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Abstract 
 

Understanding and Improving Designed Enzymes by Computer Simulations 
 

By  

Asmit Bhowmick 

Doctor of Philosophy in Chemical Engineering 

University of California, Berkeley 

Professor Teresa Head-Gordon, Chair 

 
The ability to control for protein structure, electrostatics and dynamical motions is a 
fundamental problem that limits our ability to rationally design catalysts for new 
chemical reactions not known to have a natural biocatalyst. Current computational 
approaches for de novo enzyme design seek to engineer a small catalytic construct into an 
accommodating protein scaffold as exemplified by the Rosetta strategy. Here we consider 
3 designed enzymes for the Kemp elimination reaction (KE07, KE70 and KE15) that   
showed minimal catalytic activity. KE07 and KE70 were subsequently improved by 2 
orders of magnitude in catalytic efficiency by directed evolution and highlighted the 
shortcomings of the design process. This work studies two keys issues plaguing the 
designs – side chain conformational variability and electrostatics. 

For the first part, a new Monte Carlo sampling method was developed that uses a 
physical forcefield and coupled with backbone variability and a backbone dependent 
rotamer library. Using transition state theory with energies/entropies calculated from 
Monte Carlo simulations, it is shown that in both KE07 and KE70, the initial design was 
over-optimized to stabilize the enzyme-substrate complex. Mutations introduced by 
directed evolutions led to destabilization of the enzyme-substrate complex and 
stabilization of the transition state. Furthermore, analysis of residue correlations via 
mutual information yielded hotspots, several of which were mutations during directed 
evolution. Laboratory mutations of these hotspots in the best variant of KE07 led to a 
drop in catalytic performance, demonstrating their importance. The metrics identified in 
KE07/KE70 studies were used to predict mutations to improve enzyme KE15 that had 
not been improved prior to this study. Several mutants, all predicted through computer 
simulations have now yielded better catalytic activity in the laboratory with the best one 
10-fold better than the starting enzyme.  

In order to quantify the role of electrostatics, a new method was developed using 
the AMOEBA polarizable forcefield that allowed splitting the contribution of electric 
field at the substrate by residues and solvent. The improvement in KE07 series could be 
tracked directly through changes in electric field at the substrate. In comparison, KE70 
did not show a significant shift in electrostatic field, suggesting other factors like 
substrate binding may have been the reason for enhancement of activity. However, the 
common theme in both enzymes was the lack of participation (and in fact detrimental 
role) of the scaffold in the reaction. Future design efforts would benefit from an expanded 
theozyme and careful selection of scaffold based on electrostatic properties.  
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 Generating efficient biocatalysts without using laboratory directed evolution 
would be an inflection point in the field of enzyme design. This work is a step in that 
direction.  
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Chapter 1 
 
Introduction 
 
Recent developments in the field of computational chemistry have led to rationally engineered 
enzymes that can catalyze reactions for which no natural enzymes exist. In this chapter, I review 
the field of enzyme design, with a focus on a particular class of enzymes called Kemp eliminases 
that have been extensively studied in this thesis. I also set up the case for considering side chain 
conformational variability and electrostatics in these enzymes to yield better designs  
 
1.1 INTRODUCTION 
 
Enzymes are biocatalysts1 that are capable of accelerating reactions up to 1020 fold under 
ambient conditions2,3– a remarkable feat considering most industrial catalysts function at 
elevated temperature and pressure4, 5. Human beings have been using enzymes since time 
immemorial for various daily activities like making bread, alcohol and cheese. Within our body 
there are thousands of different types enzymes that are working every second to keep our system 
functioning. In modern industries, enzymes have found additional use in food processing, starch 
and paper as well as biofuel production. Two attractive features of enzymes are – (a) they 
increase the reaction rates by decreasing the activation free barrier of the reaction and (b) they 
are highly specific. With an increased push towards energy efficient and sustainable technology6, 
enzymes are an attractive alternative to energy-guzzling industrial catalysts. However, too few 
(or no) enzymes exist that can accelerate current industry favorite reactions. This situation can be 
remedied if we can design enzymes for those reactions. However before going into the current 
status of enzyme design, it is educational to know more about the various steps that have 
catalyzed the various stages of enzyme design.   

The 1st and arguably most important aspect of designing enzymes is to understand how 
they work so well. Explaining how enzymes achieve such efficiency has been a topic of 
scientific research for the last 100 years or more. Well before the identity of enzymes was 
established, Emil Fischer proposed his seminal ‘Lock and Key’ model for enzymes in 1894 to 
explain why enzymes are so specific. That enzymes were proteins was only confirmed 32 years 
later by James Sumner. The next big development was in 1946 when Linus Pauling stated that 
enzymes were complementary in structure to the activated complex for the reaction catalyzed, 
thus leading to the observed speedup. This was the first attempt in explaining the tremendous 
kinetic rates seen for enzyme catalyzed reactions, almost a decade before the first protein crystal 
structure was published. 

 
That happened in 1958 when the crystal structure of Myoglobin was reported7 by 

Kendrew et. al. leading to the development of the field of structural biology. The dawn of the age 
of structural biology was an inflection point in studying enzymes. The availability of 3D enzyme 
structures aided in experimental and theoretical studies of these nanomachines. Pioneering work 
by Warshel, Jencks, Fersht and others laid the groundwork8 9-15for most of the currently accepted 
explanations in the field. These include but not limited to transition-state stabilization (by 
electrostatics), ground-state destabilization (by strain, entropy, desolvation), dynamical motions, 
covalent bonding etc. Although there is no consensus yet on which phenomena is more important 
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than others, there is a growing appreciation that enzymes use many of these physics together to 
maximize speedup. 
In the 1980s, a parallel line of research started that attempted to engineer proteins to catalyze 
specific reactions16. Most of the research centered around very simple yet clever design ideas 
that used very little of the various catalytic proposals that were floated around that time to 
explain enzyme proficiency. The most popular one was developing catalytic antibodies17, 18. This 
was a direct application of Pauling’s idea that enzymes stabilize the activated complex’s 
structure and charge distribution. By cleverly using a hapten that is similar to the transition state 
of the reaction of interest, one can trick an antigen to produce catalytic antibodies that are 
capable of catalyzing the reaction. This method was used to catalyze various reactions including 
Diers Alders, acyl transfer, kemp elimination to name a few.  
Another parallel field that took off in the early 90s was that of directed evolution19-23. The idea 
was to mimic natural evolution by introducing a bunch of mutations in the form of a library, 
usually randomly and selecting mutants that show the highest fitness24. The best mutants are 
mutated again and the process is repeated. By repeating this iteratively, one can dramatically 
alter a protein’s fitness. Here fitness could mean catalytic ability, thermostability or selectivity to 
name a few. Popular strategies for constructing such mutant libraries are error-prone PCR, 
random shuffling, site-directed mutagenesis etc. Usually directed evolution requires very little 
knowledge of the structure and innards of an enzyme, making it a popular option to engineer 
enzymes. As we will discuss at length later, directed evolution has been crucial in improving 
activity of designed enzymes. 
The 4th and final piece of the puzzle is the area of protein-folding prediction and using it in 
designing functional proteins25-27. Although the field is still evolving, current approaches ranging 
from a more knowledge-based approach like Rosetta28 to a more physics-based approach like 
Folding@Home29 are capable of folding a reasonable sized protein (less than 100 residues) 
starting from an extended peptide. Combining protein folding with enzyme design roughly 
corresponds to the following 3 steps -  
 

(a) Identify a theoretical active site (theozyme) that can catalyze the reaction 
(b) Identify protein scaffolds that can ‘house’ these theozymes. 
(c) Make adjustments to the scaffolds to accommodate the active site and complement 

geometric and electronic properties.  
 
The implementation of the above protocol has been done differently by different groups. The 
reader is referred to Ref [30] for a more comprehensive review of the different stages listed. The 
two most popular rational enzyme design techniques are RosettaMatch28 and SABER31. The 
difference between these two protocols is in step 2 where one (RosettaMatch)!tries to identify 
folds where the theozyme can be grafted into the fold while the other (SABER) tries to identify 
sequences that already have the functionality of the theozyme. Regardless of the differences, 
both protocols have had success in designing enzymes with minimal competence, providing 
room for optimism. Representative successes for this field include enzymes for Diels Alders32, 
Kemp elimination33, Retro-Aldol reaction34 etc.  
 This is the stage where advances in directed evolution and catalytic antibodies play a 
pivotal role. The norm in the field currently is to use directed evolution to further enhance kinetic 
performance of the minimally competent enzymes35-39. The minimum desired activity is that of 
catalytic antibodies that surprisingly still outperform many improved variants for designed 
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enzymes40. Admittedly, the field is still in a nascent stage and most designs have almost certainly 
not optimized the various physics natural enzymes have mastered in using. It would thus be 
useful to reassess the various features the designs and improved variants possess to see how they 
were improved, using concepts developed over the last 50 years in understanding enzyme 
proficiency. The end goal is to incorporate these features into the design process, thus 
minimizing or completely doing away with laboratory directed evolution.  
 

In the following section, I will introduce the specific system of interest in this thesis. A 
good model reaction that the community has worked on to develop designed enzymes is the 
Kemp elimination reaction. This base-catalyzed reaction proceeds in a single step and has been 
studied extensively both by simulations and experiments. The substrate 5-nitro benzisoxazole 
reacts with a base to form cyanophenol41.  

 
 
Figure 1.1: The Kemp elimination reaction. The one-step reaction scheme involving the 
abstraction of hydrogen from 5-nitro benzisoxazole by a catalytic base, leading to breaking of the 
C-H bond. Shown is the transition state that has a partial negative charge on the substrate oxygen 
with cleavage of the O-N bond and nascent formation of a C-N triple bond. 
 
 

The attractive feature from an experimental point of view is the ease in studying the 
kinetics in a lab setting due to the unique absorption spectra of the substrate. From a simulation 
point of view, the simplicity of the reaction and complementary experimental work has led to it 
being studied widely. A variety of ‘catalysts’ have been shown to speed up this reaction. This 
includes catalytic antibodies (notably 34E4)!40, serum albumins, micelles and even charcoals42. 
Among designed enzymes, enzymes KE07, KE70 and KE59 developed using RosettaMatch and 
the HG series (by SABER) have received a lot of attention. The best rationally designed Kemp 
enzyme to date is HG-3 with a kcat/KM of 460 M-1s-1.  

 
In this thesis I will be studying the following three designs  - KE07, KE70 and KE15. KE stands 
for Kemp Eliminase. All the three enzymes were designed and their active site are illustrated in 
Figure 1.2. These enzymes were built using the Rosetta software and further information about 
the design process can be found in these references [30, 33]. When the enzymes were expressed 
and tested for kinetics, they performed very poorly. Table 1.1 tabulates the kinetic constants for 
these three specific enzymes. 
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 (c) 
 
 
 
 
Figure 1.2: The Kemp Eliminases. (a) KE07 design, where the base is Glu-101. Additional 
stabilization is provided by Trp-50 (π-stacking) and Lys-222 (charge stabilizing) (b) KE70 
design where the base is a His-Asp dyad. Ser-138 does the charge stabilization and Tyr-48 does 
π-stacking (c) KE15 design where is the base is Asp-48. No charge stabilization is present in this 
design. 
 
 
Table 1.1: Kinetic constants kcat/KM for the 3 enzymes KE07, KE70 and KE15 for their designed 
state as well as the best variant after directed evolution. KE15 did not undergo any directed 
evolution. All values are in M-1s-1 

 

 
 

 
Enzyme 

Design Best Variant
[2,3]

 

KE07 12 2600 
KE70 126 57300 
KE15 27 NA 

!
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The observation of a baseline activity validated the Rosetta methodology and was celebrated as 
an initial success. Unfortunately, most native enzymes operate in the diffusive limit i.e. their 
kcat/KM are of the order 106-108 M-1s-1, leaving a big room for improvement.  
 This work studies the effect of two important physical phenomena in designed enzymes – 
(a) side chain conformation variability and (b) electrostatic stabilization. These factors are 
usually unaccounted for during the design process despite substantial evidence to suggest that 
these two features are highly optimized by natural enzymes. Although experiments can give 
suggestive indications of these missing features, quantifying them through computer models will 
enable correcting this systematic error of the design protocols.  
 
Side-Chain Conformational Motion 
 
Proteins (and enzymes) are essentially polymers with the option of having up to 20 different 
types of monomers. Each monomer, called an amino acid (or residue, as will be referred to in 
this work) has a unique topology and chemical character that lends a characteristic feature to the 
protein. These characteristics are exhibited in the side chains of the amino acids. Beyond the 
chemistry of the side chains, their conformations can also be quite diverse. Extensive protein 
crystallography data from the last 50 years clearly highlight the extent to which these amino 
acids can switch conformations depending on the environment they are in. Often, their 
conformation motion is characterized by their dihedral angles. A representative dihedral angle 
for amino acid valine and its distribution found in crystallographic libraries43, 44 is shown in 
figure 1.3.  
 

 
    
  (a)       (b) 
 
Figure 1.3: Dihedral angles for valine. (a) The side chain dihedral angle for valine (χ1) defined 
by the 4 atoms shown in spheres (N-Cα-Cβ-Cγ). (b) Side chain dihedral angles tend to cluster 
around a few well-separated values as illustrated here. For valine, these values are -60, 60 and 
180°. The probabilities shown were obtained from an X-ray crystallographic database.  
 
 
Clearly, the side chains dihedrals have a propensity to cluster around certain values that can be 
thought of as energy wells. The conformations can alternate between energy wells in solution45 
and have been shown to affect enzyme catalysis, binding and other important biological events. 
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Evidence from X-ray crystallography46, 47 and NMR experiments13, 48-50that report on this kind of 
variability show convincing evidence of such motion that can potentially range from picoseconds 
to milliseconds (ps-ms). In Chapter 2, I will talk a bit more about these studies and how a new 
simulation method I developed was tested against the these experimental results. 
The design process implemented in suites like Rosetta typically does not consider side-chain 
conformational motion in great detail. Crystal structures of the Kemp eliminases show virtually 
no backbone variability, hinting at a role of side-chain motion in facilitating catalysis. There is a 
decent body of work that has shown how side-chain motions can propagate over long distances 
to influence binding events, a phenomenon referred to as allostery51-54. Thus, although the design 
protocol is geared towards bringing the substrate in close proximity to a base in a confined 
environment, many residues can indirectly tune the efficiency of the enzyme, in many cases 
leading to complete loss of activity. In Chapter 3, I will discuss how we elucidated the role of 
side chain variability in improving the Kemp eliminases using transition-state theory.  
 
Electrostatic Stabilization in Enzymes 
 
Chapter 5 of this thesis considers the case of electrostatic stabilization provided to the transition 
state by designed Kemp eliminases. Recent experimental work using vibrational Stark effect 
spectroscopy (VSE) has shown that electrostatic stabilization is responsible for up to 105-fold 
improvement55 in catalytic performance in ketosteroid isomerase enzyme. A further 103 fold is 
believed to come from chemical positioning of the catalytic residue Asp-40. These conclusions 
are in line with simulation studies by Warshel and others going back to the 1970s11. At that time, 
it was not obvious how enzymes can provide a better electrostatic environment compared to 
water. This can be understood by considering the solvation free energy of the transition state, 
ΔGsol, which is a sum of 2 terms56, a charge-dipole interaction (ΔGQµ) and a dipole-dipole 
interaction (ΔGµµ) as seen in (1) 
 

∆!!"# = ∆!!" + ∆!!!    (1) 
 
(1) is a linear response approximation and shows where enzymes win in terms of stabilizing a 
transition state. The 1st term is similar between solvent and enzymes. However, the 2nd term is 
costly for solvent as it has to undergo a large rearrangement to orient the dipoles in a favorable 
manner for the transition state. This is the so-called reorganization energy for stabilizing a 
transition state. A simple example is for water that has to break it’s complicated network of 
interaction among itself to stabilize the substrate (Fig 1.4). In enzymes, these interactions are 
already anticipated, requiring minimal rearrangement of protein dipoles. It is believed that the 
protein pays this cost of orienting the dipoles appropriately for reaction during the folding 
process. Readers interested in more details about this mechanism should consult these references 
56, 57 
!!
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Figure 1.4: Electrostatic stabilization in enzymes. (a) In solvent, there is extensive 
rearrangement of dipoles adding to the cost of stabilizing transition state. (b) Enzymes on the 
other hand have a highly preorganized dipolar environment, much of which is included into the 
folding energy, giving a significant electrostatic advantage.  

 
 

Given such overwhelming evidence for natural enzymes utilizing electrostatics to preferentially 
stabilize the transition state, it would be interesting to see if the designed enzymes have 
harnessed any electrostatic features. Since most designs activities are woeful, it is reasonable to 
suspect poor electrostatics in the active site. In chapter 5 we study these features in more details 
and lay out some suggestions that can be incorporated in future design protocols. 
 
Improving enzymes rationally 
 
The culmination of such detailed studies into the Kemp eliminase would be to implement some 
of the features known to be lacking in the original design but engineered in by laboratory 
directed evolution. Chapter 4 reports this effort by considering the enzyme KE15 that was also 
designed by the Rosetta protocol but did not undergo any subsequent directed evolution. The 
initial activity was 27 M-1s-1, similar to other designs. By considering metrics like mutual 
information and electrostatic stabilization, the goal would be to improve the enzyme by a 
significant amount.   
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Chapter 2 
 
A Monte Carlo method for generating side chain structural 
ensembles 
 
 
In this chapter, I present a new Monte Carlo side chain entropy (MC-SCE) method that uses a 
physical energy function inclusive of long-range electrostatics and hydrophobic potential of 
mean force, coupled with both backbone variations and a backbone dependent side chain rotamer 
library, to describe protein conformational ensembles. Using the MC-SCE method in conjunction 
with backbone variability, one can reliably determine the side chain rotamer populations derived 
from both room temperature and cryogenically cooled X-ray crystallographic structures for 
CypA and H-Ras and NMR J-coupling constants for CypA, Eglin-C, and the DHFR product 
binary complexes E:THF and E:FOL. Furthermore, near perfect discrimination between a 
protein’s native state ensemble and ensembles of misfolded structures for 55 different proteins 
was obtained, thereby generating far more competitive side chain packings for all of these 
proteins and their misfolded states. This chapter us based on the following publication 
 

A. Bhowmick and T. Head-Gordon (2015). A Monte Carlo method for generating side chain 
structural ensembles. Structure.23(1):44-55 

 
 
2.1 INTRODUCTION 
Anfinsen’s thermodynamic hypothesis1 states that the native protein ensemble resides in a global 
minimum free energy basin that defines its functional state whether it be binding, catalysis, or 
signaling. This has been traditionally interpreted as a free energy basin dominated by O(~1) 
unique conformations, an interpretation heavily influenced by X-ray crystallographic protein 
structures that have proven to be invaluable for providing functional insight. Nonetheless, the 
perspective of considering just one native conformation opposes evidence that proteins are 
highly flexible2, especially at the level of backbone displacements3 that aid side chain packing 
rearrangements4-7. For example, new analysis of weak electron density features in X-ray 
crystallographic data has shown that a large percentage of PDB structures have alternate 
rotameric side chains8, 9. Furthermore, X-ray crystallographic structures that are cryogenically 
cooled also tend to overemphasize a level of uniqueness in native state structures that are too 
small and overpacked, and miss important catalytic side chain conformers that are present in 
room temperature crystallographic data 10, 11.  

The thermodynamic manifestation of conformational flexibility is encompassed in 
entropic effects12, with statistical fluctuations of side chain packing arrangements playing a 
dominant role. NMR groups have made quantitative progress on equating Lipari-Szabo order 
parameters, S2, to conformational entropy for both the backbone and side chains7, 13-15. For 
example, NMR experiments on calmodulin16 and CAP6 proteins have shed light on this ‘residual’ 
free energy arising from the alternate conformations a side chain can take. A good percentage of 
side chains were found to have the side chain order parameter in the range 0.3<S2<0.7 which 
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indicates that these side chains may be populating alternate rotameric wells on the nanosecond-
microsecond timescale, although the fast motions measured by S2 are not always probing side 
chain rotamer transitions17. Instead, three bond J-coupling constants 3JCγN and 3JCγCO that report 
on χ1 dihedral angle fluctuations in the broad picosecond-millisecond timescale have enabled 
quantitative estimation of different rotamer populations in solution17. In addition, recent work 
using relaxation experiments have also highlighted the dynamic nature of side chains up to the 
millisecond, and longer, timescale 18, 19.  

Although it is true that the conformational flexibility of an unfolded protein compared to 
a folded protein is increased, numerical studies have shown that the number of possible ways of 
packing side chains on the backbone of a folded protein is by no means small or unique. Zhang 
and Liu reported that the total number of self-avoiding (i.e. with just hard sphere interactions) 
side chain conformations for the 17-residue protein 1ebx is of the order of 1011 20,  and this 
number would be expected to be larger for larger proteins. However theoretical approaches for 
sampling the low energy alternative side chain arrangements of a protein is a difficult problem, 
and while molecular dynamics (MD) simulations give a good description of side chain 
conformational change on the nanosecond to sub-microsecond level21, the experimental 
estimates indicate that the timescales are much longer. While it is true that distributed computing 
paradigms such as Folding@Home 22 and special purpose hardware like the Anton computer 23 
can reach the millisecond timescale for MD, we assert that computing the side chain populations 
and the thermodynamic entropy for tens to hundreds of native proteins and hundreds of their 
misfolded states, ad we have done in this study, is well beyond a comfortable scale for MD even 
using these two powerhouse computing platforms.  

Therefore to circumvent the sampling issues imposed by MD, many groups have resorted 
to advanced Monte Carlo (MC) schemes3, 20, 24 which are designed to more exhaustively sample 
the Boltzmann weighted populations of side chain conformations of the protein on the NMR 
timescale of ns to ms or even longer. In this work we develop a new MC approach for 
calculating side chain entropy (SCE) by introducing several new features that make our MC-SCE 
method more quantitative compared to past efforts, including a better convergent Rosenbluth 
sampling scheme25, the use of an augmented Dunbrack library26, a very robust physics-based 
energy function27-29, and side chain rotamer sampling on an ensemble of backbone structures.  

Here we use our MC-SCE algorithm to generate ~20,000 different side chain packings 
for native X-ray crystal backbones, and the same number for perturbations to the backbone using 
short MD simulations and so-called “backrub motions” by Friedland et al.3, for 60 different 
proteins. As a first test of our MC-SCE algorithm, we use it to quantify the side chain rotamer 
populations on backbones derived from cryogenically cooled (CC) and room temperature (RT) 
X-ray crystallographic structures for CypA, and the Ser99Thr mutant 10 and for H-Ras11. We also 
compare directly to NMR J-coupling data for CypA10, Eglin-C30, and the DHFR binary 
complexes of E:THF and E:FOL 17. We find overall excellent agreement across the full range of 
X-ray and NMR data. Finally we consider alternative rotamer packings for 55 native proteins 
and each of the hundreds of misfolded structures from a difficult Rosetta set that exhibit near-
native features in their backbone fold31. We use our MC-SCE approach to provide the 
thermodynamic functions of energy (enthalpy), side chain entropy, and free energy to 
discriminate the native state of a protein from its misfolded states. This large validation suite 
shows that we can nearly perfectly discriminate between a protein’s native state ensemble and 
ensembles of misfolded structures, and provide for an even more competitive decoy set with 
better optimized side chain packings.  
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2.2 MATERIALS AND METHODS 
We introduce a new and more robust MC chain growth method to evaluate side chain entropy, 
MC-SCE, to estimate structural ensemble properties of proteins. We use an augmented 
Rosenbluth chain growth algorithm20, 25, 43 to generate an ensemble of side chain packings for a 
given (and fixed) protein backbone. The algorithm starts with a PDB file of the enzyme, and all 
the side chain atoms, except the Cβ atom, and any existing water molecules are eliminated. 
Backbone mobility is provided by a decoy library, backrub motions, or captured during a MD 
simulation. The side chain ensemble that can populate a provided bare backbone is then realized 
by growing side chains of each residue in a sequential manner with dihedral angle inputs from a 
backbone dependent rotamer library26 to approximate the continuous nature of side chain 
dihedrals. We have augmented the rotamer library selection based on probabilities of occurrence 
in the PDB and by allowing for dihedral angle variations that are Gaussian distributed about a 
given rotamer value. All of the χ1 and χ2 torsional angles of all residues, except for arginine and 
lysine, were expanded by including a standard deviation, resulting in 3 values, χi and χi ± σ. After 
expansion, all the rotamers were further perturbed by about 0.5° to place them optimally with 
respect to the backbone. This is necessary because of the sensitivity of the energy function to 
slight changes in the protein that could distort statistics and increase the number of dead end 
chain growths. In our model, alanine and glycine have no dihedral degrees of freedom and hence 
no side chain entropy, and all residues are grown with ideal bond lengths and angles.  

From the initial condition (step 0) of a bare backbone conformation m, for subsequent 
steps i, we develop a MC scheme whereby the residue k that has the lowest side chain partition 
function    

! ! ! ! ! ! !!!!!!!(2) 

is considered for the next side chain growth. For residue k, a side chain conformation νk is 
defined by the resulting set of dihedral angles selected from the rotamer library, i.e. (χ1, χ2, ….). 
Each side chain rotamer rk is selected according to the following probability  

                                                                  

 (3) 
where {νk} are the possible side chain conformations for residue k, is the energy of 
interaction of side chain k with the backbone and all protein side chains grown so far using Eq. 
(3) only, and  is the probability of the side chain conformation calculated using the values 
reported in the recent backbone-dependent Dunbrack library26. The reason for including this 
knowledge based  is to guide the growth process especially early on when very few side 
chains have been placed and to minimize picking rotamers which are known to occur 
infrequently in the PDB database; conformations with probability less than 0.001 in the library 
were ignored. Once the side chain of a residue is placed, the process is repeated until all the side 
chains are grown, thereby creating one complete protein structure. This complete chain growth 
procedure for one N-residue enzyme structure is then repeated ~20,000 times to give an 
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ensemble of structures. Each structure m is then assigned a weight W(m) in order to get correct 
statistics in the canonical ensemble.  

    
(4) 

This is defined on the basis of our chain growth probabilities as well as now including the 
Boltzmann factor using the GB-HPMF implicit solvent model27-29. When the chain growth is 
unsuccessful because of unresolvable clashes, the partially grown structure is considered dead 
and its weight is set to zero.  

The side chain entropy of a given residue k is evaluated using the Gibbs probabilistic 
definition of entropy. 

      (5) 

where the probability  of a conformational state νk of residue k is calculated using the 
weights of the structures in the ensemble 

      

 (6) 
The sum in Eq. (6) is over all of the successful structures grown by the Rosenbluth procedure. 
The Kronecker delta is 1 if the side chain conformation rk that was picked for the residue k in the 
m-th structure is νk and 0 otherwise. The weights of each structure ensure that the probabilities 
are Boltzmann weighted. The total side chain entropy of a protein is calculated by summing over 
the individual entropy values 

                                                (7)                 

NMR J-coupling calculations: Three-bond J-coupling values between the Cγ atom and the 
backbone carbonyl carbon (3JCγCO) and amide nitrogen (3JCγN) of the same residue can be 
calculated using  

                                 (8) 
where θ represents the dihedral angle between atoms (Y-Cα-Cβ-X). The Karplus parameters 
(A,B,C,δ) are amino-acid specific and were taken from the original experimental sources. For 
Valine, 3J values for only Cγ1 have been reported in this paper. 

The J-coupling value,  for residue k in the m-th structure of our side chain 
ensemble was calculated from Eq. (8). These values were then used to calculate the average J-
coupling value with  
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                                                   (9) 

where W(m) are the weights given in Eq. (4). We also calculated χ2 values defined as 

                                              (10) 

where N is the number of residue measurements taken. We have assumed that the primary source 
of experimental uncertainty is the Karplus parameters themselves; we assume an average 
uncertainty of  σ=0.5 Hz given the differences found for these same scalar couplings for CypA.  

Rosetta decoy set calculations. The single side chain native structure (the PDB) and the 
provided Rosetta decoy structures (with a given side chain arrangement) undergo local 
optimization, and are sorted in ascending order based on their energy in order to determine the 
Esingle rankings. These minimized structures are then stripped of their side chains beyond the Cβ 
position, and 20,000 alternate side chain packings with no steric clashes (which signals a failed 
chain growth) are generated on the native backbone and each Rosetta decoy backbone. The 
lowest energy structure for each ensemble is then minimized (to relax residual geometric 
artifacts arising from the fixed bond and bond angles assumed in the MC-SCE sampling using 
the rotamer library), and these minimized native and decoy structure for each protein are sorted 
in ascending order based on their energy in order to determine the Ebest rankings. The side chain 
ensemble of structures generated for each backbone, native or decoy, shows a Gaussian 
distribution of energies, and we define the side chain entropy of the protein, SSC in Eq. (7), based 
on Boltzmann weighted structures, Eq. (6), with energies below two standard deviations from the 
mean energy. We find that this subset of ~200 structures typically underestimates the entropy by 
~5-10%, but since it is systematically applied across the protein and decoy sets, it suffices for 
this study.  
 
 
2.3 RESULTS 
Overview. We present results below based on a new and more robust MC side chain growth 
method to evaluate side chain entropy, MC-SCE, to estimate structural ensemble properties of 
proteins. Details are given in the Methods section, but the important points are highlighted here 
to better present the following results. Backbone structures are provided by either an X-ray 
crystal structure or a given backbone from a misfolded decoy library. Additional backbone 
variability on these starting structures is introduced in two independent ways: through so-called 
“backrub motions” 3, which lead to small backbone RMSD with respect to the crystal structure of 
~0.1-0.7 Å, and from snapshots generated from a thermalized molecular dynamics simulation 
with explicit solvent that lead to slightly larger RMSD changes of ~0.6-1.3 Å.  

Given these different backbones, the side chains atoms beyond the Cβ position are 
stripped away, and then all are regrown using the MC-SCE algorithm to generate an ensemble of 
~20,000 different side chain packings, allowing us to evaluate both the side chain entropy at each 
residue position and rotamer populations. Table S1 provides the definition of the side chain 
dihedral angles sampled. One of the key features of this work is the use of well-tested physics-
based energy function based on Generalized-Born electrostatics and a hydrophobic potential of 
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mean force 27-29 to perform the Boltzmann weighting, and which is used to define the potential 
energy rank of all 20,000 structures. Here we demonstrate our ability to reliably reproduce and 
predict the side chain rotamer ensembles of the following class of problems: (1) cryo-cooled vs. 
room temperature X-ray crystallography for CypA and H-Ras, (2) both X-ray and NMR data 
taken on CypA, Eglin-C and the product binary complexes of DHFR, E:THF and E:FOL, and 
finally (3) native vs. misfolded state discrimination using a difficult Rosetta decoy set. All 
components of the MC-SCE approach (including the energy function) have been implemented 
into our in-house version of the TINKER32 software package. As an example of the cost of the 
MC-SCE method, we can generate a side chain ensemble of CypA (164 residues) with 20,000 
structures in ~12 hours using an MPI implementation that distributes work across 16 cores; this 
timing uses our in-house computing cluster with the AMD Opteron(TM) Processor 6274 (2.2 
Ghz) cores. 
 

Comparison with X-ray crystallography and NMR for CypA and H-Ras. Recently, 
Fraser et al. found population shifts in side chain rotamer states when comparing X-ray 
structures obtained under cyro-cooling vs. room temperature crystallization conditions for the 
proteins CypA 10, 11. Given that the backbone differences between the CC and RT structures are 
negligible (RMSD ~ 0.1 Å), a good test of our MC-SCE algorithm would be to determine if we 
can predict the major and minor side chain rotamer populations that are reported in the CC and 
RT crystallographic data for CypA and H-Ras.  

Experiments on CypA showed that alternate side chain conformations for Arg55 and 
Met61 were found with RINGER in the CC data, and additional side chain rotamer changes were 
evident for Leu98, Ser99 and Phe113 in the RT data, helping to explain the catalytically 
competent and incompetent conformations of the active site residues 10. Table 2.1 reports the CC 
and RT X-ray experimental χ rotamers and their populations and the corresponding MC-SCE 
values for WT CypA and the Ser99Thr mutant. The MC-SCE calculations were done on the CC 
backbone, as well as an average over two RT backbones based on so-called major and minor 
conformers reported for the room temperature crystal structure (RT-M or RT-m). The 20,000 
structures of the generated side chain packing ensemble for each backbone allow us to report 
MC-SCE population percentages. We also averaged over the 20,000 side chain ensembles 
generated for each backbone relevant to RT backbone variations: two backrub ensembles of 10 
structures each based on the starting RT-M and RT-m backbones, and 3 backbones generated 
from MD snapshots at 0.2 ns, 2.0 ns and 4.0 ns. For side chain conformations predicted from the 
MC-SCE algorithm, the χ rotamers were binned as is done conventionally with bin centers on 
60°, 180° and -60. 

When performed on the CC X-ray backbone, our MC-SCE method predicts the same 
major conformer for residues Leu98(χ1), Phe113(χ1), Arg55(χ3), and Met61(χ2), as well as 
detecting the minor rotamer states for the latter two residues that was found from the RINGER 
analysis of weak electron density features. When performed on the RT X-ray backbone, our MC-
SCE method also predicts the major and minor conformer for all four same residues. 
Furthermore, we determined an increase in SCE (using Eq. 7) when going from the CC to RT 
backbone as was observed in 11, in which the RT backbone allows for greater conformational 
flexibility of the side chains. Even better agreement with reported X-ray rotamer populations is 
found with a thermalized backbone (i.e. side chains grown on backrub and MD backbone 
ensembles) for these same residues as shown in Table 2.1. We also perform our MC-SCE 
calculations on the Ser99Thr mutant, which through active site interactions stabilizes the minor 
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rotamers for Phe113(χ1), Arg55(χ3), and Met61(χ2) compared to the WT form, which is exactly 
what we observe in our simulations (Table 2.1). 

 
Table 2.1. X-ray crystallographic and MC-SCE generated side chain χ'rotamers for active site 
residues of CypA. Experimental rotamer populations 10 are the occupancies reported in the 
deposited PDB files for CypA and mutant (CC: 3k0m, RT: 3k0n, Ser99Thr: 3k0o). In certain 
cases, the minor rotamer was identified in the CC structure using the software Ringer 9. MC-SCE 
calculations were done on the backbone of the cryo-cooled structure (CC) as well as an average 
over the backbone conformers M and m reported for the room temperature crystal structure (RT-
M and RT-m). MC-SCE calculations were also performed on a RT backbone ensemble 
comprised of backrub motions and MD simulations (RT ensemble).  

 
 
In all cases, regardless of method for creating the backbone, we do not predict the 180° 

rotamer for Ser99(χ1), and we do not find the same 180° dominant rotamer for the Thr99(χ1) 
mutant (although we do predict it as a minor conformation). One possibility is that the energy 
function, and possibly the use of an implicit solvent model for water, accounts for this 
discrepancy, although our energy function with implicit solvent has been extensively validated27-

29. When we perform MD with explicit solvent using the CC crystal as the start state, the 180° 
rotamer flips to the 60° rotamer and maintains that value for the entirety of the simulation run. 
Hence the very different energy functions and sampling methods (implicit vs. explicit solvent 
and MC vs. MD) favors an alternate rotamer to the major rotamer seen experimentally. Therefore 
we believe that overall the energy function used with MC-SCE is performing well. The fact that 
we are able to correctly predict the change in rotameric states for Phe113(χ1), Arg55(χ3), and 
Met61(χ2) when going from WT to the SerThr99 mutant for CypA, indicates that the adoption of 
the 180° rotamer at position 99 for WT and mutant CypA is not necessary, suggesting that we 

CypA X-ray Population MC-SCE population using CC, 
RT, and Ensemble backbones 

CypA Mutant 
Ser99Thr 

Res χ Class CC RT CC 
backbone 

RT (M, m) 
backbone  

RT 
ensemble 

X-ray RT MC-
SCE RT 

Leu98 
(χ1) 

60        
180 100.0 63.0  100.0 50.0 57.5 100.0 19.0 
-60  37.0   50.0 42.5 Ringer 74.7 

Ser99  
(Thr99) 
(χ1) 

60  37.0   50.0 22.4 Ringer 44.3 
180 100.0 63.0       100.0 3.8 
-60   100.0 50.0 77.6  51.9 

Phe113 
(χ1) 

60 100.0 63.0  100.0 50.0 75.0   
180        
-60   37.0   50.0 25.0 100.0 100.0 

Arg55 
(χ3) 

60    3.5 17.3   
180 100.0 63.0  78.6 45.2 53.0 Ringer 25.3 
-60 Ringer 37.0  21.4 51.3 29.7 100.0 74.7 

Met61 
(χ2) 

60 40.0 37.0  1.8 0.7 9.0 100.0 83.5 
180 60.0 63.0  98.2 99.3 91.0  1.3 
-60       15.2 
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are seeing a similar cooperative network effect among residues that were analyzed in the NMR 
relaxation experiments10. 

To provide for better contact with NMR solution data for CypA and the Ser99Thr mutant, 
Table 2.2 reports 3JCγN and 3JCγC values evaluated from our MC-SCE ensemble populations and 
compared to the same experimentally measured values for various aromatic residues10. We 
evaluated our J-couplings using the Karplus equation parameterization values found in both 33 
and 17, and they are also reported in Table 2.2. To put the comparison in some context, we also 
calculate the difference between the experimental J-coupling, J XY

(i,exp)
and the average scalar 

coupling calculated from a given MC-SCE structural ensemble, J XY
(i)

for each residue (Eq. (9)), 
normalizing it by the uncertainty of the Karplus parameters and any experimental error, to 
generate χJ

2 values (Eq. (10)). We use a conservative uncertainty value due to the Karplus 
equation of σJ = 0.5 Hz for both types of scalar couplings, estimated from the difference in 
calculated J-couplings using the two Karplus equation parameterizations that use the same 
underlying structural ensemble. Any dominant error due to the underlying structural ensembles 
themselves would then correspond to values of χJ

2 > 1. Our calculated deviations are χ2
JCγN 

=0.53 and χ2
JCγC =0.99 indicating that the underlying structural ensembles are sound. As such, 

we also observe a change in J-coupling values for Phe113 which confirms a switch in rotameric 
state from 60° to -60° as per the experiment. 

 
Table 2.2: J-coupling data for CYPA calculated using MC-SCE on the cryo-cooled backbone of 
wild type CYPA (3k0m) and Ser99Thr mutant (3k0p). The experimental values are taken from10. 
Two sets of Karplus parameters have been used to generate the MC-SCE scalar couplings: 33 
CC(S), and 17, CC(T). Using either parameters, we observed a change in J-coupling values for 
Phe113 which confirms a switch in rotameric state from 60° to -60°.  
 

 WT Ser99Thr 
Residue 3JCC(Hz) 3JNC(Hz) 3JCC(Hz) 3JNC(Hz) 

Expt CC (S) CC (T) Expt CC (S) CC (T) Expt CC (S) CC (T) Expt CC (S) CC 
(T) 

Phe25 3.6 3.91 4.36 0.8 0.36 0.37 3.7 3.91 4.37 0.7 0.36 0.37 
Tyr79 3.3 3.78 4.39 1.0 0.44 0.42 3.4 3.79 4.40 0.7 0.41 0.41 
Phe88 3.6 3.91 4.41 0.8 0.39 0.37 3.3 3.92 4.39 0.5 0.39 0.37 
His92 3.6 4.22 5.06 1.0 0.57 0.47 3.9 4.22 5.06 1.2 0.57 0.51 
Phe113 1.1 0.43 0.38 0.9 0.51 0.41 2.8 3.9 4.41 0.8 0.46 0.39 
Phe145 3.3 3.91 4.39 0.9 0.36 0.37 3.5 3.91 4.38 0.2 0.44 0.37 

 
 
Table 2.3 reports the CC and RT X-ray crystallographic and MC-SCE generated side 

chain χ rotamers and their populations for H-Ras. Again, the MC-SCE calculations were done on 
the CC backbone and its backrub variation, and the 20,000 structures of the generated side chain 
packing ensembles allow us to report MC-SCE population percentages. However the RT 
variations of the reported 9 individual side chains involved more than two rotameric states, and 
in combination would result in a large combinatorial number of RT crystal backbones that are 
inconvenient for performing the backrub motions. Instead we represent backbone variability 
using 3 MD snapshots at 0.2 ns, 2.0 ns and 4.0 ns to analyze the higher temperature data, given 
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its consistency with backrub motions for CypA and for the Rosetta data sets described further 
below.  

 
Table 2.3. X-ray crystallographic and MC-SCE generated side chain χ'rotamers for active site 
residues of H-Ras. Experimental rotamer populations are the occupancies reported in the 
deposited PDB files (CC: 1ctq, RT: 3TGP). In certain cases, the minor rotamer was identified 
using the software Ringer 8, 9. MC-SCE calculations were done on the cryo-cooled backbone 
(CC), backrub ensemble of the cryo-cooled backbone (BR-CC) as well as on RT MD snapshots 
generated at 0.2, 2 and 4 ns time points to incorporate backbone flexibility.  
 

H-Ras X-ray Populations MC-SCE using 
CC backbone 

MC-SCE using RT MD 
backbone 

Res χ Class CC χ RT χ CC BR-CC 0.2ns 2.0 ns 4.0 ns 
Asp 30 
(χ1) 

60  55.0      
180 100.0 45.0 100.0 58.3 90.0 100.0 50.0 
-60    41.7 10.0  50.0 

Glu 62 
(χ1) 

60      1.5  
180  100.0 7.7 41.6  24.2 66.7 
-60  100.0  92.3 58.4 100.0 74.3 33.3 

Ser 65 
(χ1) 

60  100.0  88.5 50.0 65.2 9.1 66.7 
180  100.0      
-60   11.5 50.0 34.8 90.9 33.3 

His 94 
(χ1) 

60 100.0 48.0 61.6 50.0 11.6 7.6 100.0 
180  52.0 34.6 50.0 88.4 22.7  
-60   3.8     69.7   

Val 103 
(χ1) 

60 Ringer     1.5  
180  38.0 38.5 58.3    
-60 100.0 62.0 61.5 41.7 100.0 98.5 100.0 

Gln 61 
(χ2) 

60  66.0 23.1 25.0 1.5   
180 100.0 34.0 3.8 25.0 30.4 90.9 66.7 
-60  Ringer 73.1 50.0 68.1 9.1 33.3 

Arg 97 
(χ3) 

60  Ringer 3.8   97.1 1.5   
180 100.0 100.0 96.2 83.3 0.0 98.5 100.0 
-60     16.7 2.9     

Glu 98 
(χ2) 

60     16.7 10.2 7.6   
180 100.0  80.8 75.0 73.9 1.5 83.3 
-60  100.0 19.2 8.3 15.9 90.9 16.7 

Gln99 
(χ2) 

60  Ringer   8.3   39.4   
180 100.0 100.0 84.6 83.3 92.7 54.6 66.7 
-60   15.4 8.3 7.3 6.1 33.3 

 
 
When performed on the CC X-ray backbone, or its backrub variant, our MC-SCE method 

predicts the same major conformer for residues Asp30(χ1), Glu62(χ1), Ser65(χ1), His94(χ1), 
Val103(χ1), Arg97(χ3), Glu98(χ2), and Gln99(χ2), with the only exception being Gln61(χ2) in 
which the MC-SCE algorithm predicts it to be a minor ( up to 25%) population. What is most 
interesting is that the MC-SCE method using the CC backbone can also determine the minor side 
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chain conformation detected in the RT crystal structure for Glu62(χ1), His94(χ1), Val103(χ1), 
Arg97(χ3), Glu98(χ2), as well as Gln61(χ2) which samples all three rotameric states. This 
suggests that the cryogenic backbones are not completely deficient for accommodating alternate 
rotamers, but apparently their electron density features are either far too weak to detect, or 
possibly that crystalline contact interactions favor certain rotamers. The MD results are also 
interesting, showing the time evolution of the rotamer populations for these residues as the 
backbone varies, flipping between the major and minor rotamer states.  

However, although the MC-SCE does predict the major conformer, it does not predict the 
alternative rotamer preference observed in the RT X-ray data for either Asp30(χ1) or Ser65(χ1) 
on any backbone. Given that these residues are surface residues, they may be more prone to 
crystal packing artifacts that bias the populations of a particular rotamer class. Figure 2.1 shows 
that there are stabilizing interactions for these two residues with the surrounding lattice that favor 
the RT major rotamer that is experimentally observed; in particular Asp30 interacts with arginine 
and Ser65 shows very close approach to glutamic acid. Since we do not represent the crystal 
lattice, these favorable hydrogen-bonding interactions would not be present, and thus would not 
preferentially stabilize the experimentally observed RT major rotamer.    

 
Figure 2.1. The PDB backbone and crystallization conditions for H-Ras. The residues 
represented are Asp30 (olive) and Ser65 (orange). They are important catalytic residues studied 
for H-Ras in which both the cryogenically cooled structure (1CTQ)44 and the room temperature 
structure (3TGP)11 were crystallized with a bound GTP ligand bound (purple). MC-SCE could 
not predict the major rotamer reported in the room temperature crystal structure for these 2 
residues. The meshes represent the crystal elements nearby as reported in the room temperature 
crystal structure(3TGP). The figure was generated using the PyMOL Molecular Graphics 
System, Version 1.5.0.4 Schrödinger, LLC.  
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Figure 2.2. J-coupling constants (a) 3JCγN and (b) 3JCγCO for Eglin-C. The red symbols are the 
experimental data from 30. The blue symbols are calculated from the MC-SCE ensemble using 
backbones from molecular dynamics and the Karplus parameterization from 17 
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Comparison to NMR data for Eglin-C, E:THF, and E:FOL. We next analyze the MC-
SCE approach against solution-based NMR scalar coupling constants 3JCγN and 3JCγC generated 
by Clarkson et al on Eglin-C 30 and by Tuttle and co-workers for the DHFR binary product 
complexes E:THF and E:FOL 17. To calculate the scalar coupling constants, we again use the 
standard Karplus equation, Eq. (8), with Karplus parameters from 17. Figures 2.2 shows the 
agreement between the experimental coupling values and the generated from the MC-SCE 
ensembles, taken on both the CC and MD backbones, for C-Eglin.  

The overall χJ
2 values for 3JCγN is 0.36 and for 3JCγC is 0.84 on the CC backbone, and 

these values change to χ2
JCγN=0.20 and χ2

JCγC=1.44 on the averaged molecular dynamics 
backbones, indicating that the structural ensembles are in overall good agreement with the 
rotamer populations for the 12 residues. Table S2 in the Supplementary materials provides a 
more detailed rotamer assignment for Eglin-C, and we note that although our J-coupling values 
for two of the residues, Thr 17 and Thr 26, are in excellent agreement with the experimental 
measurements, we do not agree with the experimental study in the assigned rotameric 
populations, suggesting that the experimental rotameric populations may be flawed.  

We next consider the J-coupling constants for E:THF and E:FOL, requiring us to develop 
parameters for the bound ligand on which the NMR data was taken; the introduction of the 
ligand means that we can’t generate backrub ensembles from the server3, and hence we use MD 
data to provide for backbone variations. Figures 2.3 and 2.4 show the agreement between the 
experimental coupling values and the generated from the MC-SCE ensembles, taken on the 
averaged MD backbones, for the E:THF complex and E:FOL complex, respectively. The overall 
χJ

2 values on the CC backbone is small (χ2
JCγN = 0.45 to 0.64) for both proteins, while the 

deviation in 3JCγC is larger when measured on the MD generated backbones (χ2
JCγC = 2.71 to 

3.06). The large χJ
2 value for the 3JCγC coupling for E:THF is due to genuine disagreement for 

what is the major rotamer for only three residues: Val40, His114, Thr123, although for His114 
we find it to be a minor rotamer instead (Table S3 at the end of chapter). For the DHFR complex 
E:FOL we again find disagreement for the major rotamer for two residues: Val10, Val40, and 
Thr123. It is noteworthy that Val40 and Thr123 are among one of the few residues that have 
different major rotamers in the multiple DHFR complexes studied in 17.  

For E:THF the MC-SCE structural ensembles show overall very good agreement across 
46 of the 49 residue NMR measurements, with χ2

JCγN = 0.65 and χ2
JCγC = 1.62, in which the 

major rotamer is correctly selected for all of these residues. For E:FOL the MC-SCE structural 
ensembles show overall very good agreement across 20 of the 22 residue NMR measurements, 
with χ2

JCγN = 0.23 and χ2
JCγC = 1.33, in which the major rotamer is correctly selected for all of 

these residues. Problems in the structural ensembles that gives rise to disagreement with the 3JCγC 
measurement for the two protein complexes are due to differences in the assignment of the minor 
rotamer for a smaller subset of residues, i.e. no minor rotamer detected, detected with a much 
smaller population, or assignment of a different minor rotamer state (Table S4).  

 
 

J XY
(i)

J XY
(i)
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!
Figure 2.3. J-coupling constants (a) 3JCγN and (b) 3JCγCO for the DHFR binary product complex 
E:THF. The red symbols are the experimental data from 17. The blue symbols are calculated from 
the MC-SCE ensemble using backbones from molecular dynamics and the Karplus 
parameterization from 17. 
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!
Figure 2.4. J-coupling constants (a) 3JCγN and (b) 3JCγCO for the DHFR binary product complex 
E:FOL. The red symbols are the experimental data from 17. The blue symbols are calculated from 
the MC-SCE ensemble using backbones from molecular dynamics and the Karplus 
parameterization from 17. 
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on ensembles of alternative side chain packings for the given backbones for all 55 native proteins 
and misfolded structures using our MC-SCE method that evaluates the side chain entropy. This 
free energy function is defined as 

     (1) 
where Ebest is the structure whose side chain packing for a given backbone (native or decoy) is 
the lowest energy in the generated ensemble, and –TSSC is the temperature weighted side chain 
entropy (Eq. (7) in Methods). We also judge the quality of these thermodynamic metrics through 
calculation of a Z-score, the free energy (or Esingle or Ebest) difference between the native state 
quantity and the same quantity averaged over the misfolded states. A larger value of the Z-score 
signals better separation of the native structure from the misfolded conformers. All detailed data 
is reported in Table S4 at the end of the chapter in order for us to highlight the important points 
here. 

The traditional rank based on our physics-based energy function, Esingle, does a very good 
job of discrimination of the given native state from all of the members of a given decoy set, in 
which 40/55 proteins are ranked 1st with a Z-score of -3.76 for this subset (-2.95 over all 
proteins). Our energy function comfortably outperforms many recent popular statistical 
potentials like DFIRE36(21/58), DOPE37 (21/58), and EPAD38 (34/58), and is competitive with 
other reported energy functions like EPAD238 (46/58) and PM6 39 (49/49).  

However, the free energy is the true thermodynamic quantity, and given that our MC-
SCE algorithm can generate an ensemble of side chain conformer packings, we compare the 
native side chain ensembles and the respective decoy ensembles, based on the evaluation of the 
free energy, F, using Eq. (1). Using the free energy thermodynamic metric, the absolute native 
state discrimination improves modestly to 42/55 natives identified (Z-score for natives of -3.62), 
with the Z-score over all proteins improving slightly to -3.07. Even so, for 8 proteins whose 
native states were not selected, the ensemble F rank improved native state ranking, significantly 
in most cases, compared to using Esingle: 1ail (rank 62 to 3), 1c8c (rank 47 to 2), 1enh (rank 81 to 
13), 1hz6 (rank 7 to 3), 1rnb (rank 93 to 89), 1utg (rank 94 to 75), 1vcc (rank 4 to 2), 1ubi (rank 
9 to 5), while 1pgx and 1dhn were 2nd ranked by either single or thermodynamic ensemble 
metrics (Table S4). A breakdown of the free energy shows that selection of the native 
conformation using the F rank is largely driven by Ebest, since the Z-score based on the side chain 
ensemble best energy alone is lowered to -3.94 for all native states selected, and -3.27 over all 
proteins. This clearly indicates that the original native PDB structure and provided Rosetta 
misfolded structures have not optimized side chain arrangements for the given backbone. 
Furthermore, these lower energy side chain packings are providing sharper discrimination of 
folded vs. misfolded states. These results are consistent with a number of recent studies that have 
shown that weak features in the electron density maps from X-ray protein crystallography 
support alternate side chain packings that differ from the original reported side-chain rotamers 7-

9, 11, 40.  
In order to push toward better native state discrimination, we also considered additional 

ensemble characterizations involving the native state backbone, with the expectation that small 
perturbations to the backbone might allow for new side chain rotamer packings. These backbone 
changes may remove overly unique side chain rotamer states that arise from cryo-cooling 10, 11, 
as well as crystal contacts, oligomeric packing, or ligand-binding interactions40. For example, 
1ail has been crystallized as a dimer, while 1c8c has a bound peptide, and thus are illustrative of 
perhaps why many of their decoys, generated independently from the original crystallization 

F = Ebest −TSSC
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conditions but with near-native features, are energetically better than the crystallized native state 
40. 

Therefore to test how the backbone perturbations influence the free energy ranking, we 
used backrub motions 3 that minimize repositioning of the backbone, but which can drastically 
affect side chain rotamer populations due to reorientation of the Cβ atoms, for the 13 proteins in 
which the native state was not selected or very poorly predicted by the free energy function. We 
performed backrub motions on the X-ray backbone for each of these proteins, generating 10 
different backrub structures. We then removed the side chains atoms beyond the Cβ position for 
each, and then used our MC-SCE approach to generate side chain packing ensembles, in order to 
calculate thermodynamic rankings using Ebest, and the free energy F, and their corresponding Z-
scores (Table 4). In addition we also do the same MC-SCE procedure for backbones derived at 
the end of a short molecular dynamics!simulation in explicit water at ambient temperature and 
pressure as an independent way to relax the crystalline constraints of the X-ray native structure. 
In both cases the native backbones were found to change by a little less than 1.0Å RMSD 
compared to their PDB structure, on average. The relative RMSD of the final thermalized native 
backbone with respect to the decoy set was unchanged on average, i.e. making the decoys no 
more or no less competitive for determining the native state ensemble.  

 
Table 2.4. Thermodynamic rankings and Z-scores of the native X-ray structure and MD and 
Backrub3 relaxed backbones.  
 

Protein RMSD 
(Å) Ebest 

Rank  

Ebest  
Z-
score 

F 
Ra
nk 

F  
Z-score 

Protei
n 

RM
SD 
(Å) 

Ebest 
Ran
k  

Ebest  
Z-
score 

F 
Rank 

F  
Z-
score 

1ail 0.00 9 -1.22 3 -1.73 1pgx 0.00 3 -2.29 2 -2.23 
Backrub 

0.26 1 -2.01 1 -2.33 
Backr

ub 0.70 1 -3.08 1 -3.22 
MD  1.13 1 -3.58 1 -3.36 MD  1.13 1 -2.72 1 -2.71 

            1c8c 0.00 3 -2.01 2 -2.34 1rnb 0.00 90 1.18 89 1.17 
Backrub 

0.33 3 -2.22 1 -2.59 
Backr

ub 
0.73 

1 -3.87 
1 

-3.87 
MD  0.56 3 -2.35 1 -2.96 MD  1.23 1 -4.07 1 -4.01 

            1dhn 0.00 2 -2.40 2 -2.01 1ubi 0.00 10 -1.23 5 -1.38 
Backrub 

0.41 
1 -3.47 1 -2.82 Backr

ub 0.35 1 -2.66 1 -2.46 
MD  0.94 1 -3.70 1 -3.34 MD  0.68 1 -2.92 1 -2.66 

            1enh 0.00 14 -1.03 13 -1.02 1utg 0.00 81 0.94 75 0.73 
Backrub 0.31 

1 -2.66 1 -2.47 
Backr

ub 0.56 10 -1.29 10 -1.24 
MD 0.60 1 -2.44 1 -2.32 MD  1.29 15 -0.99 26 -0.78 

            1gvp 0.00 21 -0.81 18 -1.04 1vcc 0.00 3 -1.99 2 -2.06 
Backrub 

0.65 1 -3.57 1 -3.67 
Backr

ub 0.26 1 -3.38 1 -3.20 
MD  1.14 1 -4.04 1 -3.86 MD  0.85 1 -3.77 1 -3.60 

            1hz6 0.00 3 -2.03 3 -2.22 1vls 0.00 75 0.45 98 2.11 
Backrub 

0.04 7 -1.76 6 -1.86 
Backr

ub 0.93 1 -2.16 1 -1.81 
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MD  0.68 3 -2.11 3 -2.27 MD  1.02 1 -3.39 1 -2.58 
            256b 0.00 1 -2.07 3 -1.65       

Backrub 0.42 1 -2.81 1 -2.32       
MD  1.31 1 -4.02 1 -3.57       

 
 
 

The resulting drastic improvement in ranking− 53/55 proteins native states are now well 
distinguished from the misfolds− suggests that the initial failure of the free energy to identify the 
native state cannot be attributed primarily to the limitation of the energy function or MC-SCE 
sampling protocol. Instead, the small changes in backbone flexibility, consequences of which 
were also examined by Tyka and co-workers40, highlights the sensitivity of SCE to subtle effects 
of the backbone configuration, which improved the discrimination for 11 of the 13 problematic 
proteins. Since the native state is selected for in ~96% proteins of the best available Rosetta 
decoy set, considered to be a challenging test of any new sampling method, statistical potential, 
physical force field or scoring function, MC-SCE appears to provide an excellent standard for 
native state prediction. Two proteins for which we did not discriminate for the native were 1hz6 
(whose rank remained 3rd whether using the PDB or MD backbone) and 1utg (whose 75th native 
rank with the PDB structure rose to 10th with the backrub motions), and would require more 
careful consideration of available NMR data. 

In order to check the similarity between the best energy native structure in our free 
energy ensemble with the deposited PDB crystal structure, the χ1 torsional angles between the 2 
structures were compared for each of the 55 proteins we analyzed. A residue was said to have 
had a change in torsional angle if the absolute value of their difference exceeded 40°, which is 
similar to the convention adopted by Bower and co-workers41, and the fraction of the total 
residues that changed the χ1 angle is listed in the final column of Table S4. On an average, our 
MC-SCE algorithm found an alternate χ1 dihedral angle in the best free energy native structure 
compared to the crystal structure 25% of the time, consistent with the ~18% of alternate side 
chain rotamers on reexamination of electron density from 402 high resolution X-ray crystal 
structures9. Since Lang and co-workers only considered unbranched side chains in their electron 
density analysis, as well as ignoring density fitting with combinations of χ1, χ2, χ3 etc., it would 
likely explain the quantitative discrepancy with what we have found since we considered all 
residues and the full rotameric set of χ values for any given amino acid. Figure 2.5 shows the 
typical distribution of side chain entropy on the 2CHF PDB backbone, where the side chain 
conformations that showed most variability did not exclusively select surface residues, but core 
positions as well. 
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Figure 2.5. The PDB native backbone of the'Mg2+Zbound'form'of'CheY45 (2CHF). The regions 
colored red are the side chain positions where alternate rotameric states was found by the MC-
SCE algorithm compared to the PDB side chain packing. It is notable that side chain repacking 
occurs for both interior and surface residues. The Figure was generated using Chimera46.  

 
 
2.4 CONCLUSIONS 
In summary, we have introduced a new MC-SCE algorithm for generating side chain packing 
ensembles, allowing us to predict side chain rotamer populations and side chain entropy, which 
we have compared to extensive data sets from both NMR and X-ray crystallographic 
experiments. We have validated our approach by making direct contact with X-ray 
crystallography and NMR data on side chain rotamer populations for CypA and its Ser99Thr 
mutant10, HRas11, Eglin-C30, and the DHFR complexes E:THF and E:FOL 17. For all proteins we 
find overall excellent agreement of rotamer values, their populations, and calculated J-couplings 
when compared to crystallographic data and with NMR experimental J-couplings.  

We have shown that the side chain populations measured depend significantly on the 
given backbone structure, and hence our MC-SCE technique is aided by introducing small 



!

! 30!

deviations (~1.0 Å RMSD) from the crystallographic backbone structures using both backrub 
motions and thermalized explicit solvent molecular dynamics simulations. For the case of CypA 
and its Ser99Thr mutant we found all of the major and minor rotamers of all reported residues 
except for Ser(Thr)99. However, it had no discernable influence on our successful ability to 
predict the Phe113 catalytic rotameric state for WT as well as stabilizing the minor rotamers for 
Phe113(χ1), Arg55(χ3), and Met61(χ2) in the active site of the mutant form10.  

For the protein H-Ras, we found that we can detect the minor or alternate rotamer state of 
a sidechain when the ensemble is generated on the CC backbone and its backrub variants, 
although the experimental density is only evident in the RT X-ray data11. In addition, we do not 
observe the same minor rotameric states that are experimentally found for Asp30 and Ser65. In 
both cases, i.e. our ability to detect new rotamers on the CC backbone or observing alternate 
minor rotamers to that found in the RT data, can be explained by the fact that the surrounding 
crystal lattice is not present in our approach. Previous work has shown that stabilizing packing 
interactions often arise from polar-polar interactions with the surrounding crystal lattice, and thus 
can influence the experimentally observed rotamer populations42. We found that such specific 
interactions with the surrounding lattice are present for Asp30 and Ser65, for example, and hence 
would not be predicted with our MC-SCE approach that instead represents aqueous solution 
conditions. 

We have also compared our MC-SCE rotamer populations to those estimated from 
solution phase NMR data. Our calculated agreement with scalar coupling measurements for 
CypA, C-Elgin, and the two DHFR complexes E:THF and E:FOL were found to be overall 
excellent. The calculated scalar couplings using our MC-SCE method was well within 
experimental and Karplus parameter uncertainty for 3JCγN for all four proteins, and for 85-100% 
of residues for the 3JCγC measurement across the four data sets. The primary error for the E:THF 
and E:FOL complexes was the failure to predict the major rotamer for Val40 and Thr123, 
although these same residues were found to sample alternate rotameric states in the full series of 
DHFR complexes17.  

Finally, we have a highly reliable method for discrimination of native states from 
misfolded structures based on a difficult Rosetta decoy set. One consequence of our MC-SCE 
algorithm is that we find better side chain rotamer and packing representations of both the native 
state and the decoy set. This can be quantified for the decoy set by the Z-score between the PDB 
structure, i.e. the single backbone and side chain rotamers of the X-ray structure, and the Ebest 
from the decoy set ensembles, which shrinks to –2.77. We have provided this new decoy set, 
Berkeley-SC-Ensemble, which we have made available at our web site 
http://thglab.berkeley.edu. It also includes the ensemble of new side chain packing arrangements 
on native PDB backbones that will be of interest to X-ray crystallographers and NMR groups.  
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2.6 APPENDIX  

Protein energy function. The protein energy function is based on the standard AMBER 
functional form, but for use with rotamer libraries it requires minor additional specification. The 

Van der Waals dispersion energy is defined as 

                  (S1) 

where  and α is a clash check parameter that is set to 0.8 in this work. The Coulomb 
electrostatic energy is 

      (S2) 

where qi and qj are the partial charges of atoms i and j, respectively, and εP is a dielectric constant 
that is set to 4.  

The GB-HPMF solvation model. The Generalized Born (GB) model(Onufriev et al., 
2004) treats the electrostatic polarization energy as the interaction between the protein’s charge 
distribution enclosed in a low dielectric region and the reaction potential it induces in the 
surrounding high dielectric solvent. 

     (S3) 
where  is a continuous function defined as  

                      (S4) 

Here Ri and Rj are the born radii of atoms i and j, respectively, evaluated using the method 
proposed by Onufriev et. al and references therein(Onufriev et al., 2004).   

The hydrophobic potential of mean force (HPMF) implicitly models the influence of 
water on the free energy of interaction between two small hydrophobic groups(Sorenson et al., 
1999). The resulting potential of mean force exhibits two minima separated by a barrier: one for 
the hydrophobic molecules in contact and one for the hydrophobic groups separated by a water 
layer, which we calculate using a simple Gaussian functional form 

       (S5) 

The parameters of this model and other details are available in Ref [(Lin et al., 2007)].  
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Local Minimization Procedure. The PDB conformations are given as Cartesian 
coordinates of heavy atoms, but real proteins and our atomistic energy function require that 
hydrogen positions to be specified as well. We use the Amber program(Case et al., 2010) to 
build the positions of the hydrogen atoms on the native PDB structures. Both the resulting native 
and all decoy structures are then optimized to their nearest local minimum using the L-BFGS 
(Broyden-Fletcher-Goldfarb-Shanno) limited memory quasi-Newton method(Liu and Nocedal, 
1989; Press et al., 1992). Energies and derivatives are defined by the total energy, which is the 
sum of Eqs. (1) and (5) in the main paper. 

Molecular dynamics relaxation. We ran MD simulations of several proteins using the 
Amber ff99SB force field(Hornak et al., 2006) and aqueous solvent represented by the TIP4P-
Ew water model(Horn et al., 2004), which we chose because previous studies support its clear 
superiority relative to other biomolecular simulation force fields(Fawzi et al., 2008; Sgourakis et 
al., 2011; Wickstrom et al., 2009). We simulated each protein in a cubic box containing 
sufficient (multiple layers) water and counter ions to neutralize any protein net charge at 300K 
and 1atm. The pmemd module of AMBER(Case et al., 2010) was used to generate up to 4ns of 
NPT data for each protein; the short trajectories were intentional since the purpose of the 
simulation is to relax any residual effects of the X-ray crystal environment on the backbone 
structure(Tyka et al., 2011). 
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Table S1: Dihedral Angle definitions used in MC-SCE to grow side chains of amino acids. 
Standard bond lengths/angles were used to place side chain atoms. No attempt was made to 
regrow the Cβ atom.  
 

Residue! �angle! Atoms!! Residue! �angle! Atoms!
ARG! �1! NTCαTCβTCγ! LEU! �1! NTCαTCβTCγ!

�2! CαTCβTCγTCδ! �2! CαTCβTCγTCδ1!
�3! CβTCγTCδTNε! LYS! �1! NTCαTCβTCγ!
�4! CγTCδTNεTCζ! �2! CαTCβTCγTCδ!
�5! CδTNεTCζTNω1!(0°)! �3! CβTCγTCδTCε!

ASN! �1! NTCαTCβTCγ! �4! CγTCδTCεTNζ!
�2! CαTCβTCγTOδ1! MET! �1! NTCαTCβTCγ!

ASP! �1! NTCαTCβTCγ! �2! CαTCβTCγTSδ!
�2! CαTCβTCγTOδ1! �3! CβTCγTSδTCε!

CYS! �1! NTCαTCβTSγ! PHE! �1! NTCαTCβTCγ!
GLN! �1! NTCαTCβTCγ! �2! CαTCβTCγTCδ1!

�2! CαTCβTCγTCδ! PRO! �1! NTCαTCβTCγ!
�3! CβTCγTCδTOε1! �2! CαTCβTCγTCδ!

GLU! �1! NTCαTCβTCγ! SER! �1! NTCαTCβTOγ!
�2! CαTCβTCγTCδ! THR! �1! NTCαTCβTOγ1!
�3! CβTCγTCδTOε1! TRP! �1! NTCαTCβTCγ!

HIS! �1! NTCαTCβTCγ! �2! CαTCβTCγTCδ1!
�2! CαTCβTCγTNδ1! TYR! �1! NTCαTCβTCγ!

ILE! �1! NTCαTCβTCγ1! �2! CαTCβTCγTCδ1!
�2! CαTCβTCγ1TCδ! VAL! �1! NTCαTCβTCγ1!

!
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Table S2: χ1 rotamer population data for protein Eglin C as calculated by MC-SCE. The 
experimental populations were taken from the reported crystal structure (PDB: 1CSE) and 
estimates from NMR J-coupling experiments (Clarkson et al., 2006). MC-SCE calculations were 
done on the deposited crystal structure backbone, a backrub ensemble of the crystal structure 
(BR-CC) and on backbones thermalized by MD at time points of 0.2, 2.0 and 4.0 ns.  
 

Eglin C Residue Experimental Population MC-SCE Population  
 χ1 Class CC χ1 NMR χ1 CC backbone Thermal backbone 
Val13 60  8.0  <1.0 

180 100.0 55.0 98.0 54.0 
-60  37.0 2.0 45.0 

Val14 60  4.0  <1.0 
180 100.0 90.0 100.0 82.0 
-60   6.0  17.0 

Thr17 60  100.0 36.0 99.0 100.0 
180  64.0   
-60   1.0  

Val18 60      
180 100.0 86.0 100.0 74.0 
-60  14.0  26.0 

Thr26 60   81.0  <1.0 
180  9.0  <1.0 
-60 100.0 10.0 100.0 98.0 

Val34 60  100.0 21.0  <1.0 
180  75.0 98.0 58.0 
-60  4.0 2.0 41.0 

Val43 60   10.0  15.0 
180  10.0  4.0 
-60 100.0 80.0 100.0 81.0 

Val52 60   17.0   
180 100.0 81.0 100.0 99.0 
-60  2.0  <1.0 

Val54 60   13.0   
180 100.0 87.0 100.0 100.0 
-60     

Val62 60   9.0   
180 100.0 83.0 99.0 99.0 
-60  8.0 1.0 <1.0 

Val63 60   3.0   
180 100.0 94.0 100.0 100.0 
-60  3.0   

Val66 60      
180 100.0 91.0 100.0 100.0 
-60  9.0   
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Table S3: χ1 rotamer population data for certain residues in DHFR complex E:THF as 
calculated by MC-SCE. The experimental populations were taken from the deposited crystal 
structure (PDB: 1RX5) and estimates from NMR J-coupling experiments(Tuttle et al., 2013). 
The MC-SCE calculations were done on the crystal structure backbone with the ligand docked in 
the crystallographic conformation (CC) as well as MD snapshots of enzyme-ligand complex 
taken at time points of 0.2, 2 and 4 ns. 
   

Residue Experimental Population MC-SCE Population 
 χ1 Class CC χ1 NMR χ1 CC backbone Thermal backbone 
Ile2 60  19.0   

180     
-60 100.0 81.0 100.0 100.0 

Ile5 60  12.0   
180 100.0 75.0 86.0 100.0 
-60   13.0 14.0  

Ile14 60  100.0 91.0 55.8 34.0 
180  9.0 44.2 66.0 
-60     

Ile41 60   10.0   
180   7.0  
-60 100.0 90.0 93.0 100.0 

Ile50 60   29.0 2.3 45.0 
180     
-60 100.0 71.0 97.7 55.0 

Ile60 60   9.0   
180  8.0   
-60 100.0 83.0 100.0 100.0 

Ile61 60   19.0   
180     
-60 100.0 81.0 100.0 100.0 

Ile82 60   18.0  4.0 
180     
-60 100.0 82.0 100.0 96.0 

Ile91 60   14.0   
180     
-60 100.0 86.0 100.0 100.0 

Ile94 60  100.0 59.0 100.0 92.0 
180     
-60  41.0  8.0 

Ile115 60   11.0   
180    17.0 
-60 100.0 89.0 100.0 83.0 

Ile155 60   9.0  8.0 
180  5.0  <1.0 
-60 100.0 85.0 100.0 91.0 
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Table S3: χ1 rotamer population data for DHFR complex E:THF as calculated by MC-SCE 
(continued) 
   

Residue Experimental Population MC-SCE Population 
 χ1 Class CC χ1 NMR χ1 CC backbone Thermal backbone 
Val10 60     

180 100.0 74.0 95.4 100.0 
-60  26.0 4.6  

Val13 60  5.0   
180 100.0 76.0 100.0 100.0 
-60   19.0   

Val40 60    11.6 <1.0 
180  20.0 83.7 92.0 
-60 100.0 80.0 4.6 7.0 

Val72 60   4.0   
180  6.0   
-60 100.0 90.0 100.0 100.0 

Val75 60  100.0  3.0   
180  23.0  33.0 
-60  74.0 100.0 67.0 

Val78 60      
180 100.0 82.0 100.0 100.0 
-60  17.0   

Val88 60   3.0  4.0 
180  1.0  6.0 
-60 100.0 96.0 100.0 90.0 

Val93 60      
180 100.0 72.0 100.0 94.0 
-60  28.0  6.0 

Val99 60   3.0   
180 100.0 90.0 100.0 100.0 
-60  7.0   

Val119 60   29.0 67.4 27.0 
180  37.0  33.0 
-60 100.0 34.0 32.6 40.0 

Val136 60   9.0   
180  6.0  <1.0 
-60 100.0 86.0 100.0 99.0 

Tyr100 60  8.0   
180    28.0 
-60 100.0 92.0 100.0 72.0 

Tyr111 60  1.0   
180    8.0 
-60  100.0 99.0 100.0 92.0 

Tyr128 60  100.0 88.0 100.0 96.0 
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180     
-60  12.0  4.0 

Tyr151 60  100.0 94.0 100.0 100.0 
180  6.0   
-60     

 
Table S3: χ1 rotamer population data for DHFR complex E:THF as calculated by MC-SCE 
(continued) 
 

Residue type - THR Experimental Population  MC-SCE Populations  
 χ1 Class CC χ1 NMR χ1 CC backbone Thermal backbone 
Thr35 60 100.0 84.0  100.0 

180  11.0   
-60  6.0 100.0  

Thr46 60  28.0 32.6  
180     
-60  100.0 72.0 67.4 100.0 

Thr68 60  100.0 84.0 100.0 100.0 
180  9.0   
-60  7.0   

Thr73 60   22.0   
180     
-60 100.0 78.0 100.0 100.0 

Thr113 60     1.0 
180     
-60 100.0  100.0 99.0 

Thr123 60  100.0  100.0 32.0 
180  36.0   
-60  64.0  68.0 

His45 60    26.0 
180   97.7 62.0 
-60 100.0  2.3 12.0 

His114 60  6.0   
180   53.5 88.0 
-60  100.0 94.0 46.5 12.0 

His124 60   2.0  2.0 
180  26.0   
-60 100.0 71.0 100.0 98.0 

His141 60   13.0   
180    1.0 
-60 100.0 87.0 100.0 99.0 

His149 60   1.0   
180     
-60 100.0 99.0 100.0 100.0 
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Table S3: χ1 rotamer population data for DHFR complex E:THF as calculated by MC-SCE 
(continued) 
 

Residue type -TRP Experimental Population  MC-SCE Populations  
 χ1 Class CC χ1 NMR χ1 CC backbone Thermal backbone 
Trp22 60 100.0 85.0 100.0 100.0 

180  15.0   
-60     

Trp30 60     
180 100.0 87.0 95.4 78.0 
-60   13.0 4.6 22.0 

Trp47 60   8.0   
180 100.0 92.0 100.0 100.0 
-60     

Trp74 60   3.0  7.0 
180    26.0 
-60 100.0 97.0 100.0 67.0 

Trp133 60   20.0   
180     
-60 100.0 80.0 100.0 100.0 

Phe31 60     
180 100.0 98.0 100.0 100.0 
-60  2.0   

Phe103 60  8.0   
180     
-60  100.0 92.0 100.0 100.0 

Phe125 60      
180 100.0  69.8 34.0 
-60   30.2 66.0 

Phe137 60   30.0   
180 100.0 70.0 100.0 89.0 
-60    11.0 

Phe140 60   17.0   
180 100.0 54.0 100.0 90.0 
-60  30.0  10.0 

Phe153 60   3.0   
180  2.0 4.7 14.0 
-60 100.0 95.0 95.3 86.0 
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Table S4. Thermodynamic rankings and Z-scores of the native X-ray crystal structure relative to 
low RMSD misfolded structures for 55 of the 57 Rosetta protein decoy sets. Our MC-SCE 
algorithm was unable to find any non-clashing side chains for 2 proteins in the original Rosetta 
decoy set and thus have not been reported. Definitions for the thermodynamic quantities are 
given in the text. Proteins with asterisks are discussed in the text and some analyzed in more 
detail in Table 2.1 of the main text. 
 

Protein 
Esingle 
Rank  

Esingle  
Z-score 

Ebest 
Rank  

Ebest  
Z-score 

F 
Rank 

F  
Z-score 

% χ1 
changes 

1a19 1 -3.11 1 -3.33 1 -3.34 23.4 
1a32 1 -3.29 1 -3.53 1 -2.74 27.6 
1a68 1 -3.17 1 -2.72 1 -2.93 24.7 
1acf 1 -2.94 1 -3.61 1 -3.63 21.1 
1ail* 62 0.31 9 -1.22 3 -1.73 35.5 
1aiu 1 -2.3 1 -2.95 1 -2.9 26.1 
1b3a 1 -3.63 1 -3.3 1 -3.34 18.0 
1bgf 1 -4.18 1 -4.33 1 -4.07 26.9 
1bk2 1 -5.69 1 -5.15 1 -4.98 21.6 
1bkr 1 -5.98 1 -5.7 1 -4.48 24.7 
1bm8 1 -2.89 1 -2.78 1 -2.72 18.8 
1bq9 1 -4.49 1 -2.83 1 -2.55 25.6 
1c8c* 47 -0.21 3 -2.01 2 -2.34 23.5 
1c9o 1 -3.47 1 -3.84 1 -3.9 20.7 
1cc8 1 -4.02 1 -3.71 1 -3.4 15.1 
1cei 1 -3.03 1 -3.19 1 -2.76 32.0 
1cg5 1 -3.47 1 -5.8 1 -5.61 22.9 
1ctf 1 -3.8 1 -3.71 1 -3.74 27.6 
1dhn* 2 -2.1 2 -2.4 2 -2.01 26.7 
1e6i 1 -2.84 1 -2.58 1 -2.38 19.8 
1elw 1 -4.96 1 -5.11 1 -3.25 28.1 
1enh* 81 1.12 14 -1.03 13 -1.02 44.9 
1ew4 1 -3.46 1 -3.94 1 -3.34 30.4 
1eyv 1 -4.38 1 -5.13 1 -4.02 27.7 
1fkb 1 -4.93 1 -4.3 1 -4.32 22.4 
1gvp* 8 -1.55 21 -0.81 18 -1.04 38.2 
1hz6* 7 -1.77 3 -2.03 3 -2.22 17.0 
1ig5 8 -1.42 1 -3.12 1 -2.61 27.9 
1iib 1 -3.17 1 -3.77 1 -3.65 26.8 
1kpe 1 -5.11 1 -5.23 1 -5.16 23.3 
1lis 1 -2.01 1 -4.71 1 -3.86 21.1 
1lou 1 -3.81 1 -3.87 1 -3.62 26.8 
1nps 1 -4.29 1 -3.74 1 -3.44 13.6 
1opd 1 -2.41 1 -3.17 1 -2.27 21.7 
1pgx* 2 -1.84 3 -2.29 2 -2.23 20.0 
1ptq 1 -2.36 1 -3.19 1 -2.72 22.2 
1rnb* 93 1.49 90 1.18 89 1.17 19.6 
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1scj 1 -2.59 1 -3.00 1 -2.74 38.2 
1shf 1 -3.3 1 -4.63 1 -4.52 27.4 
1ten 1 -5.27 1 -6.23 1 -5.97 31.2 
1tig 2 -2.02 1 -4.08 1 -3.23 26.3 
1tul 1 -3.76 1 -5.08 1 -4.78 22.5 
1ubi* 9 -1.33 10 -1.23 5 -1.38 18.4 
1ugh 1 -3.18 1 -4.16 1 -3.98 25.0 
1urn 1 -4.27 1 -3.71 1 -3.79 23.4 
1utg* 94 1.45 81 0.94 75 0.73 18.4 
1vcc* 4 -1.71 3 -1.99 2 -2.06 21.4 
1vie 1 -5.63 1 -5.29 1 -5.01 14.3 
1vls* 1 -2.23 75 0.45 98 2.11 31.1 
1who 1 -4.67 1 -4.59 1 -4.2 22.5 
2acy 1 -4.72 1 -4.62 1 -4.07 26.2 
2chf 15 -1.03 1 -2.49 1 -2.32 24.3 
2ci2 4 -1.46 2 -1.89 1 -2.17 33.9 
5cro 1 -3.85 1 -3.32 1 -3.54 36.3 
256b 1 -3.72 1 -2.07 3 -1.65 30.0 
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Chapter 3 
 
The role of side chain entropy and mutual information for 
improving the de novo design of Kemp eliminases KE07 and KE70 
 
Side chain entropy and mutual entropy information between residue pairs have been calculated 
for two de novo designed Kemp eliminase enzymes, KE07 and KE70, and for their most 
improved versions at the end of laboratory directed evolution (LDE). It was found that entropy, 
not just enthalpy, helped to destabilize the preference for the reactant state complex of the 
designed enzyme as well as favoring stabilization of the transition state complex for the best 
LDE enzymes. Furthermore, residues with the highest side chain couplings as measured by 
mutual information, when experimentally mutated, were found to diminish or annihilate catalytic 
activity, some of which were far from the active site. In summary, these findings demonstrate 
how side chain fluctuations and their coupling can be an important design feature for de novo 
enzymes, and furthermore could be utilized in the computational steps in lieu of or in addition to 
the LDE steps in future enzyme design projects as will be shown in Chapter 4. This chapter is 
based on the following publication 
 

A. Bhowmick, S. Sharma,  H. Honma, T. Head-Gordon (2016). The role of side chain 
entropy and mutual information for improving the de novo design of Kemp Eliminases 
KE07 and KE70. Phys. Chem. Chem. Phys., 18, 19386  

 
!
3.1 INTRODUCTION 
The ability to control for protein structure, energetics and dynamical motions is a fundamental 
problem that limits our ability to rationally design catalysts for new chemical reactions not 
known to have a natural biocatalyst. Current computational approaches for de novo enzyme 
design seek to engineer a small catalytic construct into an accommodating protein scaffold, as 
exemplified by the Rosetta strategy applied to the design of many different catalytic motifs1, 2. In 
this study we consider the Rosetta design of the Kemp elimination reaction3 involving the 
deprotonation of a small ligand substrate (5-nitro benzisoxazole) by a base (Figure 3.1a), in 
which the designed catalytic construct was engineered into a TIM barrel scaffold2. Two well-
studied de novo enzymes for this reaction are KE07 and KE70, in which some minimal activity 
was observed in the designed enzymes and proved an important validation of the Rosetta 
approach. Nonetheless the catalytic activity was very low, and a number of follow-on studies 
have provided some important insight into the active site energetic features that limited the 
catalytic activity of the original designs of KE07 and KE704-7.  

What proved more beneficial to improving the catalytic performance of KE07 and KE70 
was application of laboratory directed evolution (LDE)8-10, an experimental strategy based on the 
principle of natural selection11. The goal of LDE is to alter the protein sequence through multiple 
rounds of mutagenesis and selection to isolate the few new sequences that exhibit enhanced 
catalytic performance. Given the limitations of our understanding of the structure-function 
relationship12, LDE provides an attractive alternative to rational design approaches to 
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biocatalysis, is highly flexible in application to different biocatalysis reactions, and provides an 
effective way of improving upon de novo enzymes generated from computational designs9, 13. 
Although LDE can be an opaque process because it offers no direct rationale as to why mutations 
are successful, many hypotheses and useful heuristics have been proposed and developed for 
improving binding selectivity or protein stability using LDE14-17. For example, previous efforts to 
rationalize and ultimately decrease the sequence space for LDE focused on the interplay of 
sequence site entropy, i.e. the plasticity for evolutionary-driven substitutions, and the likelihood 
that these sites would thus be more prone to increased structural flexibility18, 19, and which was 
borne out by mutations that reduced the entropy of these sites20, 21. For KE07 and KE70, LDE 
improved the Michaelis-Menten specificity constant kcat/KM by a factor of ~200 and ~400, 
respectively, in the best evolved enzymes.  

The primary question we address in this work is what is missing in the original 
computational de novo design that is captured instead during the LDE process to improve the 
Michaelis-Menten specificity constant kcat/KM for KE07 and KE70? Using the framework of 
transition state theory22, biocatalytic improvements as measured by kcat/KM should arise through 
reduction in the activation free energy, , where E and L represent the enzyme 

and ligand, respectively. The activation free energy is comprised of a positive
that quantifies the catalytic barrier between the reactant EL state and transition EL† complex, and 
therefore relates directly to kcat; in addition  measures the binding affinity of 

the ligand to the enzyme active site and thus relates to KM. Therefore knowing or the 
activation enthalpy, , and activation entropy, , components, we can connect directly to 
the kcat/KM ratio through 

   (1) 

and therefore the success of the LDE process applied to KE07 and KE70 must have a rational 
thermodynamic basis via Eq. (1).  

While it is broadly accepted that optimizing enthalpic interactions is paramount for good 
substrate binding and lowering of the transition state barrier to the chemical reaction, the role of 
dynamics for improving catalytic performance is more controversial. One aspect of the 
controversy pertains to the definition of dynamics, for example whether it refers to equilibrium 
statistical fluctuations23-25, dynamical coupling26 and/or maximizing the reactive flux through the 
transition state surface27. Probably the most commonly implied definition of important functional 
motions for biocatalysis is a thermodynamic one, i.e. statistical fluctuations that are embodied in 
an entropy change that along with enthalpy contributes to the changes in the free energy state 
function as per Eq. (1).  
 In order to support the design of good enthalpic interactions between the substrate and the 
enzyme, it would seem desirable to impose some limits on the conformational flexibility to aid 
the catalytic function28, 29. A survey of 178 enzymes led to the conclusion that active site residues 
of naturally occurring enzymes are the least flexible within a sequence, supported by their low B-
factors in the crystalline environment30. At the same time, evidence also exists that increased 
conformational flexibility can also be a factor in improved biocatalytic performance. Room 
temperature X-ray crystallography31, in good agreement with NMR32, 33, has shown that protein 
interiors are very fluid, especially at the level of side chain motions, and that alternate side chain 
conformers in ligand binding and catalysis can be critical for function34, and conformational 
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flexibility forms the basis of computational approaches to conformational selection in allostery35-

37. Hence, even though configurational entropy may well be important for biocatalysis, it still 
remains poorly understood how statistical fluctuations can be utilized to improve the de novo 
design process.  

In this study we consider the question of how LDE improvements in the catalytic activity 
of KE07 and KE70 changes the active site energetics as well as side chain entropy and side chain 
coupling captured through mutual information. We find that the best KE07 and KE70 enzymes at 
the end of LDE process exhibit enthalpies and entropies that both destabilize the reactive state 
and stabilize the transition state with respect to the designed enzymes, showing that the original 
enzymes were over-designed for the EL reactant state, whereas the LDE process created 
enzymes that preferred the EL† complex instead, especially for the KE70 enzyme. Furthermore, 
we find that residues with the highest mutual information proved to be critical for enzyme 
catalysis, which we tested on the best evolved enzyme for KE07. We show that new amino acid 
chemistries with high mutual information in the active site, some of which have not been 
reported in previous studies of the same enzyme, proved critical to function since experimental 
mutations at these sites destroyed enzyme activity. Of greater interest is that other residues 
identified as having high mutual information that are far from the active site were found to 
diminish or annihilate catalytic activity when mutated in the best evolved KE07 enzyme. In 
summary, our findings demonstrate how differences in not only energetics, but side chain 
fluctuations and their coupling, can be an important design feature for de novo enzymes, and 
furthermore could be utilized in future computational enzyme design projects.  

 
Transition State Theory 
We rely on the analysis of enzyme performance using transition state theory via Eq. (1)22. For the 
calculation of the enthalpy, we assume that the PV term is negligible such that it can be 
quantified using only potential energy calculations. We therefore calculate all protein-protein 
interactions for KE07 and KE70 using the generalized Amber force field, while the model for all 
protein and 5-nitro benzisoxazole interactions with aqueous solvent is based on our GB-HPMF 
implicit solvent model, which has been well-validated in previous work38,39. We use electrostatic 
models of the 5-nitro benzisoxazole ligand in the reactant state and transition state based on 
partial charges as reported by Frushicheva and co-workers6, and long molecular dynamics 
calculations have confirmed that the ligand charges in the two states are compatible and thus 
stable within the protein modeled using a classical force field. The state enthalpy is evaluated as 
an average across an ensemble of backbone conformations, each of which has a large ensemble 
of side chain packings, such that we define  for a given state: the EL† complex, the 
EL complex, and apo state of the enzyme E.  

The state entropy term defined in Eq. (1) can be further decomposed into sums over (i) 
contributions from the individual residues in the enzyme, as well as (ii) contributions from 
correlated motion between side chains of residues40, 41, averaged over the backbone 
configurations  

        (2) 

and similarly Eq. (2) can be used to define the entropy of EL†, EL, and E states. Thus, we see 
that the catalytic power of an enzyme as measured from kcat/KM, can ultimately be related to 
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entropy contributions from individual residues, mutual information between residue pairs, or 
even higher order correlations, when defining the total entropy change.  
 
3.2 MATERIALS AND METHODS 
 
Computational Methods 
Generating backbone ensembles for the apo, EL and EL† states of KE07 and KE70: Although we 
mostly focused on the two end state sequences, i.e. the two designed enzymes and the final LDE 
rounds for KE07 and KE70, some results in the SI material also consider the intermediate rounds 
of LDE for each of the enzymes. The initial backbone structures and initial definition of the side 
chain rotameric state of the KE07 apo enzyme for the initial design and LDE rounds 4 and 6 
were taken from the PDB database42. Apo state structures for rounds without PDB structures 
were generated using Modeller with the KE07 design as the backbone/side chain template. For 
KE70, the apo structure of the initial design was taken from the computational model reported 
elsewhere2. For round 2, the apo state structure was taken from the PDB (ID: 3NPX) and rounds 
4, 5 and 6 variants were generated by Modeller using the KE70 design as template.  

Modeller was used to generate the EL state structure using the apo state as the template 
for the original designs and all LDE rounds for KE07 and KE70. For the EL state of the KE07 
and KE70 designs, we used the docked structure definition of the ligand as reported elsewhere2. 
The ligand was then kept fixed in its modeled position for all subsequent backbone perturbations 
and MC-SCE calculations. The substrate geometry for the EL† state was kept the same as in the 
EL complex, and only TS charges were changed to reflect the transition state of the bound 
complex. 

Using each of these PDB/modeled structures for the backbone in the apo and ligand 
bound states, we then used the backrub algorithm implemented in Rosetta21 to run 50 
independent simulations, each generating 10,000 trial moves using the Cα atoms as pivot 
residues, to generate uncorrelated backbone ensembles. From each simulation the lowest energy 
structure was saved and these 50 low energy backrub structures were selected, and divided into 5 
backbone ensembles with 10 structures in each ensemble; this was done for all the rounds for 
both apo and ligand bound states. Since the backbone scaffolds for KE07 and KE70 are quite 
rigid, we believe the backbone variations we have generated are adequate. 

 
Generating side chain ensembles for the apo, EL and EL† states of KE07 and KE70: We 

have recently developed a Monte Carlo Side Chain Ensemble method (MC-SCE)43 to create 
large side chain ensembles to calculate the terms in Eq. (2). The MC-SCE method has been 
validated across a large number of proteins and protein complexes, in which it was found to be 
highly accurate when compared against high quality X-ray crystallography and NMR J-coupling 
data for side chain rotameric preferences43. The MC-SCE use a Rosenbluth chain growth 
algorithm to generate an ensemble of side chain packings for a given protein backbone. From the 
bare backbone conformation m, and for subsequent steps i, the side chain rotamer, rk, for residue 
k is selected according to the following probability                            

  

          (3) 

where {νk}44 are the possible side chain conformations for residue k, using the values reported in 
the recent backbone-dependent Dunbrack library45, which we have augmented by allowing for 

pi
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dihedral angle variations that are Gaussian distributed about a given rotamer value and weighted 
by its probability of occurrence in the PDB, . is the energy of interaction of side 
chain conformation rk of residue k with the backbone and all protein side chains grown so far 
(step i), using the energy function described above, and all residues are grown with ideal bond 
lengths and angles. Once the side chain of a residue is placed, the process is repeated until all the 
side chains are grown, thereby creating one complete protein structure. Each complete structure 
m is then assigned a weight W(m) in order to adjust for sampling bias due to the chain growth as 
well as to account for energetic solvent effects  

      
(4) 

For unsuccessful chain growths, the partially grown structure is considered dead and its weight is 
set to zero. This process is repeated in order to create ~20,000 side chain ensemble on the given 
backbone.  

Since we use a total of 5 independent backbone ensembles, each comprised of 10 
backbones, our ensemble for each state are comprised of a total of 1,000,000 fully grown 
structures. For each of the independent backbone ensembles we calculate the probability  of 
each rotameric state νk using equation (5)  

                                  (5) 

where M=200,000 and the Kronecker delta is 1 if the side chain conformation rk that was picked 
for the residue k in the m-th structure is νk and 0 otherwise. The probabilities in Eq. (5) are then 
used to calculate side chain entropy (SCE) of each residue k using the Gibbs probabilistic 
definition, with SCE values in units of kBT. 

                             (6) 

We estimated the mean and standard deviation for the SCE values from the 5 independent 
backbone ensembles for the apo, EL and EL for each protein for each round. 

 Given our MC-SCE method, we can also calculate mutual information, I(i,j). It is defined 
as the amount of information residue k has about another residue j based on the amount of 
coupled side chain dihedral angle fluctuations. In units of kBT, this can be written as 

 
      (7) 

where in analogy to Eq. (5) 

  

             (8)      

Thus Eq. (7) can be further simplified to  
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           (9) 

in which the individual entropy  and joint entropy, , is calculated using the probabilistic 
definition of entropy via Eq. (6), and thus Eq. (9) can be interpreted as the degree of coupling of 
torsional motions of residues k and j.  

In practice, a background error persists in mutual information calculations since two 
completely uncorrelated variables will never be zero given a finite simulation time. In order to 
correct for this, we modified the strategy used by Dubay and Geissler37 to subtract out the 
erroneous extra mutual information that persists due to finite time scales. We first carry out our 
MC-SCE chain growth with the full energy function over all backbones in an ensemble, and 
using Eq. (8) we calculate the mutual information for the N structures obtained using the 
complete energy model, .  

We then use our MC-SCE method to create structures where side chains for each residue 
are grown independent of the environment, i.e. clashes are ignored and the energy (and hence 
probability of chain growth) of each side chain conformer νk of residue k is given by 

           (10) 
where the energy in Eq. (10)  used in the Rosenbluth sampling is replaced by the log of the 
probabilities  determined from Eq. (8) from the full energy MC-SCE simulation to 

calculate  for n structures that lie beyond the energy cutoff. This value reflects the 
background error due to the chain growth process and can be cancelled out to yield the true 
mutual information value as given in Eq. (12).  

        (11) 
In this paper, all mutual information (MI) values reported are background corrected. 

Reproducibility and Error Analysis. The reproducibility of SCE and MI values was tested 
on a randomly selected backbone ensemble of R7 and carried out 5 independent times. The data 
is shown in SI Table S1. SCE values are consistent and the background corrected MI values are 
reproducible within a reasonable error. The MI values without background correction is also 
included to give an estimate of the amount of spurious error possible in these calculations. Error 
bars shown in this paper are standard error of the mean calculated from the backbone ensembles 
(5 ensembles each for both apo and ligand bound states). As an example, to determine the error 
in side chain entropy for a set of residues 4, variances resulting from backbone fluctuation (σ2) as 
well as intrinsic error of MC-SCE method (σ’2) were added up as given in Eq. (12).  
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                        (12) 

Intrinsic error data was taken from the backbone ensemble used to test MI/SCE reproducibility 
above.  
 
Experimental Methods  
The ligand 5-nitrobenzisoxazole was synthesized by following an earlier published method46, 
and its improved version from the Hilvert laboratory47. The KE07 R7-2 plasmids were kindly 
provided by the David Baker laboratory at University of Washington, Seattle, WA, and variants 
studied in this work were generated by site-directed mutagenesis using a Quik Change II site-
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directed mutagenesis kit (Stratagene; Agilent!Technologies,!Santa!Clara) using appropriate PCR 
primers (Table S2). After the mutagenesis PCR reactions, the mutated plasmids were 
transformed into XL-10 gold cells and the plasmids encoding individual mutations were isolated. 
The identity of the mutated plasmids were confirmed by sequencing the plasmid from both 
forward and reverse directions using T7 forward and T7 reverse primers at UC Berkeley 
Sequencing facility. The individual mutated plasmids were transformed into expression cell line 
BL21 (DE3) gold. 

A single colony from the transformed cells containing individual variant was used to 
inoculate a starter culture of 20 mL LB medium supplemented with 50 µg/mL kanamycin and the 
resulting culture incubated with shaking overnight at 37°C. This starter culture was used to 
inoculate 500 mL LB medium with 50 µg/mL kanamycin and incubated for ~3h at 37°C until 
OD600 reached ~1.2. The culture was then induced with 1mM IPTG for overproduction and the 
culture was further grown with shaking at 37°C for 4h. The cells from the liquid culture were 
harvested and stored at -80°C until used for the isolation. In general, roughly 2 g of the wet cells 
were routinely obtained from 0.5L culture.  

 The harvested cells were thawed, re-suspended in 35 mL lysis buffer (25 mM Hepes, pH 
7.25 containing 100 mM NaCl, 5% glycerol), lysed by sonication, centrifuged to remove 
insoluble debris and the soluble fraction loaded into pre-washed NI-NTA column (5mL resin, 
His-Pur, Thermo-Fisher). The NI-NTA resin with the bound proteins were washed first with 10 
column volume of lysis buffer followed by 15 column volume of 20 mM NaPi, pH 7.4, 500 mM 
NaCl, 30 mM Imidazole to remove nonspecific and weakly bound proteins. The bound His-
tagged fusion protein was then eluted from the NI-NTA resin with 20-25 mL of 500mM 
Imidazole buffer solution (20 mM NaPi pH 8.0, 500 mM NaCl, 500 mM Imidazole). The eluted 
fusion protein were extensively dialysed in lysis buffer, concentrated through Amicon filters 
(30,000 MWCO, Millipore), its concentration estimated by measuring the absorbances at 280 nm 
and stored at -80°C in smaller aliquots. This purification protocol yielded over 90% pure protein 
(assessed through the visible bands in SDS-PAGE) and routinely produced 18-23 mg of His-
tagged KE07 proteins. 

The enzymatic characterization of the KE07 R7 variants was performed similar to 
previously published work42 with some modification in the Cary 50 spectrophotometer (Varian) 
that used a quarz cuvette.  In short, the kinetic analysis were performed in 25 mM Hepes, pH 
7.25, 100 mM NaCl, 5% glycerol with 5-nitrobenzisoxazole concentration ranging from 5-1500 
µM with the co-solvent acetonitrile concentration equalized to 1.5% (v/v) in a micro-cuvette 
capable of monitoring reaction at 200 µL. A known amount of dry 5-nitroxybenzisoxazole was 
dissolved in acetonitrile to have 100mM substrate stock. From this stock a series of dilutions of 
the substrate were made in acetonitrile to achieve the concentration ranges in the kinetic assay. 
The reaction was initiated by the addition of small amount of the enzyme aliquot (final 
concentration from 0.2-1.0 µM in the assay) and the product formation was monitored 
spectrophotometrically at 380 nm (Δε = 15,800 M-1, cm-1). Steady-state parameters were 
obtained after fitting the data to the Michelis-Menten equation. 

3.3 RESULTS 
For KE07 (Figure 3.1b), the key intended active site residues include Glu101 as the catalytic 
base, Lys222 for stabilizing the developing negative charge on oxygen in the transition state, and 
Trp50 as a π-stacking residue to orient the 5-nitro-benzisoxazole ligand (Figure 3.1c). In 
addition, 10 other positions in the original scaffold (1THF) were changed to accommodate the 
engineered active site, culminating in a total of 13 designed residues for KE07. The initial design 
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exhibited very poor activity (kcat/Km = 12 M-1s-1) but after 7 rounds of LDE, a two-order 
improvement in catalytic performance was obtained for KE07-R742. Table S3 lists the KE07 
designed residues and the sequence changes made during LDE, as well as the corresponding 
improvements in kcat and KM for each round.  

Enzyme KE70 (Figure 3.1d) also utilized a TIM barrel scaffold but one that differed from 
KE07 (deoxyribose phosphate aldolase from E. coli, PDB 1JCL). KE70 was designed using a 
His17-Asp45 dyad as the catalytic base, Ser138 as the charge stabilizing residue and Tyr48 as 
the π-stacking residue (Figure 3.1e). In addition, 12 other positions were designed to support the 
incorporation of the new active site. In terms of catalytic performance, the original KE70 design 
was an order of magnitude better than KE07 (kcat/Km = 126 M-1s-1) and with LDE KE70 reached 
a peak performance in round 6 (KE70-R6) that led to a further 450 factor improvement over its 
starting sequence48. Table S4 summarizes the original design, the mutations from straight DE 
(i.e. random mutagenesis), and later rounds using “spiked” DE through recombination of new 
design features (R2, R4 and R6) and the corresponding improvements in kcat and KM for each 
round. 

Nearly all of the LDE changes in KE07 were satellite residues in the undesigned regions 
of the scaffold, with only one designed residue being mutated in the first round of LDE 
(Asn224Asp). In stark contrast to the LDE results for KE07, the designed residues in KE70 were 
directly targeted for change such that the best R6 variant mutated 7 of the originally designed 
residues, some of which were in the active site. While this might imply that the KE07 design was 
robust, our MD and MC-SCE simulations found that the overall active site chemistry was quite 
different than that shown in Figure 3.1c. Although Lys222 was a designed residue whose role is 
to stabilize the charged ligand in the transition state, instead we found that the heavy atom 
distances for Lys222Nζ to the ligand oxygen was greater than 5.0 Å in all KE07 enzyme 
constructs; this is consistent with previous studies4, 5 that showed that Lys222 is never in spatial 
proximity to the ligand to fulfill this role. Instead we find that Lys222 often forms a hydrogen 
bond with Ser48, as well as with residues Glu46 and Ile7 or its replacement in LDE R4 with 
Asp7; we find that catalytic activity is annihilated when we perform site mutagenesis at positions 
Ser48 and Lys222 (Table 3.1), as was true for mutation of Asp7 reported elsewhere42. This 
supports the reasoning of Khersonsky et al. that Asp7 serves to tether Lys222 so that it does not 
have unproductive interactions with the catalytic base42, although we find a more extended 
network of Lys222 interactions. Hence, although Lys222 never fulfilled its intended design role, 
it is involved in interactions that nonetheless support the catalytic purpose of KE0742.  
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(a) 

 
 (b)        (c)   

                        
(d)        (e) 

                      
 

Figure 3.1. The Kemp elimination KE07 and KE70 designs. (a) The one-step reaction scheme 
involving the abstraction of hydrogen from 5-nitro benzisoxazole by a catalytic base. Shown is 
the transition state that has a partial negative charge on the substrate oxygen with cleavage of the 
O-N bond.  (b) KE07 involved residues mutated from the original scaffold (red) as well as 
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mutations introduced by LDE shown in blue. (c) Relative orientation of the key catalytic residues 
with respect to the ligand in the ideal active site of KE07. (d) KE70 involved residues mutated 
from the original scaffold (red) as well as mutations made during laboratory DE shown in blue. 
Additional design mutations via a recombination DE strategy are shown in green (e) Relative 
orientation of the key catalytic residues with respect to the ligand in the ideal active site of KE70.  

Table 3.1. Experimental validation of effect of mutating network hubs in R7 on catalytic activity. 
Steady-state measurements were recorded in 20 mM Hepes at pH 7.25 containing 100 mM NaCl, 
5% glycerol at 20°C. The substrate (5-nitroxybenzisoxazole) was dissolved in acetonitrile and 
the enzymatic assay contained final concentration of acetonitrile at 1.5% (v/v).  
 

KE07 Variant kcat, s-1 KM, mM Kcat/KM, M-1s-1 % Activity relative to R7 
R7  0.81(0.01) 407(15) 1990(79) 100.0 

Active Site Residues 
R7, S48N 0.1 689.7 145 7.3 
R7, Y128F - - - ~0 
R7, H201Aa - - 108(11) 5.4 
R7, H201Ka 0.562 5411.4 104 5.2 
R7, K222Aa - - 40 (6) 2.0 

Distance Residues with high MI 
R7, R16Q 0.57(0.02) 589(46) 968(83) 49 
R7, N25S 0.58(0.03) 479(57) 1221(157) 61 
R7, L52A 0.51 514 992 50 
R7, M62A 0.64 542 1181 59 
R7, H84Y 0.77 497 1549 78 
R7, K132N 0.75 560 1339 67 
R7, I199S 0.33 771 428 22 
R7, I199F 0.26 564 461 23 
R7, I199A 0.23 1467 155 7.8 

Controls 
R7, K132M 0.72 352 2045 116 
R7, K162A 0.72 419 1718 86 
R7, L170A 0.65(0.01) 338(19) 1929(115) 98 
R7, E185A 0.89(0.02) 430(19) 2065(98) 104 

a These variants did not exhibit substrate saturation and only sub-saturating substrate 
concentration data points were used to estimate kcat/KM. 
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Instead, we find that His201 is closest to the oxygen of the substrate heterocycle, with 
heavy atom distances between His201Nε and the ligand oxygen found to be ~3.5-4.0 Å; Table 
3.1 reports the experimental mutation at His201Ala and confirms that it destroys all enzyme 
activity. Furthermore the Gly202Arg mutation introduced in all rounds of LDE resulted in a very 
stable hydrogen bond between the Arg202-Nζ and the nitro group of the ligand, and the designed 
Tyr128 forms a hydrogen bond with Arg202 that appears to further stabilize that interaction; in 
fact when Tyr128 is mutated to Phe, all enzyme activity is destroyed (Table 3.1). Similar “re-
purposing” of other scaffold residues to aid in ligand positioning or charge stabilization has also 
been observed in crystal structures of another de novo designed Kemp eliminase, HG3.17 with a 
substrate analog49. Figure 3.2 shows the rotamer flexibility found in the greater network of the 
active site region of the best performing R7 variant for KE07, which stands in contrast to the 
static truncated active site assumed during the design process (Figure 3.1c). Further details 
pertaining to Figure 3.2 are given in Table S7. 

 
 

Figure 3.2. The Kemp elimination KE07 active site in the best R7 variant. The percentage 
represents the occupation of each rotamer as determined from the side chain ensemble of KE07-
R7. We note that no one has reported on the importance of either His201 nor Tyr128 for the 
active site chemistry in KE07, which has been confirmed by experimental site mutagenesis in 
Table 3.1. 
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We next consider an overall thermodynamic analysis of the Michaelis-Menten scheme 
and the enthalpy and entropy breakdowns for the relative free energy of stabilization of the apo 
state, EL reactive complex and the EL† transition state complex (Table 3.2) for the designed 
enzymes and their best evolved variant KE07-R7 and KE70-R6. Note that for numerical 
calculations of free energy we ignore mutual information contributions due to the poor 
convergence of Eq. (2) where higher order correlations are clearly needed. Although we account 
for ligand solvation free energies by evaluating the ligand in our implicit solvent model, we are 
also missing explicit solvation or other types of solvent reorganization contributions that will 
stabilize each state differently. Furthermore, we model the transition state classically using 
altered partial charges that attempt to describe the electrostatics of bond-making and bond-
breaking of the true quantum mechanical process. As such the absolute thermodynamic values 
for each state should be taken with caution, as we would require these additional contributions to 
connect to the experimental kcat and KM numbers. The idea behind the free energy analysis is 
instead to show how the individual contributions of side chain entropy and enthalpy reproduce 
the overall trends in these quantities, and yield a fairly suggestive picture as to why the KE07-R7 
and KE70-R6 enzymes proved to be better biocatalysts than their designed counterparts. 

 
 
Table 3.2. Evaluation of the free energy under the Michaelis-Menten scheme for KE07 and 
KE70. Calculated enthalpy and entropy differences between apo, EL and EL† states and their 
summed free energies, all in kcal/mole. We use a linear response approximation to evaluate the 
energy and entropy contributions for the transition state that involves the addition of an adiabatic 
step followed by enzyme reorganization (see text) in order to define the total free energy change. 
Note that we ignore mutual information contributions due to the poor convergence of the total 
entropy in Eq. (2), and we can’t reliably account for explicit solvent free energy contributions, 
and hence we can’t make direct or quantitative contact with kcat and KM values. We can only 
describe the qualitative trends in side chain entropy and enthalpy as shown. 
 

State Function KE07 KE07-R7  KE70 KE70-R6 
EL Stabilization 

  -9.9 -3.6  -13.5 5.7 
 -6.3 4.5  -4.4 0.7 

a
 -33.7 -16.4  -35.4 -11.0 

EL† Barrier (Adiabatic) 

  11.6 10.5  15.7 8.7 

 0 0  0 0 

EL† Barrier (Reorganization) 

 
-2.0 -3.3  1.5 -3.0 

 
-0.7 -3.8  3.6 1.7 

EL† Barrier (Total) 

 
8.9 3.4  20.8 7.4 

a Includes the ligand solvation free energy, calculated from our model to be 17.5 kcal/mole.  
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We find that the enthalpy change between the EL complex and the apo state of the 
enzyme,  is destabilized in the best evolved KE07-R7 and KE70-R6 
enzymes compared to the original designs, consistent with what has been reported previously 
using EVB calculations6. However, we find the same destabilization trend is also observed for 
the entropy as well, since both designed enzymes exhibit ; this 
means that there is greater conformational flexibility when the enzyme binds the ligand relative 
to the apo state, thereby stabilizing the enzyme-substrate complex. However, the introduction of 
new mutations in successive rounds of LDE leading to KE07-R7 and KE70-R6 contributes to 
reduction in the favorable entropy of the EL state ( ), and hence the entropy also 
contributes to destabilization of the EL complex in the best LDE enzymes.  

We also evaluate the enthalpy and entropy of the EL† complex and how that changes with 
respect to the EL state based on a linear response approximation. We first assume an adiabatic 
step in which the EL† complex is averaged over the EL ensemble to isolate the enthalpy, and 
then a subsequent step to account for enthalpic and entropic contributions due to enzyme 
reorganization in response to the change in ligand charges by averaging over the EL† ensemble. 

     (13)      

     (14) 
Based on the linear response approximation using Eqs. (13) and (14), we find a very small 
stabilization of the adiabatic enthalpy for KE07-R7 relative to the original design, consistent with 
previous EVB calculations6. By contrast the large number of active site modifications made on 
the KE70 enzyme is consistent with the fact that the adiabatic enthalpy barrier is nearly halved in 
the KE70-R6 enzyme. However, by considering the reorganization terms as well, we find that 
there is transition state stabilization not only through the enthalpy, but that the entropy further 
lowers the catalytic barrier of the best enzymes relative to the original designs for both KE07 and 
KE70. Thus our thermodynamic calculations summarized in Table 3.2 supports the view that the 
active site of the original KE07 and KE70 enzymes were over-designed for the binding affinity 
of the EL state, whereas the LDE process created enzymes that unambiguously preferred the EL† 
complex instead, especially for the KE70 enzyme.  

Although the higher order terms in the entropy expansion in Eq. (2) may be directly 
related to kcat/KM, they can’t currently be included for numerical calculations for free energies 
since higher order correlations are required for convergence of the total entropy. Nonetheless, we 
show that mutual information can yield even further insight as to why the evolved Kemp 
eliminases are better enzymes by focusing on residues with the largest mutual information with 
other residues; more specifically, such a position is defined as a “network hub” when it has a 
large ΔI as measured by |Z-scores| > 2 with at least 25 other residues throughout the scaffold. 
While this definition is somewhat arbitrary, it does quantify the residues with the strongest 
correlations with a large number of other residues, i.e. those with highest MI are always found 
using other definitions. One of the important features of the network hubs is that they are all 
mutually coupled, i.e. they each count as one of their connections all of the other hub residues. 
We shall see that network hubs are often identified as active site residues as well as mutational 
hot spots during the directed evolution process (Tables S5 and S6). 

Figures 3.3 and 3.4 show how the network hubs are distributed over the scaffold in the 
apo state, EL state, as well as the EL† state, for the original designs and the best KE70-R6 and 
KE07-R7 enzymes, respectively. As evident from Figure 3.3 and tabulated in Table 3.3, the 
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designed KE70 enzyme has high MI in the EL state and low MI in the apo and transition state. 
Furthermore we identify the His17-Asp45 dyad as 2 network hubs whose motions are strongly 
correlated with residues in KE70 that were subsequently mutated during the LDE process (23, 
29, 48, 74, 166; see Tables S5). However, by the end of LDE the strongly correlated network in 
the EL state has been destroyed in favor of high MI in the apo state and transition state instead 
(Table 3.3). For KE07, there are no active site residues that are identified as network hubs in the 
designed enzyme for any of the states (Table 3.4). However, 7 out of the 13 LDE mutations were 
classified as a network hub at some point during the LDE process (Table S6), so that by the end 
of LDE the best evolved KE07-R7 enzyme exhibits network hubs involving active site residues 
7, 50, 128, 201, 202, and 222 in the apo and/or EL† states. In turn the active site residues are 
highly correlated with other network hub residues, some of which are located far away from 
active site (> 10 Å) for the R7 variant of KE07.  

 
(a) 

            KE70-APO    KE70-EL      KE70-EL† 

 
(b) 

            KE70-R6-APO   KE70-R6-EL       KE70-R6-EL† 

 

 
Figure 3.3. Change in high mutual information hubs for the apo state, EL state, and EL† state 
for (a) designed KE70 and (b) the KE70-R6 variant. The spheres represent residues that are high 
mutual information hubs (centered at the Cα position). We have uploaded an interactive 
visualizer of these hubs on our website at http://thglab.berkeley.edu 
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Table 3.3. Residues that were determined to be network hubs with high mutual information for 
KE70. Residues colored red were designed into the scaffold of 1JCL and residues colored blue 
were mutated during the course of LDE; the only exceptions are residues 43, 48, 74, and 166 that 
were both a designed and mutated residue. 
 

Round Highest MI in 
Apo state 

Highest MI in EL complex Highest MI in EL† complex 

Design 27, 64, 143 6, 11, 14, 17, 23, 24, 29, 38, 
45, 48, 58, 67, 70, 74, 83, 90, 
100, 104, 115, 117, 121, 142, 
147, 153, 154, 166, 167, 170, 
173, 184, 186, 188, 191, 193, 
216, 217, 221, 247 

28 

R6 11, 18, 25, 33, 
35, 45, 50, 52, 
56, 59, 64, 67, 
70, 83, 90, 115, 
118, 148, 154, 
170, 174, 198, 
223, 247 

10, 15, 17, 22, 58, 76, 123, 
148, 165, 232 

6, 14, 25, 28, 43, 58, 73, 95, 
97, 100, 107, 109, 115, 120, 
123, 124, 136, 141, 154, 160, 
166, 173, 185, 186, 193, 196, 
204, 247, 249 

 
To test the robustness of whether these other network hub residues are catalytically 

important due to their connection to the active site residues, we experimentally mutated network 
hubs for KE07-R7 (Table 3.4). The identified networks hubs included and were mutated as 
follows: Arg16Gln, Asn25Ser, Leu52Ala, Met62Ala, His84Tyr, Lys132Asn, and finally Ile199 
to Ser, Phe, and Ala (Table 3.1). In all cases activity was diminished, with kcat/KM values 
anywhere between 10% to 78% of the KE07-R7 result, highlighting that residues located far 
away from the active site can also affect catalytic activity. We also performed two types of 
control experiments, in which a residue not identified to be a network hub is mutated 
(Lys162Ala, Leu170Ala and Glu185Ala) or in one case replacing a network hub residue with 
another residue that was also found to be a network hub and correlated to the active site 
(Lys132Met). We found in all four control experiments that catalytic activity was unaffected, 
even though one position Leu170 is within close proximity to the active site and substrate. This 
result clearly illustrates that residues with high mutual information are critical in the improved 
enzymatic activity of the KE07-R7 variant and by extension to the KE70 enzyme as well. 

 
Table 3.4. Residues that were determined to be network hubs with high mutual information for 
KE07. Residues colored red were designed into the scaffold of 1THF and residues colored blue 
were mutated during the course of LDE. The bold faced residues identified as network hubs in 
R7 were subjected to mutagenesis to confirm that they reduced enzyme activity. 
 
Round Highest MI in  

Apo state 
Highest MI in  
EL complex 

Highest MI in  
EL† complex 

Design 4, 10, 63, 66, 71, 87, 
118, 212 

16, 19, 58, 68, 85, 86, 139, 
163, 174, 175, 185, 230, 232, 
235 

19, 51, 58, 64, 68, 91, 
123, 161 
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(a) 

 
KE07-APO    KE07-EL      KE07-EL† 

   

            KE07-R7-APO   KE07-R7-EL       KE07-R7-EL† 

 

 
Figure 3.4. Change in high mutual information hubs for the apo state, EL state, and EL† state 
for (a) designed KE07 and (b) the KE07-R7 variant. The spheres represent residues that are high 
mutual information hubs (centered at the Cα position). We have uploaded an interactive 
visualizer of these hubs on our website at http://thglab.berkeley.edu 

 
3.4 CONCLUSIONS 
Given our current limitations in developing robust enzyme designs, laboratory directed evolution 
provides an attractive addition to rational computational design approaches since it is highly 
flexible in application to different biocatalysis reactions. Nonetheless although often highly 
successful, LDE is an opaque process because it offers no complete rationale as to why the 
mutations were successful, and therefore stands outside our ability to systematically reach novel 

R7 12, 16, 25, 42, 52, 
74, 94, 95, 128, 132, 
133, 149, 201, 202, 
209, 222, 230 

5, 19, 62, 63, 71, 73, 84, 87, 
91, 92, 118, 148, 155, 159, 
199, 244, 247 

7, 12, 37, 42, 50, 52, 58, 
68, 84, 92, 137, 148, 159, 
182, 201, 208, 222, 230, 
238 
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catalysis outcomes. To bridge this design gap, we have used side chain entropy and mutual 
information metrics applied to two different de novo enzymes and their LDE variants to better 
understand how conformational flexibility influences catalysis, which is central to many 
prominent proposals about the origin of enzyme activity50-52. Our analysis showed that by the 
end of the LDE process that changes in entropy, as well as enthalpy, helped to destabilize the EL 
complex in favor of stabilization of the EL† complex for both KE07-R7 and KE70-R6 when 
compared to the designed enzymes. Furthermore, we identified new active site players in KE07-
R7, and using site mutagenesis showed that residues with large mutual information are 
catalytically important in KE07-R7 even though they may be remote from the active site.  

There are two prominent but competing proposals as to what are the most important 
considerations in optimizing enzyme performance. Warshel and co-workers have emphasized 
that electrostatic pre-organization is the primary strategy by which enzymes achieve their 
remarkable catalytic activity compared to the uncatalyzed reaction6, 53. To recapitulate that 
argument, the electrostatic environment of the enzyme active site is structurally optimized in the 
apo state such that it is pre-organized to preferentially bind the transition state over reactants or 
products, thereby lowering  relative to that of the uncatalyzed reaction that must fold in the 
cost of reorganization factors (polarization) that raise the catalytic barrier. The other proposal is 
that conformational motion can also be key to catalytic performance by lowering , where 
equilibrium statistical fluctuations23-25, dynamical coupling26 and maximizing the reactive flux 
through the transition state surface27 have emerged as potentially important dynamical aspects of 
the success of natural enzymes.  

We believe that our results presented here on side chain entropy and mutual information 
are consistent with both the dynamical picture and the electrostatic pre-organization principle 
long advocated by Warshel and co-workers6, 53. For KE07-R7, network hubs in the apo state 
including Tyr128, His201 and Arg202 formed direct electrostatic interactions with the substrate, 
or the remote residues were charged or polar residues (Arg16, Asp25 and Lys132) whose long-
ranged electrostatic effects clearly played some role in lowering  given that our 
experimental results showed reduced activity when these residues were mutated.  

Furthermore we note a very interesting observation that there are high mutual information 
hubs in the EL state with much fewer MI hubs in the apo and EL† transition state complex in 
both the KE07 and KE70 designs. This we believe could be a signature of the problem of over-
design of the EL state using the Rosetta strategy, and that LDE intervened to create new residue 
correlations in the apo and EL† transition state complex in the most improved enzyme variants. 
While highly speculative, it may be evidence for pre-organization signatures in the apo state, and 
a network of interactions that favor the EL† complex instead of the EL complex. At this point we 
can only quantify the importance of these changes in high MI sites through experimental 
mutagenesis. 

Given that the active site residues of both KE07 and KE70 proved to have high mutual 
information and were strongly networked to other residues that also have extensive networks of 
strong side chain couplings, we believe that it should be possible to use computation to propose 
new sequence mutations that will improve the catalytic activity of other Kemp Eliminase 
enzymes for which LDE has not been performed. Furthermore, our method needs to be 
generalized to enzymes with substrates that are larger and more flexible than 5-
nitroxybenzisoxazole, and estimating the enthalpy and entropy contribution from water would 
require explicit treatment of water, currently an area of research in our lab. 
 

ΔGT
†

ΔGT
†

ΔGT
†
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3.6 APPENDIX 
 
Table S1. Convergence of Side chain entropy (SCE) and Mutual Information(MI). 5 independent 
trial simulations were done on a random backbone ensemble from R7 variant. Reported are 
values for SCE, MI and MI without correction. Values reported are in units of kBT. 

 Trial-1 Trial-2 Trial-3 Trial-4 Trial-5 Avg Stdev 
SCE 355.6 349.2 354.0 353.0 352.0 352.7 2.39 
MI 975.6 986.7 889.6 843.6 938.6 926.8 60.0 
MI - uncorrected 3397.6 3805.2 2841.8 2437.8 3311.1 3158.7 528.7 

 
 
Table S2. List of primers used for mutagenesis reaction to generate the specific mutations in R7-
2 templatea 

 
Variants Primers 

H201A Forward 5' CA TTG CCG ATC ATT GCA GCG AGG GGA GCT GGC 
AAG ATG 3' 
Reverse 5' CAT CTT GCC AGC TCC CCT CGC TGC AAT GAT CGG 
CAA TG 3' 

K222A Forward 5' GT GCA GAC GCG GCT GCG GCC GAT TCG GTT TTT C 
3' 
Reverse 5' G AAA AAC CGA ATC GGC CGC AGC CGC GTC TGC 
AC 3' 

R16Q Forward 5' CAT TAA TAA TGA AGG ATG GCC AGG TTG TCA AAG 
GTA GC 3' 
Reverse 5' GCT ACC TTT GAC AAC CTG GCC ATC CTT CAT TAT 
TAA TG 3' 

N25S Forward 5' GTA GCA ATT TTG AAA GCC TGC GTG ACT CTG 3' 
Reverse 5' CAG AGT CAC GCA GGC TTT CAA AAT TGC TAC 3' 

L170A Forward 5' CC GGC GAA ATT GTG GCG GGT TCA ATT GAC CGC 
3' 
Reverse 5' GCG GTC AAT TGA ACC CGC CAC AAT TTC GCC GG 3' 

Q185A Forward 5' CC GGC GAA ATT GTG GCG GGT TCA ATT GAC CGC 
3' 
Reverse 5' GCG GTC AAT TGA ACC CGC CAC AAT TTC GCC GG 3' 

a Changed nucleotides are shown in red text. 
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Table S3. Mutations made in various rounds of directed evolution of KE07. The computationally 
designed residues (red) and mutated residues introduced by LDE of a given round (black) have 
been listed in the table below. The experimental kcat and KM values and representative variant 
names have been taken from (Khersonsky et al., 2010) 
 

Sequence Position 
(Directed Evolution 

Round) 

  
KE07 
design 

R2 
11/10D 

R3 
I3/10A  

R4 
1E/11H 

R5  
10/3B 

R6 
3/7F 

R7 
10/11G 

ILE 7    Gln Asp Asp Asp Asp 
ALA 9        
ILE 11        
VAL 12      Met  Met 
LYS 19   Glu    Glu  
SER 48        
TRP 50        
PHE 77        Ile 
HIS 84         
PHE 86    Leu     
GLU 101 (catalytic base)        
ILE 102        Phe 
GLN 123  Arg      
TYR 128        
ALA 130        
LYS 146   Thr Thr Glu  Thr Thr 
VAL 169        
GLY 171        
LEU 176        
HIS 201        
GLY 202   Arg Arg Arg Arg Arg Arg 
MET 207         
LYS 222        
ASN 224   Asp Asp Asp Asp Asp Asp 
PHE 229    Ser    Ser 
kcat (s-1) 0.02 0.02 0.21 0.70 0.49 0.60 1.37 
KM (mM) 1.40 0.31 0.48 2.40 0.59 0.69 0.54 
kcat / KM (M-1s-1) 12.2 66.0 425 291 836 872 2590 
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Table S4. Mutations made in various rounds of directed evolution of KE70. The computationally 
designed residues(red) , other mutated residues introduced by LDE of a given round (black) and 
residues after which insertions took place (green) have been listed in the table below. The 
experimental kcat and KM values and representative variant names have been taken from [1] 
 

Sequence Position (Directed 
Evolution Round) 

 
KE70 
Design 

R2  
7/12F 

R4  
4/1B 

R5 
7/4A 

R6  
4/8B 

HIS 17 (catalyzing)      
ALA 19      
THR 20   Ser  Ser 
ALA 21      
ASP 23   Gly    
LYS 29    Asn Asn Asn 
THR 43    Asn Asn Asn 
ASP 45 (catalyzing)      
TYR 48   Phe Phe Phe Phe 
TRP 72    Cys Cys Cys 
SER 74      Gly 
GLY 101     Ser Ser 
ALA 103      
SER 138    Ala Ala Ala 
HIS 166     Asn Asn 
VAL 168      
THR 171    Pro Pro  
GLY 177      
ALA 178      Ser 
LYS 197      Asn 
THR 198      Ile 
ILE 202      
ALA 204    Val Val Val 
ASP 212   Glu    
ALA 231    Ser  
ALA 235      
SER 239    Ser Ser Ala 
HIS 251  Tyr    
kcat (s-1) 0.14 0.32 1.66 5.38 5.00 
KM (mM) 1.11 0.24 0.18 0.14 0.09 
kcat / KM (M-1s-1) 126 1330 9240 37800 57300 

,
,
,
,
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Table S5. Residues that were determined to be network hubs with high mutual information for 
KE70 as a function of LDE round. Residues colored red were designed and residues colored blue 
were mutated during the course of LDE; the only exception is that residue 48 was both a 
designed and mutated residue. The network hubs identified for KE70, 23 and 48 were mutated in 
R2, hub residue 29 in R2 was mutated in R4, and hub residue 197 was mutated in R6. 

Round Higher MI in EL complex state Higher MI in Apo state 
KE70 6, 11, 14, 17, 23, 24, 38, 45, 48, 58, 67, 

70, 74, 83, 100, 104, 115, 117, 121, 
147, 153, 166, 167, 173, 184, 186, 188, 
191, 193, 216, 217, 221, 247 

27, 64, 143 

R2 11, 14, 17, 29, 30, 58, 67, 84, 122, 153, 
188, 189 

5, 64, 68, 70, 100, 109, 135, 
141, 146, 147, 191, 193, 208, 
215, 222 

R4 18, 25, 33, 50, 64, 116, 121, 147, 170, 
174, 189, 191, 197 

5, 16, 22, 35, 58, 70, 90, 123, 
209, 215, 233 

R5 5, 24, 41, 64, 68, 79, 82, 83, 95, 153, 
187, 196, 221, 232, 247 

11, 49, 52, 77, 92, 115, 147, 
165, 173 

KE70-R6 10, 15, 17, 22, 58, 76, 123, 165, 232 11, 18, 25, 33, 35, 45, 50, 52, 
56, 59, 64, 67, 70, 83, 90, 115, 
118, 148, 154, 170, 174, 198, 
223, 247 

Table S6. Residues that were determined to be network hubs with high mutual information for 
KE07 as a function of LDE round. Residues colored red were designed into the scaffold of 1THF 
and residues colored blue were mutated during the course of LDE; the only exception is 224 that 
was both a designed and mutated residue in KE07. The network hub residues 19 and 86 
identified in the designed enzyme were mutated in R2 and R3, respectively. In R2, we observe 
that residues 7 and 224 are network hubs that were subsequently mutated in R3. In R3, we 
observe that residues 7, 146, and 224 are hubs that were subsequently mutated in R4. In further 
improved variants like R5, we see that residues 19 and 102 appeared as network hubs, and were 
subsequently mutated in later rounds. 

Round Higher MI in EL complex state Higher MI in Apo state 
KE07 16, 19, 58, 68, 85, 86, 139, 163, 174, 175, 

185, 230, 232, 235 
4, 10, 63, 66, 71, 87, 118, 212 

R2 58, 163, 222, 224, 242 6, 7, 10, 22, 34, 64, 87, 102, 
113, 185, 187, 231, 236, 244 

R3 42, 52, 60, 61, 62, 174 7, 22, 24, 46, 50, 59, 71, 72, 95, 
146, 154, 179, 188, 193, 208, 
212, 222, 224, 228, 238 

R4 6, 42, 51, 59, 62, 63, 65, 85, 146, 159, 174, 
175, 185, 201, 206, 230, 232, 243, 244 

31, 34, 50, 72, 95, 156, 163, 
191, 235, 238 

R5 26, 52, 58, 62, 63, 64, 67, 102, 132, 133, 
137, 148, 155, 167, 175, 208, 212, 239, 242 

10, 19, 50 

R6 41, 52, 91, 185, 212, 214, 236 10, 50, 62, 86, 99, 209, 222, 
235, 238, 249 

KE07- 5, 19, 62, 63, 71, 73, 84, 87, 91, 92, 118, 12, 16, 25, 42, 52, 74, 94, 95, 
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R7 148, 155, 159, 199, 244, 247 128, 132, 133, 149, 201, 202, 209, 
222, 230 

 
 
Table S7. Side chain dihedral angles for the residues highlighted in Figure 3.2 of the main text. 
Note that the rotamer classification has been done using the Dunbrack 2007 library. 
 

Residue Occupation % χ1 χ2 χ3 χ4 
Ser 48 57 176    

43 -64    
Trp 50 91 180 -88   

9 180 -123   
Glu 101 47 180 180 88  

34 180 180 -60  
Tyr 128 42 180 80   

36 180 102   
His 201 90 180 -103   

7 180 -136   
Arg 202 99 -66 180 180 180 

< 1 -62 -75 75 78 
Lys 222 72 180 180 -70 -70 

25 -65 180 180 -64 
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Chapter 4 
 
Improving a Designed Kemp Eliminase without Directed Evolution 
 
Laboratory directed evolution (LDE) is currently the standard procedure to improve performance 
of minimally competent design enzymes. Despite significant success, the process is highly labor 
intensive and belies the original goal of developing highly active biocatalysts rationally. Here, I 
report a systematic and rational improvement of a Kemp eliminase KE15 attained by selecting 
mutations through a newly developed computational screening method. Building of our 
understanding of other improved Kemp eliminases, the method uses side chain mutual 
information to predict sequence positions that can be targeted. To predict what the target 
positions should be mutated to, a combination of metrics like reactant state destabilization, 
transition state stabilization and optimization of positions with high mutual information was 
used. Starting from the design that has a kcat/KM of 27 M-1s-1, beneficial mutations were added in 
a stepwise manner. The most improved mutant had 3 mutations and kcat/KM of 304 M-1s-1. Unlike 
other rational improvement strategies, almost all the improvement came through kcat, indicative 
of a direct impact on the chemical step. This work raises the prospect of designing new enzymes 
that achieve better efficiency with minimal experimental intervention.  
 
 
4.1 INTRODUCTION 
Advances in protein folding!1, superior scaffold matching algorithms!2 and improved active site 
modeling! 3! 4 have catalyzed the field of enzyme design in the last two decades. Representative 
examples include designed enzymes built for non-native reactions without any natural enzymes 
like the Kemp elimination! 5! 6! 7 , Retro-Aldol condensation! 8 and Diels-Alders reaction! 9. 
Although current designed enzymes are only of academic interest, potential applicability of 
custom made enzymes in areas like biotechnology and sustainable energy is well appreciated and 
anticipated! 10. The first step in the design process is to construct a theozyme using quantum 
chemistry that includes 2-3 amino acids stabilizing the transition state. Next, the database of 
known protein scaffolds are searched using techniques like RosettaMatch, to look for motifs that 
can support this active site chemistry. Usually such grafting of the theozyme requires re-
engineering some parts of the envisaged active site, leading to additional mutations. This leads to 
the final designed enzyme that typically differs from the starting scaffold by 10-15 mutations on  
average. When tested in the lab, some of these designs show experimental activity, validating the 
design protocol. Unfortunately, most active designs to date have exhibited very little catalytic 
competence compared to their native counterparts. A case in point is the Kemp elimination 
reaction, a one-step proton transfer reaction involving 5-nitrobenzisoxazole by a base leading to 
breaking of the 5-membered ring and forming the final product, alpha-cyanophenol (Figure 4.1). 
Kemp eliminases KE07 and KE70! 11 designed to catalyze this reaction had efficiencies 
(measured by kcat/KM) of 12 and 126 M-1s-1 respectively. Natural enzymes typically show 
efficiency in the range of 106-108 M-1s-1, typifying the scope for improvements in enzyme design. 
Despite such low efficiencies, they provide a starting point for further improvement by using 
laboratory directed evolution (LDE). Inspired by the rules of natural evolution, directed 
evolution generates multiple clones (on the order of 1000) of the starting sequence, each 
containing mutations introduced by techniques like random mutagenesis, shuffling etc. These 
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clones are then screened to pick out the most catalytically improved variants (selection pressure) 
and the process is repeated on the sequence of these refined variants. For the Kemp eliminases, 
LDE yielded a 200!6 and 400-fold!7 improvement of efficiency in KE07 and KE70 respectively. 
Thus the success of LDE has led to much optimism of achieving efficiencies that rival natural 
enzymes. However, the very philosophy of LDE runs counter to the concept of rationally 
designing competent enzymes. Being an opaque process, there is very little explanation for most 
of the mutations!12!13. Furthermore, LDE experiments are subject to chance, leading to a problem 
of reproducibility. Finally, LDE is very labor-intensive process with abysmal efficiency. On an 
average, only 1-10 mutants in 1000 clones show improvements in catalytic activity. Most of the 
improvements conferred by LDE highlight drawbacks of the design process. Thus in principle if 
understood quantitatively, these improvements could be introduced in a systematic way into the 
design.  

The effect of side chain conformational variability in improving designed KE07 and 
KE70 enzymes was reported in chapter 3. It was shown that improved variants used a 
combination of destabilization of reactant state (EL) and stabilization of transition state (EL†) to 
enhance activity. This was done jointly by enthalpy as well as side chain entropy. Furthermore, 
about half of the mutational hotspots during LDE had a high value of mutual information, a 
thermodynamic metric for quantifying level of correlation between residue side chains. 
Moreover, these high mutual information sites (hubs) were present mostly in the reactant state 
and significantly less in the apo and transition state of the enzyme. In the most improved 
variants, the apo and transition state had more hub residues (including active site residues) with 
less concentration in the EL state (almost none in the active site). Thus, reactant state (EL) 
destabilization, transition state (EL†) stabilization and hub residues can serve as convenient 
descriptors to guide future directed evolution experiments. 
 In this paper, we apply the understanding gained from the previous study to improve 
another de novo enzyme KE15 without resorting to laboratory directed evolution. KE15 was 
designed with the same Rosetta protocol, using Asp-48 as a base and a π-stacking residue in the 
form of Tyr-126 (Figure 4.1) with a TIM barrel scaffold (PDB ID: 1THF) as a backdrop. 
Thirteen additional design mutations were introduced into the scaffold to accommodate the 
active site. Experimentally, the enzyme has a kcat/KM of 27 M-1s-1 (kcat=0.006 s-1; KM = 293 µM). 
Since no directed evolution was done on KE15, it serves as a good test system for improving 
catalytic efficiency in a rational and systematic way. Previous attempts at improving designed 
enzymes have had some success. The most notable one was the improvement of DA_20_10, an 
enzyme that catalyzes the Diers-Alders reaction, by crowdsourcing it to FoldIt players. 
Suggestions by the gamers led to a backbone remodeling and an 18-fold improvement in activity!
14, almost all of which was due to KM. Researchers have also tried smarter ways of constructing 
LDE libraries, using backrub motion!15, loop redesign!16, consensus mutations!17!18 etc. Even for 
natural enzymes, it is non-trivial to propose mutations that can modulate their functionality. 
Arnold, Mayo and coworkers have developed computational techniques like SCHEMA! 19 that 
uses a genetic algorithm framework to propose mutations that don’t lead to unstable folds. This 
is usually done by the evaluating the number of contacts that are broken/made before and after 
doing the proposed shuffling experiments (SCHEMA was developed for shuffling). Other 
attempts at predicting site-directed mutations have tried to minimize absolute entropy of the 
mutation site! 20, again with an eye on stability. Very few (if any) of the methods that we are 
aware of attempt to propose mutations based on the actual reaction that is taking place. 
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Frushicheva et. al proposed mutants for KE07 design based on electrostatic stabilization of the 
transition state but none of them seem to have been successful!21,!22. 

 
      (a) 
 

 
      (b) 
 

 
  (c) 

Figure 4.1: The Kemp Elimination reaction and KE15. (a) The one-step reaction scheme 
involving the abstraction of hydrogen from the carbon of 5-nitrobenzisoxazole by a catalytic 
base. Shown is the transition state that has a partial negative charge on the substrate oxygen with 
cleavage of the O-N bond and nascent formation of a C≡N triple bond (b) Active site of KE15 
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design where the base is Asp-48 and Tyr-126 as π-stacking residue. (c) View of the overall KE15 
enzyme. The active site and other designed residues are shown in red with substrate in cyan. 
 
  
 Here we report a method that is capable of screening mutants in silico and identifying 
mutants with better catalytic activities. We use a side chain ensemble method (MCSCE) 
combined with a physical energy function to determine residues with high mutual information in 
each of the apo, EL and EL* state of the enzyme. Residues with high mutual information as well 
as glycine/alanine that are not captured by our side chain entropy method are targeted for 
mutation. By concentrating on these sites, many of which are likely to be mutational hotspots, we 
can dramatically reduce the sequence space that needs to be explored for KE15. Next, by 
computationally screening for mutants that satisfy properties like EL state destabilization, EL† 
state stabilization and optimized hub features (see methods) – all of which were seen in 
improved KE07/KE70 variants, we can propose variants that should be tested in lab, further 
reducing the experimental workload. This process was repeated three times, each step adding a 
mutation to the previous best variant. The best variant, a triple mutant, has a kcat/KM of 304 M-1s-

1 (kcat = 0.10; KM = 329 µM) with mutations in the lower barrel (Asp130Lys), pointing away 
from the active site (Ile168Met) and in the active site (Gly199Ala). All in all, fifteen 
experimental mutants, all predicted by computational screening, were tried in the lab to achieve 
this order of magnitude enhancement. Similar improvements in LDE experiments can take 2-7 
rounds, needing about ~ 2000-7000 clones, underlying the benefits of this computational 
screening method. With the rising popularity of cloud computing and advent of exascale 
computing, screening methods like ours can be automated to select for potentially beneficial 
mutants on a massively parallel scale, rationally.  
 
4.2 COMPUTATIONAL METHODS 
Generating backbone ensembles for the apo, EL and EL† states of KE15: The starting structure 
for KE15 was the Rosetta model published previously. Mutant structures were generated by 
Modeller using the KE15 model as template. For the EL and EL† state, we used the docked 
structure definition of the ligand. The ligand was then kept fixed in its modeled position for all 
subsequent backbone perturbations and MC-SCE calculations. The substrate geometry for the 
EL† state was kept the same as in the EL complex, and only TS charges were changed to reflect 
the transition state of the bound complex. 
Using each of these modeled structures for the backbone in the apo and ligand bound states, we 
then used the backrub algorithm implemented in Rosetta to run 25 independent simulations, each 
generating 10,000 trial moves using the Cα atoms as pivot residues, to generate uncorrelated 
backbone ensembles. From each simulation the lowest energy structure was saved and these 25 
low energy backrub structures were selected, and divided into 5 backbone ensembles with 5 
structures in each ensemble; this was done for all the rounds for both apo and ligand bound 
states. Since the backbone scaffold for another kemp eliminase KE07 that uses the same scaffold 
is quite rigid, we believe the backbone variations we have generated are adequate. 
 

Generating side chain ensembles for the apo, EL and EL† states of KE15: We have 
recently developed a Monte Carlo Side Chain Ensemble method (MC-SCE) to create large side 
chain ensembles. The MC-SCE method has been validated across a large number of proteins and 
protein complexes, in which it was found to be highly accurate when compared against high 
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quality X-ray crystallography and NMR J-coupling data for side chain rotameric preferences. 
The MC-SCE uses a Rosenbluth chain growth algorithm to generate an ensemble of side chain 
packings for a given protein backbone. From the bare backbone conformation m, and for 
subsequent steps i, the side chain rotamer, rk, for residue k is selected according to the following 
probability       
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where {νk} are the possible side chain conformations for residue k, using the values reported in 
the recent backbone-dependent Dunbrack library, which we have augmented by allowing for 
dihedral angle variations that are Gaussian distributed about a given rotamer value and weighted 
by its probability of occurrence in the PDB, . is the energy of interaction of side 
chain conformation rk of residue k with the backbone and all protein side chains grown so far 
(step i), using the energy function described above, and all residues are grown with ideal bond 
lengths and angles. Once the side chain of a residue is placed, the process is repeated until all the 
side chains are grown, thereby creating one complete protein structure. Each complete structure 
m is then assigned a weight W(m) in order to adjust for sampling bias due to the chain growth as 
well as to account for energetic solvent effects
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For unsuccessful chain growths, the partially grown structure is considered dead and its weight is 
set to zero. This process is repeated in order to create ~20,000 side chain ensemble on the given 
backbone.  
 
Determining mutational hotspots in KE15: Target sequence positions are picked by determining 
residues with high level of side chain correlation. This is quantified by a thermodynamic metric 
called mutual information. Given our MC-SCE method, we can calculate mutual information 
I(i,j). It is defined as the amount of information residue k has about another residue j based on the 
amount of coupled side chain dihedral angle fluctuations. In units of kBT, this can be written as 
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For each of the independent backbone ensembles we calculate the probability  of each 
rotameric state νk using equation (4)  
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where M=200,000 and the Kronecker delta is 1 if the side chain conformation rk that was picked 
for the residue k in the m-th structure is νk and 0 otherwise. Analogously, the joint probability 
distribution between residues k and j can be determined by Eq. (5) 
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The probabilities in Eq. (4) are then used to calculate side chain entropy (SCE) of each residue k 
using the Gibbs probabilistic definition, with SCE values in units of kBT. 
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We estimated the mean for the SCE values from the 5 independent backbone ensembles for the 
apo, EL and EL for each protein for each round. 
 
A natural extension of (6) gives us a joint entropy. We can thus rewrite Eq. (3) as  
 

!!"(!,!) = !!"! + !!"! − !!"(!,!)  (7) 

 
in which the individual entropy  and joint entropy, , is calculated using the probabilistic 
definition of entropy via Eq. (6), and thus Eq. (7) can be interpreted as the degree of coupling of 
torsional motions of residues k and j.  

In practice, a background error persists in mutual information calculations since two 
completely uncorrelated variables will never be zero given a finite simulation time. In order to 
correct for this, we modified the strategy used by Dubay and Geissler to subtract out the 
erroneous extra mutual information that persists due to finite time scales. We first carry out our 
MC-SCE chain growth with the full energy function over all backbones in an ensemble, and 
using Eq. (7) we calculate the mutual information for the N structures obtained using the 
complete energy model, .  

We then use our MC-SCE method to create structures where side chains for each residue 
are grown independent of the environment, i.e. clashes are ignored and the energy (and hence 
probability of chain growth) of each side chain conformer νk of residue k is given by 
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where the energy in Eq. (8)  used in the Rosenbluth sampling is replaced by the log of the 
probabilities  determined from Eq. (4) from the full energy MC-SCE simulation to 

calculate  for n structures that lie beyond the energy cutoff. This value reflects the 
background error due to the chain growth process and can be cancelled out to yield the true 
mutual information value as given in Eq. (9). 
  

SSC
k( ) ISC

(k , j )

ISC
(k , j )

(pνk
(k ) )

ISC ,uncorr
(k , j )



!

! 76!

!!"!,! !,! = !!"!,! !,! − !!",!"#$%%!,! !,!   (9) 
 

In this paper, all mutual information (MI) values reported are background corrected. 
 
4.3 EXPERIMENTAL METHODS  
The ligand 5-nitrobenzisoxazole was synthesized by following an earlier published method23, 
and its improved version from the Hilvert laboratory24. The KE15 plasmids were kindly provided 
by the David Baker laboratory at University of Washington, Seattle, WA, and variants studied in 
this work were generated by site-directed mutagenesis using a Quik Change II site-directed 
mutagenesis kit (Stratagene; Agilent!Technologies,!Santa!Clara) using appropriate PCR primers 
(Chapter 3, Table S2). After the mutagenesis PCR reactions, the mutated plasmids were 
transformed into XL-10 gold cells and the plasmids encoding individual mutations were isolated. 
The identity of the mutated plasmids were confirmed by sequencing the plasmid from both 
forward and reverse directions using T7 forward and T7 reverse primers at UC Berkeley 
Sequencing facility. The individual mutated plasmids were transformed into expression cell line 
BL21 (DE3) gold. 

A single colony from the transformed cells containing individual variant was used to 
inoculate a starter culture of 20 mL LB medium supplemented with 50 µg/mL kanamycin and the 
resulting culture incubated with shaking overnight at 37°C. This starter culture was used to 
inoculate 500 mL LB medium with 50 µg/mL kanamycin and incubated for ~3h at 37°C until 
OD600 reached ~1.2. The culture was then induced with 1mM IPTG for overproduction and the 
culture was further grown with shaking at 37°C for 4h. The cells from the liquid culture were 
harvested and stored at -80°C until used for the isolation. In general, roughly 2 g of the wet cells 
were routinely obtained from 0.5L culture.  

 The harvested cells were thawed, re-suspended in 35 mL lysis buffer (25 mM Hepes, pH 
7.25 containing 100 mM NaCl, 5% glycerol), lysed by sonication, centrifuged to remove 
insoluble debris and the soluble fraction loaded into pre-washed NI-NTA column (5mL resin, 
His-Pur, Thermo-Fisher). The NI-NTA resin with the bound proteins were washed first with 10 
column volume of lysis buffer followed by 15 column volume of 20 mM NaPi, pH 7.4, 500 mM 
NaCl, 30 mM Imidazole to remove nonspecific and weakly bound proteins. The bound His-
tagged fusion protein was then eluted from the NI-NTA resin with 20-25 mL of 500mM 
Imidazole buffer solution (20 mM NaPi pH 8.0, 500 mM NaCl, 500 mM Imidazole). The eluted 
fusion protein were extensively dialysed in lysis buffer, concentrated through Amicon filters 
(30,000 MWCO, Millipore), its concentration estimated by measuring the absorbances at 280 nm 
and stored at -80°C in smaller aliquots. This purification protocol yielded over 90% pure protein 
(assessed through the visible bands in SDS-PAGE) and routinely produced 18-23 mg of His-
tagged KE07 proteins. 

The enzymatic characterization of the KE15 variants was performed similar to previously 
published work6 with some modification in the Cary 50 spectrophotometer (Varian) that used a 
quarz cuvette.  In short, the kinetic analysis were performed in 25 mM Hepes, pH 7.25, 100 mM 
NaCl, 5% glycerol with 5-nitrobenzisoxazole concentration ranging from 5-1500 µM with the 
co-solvent acetonitrile concentration equalized to 1.5% (v/v) in a micro-cuvette capable of 
monitoring reaction at 200 µL. A known amount of dry 5-nitroxybenzisoxazole was dissolved in 
acetonitrile to have 100mM substrate stock. From this stock a series of dilutions of the substrate 
were made in acetonitrile to achieve the concentration ranges in the kinetic assay. The reaction 
was initiated by the addition of small amount of the enzyme aliquot (final concentration from 
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0.2-1.0 µM in the assay) and the product formation was monitored spectrophotometrically at 380 
nm (Δε = 15,800 M-1, cm-1). Steady-state parameters were obtained after fitting the data to the 
Michelis-Menten equation. 

4.4 RESULTS 
The starting point for our screening process was KE15 design. As with KE07 and KE70 design, 
high reactant state stabilization and low transition state stabilization was seen from MC-SCE 
simulations. Additionally, high mutual information sites (hub residues) were concentrated in the 
EL state and very sparsely located in the apo/EL† states Thus, it would seem likely to improve 
KE15 with the same metrics learnt from KE07/KE70. Using hub residues as target positions, we 
attempted to pick out the most beneficial mutation through computational screening and propose 
mutations. Once we were able to identify the most improved variant in the laboratory, we kept 
that mutation and redid the screening, this time with hub residues of the improved variant. This 
iterative process was done 3 times, thus adding 3 mutations to KE15 design. Details of the 
starting variant in each round are provided in Table 4.1 and Hub residues (and in silico targets) 
for each variant are tabulated in Table 4.2.  
 Of the residues listed in Table 4.2, mostly 1st and 2nd shell of the enzyme were pursued 
for generating improved variants. The reason behind restricting to just these regions is to 
maximize the possibility of selecting beneficial mutants within the constraints of exploring 
limited sequence space with the computer time we had. On an average, 8-10 alternative amino 
acids were tried at the chosen sequence positions with an emphasis on diversifying charge, 
hydrophobicity and size. A combination of hub mutations was not tried, again due to the 
explosion of sequence space. In total, we tested about 350 mutants. To give a sense of the 
compute time this took, each mutant was simulated in the apo, EL and EL† state and each state 
requires about 3600 computer hours when run on our local computer cluster (AMD Opteron 
Processor 6274 (2.2 Ghz) cores). Thus, approximately 4 million compute hours were used up for 
the 3 rounds. 

 
Table 4.1: Details of the starting variant in each round of the screening process. The most 
beneficial mutation from each iteration was added to move to the next round of screening. Only a 
handful of mutations were tested in the lab, dramatically reducing the labor that usually goes into 
improving designed enzymes. The best performing triple mutant is also listed. 
 

Round Starting Variant Kcat/KM 
(M-1s-1) 

Number of 
mutants tested 
in silico 

Number of 
experimental 
mutants tested 

1 KE15  27 120 8 
2 Asp130Lys-KE15 62 80 5 
3 Ile168Met-Asp130Lys-KE15 150 110 2 
- Gly199Ala-Ile168Met-

Asp130Lys-KE15 
304 NA NA 
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Table 4.2: High mutual information sites (hub residues) in each starting variant and the best 
variant. Hub residues were targeted for computational screening. Position in italics were tested 
in-silico and those in bold were designed and active site residues (within 5 Å of substrate)  
 

Starting 
Variant 

Highest MI in apo state Highest MI in EL 
state 

Highest MI in EL† 
state 

KE15  
 

240 19, 24, 34, 52, 58, 
59, 61, 62, 73, 74, 
84, 95, 102, 116, 
125, 130, 133, 137, 
148, 156, 159, 161, 
163, 173, 182, 188, 
190, 207, 212, 219, 
231, 235, 242, 243, 
244 

 

Asp130Lys-
KE15 
 

16, 31, 55, 119, 175, 201 11, 24, 28, 50, 52, 
64, 67, 68, 71, 84, 
87, 93, 108, 112, 
123, 152, 154, 159, 
168, 185, 208, 215, 
228, 231, 239, 244 

19 

Ile168Met-
Asp130Lys-
KE15 

11, 27, 31, 42, 59, 68, 85, 
86, 163, 176, 191, 228, 230 

5, 14, 24, 41, 50, 64, 
65, 71, 74, 83, 108, 
118, 138, 168, 173, 
208, 212, 231 

51, 103, 163 

Gly199Ala-
Ile168Met-
Asp130Lys-
KE15 

4, 118, 147, 175, 230 11, 17, 18, 19, 27, 
42, 51, 52, 58, 59, 
62, 79, 83, 85, 91, 
103, 133, 149, 161, 
182, 208, 209, 228, 
233, 235  

26, 68, 73, 87, 91, 
239 

  
 
 The primary selection criterion for the mutations was EL state destabilization, EL† 
destabilization and optimization of hub features. Optimizing hub feature includes (a) Minimizing 
hub residues in EL state (b) Maximizing hub residues in apo and EL† states (c) Maximizing 1st 
shell hub residues in apo/ EL† states and removing 1st shell hubs in EL state. We preempted that 
not all selection criteria would likely be satisfied by a single mutation in such a rudimentary 
design. Thus we tried to choose mutants that exhibited atleast one of the criteria.  
 For Round 1, we screened for twelve mutational positions listed in Table 4.2. Of the 
approximately 120 mutants, eight partially satisfied metrics indicative of an improved enzyme. 3 
of these mutants when tested in the lab showed improved performance either through an 
enhancement in kcat or kcat/KM (Table 4.3). Position 130 that is originally an Aspartate gave 2 
improved mutants, one being Asparagine and the other Lysine. The reasons for choosing these 2 
mutants were (a) More destabilization of EL state (b) Further stabilization of EL† state (c) 
Apo/EL† hub residues showing up. It should be pointed out that the number of EL hubs did not 
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decrease substantially but in both cases, these mutants were the best we could screen for.  The 
mutation Asp130Lys gave the best variant with a kcat/KM of 62 M-1s-1 with bulk of the 
improvement seen in kcat. Structure wise, Asp130 is located at the bottom of the barrel (Figure 
4.2) and thus this is a long-range effect on the chemical step. The other mutation that showed an 
improvement in kcat was Ile173Gln. Unfortunately, the 5-fold kcat improvement was accompanied 
by a 5-fold increase in KM, leading to negligible change in efficiency.  
 In line with proposed strategy, we retained the most beneficial mutation Asp130Lys and 
moved to round 2. As evinced by Table 4.2, the EL state still has a high number of hubs. Another 
problematic aspect is that Ile50 shows up as a hub in the EL state. Instead of enriching 1st shell 
hubs in the EL state, improved variants tend to enrich them in the apo/EL† states. Round 2 
mutations tried to address some of these concerns. Of the 5 mutations tested in lab, 2 showed 
enhanced activity. Asp11Tyr mutation improved slightly (kcat/KM = 80 M-1s-1) and also removed 
position 11 from the list of hubs in EL state. However, the best mutant was Ile168Met. This 
mutation further destabilized the reactant state and stabilized the transition state. The number of 
hubs in the unbound and transition states increased along with a decrease in the EL state hubs. 
Most of the performance improvement came from KM, suggesting tuning of the binding of 
substrate. Although Ile168 is in the 1st shell of residues, it faces the opposite direction, indicating 
an indirect effect on catalysis.  

As with the Asp130Lys-KE15 mutation, the double mutant also has the same issue of two 
active site hubs in EL state – Leu5 and Ile50. Given the lack of hub positions other than 5 and 50 
in the 1st and 2nd shell, in round 3 we also expanded the positions considered for mutation by 
including proximal Ala and Gly residues – amino acids with no rotameric degrees of freedom. Of 
the 110 mutations tried, 4 were tried in the lab. None of the mutations at 5 or 50 improved 
catalytic activity. However, the mutation at Gly199Ala improved kcat/KM 2-fold (kcat = 0.10 s-1; 
KM = 329 µM). This mutation was chosen because of the increase in hubs in the transition state 
as well as a reduction in the active site hubs. This was again not a perfect mutation prediction 
since 2 other metrics – free energy of stabilization of EL and EL† states showed inconsistent 
trends. We have not attempted any further mutation on the triple mutant till date. The location of 
the 3 mutations in KE15 is shown in Figure 4.2.  

All in all, fifteen laboratory mutations were tried with five of them showing improvement 
from the starting variant. The non-trivial number of false positives highlights the limited 
resolution of the model as well as missing physics like that of solvent. In cases like Ile50Asp, a 
proposed mutation, the enzyme showed no activity, suggesting a catastrophic change in the 
enzyme machinery. Such effects most likely can be explained with a more sophisticated model 
and further work is underway to do just that. We save that autopsy of the failed mutations for 
later work. 

In conclusion, I would like to emphasize a key accomplishment of this work that sets it 
apart from several other enzyme improvement ventures – increasing the kcat instead of just KM. 
This is a reflection of tuning the chemical step, considered to be a much harder problem than the 
binding problem (i.e improving KM).  
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Figure 4.2: Location of the 3 mutations in the best variant of KE15. Asp130Lys lies in the lower 
barrel of the scaffold and Ile168Met is in the 1st shell but facing the opposite direction. 
Gly199Ala mutation is in direct contact with the substrate.  
 
 
Table 4.3: Details of the various successful mutants obtained for KE15. The table highlights 
trends in the 3 criteria we used to improve KE15.   
 

Mutant ∆!! 
(kcal/mol) 

∆!! 
(kcal/mol) 

Apo 
hubs 

EL 
Hubs 

!"! 
Hubs 

kcat (s-1) KM 
(µM) 

Design KE15 -29.4 13.9 1 35 0 0.008 293 
Round-1  
Asp130Lys -25.8 3.6 6 26 1 0.031 474 
Round-2  
Ile168Met-
Asp130Lys 

-14 0 13 18 3 0.036 227 

Round-3 
Gly199Ala-
Ile168Met-
Asp130Lys 

-23.2 10.4 5 25 6 0.101 329 
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4.5 DISCUSSIONS AND CONCLUSIONS  
The greater than ten-fold performance enhancement reported here without using directed 
evolution is a positive step in the field of designed enzymes. By concentrating on a select few 
residues determined by physically reasonable metrics like mutual information, we are able to 
dramatically reduce the sequence space to be explored. Shifting the burden of trying out 100s of 
mutations in the lab to the computer further saved time, resources and manpower. At a minimum, 
the results give us confidence that improving designed enzymes need not be a dark art and by 
rationally putting back missing physics to optimize the reaction process, performance can be 
enhanced. I hope this screening method can find use in future enzyme design projects.  

However, enzymes are complicated machines and one or two descriptors may not suffice 
to elevate designed enzymes to the scale of efficiency natural enzymes have. Even within the 
limited number of mutations we tried, only 30 % showed improved performance. In cases like 
Ile50 that is directly in the active site, predicted mutations to Asp completely annihilated any 
catalytic response, underlining shortcoming in the model. These problems are well 
acknowledged and point to deficiencies in the current treatment of electrostatics and solvent 
physics. Moreover, even with KE07 and KE70, about 50% of the mutations were picked up by 
this screening method. Picking up the remaining mutations would inevitably require a different 
approach. As was evident from Table 4.2, we were starting to see a lack of hubs that would 
likely influence catalytic activity, forcing us to also consider residues like Gly/Ala that don’t 
have side chain dihedral degrees of freedom. Most of these hubs have high mutual information 
due to their presence on the surface, allowing them more freedom. Going forward, it will be 
important to understand other key aspects of the physics that would help us improve KE15 by 
another couple of decades at the very least. In the next chapter, I will describe how electrostatic 
fields can point to deficiencies in the design and how they can be ameliorated. 
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Chapter 5 

 
The Importance of the Scaffold for de Novo Enzymes 
 
In this chapter, I report electric field values relevant to the reactant and transition states of 
designed Kemp eliminases KE07 and KE70, and their improved variants from laboratory 
directed evolution (LDE), using atomistic simulations with the AMOEBA polarizable force field. 
The catalytic base residue contributes the most to the electric field stabilization of the transition 
state of the LDE variants of the KE07 and KE70 enzymes, whereas the electric fields of the 
remainder of the enzyme and solvent disfavor the catalytic reaction. These results suggest that 
LDE is ultimately a limited strategy for improving de novo enzymes since it is largely restricted 
to optimization of chemical positioning in the active site, thus yielding up to a ~3 order 
magnitude improvement that is an upper bound estimate based on LDE applied to comparable de 
novo Kemp Eliminases, whereas the electrostatic environment is thought to play a large role in 
stabilization of the transition state for naturally occurring enzymes. Instead de novo enzymatic 
reactions would most productively benefit from optimization of the electrostatics of the protein 
scaffold in early stages of the computational design, utilizing electric field optimization as 
guidance. 
 
 
5.1 INTRODUCTION 
Although the design of new biocatalysts has not yet reached the level of proficiency of naturally 
occurring enzymes, there is optimism that further progress toward that goal is realistic and within 
reach as our understanding deepens on why current efforts have fallen short1 and what makes 
natural enzymes so exceptional2-3. In this work we consider de novo enzyme design whereby a 
small catalytic “theozyme” is placed into an accommodating native protein scaffold, i.e. one that 
remains stable. While minimal activity was observed for these de novo designed enzymes, it is 
still orders of magnitude below the activity typically seen in natural enzymes. While computation 
has provided insight4-7 and useful improvements8-10, the majority of the improvement comes 
from laboratory directed evolution (LDE)11 by altering the protein sequence through multiple 
rounds of mutagenesis and selection to isolate the few new sequences that exhibit enhanced 
catalytic performance.12-16  

This process is well-illustrated by the popular de novo design of the Kemp elimination 
(KE) reaction17, involving the deprotonation of a small ligand substrate 5-nitrobenzisoxazole by 
a catalytic base (Figure 5.1)17, with corresponding electronic rearrangements that break the C-H 
and N-O bonds while forming a C�N triple bond, engineered into related TIM barrel scaffolds 
and usually further optimized with LDE to create different KE catalytic motifs such as KE0712, 
KE7013, KE5916, HG38, HG3.17.15 For KE07 and KE70, the focus of our study here, the majority 
of catalytic performance was obtained after 6-7 rounds of LDE, which improved the kcat/KM by a 
factor of ~200 (KE07.R7) and ~400 (KE70.R6), respectively, in the best evolved enzymes.12-13 It 
is noteworthy that while most of the catalytic improvement for KE07 resulted from increases in 
kcat, the improvements in KE70 were derived equally from kcat and KM, and would suggest that 
LDE took very different strategies in the optimization of the two enzymes.12-13 
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Figure 5.1: The Kemp elimination reaction. The one-step reaction scheme involving the 
abstraction of hydrogen from the carbon of 5-nitrobenzisoxazole by a catalytic base. Shown is 
the transition state that has a partial negative charge on the substrate oxygen with cleavage of the 
O-N bond and nascent formation of a C�N triple bond. 
 
Almost all design protocols for Kemp Eliminases18-21 have taken a minimalist strategy of placing 
a base in a hydrophobic pocket, thus increasing the pKa. For example, catalytic antibody 34E4 
can catalyze the Kemp elimination reaction with efficiencies comparable to the KE07.R7 variant 
using a simplified active site motif of a functional base surrounded by hydrophobic residues22. 
Such rudimentary Kemp eliminases have also been designed not only in TIM barrels8, 12-13, 15-17, 
but into scaffolds of calmodulin23 and T4-lysozyme24. Thus, regardless of the fold involved, a 
basic level of activity can be obtained for this reaction.1 However, to reach the level of natural 
enzymes, there needs to be synergism between multiple functional groups22 that includes not 
only hydrophobicity but beneficial electrostatic contributions2-3. Furthermore, electrostatic 
stabilization comes not only from the proximity of a few residues in the active site25-26, but also 
the rest of the protein scaffold27-29 as well as the surrounding solvent30-31. 

Advances in vibrational Stark effect (VSE) spectroscopy29 have enabled researchers to 
probe the electric field in the active site of enzymes in order to quantify their contribution to the 
observed acceleration of reaction rates over the uncatalyzed reaction in aqueous solvent. An 
electric field can have a catalytic effect if it adopts a sustained direction that specifically 
stabilizes the transition state in preference to the reactant state—an effect that in principle is 
better optimized in the pre-organized state of an enzyme relative to bulk aqueous environment2-3, 

28, 32. Using VSE for the ketosteroid isomerase (KSI) enzyme and its inhibitor 19-nortestosterone 
(19NT), which has a C=O group located in the same position as the carbonyl group of it’s natural 
substrate in the active site, Boxer and co-workers have shown that the large electric fields (~100-
140 Mv/cm) exerted on this bond were linearly correlated with the activation free energies of the 
wild type and mutated variants.28, 33 Although precise chemical positioning of the Asp40 base in 
the active site for proton abstraction from the substrate is important for KSI26, leading to 
transition state stabilization that contributes 2-3 orders of magnitude to the observed accelerated 
rate, the analysis of the VSE data suggests that ~5 orders of magnitude improvement in kcat 
comes about due to the reduction in the catalytic barrier that arises from the electrostatic 
environment of the KSI protein28, 34. Although there is disagreement on the relative orders of 
magnitude that electrostatics contributes to the chemical base positioning vs. the scaffold and 
solvent contributions26, 35, there is no question that each are highly important for the catalytic 
performance of naturally occurring enzymes. 

Presumably natural enzymes like KSI have developed highly optimized structural folds, 
including surfaces that invoke additional favorable orientations of solvent dipoles, which 
together contribute to a long-ranged and organized electrostatic environment for biocatalysis.2-3 
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However, for de novo designed enzymes it is reasonable to assume that they suffer from both 
non-optimal chemical positioning as well as a poorly concocted electrostatic environment, since 
the scaffold merely serves as a “backdrop” for containing the designed active site. In this work, 
we decipher the role of electrostatic pre-organization and transition state stabilization in the 
designed Kemp enzymes KE07 and KE70, and to demonstrate how the electrostatics are further 
tuned by LDE to improve the catalytic activity for both. Using atomistic computer simulations 
with an advanced polarizable force field, we measure the electric field at the 3 bonds that are 
made or broken in the ligand bound enzyme (EL) and transition state (EL†) as shown in Figure 
5.2. Furthermore, we have formulated the calculations such that they allow us to decompose 
electric fields into contributions from each residue32 as well as solvent to better distinguish 
between “chemical positioning” of the catalytic base in the active site, and the contributions that 
arise from the longer-ranged electrostatic environment from the protein and solvent.  

 
 
Figure 5.2: Electric field projection onto the C-H,  C-N, and O-N bond dipoles of 5-
nitrobenzisoxazole and sign convention used. Electric fields are calculated at the C, H, N and O 
of the ligand, in which the critical chemical step of the reaction is the breaking of the C-H and O-
N bonds and the making of the C-N triple bond. The positive field direction shown by arrows is 
chosen to conform to the opposite direction of movement of electrons in the Kemp elimination 
reaction, a favorable field direction that supports the transition state. 

 
We find that electrostatic fields are far greater in the active site of the enzymes relative to 

bulk solution when projected onto the relevant bonds, and a significant change in electrostatic 
pre-organization was found when going from the designed enzyme to the most improved variant 
for KE07 but not KE70. We find that chemical positioning, i.e. the optimization of the active site 
base that interacts directly with the substrate, contributes the most to the electric field 
environments of the best enzymes for KE07, whereas the pre-organization effect of the 
electrostatic field is still present but smaller in the designed KE70 enzyme, and diminishes in the 
LDE variant due to many mutations to hydrophobic amino acids that promote substrate affinity 
for the active site instead.  

But in all cases, whether designed or LDE optimized, the electrostatic fields of the 
remainder of the enzyme and solvent largely disfavor the catalytic reaction. The underlying 
premise of the design approach – construction of a new catalytic “theozyme” that is placed into 
an arbitrary protein fold – suggests that the limitations of the de novo strategy is the restriction 
of the LDE search to optimization of chemical positioning in the active site, with an upper bound 
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of ~2-3 orders of magnitude estimated from natural enzymes like KSI. Instead de novo 
enzymatic reactions would most productively benefit from optimization of the protein scaffold36 
in earlier stages of the computational design, utilizing electric field optimization as guidance, to 
recover the many missing orders magnitude improvements from electric field environments. 

5.2 METHODS 
Generating backbone and side chain ensembles for EL and EL† states of KE07 and KE70. For 
both enzymes, the initial design was modeled using the structures reported in reference [12-13] 
with the ligand docked in the appropriate position. Starting structures for improved variants for 
both cases (R7 for KE07 and R6 for KE70) were generated using Modeller.  Using each of these 
PDB/modeled structures for the backbone in the ligand bound state, we then used the backrub 
algorithm implemented in Rosetta to run 25 independent simulations, each generating 10,000 
trial moves using the Cα atoms as pivot residues, to generate uncorrelated backbone ensembles. 
From each simulation the lowest energy structure was saved. Since the backbone scaffolds for 
KE07 and KE70 are quite rigid, we believe the backbone variations we have generated are 
adequate.  

With these 25 backrub structures, we then used a recently developed Monte Carlo Side 
Chain Ensemble (MC-SCE) method37 to create large side chain ensembles for each structure. 
MC-SCE has been validated across a large number of proteins and protein complexes in which it 
performed extremely well in predicting observables reported in high quality X-ray 
crystallography and NMR J-coupling experiments.37 We note that for the MC-SCE part, the 
substrate was kept fixed in the docked position in both the EL and EL† state. The substrate 
geometry for the EL† state was the same as in the EL state with only the charges changed to 
reflect the transition state nature. The resulting structural ensembles for KE07 and KE70 
represent sampling on the microsecond to millisecond timescale as estimated from repacking of 
the amino acid sidechains on different backbones.  

Molecular dynamics simulations with AMOEBA. From the MC-SCE simulations on each 
backbone for the EL and EL† states of KE07 and KE70, we save the lowest energy structure 
which is then used as the starting point for molecular dynamics simulations with the AMOEBA 
polarizable force field38-40. The AMOEBA model is described using a permanent multipole 
expansion up to quadrupoles, and polarization effects are explicitly accounted for by calculating 
induced dipoles in a self-consistent manner. Due to the sophistication of electrostatics and short-
ranged anisotropic interactions, AMOEBA should provide an excellent model for the electric 
fields in enzymes. 

All the MD simulations in this study were performed using TINKER software. The tleap 
module in AMBER was used to solvate the system with a 10 Å spacing between the solute and 
the nearest box edge. Minimization was then performed using an LBFGS scheme with gradient 
RMS cutoff of 0.01. After minimization, an NPT simulation was performed with a timestep of 
1fs integrated by the Beeman scheme. The temperature was maintained at 298 K with a Nose-
Hoover thermostat. The PME real space cutoff and Van der Waals cutoff was set to 8 Å. Induced 
dipoles were iterated until the root-mean-square change was less than 10-5 Debye/atom. Given 
the ensemble of structures from the molecular dynamics and MC-SCE calculations described 
above, which provides effective sampling over much longer timescales than an individual and 
standard tens of nanosecond trajectory, we run 25 independent 100 ps trajectories of which we 
discard the first 50 ps and then collect statistics for the remaining 50 ps at intervals of 1 ps. 
Electric field values were calculated at the 4 atoms in the ligand involved in the breaking and 
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making of chemical bonds in the substrate, namely C, H, N and O as shown in Figure 5.2. This 
was done for EL and EL† states in both designed enzymes and best LDE variants. 

Electric field calculations. In the AMOEBA framework, the permanent and induced 
electric fields at atom i due to another atom j can be written as follows 

!!"#$,!(!,!) = −!!! ! + !!"! !,! − !
!!!"#Θ

(!,!,!)   (1a) 
!

!!"#,!(!,!) = !!"!!"#!,!      (1b) 
!
where q,  µ, Θ correspond to point charge, point dipole, and point quadrupole permanent 
electrostatics, µind is the polarizable dipole, and the tensor T is expressed in a compact format as  
!

!!"…! = !
!!!!

∇!∇! …∇! !
! ! ! ! ! ! (1c)!

!
Although during the dynamical simulation the long-ranged electrostatics of the many-body 
polarization are evaluated under Ewald, in order to break down the electric field contributions 
from specific residues, we do an extra calculation where the induced dipoles are again calculated 
to convergence but using the real-space interactions only, with no cutoff’s, and then Eq. (1a-1c) 
is calculated. When we add up all real-space contributions from all residues j to define the total 
electric field at the i=C, N, O, and H atoms of the substrate, 

!!(!) = !!(!,!)[!]      (2) 
we determine errors of ~1.0% when we compare to the full Ewald calculation.  

Once we know the electric field values at atomic site i due to site j, the electric field 
values at a bond are then evaluated as the arithmetic mean of the field values at the 2 atoms 
forming the bond. For example, along coordinate axis α, the average field at the bond bik 
comprised of atoms i and k due to residue j is  

!!(!!",!) = !!(!,!) + !!(!,!) /2 ! = !,!, !    (3) 
Field values along a bond are then calculated by taking the dot product between the electric field 
vector at the bond (Eq 3) and the unit vector of the bond with positive direction illustrated in Fig 
2. These values have been reported in all Tables and Figures. In all the 3 bonds studied here, we 
chose the positive direction of the field to be opposite to the direction of movement of electron in 
the bond breaking or bond making process. This is shown in Figure 5.2 with the arrows 
illustrating the positive field direction for each bond. 
!
5.3 RESULTS 
We first calculate the activation free energy stabilization of the transition state EL† relative to the 
reactant state EL due to electrostatics, Δ!!"!#!   

Δ!!"!#! = Δ!"→!"! ! ∙ !       (4) 
where ! is the bond dipole and ! is the electric field, in order to determine its contribution to the 
observed rate enhancements, i.e. on kcat  

!!"# = !"
! !

!!!!!"!#! !!!!!!"!!"!
    (5) 

By convention, field directions that are aligned with the breakage of the C-H and N-O single 
bonds, and fields aligned in the opposite direction for the formation of a C≡N triple bond, would 
contribute to free energy stabilization of the transition state (Eq. (4)). Using the transition state 
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structure reported in [41] for an acetate base for the same ligand, and using the AMOEBA 
electrostatic parameters for charges and fixed dipoles, we can assign a !!"!#!  contribution to the 
C-H, N-O, and C≡N bond dipoles in the EL and EL† states (see the SI material for details). It is 
important to note that we are missing other contributions to the total free energy barrier, Δ!!"!!"! , 
such as the entropic effects arising from desolvation (although the enthalpic interactions are 
likely accounted for in part by the solvent electrostatic field contributions in !!"!#! ). In addition, 
we have shown that side chain entropy played a significant role in the observed kcat trends for 
which the active site of the original KE07 and KE70 enzymes were over-designed for the 
binding affinity of the EL state, whereas the LDE optimized enzymes stabilized the EL† complex 
instead.7 Therefore, while experimentally the ∆Δ!!"!#$! = –2.6 kcal/mol accounts for the ~70X 
improvement in kcat for the best KE07 variant compared to the design, and the corresponding free 
energy barrier reduction ∆Δ!!"!#$! = –2.1 kcal/mol accounts for the ~35X improvement in kcat for 
the best KE70 variant, we are only analyzing electric field contributions Δ!!"!!!  and thus do not 
expect to reproduce these total activation free energy values. 
 
Table 5.1: Free energy stabilization of the transition state. Reduction in activated free energies are 
calculated using ΔG‡ = –0.048(FTS•µTS – FS•µS). Electric field values along the 3 bonds of the substrate 
5-nitrobenzisoxazole in the EL and EL† states of KE07 and KE70 designed enzymes and best LDE 
variants, as well as in aqueous solvent. Positive field indicates favorable contribution and fields are 
reported in units of Mv/cm. Standard error of the means are in parentheses. Bond dipole moments are 
estimated from AMOEBA charges and fixed dipoles (see SI material) in the EL and EL† complexes; for 
C-H µTS = 1.0D, µS = –0.7D; for C≡N µTS = 0.4D, µS =2.0D; for O-N µTS = 2.3D, µS =–1.7D;  
 

Enzyme Construct and ΔG‡ 
transition state stabilization 

Fields generated for each bond 
C-H C≡N O-N 

Designed KE07 EL 47.6 (3.9) 43.9 (2.0) 3.7 (2.7) 
EL† 68.7  (7.3) 58.8 (4.1) 22.7 (2.2) 

ΔG‡ = –4.6 kcal/mole   –4.9 kcal/mole 3.1 kcal/mole –2.8 kcal/mole 
 

LDE R7 Variant KE07 
EL 81.5 (11.0) 49.1 (4.3) 7.2 (3.7) 
EL† 108.2 (12.9) 77.8 (9.6) 30.3 (3.7) 

ΔG‡ = –8.7 kcal/mole  –7.9 kcal/mole 3.2 kcal/mole –4.0 kcal/mole 
 

Designed KE70 EL 53.3 (3.6) 48.7 (2.4) 8.8 (1.7) 
EL† 77.6 (3.7) 62.2 (1.8) 28.1 (1.2) 

ΔG‡ = –5.8 kcal/mole –5.5 kcal/mole 3.5 kcal/mole –3.8 kcal/mole 
 

LDE R6 Variant KE70 EL 54.0 (3.8) 29.7 (1.7) 6.9 (1.1) 
EL† 76.7 (2.6) 37.0 (1.6) 16.8 (0.9) 

ΔG‡ = –5.8 kcal/mole -5.5 kcal/mole 2.1 kcal/mole –2.4 kcal/mole 
 

Substrate,in,water EL 27.3 36.8 -10.5 
EL† 48.8 66.7 15.8 

ΔG‡ = –1.8 kcal/mole   -3.2 kcal/mole 2.3 kcal/mole –0.9 kcal/mole 
 

Table 5.1 reports the total electrostatic field values along the 3 relevant bonds of the 
substrate 5-nitrobenzisoxazole in the EL and EL† states of the KE07 and KE70 designed 
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enzymes, and their corresponding best LDE variants, as well as the fields acting on the reactant 
and transition state in aqueous solvent. If we assume that the electrostatic contribution to Δ!!"!#!  
arises from the additive contributions from the 3 bonds, then we can draw several immediate 
conclusions. The first is that the designed enzymes and their LDE variants help focus and 
enhance the electric fields along these bonds relative to the electric fields in bulk solvent, and 
overall the transition state is stabilized in preference to the reactant state regardless of enzyme 
variants (and which is true even in bulk solvent). In addition, the electric field stabilization is 
better for the designed KE70 relative to the designed KE07 enzyme, consistent with the fact that 
the kcat of the former is an order of magnitude better than the latter. Furthermore, it is apparent 
that the electric fields are different in the transition state compared to the reactant state – 
indicating that activation free energies changes are attributable to electric field reorganization, 
and not just changes in the bond dipoles, as is often assumed28-29. Finally, while for KE07 there 
is a very clear trend of increasing electric field strength going from the designed enzyme to the 
best R7 variant in both EL and EL† states for all relevant substrate chemical bonds, the KE70 
enzyme exhibits no net activated free energy decrease in going from the designed to the best R6 
LDE variant.  

In the case of KE07, when we break down the contributions to the total electric field for 
the C-H, C�N, and N-O bonds from individual residues (Table S1), we see that the 
overwhelming contribution comes from the catalytic base Glu-101 (Figure 5.3a), and the field 
strength contributed by the Glu-101 in the R7 variant increases by an additional ~25-40 Mv/cm 
over the designed KE07 enzyme, a huge improvement for transition state stabilization. There are 
also significant stabilizing electric field contributions (> kbT ~10 Mv/cm) arising from His201, 
and in the best LDE R7 variant from the GlyArg202 substitution, which we have shown in 
previous work interacts directly with the substrate to aid in chemical positioning of the base7. 
However, in both the KE07 design and R7 variant the designed residues Lys-222 and Ser-48, 
originally intended to stabilize the charge of the substrate in the transition state, have 
electrostatic fields that negatively impact the activation free energy. We and others have shown 
that Lys222 often forms a hydrogen bond with Ser48, as well as with residues Glu46 and Ile7 or 
its replacement in LDE R4 with Asp7, that help support the catalytic purpose of KE07 by 
removing unproductive interference with the base positioning5, 7. The Asn224Asp mutation is 
also unproductive in regards electric field stabilization42, although a possible purpose for the 
Asp224 mutation is to better complex with water, as seen in the crystal structure of the R7 
variant. Even so, these alternate roles for Lys222, Ser48, and Asp224 come with sacrifices to 
activation free energy stabilization afforded by constructive electric field effects on the substrate.      

For KE70, there is virtually no overall optimization of the electrostatic fields going from 
the designed enzyme to the best R6 variant in both EL and EL† states (Table 5.1), a result that is 
largely orthogonal to the LDE optimization path taken for KE07. When we break down the 
largest contribution to the activation free energy by residue, there is ~25 Mv/cm enhancement 
from the His-Asp dyad for proton abstraction from carbon in the best R6 enzyme (Figure 5.3b), 
although the majority of the net ~80 Mv/cm field strength for the EL† state primarily comes from 
histidine (Table S2). This is not surprising since the main negative electric field contribution at 
this bond comes from Arg70 that is known to form unfavorable interactions with Asp45, thus 
reducing the pKa of the His-Asp dyad. Otherwise, the electrostatic field due to the His-Asp 
catalytic base contributes negligibly to the stabilization of the other bonds of the substrate, 
suggesting that the electric field in KE70 is not as highly optimized as it is in KE07. What 
modest gains are made in electric field stabilization of the EL† state for the primary reactive step 
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of C-H bond breaking in the designed KE70 enzyme are diminished by active site mutations to 
more hydrophobic groups (Trp72Cys and Ser138Ala) in the best LDE R6 variant. For KE70, it 
appears that other factors like productive binding of the substrate played a more significant role 
than electrostatics in the LDE improvement, captured experimentally through an order of 
magnitude reduction in KM. In fact the pKa(kcat) ~ 6.2 in both the designed KE70 and R6 LDE 
variant, whereas for KE07, where the majority of the improvement came through electrostatic 
stabilization, the pKa(kcat) changed from < 4.5 in the design to 5.9 in the best R7 LDE variant. 

 
(a)                                                                                (b) 

 
Figure 5.3: The electric field projection onto the C-H bond dipole of 5-nitrobenzisoxazole from key 
residues in the active of (a) KE07 and (b) KE70. The yellow arrows indicate the field direction/magnitude 
and the ones in magenta indicate dipole directions for each bond studied. All residues shown have a field 
> 10Mv/cm (~ kbT) in the transition state of the best variant. 

   
Table 5.2: Chemical Positioning vs. Electric Field Environment at the C-H Bond. The magnitude of the 
electric field in either the EL and EL† states for the designed KE07 and KE70 enzymes and the best LDE 
variants. The active site is defined by residues within 5 Å from the center of the substrate, while the 
protein environment is summed over all residues outside this region. Solvent includes waters in the neck 
of the TIM barrel as well as the surrounding hydration and bulk water. Positive sign indicates field 
supporting bond breaking. Fields are reported in units of Mv/cm 
 

Region KE07 Design KE07 R7 Variant  KE70 Design KE70 R6 Variant 
 EL EL† EL EL†  EL EL† EL EL† 
Base 86.3 103.6 142.2 144.3  46.1 65.1 61.4 80.1 
Active 1.0 11.2 2.0 8.3  16.7 23.1 2.3 2.9 
Solvent -15.6  -19.2 -22.6  -20.2   2.9 0.7 1.9 2.8 
Protein -24.1 -26.8 -40.1 -24.1  -12.2 -11.3 -11.6 -9.1 
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A lack of stabilization of the oxy-anion is thought to be a bottleneck for the catalytic 
reaction executed in catalytic antibody 34E4, and appears to be a problem for both Kemp 
Eliminases studied here as can be seen from the electric fields projected onto the N-O bond 
dipole. Although LDE improved the C-H fields considerably in KE07, the improvements in N-O 
field were considerably less, ~1.2 kcal/mol of additional stabilization for the KE07.R7 variant. 
For KE70, this bond breaking was destabilized by LDE, quite possibly due to the complete 
removal of Ser-138 whose primary intent was stabilizing the oxy-anion. As already stated 
elsewhere,22 oxy-anion stabilization may be as critical as the chemical positioning involving the 
proton abstraction step.  

However the important optimization of chemical positioning and active site 
improvements may also require further electrostatic stabilization of the transition state by the 
scaffold. For natural enzymes such as KSI, Boxer has shown that the major contribution to 
lowering the activation barrier comes from the electrostatic environment of the protein scaffold, 
as opposed to the contributions of residues that interact directly with the substrate or residues 
that aid in better chemical positioning of the catalytic base. For KSI it was estimated that 102.5 
fold improvement in kcat was due to chemical positioning whereas an additional ~105 fold 
improvement was attributable to the electrostatic “environment” of the protein scaffold and 
surrounding solvent. While the relative percent contributions due to chemical positioning vs. 
electrostatic environment may be questioned26, 35, there is no argument that enzyme folds have 
optimized an electrostatic environment that aids the catalytic reaction. This is clearly not the case 
for both the designed and LDE optimized KE07 or KE70 enzymes. Table 5.2 shows that the 
electric fields from the protein scaffold and solvent are mostly counterproductively aligned with 
the C-H bond for KE07, or effectively negligible in the case of KE70, a result that generalizes to 
the other bonds as well (Table S3 and S4).  

These observations on KE07 and KE70 go a long way to explain why de novo enzymes 
are so poor to begin with, and why LDE is such a limited strategy for improving them. By using 
an “arbitrary” protein scaffold as a container for the active site theozyme, that also orients water 
solvent in such a way that are optimized for the scaffold and not the reactive chemistry, it should 
not be surprising the electric field environments are highly non-optimized for stabilizing the 
transition state. Hence the only tractable LDE strategy is to optimize the electrostatic fields 
locally at the active site, as was done for KE07, or utilize other chemical positioning strategies or 
ways to increase the basicity of the catalytic base through creation of a more non-polar active 
site, as found for KE70.  
 
5.4 DISCUSSION  
At present computational approaches have yielded de novo enzyme designs that are minimally 
competent, and therefore there is a necessary reliance on laboratory directed evolution to bridge 
the performance gap to compete at the level of catalytic antibodies, but even then they are 
certainly nowhere near the catalytic efficiencies of natural enzymes. An important aspect that 
helps explain the incredible performance of natural enzymes is that they have optimized folded 
structures that create favorable electric fields from the entire protein and surrounding solvent, not 
just the active site, to stabilize the transition state. In order to understand a natural enzyme’s high 
catalytic proficiency, Warshel has suggested that an enzyme structural fold creates a pre-
organized electrostatic environment, not found in bulk aqueous solution, that preferentially 
stabilizes the transition state charge distribution compared to the substrate reactant.  

While we draw more specific conclusions pertaining to the Kemp Eliminases KE07 and 
KE70 below, in this discussion section we place these results in a greater context that provide 
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more general considerations for advancing de novo enzyme design. We conjecture that LDE is 
ultimately a limited strategy for improving de novo enzymes since it would require wholesale 
reengineering of most of the sequence of the scaffold; if such sequences prove to be unstable for 
maintaining the fold, it would extend the need to the creation of a new protein fold, that is 
beyond the capacity of any realistically sized LDE libraries, not to mention human time and 
patience. This vast reduction in the optimizable sequence space then is largely now restricted to 
chemical positioning in the active site.  

If we were to take KSI as a reference point for the free energy stabilization attributable to 
local active site organization, we would expect at most a 3 order of magnitude improvement 
using LDE. At present all known attempts to further optimize the artificial Kemp Eliminases 
biocatalysts using LDE have yielded as little as one order of magnitude (the result for KE07 and 
KE70 after 6-7 LDE rounds beyond which no improvement was realized), to the best result 
obtained after 17 LDE rounds applied to the in silico design Kemp Eliminase HG38, yielding a 
kcat for HG3.17 that is ~1000 times better than the design15. We do not mean to diminish what is 
clearly a success story in these recent successes, but we believe that it is unlikely for any 
designed enzyme to further improve through greater active site precision using LDE, and one 
must now venture further into the greater protein scaffold to find the next orders of magnitude 
improvements. 

While de novo enzymatic reactions would most productively benefit from optimization of 
the protein scaffold utilizing electric field optimization as guidance, it should happen in earlier 
stages of the computational design. For KE07 the cluster of interactions involving Lys222, 
Ser48, Ile7 (Asp7) and Asp224-water have allowed for better positioning of the Glu101 base to 
act on the substrate, but with counterproductive electric field effects on the substrate that raises 
the activation free energy. The primary problem in their removal is that these residues are “baked 
in” to perform other benefits to support the catalytic purpose of KE07, but the evolved enzyme 
has to develop even more optimized catalytic base electric fields to compensate. Both KE07 and 
KE70 may have reached a cul de sac in regards further improvement in the active site after 6-7 
rounds of LDE due to such electric field compensations. 
 
5.5 CONCLUSIONS  
In this study we have used a robust model for electrostatics, the AMOEBA polarizable force 
field, to calculate electric fields for the designed KE07 and KE70 enzymes and for the best 
variants that were improved under laboratory directed evolution. By calculating the field 
directions that are productively aligned with the breakage of the C-H and N-O single bonds and 
the formation of a C≡N triple bond for the small ligand substrate 5-nitrobenzisoxazole, we can 
assess the electrostatic free energy stabilization of the transition state relative to the reactant 
state. For KE07 it was found that the enhanced catalytic activity of the best R7 LDE variant 
stemmed from mutations that improved the electric fields locally in the active site, mostly 
attributed to the catalytic base, for stabilizing the transition state, while in KE70 the electric field 
enhancements to the transition state for its best LDE variant were more modest and completely 
isolated to the catalytic His17-Asp45 dyad. Finally, regardless of the Kemp Eliminase construct 
(i.e. designed or LDE optimized), we showed that the electrostatic environment of the protein 
and solvent are counterproductive in their contribution to stabilizing the transition state. 

We suggest that LDE is ultimately a limited strategy for improving de novo enzymes 
since it is largely restricted to optimization of chemical positioning in the active site, thus 
yielding up to a ~3 order magnitude improvement that we offer is an upper bound estimate based 
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on the best known de novo Kemp Eliminase HG3.1715, as well as based on estimates made on 
naturally occurring enzymes such as KSI28. Therefore de novo enzymatic reactions could take a 
different tack by focusing on optimization of the protein scaffold in early stages of the 
computational design, utilizing electric field optimization as guidance. One simple optimization 
strategy would scan a range of known protein scaffolds with the theozyme present, and ranking 
them according to their electric field contributions, followed by selecting the best scoring protein 
scaffold after each round of LDE to capture the maximum positive electric field contributions. 
Widening the repertoire of folds considered for the design of Kemp eliminases beyond TIM 
barrel is also likely to be beneficial. For example in the design process of the Kemp Eliminases, 
TIM barrels show up disproportionately (71% of low-energy structures) compared to their 
occurrence in natural enzymes (10%). Considering motifs of enzymes like KSI that catalyze a 
proton transfer reaction involving a labile hydrogen from an aromatic motif with high efficiency 
might be considered as an alternative scaffold. Even with the current TIM barrels used in the 
Kemp Eliminases one can imagine a better enzyme scaffold optimization by focusing on polar or 
charged residue mutations on the protein surface to better pre-organize solvent dipoles, whose 
integrated electric field could be quite large; every ~30 Mv/cm improvement in electric field 
alignment of the solvent on the active site would result in an order of magnitude of improvement 
in the catalytic rate.  
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!
 5.7 APPENDIX  

Parameterization of substrate in reactant and transition state. In order to perform simulations 
with 5-nitrobenzisoxazole using the AMOEBA force field, we need to obtain parameters for all 
atoms in the substrate molecule in the reactant and transition states. For parameterizing the 
transition state of this molecule, the structure of the substrate used for parameterization was 
reported in Ref [41], in which the C-H and N-O bonds are partially broken and the C-N bond is 
somewhere between a double and triple bond as shown in Figure 5.2 of the main text. Since the 
transition state structure is not at it’s energy minimum, we do not minimize the structure as done 
in the original protocol (the reactant state structure is minimized). As can also be seen in Figure 
5.1 of the main text, the system used for the parameterization includes not only the ligand but 
also a base (acetate) to better model the transition state. The overall system has a net charge of -
1e.  
We then use the protocol described by Ponder and Ren [40] which has 2 main components – first 
finding the electrostatic parameters and second, finding ‘valence’ parameters (bond lengths, 
bond angles, dihedrals). The electrostatic component is described briefly in 6 steps below. 

1. Run a single point quantum mechanics-based calculation on the transition state structure 
using Gaussian g09 at the MP2/6-311G(1D, 1P) level of theory. This calculation returns 
the electron density as obtained at this relatively low level of theory. 

2. Find approximate charges, dipoles and quadrupoles by running the distributed multipole 
analysis using GDMA on the electron density. 

3. Once we have the approximate multipoles, use Tinker’s POLEDIT program to break the 
dipole moments into permanent contributions that act between polarization groups and 
mutual contributions that act within and between polarization groups.  

4. A second Gaussian g09 calculation is run at the MP2/6-311G(2D, 2P) level of theory to 
obtain a electrostatic potential. 

5. In order to obtain a electrostatic potential, we create a spatial grid on which to calculate 
the potential using Tinker’s POTENTIAL program and then compute the potential using 
the Gaussian CUBEGEN program. 

6. Finally, using Tinker’s POTENTIAL program, we fit the atomic multipoles to the 
MP2/6-311G(2D, 2P) electrostatic potential. 

After finishing the first step, the ‘valence’ parameters are assigned from similar, previously 
parameterized organic compounds. Thus, we model the transition state of the substrate with 
transition state electrostatics and energy minimized state valence parameters 
 

Calculation of dipole moment of the 3 bonds in EL and EL† states for 5-nitrobenzisoxazole.  
 
We used the monopoles and dipole moments of the parameterized 5-nitrobenzisoxazole in 
AMOEBA to calculate the dipole moment of the 3 bonds in each state. Table S1 lists the 
parameters used to calculate the dipole moment of each bond. The positive direction is as shown 
in Fig 5.2 of the main text. Since the net charge is not zero, we used Δq instead of q to calculate 
the dipole contribution from the monopoles. 
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C-H bond (+ve axis 
from C to H) 
 

EL EL†  

Permanent dipole 
(Debye) 

-0.93 0.1 

Charge on C (e- units) 0.05 0.05 
Charge on H (e- units) 0.04 0.20 
Charge difference (e- 
units) 

-0.01 0.15 

Distance (Å) 1.09 1.31 
Net dipole (Debye) -1.0 1.0 

 
C-N bond (+ve axis 
from N to C) 
 

EL EL†  

Permanent dipole 
(Debye) 

-0.1 -0.2 

Charge on C (e- units) 0.05 0.05 
Charge on N (e- units) -0.27 -0.05 
Charge difference (e- 
units) 

-0.32 -0.1 

Distance (Å) 1.36 1.25 
Net dipole (Debye) 2.0 0.4 

!
N-O bond (+ve axis 
from O to N) 
 

EL EL†  

Permanent dipole 
(Debye) 

0.7 -1.1 

Charge on O (e- units) 0.09 -0.44 
Charge on N (e- units) -0.27 -0.05 
Charge difference (e- 
units) 

-0.36 0.39 

Distance (Å) 1.4 1.8 
Net dipole (Debye) -1.7 2.3 

!
!
!
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Supplementary Figures 
!
!

(a) (b)   

                                                    
                      
Figure S1. The Kemp elimination KE07 and KE70 designs. (a) KE07 involved residues mutated 
from the original scaffold (red) as well as mutations introduced by LDE shown in blue. (b) KE70 
involved residues mutated from the original scaffold (red) as well as mutations made during 
laboratory DE shown in blue. Additional design mutations via a recombination DE strategy are 
shown in green.  

!
!
!
! !
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,
,
Table,S1:!List!of!top!residues!that!contribute!>10 Mv/cm electric!field!by!magnitude!at!the!
CTH,!CTN,!and!NO!bond!in!either!the!EL!and EL† states for the designed enzyme KE07 enzyme 
and the best LDE R7 variant. Positive sign indicates field supporting bond breaking (C-H and N-
O) and bond-making (C-N). 
 

KE07 Design C-H 
Bond 

KE07 R7 Variant 

 Electric Field   Electric Field 
Residue EL EL†  Residue EL EL† 

Glu-101 86.3 (11) 103.6 (11)  Glu-101 142.2 (12) 144.3 (16) 
His-201 8.7 (1) 11.2 (1)  His-201 4.1 (1) 7.3 (1) 
Gly-202 1.1 (0.1) 1.5 (0.1)  Arg-202 18.7 (1) 18.6 (2) 
Glu-46 6.6 (1) 5.3 (0.5)  Glu-46 11.2 (1) 12.1 (2) 
Ser-48 -7.6 (2) -4.3 (2)  Ser-48 -17.1 (2) -16.1 (3) 

Lys-222 -43.5 (6) -46.3 (6)  Lys-222 -51.8 (6) -41.5 (6) 
Asn-224 1.2 (0.5) 1.7 (0.2)  Asp-224 -16.1 (2) -10.4 (2) 

,
KE07 Design C-N 

Bond 
KE07 R7 Variant 

 Electric Field   Electric Field 
Residue EL EL†  Residue EL EL† 

Glu-101 15.5 (7) 18.7 (7)  Glu-101 47.4 (7) 54.4 (12) 
His-201 3.9 (2) 5.5 (2)  His-201 16.3 (2) 21.2 (3) 
Lys-222 10.6 (7) 16.8 (6)  Lys-222 -3.8 (3) 4.0 (7) 
Asn-224 2.2 (0.6) 2.9 (0.5)  Asp-224 -19.8 (2) -13.6 (2) 

,
KE07 Design N-O 

Bond 
KE07 R7 Variant 

 Electric Field   Electric Field 
Residue EL EL†  Residue EL EL† 

Glu-101 53.0 (6.0) 65.1 (2.4)  Glu-101 58.5 (2.5) 60.0 (1.3) 
His-201 12.7 (2.5) 15.4 (0.7)  His-201 7.3 (2) 7.5 (1) 
Gly-202 1.1 (0.1) 1.5 (0.1)  Arg-202 21.4 (2) 21.8 (2.9) 
Glu-46 7.3 (1) 6.8 (0.3)  Glu-46 10.2 (1) 10.6 (0.3) 
Ser-48 -5.8 (1) -3.5 (1)  Ser-48 -10.0 (2) -7.7 (3) 

Lys-222 -54.5 (6.1) -59.5 (3.2)  Lys-222 -45.6 (3.9) -40.6 (2.4) 
Asn-224 1.8 (0.7) 2.6 (0.5)  Asp-224 -19.2 (2.9) -11.2 (2.3) 

,
,
,
,
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,
Table,S2:!List!of!top!residues!that!contribute!>10 Mv/cm electric!field!by!magnitude!at!the!
CTH,!CTN,!and!NO!bond!in!either!the!EL!and EL† states for the designed enzyme KE70 enzyme 
and the best LDE R6 variant. Positive sign indicates field supporting bond breaking (C-H and N-
O) and bond-making (C-N). 
,

KE70 Design C-H 
Bond 

KE70 R6 Variant 

 Electric Field   Electric Field 
Residue EL EL†  Residue EL EL† 

His-17 30.0 (4) 47.4 (5)  His-17 48.0 (4) 65.0 (4) 
Asp-45 16.1 (2) 17.8 (1)  Asp-45 13.5 (1) 15.1 (1) 
Arg-70 -12.1 (2) -13.4 (1)  Arg-70 -10.9 (1) -11.5 (1) 
Trp-72 9.0 (2) 10.8 (1)  Cys-72 0.8 (1) 0.2 (1) 

Ser-138 5.3 (0.5) 8.5 (0.3)  Ala-138 0.7 (0.1) 0.7 (0.1) 
Glu-142 -7.6 (0.5) -6.9 (0.2)  Glu-142 -6.8 (~0) -7.4 (~0) 

,
,

KE70 Design C-N 
Bond 

KE70 R6 Variant 

 Electric Field   Electric Field 
Residue EL EL†  Residue EL EL† 

His-17 22.7 (2) 28.9 (0.5)  His-17 20.5 (2) 25.7 (1) 
Asp-45 6.7 (1) 6.7 (0.5)  Asp-45 3.0 (1) 4.4 (0.5) 
Arg-70 -1.9 (0.8) -1.3 (0.6)  Arg-70 2.3 (1) 0.1 (0.4) 
Trp-72 9.0 (0.9) 10.8 (0.5)  Cys-72 3.8 (1) 2.2 (0.4) 

Ser-138 20.1 (2) 29.3 (1)  Ala-138 2.3 (0.2) 2.8 (0.3) 
Glu-142 -0.9 (1) -1.0 (0.3)  Glu-142 -0.1 (0.4) -1.3 (0.2) 

,
,

KE70 Design N-O 
Bond 

KE70 R6 Variant 

 Electric Field   Electric Field 
Residue EL EL†  Residue EL EL† 

His-17 4.9 (1) 7.7 (1)  His-17 10.5 (1) 12.9 (1) 
Asp-45 10.7 (1) 12.5 (0.5)  Asp-45 10.8 (0.6) 11.6 (0.3) 
Arg-70 -10.1 (1) -12.0 (0.6)  Arg-70 -11.7 (1) -11.2 (0.5) 
Trp-72 7.8 (1) 11.9 (0.5)  Cys-72 -3.6 (0.8) -1.9 (1) 

Ser-138 -8.4 (1) -2.2 (0.7)  Ala-138 -0.5 (0.3) -0.9 (0.3) 
Glu-142 -9.9 (1) -8.7 (0.3)  Glu-142 -8.4 (0.6) -9.5 (0.4) 

,
,
, ,
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,
Table, S3:!Chemical Positioning vs. Electric Field Environment at the C-H, C-N and O-N Bonds. The 
magnitude of the electric field in either the EL and EL† states for the designed KE07 enzyme and the best 
R7 variant. The active site is defined by residues within 5 Å from the center of the substrate, while the 
protein environment is summed over all residues outside this region. Solvent includes waters in the neck 
of the TIM barrel as well as the surrounding hydration and bulk water. Positive sign indicates field 
supporting bond breaking. Fields are reported in units of Mv/cm 
 

KE07 Design C-H 
Bond 

KE07 R7 Variant 

 Electric Field   Electric Field 
Region EL EL†  Residue EL EL† 

Base 86.3 (11) 103.6 (12)  Base 142.2 (12) 144.3 (17) 
Active Site 1.0 (1)  11.2 (2)  Active Site 2.0 (1) 8.3 (1) 

Solvent -15.6 (4) -19.2 (1)  Solvent -22.6 (1) -20.2 (2) 
Protein -24.1 (7) -26.8 (7)  Protein -40.1 (7) -24.1 (7) 

 
KE07 Design C-N 

Bond 
KE07 R7 Variant 

 Electric Field   Electric Field 
Region EL EL†  Residue EL EL† 

Base 15.4 (7) 18.7 (7)  Base 47.4 (8) 54.4 (14) 
Active Site 18.3 (3) 26.3 (3)  Active Site 26.3 (3) 35.3 (4) 

Solvent 6.8 (3) 7.7 (2)  Solvent 2.1 (2) 0.3 (2) 
Protein 3.3 (7) 6.2 (6)  Protein -26.5 (5) -12.3 (8) 

 
,

KE07 Design N-O 
Bond 

KE07 R7 Variant 

 Electric Field   Electric Field 
Region EL EL†  Residue EL EL† 

Base 53.0 (7) 64.1 (3)  Base 58.5 (5) 60.0 (4) 
Active Site 4.1 (1) 14.5 (1)  Active Site 11.5 (2) 17.2 (2) 

Solvent -21.4 (3.8) -19.9 (1.5)  Solvent -27.4 (2.4) -23.7 (3) 
Protein -32.0 (7) -37.0 (4)  Protein -35.4 (5) -23.2 (4) 

,
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Table, S4:!Chemical Positioning vs. Electric Field Environment at the C-H, C-N and O-N Bonds. The 
magnitude of the electric field in either the EL and EL† states for the designed KE70 enzyme and the best 
R6 variant. The active site is defined by residues within 5 Å from the center of the substrate, while the 
protein environment is summed over all residues outside this region. Solvent includes waters in the neck 
of the TIM barrel as well as the surrounding hydration and bulk water. Positive sign indicates field 
supporting bond breaking. Fields are reported in units of Mv/cm 
 

KE70 Design C-H 
Bond 

KE70 R6 Variant 

 Electric Field   Electric Field 
Region EL EL†  Residue EL EL† 

Base 46.1 (5) 65.1 (5)  Base 61.4 (4) 80.1 (4) 
Active Site 16.7 (2) 23.1 (2)  Active Site 2.3 (1) 2.9 (1) 

Solvent 2.9 (1) 0.7 (1)  Solvent 1.9 (1) 2.8 (1) 
Protein -12.2 (4) -11.3 (2)  Protein -11.6 (2) -9.1 (1) 

 
 

KE70 Design C-N 
Bond 

KE70 R6 Variant 

 Electric Field   Electric Field 
Region EL EL†  Residue EL EL† 

Base 29.4 (3) 35.6 (2)  Active Site 23.5 (2) 30.1 (1) 
Active Site 23.2 (4) 32.0 (4)  Active Site 6.1 (2) 8.9 (1) 

Solvent 4.6 (1) 6.0 (1)  Solvent 5.9 (1) 4.7 (1) 
Protein -8.6 (4) -11.4 (2)  Protein -5.8 (2) -6.7 (2) 

 
KE70 Design N-O 

Bond 
KE70 R6 Variant 

 Electric Field   Electric Field 
Region EL EL†  Residue EL EL† 

Base 15.5 (2) 20.2 (1)  Base 21.3 (2) 24.4 (2) 
Active Site 2.0 (~0) 16.6 (1)  Active Site -2.7 (1) 1.9 (1) 

Solvent 1.1 (1) -0.6 (1)  Solvent 0.9 (1) 1.2 (1) 
Protein -9.8 (3) -8.1 (2)  Protein -12.6 (2) -10.7 (1) 
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Table S5. Design and laboratory directed evolution mutations for KE07 and KE70. The 
computationally designed residues (red) and mutated residues introduced by LDE of a given 
round (black) have been listed in the table below.  
 

 KE07 Design  KE07 Best 
LDE Variant  

KE70 Design KE70 Best 
LDE Variant 

Sequence ILE 7  Asp HIS 17  
 ALA 9  ALA 19  
 ILE 11  THR 20 Ser 
 VAL 12  Met ALA 21  
 LYS 19   ASP 23   
 SER 48  LYS 29  Asn 
 TRP 50  THR 43  Asn 
 PHE 77  Ile ASP 45   
 HIS 84   TYR 48  Phe 
 PHE 86   TRP 72  Cys 
 GLU 101   SER 74  Gly 
 ILE 102  Phe GLY 101  Ser 
 GLN 123  ALA 103  
 TYR 128  SER 138  Ala 
 ALA 130  HIS 166  Asn 
 LYS 146  Thr VAL 168  
 VAL 169  THR 171   
 GLY 171  GLY 177  
 LEU 176  ALA 178  Ser 
 HIS 201  LYS 197  Asn 
 GLY 202  Arg THR 198  Ile 
 MET 207   ILE 202  
 LYS 222  ALA 204  Val 
 ASN 224  Asp ASP 212   
 PHE 229  Ser ALA 231  
   ALA 235  
   SER 239  Ala 
   HIS 251  
 0.02 1.37 0.14 5.00 
 1.40 0.54 1.11 0.09 
 12.2 2590 126 57300 

!
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Chapter 6 
 
Conclusion 
 
In this work, I have developed 2 different approaches of studying designed enzymes. The 1st 
approach, premised on side chain conformational variability showed that both entropy and 
enthalpy played a coherent role in improving performance of designed KE07 and KE70 
enzymes. In addition to the usual transition state stabilization, the calculations showed reactant 
state destabilization, a less common strategy used by enzymes. Further, it was found that high 
mutual information sites could serve as a descriptor for picking mutational hotspots. About 50% 
of the mutations in both enzymes were high information sites. Putting these ideas to test, in 
chapter 4 we were able to improve another de novo enzyme KE15 by an order of magnitude. 
This is a significant advancement given similar improvements through laboratory directed 
evolution take 2-7 rounds and a big investment in time and resources. 
 Enzymes are complicated machines and thus it would require more sophisticated 
treatment to figure out other metrics of note. I chose electrostatic field stabilization going off 
recent work in the field of vibrational stark spectroscopy. While the base was found to contribute 
substantially to the catalytic process, the lack of participation (and even detrimental contribution) 
by scaffold residues and solvent was a big revelation. Unlike natural enzymes that are known to 
have optimized scaffolds that help promote the reaction using favorable electrostatic fields, the 
arbitrary scaffolds used for accommodating the theozyme do not provide good electrostatic 
relief. The takeaway is that future design attempts should try to incorporate the scaffold 
electrostatics as well instead of just assuming it to be an inert motif.  

The field of enzyme design has come a long way. Given the effect I have shown of side 
chain fluctuations and electrostatics, it is important that they be considered part of the design 
protocol. My hope is in the next few years designing efficient enzymes will become a routine 
procedure and computers will lead the way.  
 




