) dynamic rule level belief updating parameters, ρd and φd;
and 5) standard deviation of the error term, σ.

We estimated a total of five models. Besides the full model DLr(t), we estimated the following
models:

1. Weighted fictitious play model (L1(t)): This is a special case of Lr(t) in which all players are
of rule level 1. We obtain the model by setting α = 1, β = ∞, ρd = ∞, and φd = 1. This
model captures the standard adaptive learning in the absence of a rule hierarchy.

2. Static level-r with fixed rule hierarchy (Lr model): This is the continuous rule hierarchy
version of the standard level-k model. It is a nested case of DLr(t) model obtained by
setting ρ0 = ∞, φ0 = 1, ρd = ∞, and φd = 1. This model captures neither adaptive nor
sophisticated learning dynamics.

3. Static level-r with adaptive rule hierarchy (Lr(t) model): This model allows the level-0
player’s choice to be adaptive and vary over time. It is a nested case of DLr(t) with ρd = ∞
and φd = 1. The model adds adaptive learning to the level-r model by allowing the level-0
player to learn over time.

4. Dynamic level-r with fixed rule hierarchy (DLr model): This model allows players to change
their rule levels over time. It is a nested case of DLr(t) obtained by setting ρ0 = ∞ and
φ0 = 1. The model captures only sophisticated learning.

Estimation Method

In the estimation, we assume that players’ initial belief follows a beta distribution Beta(α, β) scaled
by a multiplicative factor of 50. Hence, the maximum belief a player can have about the aggregate
opponents’ rule level is 50. Note that (0.7)50 · 100 = 1.8× 10−8 ≈ 0 and (0.9)50 · 100 = 0.52 ≈ 0, so
rule levels higher than 50 approximate the iterative dominance solution well.20

We searched over parameter values to maximize the simulated log-likelihood using constrained
nonlinear optimization in the MATLAB optimization toolbox. At each iteration, a new vector of
parameter values was tried, and 1500 random draws were drawn from the corresponding scaled
beta distribution of initial belief in order to evaluate the simulated log-likelihood.21 To make sure

20We conducted robustness checks by varying the scale factor up to 100 and found that parameter esti-
mates varied only slightly. An alternative way to formulate initial belief is to use the 2-parameter gamma
distribution. Using the gamma distribution to model initial belief did not affect the parameter estimates
much. For example, when the gamma distribution was assumed for DLr(t) model, parameter estimates for
ω(0), ρ0, φ0, ρd, φd, and σ were 79.90, 8.29, 0.88, 2.09, 0.04, and 19.99, respectively, which were close to the
corresponding parameter estimates reported in Table 2.1.

21We also varied the number of random draws up to 3000 and found similar results.
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that the maximized log-likelihood is indeed the global maximum, we tried optimization with many
starting points. The constraints imposed on the parameters based on theoretical considerations
were: 0 < α, β; 0 ≤ ω(0) ≤ 100; 0 < ρ0, ρd; and 0 ≤ φ0, φd ≤ 1. As in Camerer and Ho (1999), we
restrict ρ0 ≤

1
1−φ0

and ρd ≤ n−1
1−φd

so that both the adaptive learning and belief updating obey the
law of diminishing effect that players weight new observations less over time. We also normalize
each round’s data by each round’s sample mean and sample standard deviation as in Ho et al.
(1998) so that observations were weighted evenly across rounds. Standard errors of parameters
were estimated using bootstrapping. In Table 2.1, standard errors are reported in parentheses
below parameter estimates.

Results and Parameter Estimates

Table 2.1 presents the parameter estimates and the corresponding maximized log-likelihoods for
the five models. As shown, Table 1 has 6 columns: the first column indicates the parameter names,
the second column the weighted fictitious play model (L1(t)), the third column continuous level-r
model (Lr), the fourth column static level-r with adaptive rule hierarchy model (Lr(t)), the fifth
column dynamic level-r model with fixed rule hierarchy model (DLr), and the last column dynamic
level-r model with adaptive rule hierarchy model (DLr(t)). There are five sets of parameters: 1)
beta distribution parameters (α, β) for players’ initial belief; 2) initial choice ω(0) for the level-0
player; 3) adaptive learning parameters (ρ0, φ0); 4) sophisticated learning parameters (ρd, φd); and
5) standard deviation of choice parameter σ.
Finally, the standard errors of parameter estimates were estimated using bootstrapping and they
are reported in parentheses.
Since DLr(t) is a generalized version of the other 4 models, it will necessarily fit better than
its special cases in terms of log-likelihoods. Therefore, we also provide χ2 and Akaike Information
Criterion (AIC) in order to test whether more complex models indeed fit better than simpler models.

Note that the full model DLr(t) fits the the data the best, having the highest maximized log-
likelihood of -2939.87. The χ2 as well as AIC statistics suggest that the four special cases are
rejected in favor of the full model. For example, the static level-r, which has a maximized log-
likelihod of -3403.13, is rejected with a χ2 value of 926.52. Similarly, the weighted fictitious play
model, which has a maximized likelihood of -2992.88, is rejected with a χ2 value of 106.02.

All estimated parameters are quite reasonable. The initial belief parameter estimates (α̂ = 0.05
and β̂ = 0.27) suggest that about 60% of the players believe that their opponents are close to level
0 (see Figure 2.4). The level-0 player’s initial choice is estimated to be around 81.22 The adaptive

22To get a better sense of how initial belief parameters α and β are jointly estimated, we compared the
proportion of level-0 players and the average rule level resulting from each set of estimates from 120 bootstrap
runs with those resulting from the full-sample estimates. The standard deviations over those 120 estimates
are in the parentheses. In DLr(t), the average proportion of level-0 players and the average rule level are
61.53% (10.94%) and 7.86 (2.04) respectively, while those based on full-sample estimates are 62.35% and
7.94; in DLr, the average proportion of level-0 players and the average rule level are 57.97% (13.65%) and
7.87 (2.33) respectively, while those based on full-sample estimates are 61.96% and 8.18; in Lr(t), the average
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Table 2.1: Parameter Estimates and Maximized Log-likelihood for DLr(t) Model and its
Special Cases

Parameters/Models L1(t) Lr Lr(t) DLr DLr(t)

Prior Belief of Rule (Beta (α, β))
α̂ 1 0.48 0.00 0.05 0.05

(0.39) (0.02) (0.06) (0.04)

β̂ ∞ 1.04 0.02 0.26 0.27
(1.90) (1.29) (0.56) (0.40)

Level-0’s Choice at t = 1
ω̂(0) 63.26 59.24 68.66 82.44 81.25

(2.81) (8.53) (3.77) (6.54) (5.81)
Adaptive Learning

ρ̂0 0.36 ∞ 1.08 ∞ 8.14
(0.27) (0.55) (15.55)

φ̂0 0.00 1 0.07 1 0.88
(0.05) (0.08) (0.08)

Sophisticated Learning
ρ̂d ∞ ∞ ∞ 2.18 2.16

(0.59) (0.31)

φ̂d 1 1 1 0.08 0.08
(0.04) (0.04)

Std. Dev. of Error
σ̂ 21.84 29.13 21.56 19.61 19.98

(0.99) (1.44) (1.05) (0.98) (1.06)

LL -2992.88 -3403.13 -2972.61 -2947.01 -2939.87
χ2 106.02 926.52 65.48 14.28 –
(p-value, dof) (0.000, 4) (0.000, 4) (0.000, 2) (0.001, 2) –
AIC 5993.77 6814.27 5957.21 5906.03 5895.74∗

learning parameters (ρ̂0 = 8.14 and φ̂0 = 0.88) suggest that players weight their initial prior of the
level-0 rule ω(0) quite heavily (equivalent to 8 observations of opponents’ choices) and the influence
of an observation drops by half after every 5 rounds (0.885 ≈ 0.5). Next, the sophisticated learning
parameters suggest that belief updating for aggregate opponent’s rule level resembles Cournot dy-
namics (φ̂d = 0.08 ≈ 0). Moreover, players give their initial belief about the aggregate opponent’s
rule level a weight of 2.16, which declines quickly after the first round. Finally, the standard devi-
ation of the error term is estimated to be 19.98, which seems reasonable given the size of strategy
space [0, 100].

proportion of level-0 players and the average rule level are 89.92% (5.51%) and 3.67 (1.72) respectively, while
those based on full-sample estimates are 90.28% and 4.44; in Lr, the average proportion of level-0 players
and the average rule level are 8.64% (7.97%) and 17.36 (7.58) respectively, while those based on full-sample
estimates are 5.34% and 15.65. Overall, the pattern of initial belief distribution from bootstrapping appears
to be quite similar on average to that based on full-sample estimates.
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Comparing the log-likelihoods of the last 3 columns, we note that the Lr(t) and DLr models are
rejected in favor of the full DLr(t) model. This suggests that both an adaptive rule hierarchy and
dynamic rule levels are crucial in explaining subjects’ behaviors over time. Put differently, players
engage in both adaptive and sophisticated learning. Note that although Lr(t) and DLr have the
same number of parameters, Lr(t) fits worse than DLr. Hence, sophisticated learning appears more
important than adaptive learning in describing p-beauty contest data. This observation is further
confirmed by the lower estimated standard deviation of the error term (i.e., σ̂) in the DLr model.

We also fit the Lk model with a discrete Poisson initial belief (with mean λ) and compare it with Lr

model. For the Lk model, the maximized log-likelihood is -3459.62.23 The Lk model is mathemati-
cally not a nested case of Lr model because one cannot express the discrete Poisson distribution as
a special case of the continuous beta distribution. As a consequence, we use the AIC to compare
their relative goodness of fit.24 The AICs are 6925.25 and 6814.27 for Lk and Lr models, respec-
tively. Clearly, Lr dominates Lk in terms of goodness of fit. This result suggests that having a
continuous rule hierarchy helps to explain the data.

Three models (i.e., L1(t), Lr(t), and DLr(t)) allow for adaptive learning of players by varying the
rule hierarchy mapping through time. Comparing these three models, we note that the adaptive
learning dynamics is of Cournot type in L1(t) and Lr(t) (i.e., φ̂0 ≈ 0) whereas it is of weighted fic-
titious play type (i.e., φ̂0 = 0.88) in DLr(t). That is, the adaptive learning model was misspecified
as Cournot type in the absence of sophisticated learning. In other words, by allowing players to up-
date their rule levels, the adaptive learning models would be less fickle and become more fictitious
play like. This is an important result because it suggests that previously estimated parameters
of adaptive learning models could be biased if they neglect sophisticated learning. Interestingly,
when we compare DLr(t) with DLr, we find that belief updating (i.e., rule level dynamics) in
both models is of Cournot type (i.e., φ̂d = 0.08 in both models). This suggests that our proposed
structural model of sophisticated learning is not misspecified in the absence of adaptive learning.

Figure 2.4 presents the initial belief distributions of Lr, Lr(t), DLr, and DLr(t). Three features
are worth noting:

1. Initial belief distributions of both DLr(t) and DLr exhibit a rapid increase at both 0 and
50, suggesting that in these models, players are of either very low or very high rule levels
when the game starts. The fact that these distributions are remarkably close to each other
corroborates the point made earlier that the structural model of belief updating in the DLr(t)
model is not misspecified in absence of adaptive learning.

2. In Lr(t), the proportion of low level players is highest with more than 90% of players having
initial belief near 0. On the contrary, in Lr, the proportion of low level players is less than
10% and the distribution of player’s rule levels is evenly distributed between 0 and 50. Note
that as soon as adaptive learning is introduced (i.e., as we move from Lr to Lr(t)), the

23Parameter estimates of the Lk model are: λ̂ = 11.32, ω̂(0) = 100.00 and σ̂ = 31.47 where λ is the
parameter of Poisson distribution.

24The Akaike criterion (AIC) is 2 ·k−2 ·LL where LL is the maximized log-likelihood and k is the number
of parameters.
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Figure 2.4: Distribution of Initial Beliefs of Lr, Lr(t), DLr, and DLr(t) Models

initial belief is immediately clustered around 0, making Lr(t) resemble the weighted fictitious
model. Consequently, we are not surprised to see that L1(t) and Lr(t) models have similar
log-likelihoods and their adaptive learning parameters (i.e., ω̂(0), ρ̂0, φ̂0) in Table 2.1 are close
to each other. When adaptive learning is present, merely introducing higher level players does
not improve the fit much.

3. The proportion of low level players of DLr(t) or DLr is smaller than that of Lr(t) but larger
than that of Lr. This implies that Lr overestimates players’ initial rule levels while Lr(t)
underestimates them. Lr overestimates players’ initial rule levels because it assumes they are
static and hence need to be high in order to account for smaller choices that are closer to 0
in later rounds. Lr(t) underestimate players’ initial rule levels because it over-fits the data
by using adaptive learning dynamics alone. In other words, Lr(t) suppresses the rule level
distribution as much as possible by endowing most players with a belief of 0. Interestingly,
DLr(t) strikes a compromise between these two polar cases by having players’ beliefs fall
between these two extreme distributions, suggesting that players’ initial beliefs are neither
concentrated at level-0 nor clustered around high rule levels if players are allowed to change
their rule levels over time.

Figures 2.5 through 2.10 present the three-dimensional bar graphs of choice frequency of observed
data and model predictions of DLr(t), DLr, Lr(t), Lr and L1(t), respectively. Since the experimen-
tal data consists of a 2x2 factorial design with p = 0.7 or 0.9 and n = 3 or 7, the model prediction
for each possible game was first determined and then the final model prediction is derived as the
weighted average of these 4 model predictions where the weight equals the relative proportion of
each game’s observations in the experimental data.

Note the following:
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Figure 2.5: Actual Data
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Figure 2.6: DLr(t) Model Prediction
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Figure 2.7: DLr Model Prediction
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Figure 2.8: Lr(t) Model Prediction
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Figure 2.9: Lr Model Prediction
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Figure 2.10: L1(t) Model Prediction
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1. Having similar sophisticated learning parameters, DLr(t) and DLr show a similar conver-
gence pattern toward equilibrium overall. However, DLr(t) predicts that more choices are
closer to equilibrium in rounds 1–5 than DLr. This is because DLr(t) permits choices to shift
dynamically by allowing for both adaptive learning (through an adaptive rule hierarchy) and
sophisticated learning (through belief updating). Thus, DLr(t) predicts that players choose
smaller choices in earlier rounds due to adaptive learning (by adapting to the environment
and sequentially best-responding to ex post best responses in previous rounds) even though
their updated belief about aggregate opponent is not yet high enough. Note that if players’
belief itself is high enough, they would choose smaller numbers regardless of level-0 player’s
choice x0(t). Indeed, this is the case for both model predictions in later rounds. Players’
updated beliefs in later rounds become high enough that even in the absence of adaptive
learning, the DLr model yields predictions that match those of the DLr(t) model. In sum,
DLr(t) distinguishes itself from DLr mostly in its power to better explain earlier rounds’
data.

2. As a model with the third best log-likelihood fit, Lr(t) shows slower convergence than DLr(t)
and DLr. The distribution of choices in each round for Lr(t) is also more clustered than that
of DLr(t) or DLr. Moreover, Lr(t) yields predictions that closely resemble those from L1(t).
This is because the distribution of initial beliefs in Lr(t) is mostly concentrated around rule
level 0 and thus the model approximates a weighted fictitious play model.

3. Lr(t) surpasses L1(t) in the model fit mostly due to the continuous spread of players’ rule
levels. Comparing Figure 2.8 and 2.10, we note that Lr(t) predictions in each round are more
sprinkled around all possible choices because about 10% of players have initial beliefs higher
than 0 and choose smaller choices than in L1(t).

4. Lr model prediction is fixed over time because it lacks either adaptive rule hierarchy or
dynamic rule levels. To account for the fast convergence of data, Lr predicts that players are
concentrated at high rule levels or small choices throughout the game.25

2.4 Generalized Price Matching Game

To check the generalizability of the above results, we investigate the dominance-solvable traveler’s
dilemma game (Basu, 1994). In the original traveler’s dilemma game, two travelers (i = 1, 2) whose
antiques were damaged during travel at the airline’s fault were promised adequate compensation
by the airline manager. Not knowing the true value of the two antiques but exploiting the fact
that they were identical, the airline manager offers the following scheme for compensation. He asks
both travelers to privately write down the cost of the antique on a piece of paper, where the cost
can be one of {2, 3, . . . , 100} units of money. Upon seeing the two numbers xi (i = 1, 2) that the
travelers wrote down, the manager then compensates traveler i 1) min{x1, x2} − 2 if xi > xj , 2)

25Using parameter estimates of the Lk model in Section 2.3, we also compare the model predictions of
Lr and Lk. We observe that Lr predicts more evenly placed choices than Lk, while predictions for smaller
choices (< 10) of both models are very similar. This is because Lr utilizes a continuous rule hierarchy and
admits more numbers as possible choices.
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min{x1, x2} + 2 if xi < xj, or 3) xi if xi = xj. That is, the traveler who wrote down the smaller
number is rewarded for being honest while the one who wrote down the bigger number is penalized
for lying. If both travelers’ numbers were the same, they are thought to be telling the truth and
receive neither reward nor penalty.

This traveler’s dilemma game is dominance solvable and its unique iterative dominance solution
is 2 (in general, it is the lower corner of the strategy space).26 However, as is the case for the
experimental p-beauty contest game, subjects do not choose the unique iterative dominance solu-
tion instantly but tend to converge to it over time (Capra et al., 1999; Goeree and Holt, 2004).
Therefore, the standard game theory solution is a poor predictor of subjects’ behavior in this game,
failing to capture their learning dynamics.

An alternative interpretation of the traveler’s dilemma game is to see it as a price matching (i.e.,
lowest price guarantee) game between two firms selling a homogenous product. As a result of price
matching, both firms effectively charge only the minimum price in the market. In addition, the
firm with a lower price will be rewarded with a positive customer goodwill while the one with a
higher price will be penalized with a negative customer goodwill.27

We generalize this price matching game in 3 ways. First, we allow for more than 2 firms (i.e., n ≥ 2)
in this competition. Second, we allow for a continuous strategy space, while the standard price
matching game permits only discrete strategy choices. Third, since the standard price matching
game is no longer dominance solvable if it is defined over a continuous strategy space, we generalize
its payoff structure so that the generalized game remains to be dominance solvable even with a
continuous strategy space. We show below that our generalized price matching game nests and
converges to the standard price matching game.

In following subsections, we describe the generalized price matching game, apply the DLr(t) model
to the game, structurally estimate the model using freshly generated experimental data, and inter-
pret our empirical findings.

Payoff Structure of Generalized Price Matching Game

In the generalized price matching game, n firms (players) engage in price competition in order to
attract customers. They simultaneously choose prices in [L,U ] for a homogenous good. Firms are
indexed by i (i = 1, 2, . . . , n). Firm i’s choice of price at time t is denoted by xi(t) and the choice
vector of all firms excluding firm i is denoted by x−i(t) = (x1(t), . . . , xi−1(t), xi+1(t), . . . , xn(t)).

26At the first step of elimination of dominated strategies, 99 and 100 are eliminated since they are
dominated by 98. At the second step of elimination, 97 and 98 are eliminated being dominated by 96.
Hence, the strategy that ultimately survives the iterative elimination of dominated strategies is 2.

27Price matching is common in retail industry. Marketing researchers (Jain and Srivastava, 2000; Chen et
al., 2001; Srivastava and Lurie, 2001) suggest that firms who promise to charge the lowest price are perceived
negatively by customers when their prices are found to be not the lowest in the market.
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Figure 2.11: Generalized Price Matching Game: Payoff Function

The payoff function of the generalized price matching game at time t is given by:

Πi(xi(t),x−i(t)) =


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


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

min{x−i(t)} −R · s if min{x−i(t)}+ s ≤ xi(t)

min{x−i(t)} −R · |xi(t)−min{x−i(t)}| if min{x−i(t)} < xi(t) < min{x−i(t)}+ s

xi(t) if xi(t) = min{x−i(t)}

xi(t) +R · |xi(t)−min{x−i(t)}| if min{x−i(t)} − s < xi(t) < min{x−i(t)}}

xi(t) +R · s if xi ≤ min{x−i(t)} − s

(2.3)

where R > 1 and s > 0 are constant parameters.

Figure 2.11 illustrates how each player’s payoff (on the y-axis) depends on the minimum of her
opponents’ choices (on the x-axis). As (2.3) indicates, there are five possible cases. In all cases,
each player’s payoff is the lowest price offered by all players (due to price matching) as well as an
additional goodwill term (which may be positive or negative depending on the relative position
of the player’s price). If the player’s price is smaller than the minimum of opponents’ choices,
the player receives positive customer goodwill because she uniquely offers the lowest price to the
customers. This positive customer goodwill increases linearly at rate R as the player’s own choice
gets smaller. Since R > 1, payoff increases as the player’s choice decreases because the increase in
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goodwill surpasses for the decrease in price. However, once the goodwill reaches its cap of R · s, it
stops increasing and stays constant. Thus, if the player’s price continues to decrease, payoff will
start to decrease. On the other hand, if the player’s own choice is larger than the minimum of
her opponents’ choices, she receives negative customer goodwill because other firms are charging
a lower price. The magnitude of negative customer goodwill also increases linearly as the player’s
own choice gets larger. However, once the goodwill reaches its cap of −R · s, it stops increasing and
stays constant. If the player’s own choice and the minimum of her opponents’ choices are identical,
she receives neither positive nor negative customer goodwill and the payoff is simply the lowest
price she offers.

There are several implications of the payoff structure of this game. Note that player i’s maximum
possible payoff is min{x−i(t)}+(R−1)·s, which is attained when xi(t) = min{x−i(t)}−s, assuming
that the latter is above the lowest possible choice L. In other words, if her opponents choose x−i(t),
player i’s best response is

x∗i (t) = max{L,min{x−i(t)} − s}.

Therefore, we may interpret s > 0 as the step size that a best-responding player will take to under-
cut her opponents, and R > 1 as the rate of change of customer goodwill around the lowest price
offered by competitors in the market.

It is quite simple to show that this game is dominance solvable and has a unique iterative dominance
solution where all players choose the lower corner of strategy space (i.e., L). 28 Note also that
when s → 0, R → ∞, and R · s stays constant, the game converges to the standard price matching
game where the size of goodwill is always fixed regardless of the relative magnitude among choices.

DLr(t) Model

Now, we apply the DLr(t) model to the generalized price matching game. We begin by describing
three building blocks: the rule hierarchy mapping, the payoff-relevant statistic, and players’ best
responses to their beliefs.

First, we describe the rule hierarchy mapping. Let x0(t) be the choice of the level-0 player in
round t, and xi(t) = M(ri(t)|x0(t)) be player i’s choice with rule level ri(t) conditional on the
level-0 player’s choice x0(t). Since rule level ri(t) + 1 is a best response to rule level ri(t), the rule
hierarchy mapping satisfies

M(ri(t) + 1|x0(t)) = M(ri(t)|x0(t))− s,

assuming that the right-hand side remains above the lowest possible choice L. Therefore, we adopt
the following rule hierarchy mapping:

M(ri(t)|x0(t)) = max{L, x0(t)− s · ri(t)}.

28Suppose L = 80, U = 200, and s = 10. The choices above U − s = 190 are dominated by 190 and are
eliminated after the first step of iterated elimination of dominated strategies. In the second step, choices
above 190 − s = 180 are eliminated. Proceeding in this fashion, only the choice L = 80 remains after 12
steps.
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Second, we note that the payoff-relevant statistic is

z−i(t) = min{x−i(t)}

since each player’s payoff depends on her opponents’ choices x−i(t) only through their minimum
value. Therefore, it is as if each player faces an aggregate opponent who chooses the minimum
competitive price.

Third, we describe how a player best-responds to her belief in the generalized price matching game.
Let bi(t) denote player i’s belief about the aggregate opponent’s rule level at the end of round t.
In other words, player i expects that her aggregate opponent’s choice in round t+ 1 will be

ẑ−i(t+ 1) = M(bi(t)|x0(t+ 1)) = max{L, x0(t+ 1)− s · bi(t)}.

Accordingly, player i best-responds by adopting level-(bi(t) + 1) rule and thus chooses

xi(t+ 1) = M(bi(t) + 1|x0(t+ 1)) = max{L, x0(t+ 1)− s · (bi(t) + 1)}.

With the three building blocks in place, we now proceed to complete the description of the DLr(t)
model by describing two separate sets of dynamics in the model, i.e., how the rule hierarchy map-
ping changes adaptively and how players’ beliefs are updated based on observed game plays.

First, the rule hierarchy mapping varies over time because the level-0 rule’s choice changes dynam-
ically, adapting to the history of game play. Since the mapping M(·|x0(t)) is uniquely determined
given x0(t), it suffices to characterize the dynamic behavior of x0(t). As in (2.1), recall that the
level-0 rule’s choice x0(t) at time t is the weighted average of ex post best responses in previous
rounds. The ex post best response at time t is

ω(t) = max{L,min{x(t)} − s}

because it is the choice that would maximize a player’s payoff in response to realized choices at
time t in the ex post sense. (Note that the above minimum is taken from all players’ choices.)
Then, the level-0 rule’s choice x0(t) at time t is given by

x0(t) =
ρ0 · φ0

t−1 · ω(0) + φ0
t−2 · ω(1) + . . .+ φ0 · ω(t− 2) + ω(t− 1)

ρ0 · φ0
t−1 + φ0

t−2 + . . . + φ0 + 1
,

where 0 ≤ ρ0, 0 ≤ φ0 ≤ 1, and L ≤ ω(0) ≤ U are respectively the initial prior strength, the memory
decay factor, and the hypothetical ex post best response in round 0. These three parameters are
to be estimated and they capture the nature of adaptive learning in the data.

Second, players’ beliefs about the aggregate opponent’s rule level change dynamically because beliefs
are updated after each round based on historical information about observed game plays. Let us
consider what happens at the end of a particular round t. Let the payoff-relevant statistic observed
by player i in this round t be z−i(t). Based on this statistic, player i infers that her aggregate



CHAPTER 2. LEVEL-r MODEL WITH ADAPTIVE AND SOPHISTICATED

LEARNING 57

opponent was of rule level r(z−i(t)), where this rule level is inferred using the inverse rule hierarchy
mapping: r(z−i(t)) = M−1(z−i(t)|x0(t)). Therefore, the inferred rule level satisfies

r(z−i(t)) =
x0(t)− z−i(t)

s
.

Hence, as in (2.2), player i’s updated belief at the end of round t is given by

bi(t) =
ρd · φd

t · bi(0) + (n− 1) · φd
t−1 · r(z−i(1)) + . . .+ (n− 1) · r(z−i(t))

ρd · φd
t + (n− 1) · φd

t−1 + . . .+ (n− 1)

where 0 ≤ ρd and 0 ≤ φd ≤ 1 are respectively the initial belief strength and the memory decay
factor, which are parameters to be estimated. Further, recall that the initial belief bi(0) is het-
erogeneous among players and follows a scaled beta distribution with parameters α and β to be
estimated. The above rule dynamics capture the nature of sophisticated learning in the data.

For the generalized price matching game, we again establish the repetition unraveling result.

Theorem 2.5. (Repetition Unraveling) E[xi(t)] → L as t → ∞ if ρ0 < ∞ or ρd < ∞.

Proof. See Appendix.

Experimental Data

To test the DLr(t) model described above, we generate data on the generalized price matching
game by conducting another experiment. The experiment comprises two game settings varying the
group size. Specifically, we set n = (3, 7), s = 10 and R = 1.5. A total of 77 college students
from a major university in Southeast Asia participated in the experiment, consisting of 7 groups
of size 3 and 8 groups of size 7. Subjects chose any number from [80, 200]. Each subject played the
same game for 10 rounds with a random matching protocol.29 Subjects accumulated points in each
round according to the payoff function in (2.3). After all 10 rounds, these points are then converted
to the dollar amount at a rate of $0.01 per point. The equilibrium payoff in all game settings was
fixed at $8. In addition, all participants were paid an additional $5 show-up fee.30 The full set of
instructions is given in the Appendix.

The experimental data indicates that players’ choices vary dramatically over time. Figure 2.12
compares the distributions of subjects’ choices in the first round and in the last round. It is clear
that subjects’ choices are closer to the iterative dominance solution of L = 80 in the last round. A
Kolmogorov-Smirnov test rejects the null hypothesis that the distributions of choices in the first and
last rounds are equal (p < 0.001). In addition, Figure 2.13 shows that the proportion of subjects
who chose the iterative dominance solution L = 80 steadily increases over time. Overall, 63.77%
of choices were 80. Among those choices, 33.40% occurred in rounds 1-5 and 66.60% occurred in
rounds 6-10, suggesting that twice as many players chose the iterative dominance solution in the

29We use a random matching protocol to avoid reputation building. Subjects did not seem to engage in
reputation building in our experiments.

30The prevailing exchange rate at the time of the experiment was US$1 = $1.20.
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later rounds of the game. In the last round, 92.21% of choices were iterative dominance solution
plays. Thus, the data shows that subjects’ choices converge to the iterative dominance solution
over time, consistent with the repetition unraveling result of Theorem 2.5.

Results and Parameter Estimates

We fit the DLr(t) model to our data on the generalized price matching game. The structural esti-
mation procedures are similar to those described in Section 2.3 for the p-beauty contest game.31 As
before, there are five sets of parameters to be estimated: 1) beta distribution parameters (α, β) for
players’ initial belief; 2) initial choice ω(0) for the level-0 player; 3) adaptive learning parameters (ρ0,
φ0); 4) sophisticated learning parameters (ρd, φd); and 5) standard deviation of choice parameter σ.

The imposed constraints on the parameters based on theoretical considerations were: 0 < α, β;
80 ≤ ω(0) ≤ 200; 0 < ρ0, ρd; and 0 ≤ φ0, φd ≤ 1. Our results are shown below in Table 2.2, which
is presented in the same format as Table 2.1 above. Standard errors of parameters were estimated
using bootstrapping. In Table 2.2, standard errors are reported in parentheses below parameter
estimates.

The log-likelihood scores in Table 2.2 show that the DLr(t) model fits the data best. Based on the
χ2 test statistics and the AIC, we find that all four special cases are rejected in favor of the full
DLr(t) model, as in Section 2.3. We make the following observations:

1. The adaptive learning parameters are estimated to be ρ̂0 = 3.73 and φ̂0 = 0.90. That
is, players give the level-0 player’s initial choice a weight of 3.73 (equivalent to about 4
observations) and the influence of a past ex-post best response drops by half after every
6 rounds (0.906 = 0.53). Recall that in the p-beauty contest game, past observations are
discounted at a similar rate (φ̂0 = 0.88), but the weight on the level-0 player’s initial choice
is twice as high (ρ̂0 = 8.14). As a result, adaptive learning is more pronounced (i.e., subjects
adapt more rapidly) in generalized price matching than in p-beauty contest game.

2. The sophisticated learning parameters are ρ̂d = 59.55 and φ̂d = 0.98. The high estimate for
ρ̂d shows that players weight their initial belief heavily (equivalent to about 60 observations).
The estimate for φ̂d suggests that the influence of past observed rule levels of aggregate
opponent remains strong over time. Recall that the sophisticated learning parameters are
ρ̂d = 2.16 and φ̂d = 0.08 in the p-beauty contest game. In combination, these parameter
estimates suggest that sophisticated learning is less pronounced (i.e., subjects update their
rule levels more slowly) in generalized price matching game than in p-beauty contest game.

Consistent with the parameter estimates of DLr(t) discussed above, the Lr(t) model fits better
than the DLr model on the data for the generalized price matching game. Both models have the

31One minor difference is that we assume that players’ initial belief of opponents’ rule levels follows a beta
distribution scaled by a factor of 12 (instead of 50 in the p-beauty contest game). Since 200−12 ·10 = 80, we
do not need to consider rule levels higher than 12 as they approximate the iterative dominance solution well
irrespective of the level-0 player’s choice x0(t). We varied the scale factor up to 30 and found that parameter
estimates varied only slightly.
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Figure 2.12: First and Last Round Data

Figure 2.13: Proportion of Iterative Dominance Solution Plays
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Table 2.2: Parameter Estimates and Maximized Log-likelihood for DLr(t) Model and its
Special Cases: Generalized Price Matching Game

Parameters/Models L1(t) Lr Lr(t) DLr DLr(t)

Initial Belief (Beta (α, β))
α̂ 1 0.16 1.03 0.38 0.73

(1.15) (0.18) (0.11) (0.16)

β̂ ∞ 0.02 0.72 0.24 0.60
(0.10) (0.15) (0.09) (0.16)

Level-0’s Choice at t = 1
ω̂(0) 142.13 149.43 199.94 200.00 199.94

(4.11) (11.61) (0.04) (0.92) (0.03)
Adaptive Learning

ρ̂0 0.35 ∞ 3.70 ∞ 3.73
(0.30) (2.00) (1.78)

φ̂0 0.91 1 0.77 1 0.90
(0.20) (0.07) (0.10)

Sophisticated Learning
ρ̂d ∞ ∞ ∞ 6.33 59.55

(1.56) (19.48)

φ̂d 1 1 1 0.68 0.98
(0.07) (0.01)

Std. Dev. of Error
σ̂ 25.87 28.98 18.96 20.39 18.90

(2.83) (1.93) (2.29) (2.41) (2.27)

LL -789.13 -855.08 -646.02 -680.35 -641.98
χ2 294.31 426.20 8.08 76.76 –
(p-value, dof) (0.000, 4) (0.000, 4) (0.018, 2) (0.000, 2) –
AIC 1586.26 1718.06 1304.03 1372.71 1299.95∗

same number of parameters, but the former attains a higher log-likelihood (the LL fit of Lr(t) is
-646.02, while the LL fit of DLr is -680.35). The AIC also selects the Lr(t) model over the DLr

model. Recall that this comparison was reversed for the p-beauty contest game. Hence, we find
that adaptive learning is more pronounced in the generalized price matching game but sophisticated
learning is more pronounced in the p-beauty contest game. These results point to the importance
of DLr(t) model, which allows for both adaptive and sophisticated learning. A model that allows
for either type of learning alone will not be able to capture subjects’ learning behavior in both
games well.

When both adaptive and sophisticated learnings occur, a more restrictive model that considers only
one type of learning may be misspecified. In the generalized price matching game, we find that the
DLr model is misspecified because it ignores adaptive learning. As a consequence, it overestimates
the degree of sophisticated learning. Specifically, when adaptive learning is suppressed, the initial
belief weight ρd has to be much lower in order to capture the dynamics in the data (i.e., ρ̂d is 6.33
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in DLr whereas it is 59.55 in DLr(t)). However, we find that the adaptive learning parameters
are consistently estimated in both Lr(t) and DLr(t) models, since adaptive learning is more pro-
nounced in the generalized price matching game.

We separately estimate the Lk model, which has a discrete rule hierarchy with a Poisson initial
belief distribution with mean λ. The parameter estimates are λ̂ = 13.11, ω̂(0) = 180.00, and
σ̂ = 29.02, and the log-likelihood is −862.49. In contrast, the Lr model yielded a log-likelihood
score of −855.08. These results show that the Lr model fits better than the Lk model, confirming
again that a continuous rule hierarchy is useful in explaining the data.

Next, we examine the initial belief distributions obtained from the fitted Lr, Lr(t),DLr, and DLr(t)
models. The distributions are shown in Figure 2.14. We make three observations about these
distributions.

1. The initial belief distributions of the DLr(t) and Lr(t) models are quite similar. The DLr(t)
model, compared to the Lr(t) model, estimates that more players are of lower rule levels.
This is because the DLr(t) model allows players to update their beliefs dynamically and thus
those players with lower rule levels can also choose the iterative dominance solution play over
time by updating their beliefs.32

2. The initial belief distribution of DLr model, compared to that of Lr(t) model, has a sharper
increase at rule levels both near 0 and 12, meaning that more players have lower or higher
level beliefs. This is because the DLr model allows players to change their beliefs over time.
In contrast, in the Lr(t) model which captures only adaptive learning behavior, players’
beliefs remain static and thus are estimated to be more evenly distributed between 0 and 12.

3. In the Lr model, the predicted choice of level-0 players in the first round is estimated to
be 149.43 and thus any initial belief higher than 6 (i.e., that opponents play rule level 6 or
above) will induce players to choose the iterative dominance solution (which coincides with
rule level 7 or above in this case). Since neither type of learning is allowed in Lr, about
90% of players are estimated to choose the iterative dominance solution right from the onset
of the game in order to explain smaller choices and the fast convergence in the data over time.

32To get a better sense of how initial belief parameters α and β are jointly estimated, we compared the
proportion of level-0 players and the average rule level resulting from each set of estimates from 120 bootstrap
runs with those resulting from the full-sample estimates. The standard deviations over those 120 estimates
are listed in the parentheses. In DLr(t), the average proportion of level-0 players and the average rule level
are 2.93% (1.67%) and 6.69 (0.52) respectively, while those based on full-sample estimates are 1.98% and
6.60; in DLr, the average proportion of level-0 players and the average rule level are 8.62% (4.72%) and
7.15 (0.56) respectively, while those based on full-sample estimates are 7.20% and 7.31; in Lr(t), the average
proportion of level-0 players and the average rule level are 1.97% (1.30%) and 6.73 (0.56) respectively, while
those based on full-sample estimates are 0.52% and 7.05; in Lr, the average proportion of level-0 players
and the average rule level are 2.97% (2.58%) and 11.14 (0.41) respectively, while those based on full-sample
estimates are 4.23% and 10.94. Overall, the pattern of initial belief distribution from bootstrapping appears
to be quite similar on average to that based on full-sample estimates.
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Figure 2.14: Distribution of Initial Beliefs

Finally, Figures 2.15 through 2.20 show the three-dimensional bar graphs of choice frequencies in
the observed data as well as the model predictions of the DLr(t), DLr, Lr(t), Lr and L1(t) models,
respectively. All plots show the combined results for both group sizes (n = 3 and n = 7), weighted
by the number of observations in each condition.

Note the following:

1. The data for the generalized price matching game in Figure 2.15 shows rapid convergence
to the iterative dominance solution. By round 4, more than 50% of subjects choose the
iterative dominance solution. In contrast, for the p-beauty contest game (see Figure 2.5), the
proportion of choices of the iterative dominance solution remains less than 40% through all
10 rounds.

2. Figure 2.16 and Figure 2.18 show the model predictions of the DLr(t) model (best fit) and
the Lr(t) model, respectively. These two figures look very similar, since dynamic behavior
is driven mainly by adaptive learning, which is effectively captured by the Lr(t) model.
Nevertheless, the DLr(t) prediction is closer to the actual data and Lr(t) over-predicts the
frequency of the iterative dominance solution by a greater extent in earlier rounds. Thus, as
is the case for p-beauty contest game, the DLr(t) model distinguishes itself from the second
best fitting model in its power to better explain earlier rounds’ data.

3. As shown in Figure 2.17, the DLr model significantly over-predicts iterative dominance so-
lution in the first round because it does not allow for adaptive learning dynamics and thus
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Figure 2.15: Actual Data
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Figure 2.16: DLr(t) Model Prediction
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Figure 2.17: DLr Model Prediction
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Figure 2.18: Lr(t) Model Prediction
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Figure 2.19: Lr Model Prediction
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Figure 2.20: L1(t) Model Prediction
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more players are estimated to have higher level initial beliefs.

4. As shown in Figure 2.14, in the Lr model, about 90% of players are estimated to have high
beliefs that induce the iterative dominance solution play. Hence, Figure 2.19 shows that
Lr predicts most of choices to be 80 throughout the game and fails to capture the choice
dynamics over time.33

5. Figure 2.20 shows that in L1(t), all players are weighted fictitious players and their choices
gradually converge to 80 over time. It under-predicts the rate of convergence.

2.5 Conclusion

Dominance solvable games have a compelling theoretical prediction, but subjects who are motivated
by substantial financial incentives often deviate from this unique iterative dominance solution. To
explain their nonequilibrium behavior, the level-k model is an attractive candidate because it is
based on an iterative reasoning process (analogous to the iterated elimination of dominated strate-
gies). Each iteration in the level-k model is akin to a thinking step, in which players advance one
level by best-responding to their counterparts who reason one step less. Lower level players do not
perform enough thinking steps to reach the equilibrium initially. Nevertheless, empirical evidence
shows that behavior converges to the equilibrium over time. To capture subjects’ dynamic learning
behavior, this paper proposes a model that generalizes the standard level-k model.

Our model extends the level-k model in 3 significant ways. First, we allow players to revise their
rule levels over time. Specifically, players form beliefs over opponents’ rule levels, update their
beliefs upon observing opponents’ choices, and choose the optimal rule level that best-responds to
their beliefs. In this way, players may approach equilibrium play by choosing higher level rules,
i.e., they become more sophisticated over time. Second, we specify the level-0 rule as the weighted
average of ex post best responses in preceding rounds. As a result, as game play evolves, choices
corresponding to the same rule level may move toward equilibrium. By adaptively responding to
historical game play, players may approach the equilibrium without advancing in rule levels, i.e.,
they exhibit adaptive learning. Third, we generalize the standard level-k approach, which uses a
discrete rule hierarchy, to a level-r framework, which accommodates a continuous rule hierarchy.
This added flexibility decreases the reliance on the use of error structure to account for subjects’
observed behavior.

Interestingly, the extended model provides a novel unification of two separate streams of research
on non-equilibrium structural models of strategic behavior: 1) level-k and 2) belief learning models.
On one hand, level-k and cognitive hierarchy models are “static” models that have been used to
predict behaviors in one-shot games. On the other hand, belief learning models have been used
to predict choice dynamics in repeated games. The two classes of models are treated separately

33Using parameter estimates of the Lk model, we also compare the model prediction of Lk with that of
Lr. Like Lr, the Lk model also predicts that choices are highly concentrated around 80 throughout the
game. However, having a more restrictive initial belief distribution, Lk model prediction is less spread out
and does not show the cluster of choices in the 131-140 bin in the Lr model prediction.
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in the literature. The extended model integrates these seemingly distinct streams of research and
provides a sensible way to model behaviors in both one-shot and repeated games in a common and
tractable model framework.

We apply the extended model to two classes of games: p-beauty contest game and generalized price
matching game. Both types of games are dominance solvable and utilize a continuous strategy
space. For the former, we fit our model to the data from Ho et al. (1998), and for the latter, we
collect new data by running additional experiments. We find strong evidence that our general-
ized model explains the data better than its special cases, e.g., nested models that capture either
adaptive or sophisticated learning but not both. Furthermore, our structural estimates allow us to
identify whether adaptive learning or sophisticated learning is dominant in each class of game. We
find that although subjects’ dynamic behavior and convergence to the iterative dominance solution
is readily observable in the experimental data for both games, the underlying learning dynamics
that drives such convergence is quite different across these games: in p-beauty contest games, play-
ers’ dynamic behavior is driven by sophisticated learning, whereas in generalized price matching
games, it is driven by adaptive learning. Further, we show that a more restrictive model that allows
only one type of learning may be misspecified, and it would not explain behavior well across both
classes of games.

This paper incorporates both adaptive and sophisticated learning into the standard level-k frame-
work. Moreover, we prove that subjects’ behavior in our model will converge to the iterative
dominance equilibrium, provided that either adaptive or sophisticated learning is present. There-
fore, our model can be viewed as a characterization of the equilibration process. This view bears
the same spirit as Harsanyi’s “tracing procedure” (Harsanyi and Selten, 1988), in which players’
successive choices, as they react to new information in strategic environments, trace a path towards
the eventual equilibrium outcome.
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[48] Östling, R., J. T-Y. Wang, E. Chou, and C. Camerer (2011) ‘Testing Game Theory in the
Field: Swedish LUPI Lottery Games,’ American Economic Journal: Microeconomics, 3(3):
1-33.

[49] Pearce, D. G. (1984) ‘Rationalizable Strategic Behavior and the Problem of Perfection,’ Econo-
metrica, 52(4): 1029-1050.

[50] Selten, R. (1991) ‘Anticipatory learning in two-person games,’ in: R. Selten, ed., Game equi-
librium models, Vol. I: Evolution and game dynamics (Springer-Verlag, Berlin), 98-154.

[51] Shriver, S. and V. S. Srinivasan, 2011. ‘What if Marketers Put Customers Ahead of Profits,’
Working paper.

[52] Small, K. and H. Rosen, 1981. ‘Applied Welfare Economics with Discrete Choice Models,’
Econometrica, 49(1): 105-130.

[53] Srivastava, J. and N. Lurie (2001) ‘A Consumer Perspective on Price?Matching Refund Poli-
cies: Effect on Price Perceptions and Search Behavior,’ Journal of Consumer Research, 28(2):
296-307.

[54] Stahl, D. and P. Wilson (1994) ‘Experimental Evidence on Players Models of Other Players,’
Journal of Economic Behavior and Organization, 25 (3): 309-327.

[55] Stahl, D. and P. Wilson (1995) ‘On Players’ Models of Other Players - Theory and Experi-
mental Evidence,’ Games and Economic Behavior, 10: 213-254.

[56] Stahl, D. (1996) ‘Boundedly Rational Rule Learning in a Guessing Game,’ Games and Eco-
nomic Behavior, 16: 303-330.

[57] Stahl, D. (2000) ‘Rule Learning in Symmetric Normal-Form Games: Theory and Evidence,’
Games and Economic Behavior, 32: 105-138.



70

Appendix A

Appendix to Chapter 1

A.1 Proof of Theorems

Proof of Theorem 1.1. Recall that

umkj = −βk · p
m
j + xm

j · γk + ξmj + ǫmkj

= vmkj + ǫmkj

Let umk (i) be the i-th order statistic among umkj that result from realized {ǫmk0, . . . , ǫ
m
kJ}. Thus, A

m
kj

can be interpreted as the region where umk (1) = umkj. Then, the total consumer surplus can be
expressed as:
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Since the second term is irrespective of pmj ,
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Thus, it suffices to show that ∂
∂pmj

∫

umk (1) dFǫ(ǫ) < 0. Let G(umk (1) | pmj , pm−j) be the distribution of

order statistic umk (1), given the price of product j, pmj , and the price vector of all other products,
pm−j. We complete the proof by showing below that G(umk (1) | pmj , pm−j) first-order stochastically
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dominates G(umk (1) | p′, pm−j) for any p′ < pmj .

For any p′ < pmj ,

Pr[umk (1) ≤ z | pmj , pm−j] =
∏

j′∈Jm

Pr[umkj′ ≤ z | pmj′ ]

= Pr[umkj ≤ z | pmj ] ·
∏

j′ 6=j,j′∈Jm

Pr[umkj′ ≤ z | pmj′ ]

= Pr[ǫmkj ≤ z + βk · p
m
j − (xm

j · γk + ξmj )] ·
∏

j′ 6=j,j′∈Jm

Pr[umkj′ ≤ z | pmj′ ]

< Pr[ǫmkj ≤ z + βk · p
′ − (xm

j · γk + ξmj )] ·
∏

j′ 6=j,j′∈Jm

Pr[umkj′ ≤ z | pmj′ ]

= Pr[umkj ≤ z | p′] ·
∏

j′ 6=j,j′∈Jm

Pr[umkj′ ≤ z | pmj′ ]

= Pr[umk (1) ≤ z | p′, pm−j]

Hence, G(umk (1) | pmj , pm−j) first-order stochastically dominates G(umk (1) | p′, pm−j) for any p′ < pmj
and the theorem is proved.

Proof of Theorem 1.2. The equilibrium price pmj (αi) of product j in market m satisfies its first
order condition:

(1− αi) ·
∂πm

i

∂pmj (αi)
+ αi ·

∂Φm

∂pmj (αi)
= 0

Let g(αi, p
m
j (αi)) denote the lefthand side of the above equation so that αi and corresponding

equilibrium price pmj (αi) satisfies
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Rearranging g(αi, p
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j (αi)), we obtain
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Since ∂Φm
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< 0 by theorem 1.1, it must be the case that
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> 0 (A.1)

so that g(αi, p
m
j (αi)) = 0. Hence,
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Besides, if pmj (αi) is the equilibrium price of product j of firm i, then firm i’s weighted objective
function has to be concave in pmj at pmj (αi) since pmj (αi) is the objective function maximizer.
Specifically,
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We shall use the implicit function theorem to prove the theorem. By the implicit function theorem,
it suffices to show that

∂pmj (αi)

∂αi
= −

∂g(α,pmj )

∂αi

∂g(α,pmj )

∂pm
j

< 0

By equation (A.2),

∂g(α, pmj )

∂αi
=

(

∂Φm

∂pmj (αi)
−

∂πm
i

∂pmj (αi)

)

< 0

and by equation (A.3),
∂g(α, pmj )

∂pmj
< 0

Hence,
∂pmj (αi)

∂αi
< 0

as desired.

Proof of Theorem 1.3. By chain rule,

∂πm
i

∂αi
=
∑

j∈Jm

∂pmj
∂αi

·
∂πm

i (pm
i ,pm

−i)

∂pmj

Since the other firms’ prices are assumed to remain unchanged, we have

∂pmj
∂αi

= 0, ∀j /∈ Jm
i

Thus,

∂πm
i

∂αi
=

∑

j∈Jm
i

∂pmj
∂αi

·
∂πm

i (pm
i ,pm

−i)

∂pmj

We showed that
∂pmj
∂αi

< 0, ∀j ∈ Jm
i in theorem 1.2 and

∂πm
i (pm

i ,pm
−i)

∂pmj
> 0, ∀j ∈ Jm

i in equation (A.1).

Hence,
∂πm

i

∂αi
< 0 as desired.
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A.2 Definition of Variables

• INCOME : INCOME is monthly income input as one of the 11 income brackets of [$0, $1000],
[[$1000, $1500], [$1500, $2000], [$2000, $2500], [$2500, $3000], [$3000, $3500], [$3500, $4000],
[$4000, $6000], [$6000, $8000], [$8000, $10000], and above $10000.

• HHOLDSIZE : HHOLDSIZE is the size of the household.

• AGE : AGE is the age of the primary grocery buyer.

• DWELLING : DWELLING is a dummy variable that is equal to one if the household lives
in a subsidized public housing and zero if in a private housing.

• WORK : WORK is a dummy variable that is equal to one if the primary grocery buyer works.

• MAID : MAID is a dummy variable that is equal to one if the household has a maid.

• CHILD04 : CHILD04 is a dummy variable that is equal to one if the household has a child
aged 4 or below.

• CHILD514 : CHILD514 is a dummy variable that is equal to one if the household has a child
aged between 5 and 14.

• FAMILY : FAMILY is a dummy variable that is equal to one if the household is of sin-
gles/couples type and zero if it is of family type.

• FEMALE : FEMALE is a dummy variable that is equal to one if the household has a female
at age of 30 years or older.
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A.3 Key Position Holders of NTUC

Name Position at NTUC Term Political Career

Devan Nair Secretary General ’61-’65 President of Singapore (’81-’85)
Secretary General ’70-’79
President ’79-’81

ST Nagayan Secretary General ’65-’66 Member of Parliament
Ho See Beng President ’62-’64 Member of Parliament

Secretary General ’66-’67
Chairman ’66-’67

Seah Mui Kok Secretary General ’67-’70 Member of Parliament
Lim Chee Ong Secretary General ’79-’83 Member of Parliament
Ong Teng Cheong Secretary General ’83-’93 Cabinet Minister

Deputy Prime Minister
President of Singapore (’93-’99)

Lim Boon Heng Secretary General ’93-’06 Cabinet Minister
Chairman of PAPa

Lim Swee Say Secretary General ’07-Present Member of Parliament
aPeople’s Action Party is the single most dominant political party in Singapore historically

occupying 93% to100% seats of Singapore parliament.
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Appendix B

Appendix to Chapter 2

B.1 Proof of Theorems

Proof of Theorem 2.4 and Theorem 2.5. First, we show that repetition unraveling property
holds if ρd < ∞. Let wn(t) =

(n−1)

ρd·φ
t
d
+φt−1

d
·(n−1)+···+(n−1)

. We have

bi(t) =
ρd · φ

t
d · bi(0) + φt−1

d · (n− 1) · r(z−i(1)) + · · ·+ (n− 1) · r(z−i(t))

ρd · φt
d + φt−1

d · (n− 1) + · · ·+ (n− 1)

= (1− wn(t)) · bi(t− 1) + wn(t) · r(z−i(t)) (B.1)

Let rmax be the rule level corresponding to the iterative dominance solution, i.e., the highest
rule level that a player can play. Naturally, bi(t) ∈ [0, rmax]. Note that rmax may be ∞,
which is the case in the p-beauty contest game with strategy space [0, U ]. Then, the below
lemma proves Theorem 2.4 and Theorem 2.5 for ρd < ∞.

Lemma B.1. If ρd < ∞, then limt→∞ bi(t) = rmax.

Proof of Lemma B.1. It suffices to show that the lower corner of range of bi(t) converges
to rmax. The lower corner of the range of bi(t) is realized when all players’ initial belief is
lowest possible, i.e., bi(0) = 0, ∀i. Since all players start with the same initial belief, their
observations are the same in each subsequent round, and thus they update the same after
each round. As a consequence, all players choose the same number at every time t. Hence,
bi(t) = bj(t) ∀j 6= i, ∀t and

r(z−i(t)) = min{bi(t− 1) + 1, rmax} ∀i and ∀t. (B.2)

First, if rmax = ∞, we have the lower corner of range of 1st round belief as

bi(1) = (1− wn(1)) · bi(0) + wn(1) · r(z−i(1)) by (B.1)

= (1− wn(1)) · bi(0) + wn(1) · (bi(0) + 1) by (B.2)

= bi(0) + wn(1)

= wn(1)
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and iteratively, we have the lower corner of range of t-th round belief as

bi(t) =
t
∑

s=1

wn(s).

If ρd < ∞ and φd ∈ [0, 1), then limt→∞ wn(t) = 1− φd > 0. Thus, limt→∞ bi(t) = rmax = ∞.
If ρd < ∞ and φd = 1, let ρd < k · (n− 1) for some positive integer k. Then, limt→∞ bi(t) =

limt→∞

∑t
s=1wn(s) > limt→∞

∑t
s=1

(n−1)
(k+s)·(n−1)

= limt→∞

∑t
s=1

1
k+s

= ∞. Thus, regardless of
level-0 player’s choice, players’ choices converge to the iterative dominance solution as t → ∞.

Second, if rmax < ∞, there exists smallest 0 < t0 < ∞ such that r(z−i(t)) = rmax for all
t ≥ t0. Then for all t > t0, we have the lower corner of range of bi(t) as

bi(t) =
t
∏

s=t0

(1− wn(s)) · bi(t0 − 1) +

(

1−
t
∏

s=t0

(1− wn(s))

)

· rmax.

where bi(t0−1) < rmax. It is easy to show that if ρd < ∞, then limt→∞

∏t
s=t0

(1−wn(s)) = 0
for any φd ∈ [0, 1]. Hence, limt→∞ bi(t) = rmax as desired.

Next, we show that repetition unraveling property holds if ρ0 < ∞. We assume the iterative
dominance solution is L = 0 in the p-beauty contest game. Proof for L > 0 is analogous. In
both games, it suffices to show that x0(t) converges to the iterative dominance solution as
t → ∞. All players have at least level-0 belief and thus are at least of rule level 1. Hence,
we have

ω(1) ≤
p · (n− 1)

n− p
· x0(1) < x0(1). (B.3)

Since level-0 rule’s choice in round 2 equals x0(2) =
ρ0·φ0·x0(1)+ω(1)

ρ0·φ0+1
, ρ0 < ∞, and φ0 ∈ [0, 1],

the weight given to ω(1) is bigger than 0, i.e., 1
ρ0·φ0+1

> 0. Thus using (B.3),

x0(2) ≤
ρ0 · φ0 + u

ρ0 · φ0 + 1
· x0(1),

where u = p·(n−1)
n−p

. Through similar iterative processes over time, we obtain

x0(t) ≤
ρ0 · φ

t−1
0 + φt−2

0 + · · ·+ φ0 + u

ρ0 · φ
t−1
0 + φt−2

0 + · · ·+ φ0 + 1
· x0(t− 1).

Letting q(t) = ρ0 · φ
t
0 + φt−1

0 + · · ·+ φ0 + 1, we have

x0(t) ≤

t−1
∏

s=1

(

1−
1− u

q(s)

)

· x0(1).
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Thus, it suffices to show that

lim
t→∞

t−1
∏

s=1

(

1−
1− u

q(s)

)

= 0.

Note that if ρ0 < ∞ and φ0 < 1, then lims→∞ q(s) = 1
1−φ0

and lims→∞

(

1− 1−u
q(s)

)

= 1−(1−u)·

(1−φ0). Thus lims→∞

(

1− 1−u
q(s)

)

< 1 and it is readily shown that limt→∞

∏t−1
s=1

(

1− 1−u
q(s)

)

=

0. If φ0 = 1, it boils down to showing that

lim
t→∞

t−1
∑

s=1

log

(

1−
1− u

q(s)

)

= −∞.

To show the above, we have

lim
t→∞

t−1
∑

s=1

log

(

1−
1− u

q(s)

)

< lim
t→∞

∫ t

1

log

(

1−
1− u

q(s)

)

ds

= lim
t→∞

∫ t

1

log

(

1−
1− u

ρ0 + s

)

ds

= lim
t→∞

∫ t

1

−
∞
∑

k=1







(

1−u
ρ0+s

)k

k






ds

< lim
t→∞

∫ t

1

−
1− u

ρ0 + s
ds

= lim
t→∞

−(1− u) · ln(ρ0 + s)
∣

∣

t

1
= −∞.

Note that we use a taylor expansion so that log
(

1− 1−u
ρ0+s

)

= −
∑∞

k=1

(

(

1−u
ρ0+s

)k

k

)

since

∣

∣

∣

1−u
ρ0+s

∣

∣

∣
< 1. Hence, x0(t) → 0 and players’ choices converge to iterative dominance solution

over time.

In the generalized price matching game, let L be the lower corner of strategy space and the
iterative dominance solution. Then,

x0(t) =
ρ0 · φ

t−1
0 + φt−2

0 + · · ·+ φ0

ρ0 · φ
t−1
0 + φt−2

0 + · · ·+ φ0 + 1
· x0(t− 1) +

1

ρ0 · φ
t−1
0 + φt−2

0 + · · ·+ φ0 + 1
· ω(t− 1)

≤
ρ0 · φ

t−1
0 + φt−2

0 + · · ·+ φ0

ρ0 · φ
t−1
0 + φt−2

0 + · · ·+ φ0 + 1
· x0(t− 1)

+
1

ρ0 · φ
t−1
0 + φt−2

0 + · · ·+ φ0 + 1
·max{L, x0(t− 1)− 2 · s},
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since the minimum choice in round t − 1 is at most x0(t − 1)− s (because all players have
at least level-0 belief and thus are of at least level-1) and the ex post best response ω(t− 1)
is s less than the former. Suppose max{L, x0(t − 1) − 2 · s} = x0(t − 1) − 2 · s, ∀t. Then,
x0(t) ≤ x0(t− 1)− 1

ρ0·φ
t−1

0
+φt−2

0
+···+φ0+1

· 2 · s, ∀t. Since
∑∞

t=1
1

ρ0·φ
t−1

0
+φt−2

0
+···+φ0+1

= ∞, ∀φ0 ∈

[0, 1], this implies that limt→∞ x0(t) = −∞ which contradicts that x0(t) ∈ [L, U ]. Hence,
x0(t− 1)− 2 · s eventually becomes smaller than L for sufficiently large t. We let t0 be the
threshold period where max{L, x0(t− 1)− 2 · s} = L for ∀ t ≥ t0. Then, ∀t > t0,

x0(t) ≤
ρ0 · φ

t−1
0 + φt−2

0 + · · ·+ φt−t0
0

ρ0 · φ
t−1
0 + φt−2

0 + · · ·+ φ0 + 1
· x0(t0) +

∑t−t0−1
s=0 φs

0

ρ0 · φ
t−1
0 + φt−2

0 + · · ·+ φ0 + 1
· L

If ρ0 < ∞, limt→∞

∑t−t0−1

s=0
φs
0

ρ0·φ
t−1

0
+φt−2

0
+···+φ0+1

= 1, ∀φ0 ∈ [0, 1]. Hence, x0(t) → L as desired.

B.2 Instructions for Generalized Price Matching

Game

Below is the instruction for the experimental generalized price matching game for the group
of size 3. That for the group of size 7 is exactly same but only with different numerical
examples.

Instructions

This is an experiment about economic decision-making. The instructions are simple; and if
you follow them carefully and make good decisions, you may earn a considerable amount of
money which will be paid to you in cash at the end of the experiment. It is important that you
do not look at the decisions of others, and that you do not talk, laugh, or make noises during
the experiment. You will be warned if you violate this rule the first time. If you violate this
rule twice, you will be asked to leave the room immediately and your cash earnings will be $0.

The experiment consists of 10 decision rounds. In each decision round, you will be randomly
assigned into groups of 3 participants. That is, you are randomly matched with other par-
ticipants in each round, and your paired members may be different round by round.

Experimental Procedure

In each decision round, all members in each group are asked to choose a number simultaneously
between 80 and 200 (inclusive of 80 and 200, and up to 1 decimal point). Specifically, each member
can choose any number among 80.0, 80.1, 80.2,., 199.8, 199.9, and 200.0. Note that each mem-
ber must make a choice without knowing what his or her paired members will choose. Once all
members in a group make their choices, the computer will determine each members point earning
based on everyones chosen number. Ones point earning is determined by ones chosen number and



APPENDIX B. APPENDIX TO CHAPTER 2 79

the minimum choice of ones paired members excluding oneself. Details of how point earning is
determined will be given below. After each decision round, each participant will be told (a) his/her
choice in that round, (b) the minimum choice of his/her paired members excluding him/herself in
that round, and (c) his/her point earning in that round. Again, every participant will undertake
this task 10 times, and will be randomly matched with other participants in each round.

Determination of Point Earnings

Your total point earning in each round is the sum of 2 components: baseline earning and supple-
mentary earning. Specifically, we have:

TOTAL POINT EARNING = BASELINE EARNING + SUPPLEMENTARY EARNING.

1. BASELINE EARNING: In each round, the baseline earning in a group is given by the mini-
mum of all members choices in that group. That is, we will examine all choices in each group
and use the minimum of the choices in the group to determine its baseline earning. Note
that all members in a group receive the same baseline earning. Different groups, however,
may receive different baseline earnings depending on the choices of their respective group
members.

2. SUPPLEMENTARY EARNING: Depending on the relative magnitude between your own
choice and the minimum of your paired members choices, your supplementary earning can
be either positive, negative, or zero. Each case is described in full detail below.

a) Positive Supplementary Earning: You will receive a positive supplementary earning (on
top of your baseline earning) if your own choice is smaller than the minimum choice
of your paired members excluding yourself. This means that your choice is the only
smallest number in the group. That is, you have chosen the lowest number, while all
your paired members have chosen bigger numbers than you did. Since you receive a
positive supplementary earning, your total point earning will be higher than your base-
line earning as a consequence.

Precisely, your positive supplementary earning is 1.5 TIMES the difference between
your choice and the minimum of your paired members choices. However, there is a cap
on the maximum supplementary earning that you can earn. In this experiment, you
can earn up to 15 supplementary points. Again, your total earning is the sum of your
baseline earning and supplementary earning.

b) Negative Supplementary Earning: You will receive a negative supplementary earning
(i.e., a deduction from your baseline earning) if your choice is higher than the minimum
choice of your paired members excluding yourself. This means that someone else in
your group has chosen a smaller number than you did, and your choice is NOT the
lowest number (or the minimum). Since you receive a negative supplementary earning,
your total point earning will be lower than your baseline earning as a consequence.
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Figure 1: Supplementary Earning

Precisely, the magnitude of your negative supplementary earning is 1.5 TIMES the
difference between your choice and the minimum of your paired members choices. How-
ever, there is a cap on the maximum supplementary points that will be deducted from
your baseline earning. In this experiment, up to 15 supplementary points can be de-
ducted from your baseline earning. Again, your total earning is the sum of your baseline
earning and supplementary earning.

c) No Supplementary Earning: You will receive no supplementary earning if your choice is
the smallest in your group, but there are also other paired members who have chosen
the same number as well. As a consequence, your total point earning will simply be
your baseline earning.

Figure 1 summarizes the 3 possible cases of supplementary earning described above.

If your choice is smaller than the minimum of your paired members choices (on the left hand side
of Figure 1), your positive supplementary earning increases as your choice gets even smaller and
farther away from your paired members minimum choice (indicated as X at the origin). Your posi-
tive supplementary earning is exactly 1.5 times the difference between your choice and your paired
members minimum choice. However, once the positive supplementary earning hits 15, your positive
supplementary earning stops increasing and remains at 15. Note that as you choose a smaller num-
ber on the left hand side of Figure 1, the baseline earning for everyone in the group becomes smaller
too (because the smaller number that you choose is also the minimum of all members choices).
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If your choice is higher than the minimum of your paired members choices (on the right hand side
of Figure 1), you will receive a negative supplementary earning. The magnitude of your nega-
tive supplementary earning increases as your choice gets even higher and farther away from the
minimum of your paired members choices (indicated as X at the origin). The magnitude of your
negative supplementary earning is exactly 1.5 times the difference between your choice and your
paired members minimum choice. Likewise, once the negative supplementary earning hits −15, it
stops getting larger and remains at −15. Note that as you choose a higher number on the right
hand side of Figure 1, the baseline earning for everyone in the group remains the same at the
minimum of your paired members choices (i.e., X) because X remains the minimum of all members
choices.

Finally, if your choice is the same as the minimum of your paired members choices (when your
choice is at the origin of Figure 1), your supplementary earning is zero, and your total earning is
simply the baseline earning.

Illustrative Examples

The numbers used in following examples are chosen purely for illustrative purposes.

EXAMPLE 1: Assume your paired members chose 160.0 and 167.2, respectively. Note that the
minimum of your paired members choices is 160.0 (the smaller of 160.0 and 167.2). We shall use
Figure 2 below (which we created by relabeling Figure 1) to determine your supplementary earning
depending on possible choices you can make. Note that the origin is now set to l60.

1. If you choose 130, everyones baseline earning is 130 (since 130 is the minimum of the choices of
all group members including yourself). As indicated in Point A, your supplementary earning
will be 15. This is because your choice is 30 below 160, and 1.5 times this difference exceeds
15, leaving your positive earning at its cap of 15. As a consequence, your total earning is
130 + 15 = 145.

2. If you choose 155, everyones baseline earning is 155. As indicated in Point B, your supple-
mentary earning will be 7.5 (1.5 times the difference between your choice of 155 and the
minimum choice of the paired members of 160). As a consequence, your total earning is
155 + 7.5 = 162.5.

3. If you choose 160, everyones baseline earning is 160. As indicated in Point C, your sup-
plementary earning is zero because your choice is identical to the minimum of the paired
members. As a consequence, your total earning is 160 + 0 = 160.

4. If you choose 165, everyones baseline earning is 160 (since 160 is the minimum of choices of
all group members including yourself). As indicated in Point D, your supplementary earning
will be −7.5. This is because your choice is 5 above 160, and 1.5 times this difference is 7.5.
As a consequence, your total earning is 160− 7.5 = 152.5.

5. If you choose 190, everyones baseline earning is 160. As indicated in Point E, your supple-
mentary earning will be −15, because 1.5 times the difference between your choice and the
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Figure 2: Choice Scenarios When the Paired Members Chose 160.0 and 167.2

Your
Choice

Point Indicated
in Figure 2

Your Paired Members’
Minimum Choice

Baseline
Earning

Supplementary
Point Earning

Total Point
Earning

130.0 A 160.0 130.0 +15.0 145.0
155.0 B 160.0 155.0 +7.5 162.5
160.0 C 160.0 160.0 0 160.0
165.0 D 160.0 160.0 -7.5 152.5
190.0 E 160.0 160.0 -15.0 145.0

Table 1: Summary of Earnings when the Paired Members Chose 160.0 and 167.2

minimum of the paired members choices is 45 which exceeds 15. As a consequence, your total
earning is 160− 15 = 145.

Table 1 summarizes the baseline, supplementary and total point earnings for the 5 possible scenar-
ios (when the paired members choose 160.0 and 167.2).

EXAMPLE 2: Assume your paired members chose 120.0 and 147.8, respectively. Note that the
minimum of your paired members choices is 120.0 (the smaller of 120.0 and 147.8). We shall use
Figure 3 below (which we created by relabeling Figure 1) to determine your supplementary earning
depending on possible choices you can make. Note that the origin is now set to l20.

1. If you choose 90, everyones baseline earning is 90 (since 90 is the minimum of the choices of
all group members including yourself). As indicated in Point V, your supplementary earning
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Figure 3: Choices Scenarios when the Paired Members Chose 120.0 and 147.8

will be 15. This is because your choice is 30 below 120, and 1.5 times this difference exceeds
15, leaving your positive earning at its cap of 15. As a consequence, your total earning is
90 + 15 = 105.

2. If you choose 115, everyones baseline earning is 115. As indicated in Point W, your sup-
plementary earning will be 7.5 (1.5 times the difference between your choice of 115 and the
minimum choice of the paired members of 120). As a consequence, your total earning is
115 + 7.5 = 122.5.

3. If you choose 120, everyones baseline earning is 120. As indicated in Point X, your sup-
plementary earning is zero because your choice is identical to the minimum of the paired
members choices. As a consequence, your total earning is 120 + 0 = 120.

4. If you choose 125, everyones baseline earning is 120 (since 120 is the minimum of choices of
all group members including yourself). As indicated in Point Y, your supplementary earning
will be −7.5. This is because your choice is 5 above 120, and 1.5 times this difference is 7.5.
As a consequence, your total earning is 120− 7.5 = 112.5.

5. If you choose 150, everyones baseline earning is 120. As indicated in Point Z, your supple-
mentary earning will be −15 because 1.5 times the difference between your choice and the
minimum of the paired members choices is 45, which exceeds 15. As a consequence, your
total earning is 120 − 15 = 105.
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Your
Choice

Point Indicated
in Figure 3

Your Paired Members’
Minimum Choice

Baseline
Earning

Supplementary
Point Earning

Total Point
Earning

90.0 V 120.0 90.0 +15.0 105.0
115.0 W 120.0 115.0 +7.5 122.5
120.0 X 120.0 120.0 0 120.0
125.0 Y 120.0 120.0 -7.5 112.5
150.0 Z 120.0 120.0 -15.0 105.0

Table 2: Summary of earnings when the paired members chose 120.0 and 147.8

Table 2 summarizes the baseline, supplementary and total point earnings for the 5 possible scenar-
ios (when the paired members choose 120 and 147.8).

Your Dollar Payoffs

At the end of the experiment, we will sum your point earning in each round to obtain your total
point earning over 10 rounds. We will then multiply your total point earning by $0.01 to obtain
your dollar earning. In addition, we will add to this dollar earning $5 show-up fee to determine
your final dollar earning. The amount will be paid to you in cash before you leave the experiment
today.
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