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Sample size determination for jointly testing a
cause-specific hazard and the any-cause hazard
in the presence of competing risks

Qing Yang, Wing K. Fung, & Gang Li *

Abstract

This article considers sample size determination for jointly test-
ing a cause-specific hazard and the any-cause hazard for competing
risks data. The cause-specific hazard and the any-cause hazard jointly
characterize important study endpoints such as the disease-specific
survival and overall survival, which are commonly used as co-primary
endpoints in clinical trials. Specifically, we derive sample size calcu-
lation methods for two-group comparisons based on an asymptotic
chi-square joint test and a maximum joint test of the aforementioned
quantities, taking into account of censoring due to lost to follow-up as
well as staggered entry and administrative censoring. Our simulations
demonstrate that the proposed methods can produce substantial sam-
ple size savings over the classical Bonferroni adjustment method and
generally have satisfactory finite sample performance. We illustrate
the application of the proposed methods using the 4-D (Die Deutsche
Diabetes Dialyse Studie) clinical trial.
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1 Introduction

It has been widely recognized in the statistics and clinical trials literature
that in the presence of competing risks, the effects of a variable on the time
to a particular type of failure, say cause-1 failure, is not completely char-
acterized by the cause-1 cause-specific hazard (C'SH;) alone [6, 3, 14, 17].
An additional quantity, such as the cause-1 cumulative incidence function,
the any-cause hazard (ACH) due to any cause, or the cause-specific hazard
due to other causes, needs to be studied jointly and reported side-by-side
with the cause-1 cause-specific hazard. Li and Yang [17] developed joint test
procedures for each of the above three pairs of quantities for right-censored
competing risks data, and showed that the joint tests can be substantially
more powerful than the classical Bonferroni method. In this paper we de-
velop a power analysis tool using joint test procedures for the planning of a
clinical trial with completing risks data.

There is an extensive literature on sample size calculation for time-to-
event data. For a time-to-event outcome with no competing risks, Schoen-
feld [20, 21] proposed a sample size calculation formula for two-sample com-
parison under uniform patient entry and administrative censoring. Lachin
and Foulkes [10] extended the formula to more complex situations, allow-
ing for truncated exponential patient entry, loss to follow-up, noncompli-
ance and stratified analysis. Yateman and Skene [25] used piecewise expo-
nential distribution to approximate arbitrary patient entry pattern and loss
to follow-up distribution. Further discussion of this topic can be found in
9, 11, 12, 13, 19, 2] and the references therein. In the presence of compet-
ing risks, current sample size calculation methods are based on either the
cause-specific hazard alone [18, 22| or the cumulative incidence hazard alone
[16, 15]. However, sample size calculation methods for jointly testing multiple
quantities with competing risks data has yet to be developed.

The primary goal of the paper is to derive power analysis methods for
competing risks data based on the joint tests of C'SH; and AC'H developed
by Li and Yang [17]. Note that C'SH; and ACH jointly characterize some
commonly used endpoints in clinical trials. For instance, in a clinical trial
of a new treatment targeting a specific disease, the disease-specific survival
(DSS) and overall survival (OS) are often used as co-primary endpoints for
how the treatment works on the disease and on a patient’s overall survival,
respectively. In this case, C'SH; and AC'H should be used together to study
the treatment effects on DSS and OS jointly.



In Section 2, we review the joint tests of Li and Yang [17] for C'SH;
and ACH and derive their asymptotic properties under contiguous local al-
ternatives. The asymptotic results are then used to develop approximate
sample size determination procedures. Both two-sided and one-sided tests
are considered. We also incorporate random censoring due to lost to fol-
low up, staggered patient entry and administrative censoring. In Section
3 we present simulations to illustrate potential sample size savings of our
methods in comparison of the classical Bonferroni adjustment method and
evaluate their finite sample performance. In Section 4, we use the 4-D (Die
Deutsche Diabetes Dialyse Studies) clinical trial to provide a step-by-step
demonstration of how our methods are implemented and used in practice.
Further remarks are given in Section 5. Technical proofs are deferred to the
appendix. An R code implementing the proposed sample size calculation
methods is available upon request.

2 Sample size calculation for joint tests of
CSH; and ACH

2.1 Joint tests of CSH; and ACH

For the reader’s convenience, we first review the joint tests of C'SH; and
ACH [17].

Suppose that there are two independent groups of subjects (1 for control
and 2 for treatment). For subject i in group k, let T, Dy, and Cy denote
its failure time, failure type, and censoring time, respectively, ¢ = 1,..., ng,
k =1,2. Let a; and as = 1 — a; be the patient allocation proportions for
groups 1 and 2, respectively. Let n = n; 4+ ny denote the total sample size.
Assume that within group k, {(T, Dik, Cir), i = 1,...,ni} are independent
and identically distributed and that the censoring time Cj; is independent
of the failure time Tj;. Assume further that the two groups have the same
censoring survival function S.(t) = P(Cy, > t). For group k (k = 1,2), one
observes a right censored competing risks failure time data {(X, o), 7 =
1,...,ng}, where X;; = min(Tj,, Cix) and 8y, = DI (Ti < Cix). Denote by
Sk(t) = P(T}, > t) the any-cause survival function for group k,k = 1,2. For
convenience, we assume hereafter that there are only two causes of failure
and that cause-1 failure is of primary interest.



Consider the following joint hypothesis of C'SH; and ACH:
H() . )\11(t) = )\12(15) and )\1('[5) = )\.Q(t), (1)

where
. Pt <Ty <t+At,Dy = j|Ty > 1)
At—0 At
is the cause-specific hazard for cause-j failure in group k (j,k = 1,2), and
Ak(t) = Mg (t) + Aog(t) is the any-cause hazard for group k, k =1, 2.
The chi-square joint test statistic of Li and Yang [17] for (1) is defined as

_ a1 U
Xi —n ! (Un, U.l) > ( U,lll ) 7 (2)

Un—/ (Tl o 7onl 2

/ Wt Y1 Yz( ) {dN-l( ) dNs(t )}

) Y )
Nip(t) = S0 I(Xg < t, Dy = j) is the number of observed failures due
to cause j in group k by time ¢, Yy (t) = Y 0% I{ Xy > t} is the number of
patients in group k who are at risk just prior to time ¢, Nj.(t) = S22_, Nx(t)

where

and Y.(t) = Y27, Ya(b), 3 is the estimated variance-covariance matrix of
n~V2(Uy,U,) [17], 7 is the smallest ¢ such that Y;(t)Ys(t) = 0, and W, (t)
and W.(t) are two predictable weight functions that converge in probability
to some deterministic functions ws(¢t) and w.(t) as n — oo. It has been
shown by Li and Yang [17] that the limiting null distribution of X? under
Hy is standard chi-square with 2 degrees of freedom. Thus, one rejects Hy
at level a if X7 > x3 ,, where x3, is the upper o percentile of the standard
x5 distribution.
The maximum joint test statistic for (1) is defined as

where Zfrf) = n~V2U VG, Z_(ln) = n~Y2U.,/\/642, and 611 and Gy, de-
fined in (24), are estimated variances of n~'/2U;; and n='/2U, respectively.
Li and Yang [17] showed that under the null hypothesis (1), M,, converges
to a random variable M = max(|Z11],|Z1]), where Zi1, Z.1 have the bivari-
ate normal distribution N((0,0)7,(1,1,p)). This allows one to obtain an
approximate maximum test of Hy based on M,,.
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2.2 General asymptotic theory under local alternatives

In this section, we establish the general asymptotic theory for the above joint
tests under some contiguous proportional hazards alternatives for C'S H; and
ACH, which provides a step stone for developing the sample size determina-
tion methods in the following section. The contiguous proportional hazards
alternatives for CSH; and AC'H can be formulated as

Hy: A7 () = en@ /@30 (), A1) = e @/@ 30 (p),

AD(E) = e ey (1), AP () = erswren g, Y
where either v # 0 or 7. # 0, ¢1(t) and ¢.(t) are pre-specified and pos-
sibly time-varying functions, and Ajo(f) and Ao(t) are unspecified baseline
cause-specific hazard and any-cause hazard, respectively. Gill [5] showed
that a weighted log-rank test with a weight function converging to ¢(t) gives
the optimal power against the contiguous hazards alternative with a time-
varying proportionality function ¢(t). Therefore, we focus on weight func-

tions wy (t) = ¢1(t) and w.(t) = ¢.(t) [2, 8].

Theorem 1 (a) Under the sequence of local alternatives (4), as n — oo,
X2 has an approzimate non-central chi-square distribution with 2 de-
grees of freedom and mon-centrality parameter

E=p"E My, (5)

where p = (p1, o) and X = [0;;] are defined by

1 = aiam fo PF(t)dPro(t),
|75) = a1az7. fO 2 t dpo( ),
011 = @102 fo ¢1 dPlO( ) (6)

022 a10G3 fo ¢2 dPO( )
o1z = 091 = ajag [, ¢1(t)e.(t)dPio(t),

Pi(t) = fo yo(u)dAqp( ) s the pmbability of observing an cause-1

fazlure by time t, Po(t) = fo yo(u)dA.o(u) is the probability of ob-
servzng an any- cause fazlure by tzme t with yo(t) = So(t)Sc(t) and

( —eXp{ fo ds}

(b) Under the sequence of local alternatives (4), as n — oo, M, converges
in distribution to a random wvariable M* = max(|Z7],|,|Z%]), where



(Z11,Z%) has a bivariate normal distribution

) ()
o1 /02 "\ Voo
The proof of Theorem 1 is deferred to the appendix.

2.3 Sample size calculation for the chi-square joint test

The asymptotic theory in the above section enables one to develop sample
size calculation methods for the joint tests. However, the resulting methods
for time-varying alternatives would require estimation of multiple quantities
that are difficult to interpret and thus inconvenient to use in practice. For
the easy of interpretation and practical use, we will focus only on the simple
case ¢1(t) = ¢.(t) = 1 from now on.

As pointed out by Eng and Kosorok [2], a power analysis is usually based
on a fixed alternative rather than a contiguous alternative. However, for given
fixed alternatives v; and ¥, the log(cause-1 cause-specific hazard ratio) and
the log(any-cause hazard ratio), the asymptotic results of Theorem 1 justify
an approximate power calculation by setting v, = n'/24} and v. = n'/?y
Our sample size calculation formulas will account for two different types of
censoring.: independent random censoring Cj,. due to lost to follow-up and
administrative censoring caused by staggered entry and end of the study.

*

2.3.1 Required number of cause-1 failures.

Under the above setting, it is easy to verify that (5) reduces to

*2 * Ak *2 R
£ = D, 2O @
where D1 = n x Pjo(7) is the total number of cause-1 failures by time 7
and R = Pyo(7)/Po(7) is the relative risk of observing a cause-1 failure to
an any-cause failure, which are approximately equal to the corresponding
quantities in the pooled group for large n under the contiguous alternative
hypothesis (4).
Therefore, for a given Type 1 error rate o and a power 1 — 3, the required
number of cause-1 failures in the pooled group is approximately
D, = SU-R) (8)

araz(V{* =277 +72*/R)’
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where £ is solved from the following equation
1-8 = P(Reject Ho|H) = P(Xu” > X3, |X0” ~ x3(€)),

or
1-f=1-Ps(x34:2,9). (9)
with ng(x; k,&) being the non-central chi-square cumulative distribution
function with 2 degrees of freedom and non-centrality parameter £. In our
R implementation, we use pchisq() to evaluate Pyz(x;k,§) and uniroot() to
solve for &.
In summary, the required number of cause-1 failures is determined by (8)
by three parameters: 1) the cause-1 cause-specific hazard ratio, exp(v}) , 2)
the any-cause hazard ratio, exp(y*), and 3) the relative risk R of observing a
failure due to cause 1 to any cause in the pooled sample. As illustrated later,
these parameters can be obtained by specifying the cumulative incidence
rate at a pre-specified time for cause-1 failure and for any-cause failure in
the control and experimental groups under the constant cause-specific hazard
assumption for each cause.

2.3.2 Required number of patients.

In this section, we discuss how to determine the required number of patients
for a trial with staggered entry, administrative censoring, and loss to follow-
up. Let fix(t) and Pyx(t) be the density and cumulative incidence function
for cause-1 failure in group k, respectively, S.(¢) be the survival function
of the independent censoring due to lost to follow-up, f,.(t) be the density
function of the entry time Tj, r be the length of the accrual period, and f
be the total length of the study period. Let )y denote the probability of
observing a cause-1 failure in groups k£ by the end of the study. Then, the
totally number of patients required is given by

N = Dy /{a; x Q11 + a2 X Qi2}, (10)
where for k =1, 2,
r f—=
Qe = P(Ty < f — Ty, T < Ciy) = / £ [ @S dtd= (1)
0 0

For example, if one assumes constant cause-specific hazard in each group
k, uniform stagger entry over [0,7], and exponential lost to follow-up with
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constant hazard A, then for k =1, 2,
Ak [y exp = (A + AJ(f = 1)) — exp [~ (As + Ac) ]

= ) 12
@i Ak + Ae Ak + Ao)r (12)
where
A2 = €$p<—ﬂf)* X A11,
A = 6@9(%) x Aii/R, (13)

Ao = exp(—7F) X A1

In summary, the total number of patients needed to enroll in a study can
be obtained from (10) and (11) by specifying the following quantities: 1) the
length of accrual time r, 2) the maximum follow-up time f, 3) the patient
proportion a; for group 1, 4) the hazard rate A. for loss to follow up, and 5)
the cause specific hazard for cause 1 in group k A\, k =1, 2.

2.4 Sample size calculation for the maximum joint test

In this subsection, we present an algorithm to calculate the required number
of cause-1 failures and the required number of patients based on the joint
maximum joint test defined in (3).

Under the same assumptions of the previous section, it can be shown that
(Z11, Z.1) have the following bivariate normal distribution

N ((’yf\/alang,'y,* alaQDl/R>T, (1, 1, Jﬁ)) , (14)

where R = Pjy/ Py, the relative risk of failure due to cause 1 vs. any cause.
Given a Type I error rate o and a Type II error rate 3, we have the
following error equations:

a = P(Reject Ho|Ho) = P(M,, > Cy|Hy), (15)

and
1— 3 = P(Reject Ho|H,) = P(My, > Cy|H,), (16)

where C, is the critical value of the test. Let f(z,y; u1, 2, p) be the bivariate
normal density function with mean (uy, o), variances (1, 1), and correlation
p. Then (15) and (16) can be rewritten as

Cq Ca
/ f(2,9;0,0,VR)dxdy = a, (17)
—Cq J—Cqy
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and
Ca Co
/ f(@,y; 7t VarasDr, v JarasDi B, VR)dedy = 5. (18)
—Cqo J—Cq

We solve for C, and D; sequentially from equations (17) and (18). In
our R implementation, we use pmwvnorm() to evaluate a bivariate normal
probability and uniroot() to solve an equation.

Lastly, with staggered entry and lost to follow-up, the required number
of patients in a trial is computed from (10) and (11) as in Section 2.3.2 .

3 Simulation studies

We present three simulations to illustrate the operating characteristics of the
proposed methods. Competing risks data are generated by using Beyersmann
et al. [1]’s cause-specific hazard driven method that requires only specification
of the cause-specific hazard for each type of failure. We assume constant
cause-specific hazard in each group k, uniform stagger entry over [0,r], and
exponential lost to follow-up with constant hazard A. in all simulations.

The first simulation compares the required sample sizes between the chi-
square joint test, the maximum joint test, and the Bonferroni method under
different effect size scenarios. Specifically, we consider three hazard ratios
1.7,1.4,1.2, representing a large, medium, and small effect size respectively
for CSH; and ACH. We assume equal number of patients in the two groups
(a1 = ag = 0.5), a maximum follow-up time of f = 10, the length of accrual
period r = 1, and the rate of random censoring (attrition) due to lost to
follow-up R. = 5%. The hazard rate for lost to follow-up is calculated by
Ae = %%. We set A\;; = 0.3 and a relative risk R = 0.8. With
a = 0.05 and power 1 — 5 = 0.80, Table 1 summarizes the required number
of cause-1 failures and the required total number of patients for each of the
three methods for various combinations of the cause-1 cause-specific hazard
ratio exp(7}) and the any-cause hazard ratio exp(v*). For each scenario, cells
with the smallest number of failures or patients between the three methods
are highlighted in grey.

As expected, the Bonferroni method is conservative, requiring the largest
sample size in essentially all scenarios. The chi-square joint test tends to
require the lowest number of failures and patients among the three methods
when the C'SH; and ACH hazard ratios are different. For instance, when
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Table 1: Required sample sizes for the chi-square joint test, the maximum
joint test and the Bonferroni method. (o = 0.05, 1 — 5 = 0.8, A\;; = 0.3
R=08,r=1, f =10, and R. = 0.05)

CSH; ACH Number of Cause-1 Failures (D) Number of Patients (N)

Ratio Ratio Chi-Square Max  Bonferrroni Chi-Square Max Bonferrroni
1.2 1.2 928 794 916 1266 1082 1248
1.2 1.4 150 248 270 204 338 368
1.2 1.7 42 100 110 96 136 150
1.4 1.2 242 308 338 332 422 462
14 14 274 234 270 378 324 372
14 1.7 72 100 110 102 140 152
1.7 1.2 60 124 138 84 172 188
1.7 1.4 118 124 138 164 174 190
1.7 1.7 110 94 110 156 134 154

the C'SH; hazard ratio is 1.2 and the ACH hazard ratio is 1.4, the chi-
square joint test requires 150 cause-1 failures and 204 patients, which are
substantially lower than the 248 failures and 338 patients required by the
maximum joint test and the 270 failures and 368 patients by the Bonferroni
method. On the other hand, when the C'SH; and ACH hazard ratios are
similar, the maximum joint test is observed to produce the most sample size
savings.

In the second simulation we investigate the finite sample behavior of the
proposed asymptotic sample size calculation methods by simulating their
rejection powers under the scenarios considered in Table 1. The observed
powers are reported in Table 2, which are close to the nominal power 0.80
across almost all cases considered.

In the third simulation, we explore how the attrition rate R, due to lost
to follow-up, maximum follow-up time f, and length of the accrual period
r affect the sample size. Table 3 presents some simulation results under the
scenario with expv} = 1.4 and expy* = 1.2 from Table 1. It is seen that
the three parameters, r, f and R,., have no effect on the required number
of cause-1 failures, but can impact the total number of required subjects

10



Table 2: Observed power for the chi-square joint test and the maximum joint
test under the scenarios of Table 1. (o = 0.05, 1—3 = 0.8, \;; = 0.3 R = 0.8,
r=1, f =10, and R. = 0.05)

CSH, ACH Chi-square Maximum

Ratio Ratio Sample Size (N) Observed Power  Sample Size (N) Observed Power
1.2 1.2 1266 0.80 1082 0.83
1.2 1.4 204 0.81 338 0.81
1.2 1.7 56 0.81 136 0.82
14 1.2 332 0.81 422 0.82
14 14 378 0.83 324 0.83
14 1.7 102 0.81 140 0.80
1.7 1.2 84 0.86 172 0.82
1.7 14 164 0.81 174 0.82
1.7 1.7 156 0.82 134 0.81

significantly. As expected, the required number of patients (/V) increases
when the attrition rate due to lost to follow-up is higher, the maximum
follow-up time is shorter, or the accrual period is longer.

4 A real data example

We illustrate how to implement our method step-by-step using the 4D trial
(Die Deutsche Disbetes Dialyse Studie) [24]. The 4D trial is a randomized,
double-blinded, placebo-controlled trial to assess the efficacy of antihyperlipi-
demic treatment with atovastatin, in reducing occurrence of non-fatal my-
ocardial infarction and cardiovascular mortality. There are three competing
risks: non-fatal myocardial infarction (cause-n), death due to cardiovascular
disease (cause-c), and death due to other causes (cause-0). As an illustra-
tion, we define the cause-1 failure of interest to be the composite event of
either non-fatal myocardial infarction or death due to cardiovascular disease,
and cause-2 failure to be death due to other causes. Schulgen et al. [22]
illustrated nicely how to perform a power analysis for comparing the cause-
1 cause-specific hazard (C'SH;) between the atovastatin and placeb groups.
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Table 3: Required number of cause-1 failures (D;) and total number of pa-
tients (V) for the chi-square joint test and the maximum joint test under
different combinations of attrition rate (R.) due to lost to follow-up, maxi-
mum follow-up time (f), and length of accrual period (r) (A;; = 0.3, R = 0.8,

exp(7y) = 1.4, exp(y¥) = 1.2)

Number of Cause-1 Failures (D) Number of Patients (N)

R, f r Chi-square Maximum Chi-square Maximum
5% 8 1 242 308 346 442
5% 8 1.5 242 308 396 506
5% 10 1 242 308 332 422
5% 10 1.5 242 308 354 452
100% 8 1 242 308 360 460
100% 8 1.5 242 308 406 518
10% 10 1 242 308 348 444
10% 10 1.5 242 308 366 468

Here we demonstrate how to re-design this trial based on a joint test of C'S H;
and ACH.

We first calculate the required number of cause-1 failures (non-fatal my-
ocardial infection or cardiovascular death). As described in Section 2.3.1,
the following quantities need to be specified: 1) cause-1 cause-specific haz-
ard ratio exp(77) , 2) any-cause hazard ratio exp(y*), and 3) relative risk R
of observing a cause-1 failure to any cause.

Let P, (t), P,1(t), and P,;(t) denote the probabilities of observing a cause-
¢, cause-o and cause-n failure, respectively, by time ¢ in group 1. As in
Schulgen et al. [22] |, we use information from a perspective cohort study
from 1985 to 1994 in Germany [7]. It was reported that the 4-year any-
cause mortality rate was about 70% [7]. About 60% of the deaths were due
to cardiovascular diseases [23]. This implies that P (4) = 0.7 % 0.6 = 0.42
and Py (4) = 0.7% (1 — 0.6) = 0.21. In addition, a 10% 4-year rate of non-
fatal myocardial infarction was anticipated among diabetes patients, which
means that P,;(4) = 0.10. Since the primary outcome is time to either the
occurrence of non-fatal myocardial infarction or death due to cardiovascular

12



disease, P1(4) = Pa(4) + Pu(4) = 0.52, and P1(4) = P.a(4) + Py(4) +
Pi(4) = 0.8.

To propose appropriate effect sizes, 7 and v*, one needs to specify the
anticipated 4-year cause-1 cumulative incidence Pj3(4) and any-cause cumu-
lative incidence P2(4) in group 2 (atovastatin). Schulgen et al. [22] assumed
that the intervention is efficacious if it reduces the 4-year occurrence of the
cause-1 failure from 52% to 42%. We assume further that a reduction of
the 4-year any-cause incidence from 80% to 70% is clinically significant. As-
suming a constant cause-specific hazard for each type of failure, then the
above information can be converted to obtain all the required input param-
eters A\;; = 0.26, Ao = 0.18, Ay = 0.4 and A, = 0.30 by using equations
Py, = ’;L(l—e_’\'kt) and (13). Consequently, the expected CSH1 hazard ratio

k
-k
and ACH ratio are set as exp(77) = i—i = 1.44 and exp(7¥) = :\\—; = 1.33, re-
spectively. Furthermore, relative risk of a cause-1 failure versus an any cause
failure in the pooled sample is approximated by R = (% + 00#)/2 = 0.625.

We set type I error rate o = 0.05, type II error rate 8 = 0.2, and equal
patient allocation proportions a; = as = 0.5. Table 4 gives the required
number of cause-1 events (non-fatal myocardial infarction or death due to
cardiovascular disease) and the total number of patients under different com-
binations of the attrition rate, maximum follow-up time, and accrual period.
It is observed that the maximum joint test is most efficient design in this
example with the fewest number of required cause-1 events and total number
of patients. This is consistent with the observation in our simulation study
(Table 1) that the maximum joint is more efficient when the cause-1 and

any-cause hazard ratios are similar.

5 Discussion

Joint inference on multiple quantities is highly recommended for efficacy
analysis of a clinical trial with competing risks data. The proposed method
provides a power analysis tool for the design and planning of a clinical trial
with competing risks based on some joint tests of the cause-specific hazard
and the any-cause hazard. As shown in our simulations, the chi-square joint
test generally leads to a more efficient design requiring fewer events and
patients when the effect sizes for CSH; and ACH are different, whereas the
maximum joint test tends to be more efficient when the effect sizes for C'S H;
and AC'H are are similar. In practice we recommend that one perform power
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Table 4: Required number of cause-1 failures (D;) and number of patients
(N) for the 4-D trial based on the chi-square joint test, maximum joint test,
and Bonferroni joint test under different combinations of attrition Rate (R..)
due to lost to follow-up, maximum follow-up time (f), and length of the
accrual period ()

Chi-Square Joint Test ~Maximum Joint Test — Bonferroni Method

R. f r D N D, N D, N
5% 8 1 290 418 252 362 288 412
5% 8 1.5 290 486 252 420 288 478
5% 8 2 290 650 252 562 288 640
5% 10 1 290 400 252 348 288 396
5% 10 1.5 290 430 252 372 288 424
5% 10 2 290 488 252 422 288 482
10% 8 1 290 436 252 378 288 430
10% 8 1.5 290 496 252 430 288 488
10% 8 2 290 632 252 548 288 624
10% 10 1 290 420 252 364 288 414
10% 10 1.5 290 446 252 386 288 440
10% 10 2 290 494 252 428 288 488
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analyses for both tests and then choose the most efficient design as illustrated
on the 4-D trial in Section 4.

APPENDIX A. Technical proofs

APPENDIX A.1. Proof of Theorem 1

(a) Let M (1) = Nug(r)— [ Yi()dAL (1) and MUY (7) = )— [T Vi () dA (1),

where AY,? () and A(,? (t) are the cumulative Cause—speciﬁc hazard functions
of )\;Z) () and AJY(2), respectively. Then, we can rewrite Uy, (t) and U, (t) as
follows:
(n) ()
U, = f Wi(t) Yi(t)Ya(t) dMu )(t) _ dMy, ()

Y.(2) Yi(t Ya(t) (19)
+ e W) OGN (1) — dAT (1)),

and
e vie)Ya(t) J amP@)  am§ )
Ui = fo W.(t) 1Y.(t§ Yll() - Yzz(t) (20)

+ e W) RO A (1) — dAS) (1))

It follows from the multivariate martingale central limit theorem (Fleming
and Harrington [4], Theorem 5.3.5) that under the contiguous alternatives
(4), n=Y2(Uyy,U4) converges to (Z1,7Z,) as n — oo, where (71, Z5) has a
bivariate normal distribution with mean g = (1, p2) and variance-covariance
matrix ¥ = (0y5). Let y(t) be the limiting value for Yj(¢)/ny, k = 1,2 when
n — 00. Under the contiguous alternative and the assumption that the two
groups have the same censoring dlstrlbutlon G, we have y;(t) = ya(t) =

Yo(t) = So(t)Se(t), where Sy(t) = exp{fo ds} Similar to Fleming and
Harrington [4], Eng and Kosorok 2] , it can be shown that
H1 o = fo mMei(t) —a‘i;ﬁlt)fj;?; dA1o(1),
= maay [y ¢i(t)yo(t)dAo(t),
= Maiaz fo ¢1 dPlo( ), (21)
pr = yaiaz fy ¢*(t)dPo(t),
o = w000
O929 = (102 fO )dP (t),

where A10 fO )\10 du A fO du and PIO fO yo dAlO
is the probablhty of observmg a cause- 1 fallure by tlme t, and P()( ) =

15

(u)



f(f yo(u)dA.o(u) is the probability of observing a failure due to any cause by
time t. Furthermore, the covariance between n~Y2U;; and n~/2U, under
the contiguous alternative hypothesis is

<77,_1/2U11 n_1/2U1>

_ NERAC (1)Ya(t) (dM;g(t) on12 (t)) 7w (1)Ya(t) (dMFI”)(t) B dM,(;>(t))>
0 1 Y(t) Y1 () o' Y.(1) Y1 () Ya ()
o T Y2(1)Y2(t) d<M(">(t),M,<" (t)> d<M<">(t),MF">(t)>
= n! fo Wi()W.(t) 13/.(,:)22 H Y1 (1) . + = Ya(t) :
_ T v2)Yv2e) [ da™Me) o dalW
= n 1 f() Wl(t)W(t) 11(()(15)22() Y?(t()) + Y;QQ(t())
o -1 T Y2ZO)Y2() (er191()/ V) ga,4(t) e~ 7101 (1)/(2V) dA 14 (t)
n= Lo WaOW(t 1Y,(t)2 < O N )}
~onTt T WA W) PR dA (1)
7t 7 Wa)W (1) PR (9161 (1) rdAso(1))
(22)
which converges in probability to
T aazy (t)y2(t)
o = t)o.(t dAqo(t
12 ¢ ( )¢( )alyl(t) —|—a2y2(t) 10( )
= / ¢1 a1a2yo( )d/\10(t)7 (23>

as n — o0.

Therefore, under the contiguous alternative hypothesis (4), X2 has an
asymptotic chi-square distribution with 2 degrees of freedom and non-centrality
parameter &€ = u” X . This proves part (a) of the theorem.

(b). Let Zﬁl) =n~Y2U,,/v/611 and Z,(ln) = n"Y2U, /\/Gay, where

& — platae j‘ W2 t (t)Ya(t) [ dN11(t)+dN12(t)

= aras JO i ( +Y2(t) Y1 (6)+Y2 (1) J (24)
A — p-latae f t (t)Y2(t) [ dN.1(t)+dN.o(t)
022 = aiaz 0 . +Y2 (t) Y1 (t)+Y2 (t)

are consistent estimators of oy; and 099, respectively. Again applying the
martingale central limit theorem, it can be shown that under the contiguous
alternatives (4), (Z{Tf), Z (n)) converges to a bivariate normal random vector

(Z1,, Z%) with mean <“—01Tl, %) and correlation \/% By the continu-

ous mapping theorem, we see that M,, converges to M* = max(|Z7,|, | Z%|).
U

16



APPENDIX A.2. Derivation of equation (5)

After plugging all the quantities from (6) to (5), we can get

¢ araz [¢}?nPio—2¢7 ¢ nPo+¢:2n Py |
- 1-nPio/nPo 25
ara2[¢32D1—2¢1¢* D1+¢*2 D1 /R] (25)
1-R ?

where D1 = nPjg and D. = nP, are the number of failure due to cause 1 and
due to any cause, respectively, R is the relative risk of failure due to cause 1
versus any cause, which is defined in Theorem 1. U
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