UCLA

UCLA Electronic Theses and Dissertations

Title
Multilevel Factor Analysis and Student Ratings of Instructional Practice

Permalink
https://escholarship.org/uc/item/9t03w2hd

Author
Schweig, Jonathan David

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9t03w2hc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Multilevel Factor Analysis and Student Ratings
of Instructional Practice

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Education
by

Jonathan David Schweig

2014



(© Copyright by
Jonathan David Schweig
2014



ABSTRACT OF THE DISSERTATION

Multilevel Factor Analysis and Student Ratings
of Instructional Practice

by

Jonathan David Schweig
Doctor of Philosophy in Education
University of California, Los Angeles, 2014

Professor José Felipe Martinez, Chair

Student surveys of classroom climate can provide teachers, administrators, and re-
searchers with valuable information about instructional practice and are becoming
a critical component in policy efforts to assess and improve teaching. Seven-
teen states and many large municipalities including Chicago, Illinois, Memphis,
Tennessee and Denver, Colorado include student surveys as a key component
in formative and summative teacher evaluation plans. Several other states and
municipalities—including Los Angeles—are in the process of developing or piloting
student surveys for future use in teacher evaluation. Advocates note that stu-
dents are natural observers of their classroom environments, have extensive and
rich knowledge of their teachers, and that student ratings can be predictive of
important outcomes, such as student academic and socio-emotional development.
In addition, student surveys are relatively easy and cost-effective to administer.
At the same time, using information from student surveys for formative or sum-
mative assessment of teachers presents conceptual and methodological challenges.
Inferences about a teachers instructional practice are often based on aggregated
student survey responses, and a key step in assessing the appropriate uses of the
information collected from student surveys is to understand the dimensions of

classroom climate or instructional practice that are discernible when looking at
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student responses aggregated by classroom.

This dissertation proposes a new approach for exploring the dimensionality of
aggregated student ratings. This approach also has the potential to provide valid-
ity evidence supporting the use of student surveys as measures of instructional
practice in both formative and summative evaluation. Specifically, this dissertation
applies a non-parametric cluster-bootstrap technique to a multilevel factor analysis
framework that allows researchers to evaluate psychometric models where data is
collected from students but teachers are the object of measurement. This approach
can be extended directly to applications where teachers are clustered within schools.

Four research topics were investigated:

1. The efficiency of the proposed approach compared to other possible ap-

proaches to analyzing the teacher-level covariance structure.

2. The comparative performance of the proposed approach and other possible
approaches, in terms of the accuracy of parameter estimates, consistency of

standard errors, and distribution of test-statistics for model appraisal.

3. The extension of the proposed approach to datasets with three levels (e.g.,
where students are clustered in classrooms, and classrooms are clustered in

schools).

4. The application of the bootstrap method to a realistic dataset to illustrate
how they may be used to investigate the dimensions of teacher practice that

are discernible from a student survey of instructional practice.

The first three research topics are investigated using a series of simulation stud-
ies. These studies involve a range of simulation conditions reflecting conditions
commonly encountered in surveys of instructional practice. The cluster-bootstrap
technique was then applied to data collected from the New Mexico Opportunity

to Learn survey in order to illustrate how the technique can be used to make
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inferences about the discernible dimensions of instructional practice, and about
how survey-derived variables predict student achievement growth in math and
reading.

The findings of this dissertation contribute both to the methodological and sub-
stantive literatures. Methodologically, the results demonstrate that the proposed
cluster-bootstrap technique can be used in conjunction with maximum likelihood
estimation to yield accurate parameter estimates, and that for sufficiently large
sample sizes, test statistics and standard errors based on the cluster bootstrap
technique will yield valid inferences about the psychometric properties of aggre-
gated survey responses. The simulation study also demonstrated that the cluster
bootstrap technique can be extended to three-level data sets where students are
clustered in classrooms, and classrooms are clustered in schools.

In addition, these results offer some of the first empirical evidence of how covariance
structure analysis may be applied to student surveys of instructional practice,
when the clustering of teachers into schools is acknowledged. This is of particular
importance for applied researchers or policy makers using aggregated student
surveys for formative or summative evaluation. In this context, understanding the
constructs measured by aggregated survey responses is a critical step in developing
and testing theories about how dimensions of classroom practice relate to student
academic and socio-emotional development, and it is critical step in building
systems that can provide high-quality diagnostic feedback to teachers about their
instructional practice. In the case of the New Mexico Opportunity to Learn survey,
it was shown that students are able to distinguish three dimensions of instructional
practice, but that only overall ratings of instructional practice were predictive of

student achievement growth.
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CHAPTER 1

Introduction

The development of teacher evaluation systems has become one of the key challenges
facing the U.S. education system (American Federation of Teachers, nd; Bill and
Melinda Gates Foundation, 2010; Weisberg et al., 2009). The fact that “teacher
evaluation has now scurried onto American education’s center stage” (Popham, 2013,
p.3) reflects concerns about student performance on national and international
assessments (Feuer, 2012; National Academies, 2010) and its implications for
long-term American economic growth and development, and concerns about the
persistence of achievement gaps and inequities for at risk students, who are more
likely to be taught by the least experienced and least qualified teachers (Weisberg et
al., 2009; Akiba, LeTendre, & Scribner, 2007; Haycock, 2001). Recent attention to
teacher evaluation has also been catalyzed by federal policies, including the Obama
administration’s Race to the Top program, enacted in 2009, and the Elementary
and Secondary Education Act (ESEA) Flexibility Program (also known as the No
Child Left Behind (NCLB) waivers), enacted in 2011, both of which required state
and local education agencies to form—or reform—their teacher evaluation systems
in order to qualify for federal funding or NCLB waivers. For all of these reasons,
(Cochran-Smith, 2010) declared “at least as far as education goes, we live in an
age of accountability” (p. xiii).

The notion that teachers can be held accountable for student learning or other
student outcomes has gained widespread policy and cultural acceptance. Cochran-

Smith noted that terms like “outcomes, results, consequences, effectiveness, impact,



bottom lines, what works, empirical research base, and evidence have been stitched
so seamlessly into the logic of the discourse that they are now unremarkable” (p.
xiii). This was not always the case. Darling-Hammond (1990) noted that in
the past, “improving the quality of teachers [had] not been seen as critical for
improving the quality of education” (p. 17). However, there is a growing research
base demonstrating that student achievement varies significantly across classrooms
and teachers, and that formal teacher qualifications (i.e., degrees, and credentials)
do not help explain this variation (Baker et al., 2010; Rowe, 2003). Recent research
has shown that teachers are the largest “within school influence on student learning”
(Haertel, 2013, p. 5) and that teachers account for a meaningful portion of the
variance in student achievement (e.g., Goldhaber, Brewer, & Anderson, 1999; Nye,
Konstantopoulos, & Hedges, 2004). Because of the emerging research consensus
that “teachers matter” (Bill and Melinda Gates Foundation, 2010, p. 1) finding
methods to measure teacher effectiveness and instructional practice has become
an issue of critical importance for the development and refinement of teacher
evaluation systems in state and local school districts across the country.

In addition to these factors, the desire to form or reform teacher evaluation systems
is motivated by the growing sense that existing teacher evaluation systems are
a “perfunctory exercise” (Bill and Melinda Gates Foundation, 2010, p. 10) of
little formative (or informative) value either for the teachers, or for state or local
education agencies (Glazerman et al., 2010). In fact, there is a long history of
dissatisfaction in the United States with teacher evaluation systems. Weisberg et

al. (2009) noted that, under most evaluation systems:

Excellent teachers cannot be recognized or rewarded, chronically low-
performing teachers languish, and the wide majority of teachers per-
forming at moderate levels do not get the differentiated support and

development they need to improve as professionals (p. 6).



Darling-Hammond (1990) noted, “teacher evaluation has often had little influence
on decisions about personnel, staff development or the structure of teaching” (p.
17). Haefele (1993) noted that “the dominant model of teacher evaluation is in
trouble” (p. 21). In the 1980s, Medley, Coker, and Soar (1984) wrote, that teacher
evaluation was “entirely inadequate” (p. 29) to identify competent teachers,
and to diagnose incompetence. In the first edition of Teacher Evaluation: A
Comprehensive Guide to New Directions and Practices, Peterson (1995) noted
“teacher evaluation as practiced in the overwhelming majority of school districts
in this country consists of wrong thinking and doing” (p. 3). The second edition,
published in 2000, contains the exact same quote (Peterson, 2000, p. 3), possibly
indicating how little had changed in the overall landscape of teacher evaluation.
Blumberg (1974) noted that teacher evaluation “tends to be a ritualized, sterile

process that bears little relationship to the learning of youngsters” (p. 5).

1.1 The complexity of teaching and the complexity of teacher

evaluation

While it may be true that “everyone agrees that teacher evaluations are broken”
(The New Teacher Project, 2010, p. 1), reaching consensus around the specific
aspects of teachers’ professional or instructional practice to evaluate poses an
immediate conceptual challenge (e.g., Schoenfeld, 1999) in the development of a
teacher evaluation system. Specifically, it is difficult to reach consensus about what
defines teaching quality, and what the corresponding evaluative criteria should
be. Teaching is a complex, multidimensional activity (Shulman, 1987) situated in
a “relatively ill-structured, dynamic environment” (Leinhardt & Greeno, 1986, p.
75) and interdependent with temporal, social, and cultural contexts. It has been
accepted that “teachers matter”, but there are many different definitions of teacher

quality, and little consensus about the aspects of teaching that are connected to



teacher quality (Cochran-Smith, 2010). Cochran-Smith (2010) used two examples
to illustrate how differently the work of teaching can be defined. At one end of
the spectrum, Cochran-Smith cited Hanushek (2002), who defined teaching in
the following way: “good teachers are the ones who get large gains in student
achievement for their classes; bad teachers are just the opposite” (Hanushek, 2002,
p. 2-3, in Cochran-Smith, 2010, p. xv). On the other end of the spectrum is the
definition by Fenstermacher and Richardson (2005):

By good teaching, we mean that the content taught accords with disci-
plinary standards of adequacy and completeness, and that the methods
employed are age appropriate, morally defensible, and undertaken with
the intention of enhancing the learner’s competence with respect to
the content studied (Fenstermacher & Richardson, 2005, p. 191, in
Cochran-Smith, 2010, p. xvi).

Cochran-Smith (2010) noted that these definitions span the continuum from
“simple, linear and causal” to “complex, nuanced, and contingent” (p. xvi). Along
with the multiplicity of definitions of quality teaching, there are also multiple
evaluative criteria that can be used as factors to determine teaching quality.
Popham (2013) noted that the “single, most important decision to be made as we
evaluate teachers” (p. 37) was to adopt of a set of evaluative criteria. Popham (2013)
noted that there can be a great deal of variation in terms of the evaluative criteria
used to make determinations about teacher quality across evaluation systems,
and noted that teacher quality is often related to a variety of criteria, including
instructional practice, participation in professional development activities, and
community relationships. Peterson (1987) also noted that teacher performance
could include work teachers do outside the classroom, including relations with
parents, administrators, and other teachers, school citizenship, and contributions to
the community. Shulman (1987) noted that quality teaching is directly influenced

by a variety of factors including curriculum content, instructional goals, and



pedagogical models on one hand, but also student characteristics and features of
the classroom and school context. Finally, there is increasing awareness of the
need to explicitly consider student learning, in particular whether students achieve
high rates of growth, as a key factor in assessing teacher effectiveness (Federal
Register, 2009). In the current policy environment, “student’s test performances,
as never before, are now to become a major consideration when determining a

teacher’s quality” (Popham, 2013, p. 8).

1.2 The case for multiple measures

Because teaching is a complex task, and because there can be multiple associated
evaluative criteria of quality teaching, it seems sensible to use “multiple evidence
sources rather than only one” (Popham, 2013, p. 40) in order to make evaluative
decisions about a teacher’s quality. Many state and local education agency plans
for teacher evaluation systems specifically call for the use of multiple measures,
and the Race to the Top legislation states that “effectiveness” should be defined
based on input from multiple measures (Federal Register, 2009). Sound teacher
evaluation systems must rely on multiple complementary indicators in order to be
valid, comprehensive, and useful (Baker et al., 2010; John & Soto, 2007; Braun,
Chudowsky, Koenig, et al., 2010). No single method for evaluating teachers is
inherently preferable or superior on its own; each has “advantages and limitations”
(Peterson, 2000, p. 91), and each “contributes evidence to making a larger case for
teacher quality” (Peterson, 2000, p. 91). In the case of teacher evaluation, multiple
measures are expected to provide a more complete picture of teacher performance
(Goe, Holdheide, & Miller, 2011); finer, more stable categories for classifying
teachers (DePascale, 2012; Steele, Hamilton, & Stecher, 2010); feedback to help
improve classroom practice (Duncan, 2012); reduced incentives for gaming the

system (Steele et al., 2010); and greater confidence in results among stakeholders



(Glazerman et al., 2010).

A variety of measures have been proposed for collecting information about teacher
effectiveness, each with a distinct set strengths and limitations for measuring
different aspects of this complex construct. Broadly speaking, these measures
are often classified as either measures of professional or instructional practice,
or measures of student growth and achievement (Partee, 2012). Peterson (2000)
lists student reports (e.g., the Tripod Assessment of Instructional Quality and
Student Engagement (Ferguson, 2010)), peer reviews, student achievement data,
teacher tests (e.g., the Mathematical Knowledge for Teaching Questionnaire (Hill,
Schilling, & Ball, 2004), parent reports, documentation of professional activity,
systematic observation (e.g., the Classroom Assessment Scoring System (Pianta,
La Paro, & Hamre, 2008)), and administrator reports as types of measures that
may comprise a teacher evaluation system. Instructional artifacts and portfolios
have been proposed, as well (Crosson et al., 2006; Delandshere & Petrosky, 2010;
Martinez, Borko, & Stecher, 2012).

Across state and local education agency plans for teacher evaluations systems,
the two most widely used measures are value added model (VAM) scores and
classroom observations, although student ratings are gaining traction as a viable
third option (Bill and Melinda Gates Foundation, 2010). VAMs are used (or
proposed for use) in some form in teacher evaluation systems around the U.S.
including some of the largest districts in the country in New York, Los Angeles,
Chicago, and Denver, and at the state level in Tennessee, District of Columbia,
Louisiana, Missouri, North Carolina, Ohio, and South Carolina, among others
(Partee, 2012). Classroom observation is a central part of nearly every teacher
evaluation system—enacted or proposed—nationwide (e.g., Hill, Charalambous, &
Kraft, 2012; Hill & Grossman, 2013). Martinez, Taut, and Schaaf (2013) noted
that “indeed, all states recently granted funding under the new Race to the Top

legislation in the United States included a new or redesigned classroom observation



component for teacher evaluation” (p. 6). Because these measures are so widely
used, VAMs and classroom observations are discussed in more detail in below,
prior to discussing the use of student surveys.

Before discussing these measures, however, it is worth providing more detail
about the statement that “sound teacher evaluation systems must rely on multiple
complementary indicators in order to be valid, comprehensive, and useful.” Similar
language appears in Race to the Top legislation, where teacher evaluation systems
are defined as using “multiple valid measures in determining performance levels”
(U.S. Department of Education, 2012, p. 21). Popham (1997, 2013) offers the
reminder that validity is a property of inferences, and not a property of measures
(APA, NCME, AERA, 1999). Relatedly, it is worth noting that the scores produced
in evaluation systems (proposed or enacted) by state and local education agencies
have many intended uses (Brandt, 1995; Peterson, 2000; Popham, 2013). Some of
these uses are formative. Others, summative. Teacher evaluation systems are used,
for example, to identify struggling teachers for assistance, remediation, sanction; or
dismissal; to offer incentives to higher performing teachers, including through merit
pay or pay-for-performance programs; to inform school practice and district policy
on teacher professional development; and developing models of effective instruction
to scale up to classrooms across the system (e.g., Millman & Darling-Hammond,
1990). When considering whether the inferences about teacher quality based on
measures included in teacher evaluations system are valid, it is also important to
consider how these scores are to be used (Messick, 1989; Shepard, 1997), and that

different score uses may necessitate different validity arguments.

1.2.1 Value added models and teacher evaluation

Value added models (VAMs) purport to isolate and estimate teacher contributions
to student achievement, and have received considerable attention both in the

research community and in the media (e.g., Ewing, 2011; Rothstein, 2009; Song &



Felch, 2011). Much has been written about the potential conceptual, statistical,
and practical issues complicating the use of VAMs in teacher effectiveness research
and policy. There are statistical issues around causal attribution and the proper
specification of a counterfactual (Rubin, Stuart, & Zanutto, 2004), the influence
of the non-random sorting of students into classrooms and teachers into schools
(Braun, 2004, 2005; McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004;
Rothstein, 2009), how to appropriately model the persistence of teacher effects
(Braun, 2005), how to deal with missing data (Amrein-Beardsley, 2008; Lockwood,
Doran, & McCaffrey, 2003), the tenability of the linear mixed-model (Braun,
2004), and the construct validity of the test scores upon which the VAM scores
are based (Reckase, 2004). There are also issues with the stability (Papay, 2011)
and reliability (Harris, 2009; T. J. Kane & Staiger, 2001) of value added estimates
and their sensitivity to the particular assessments they are based upon (Lockwood
et al., 2007).

There are other issues with the use of VAMs in teacher evaluation, particularly if
they are to be used for formative assessment. VAM scores lack diagnostic value
(e.g., Goe et al., 2011) and “cannot produce direct evidence about the effectiveness
of educational practices.” (Raudenbush, 2004, p. 12). Rothstein and Mathis (2013)
noted that there is little evidence that value added scores can be used to provide
feedback to teachers to improve instruction, as this would require “texture about
the areas in which a teacher is performing well or badly. It is not at all clear that
value-added scores—which amount to a single number—can be used for this kind
of formative purpose.” (p. 11) A robust and credible teacher evaluation system
would “examine what teachers actually do in the light of best practices”, and
“provide constructive feedback to enable improvement” (Haertel, 2013, p. 26). In
other words, a key component of a good teacher evaluation system—one that can
be used for both teacher improvement and personnel decisions (Haertel, 2013, p.

25)—is a measure of a teacher’s instructional practice.



1.2.2 Classroom observations and teacher evaluation

Classroom observations are often seen as an indispensible method to measure
instructional practice. In fact, classroom observation is widely regarded as the
gold standard for data collection in research on teaching. (Rowan & Correnti,
2009). Many states and districts (for example, Alaska, Arizona, Delaware, District
of Columbia, Mississippi, Maryland, New York, South Carolina, among others
(Partee, 2012)) rely heavily on observation to provide information about teacher
practice, and to identify areas in need of improvement to inform feedback and
professional development (Pianta & Hamre, 2009). This has been bolstered by
recent work (e.g., Taylor & Tyler, 2012) that has demonstrated that teacher
evaluation based on rigorous classroom observation can improve teacher practice.
However, observations also have many limitations. First and foremost, they are
expensive (Rothstein & Mathis, 2013; Rowan & Correnti, 2009). As pointed out
by Balch (2012), in large districts, it is possible that a thoughtful and thorough
observation system can translate into full-time positions for dozens of employees,
at the cost of several millions of dollars per year. Adding to this, recent studies
(Hill et al., 2012; Ho & Kane, 2013) have suggested that obtaining reliable scores
from student surveys may pose significant administrative challenges. Additionally,
observations may not capture “potentially important dimensions of effectiveness”
(Rothstein & Mathis, 2013, p. 9), particularly those that are content-specific
(Hill & Grossman, 2013). Many observation protocols are designed to be used
across a broad range of classrooms, subjects, and grade levels. However, there
is a long research tradition (Lampert, 2001; Shulman, 1987) that shows that the
quality of a teacher’s instruction is highly content specific. Additionally, recent
work (T. J. Kane, McCaffrey, Miller, & Staiger, 2013; Mihaly, McCaffrey, Staiger,
& Lockwood, 2013) has shown that correlations between classroom observation

ratings and VAM scores are quite low. As noted by Hill and Grossman (2013):



If observation and student-test-based scores diverge in new systems
within states and districts, then teachers might receive conflicting
messages about improvement; the feedback on their own instruction
may not relate to what they are incented to do based on student
test scores. For example, teachers might receive high scores from
value-added models but low scores on observation measures ... This
constitutes a major problem that policy makers may grapple with over

the next few years. (p. 377-378)

1.2.3 Student surveys and teacher evaluation

Partly in response to the limitations of classroom observations, student surveys of
instructional practice have gained support among researchers and policymakers as a
viable, cost-effective alternative to traditional observation. In fact, student ratings
are one of the oldest available methods for measuring instructional practice. Both
Good and Mulryan (1990) and Follman (1992) noted that the Kratz (1896) study of
teacher quality in Sioux City, Towa, was based on student ratings. Peterson (2000)
recommended the use of student ratings for the purposes of teacher evaluation.
However, a range of methodological and conceptual complications also arise when
using student surveys of instructional practice. Historically, concerns have been
raised regarding student bias (e.g., Bush, 1954; Peterson, Wahlquist, & Bone,
2000) halo-effects, and whether student ratings are “opinion polls, not teacher
evaluations” (Oldham, 1974, in Eastridge, 1976, p. 52)

But there is another set of “thorny methodological issues” (Popham, 2013, p.
9) that arise because of how teacher ratings are derived from student ratings.
Specifically, when they are used to generate indicators of a teacher’s instructional
practices, student surveys explicitly or implicitly assume a specific multilevel
measurement model, with individual students nested within classroom or teachers.

Chan (1998) noted that the validity of inferences about organizational properties

10



(such as classroom climate, instructional practice or teacher quality) resulting
from aggregated variables is complex and has “not been addressed adequately” (p.
234) in the research literature. In the specific context of student ratings, one key
question is what dimensions of instructional practice that are discernible based on
aggregated student ratings (e.g., Popham, 2013). The primary analytic tool used
to assess the dimensionality of survey instruments is factor analysis (e.g., John &
Soto, 2007). However, conventional factor analysis may yield biased or distorted
inferences when applied to data that is hierarchical in structure (e.g., Julian, 2001;
Schweig, 2013; Zyphur, Kaplan, & Christian, 2008). While this issue has received
some attention in methodological literature, there are many unresolved issues in
the application of factor analytic techniques to multilevel data, particularly in the
context of student surveys. There is, in fact, a consensus that the issues raised by
applying factor analytic techniques to multilevel data is an area in need of more
research and investigation (Liidtke, Robitzsch, Trautwein, & Kunter, 2009; Marsh
et al., 2012; Sirotnik, 1980).

1.3 Contribution of the current study

This study proposes a new approach for exploring the dimensionality of aggregated
student ratings, and collecting validity evidence to support the use of student
surveys as indicators of teacher quality. This approach uses a cluster bootstrap and
asymptotic distribution free (ADF) theory (Browne, 1974, 1982, 1984) to develop
a framework for level-specific model evaluation as described in Yuan and Bentler
(2007). This method allows for the explicit testing of measurement hypotheses and
psychometric evaluation of aggregates even when the data contains multiple layers
of nesting (for example, if students are nested in classrooms, and classrooms are
nested in teachers, and teachers are nested in schools, and the unit of analysis is

the classroom). The utility of this new approach is illustrated by examining the

11



dimensions of instructional practice that are discernible based on a student survey
that was piloted for potential use as an indicator of teacher quality in the state of
New Mexico.

The remainder of this dissertation is structured as follows. Chapter 2 provides a
review of the policy literature on using student surveys as a measure of teacher
quality or instructional practice, and (re)introduces, in more specific terms, the
conceptual and methodological challenges raised by these surveys. Chapter 3
presents conceptual foundations of multilevel factor analysis along with the most
commonly used statistical models and test statistics. Chapter 4 introduces the
cluster bootstrap, method and describes its application to multilevel factor analysis.
Study methods are detailed in Chapter 5. Results from a series of simulation
studies investigating the performance of various test statistics, parameter bias
and variability, and the performance of standard errors in both two-level and
three-level hierarchically structured data sets are presented in Chapters 6. Chapter
7 demonstrates the use of the cluster bootstrap techniques on a real-world data
set, based on a statewide survey of instructional practice. Chapter 8 offers a
discussion of the results and their implication for researchers and policymakers,

and suggestions for future research.
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CHAPTER 2

Student Surveys of Instructional Practice

This chapter reviews the existing literature on using student surveys in teacher
evaluation. In particular, this chapter discusses: 1) Literature that describes the
arguments in favor of including student surveys in teacher evaluation; 2) Current
ways in which states and local education agencies have incorporated student surveys
into teacher evaluation systems; 3) Some of the conceptual and methodological
challenges presented by student surveys; 4) Ways in which current research has

addressed (or failed to address) those conceptual and methodological challenges.

2.1 The argument for using student surveys in teacher

evaluation

Proponents of student surveys cite several key reasons for including student surveys
as measures of instructional practice. These reasons were summarized in Burniske
and Meibaum (2011) and include 1) Students themselves are natural observers
of the classrooms in which they work and study; 2) Student ratings have proven
to reliably discriminate between teachers; 3) Aggregated student ratings are not
influenced by rater demographics; 4) Student ratings of instructional practice show
relatively robust correlations with student achievement. The following section

provides some additional detail about each of these arguments.
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2.1.1 Students as natural observers

As Ferguson (2012) stated, students “spend hundreds more hours in each classroom
than any observer ever will.” (p. 24) and they “know good instruction when they
experience it as well as when they do not” (p. 28). Similarly, (Follman, 1992)
noted that students were well qualified to serve as raters of their teachers because
“no other individual or group has their breadth, depth, or length of experience with
the teacher” (p. 169). Worrell and Kuterbach (2001) noted that “it is perhaps not
surprising that students can provide accurate ratings of teacher behavior as students
spend as much time observing their teachers as their teachers spend observing
them” (p. 245). Veldman and Peck (1969) noted that student observations “are
the product of observing the teacher on many occasions under normal conditions,
and hence avoid many of the obvious problems encountered in typical “one-shot”
classroom observations” (p. 107). From an administrative perspective, this line
of reasoning makes student surveys an attractive alternative (or complement)
to traditional observation. Since the most resource-intensive components of a
rigorous observation system involve rater training (e.g., Hill & Grossman, 2013)
and deploying multiple raters to classrooms on multiple occasions (e.g., Ho &
Kane, 2013) in order to obtain reliable teacher scores, positioning students as

raters potentially alleviates this tremendous administrative burden.

2.1.2 Student ratings are reliable

Recent results (e.g., Bill and Melinda Gates Foundation, 2010; Ferguson, 2010)
have shown that aggregated student ratings and can be used to reliably distin-
guish between the practices of different teachers. For example, Ferguson (2010)
demonstrated that, there are “massive” (p. 7) disparities in how strongly students
endorse items about classroom climate and instructional practice. The average

ratings for classrooms in the top decile were nearly four times higher than the
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average ratings for classrooms below the bottom decile on some scales. Ferguson
(2010) noted, “imagine how different life must be in these ...segments of the
classroom quality distribution!” (p. 7).

Other studies have reached similar conclusions. Balch (2012) determined that
student surveys achieved adequate internal consistency, and reported scale re-
liabilities between .704 and .893 (p. 45) for a student survey administered to
elementary school students in the state of Georgia. Peterson et al. (2000) reported
reliability coefficients of between .76 and .92 (p. 146) for primary, elementary, and
secondary student surveys administered in Utah. Peterson et al. (2000) concluded
that student surveys can be a reliable and valid data source for teacher evaluation.
Follman (1992) summarized the history of reliability studies on student surveys,
and found that “a 70-year overview of these ...studies, more than 20 of them,
indicates clearly that secondary level student raters— just as older, adult raters—
have and can rate teachers reliably, including chance halves, concordance, split

half, interclass, internal consistency, and most importantly, stability measures” (p.

170-171).

2.1.3 Sensitivity to student demographics

One potential issue with student surveys is similar in nature to one issue raised
about VAMs. That is, students are systematically sorted into particular schools and
particular classrooms, and it may be that the student ratings reflect background
characteristics of the students, and are not objective ratings of a teacher practice or
classroom climate. Veldman and Peck (1969) administered the Pupil Observation
Survey to secondary school students in Texas, and found that the scores “are not
badly biased by such aspects of the context as the grade level of the class or the
socio-economic level of the school” (p. 107). The authors noted, however, that
subject matter has a “powerful influence” on the scores (p. 107). Thompson (1974)

noted:
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Data from several high school studies have been analyzed by the author
to determine if responses have been significantly affected by student
characteristics, including: sex, year in school, grade point average,
expected course grade, hours spent studying, and absenteeism. No
significant relationship has been found between these items and student

rating of faculty performance. (p. 26)

2.1.4 Robust correlations with student achievement

There is an increasing body of research demonstrating that the ratings of instruc-
tional practice produced by student surveys are predictive of student achievement.
Recent work has shown that indicators derived from student surveys correlate
significantly with VAM scores (Bill and Melinda Gates Foundation, 2010; Mihaly et
al., 2013). A study by Wilkerson, Manatt, Rogers, and Maughan (2000) based in a
school district of Wyoming found that student ratings of teachers are more strongly
correlated with achievement than either principal ratings or teacher self-ratings.
Those results held across elementary, middle, and high school students. Those
authors concluded that “student ratings of teachers are the best predictors of
student achievement among groups of raters when the focus is student performance”
(p. 190). Similar results were found by Kyriakides (2005), based on data collected

in Cypress.

2.1.5 A tradition of use in higher education

There is a long tradition of using student surveys in higher education. Marsh (1987)
provided an extensive overview of this history, and notes that student evaluation
programs were introduced at Harvard, the University of Washington, Purdue
University and the University of Texas and other institutions in the mid-1920s

(p. 257). Marsh (1987) noted that “the term ‘students’ evaluations of teacher
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performance’ was first introduced in the ERIC system in 1976; between 1976 and
1984 there were 1055 published and unpublished studies under this heading” (p.
257). Many studies have found that, at the university level, student evaluations
can provide reliable scores and valid inferences about instructional practice (e.g.,
Aleamoni, 1999; Feldman, 1978; Marsh, 1987; Toland & De Ayala, 2005). While
many aspects of secondary and elementary schooling are clearly different from
those encountered in university settings, many authors that have written about
the use of student surveys in K-12 educational settings have drawn heavily from
the research base in higher education. For example, the research syntheses in
Aleamoni (1987, 1999) is referenced by both Follman (1992) and Peterson et al.
(2000). Follman (1992) noted:

Since, logically there is some justification in viewing high school stu-
dents as a downward extension of college students, perhaps quanti-
tatively but not qualitatively different, some authorities view rating
instructors at the high school level as similar to rating instructors at

the college level (p. 174).

Burniske and Meibaum (2011) also referenced Aleamoni (1999) to provide a
historical context for the use of use of student surveys in teacher evaluation
systems. Burniske and Meibaum (2011) did not note that Aleamoni (1999) was
concerned with university-level student ratings, rather than those that would be

used in K-12 educational settings.

2.2 State and local school districts and student surveys

Student surveys are increasingly prominent in district plans for teacher evaluation.
Table 2.1 provides information about the states and several notable local school
districts that have included student surveys in their teacher evaluation plans. Not

all of the states have articulated specific weights or survey instruments, and so

17



some cells in this table are left blank. There are many plans that specifically call for

Table 2.1: Student surveys and teacher evaluation

States or local districts specifically including student surveys

Name Survey instrument Weight in overall evaluation
Hawaii Tripod Survey 10%
Georgia My Student Survey 10%
Maine Tripod Survey 10%
Massachusetts

Minnesota 15%
Kentucky Student Voice Survey

Chicago, IL 10%
Denver, CO Tripod Survey 5%
Memphis, TN Tripod Survey 5%
New York City, NY Tripod Survey 5%

States or local districts where surveys are optional measures
Name Survey instrument Weight in overall evaluation
Arizona 17%

Alaska

Colorado Contributes to 50%
Connecticut 5%

Idaho Contributes to 67%
Michigan Contributes to 20%
New Mexico Contributes to 25%
New York Contributes to 60%

States or local districts exploring the use of student surveys
Name Survey instrument Weight in overall evaluation
North Carolina Tripod Survey

North Dakota
South Dakota
Washington

student surveys to be included in teacher evaluations. These include six states and
four local districts. In most of these districts, student surveys count for between
5 and 10% of a teachers overall evaluation. Seven other states mention student
surveys as a possible measure of teacher quality. In these states, student surveys
are typically described as one possible option for inclusion in a teacher evaluation
system, along with other potential measures including parent surveys and portfolios
of student work or other classroom artifacts, and the relative contribution that
the student survey makes to the overall teacher evaluation varies considerably. In
Connecticut, student surveys or indicators of school-level learning (such as a School

Performance Index) or a combination of the two may be used in teacher evaluation,
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and represent 5% of the total summative evaluation score (Connecticut State
Department of Education, 2012). In Michigan, the state recommended that local
education agencies “may use other data that provide evidence about a teacher’s
practice (e.g., student surveys, parent surveys, portfolios), but for no more than
20% of the practice section” (Michigan Council for Educator Effectiveness, 2013, p.
11). In Colorado, student surveys are listed as one possible measure of instructional
practice that can be used in conjunction with classroom observations. Measures
of professional or instructional practice account for half of a teacher’s evaluation
(Colorado Department of Education, 2013).

Lastly, several states and local districts are in the process of exploring the potential
for student surveys to be used in teacher evaluation. North Carolina piloted the
Tripod Project survey as a part of that state’s teacher evaluation system in the
spring of 2012 (Partee, 2012). Similar surveys are in use or being piloted in Los
Angeles (Phillips & Yamashiro, 2013).

There are two interesting trends in how states and local districts have incorporated
student surveys into their teacher evaluation plans. Overwhelmingly, states and
local districts have turned to the Tripod Survey (Ferguson, 2010) as the survey
instrument of choice. Of the 8 states and local districts that mention a specific
survey instrument, 6 of them have elected to use the Tripod Survey specifically.
Secondly, while many education agencies have included student surveys as a
measure of instructional practice (e.g., Colorado and New York), others have
positioned student surveys as a secondary measure of student outcomes (e.g.,
Connecticut). In this way, positive engagement, for example, is seen as a student

outcome, rather than as a measure of a teacher’s practice.
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2.3 Conceptual issues with surveys of teacher practice:

the unit of analysis

The combination of utility and administrative feasibility make student surveys
attractive as a measure of instructional practice. However, there remain some
critical questions about the psychometric properties of the scales measured by
student surveys of instructional practice. Liidtke et al. (2009) stated that “there
are serious conceptual and methodological challenges that need to be addressed
before student ratings can properly be used to gauge the effects of characteristics
of the learning environment” (p. 120-121). Specifically, one of the most pressing
conceptual issues concerns the unit of analysis (Liidtke et al., 2009) of the survey.
In other words, researchers should pay careful attention to whether the survey
designed to measure individual perceptions, or classroom level phenomena. Guion
(1973) described this fundamental conceptual distinction as a question of whether
the survey is concerned with individual attributes, or with attributes of the world
that individual inhabits.

This conceptual complication is inherently connected to the way in which stu-
dents are organized into classrooms. When surveys are administered to students,
individual students are grouped (or clustered) within specific classrooms. This
creates what is commonly referred to as a hierarchical (Goldstein, 2003; Hox, 2010;
Raudenbush & Bryk, 2002) system. It may also be said that students are nested
within teachers (e.g., Brennan, 2001; Shavelson & Webb, 1991). In this tradition,
throughout this paper, students are often referred to as either the student level,
the within-group level, or as level-1 units, and teachers are referred to as either the
teacher level, the between-group level, or as level-2 units. Because students are
nested within classrooms, survey responses may be used in two distinct ways, and
there can be (potentially) two levels of analysis that are of substantive interest.

First, the student responses can be used to analyze the individual perceptions of
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students. Second, the individual student responses can be aggregated “to yield a
measure of the “shared perception of the environment”” (Liidtke et al., 2009, p.
121). In other words, the means of the level-1 variables can be used as a measure
of a level-2 phenomenon. This presents researchers with a set of decisions that
do not exist in conventional research contexts, where the data is not grouped or
clustered. Liidtke et al. (2009) described an example of how researchers may be

confronted with this issue:

If a researcher is interested in the effects of a supportive class climate
on student motivation, is it appropriate to examine the relationship
between a students individual perception of classroom climate and his
or her motivation? Or would it make more sense to aggregate student
perceptions at the classroom level and to analyze the association of

the aggregated score with the outcome variables? (p. 121)

Sirotnik (1980) examined the issue of unit of analysis by presenting a set of
hypothetical items that could be asked of teachers about whether their schools
offered trusting environments. Again, there is a hierarchical system here, with
teachers nested within schools. There are two levels that can be considered here, as
was the case with the student survey example from Liidtke et al. (2009). Individual
teacher responses can be used to analyze the perceptions of teachers. Or, teacher
responses can be aggregated to yield a measure of the school environment. Sirotnik

(1980) asked:

are [we| measuring something about the teacher, something about the
school, or both? Suppose item means are computed. Do these means
represent measures of an intrinsic property of the school, with averaging
over teachers being incidental and merely a convenient operational
device for getting at this property? Or do these means represent the

central tendency of distributions of measures of a property of teachers?
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(p. 261)

Sirotnik (1980) and Liidtke et al. (2009) were not the only researchers to raise
this concern. The unit of analysis concern has a lengthy tradition in the social
sciences, and the seminal work of Robinson (1950) and Alker (1969), as well
as similarly influenced work in the organizational management literature. Glick
(1985); James (1982); Roberts, Hulin, and Rousseau (1978) raised similar concerns
about the issues that can arise when researchers do not pay careful attention to
issues involving the unit of analysis.

The question raised by Sirotnik (1980), regarding the possibility that survey items
are measuring something about level-1, level-2, or both levels at the same time
presents a particular conceptual complexity. It may be necessary for researchers
to develop two different sets of theories about the relationship of survey items
to underlying theoretical constructs, one for the individual level, and one for
the group level. Glick (1985) cautioned researchers not to assume that “organi-
zational and psychological climate have the same dimensionality and the same
pattern of relationships with variables of interest” (p. 605). In other words, it
is problematic to merely assume that the same number of variables, and same
patterns of relationships exist between aggregated survey variables (those that
refer to between-group phenomena) and individual level variables (those that refer
to individual perceptions). Glick (1985) continued to say that between classroom
relationships should be “empirically confirmed or disconfirmed, not definitionally
asserted” (p. 605). Guion (1973) noted that individual perceptions of climate
and aggregated climate variables may have “distinguishably different networks of
correlates.” (p. 122).

If the unit of analysis is the classroom, a decision about whether student level
phenomenon are of substantive interest should be based, in part, on considerations
of whether differences between student responses represent meaningful differences

in the true standing of students, or whether differences between student responses
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represent measurement error. Marsh et al. (2012) outlined this distinction in detail
and refer to this as the distinction between “context” and “climate” variables.
Context variables have, as their reference, the individual student, and differences
between students are substantively meaningful. Classroom averages can be used
to describe classroom composition, but these averages essentially represent “the
central tendency of a distribution of measures” in the sense described by Sirotnik
(1980). Individual students are not exchangeable. Marsh et al. (2012) used gender
as an example of a context variable. Each student has a gender, and that gender
is not exchangeable with other students in the class. A class can have a gender
composition (proportion male), and that gender composition may be importantly
related to other individual or classroom level phenomena.

On the other hand, climate variables have as their reference, the teacher or class-
room level. In this model, it is assumed that every student has the same (or at
least very similar) mental image of classroom climate or instructional practice,
and that this common conception contributes to common variance among item
responses. Thus, with climate variables, the student responses are fundamentally
exchangeable, and the variance between students within the same classroom is
attributed to sampling error and represents ‘“noise”, while variance in student
aggregate ratings between classrooms is assumed to represent true variance in
classroom quality. The aggregated ratings measures of an intrinsic property of the
group level, in the sense of Sirotnik (1980). In the organizational management
literature, such aggregated variables are commonly referred to as composition or
reflective aggregation variables (Bliese, 2000; Chan, 1998; Kozlowski & Klein, 2000;
Liidtke et al., 2009).

As measures of instructional practice, student surveys are fundamentally concerned
with the aggregated (also called the between-classroom or between-teacher) level.
Students are positioned as raters of the classrooms in which they study, and in

this way, student ratings are exchangeable, and the variation between students

23



represents noise. The variables derived from student surveys are, thus, most
commonly conceived of as climate variables in the sense defined by Marsh et al.

(2012) As Liidtke et al. (2009) described:

The main purpose of collecting individual students’ ratings of their
class ...is to assess aspects of environments that are clearly located
at the group level (e.g., class level). Thus, students are regarded as
informants on their learning environment, in the sense of multiple
observers providing data on one construct. At the individual level,
the measurements refer to the phenomenology of the student. At
the class level, however, they refer to differences between classes. If
educational researchers want to gain insights into the effects of learning

environments, they have no choice but to use aggregated student data

(p. 121).

Because the primary unit of analysis for student survey is the classroom or
the teacher, understanding the constructs measured by the aggregated survey
responses is critical for developing and testing theories about how aspects of a
teachers instructional practice influence other variables of substantive interest,

such as student achievement and persistence in school.

2.4 Understanding the constructs measured by the aggre-

gated survey responses

One way to assess the psychometric properties of aggregated survey variables, and
to understand the constructs measured by aggregated survey responses is to use
multilevel factor analysis. In a multilevel factor analysis, covariance among the
items is caused by unobserved (latent) differences among individual students, and

covariance between aggregated item scores is caused by unobserved (latent) differ-
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ences among classrooms/teachers. Reiterating the recommendations of Cronbach
(1976) and Longford and Muthén (1992), different sets of factors can be tested on
the level-1 units and the level-2 units. The theoretical and statistical framework
for multilevel factor analysis is discussed in more detail in Chapter 3. Marsh
et al. (2012) encouraged researchers to use multilevel factor analysis to test the
between-level factor structure explicitly (p. 122). In fact, when the variables are
conceived of as climate variables, it is often the case that the between-level factor
structure is the only structure that is relevant (Marsh et al., 2012, p. 122), and
that the within-level factor structure is not substantively interpretable. Echoing
the type of concern raised by Glick (1985) and Guion (1973), Marsh et al. (2012)
also cautioned against assuming that the factor structure is necessarily the same
at the individual student level and at the classroom level. In fact, factor analytic
research dating back to Cronbach (1976) cautioned that a researcher might need,
“one set of factors for his between-groups theory and another set of factors for his
within-groups theory. To be sure, he may find that the two sets of constructs
coincide, but that is a possibility to be evaluated, not assumed” (p. 203). Longford
and Muthén (1992) also noted that a between-groups phenomenon may be com-
pletely unrelated to a within-groups phenomenon.

Other notable sources have also recommended the use of multilevel factor anal-
ysis procedures to investigate the measurement structure of level-1 phenomena,
level-2 phenomena, or both. Several of these investigations found evidence that
different sets of factors could be found at different levels of analysis. Harnqvist
(1978) decomposed student ability test scores into individual, class, and district
components, and studied the factorial structure of the within and between class
variables separately. Harnqvist (1978) found 5 within-class ability factors, and
2 between-class factors, providing an empirical illustration that different sets of
factors may be necessary at different levels of analysis. Holfve-Sabel and Gustafs-

son (2005) analyzed results from a student survey and found evidence for seven
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within-classroom factors and three between-classroom factors. Other recent re-
search (Reise, Ventura, Nuechterlein, & Kim, 2005; Zyphur et al., 2008) has shown
that patterns of factor loadings may also differ across different levels of analysis,
even if the number of factors is the same.

There are also several studies that have found the same factor configurations at
both levels of analysis. D’haenens, Van Damme, and Onghena (2010, 2012) use
multilevel exploratory and confirmatory factor analysis to investigate school cli-
mate variables, and found the same number of factors at each level, with the same
patterns of factor loadings. In an investigation of a university level student survey,
Toland and De Ayala (2005) also found the same number of factors at level-1
and level-2. Fauth, Decristan, Rieser, Klieme, and Biittner (2014) investigated
the factorial structure of a primary school survey of teaching quality, and found
evidence for the same factorial configuration in student ratings of instructional
behavior in mathematics classrooms at the student level and the teacher level.
Kunter et al. (2008) also found the same factorial configuration at the student and

teacher levels.

2.5 Ignoring the unit of analysis issue: historical approaches

to student surveys

Despite the fact that the studies that have explicitly examined level-1 and level-2
constructs have found evidence for a wide range of patterns (i.e., there are cases
where number of constructs differ, cases where patterns of factor loadings differ,
and cases where there is evidence of configural (Meredith, 1993) invariance), the
unit of analysis issues described above are, to a large extent, absent from the liter-
ature on classroom climate and a discussion of the conceptual and methodological
challenges involved with using student surveys are almost completely absent from

state documentation on the student surveys used in teacher evaluation. Liidtke

26



et al. (2009) noted explicitly that these issues “have not yet received sufficient
research attention” (p. 120-121). Sirotnik (1980) noted that concerns about the
unit of analysis during instrument development are “virtually nonexistent” (p. 256).
Marsh et al. (2012) noted that, “despite the clear resolution of this methodological
issue for more than a quarter of a century,” there is still “ongoing confusion in the
educational literature” (p. 111) about the appropriate ways to consider the unit
of analysis in the study of classroom climate.

Many of the states that have required student surveys to be incorporated into
teacher evaluation have provided little written documentation about the psychome-
tric properties of the scores produced by the surveys, and concerns about the unit
of analysis are not addressed at all. For example, the state of Hawaii stated only
that the Tripod survey is “well designed” (Hawaii State Department of Education,
2013, p. 16). The state documents justify the use of Tripod based on results from
the Measuring Effective Teaching (MET) project, a three year study on teaching
and teacher quality funded by the Gates Foundation. The Kentucky Department
of Education also cited results from the MET project to support their use of
student surveys for the purposes of teacher evaluation (Kentucky Department of
Education, 2012). New York City, Memphis, and Denver were all school districts
that participated in the MET project. However, as Camburn (2012) noted, reports
associated with the MET project contain little empirical evidence related to the
psychometric properties of the student survey included in that study.

Thus, while the investigations listed above (Cronbach, 1976; D’haenens et al.,
2010; D’haenens, Van Damme, & Onghena, 2012; Fauth et al., 2014; Harnqvist,
1978; Holfve-Sabel & Gustafsson, 2005; Kunter et al., 2008; Toland & De Ayala,
2005) may leave the impression that researchers using student surveys of classroom
climate or instructional practice have thoughtfully considered the unit of analysis,
these studies are the exception, rather than the rule. Much of the literature on

student surveys does not fully and properly consider the conceptual issues sur-
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rounding the unit of analysis, and often times, the research base contains evidence
for the reliability and validity of scores produced by student surveys as if the unit

of analysis were individual students, rather than teachers or classrooms.

2.5.1 Reliability and the unit of analysis

Follman (1992) provided a detailed review of the literature on the reliability of ag-
gregated scores produced from student surveys of teacher quality and instructional
practice, dating as far back as the early 20th century. Of the twenty studies cited
by Follman (1992), nearly all of them investigate the reliability of scores using
coefficient alpha, split half reliability, or test-retest reliability. For all of these
reliability coefficients, the unit of analysis is the individual student, rather than
the aggregated ratings. There are several lines of research (Bliese, 2000; Brennan,
1995; James, 1982) that have shown that the reliability of group means may not be
related to the reliability of individual scores in any systematic way. In particular,
high reliability of individual scores does not imply high reliability of group means,
and vice versa. The study by Wilkerson et al. (2000) reported coefficient alpha
(Cronbach, 1951) as an index of reliability, even though the unit of analysis is
not individual students. Balch (2012), in a validity study of My Student Survey
(Table 2.1), the survey used in Georgia’s teacher evaluation system, also reported
coefficient alpha.

It should be noted that there is a strong tradition in organizational management
of using reliability coefficients based on intraclass correlations (ICC). For example,
Bliese (2000), James, Demaree, and Wolf (1984) and Liidtke et al. (2009) all
described using a version of the Shrout and Fleiss (1979) ICC(1,k) in order to
ascertain the reliability of group means. In a similar tradition, and informed by
work from Generalizability Theory (Cronbach, Gleser, & Nanda, 1972), M. T. Kane
and Brennan (1977) and O’Brien (1990) employed multilevel measurement models

to explore the reliability of classroom level measures at the appropriate level of
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analysis. Raudenbush, Rowan, and Kang (1991) also considered the issue of the
reliability of school climate variables at the appropriate unit of analysis. Reliability
studies for the Tripod Survey (Ferguson, 2010) explored the reliability of classroom
level measures at the appropriate level of analysis, as did the work of Kunter et al.
(2008). However, the application of multilevel models to the study of reliability in
classroom-level variables is “less common” (Raudenbush, Martinez, Bloom, Zhu,

& Lin, 2010, p. 8).

2.5.2 Factor analysis and the unit of analysis

In factor analytic investigations of student surveys, the unit of analysis is also
commonly ignored. Specifically, researchers often use conventional factor analysis
techniques that do not allow for the possibility that, as was noted above (Cronbach,
1976; Glick, 1985; Longford & Muthén, 1992), the aggregated variables have
different dimensionality and patterns of relationships than the individual level
variables. In particular, conventional factor analysis procedures are often applied
either on the disaggregated data, or on the group means (weighted or unweighted).

Each of these procedures is described below.

2.5.2.1 Disaggregated factor analysis

States and local districts commonly use conventional factor analysis methods to
establish the between-classroom or between-teacher factor structure. The validation
study of My Student Survey (Balch, 2012) found validity evidence for inferences
regarding aggregated survey variables based on the results of a conventional factor
analysis performed on the disaggregated data. Similarly, student surveys of school
climate like the South Carolina School Climate survey (DiStefano, Monrad, May,
McGuiness, & Dickenson, 2007), the Working Conditions Survey (Moir, 2009), all
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used a single-level factor analysis on either the student level data (ignoring the
nesting of students within classrooms). Ladd (2011), examined the relationship
between teacher working conditions and teacher retention with working conditions
variables that were derived from an exploratory factor analysis on the disaggregated
correlation matrix. Ryan and Patrick (2001) used a similar approach to investigate
the relationship between classroom environment and student motivation and
engagement.

There are many problems with such an approach. Firstly, this approach imposes the
(rather stringent) assumption of cross-level measurement invariance. For example,
in a two-level situation where students are nested within classrooms, the student
level and classroom level factor structures are constrained to be equal. However,
many of the empirical the examples provided above (Harnqvist, 1978; Holfve-Sabel
& Gustafsson, 2005; Reise et al., 2005; Zyphur et al., 2008) show that factor
structures can vary considerably across levels, and that analyzing multilevel data
with conventional factor analytic techniques can lead to “substantively misleading”
inferences about relationships among indicators, or between indicators and external
variables (Reise et al., 2005, p.130). Additionally, there are statistical issues that
are introduced by using conventional factor analysis procedures on data that is
hierarchically structured, and research has shown that this can lead to biased
parameters and standard errors and inflated test statistics (e.g., Julian, 2001;

Preacher, Zyphur, & Zhang, 2010).

2.5.2.2 Factor analysis on group means

Factor analyses performed on the Tripod Survey are based on classroom aggregates
(Ferguson, 2010), as are factor analyses on the New York City Department of Edu-
cation Environmental Surveys (Rockoff & Speroni, 2008). Worrell and Kuterbach
(2001) used classroom aggregates as the basis for a factor analysis, as did Hoy

and Clover (1986) in their validation of the Organizational Climate Description
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Questionnaire. While the use of conventional factor analysis procedures that
ignore the grouping of students into classrooms seems to ignore the unit of analysis
concerns raised by Liidtke et al. (2009) completely, it is less intuitive how using
the group means fails to address this concern. Hoy and Clover (1986) were explicit
that they use group means to address unit of analysis concerns. Hoy and Clover

(1986) noted:

When [a] property is viewed as fundamentally intrinsic to the group,
as it is in school climate, then between-school analysis is most ap-
propriate. Unfortunately, total analysis is most frequently used, or
more accurately misused, in studies of organizational climatea more
appropriate procedure would have been to aggregate the scoresand

then factor analyze the item matrix. (p. 98)

However, there are technical issues with this approach. As pointed out by
B. O. Muthén (1994), the sample between level covariance matrix, such as the one
employed by Hoy and Clover (1986), Ferguson (2010), and Rockoff and Speroni
(2008) contains both within and between variance sources. As such, estimates of
the between-level factor structure can often be biased by using such a procedure
(B. O. Muthén, 1994; Preacher et al., 2010).

The persistence of conventional factor analysis approaches in research on student
surveys suggests that methodologists have not done an adequate job of communi-
cating the consequences of using such approaches, and that practitioners continue
to see this issue as a methodological distinction without a substantive difference.
There is, however, a strong possibility that the application of single-level factor
analysis to hierarchically structured data can lead to obscured or spurious infor-
mation about prediction and correlation among policy relevant constructs. For
example, it could result in identifying the wrong number of factors, or associating
items with incorrect factors. For example, items in a classroom environment survey

may distinguish two within-class latent variables, such as student engagement and
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instructional rigor. However, at the classroom level it could be that the level of
engagement and rigor in a classroom tend to strongly co-vary (B. O. Muthén &
Asparouhov, 2011) so that there is only one broadly defined latent variable at
that level. Assuming cross-level invariance would then blind researchers to the

substantial overlap among dimensions of instructional practice.

2.6 Summary

Student surveys potentially offer important information about instructional practice.
However, little is known about the psychometric properties of these surveys, and
relatively little attention has been paid to the conceptual and methodological
challenges that arise when working with survey-based indicators. Specifically, there
is a relatively small body of literature that investigates the dimensionality of the
teacher level variables, and much more work is needed to examine the distinct
dimensions of instructional practice that are discernible based upon aggregated
student survey responses. In this study, I propose, test, and demonstrate one
possible approach to multilevel factor analysis that can be applied to psychometric
investigations of the sort described above. In the following chapter, I provide a brief
introduction to model estimation and testing in conventional and multilevel factor
analysis. Maximum Likelihood, asymptotic distribution free (ADF) (Browne, 1974,
1982, 1984), and residual-based (Browne, 1982, 1984) test statistics are defined.
This background helps to situate the tradition of level-specific model evaluation
(e.g., Goldstein, 2003; Longford & Muthén, 1992; Yuan & Bentler, 2007), in the
larger landscape of multilevel factor analysis. Both two-level and three-level models

are discussed.

32



CHAPTER 3

The Multilevel Factor Analysis Framework

This chapter first presents the statistical framework for the estimation of parameters
and standard errors in conventional confirmatory factor analysis, as well as the
statistical development of several test statistics commonly used in the confirmatory
factor analysis tradition (e.g., Bock, 1960; Joreskog, 1969; Lawley & Maxwell, 1973).
Next, the framework for multilevel factor analysis is presented, as a generalization
of conventional single level methods. The estimation of standard errors and
parameters in multilevel factor analysis is discussed, and approaches to model
testing in multilevel factor analysis are presented. The complications that arise in
multilevel factor analysis, including the potential limitations of several commonly

used approaches to multilevel factor are discussed in detail.

3.1 Conventional confirmatory factor analysis and model

testing

The conventional factor model (e.g., Bollen, 1989; Joreskog, 1969) can be expressed
y=An+e (3.1)

Where y is a p-variate vector of observed scores measuring 7. 1 is an m x 1
vector of latent variable scores on m factors, assumed to be normally distributed

with 0 expectation. A is a pxm matrix of factor loadings. € represents a px 1 vector
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of residuals (also called uniquenesses, (e.g., Bollen, 1989)), which are assumed to be
identically and independently distributed. This factor model yields the following
covariance structure model:

Y =APAT + U (3.2)

where A is the m x m matrix of factor loadings described above, ® is an m x m
matrix of factor covariances, and ¥ is a p x p diagonal matrix containing unique
(residual) variances.

Optimal estimates of model parameters, 6 are found by minimizing a discrepancy
function, F'[S, ¥(0)], which indicates the discrepancy between the sample covariance
matrix, S, and the model implied covariance matrix 3(#). In general, given a p X p
population covariance matrix X and a p-vector of free parameters 6, a testable null

hypothesis can be expressed:
Hy:X(0)=1% (3.3)

In other words, the population covariance matrix, >, is equal to the model implied
covariance matrix, %(6) (Bollen, 1989). The null hypothesis is frequently tested
using a test statistic based on the discrepancy function, F[S, ¥(6)].

The following sections provide details about parameter estimation, test statistics,
and standard errors that are derived using normal theory (i.e., maximum likelihood
estimation and the likelihood ratio test statistic) and Asymptotic Distribution
Free (ADF) theory. Six test statistics are defined, including 1) The ADF test
statistics Tapr and Teapr, 2) The likelihood ratio test statistic Tysr, 3) The
rescaled ikelihood ratio test statistic Trys and 4) The residual-based ADF test

St&tiStiCS TRADF and TCRADF'
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3.1.1 Asymptotic Distribution Free theory and estimation

Browne (1974, 1982, 1984) suggested a class of estimators that are based on
a generalized least squares discrepancy function. Optimal estimates of model

parameters, é, are found by minimizing
Fars = (s —a(0))" W (s — 0(0)) (3.4)

Where s = vech (S) is the half-vectorization of S, and o(0) = vech (3(0)) is the
half-vectorization of 3(#). For an p x p covariance matrix, s and o(f) contain

* = w elements. W is a p* x p* weight matrix. Following Browne (1984) (see

p
also (Bentler & Dudgeon, 1996; Foldnes, Foss, & Olsson, 2012)) Fgy s is correctly
specified for W if:

w At (3.5)

Where T is given by the asymptotic distribution of \/n(s — o (6)):
V(s — a(0)) % N(0,T) (3.6)

Since s and o(f) are p* X 1 vectors, the matrix I', which describes the asymptotic
variances and covariances of \/n(s — o(f)), is a symmetric positive definite p* x p*
matrix. In conventional factor analysis, f, a consistent estimate of I', can be
obtained by calculating fourth-order central sample moments (e.g., Bentler, 2006).
In this way, it is possible to let W in Equation 3.4 equal ! without imposing
distributional assumptions on the observed variables. This yields the Asymptotic

Distribution Free (ADF) discrepancy function (Browne, 1974, 1982, 1984):

Fapr=(s—o(0)" T (s — a(0)) (3.7)
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When the model is correctly specified the ADF test statistic T4pr is given by:
A d 2
nFapr = Xg (3.8)

Where Fapp = F S, Z(é)] , the minimized value of the discrepancy function, and
n =N —1 (one less than the total sample N). The degrees of freedom, d, is given
by d = p* — ¢ (e.g., Bollen, 1989).

The parameter estimates obtained by minimizing Equation 3.7 are consistent, but
the rate of convergence can be quite slow (e.g., Foldnes et al., 2012). Relatedly,
numerous studies (e.g., Curran, West, & Finch, 1996; Hox, Maas, & Brinkhuis,
2010; Hu, Bentler, & Kano, 1992; B. O. Muthén & Kaplan, 1985, 1992; Powell &
Schafer, 2001) have shown that T4pr does not perform well at all but the largest
sample sizes. Specifically, Typr tends to over-reject correct models. For this
reason, Yuan and Bentler (1997a) suggested a small sample correction to Tapp -

The corrected ADF statistic can be expressed:

Tapr

T (3.9)

Teapr =
Neither Typr nor Toapr will be estimable unless [ is invertible. Practically
speaking, this requires n > p* (Yuan & Bentler, 1998).
ADF-theory standard errors for estimated model parameters can be obtained based

Cou (§) = [d(é)Tf;d(é)] (310)

where ¢(0) is the derivative of (6) with respect to 0, evaluated at 6, the estimated
model parameters. As is the case with test statistics and parameter estimates based
on Equation 3.7, research has shown that standard errors based on Equation 3.10

converge slowly, and cannot be trusted at samples of N = 1000 or less. (Curran et
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al., 1996, p. 198). Similar conclusions were reached by Hoogland (1999). Yuan and
Bentler (1997b) proposed ADF standard errors based on the corrected covariance
matrix: R

nl'~!

3.11
——— (3.11)

3.1.2 Maximum likelihood estimation

The maximum likelihood (ML) discrepancy function (Joéreskog, 1967) is derived

from the normal-theory log-likelihood. Optimal estimates of model parameters, 6,

are found by minimizing
Fuyp = log|2(0)] + tr[SX(0)1 — log|S| — p (3.12)

where | - | denotes the determinant, and ¢r denotes the trace of a matrix. This

discrepancy function can be used to define the following ikelihood ratio test statistic:

Results in Browne (1974) showed that the maximum likelihood discrepancy function
in Equation 3.12 can be understood as a special member of the class of generalized

least squares estimators given in Equation 3.4 with a weight matrix given by:
W = 5DI[S(0) ™ @ £(0)7'|D, (3.14)

The matrix D, is a p? X p* duplication matrix (Magnus & Neudecker, 1988). Under
the assumption of multivariate normality, Wy, satisfies Equation 3.5. This means
that F)sr is asymptotically optimal (Browne, 1974; Foldnes et al., 2012), and the
parameter estimates 0 will asymptotically have minimum variance. Additionally,
Ty, will be asymptotically distributed as a central chi-square variate when the

model is correctly specified. In fact, Browne (1984) suggested that under some
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conditions, the weight matrix given in Equation 3.14 may still be correctly specified
provided there is no excess multivariate kurtosis in the observed variables.
ML-based standard errors for are given by

Cov <é> = [é(é>TWde(é)] (3.15)

(e.g., Bentler, 2006; Yuan & Hayashi, 2006). Equation 3.15 forms the basis for
the computation of standard errors in most covariance structure software. These
standard errors are consistent provided the model is correctly specified and there is

no excess kurtosis in the observed variables (e.g. Browne, 1984; Yuan & Hayashi,

2006).

3.1.3 The Satorra-Bentler rescaled test statistic Tryr and robust stan-

dard errors

The Satorra and Bentler (1988) rescaled test statistic Trasp is a corrected version
of the likelihood ratio statistic Th;r. Trar, was designed to rescale Ty, based
on excess skew and kurtosis in the observed variables (Satorra & Bentler, 1988),
since Ty, is derived under the assumption of multivariate normality, and may not
be asymptotically distributed as a central chi-square variate when there is excess

kurtosis (e.g., Browne, 1984). Let

. . . e A
U = W — Warro(0) (d(Q)TWMLd(0)> (0T W (3.16)
Also let k = @, where d = p* — ¢ as above. Then:
T
Trur = % (3.17)
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While Trysp, is not generally chi-square distributed, its expectation is asymptoti-
cally equal to the expectation of x? (e.g. Bentler & Yuan, 1999).

Under normal theory, when the model is correctly specified, the standard errors
given by Equation 3.15 are consistent. However, when the distributional assump-
tions are violated, and particularly when there is excess kurtosis in the observed
variables, these standard errors will tend to be biased and consistency can no
longer be assumed (e.g. Yuan & Hayashi, 2006). In this case, robust standard
errors (e.g., Bentler & Dijkstra, 1985; Shapiro, 1986) can be estimated, based on a
triple-sandwich estimator (Huber, 1967; White, 1980):

e wae @] 6@ W tWane )] (60 Waro@)]
N L e |t

(3.18)
These standard errors are consistent when the model is correctly specified (Yuan

& Hayashi, 2006).

3.1.4 The residual-based ADF test statistics Trapr and TcraDF

Browne (1982, 1984) described a second class of test statistics, which can be
obtained in conjunction with a wide range of estimators, including ML. The
residual based test statistics are asymptotically distributed as chi-square variates
under the null hypothesis, and are asymptotically distribution free (ADF) (Browne,
1982, 1984; Foldnes et al., 2012). The residual based test statistic, Trapr, is given
by

A~

Trapr = né" {6.(0)[6.(0) T6.(0)] '6.(0)" }é (3.19)

A

Where é = s — o(f), 6.(0) is a p* x (p* — ¢) full-rank orthogonal complement of
d(é) , and [isa sample estimate of I'. For models that are correctly specified,
Trapr is asymptotically distributed as a central chi-square variate with d degrees

of freedom (Browne, 1984).
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Just like Tapr, Trapr typically requires very large samples in order to be correctly
distributed (Bentler & Yuan, 1999; Yuan & Bentler, 1998). Thus, Yuan and
Bentler (1998) suggested a small sample corrected version:

TraDF
NT

TorADF = (3.20)

Where N is the sample size and n = N —1. Limited simulation work on this statistic
shows that Tograpr may over-correct Trapr at smaller sample sizes (Bentler &
Yuan, 1999; Yuan & Bentler, 2003). Neither Trapr nor Torapr will be defined

unless [6,(0)"T',(0)] ! in Equation (3.19) is invertible.

3.2 Multilevel factor analysis

The conventional single-level factor analytic procedures described above are all
predicated on the assumption that the vectors of individual scores are statistically
independent. That is, one individual’s scores do not affect another individual’s
scores. Statistical independence implies that two variables are uncorrelated. When
individuals are associated with groups (for example, in the case where students are
associated with classrooms) this independence assumption is likely to be violated,
and observations within a particular group are likely to be more similar than
those across groups, and thus, those observations are likely to be correlated. Thus,
analyzing data that is multilevel in structure with conventional factor analysis
techniques may raise methodological issues. Specifically, it has been shown that
the non-independence of individuals within groups can bias parameter estimates,
test statistics, and standard errors (Julian, 2001) when factor analysis is conducted
in a conventional framework.

One approach approaches to expanding factor analysis and covariance structure
analysis methods to multilevel data (e.g., Goldstein, 2003; Lee, 1990; McDonald &
Goldstein, 1989; B. O. Muthén, 1991, 1994) uses a conventional factor analysis
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structure on each of the levels, and is built from a multivariate random-intercepts
model (i.e., a random-effects MANOVA). For two level data, consider the score
decomposition (Lee & Poon, 1998; Longford & Muthén, 1992; Yuan & Bentler,
2007):

Yij = J+uj + € (3.21)

where y;; is a p-variate vector of observed scores for individual ¢ in group j that
can be decomposed into a vector of means () and independent between-group
(u;), and within-group (e;;) random components. Because the between-group and
within-group random components are independent, the covariance of the observed
scores can be expressed as a sum of between-group and within-group covariance
components:

Yr=Yp+ 2w (322)

where Y7, X and Xy are symmetric p X p covariance matrices. The covariance
matrices can be expressed in two separate factor models, one for the between-groups
level:

Y5 = Ap®pAL + Vg (3.23)

and another for the within-group level
Yw = Aw @Al + Uy (3.24)

where Ap is a p X k matrix of factor loadings for p items on k factors, and Ay
is a p X r matrix of factor loadings for p items on r factors. Note that while it is
possible for k = r and for Ag = Ay, this is not necessary. &5 and Py, are k x k
and r X r matrices of factor covariances, respectively, and Wz and Uy, are p X p
diagonal matrices containing unique (residual) variances. It follows that ®p need

not equal ®y,, and ¥y need not equal Wy .
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3.2.1 The segregating approach: multilevel factor analysis using mul-

tiple single level models

Because the multilevel factor analysis approach described above uses a conventional
factor analysis model on each level, one naturally approach to model testing that
emerges is to perform separate, conventional factor analyses on an estimate of each
covariance matrix, one at a time. In a two level model, say in a case with students
nested within classrooms, this would suggest a two-stage process (Goldstein, 2003;
Longford & Muthén, 1992; Yuan & Bentler, 2007). First, estimates of ¥z and
Yw are obtained. Then, separate factor analyses on the student level and class-
room level covariance matrices are conducted. These matrices can be analyzed
“using any standard procedure” (Goldstein, 2003, p. 190). In fact, some of the
earliest methodological writings on multilevel factor analysis apply this approach
(Cronbach, 1976; Harnqvist, 1978). Ryu and West (2009) refer to this as the
“segregating” approach (p. 592).

The first step in implementing the segregating approach is to estimate the within-
level and between-level covariance matrices. Two different ways of obtaining esti-
mates are described briefly below. For balanced data, the estimates of these two ma-
trices are unbiased, even when the data is not normally distributed (B. O. Muthén,
1994). For unbalanced data, the estimates are consistent (e.g, Goldstein, 2003;
B. O. Muthén, 1994)

3.2.1.1 Obtaining estimated covariance matrices using a multilevel-

multivariate model

Goldstein (2003) proposed a multilevel multivariate model to obtain estimates
of Xp and Xy, where the p-vector of observed scores for individual ¢ in group j
described above is modeled using a three level hierarchical model. For illustration

purposes, consider a case with 6 observed variables. At the first level, there is a
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measurement model

Ypij = T1ijdrg; + Toijdosy + T3i5dsij + Taijdai; + Tsi5dsi; + Teijdei; (3.25)

Where dy;; - - - dgi; are indicator variables that indicate whether the observed
score Y,;; is associated with the 1st, 2nd, 3rd, 4th, 5th or 6th item. There is no
residual variation at this level.

At the second level,

Tpij = Bpj + Upij (3.26)

Where the u,;;’s represent random effects such that u,;; ~ N(0, Xy). At the third

level,

Bpi = o + up; (3.27)

Where the u,;’s represent random effects such that u,j ~ N(0,Xpz). Estimates of
Y p and Xy can then be obtained using REML (restricted maximum likelihood)

estimation in a wide variety of multilevel modeling software packages.

3.2.1.2 maximum likelihood estimation

Longford and Muthén (1992) derived estimators of X5 and Xy based on sums of

squares and cross products. Specifically,

N Tl
Yy = 3.28
WEN—T (3.28)
and
A T — J(N —J)'T
p= 2= Z_nz) ' (3.29)
N — &
where
J nj
h= Z Z(yij —y) Wi —v4)" (3.30)
j=1 i=1
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and

T, = an(y-j —y )y —y.)" (3.31)

where N is the number of individuals, J is the number of groups, n; is the number
of individuals in the jth group, y.; is the mean of the jth group, and .. is the

grand mean.

3.3 Model testing and test statistics in multilevel factor

analysis

Because the segregating approach works by applying conventional factor analysis
on the separate estimated covariance matrices, model testing can take place in a
conventional framework. This dissertation focuses on the analysis of the between-
teacher level covariance matrix, since the teacher is often the unit of analysis
for the student surveys. In the context of two two-level models, this means that
we are focused on the analysis of S p. There are some specific conditions that
distinguish model testing on S5 from conventional factor analysis, particularly
when ML estimation is used to estimate model parameters and the likelihood ratio
test statistic is used to test models on ¥5. Thus, the multilevel analogs of these
conventional test statistics are defined and the specific issues that may arise are

discussed below.

3.3.1 ML estimation and the analysis of the between-level covariance

matrix

In using the segregating method, estimates of model parameters, 0, are found by
minimizing the same maximum likelihood discrepancy function defined in Equation
3.12.

Fuyr = log|X(0)| + tr[SS5(0)~1] — log|S| — p (3.32)
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In using the segregating method on the between-level covariance matrix, the sample

estimate of the covariance matrix S is given by Sp. Again, Thsr, can be defined as:

Where n = J — 1, one less than the number of groups.

In using the segregating method to analyze £, Thyy, is often expected to converge
to a central chi-square distribution with d degrees of freedom if the model is correct
and there is no excess skew or kurtosis in the observed variables. Several sources
(Goldstein, 2003; Hox, 2010; Hox & Maas, 2004; Ryu & West, 2009) suggested that
T, will behave in this way and can be used to evaluate between-level measurement
models.

In practice, however, and contrary to the advice given in these sources, T, may be
inflated, and may not have the correct asymptotic distribution, even when the data
is normally distributed and the model is correctly specified. This occurs because
the sample variability of Sp is larger than what it would have been without the
effect of the hierarchical structure, which is commonly called the clustering effect
(e.g., Yuan & Bentler, 2006, 2007). The impact of the clustering effect is related
to 1) the proportion of total observed variance attributable to group membership
(i.e., the ICCs of the observed variables) and 2) within-group sample size.

The intraclass correlation (ICC) represents the proportion of observed variance
attributable to group membership, and can be obtained from the diagonal elements
of ¥p and Yy. For any given item p, the intraclass correlation for that item can

be expressed:

>
10C, = — =B (3.34)

where Y, and Xy, are diagonal elements of ¥ and Xy respectively. 1CC
values range between 0 and 1, and for fixed ¥, ICCs will increase as the elements
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When ICCs are low or within-group sample sizes are small, Ty, will not converge
in distribution to a centrally distributed chi-square variate, even when the model
is correct. As a result, inferences about model structure based on T}y, may not be
valid for the segregated analysis of 35 even when the data is normally distributed.
The clustering effect will also have adverse effects on the estimated standard errors.
Even when the model is correctly specified, ML estimation would result in standard
errors that were not consistent. This is because, in the segregated analysis of the
between-level covariance matrix, ML standard errors are estimated based on

Cov (é) = [&(é)TWBde@)] (3.35)

Where Wgy = .5D§[23(é)’1 ® Lp(0)']D, and Lp(0) is the estimated model-
implied between-level covariance matrix. However, because of the clustering effect,
when ICCs are low or within-group sample sizes are small, Wy, is not correctly
specified (Schweig, 2014; Yuan & Bentler, 2006, 2007) in the sense that it does not
satisfy Equation 3.5. Based on results presented elsewhere (e.g., Browne, 1984;
Hox, 2010; Yuan & Bentler, 2007), it is anticipated that the parameter estimates
themselves will be consistent.

This fact is rarely made explicit in methodological literature on multilevel factor
analysis. Even when the poor empirical performance of Ty, or of ML estimates
of standard errors is noted (Hox, 2010; Yuan & Bentler, 2007), the possible role of
either item ICC or within-group sample are not described. In fact, several sources
(Goldstein, 2003; Hox, 2010; Hox & Maas, 2004; Ryu & West, 2009) suggested that
the segregating method is a “viable method” (Hox & Maas, 2004, p. 145) that can
be “implemented within the preexisting ML . ..framework.” (Ryu & West, 2009,
p. 600).
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3.3.2 Asymptotically Distribution Free methods for factor analysis

with segregated matrices

Yuan and Bentler (2003) proposed both ADF test statistics, and residual-based
ADF test statistics equivalent to those developed by Browne (1974, 1982, 1984),
that are appropriate for multilevel factor analysis. Analogously to the conventional,
single level statistic, In the segregated analysis of the between-level covariance

matrix the ADF test statistic T4pr is defined as:
~N\T . R
Tipr =n (s - 03(9)> I (s — 03(6’)) (3.36)

In using the segregating method on the between-level covariance matrix, n = J — 1
and s = vech(3Xp).I'5 is a consistent estimate of I'g, given by the asymptotic

covariance matrix of the between-level covariance matrix:
V(sg —o5(0)) % N(0,T'p) (3.37)

As developed by Yuan and Bentler (2003, 2007), fgl is obtained using generalized
estimating equations (GEEs) (e.g., K.-Y. Liang & Zeger, 1986). Essentially, K.-
Y. Liang and Zeger (1986) applied the Huber-White sandwich estimator (Huber,
1967; White, 1980) to obtain estimates of the variability of parameter estimates in
hierarchically structured data. Yuan and Bentler (2002, 2006, 2007) applied this
principle to obtain estimates of the variability of Sw and Sp. This estimate of
I'5' s called f&EE throughout this dissertation. Likewise, the associated estimate
of I'g, is called fGEE.

In addition to T4pr, the corrected test statistic Tcapr can also be used in

conjunction with the segregating approach. That statistic is given by:

Tapr
14+ TapFr

Teapr = (3.38)
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where n = J — 1.
ADF standard errors can be obtained similarly for the segregating method as in
conventional, single level models. Standard errors (Yuan & Bentler, 2006) are

given by
N ~ .~ 1—1
N os@ TG s(0)
Cov (9) - . (3.39)

Given sufficient sample sizes and a correctly specified model, Thpr and Toapr
will be correctly distributed under the null hypothesis, and the standard errors
will be consistent. This is because the generalized estimating equations used to
estimate ['gpp take into account the excess sampling variability in S that results
from the clustering (Schweig, 2014). Thus, it is anticipated that Tspr and Teapr
will converge to the correct chi-square distribution, regardless of the item ICCs or

the number of individuals in each group.

3.3.3 Robust methods for factor analysis with segregated matrices

The multilevel version of the Satorra-Bentler (1988) rescaled test statistic Trasr,

developed by Yuan and Bentler (2003, 2007) is given by:

T
Tt = % (3.40)

Where k = tr(fffB) and U is as defined as

A~

~ ~ A\ —1 A
U = Wanrr — Waninon(0) (dB(O)TWBML&B(G)) op(0) Wear  (3.41)

Robust standard errors (e.g., Bentler & Dijkstra, 1985; Shapiro, 1986) are based

on a triple-sandwich estimator:

) A[dB(é)TWBMLfBWBML(‘;B(é) A
Cov (9) = 7 (3.42)
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where J is the number of groups and A = dB(é)TWBMLdB(é)]
Trarr is expected to converge to a distribution with the correct first moment
regardless of ICC and within-group sample size. The scaling constant, k will
be greater than 1. Bentler (2006) explained that tr(UT')can be thought of as
a way to determine the discrepancy between the hypothesized model and data
distribution (carried by U) and the true data distribution (carried by I'z). In
analyzing )y B, the discrepancy between U and I's occurs because I' accounts for

the clustering effect, and U does not (Schweig, 2014).

3.3.4 Residual-based test statistics with segregated matrices

The residual-based test statistics for use in the segregating approach were presented

by Yuan and Bentler (2007). The residual-best test statistic Trapr is given by

Trapr = ne {5 5.(0)[05:(0) Top.(0)]  op.(0)" }e (3.43)

~

Where é = sg — op(f), and n = J — 1. Yuan and Bentler (2007), the expression
for the corrected test statistic Torapr is slightly different from the conventional,
single level version given in Equation 3.20.

TraDF

T Toaer (3.44)

TcrapF =

the difference between the correction given by Equation 3.44 and Equation 3.20

will be minimal for sufficient sample sizes (e.g., Bentler, 2006).
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3.4 Application of conventional factor analysis to multi-

level data

The segregating approach described above provides a method to apply factor
analytic techniques to data that is hierarchical in structure. However, obtaining
estimates of within-level and between-level covariance matrices is considerably more
involved than obtaining sample covariance matrices in conventional factor analysis.
Partly because of these technical complications, and partly because, as Sirotnik
(1980) and Marsh et al. (2012) have noted, researchers have not always been careful
in their consideration of unit of analysis issues during instrument development,
it is common to find examples in the research literature where conventional
factor analysis procedures are often applied either on the disaggregated data,
or on the group means (weighted or unweighted). The problems that can arise
from these approaches were described briefly in Chapter 2. In particular, using
conventional factor analysis imposes strict measurement invariance constraints
across the within-level and between-level models, and ignoring clustering can result
in biased parameters and standard errors and inflated test statistics (e.g. Julian,
2001; Preacher et al., 2010). Here, the statistical foundations of these problems

are described in more detail.

3.4.1 Factor analysis of the disaggregated covariance matirx

In this case, a confirmatory factor analysis is performed on an estimate of X7 in
Equation 3.22 without attributing variance to distinct within and between sources.
This approach imposes cross-level measurement invariance constraints on the model.
That is, this approach assumes, de facto, that Ag = Ay , &g = @y, and Vg = Uy,
as given in Equations 3.24 and 3.23 (e.g., Zyphur et al., 2008). There is a long
history of methodological work (e.g. Cronbach, 1976; Harnqvist, 1978; Longford &
Muthén, 1992; Zyphur et al., 2008) that shows that this assumption may not be met
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in practice. Moreover, as Zyphur et al. (2008) noted, “discovering differential factor
structures across levels of analysis may be of substantive interest to researchers.”
(p- 130), in the sense that researchers may be interested in developing separate
theories for within-level and between-level phenomena (e.g., Cronbach, 1976), and
that investigating differences in the networks of correlates (e.g., Guion, 1973) of
individual and group level variables may be of substantive importance.

A simulation study by Julian (2001) demonstrated that, even when the number of
factors at the within-level and between-level were the same, using conventional
factor analysis procedures in this way can lead to biased parameters and standard
errors, and inflated test statistics (Julian, 2001; Preacher et al., 2010, see also). The
problems of test-statistic inflation and parameter bias increased as the intraclass
correlation of the items increased—the more variance in observed indicators that
is attributed to groups, the greater the extent of parameter bias, standard error
bias, and test statistic inflation. A simulation study by J.-Y. Wu and Kwok
(2012) showed similar results in terms of standard errors and parameter estimates.
J.-Y. Wu and Kwok (2012) also found that the model test statistics obtained from
a disaggregated factor analysis were not helpful for testing the between-level factor
structure. As they noted, “overall model chi-square test and commonly used fit
indexes could not consistently provide much helpful information on the necessity
of specifying a different higher level model” (p. 31).

This trend parallels research in univariate multilevel models (Raudenbush &
Bryk, 2002), which shows that ignoring the hierarchical structure of a data set
can bias standard errors. Overall, they suggest that analyzing multilevel data
with conventional factor analytic techniques can lead to “substantively misleading”
inferences about relationships among indicators, or between indicators and external

variables (Reise et al., 2005, p. 130).
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3.4.2 Group-means factor analysis

In this case, factor analysis is performed on either the unweighted sample covariance

matrix of group-means

Si= 5 D~y —u)" (3.45)

or the sample covariance matrix of group-means weighted by group size:

1
Sp =

< |

Z ni(y; —y) (s —y.)" (3.46)

The problem with using the group mean covariance matrix as given by Equation
3.45 or Equation 3.46 is that these sample matrices are not consistent estimators
of the population between-level covariance matrix ¥ g. For the sake of illustrative
clarity, consider a situation where each group has the same sample size n (i.e.,
the case of balanced groups). Results in B. O. Muthén (1994) showed that Sp in

Equation 3.46 is a consistent and unbiased estimator of
Yw +nXp (3.47)

That is, Sp as given in Equation 3.46 contains both within and between variance
sources. Thus, B. O. Muthén (1994) noted that “any simple structure expected
to hold for ¥p does not necessarily hold for Sg” (p. 388). The unweighted
covariance matrix given by Equation 3.45 presents additional complications, by
giving “small groups and large groups equal weight in determining parameter
estimates.” (Preacher et al., 2010, p. 213). Ignoring differences in group size may

introduce additional biases into model testing.
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3.5 A note about other approaches to multilevel factor

analysis

The segregating approach that is adopted and expanded in this dissertation is
only one potential approach to multilevel factor analysis. Another approach is
based on a multilevel ML discrepancy function (e.g., Lee, 1990; Lee & Poon, 1992;
B. O. Muthén, 1991) that finds optimal model parameters simultaneously for both
the within-level and between-level covariance structure models. A two-level ML

discrepancy function, can be expressed as:

Fup =y (n; = D{log[Sw (O)] + tr(Sw(0) " Syw;)}

j=1
J
+ Z{loglEW(G) + %23(9)\ +tr([Zw(0) + %23(9)]15’”) (3.48)
j=1
as given in Ryu and West (2009, p. 586). N is the number of individuals, J
is the number of groups, and n; is the number of individuals in the jth group.
Sywi = 75 22i2aWis — ¥5) (Wi — y3)" and Sg; = n;(y; — y.)(y; —».)". Optimal
parameter estimates, 6, are found by minimizing the discrepancy function given in
Equation 3.48 (Lee, 1990).
This discrepancy function yields two potential approaches to test measurement
models. Models can simultaneously be specified on the within-level and between-
level structures (B. O. Muthén, 1994; Ryu & West, 2009; Yuan & Bentler, 2007;
Hox, 2010), in what can be called the “simultaneous approach”, or an unrestricted
(saturated) model can be fit at one level, and a measurement model can be tested
on the other level (Hox, 2010; B. O. Muthén, 1994; Ryu & West, 2009), referred
to as the “partially saturated model method” (Ryu & West, 2009, p. 589).

In the simultaneous approach, a likelihood ratio test statistic can be obtained
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(Bentler & Liang, 2003) from Equation 3.48 as:

Tz = Fanlw,08) — Fawlfws, 05 (3.49)

Where éwg refers to the set of parameters that structure the within-level covariance
matrix, and éBg refers to the set of parameters that structure the between-level
covariance matrix. This test statistic can be used to test the null hypothesis that
the population covariance matrix, X7 = g + Xy, is equal to the model implied
covariance matrix, X7(6) = Xg(0) + Ly (6). In the partially saturated model
method, an unrestricted model is specified at one level. If an unrestricted model is

fit to the within-level, 3.49 becomes:

Ty = Fur [éws, éB} — FML[éw& éBs] (3.50)

Thus, any lack of fit in the model is attributed to the discrepancy between ¥ 5(0)
and 5. (e.g., Ryu & West, 2009). In other words, since the saturated model
estimates all covariances between variables, it has no degrees of freedom, and the
within-level model makes no contribution to the chi-square test statistic.

While the simultaneous approach is widely used in the applied literature (e.g., Dyer,
Hanges, & Hall, 2005; Holfve-Sabel & Gustafsson, 2005; Sexton et al., 2006) it has
been shown in several studies (e.g., Hox, 2010; Ryu & West, 2009; Yuan & Bentler,
2007) that simultaneously modeling the within-level and between-level structures
does not produce meaningful diagnostic information about the between-level factor
structure. Thus, the simultaneous modeling of between and within factor structures
makes model or theory revision difficult (Yuan & Bentler, 2007), and this approach
is not recommended in the literature. The partially saturated model method, on
the other hand, does provide level-specific diagnostic information, because the chi
square test statistic reflects fit (or misfit) on only one level, but this approach was

not meant to provide parameter estimates or standard errors (Ryu & West, 2009;
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Yuan & Bentler, 2007). A practical issue with this method is that estimates of fit
indices such as the Root Mean Square Error of Approximation (RMSEA) (Steiger
& Lind, 1980), and the Comparative Fit Index (CFI) (Bentler, 1990) provided by
software programs will spuriously show good fit (Hox, 2010, p. 307), and so may
be misinterpreted (e.g., Kunter et al., 2008; Rosenberg, 2009).

3.6 Extensions to three levels of nesting: students, teach-

ers, schools.

Thus far, the segregating approach has only been described in the context of two
level models, for example, in the case where students are nested within teachers.
This section outlines how this approach can be expanded to three level models,
for example, in the case where students are nested within teachers, nested within
schools. First, we may consider extending the score decomposition (Longford &

Muthén, 1992) given in 3.21:

Yijk = W+ Vk + Ujk + €45k (3.51)

where the vector of observed scores for individual 7 in subgroup j at the second
level in group k at the third level (y;;x) can be decomposed into independent level-3
(vg) , level-2 (u;),) and level-1 (e, ) random components. Using the notation of
Yau, Lee, and Poon (1993), the covariance of the observed scores can be expressed
as a sum:

Yr=YXp+ 2Xwae + Xwak (352)

Where Y5, Ywg and Yo are symmetric positive definite p x p covariance
matrices. These covariance matrices can be expressed in separate factor models,
analogously to the two-level models given in Equation 3.23 and Equation 3.24.

While Yau et al. (1993) describe a general class of covariance structures where the
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level-2 and level-1 covariance structures may differ across groups, this dissertation
considers a particular class of three level covariance structure models where it is
assumed that the same covariance structure holds across subgroups and across
individuals within subgroups. This class of models is a specific case of the more
general structures described by Yau et al. (1993).

For example, in the case of student ratings of instructional practice, where students
are nested within teachers nested within schools, the structure of ¥y, may be of
particular interest, as this describes the teacher-level covariance structure. Thus,

a set of parameters may be selected such that

Ywe = AwePwellye + Ywe (3.53)

As in the case of the two level models described earlier, a consistent estimate of
Ywea can be found using the multilevel-multivariate models described by Goldstein,
or by using sums and crossproducts of squares (e.g., Goldstein, 2003; Longford
& Muthén, 1992). Consistent estimates can also be obtained using commercial
software products, such as Mplus (L. K. Muthén & Muthén, 2010).

Longford and Muthén (1992) suggested that a consistent estimate of Xy ¢ could

be found based on withinsubgroup and subgroup-within-group sums of squares:

Ty— (J— K)(N - J)"'Ty

Swe = s (3.54)
N->. =
Where
K ngp Mk
= Z Z Z(yijk — ) (Wije — Yir)” (3.55)
k=1 j=1 i=1
and
K ng
Ty= > miu(yr = vor) (Wi — yi) " (3.56)
k=1 j=1

And N is the number of individuals, J is the number of subgroups, and K is the

number of groups. n;j is the number of individuals in the jth subgroup in the kth
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group, ny is the number of subgroups in the kth group, and Ny = Zj Njk- Yjk 19
the vector of means for the jth subgroup of the kth group, and . is the vector of
means for the kth group.

Recall that in conventional factor analysis, the asymptotic covariance matrix I' is
given by the fact that \/n(s — o (f)) 4N (0,T"), and analogously, in the segregated
analysis of X5, V.J(65 — o(0)5) N N(0,T'p). Results in Yuan and Bentler (2006)
and Yau et al. (1993, p. 170) imply that this also holds true for ow g = vech(Ewe):

VI = K(6we — o(@)we) % N(0,Twe) (3.57)

As such, the six test statistics (Tapr, Toapr, Tvr, Trvr, Trapr and Tegapr)
presented in a two level framework can readily be implemented in the analysis of
f]WG by using fwg, a consistent estimate of 'y ¢ as the asymptotic covariance
matrix, and specifying J — K as the sample size. T}, is still anticipated to perform
poorly, because of the clustering effect. However, Tapr, Tcapr, Tryvir, Trapr and
Terapr use [y and are anticipated to perform well for sufficiently large sample

sizes.

3.7 Multilevel models with level-restricted variation

The models in Equation 3.21 and Equation 3.51 do not include level-2 or level-3
observations. That is, those models do not include variables that are observed at
either the subgroup or the group levels. In school or classroom research, it may be
that there are variables describing classroom level phenomenon that are measured
at the classroom level. These variables may include, for example, information
about attendance rates or available economic resources. J. Liang and Bentler
(2004) generalized the formulations given in Equation 3.21, which were presented in
Lee and Poon (1998). In this two-level formulation, y;; refers to variables observed

at the individual level, and z; to variables that are measured at the group level.
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Given:

25 2 0
=7+ (3.58)
Yij Uj €ij

Zj Mz Zj E,zz Ezu

Uy Moy Uj Zuz Euu

Cou(e;;). An estimate of ¥p can be obtained using Equation 3.29.

This formulation can also be extended to three levels as:

Qs q 0 0
zig | = lwe |+ s |+ O (3.59)
Yijk Uk Ujk €ijk
qk Hq dk Ygg Lgw Lgu
where = E [ wy, | = | o [ Z8=C0v [ wi | = | Zug Dww Zuw | Zwe =
Vg, Hoy Vg qu Yow  Lww
Cov Ll Pas B , and Ywaer = Cov(e;;r) An estimate of Xy can be
Uk Yius  Vu

obtained using Equation 3.54.

3.8 Open issues in the literature on multilevel factor anal-

ysis

A growing research base points to significant problems when applying conventional
factor analysis to multilevel data, or simultaneously modeling the between and
within factor structures. At the same time, number of additional issues in multilevel
factor analysis are not addressed in the existing literature. First, the existing work
does not address how common test statistics and estimation methods are likely to
perform under conditions likely encountered in real-world settings and contexts.

Second, there are only a handful of studies that empirically investigate differences
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in test statistic performance and estimation efficiency across the saturating and
segregating approaches, and how these differences should influence modeling
strategies (Hox & Maas, 2004; Ryu & West, 2009). Third, existing work does
not address the performance of GEE methods to obtain [¢er under conditions
likely encountered in real-world settings. Fourth, existing literature does not offer
empirical demonstrations of the segregating approach with additional levels of
nesting (hierarchical data sets with three or four levels, for example). Each of

these issues is addressed in turn in the sections that follow.

3.8.1 Relative efficiency across the saturating and segregating approaches

Parameter estimates obtained from two-stage approaches like the segregating ap-
proach are, in general, less efficient than those obtained from one-stage approaches
like the partially-saturated model method described above. Yuan and Bentler
(2007) suggested that the simultaneous estimators are asymptotically most efficient,
and so there may be a gain in efficiency in using the partially saturated model
method over the segregating approach. Yuan and Bentler (2007) demonstrated
that, as either the within-group sample size or the number of groups get larger,
the difference in efficiency between these two approaches will be small. Yuan and
Bentler (2007) did suggest that, in small to medium sized samples, particularly
with larger models, the segregating approach may actually be more efficient than
either of these approaches, because parameter estimates based on a smaller model
(the segregating approach will, in general, have far fewer parameters than the other
two approaches) will have more numerical stability (Yuan & Bentler, 2007, p. 56).
Longford and Muthén (1992) noted that the loss of efficiency in this procedure
“may be quite modest” (p. 589).

While some studies examine parameter bias in both the partially saturated model
method and the segregating approach (e.g., Hox & Maas, 2004; Hox, 2010), thus far,

the author is unaware of any systematic exploration of the comparative efficiency
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of these approaches in the literature.

3.8.2 Test statistic performance and parameter estimation under real

world conditions

Methodological work on multilevel factor analysis often contains simulation con-
ditions not likely to be encountered in real settings with student surveys. For
example, Ryu and West (2009) noted that they only included a high ICC condition
in their study (/CC = 0.5), so that their results may not generalize to other
conditions. Furthermore, their simulated model is relatively simple (only 8 degrees
of freedom in the between-level model), and considers only within-group sample
sizes of 30, 50 and 100. Yuan and Bentler (2007) used only one ICC condition
(with an average item ICCs of approximately .37), and the within-group sample
sizes are uniformly distributed on [6, 205], which yields an average group size of
approximately 106 individuals. The model is also relatively simple (19 degrees of
freedom). Other simulation studies (e.g., Hox & Maas, 2004; Hox et al., 2010) also
use relatively small models and large sample sizes.

These simulation studies serve an important purpose in that they offer an “em-
pirical verification” (Yung & Bentler, 1994, p. 66) of the model testing methods
outlined in previous sections. However, as Yung and Bentler (1994) point out,
“these results do not provide evidence to advocate the use [of a particular test
statistic] because researchers seldom have such a small model with a large sample
size” (p. 66). Indeed, these simulation conditions do not represent those likely
encountered in analyses of student surveys. For example, Toland and De Ayala
(2005) reported a study with 54 classrooms, average within-class sample sizes of
15, and item ICCs ranging from .06 to .43, with between-factor models with over
150 degrees of freedom. Holfve-Sabel and Gustafsson (2005) had 60 classrooms,
average within-group sample sizes of approximately 25 student, and a between-level

model with over 500 degrees of freedom in their study. Marsh et al. (2012) noted
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that, generally speaking, item ICCs for climate variables are “often less than .1
and rarely greater than .3” (p. 115). Under these conditions, the performance of
both the segregating approach and the partially saturated model method, both in
terms of parameter bias and variability, and the performance of many commonly

used test statistics is largely unknown.

3.8.3 Estimation of the asymptotic covariance matrix

One particular concern in implementing the segregating approach is that obtaining
good estimates of test statistics and standard errors that can be used to make valid
inferences about measurement models relies heavily on the quality of the estimation
of the asymptotic covariance matrix (I'g in Equation 3.6) (Hu et al.; 1992; Yung
& Bentler, 1994). Even with no excess skew or kurtosis in the distribution of
the observed variables, the likelihood ratio test statistic Th;;, will not be correctly
distributed under the null hypothesis and the maximum likelihood estimates of
standard errors are expected to be biased when analyzing the between-group co-
variance matrix, particularly when ICCs are low and group sizes are small (Schweig,
2014). Because of this, research has recommended that the segregating approach
should be used in conjunction with ADF, residual based, or rescaled test statistics
(Schweig, 2014; Yuan & Bentler, 2007), which require an estimate of I'g in order
to be computed.

The relationship between the estimation of I' and the performance of ADF esti-
mators has been demonstrated in the context of single level conventional factor
analysis, where numerous studies have shown that ADF standard errors tend to
be downwardly biased, and test statistics over-reject correct models at all but the
largest sample sizes (e.g., Curran et al., 1996; Hox et al., 2010; Hu et al., 1992;
B. O. Muthén & Kaplan, 1985, 1992; Powell & Schafer, 2001). In the context of
conventional factor anlaysis, Hu et al. (1992) suggested that the poor performance

of the ADF method was related to the poor estimation of the elements of I', and
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empirical results in Yung and Bentler (1994) supported this claim.

However, while there is a relatively robust tradition of literature investigating the
estimation of I' in conventional factor analysis, this author has found no studies
that investigate the accuracy with which ['p is estimated in the case of multilevel
data. In the single level conventional factor analysis framework, the asymptotic
covariance matrix is typically estimated directly from the fourth-order sample
moments of the observed data. In the segregating approach, the estimation is more
numerically complex. Specifically, in the segregating approach, the estimation
of I'p is based on a sample covariance matrix (Xp) that is, itself, the result of a
complex estimation process. This may suggest that the estimation of I'g is even
less accurate for use with the segregating method than it is in conventional single
level analyses.

Yuan and Bentler (2002, 2006, 2007) applied the principle of Generalized Estimat-
ing Equations (GEE) to estimate I'g, the asymptotic covariance matrix for Sp.
Essentially, this entails an application the Huber-White sandwich estimator (Huber,
1967; White, 1980) to obtain estimates of the variability of the covariance matrix.
An alternative to using a Generalized Estimating Equation (GEE) approach is
to use a non-parametric bootstrap-based approach (Davison & Hinkley, 1997;
Efron & Tibshirani, 1993). The non-parametric bootstrap proceeds by treating
the empirical distribution as a population distribution, and repeatedly resampling
from the empirical distribution. This can then be used to obtain information about
population parameters. There is research (e.g., Feng, McLerran, & Grizzle, 1996;
Mancl & DeRouen, 2001; Sherman & Cessie, 1997) suggesting that non-parametric
bootstrap methods outperform GEE methods in certain conditions, and that the
variance components obtained based on generalized estimating equations can be
biased, particularly if the sample size is small (Sherman & Cessie, 1997, p. 908).
However, the non-parametric bootstrap has not been applied to the estimation of

I', and there is no information about the comparative performance of the GEE
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and cluster-bootstrap approaches in this context.

3.8.4 Multiple levels of nesting: looking beyond two-level models

The vast majority of writing about multilevel factor analysis considers only ex-
plicitly cases where there are two levels of nesting in the hierarchical structure.
Persons nested within groups. There is little guidance on how to handle additional
levels of hierarchy, and little guidance on how ignoring these additional levels
would influence model test statistics and parameter estimates. For example, in
school settings, it would be common to encounter hierarchical data structures with
three levels: students nested in teachers nested in schools. In fact, in secondary
school settings, where individual teachers may teach several sections of the same
class, it is possible to conceive of hierarchical data structures with four levels:
students nested in classes, classes nested in teachers, and teachers nested in schools.
While several key papers suggest that extensions to multiple levels is conceptually
straightforward (Longford & Muthén, 1992; Yuan & Bentler, 2007), most of the
examples in the literature deal with two levels of nesting only. Thus far, the author
is unaware of any published research studies on classroom climate deal with this
issue explicitly. Holfve-Sabel and Gustafsson (2005) worked with 60 6th grade
classrooms, but do not mention the nesting of classrooms into schools, or how
this additional level of nesting may influence their findings. Similarly, Van Horn
(2003) and D’haenens et al. (2012) look at teacher ratings of school climate using a
two-level confirmatory factor analysis, but do not consider the possibility that the

nesting of teachers within academic units or departments may influence results.

3.9 Research questions

This dissertation involves a series of analyses of real and simulated student survey

data , conducted in order to address a number of the open issues with multilevel
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factor analysis described above. Specifically, this dissertation investigates:

1. The efficiency of the segregating approach compared to the partially saturated

model method in the estimation of parameters in two-level models.

(a) How does the efficiency of the segregating approach compare to the par-
tially saturated model method approach for the estimation of between-

group factor models?

2. Comparative performance of GEE-based ADF, cluster-bootstrap-based ADF
and ML estimators in the segregated analysis of g
(a) Are the parameter estimates unbiased using the segregating method?
(b) How variable are the parameter estimates?

(c) Are the standard error estimates consistent using the segregating

method?

(d) Are test statistics appropriately distributed under conditions likely to

be encountered in student survey research?
(e) Does the cluster-bootstrap provide a consistent and accurate estimate
of the asymptotic covariance matrix?
3. Extension of the bootstrap-based method to three level models.
(a) Can a bootstrap-based approach to estimating the asymptotic covariance
matrix be extended to data sets with three levels?
(b) Are the parameter estimates unbiased and precise?
(c) Are test statistics appropriately distributed?
4. The application of these bootstrap methods to a realistic dataset to investigate

the dimensions of professional practice that are discernible in a state-wide

student survey of instructional quality.
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(a) What dimensions of instructional practice are discernible based on

student responses in an opportunity to learn survey?

(b) How do these survey-derived variables relate to outcomes of policy
interest, such as teacher contributions to student achievement (i.e.,

teacher value added scores)?
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CHAPTER 4

Cluster Bootstrap in Multilevel Factor Analysis

The bootstrap (e.g., Davison & Hinkley, 1997; Efron & Tibshirani, 1993) proceeds
by treating the empirical distribution as a population distribution, and repeatedly
resampling from the empirical distribution. This can then be used to obtain
information about population parameters. Bootstrap methods have been applied
in conventional factor analysis (Beran & Srivastava, 1985; Bollen & Stine, 1992),
predominantly to obtain information about test statistic distributions. Yung and
Bentler (1994) applied the bootstrap to obtain bias-corrected versions of ADF
test statistics, and found that these bootstrap corrected statistics performed far
better than the uncorrected statistics with sufficiently large sample sizes. Yuan
and Hayashi (2006) compared bootstrap and asymptotic standard errors in factor
analysis models under a variety of conditions (misspecified models, excessively kur-
totic observed variables, etc.), and found that, given finite fourth order moments,
even when the model was incorrectly specified, a non-parametric bootstrap can
provide consistent estimates of standard errors.

It has been shown that bootstrap based approaches may outperform GEE methods
in the estimation of means and variance components in two-level models with small
sample sizes (Feng et al., 1996; Sherman & Cessie, 1997). However, many of these
investigations consider only univariate models (Sherman & Cessie, 1997), and do
not explicitly address the estimation of the asymptotic variances (i.e., the variance
of the variance components). To the author’s knowledge, no studies comparing

the bootstrap and GEE methods for multilevel multivariate models exist.
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There is another possible advantage, in addition to the possible improved recovery
of the asymptotic covariance matrix, to using a bootstrap-based approach instead
of a GEE approach. While GEE approaches are, in theory, extendable to more
than two levels of nesting, such an extension requires the researcher to articulate a
likelihood function and a vector of first-order partial derivatives, which may be
complicated as the number of levels of nesting increases (Yau et al.,; 1993; Yuan
& Bentler, 2007). In contrast, the bootstrap-based approaches are, in principle,
readily extendable to multiple levels of nesting and require no explicit articulation
of a likelihood function. That said, there is little theoretical or empirical work on
the performance of bootstrap methods with nested or clustered data, particularly
when there are multiple levels of nesting.

There are many possible approaches to bootstrapping multilevel data. Van der
Leeden, Busing, and Meijer (1997) referred to these methods in three different
classes: 1) Parametric bootstrap approaches, which use the parametrically esti-
mated distribution function of the data to generate bootstrap samples. (p. 9).
2) Residual bootstrap methods, such as those discussed in Carpenter, Goldstein,
and Rasbash (1999), where level-1 and level-2 residuals are resampled, and 3) the
non-parametric “cases” bootstrap, where the observed data is resampled with

replacement.

4.1 The non-parametric bootstrap for clustered data

This dissertation uses a multilevel version of the non-parametric cases bootstrap,
called the cluster bootstrap, where intact clusters (groups) are resampled (Davison
& Hinkley, 1997). In a two level model, this would mean resampling at level-2
only. This cluster bootstrap has been shown to provide consistent estimates of
variance and covariance components in balanced univariate two-level models (Field

& Welsh, 2007), and functions well even for unbalanced univariate data (Samanta
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& Welsh, 2013). Recent work by Ren et al. (2010) examined several different
variations of the cluster bootstrap and concluded that, for arbitrary group sizes,
the best bootstrap scheme samples with replacement from the highest level. Ren
et al. (2010) investigated the cluster bootstrap in both two and three level models.
In addition, the cluster bootstrap is non-parametric, meaning no distributional
assumptions are made on the observed variables. Non-parametric bootstraps
such as the cluster bootstrap provide better estimates of model parameters than
parametric bootstrap methods under arbitrary distributions, and when there is
excessive kurtosis or skew in the observed variables. Results in Samanta and Welsh
(2013) suggested that the cluster bootstrap also outperforms other non-parametric
methods, such as the residual-based bootstrap.

While some sources (Timmerman, Kiers, Smilde, Ceulemans, & Stouten, 2009;
Van der Leeden et al., 1997) have suggested that a multilevel bootstrap resam-
pling plan should reflect which levels in the hierarchy are considered random,
(Timmerman et al., 2009, p. 299), and thus, a two stage bootstrap should be used
where first groups are resampled, and then individuals are resampled within those
groups, theoretical work by Field and Welsh (2007) suggested that this sort of
cluster bootstrap does not produce consistent estimators for variance components
unless both the number of individuals in each group, n;, and the number of groups,
J, both tend to oc.

Thus, the non-parametric cluster bootstrap proposed here proceeds in the following

way for the two level models (students nested in teachers):

1. Use a cluster bootstrap scheme to create B bootstrap samples, selecting J

groups with replacement from the original sample.
2. Estimate E*B, the between-level covariance matrix for each bootstrap sample.
3. Calculate V = cov(f]’g) across the B bootstrap samples.

4. Estimate ', the asymptotic covariance matrix, as r oot = JV, where J
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describes the number of groups in the sample.

The inverse of this estimated asymptotic covariance matrix, fjglOOT can be used as
a weight matrix to obtain parameter estimates in the ADF discrepancy function
(Equation 3.7). Correspondingly, fElOOT can be used to obtain Typr, and Toapr
as given in Equations 3.36 and 3.38, and ADF standard errors (Equation 3.39).
fBOOT can also be used to obtain robust standard errors (Equation 3.42) the
rescaled test statistic Tgrarr, (Equation 3.40), and the residual based test statistics
Trapr and Tegpapr (Equations 3.43 and 3.44).

The non-parametric cluster bootstrap for three level models (students nested in

teachers nested in schools) proceeds similarly:

1. Use a cluster bootstrap scheme to create B bootstrap samples, selecting K

level-3 groups with replacement.

2. Estimate i%@ the between-subgroups covariance matrix for each bootstrap

sample.
3. Calculate V = cov(¥i) across the B bootstrap samples.

4. Estimate 'y, the asymptotic covariance matrix, as Croor = J V', where J

describes the number of subgroups in the sample.

As in the case of the two-level cluster bootstrap, this estimated asymptotic covari-
ance matrix can be used to obtain estimates of parameters and standard errors, as

well as the ADF, rescaled and residual based test statistics Tapr, Toapr, TryL,

Trapr and Torapr-
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CHAPTER 5

Methods

This dissertation investigates four issues that examine the performance of the
segregating approach to multilevel factor analysis under real world conditions: 1)
The efficiency of the segregating approach compared to the partially saturated
model method in the estimation of parameters in two-level models. 2) The
comparative performance of ADF estimation based on fGEE and fBOOT in the
segregated analysis of Sh 3) The extension of the bootstrap-based method to
three-level models. 4) The application of these bootstrap methods to a realistic
dataset to investigate the dimensions of professional practice that are discernible
in a state-wide student survey of instructional quality. Topics 1-3 are investigated
using two simulation studies. Topic 4 is investigated through an application to
an empirical data set. The simulation studies and empirical demonstration are

described in detail in this chapter.

5.1 Simulation study 1: two-level factor analysis and the

segregating method

The first simulation study examined the relative efficiency of the segregating
approach, as compared to the partially saturated modeling method described in
Section 3.5 (research topic 1), and examined the performance of ADF estimators
based on f‘GE £ and r poor under conditions likely to be encountered in realistic

settings with student survey data (research topic 2). In order to do this, data was
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Figure 5.1: Generating model for study 1

Between

Within

generated over a range of conditions of item intraclass correlations (ICCs), within
group sample sizes, total numbers of groups, and model sizes. For all conditions,
data were generated from multivariate normal distributions and a population model
with two within-level factors and one between-level factor. This population model
was selected because several sources suggest that the between-level factor structure
is likely to be simpler than the structure at the within-level (e.g., Holfve-Sabel
& Gustafsson, 2005; B. O. Muthén & Asparouhov, 2011). However, because the
level-1 and level-2 covariance matrices were made independent by the design of
the simulation, the generating model at level-1 should not influence the model at
level-2 (e.g., Ryu & West, 2009). An illustrative path diagram with six items for
this population model is given in Figure 5.1. The factor variances are set to 1, the
between-level factor loadings, Ap are all equal as are the uniquenesses eg. At the
within level, all factor loadings (Aw) are equal, as are the uniquenesses (e ). Note
that e may not equal €y, and A\ may not equal Ay. The covariance between

the latent factors (¢y) was set to .3.
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Each simulation condition consisted of 500 replications. For the bootstrap-based
analyses, 500 bootstrap samples were used. Simulations were conducted using
MPlus’s Monte Carlo capabilities. For each of the replicated data sets, MPlus
(L. K. Muthén & Muthén, 2010) and the MPlusAutomation package (Hallquist &
Wiley, 2013) in R (R Core Team, 2013) were used to obtain saturated estimates
of ¥ and Xy. Once these two covariance matrices had been obtained, model
parameters, standard errors and the test statistics Tapr, Tocapr, Tvr, Tryr,
Trapr and Torapr were estimated in EQS (Bentler, 2006) using the REQS
package (Mair & Wu, 2012) in R. In all cases, the correct model was fit to the

simulated data.

5.1.1 Simulation conditions for study 1

Simulation conditions were selected in order to reflect the range of conditions
that are commonly reported in survey-based research on classroom climate. Four
simulation conditions were manipulated. These include: 1) the level-2 sample size,
2) the level-1 sample size (i.e. the level-1 units per level-2 unit), 3) the item ICCs,
and 4) the size of the measurement model. A brief description of each of these

conditions follows.

5.1.1.1 level-2 sample size

Three different level-2 sample sizes were included in this simulation: J = 50,
J =100, and J = 200. The range of level-2 sample sizes that were included in
the simulation reflects the range of sample sizes reported in the applied literature.
Sample sizes of around 50 classrooms are not uncommon (e.g., Holfve-Sabel &
Gustafsson, 2005; Toland & De Ayala, 2005). Fauth et al. (2014) reported results
based on 89 classrooms, and Kunter et al. (2008) reported results based on 323

classes.
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5.1.1.2 level-1 sample size

Three different level-1 sample sizes were included in this simulation: n = 10,
n = 30, and n = 50. Because class sizes tend to be directly influenced by national,
state or local policies, there is less reported variation in the number of students
within each classroom in the applied literature. These sizes range from around
12 student per class (Kunter et al., 2008) to approximately 25 students per class
(Holfve-Sabel & Gustafsson, 2005).

5.1.1.3 Item intraclass correlations

Four different ICC conditions were included in simulation: /CC = .05, IC'C = .10,
ICC = .26, and ICC = .50. Marsh et al. (2012) noted that, generally speaking,
item ICCs for climate variables are “often less than .1 and rarely greater than
3" (p. 115). This is consistent with reported item ICCs in the applied literature.
Toland and De Ayala (2005), for example, reported ICCs that range from .06 to
.43. den Brok, Stahl, and Brekelmans (2004) reported ICCs ranging from .06 to
.24.

ICCs were varied across simulation conditions by altering the within-level factor
loadings and uniquenesses. For all conditions, A\ = .7and e = .51. For the
1CC = .50 condition, \yy = .7 and ey = .51. For the ICC = .26 condition,
Aw = 141 and ey = 2.00. For the ICC = .10 condition, A\ = 4.59 and
ey = 2.10. For the ICC = .05 condition, Ay = 3.08 and ey = 9.50. This was
done in order to keep the proportion of reliable variance at the between-level (i.e.,
the variance in the latent means that is accounted for by the factor) constant
across simulation conditions. Previous simulation work (Hox et al., 2010) has
indicated that changing indicator reliability across simulation conditions can make

the interpretation of results difficult.
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5.1.1.4 Model size

Two different model sizes were used. One with 6 observed variables and 9 degrees
of freedom, and one with 12 observed variables and 54 degrees of freedom. Because
classroom climate is a complex and multidimensional construct, it is typically
assessed using a large number of survey items. This leads to measurement models
that are relatively large. The smaller measurement models reported in the literature
contain around 25 degrees of freedom (Kunter et al., 2008). den Brok et al. (2004)
tested a variety of measurement models with approximately 60 degrees of freedom.
Toland and De Ayala (2005), Fauth et al. (2014) and Holfve-Sabel and Gustafsson
(2005) used between-level factor models with over 150 degrees of freedom.

In total, the simulation contained in 3 X 3 x 4 X 2 = 72 conditions and a total of
72,000 replications (36, 000 using GEE methods, and 36, 000 using bootstrap-based
methods). While certain constellations of conditions may be unlikely to occur in
practice (i.e. many, large classrooms, high ICCs and a small model), the inclusion

of conditions across this range allows for a more comprehensive investigation.

5.1.2 Measures of performance for simulation study 1

Because the data were generated under the assumption of multivariate normality
with known population parameters, it is possible to describe I'g exactly. Specifically,
results in Yuan and Bentler (2006) imply that I'p is given by the inverse of the
Fisher Information:

Ty— W+ % (0 — 1)Wiy) ™" (5.1)

Note that:
Wy = 5D] S @ $1D, (5.2)

74



where Xy is the within-groups covariance matrix as defined in Equation (3.22).
Also note that:
W, = 5D 5" ® 2D, (5.3)

where ¥X; =Yg + %ZW. In this paper, I'g given in Equation 5.1 is referred to as
U'risHER

Toisppr can be used in the generalized least squares discrepancy function in
Equation 3.4 to obtain consistent estimates of parameters and a chi-square test
statistic. This test statistic, called Trrsygpr in this dissertation, is asymptotically
distributed as a central chi-square variate under the null hypothesis. In addition,
['rrsuer can be used to calculate the correct standard errors (based on Equation
3.39). Because of this, I'r;sypr provides a good basis of comparison for the
performance of the standard errors and for the asymptotic performance of the test
statistics estimated using f‘GEE and I poor (Yung & Bentler, 1994). In addition,
the accuracy of the estimation of f’GE £ and r oot themselves can be appraised by
comparison with I'prsypr . Research topics 1 and 2 will be investigated through

the following sources of information:

1. Relative efficiency. In order to compare the efficiency of the partially saturated
model method and segregating approach, the ratio of the mean square errors

of the parameter estimates was compared (e.g., Hoel, Port, & Stone, 1971):

E(lspe — 0)?

E(éSAT oy (5.4)

e(éSAT, éSEG) =

If e < 1, the segregating approach would be preferable to the partially
saturated model method. e can be used to compare the relative efficiency of
parameter estimation using ADF and ML estimators in conjunction with the
segregating approach to the estimation of parameters using the ML estimator

in conjunction with the partially saturated model method.
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2. Parameter bias. Parameter bias is given by E(6 — ) (e.g., Flury, 1997).
Bias was monitored for all estimated factor loadings in all conditions for all

estimators.

3. Mean square error. Mean square error (MSE) is given by: E(f — 6)2.
MSE provides a way to assess the accuracy with which parameters are
estimated. Mean square error is the sum of the parameter variance and
squared bias (e.g., Flury, 1997). So for unbiased parameter estimates, MSE
quantifies the sampling variance of those parameters (e.g., Liiddtke, Marsh,
Robitzsch, & Trautwein, 2011). An estimator is considered consistent if
lim, 0o (MSE(#)) = 0 (e.g., Flury, 1997). MSE was monitored for factor

loadings for each estimator across all conditions.

4. Standard errors. The accuracy and consistency of the standard errors was
assessed by monitoring the estimated standard errors for each simulation
condition. The performance of standard errors obtained either through ML
estimation, or through ADF methods (based either on the Lepp or on r BOOT)
can be compared to standard errors based on I'r;sggr, which are known to
be correct under normality. In this analysis, standard error estimates were
compared based on compared based on the square of the L2 norm (Horn &
Johnson, 2012):

D? = ||SE — SErisuerl)? (5.5)

The smaller the value of D?, the closer the estimated standard error is to the
correct standard error given by SEr;sper. Analogous to the case of MSE,
if D? — 0 as sample size increases, the ML or ADF estimator can be called

consistent (e.g. Yuan & Hayashi, 2006).

5. Type I error rates. For each estimated test statistic, an empirical model
rejection rate was calculated. For the purpose of this study, the rejection

rate was calculated at the nominal @ = .05 level. Because it is expected
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that the empirical error rates will differ somewhat from the nominal rate,
an acceptable empirical error rate is taken as one that falls in the interval
[.028, .079], the estimated 2-sided 99% adjusted Wald confidence interval
(e.g., Agresti & Coull, 1998).

6. Test statistic means and standard deviations. Means and standard deviations
of the test statistics were estimated for each condition, based on fitting the
correct model to each replicated data set. For a well-behaved test statistic
(e.g. Curran et al., 1996), the observed means and standard deviations should
be close to the theoretical values. For a central chi square distribution, the

mean is given by d, the degrees of freedom, and the variance is given by 2d.

7. Q-Q Plots. Presented for each estimated test statistic (Tapr, Tcapr, Ty,
Tryvr s TrRapr , Torapr , and Trrsppr). Q-Q plots of test statistic distribu-
tions help visualize the empirical sampling distribution of the test statistics,
and provide information about the overall distribution of a test statistic. Q-Q
plots are particularly helpful at showing deviations from expected statistic

distribution in the tails (Gnanadesikan, 1977).

8. Asymptotic covariance matrices. In addition to test statistics, f‘GEE and
I'soor were monitored, and compared through their square distances from
Trrsupr: D? = |Jvech(T) — vech(Tprsper)||?. The smaller the value of

D?, the closer the estimated asymptotic covariance matrix is to the correct

matrix given by I'rrsger.

5.2 Simulation study 2: three-level models

Study 2 addresses the third research question, regarding the expansion of the
segregating approach to three-level models. There is very little literature that

explicitly considers models with three levels. While several sources (Goldstein,
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2003; Longford & Muthén, 1992; Yau et al., 1993; Yuan & Bentler, 2007) describe
theoretically the extension of two-level factor analytic frameworks to three levels
and beyond, only Yau et al. (1993) provided an empirical demonstration of this
method. As far as this author knows, no published studies have applied three-level
factor analysis techniques to the analysis of student surveys of professional practice.
Ren et al. (2010) demonstrated the three-level cluster bootstrap, but did not apply
the technique on multivariate data.

This dissertation uses a simulation study to provide an empirical verification that
the cluster bootstrap can be used to extend estimation methods to three-level
data sets (research topic 3). Because the possible combinations of simulation
conditions for three-level models are exponentially larger than those with two
models, simulation study 2 is significantly smaller than simulation study 1, and
focuses specifically on one set of conditions likely to be encountered in student
survey research or in the use of student ratings to evaluate professional practice.
Simulation study 2 explored the estimation of parameters, and the behavior of test
statistics in the segregated analysis of Swe, the between subgroups level covariance
matrix. In simulation study 2, ML estimation was used, as this estimator showed
the best performance in simulation study 1, and only the test statistics computed
under ML estimation— Trapr, Tocrapr and Try—were explored in simulation
study 2.

Data were generated from multivariate normal distributions and a population
model with one level-1 factor, one level-2 factor, and one level-3 factor. While
the generating model in simulation study 1 contained three factors at level-1 (the
within level, see Figure 5.1), the model in simulation study 2 was made simpler
in order to decrease the computational demands of the simulation. It was also
hypothesized that, because the level-1, level-2 and level-3 covariance matrices were
made independent by the design of the simulation, the generating models at level-1

and level-3 should not influence the model at level-2 (e.g., Ryu & West, 2009). An
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illustrative three-level path diagram with six items for this population model is
given in Figure 5.2. The factor variances are set to 1, and within each level, the
factor loadings are all equal, as are the uniquenesses. However, A\g # Awa # A\waok,
and eg # ey # ewak- Each simulation condition consisted of 250 replications.
Fewer replications were included in this study because the cluster bootstrap and
the estimation of the covariance matrices was more computationally intensive
than in study 1. Each replication took between 5 and 7 minutes on a quad-core
i7 processor (a little over 1 day in total) . Simulations were conducted using
MPluss Monte Carlo capabilities. For each of the replicated data sets, MPlus
(L. K. Muthén & Muthén, 2010) and the MPlusAutomation package (Hallquist &
Wiley, 2013) in R (R Core Team, 2013) were used to obtain an estimate of Xy ¢.
Model parameters and test statistics were estimated in EQS (Bentler, 2006) using
the REQS package (Mair & Wu, 2012) in R. The correct model was fit to each

simulated data set.

5.2.1 Simulation conditions for study 2

Because only a single set of conditions was included in simulation study 2, the
model parameters and sample sizes were selected based on the data set that will
be used in the empirical illustration. Specifically, the first six items from the
Opportunity to Learn (OTL) Survey, a student survey of instructional practice
that has recently been implemented in the state of New Mexico, were used as
observed indicators. Level-1, level-2 and level-3 sample sizes were also inspired by
the classroom and school configurations in the OTL data set. Complete details on
the OTL survey are provided in the next section. For the purposes of simulation
study 2, the OTL survey was used only to provide a set of conditions that would
approximate real-world conditions. Using the OTL survey in this way helps to

improve the generalizability of the findings from the single simulation condition to
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subsequent real-world applications. The population factor loadings were obtained
in the following way: 1) The three-level model given in Figure 5.2 was fit to
six variables from the OTL survey data. Only six variables were used because
this resulted in a between subgroup (level-2) measurement model with 9 degrees
of freedom, the same as the small model conditions used in simulation study 1.
2) Model parameters were estimated, and then used to inform the population
parameters in a data generating model, which was also based on the model given
in Figure 5.2.

Specifically, the factor loadings and uniquenesses obtained by fitting the model in
Figure 5.2 were A\ywagx = .528, Awg = .271 A\g = . 177. ewax = 1.25, ey = .05,
and e = .01. This pattern of factor loadings and unique variances implies level-2
ICCs of .07, and level-3 ICCs of approximately .025. A total of 110 groups were
included in the sample, with 17,600 individuals. This translated to a level-1 sample
size of 20 (20 individuals per subgroup), and a level-2 sample size of 8 (8 subgroups
per group). Performance of the cluster bootstrap approach in the three-level
case will be monitored using measures of performance analogous to those used in

Simulation 1:

1. Parameter bias. Bias was monitored for all estimated factor loadings in all

conditions.

2. Mean square error. MSE was monitored for all estimated factor loadings in

all conditions.

3. Type I error rates. For each estimated test statistic, an empirical model
rejection rate was calculated. For the purpose of this study, the rejection
rate was calculated at the nominal o = .05 level. Because it is expected
that the empirical error rates will differ somewhat from the nominal rate,
an acceptable empirical error rate is taken as one that falls in the interval

[.020, .095], the estimated 2-sided 99% adjusted Wald confidence interval
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(e.g., Agresti & Coull, 1998).

. Test statistic means and standard deviations. Means and standard deviations
of the test statistics were estimated for each condition, based on fitting the
correct model to each replicated data set. For a well-behaved test statistic
(e.g. Curran et al., 1996), the observed means and standard deviations should
be close to the theoretical values. For a central chi square distribution, the

mean is given by d, the degrees of freedom, and the variance is given by 2d.

. Q-Q Plots. Presented for each estimated test statistic (Trarn, TraDF,
Terapr). Q-Q plots of test statistic distributions help visualize the em-
pirical sampling distribution of the test statistics, and provide information
about the overall distribution of a test statistic. Q-Q plots are particularly
helpful at showing deviations from expected statistic distribution in the tails

(Gnanadesikan, 1977).
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Figure 5.2: Generating model for study 2

Level 3

Level 2
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5.3 Empirical illustration: the New Mexico Opportunity

to Learn survey

In order to investigate the fourth research topic, statewide data from the New
Mexico Opportunity to Learn student survey was used to illustrate 1) how the
segregated approach can be used to investigate the dimensions of instructional
practice that are discernible based on aggregated student responses and 2) how
those factors relate to outcomes of interest. Specifically, this empirical illustration
builds on the two simulation studies by demonstrating how the cluster bootstrap

can be applied to a real data set, where the population model is unknown.

5.3.1 Teacher evaluation in New Mexico and NMTEACH

In 2011, the New Mexico Effective Teaching Task Force issued a set of recommen-
dations about policies aimed at “recruiting, retaining and rewarding New Mexicos
most effective teachers and school leaders” (New Mexico Effective Teaching Task
Force, 2011, p. 4). The recommendations include a new framework for teacher
evaluation (NMTEACH) based on three sources of evidence: value added (VAM)
estimates of student achievement growth (50% of the overall evaluation); ratings
of practice based on classroom observations (25%); and locally adopted measures
(25%). The latter measures are left to the discretion of local education agencies, but
the task force does describe specifically that these multiple measure may include
“portfolios of teacher and student work, surveys of parents or students, or other
research-based measures proven to demonstrate or correlate to student learning
gains” (New Mexico Effective Teaching Task Force, 2011, p. 5). A prototype of a
student survey to be offered as part of NMTEACH, was first administered in the
2011-12 academic year with the state’s Standards Based Assessment.

The Opportunity to Learn (OTL) Survey is a 10 item survey designed to measure

the quality of instruction and the school environment. Different versions of the sur-
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vey are administered in elementary (grades 3-5) and middle and high school (grades
6-12). Each item is scored on a 6-point scale, from 0 to 5, where the categories
are 0 = never, 1 = hardly ever, 2 = sometimes, 3 = usually, 4 = almost always,
and 5 = always.

Data used in this study were collected in the 2012-2013 administration of the
OTL survey. In the 2012-2013 school year, there were 338,223 K-12 students
enrolled in the New Mexico public school system. This analysis focuses only on
the early grades version of the survey, where student raters are uniquely nested
within a single teacher. The dataset was restricted to include students that could
be uniquely linked with teachers, and to teachers with class sizes of 10 or more.
These students were enrolled in 997 school sites. This included 76,865 students
enrolled in grades 3-5. The dataset used in this study contained 63,064 grade 3-5
students with complete OTL Survey responses. This represents approximately
82% of the total student enrollment statewide in grades 3-5. These students were
nested within 3278 classrooms in 443 schools. Table 5.1 displays demographic

information for these survey respondents.

Table 5.1: New Mexico student demographics (grades 3-5)

N Percent
White 15,065 24.7%
Black or African American 1,377 2.2%
Hispanic 38,812 61.5%
Asian 946 1.5%
Native American 6,324  10.0%
Female 31,581 50.1%
Free or Reduced Lunch 46,794 74.2%
Students with Disabilities 7,083  11.2%
English Language Learner 12,269 19.5%*
Total 63,064

Note: * based on 63,013 responses
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5.3.2 Analysis Approach

The empirical illustration contains two analyses, demonstrating how the segregating
method may be used to investigate factorial structure, and to investigate how
factors relate to outcomes of interest. First, the segregating method was used to
determine the dimensions of instructional practice that are discernable based on
aggregated students responses in the OTL survey. Second, the aggregated survey
variables were used to predict student achievement growth in math and reading.

The specifics of these analyses are described in the sections that follow.

5.3.2.1 Illustrating how the segregating method can be used to deter-

mine between-teacher covariance structure

Because the elementary student data was hierarchically structured with three
levels—student, classrooms, and schools—the segregating approach was used to
analyze the between-classroom covariance matrix. Maximum likelihood estimation
was used in conjunction with the cluster bootstrap estimate of the asymptotic
covariance matrix, so that rescaled and residual-based test statistics could be used
in model appraisal, and robust standard errors could be used to make inferences
about model parameters.

Opportunity to Learn is a broadly defined construct that has often been found
to be a strong predictor of student achievement (e.g., Brophy & Good, 1986;
Guiton & Oakes, 1995; Murphy, 1988; Saxe, Gearhart, & Seltzer, 1999; Walker
& Schaffarzick, 1974; Wang, 1998; K. B. Wu, Goldschmidt, Boscardin, & Sankar,
2009). The OTL survey focuses on one specific aspect of Opportunity to Learn,
the “quality of instructional delivery”, defined as the variety of teaching strategies
teachers use in order to meet the educational needs of all students. (Brophy &
Good, 1986; Stevens & Grymes, 1993; Stigler & Stevenson, 1992).

While “Quality of Instructional Delivery” could be thought of as a unidimensional
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Figure 5.3: Unidimensional model for Opportunity to Learn survey

construct, it is also possible that there are discernible subdimensions that exist
in addition to overall quality of instruction. For example, Kunter et al. (2008)
identified the concept of “social support”, which refers to the extent to which a
teacher creates “a supportive social environment in which students receive personal
guidance and feel personally valued” (p. 471). Another dimension that is often
discussed in relation to instructional practice concerns how teachers communicate
the “value interest and intrinsic reasons inherent in schoolwork” (Patrick, Turner,
Meyer, & Midgley, 2003, p.1525). In other words, the extent to which teachers
provide students with a sense of trajectory—where the content comes from, where
it goes next, and how it connects to other bodies of knowledge.

Because there are two different theoretically possible positions here—namely that
instructional quality is unidimensional, or that there exist discernible subdimensions
of instructional quality—two different a priori models were fit to the OTL survey
data (MacCallum, Roznowski, Mar, & Reith, 1994). These include a unidimensional
model and a bifactor model. These models are described below. For each model,
only the between teacher level covariance structure is described. For simplicity,
error variance and factor variances have been omitted from the diagrams. The
unidimensional model (Figure 5.3) would support a theory that students, on
average are able to discern differences in overall instructional practice across
teachers, but are unable to make finer distinctions about specific aspects of teacher
practice. The bifactor model (Holzinger & Swineford, 1937) (Figure 5.4) can be

used to examine the possibility that there is a common factor, and also additional
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specific factors “caused by parcels of items tapping similar aspects of the trait”

(Reise, Moore, & Haviland, 2010, p. 549). The model used in this analysis is an

Figure 5.4: Bifactor model for Opportunity to Learn survey

“incomplete” bifactor model (Chen, West, & Sousa, 2006) and it differs from a
canonical bifactor model in that not all of the items load onto the general factor
and one other specific factor. In this case of the OTL survey, this model suggests
that there is one underlying general trait (instructional practice), but that there are
subgroups of items “tapping on similar aspects of this trait” (p. 549)—specifically,
the three items that are about social support and the extent to which “students
receive personal guidance” (Kunter et al., 2008, p. 471) (social support), and two
items that are about the extent to which teachers provide students with a sense of
trajectory (context). It should also be noted that generally speaking, when the
specific factors have only two indicators, the model will not be identified without
additional constraints (see Devena, Gay, and Watkins (2013) for an illustrative
example).

Model selection was based on chi-square tests and three fit indices: the Root Mean
Square Error of Approximation (RMSEA) (Steiger & Lind, 1980), the Comparative
Fit Index (CFI ) (Bentler, 1990) and the average absolute standardized residual.
Research has suggested these indices can be helpful for assessing model fit (Browne,

MacCallum, Kim, Andersen, & Glaser, 2002; Tomarken & Waller, 2003).
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5.3.2.2 Illustrating how the segregating method can be used to inves-

tigate relationships with external variables

In order to illustrate how the segregating method may be used to investigate
relationships between teacher-level variables and external criteria, VAM scores
were computed for each teacher in both math and reading, based on student
performance on the New Mexico Standards Based Assessments (SBAs). This
analysis differs from the previous analyses, in that the VAM scores do not have
any within-class variation. In this sense, this analysis is of the type described in
Section 3.7, and given in Equation 3.59, where VAM scores are measured at the
teacher level, and contain only between classroom and between school variance
components. As was described in Section 3.7, even when variables with level
restricted variation are included, estimators such as those given in Equation 3.54
can still be used to obtain consistent estimates of the between-classroom level
covariance matrix.

VAM scores were computed following the methodology outlined in T. J. Kane et
al. (2013). The estimated VAM scores describe the extent to which students of a
particular teacher, on average, performed relative to similarly situated students
(T. J. Kane et al., 2013).

The estimated VAM scores were used as external variables in a latent variable
model with the general and domain specific factors acting as predictors (Figure 5.5).
In this model, £, and B4 refer to the relationship between general instructional
practice and VAM scores. (o, 3, B5 and [ describe the extent to which the
specific factors context and social support predict VAM scores above and beyond

the general instructional practice factor.
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Figure 5.5: Bifactor model for predicting estimated teacher value added scores
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CHAPTER 6

Simulation Study Results

This chapter presents and discusses results from the simulation studies investigating
the first three research topics. First, it presents results regarding the relative
efficiency of the segregating approach compared to the partially saturated model
method in the estimation of parameters in two-level models. Second, it presents
results on the comparative performance of GEE-based ADF, cluster bootstrap-
based ADF and ML estimators in the segregated analysis of 3. Third, the cluster
bootstrap is extended to three level models, and applied to the segregated analysis
of the between-subgroups covariance matrix Swe. The results are organized by
research question and the chapter closes with a synthesis and a discussion of the

results.

6.1 The relative efficiency of the segregating approach

Tables 6.1 and 6.2 display the relative efficiency of the parameter estimates obtained
from the segregating approach and the partially saturated model method across all
simulation conditions. The relative efficiency was determined by the ratio of the
mean square errors of the parameter estimates from the partially saturated model
method and the segregating approach. If this ratio is less than 1, the segregating
approach would be preferable to the partially saturated model method. If the ratio
is greater than 1, the partially saturated model method would be preferable to the
segregating approach.

Because the segregating approach used three different estimators (ML estimation,
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Table 6.1: Efficiency of the segregating method, relative to the partially saturated
model method, df =9

Group Sizes
10 30 50

ML GEE Boot ML GEE Boot ML GEE Boot

J=200 ICC=.50 1.00 109 107 100 1.09 1.07 100 1.12 1.11
Icc=.26 100 110 108 100 1.09 107 100 1.13 1.10
icc=.10 1.02 122 118 101 1.11 1.10 100 1.18 1.10
Icc=.05 090 1.29 1.10 1.02 1.22 1.15 1.01 1.14 1.10

J=100 ICC=.50 1.00 1.26 1.2/ 100 1.16 1.16 1.00 1.20 1.19
icc=.26 100 129 128 100 1.19 1.17 100 1.22 1.20
Icc=.10 0.83 128 1.12 101 1.25 1.24 100 1.26 1.24
ICC=.05 048 0.80 0.69 104 1.52 1.3%3 1.01 1.40 1.30

J=50 ICC=.50 1.00 1.82 172 1.00 1.52 1.57 1.00 1.58 1.5
icc=.26 100 167 1.77 100 1.60 1.67 1.00 1.58 1.5/
cc=.10 0.14 0.25 0.24 102 1.8 1.71 100 1.62 1.57
ICC=.05 0.13 0.21 0.17 042 0.80 0.70 0.88 1./} 1.1

and ADF estimation with two different estimates of the asymptotic covariance
matrix, fg eE, and I poor), three different ratios are reported for each simulation
condition. In both tables, conditions where the partially saturated model method
was considerably more efficient (at least 5% more efficient) are shown in italics,
and conditions where the segregating approach is more efficient are shown in
bold. Table 6.1 displays results for the small model size condition df = 9. These
results suggest that there is, in general, no loss of efficiency that comes from
using the segregating method in conjunction with maximum likelihood estimation,
because most of the ratios are less than or equal to 1 across all model conditions.
Supporting the hypotheses of Yuan and Bentler (2007), there is even a gain in
efficiency for the segregating method as the ICCs get smaller and the group sizes
get smaller. At ICC = .10 and IC'C = .05 with a small number of groups and
only 10 individuals in each group, the segregating method is far more efficient than
the partially saturated model method, with ratios as small as .13 (ICC = .05,
n =10, J = 50).

The ADF estimators are, in general, less efficient than the partially saturated

model method, and the cluster bootstrap produces slightly less efficient estimates
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Table 6.2: Efficiency of the segregating method, relative to the partially saturated
model method, df = 54

Group Sizes
10 30 50

ML GEE Boot ML GEE Boot ML GEE Boot

J=200 ICC=.50 1.00 1.82 1.63 1.00 1.85 1.65 1.00 1.80 1.60
Icc=.26 100 220 185 100 1.88 1.69 100 1.82 1.61
ICC=.10 096 3882 239 100 205 1.7 100 1.86 1.72
ICC=.05 070 212 288 099 251 1.96 099 210 1.84

J=100 ICC=.50 1.00 4.54 4.17 1.00 4.34 4.29 1.00 4.10 3.83
ICC =26 099 4.75 4.52 1.00 4.58 4.46 1.00 3.89 4.02
IcC=.10 0.72 3.27 294 099 505 507 100 4.1, 4.07
ICC=.05 051 172 1.56 0.9 4.58  4.42 099  4.57 4.28

J=50 ICC=.50 1.00 1.00 1.00
1CC = .26 0.96 1.00 1.00
I1ICC =.10 0.64 0.98 0.99
1CC =.05 0.55 0.70 0.86

than the GEE-based estimator. This is not unsurprising, as, under normality,
ML estimation is expected to be asymptotically most efficient. However, what
is surprising is that at low ICCs (/CC = .05), small group sizes, and a small
number of groups, both segregated ADF approaches are more efficient than using
ML estimation in the partially saturated model method. This pattern of results
can also be seen in the larger models (df = 54), which are displayed in Table 6.2.
Again, there is no loss of efficiency that comes from using the segregating method
in conjunction with maximum likelihood estimation. For all ICC conditions, group
sizes, and numbers of groups, the segregating approach is at least as efficient as
the partially saturated model method. And, while there is a gain in efficiency for
the segregating approach at small ICCs and group sizes, the relative performance
of the two methods is much more comparable.

The ADF estimators, are, in general, far less efficient than the saturating approach,
and the ADF approach employing Cerr appears slightly more efficient than the
ADF approach using Tzoor . Unlike the case with smaller models, ML estimation
in the partially saturated model method is more efficient than the segregating

method at all ICC and within-group sample size conditions. Note that ADF-

92



estimation was not possible with 50 groups and the larger models (df = 54),
because fg g and f‘G pE are, in general, not invertible under these conditions, and

estimates are not computed by EQS.

6.2 Comparative performance of ADF and ML estimators

in the segregated analysis of Sp

6.2.1 Parameter bias

Figures 6.1 and 6.2 present plots of the estimated parameter bias based on four
different estimators, so that the performance of the GEE and cluster bootstrap
based approaches can be assessed and compared. The upper panel of each plot
displays parameter bias based on estimation using I'rrsgrr. Recall that I'prsgpr is
correctly specified under normality, and so parameter estimates based on I'rrsrEr
should be consistent. The second panel displays parameter bias for the ML
estimator. Note that the use of the bootstrap does not influence the ML parameter
estimates. This is because the ML discrepancy function (Equation 3.12) uses only a
model implied matrix and the sample covariance matrix to estimate optimal model
parameters. The third panel displays parameter bias based on ADF estimation
using fGEE and fBOOT, the GEE and cluster bootstrap estimates of I'g. The
GEE-based estimates are represented by black circles (o), and the cluster bootstrap
based estimates are represented by black triangles (A). Figure 6.1 displays only
information for the small models (df = 9), and Figure 6.2 displays information
for the large models (df = 54). If parameters were unbiased, the dots in each plot
panel should be in a straight vertical line above the value of 0 on the horizontal
axis. The patterns of bias are similar for the ADF and ML estimators. There is
a slight negative bias in parameter estimates for all estimators when either: 1)
level-2 sample sizes are small 2) within group sample sizes are small 3) ICCs are

low. However, as the number of groups increases, this negative bias disappears for
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Figure 6.1: Parameter bias by estimator: df =9
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all level-1 sample size and ICC conditions. The trend across the plots in Figure
6.1 demonstrates that for sufficient numbers of groups, all of the estimators yield
unbiased parameter estimates. Additionally, there is little difference between using
ADF estimation in conjunction with fGEE and T Boor , showing that the cluster
bootstrap based estimator can yield unbiased parameter estimates for sufficiently
large level-2 sample sizes. Figure 6.2 shows parameter bias plots for the larger
models (df = 54). Note that ADF estimation was not possible with 50 groups
and the larger models (df = 54), because f‘GEE and f‘BOOT are, in general, not
invertible under these condition and ADF estimation is not available in EQS.

For larger models, patterns of parameter bias are similar to the small models
(df =9). Specifically, as level-2 sample size increases, parameter bias decreases and
becomes negligible for all estimation methods. However, there are slightly larger
differences between the bootstrap and GEE-based ADF estimators at smaller
sample sizes (J = 100), implying that the GEE-based estimator may outperform
the bootstrap-based estimator for large models and small level 2 sample sizes.
These differences are also more extreme for smaller ICCs. That is, for /CC' = .50,
the difference between ADF and bootstrap-based estimators is relatively small
(Figure 6.2a). But for ICC = .10, the difference is larger (Figure 6.2g), and for

ICC = .05, the difference is quite pronounced (Figure 6.2).

6.2.2 Variability of parameter estimates

Figures 6.3 and 6.4 present plots of the overall accuracy and sampling variability
of the parameter estimates for four different estimators. Accuracy and variability
of the parameter estimates was quantified using the mean square error (MSE).
Mean square error can be thought of as the sum of variance and square bias. Thus,
for unbiased parameters, MSE quantifies the sampling variability of the parameter
estimates. Estimators are called consistent if lim,, o, (M SE(#)) = 0. The upper

panel of each plot displays MSE based on estimation using I'r;sgpr. The second
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Figure 6.2:

Parameter bias (n=10)
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panel displays MSE based on the ML estimator. The use of the bootstrap does not
influence the ML parameter estimates. The third panel displays MSE based on
ADF estimation using f‘G gE and r soor- The GEE-based estimates are represented
by black circles (o), and the cluster bootstrap based estimates are represented
by black triangles (A). Figure 6.3 displays only information for the small models
(df = 9). Figure 6.4 displays only information for the large models (df = 54).
Lower MSE would imply that the dots in each panel should be towards the left,
and the closer the plotted points are to the vertical axis, the lower the MSE. A
consistent estimator would result in plots that show a trend of decreasing MSE,
as sample sizes increase. For all of the estimators, regardless of within group
sample size or ICC, the MSE decreases as the number of groups increases, showing
that both ADF estimators, and the ML estimator are consistent when used in
conjunction with the segregating method. The mean square error is much larger
in conditions with low level-2 sample sizes, small within-group sample sizes, and
low ICCs (for example, the IC'C = .05, n = 10 condition in Figure 6.3j) than it
is in conditions with large level 2 sample sizes, large within-group sample sizes,
and high ICCs (for example, the ICC = .50, n = 50 condition in Figure 6.3c).
Additionally, with small level-2 sample sizes, small within-group sample sizes, and
low ICCs, the differences between the GEE and bootstrap-based estimators is more
pronounced. Specifically, the GEE- based estimator has smaller mean square error
than the bootstrap-based estimator. This pattern is also true for larger models
(Figure 6.4). Of note is the fact that, for most conditions, the ML estimator has
smaller mean square error than either ADF approach. These differences disappear

as the number of groups increase.
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Figure 6.3: Mean square error by estimator:
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6.2.3 Are the standard error estimates consistent using the segregat-

ing method?

Since standard errors for model parameters based on I'rsggr are correct under
normality (e.g. Yuan & Hayashi, 2006), the consistency of the standard error
estimates based on the ML estimator, the robust estimator, and the ADF-theory
estimators using fGEE and T’ poor were assessed using D? as given in Equation
5.5 . If these estimated standard errors are consistent, D? should approach zero
(e.g. Yuan & Hayashi, 2006).

Figures 6.5- 6.12 display results for all model conditions. Information about ML
estimated standard errors is included in both panels for reference, and shown as a
solid line. The use of GEE or bootstrap based approaches does not influence the
ML estimated standard errors. The GEE-based estimates are represented by black
circles (o), and the cluster bootstrap based estimates are represented by black
triangles (A).

From these plots, it can be seen that standard errors based on ML do not show
good convergence properties at low ICC conditions, particularly with small sample
sizes. For example, in Figures 6.7a and 6.8a, the D? value is much higher for the
ML standard errors at J = 200 than for the ADF or robust standard errors. On
the other hand, the robust standard errors and the ADF standard errors show
good converge properties—D? decreases as level 2 sample sizes increase for all
ICC and within-group sample size conditions. For J = 200, D? is essentially zero
for the robust and ADF estimators. With sufficient sample sizes (J = 200) there
is almost no difference between the standard errors based on ADF estimators
using Deer and ['goor. These results suggest that the cluster bootstrap yields
consistent standard error estimates, and specifically that for sufficient sample sizes,
the cluster bootstrap performs as well as GEE.

Similar patterns hold for the larger models (df = 54), which are displayed in

Figures 6.9-6.12. Specifically, ML estimates of standard errors do not show good
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Figure 6.5: D? plots: standard errors, df =9 ICC = .50
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Figure 6.6: D? plots: standard errors, df =9 ICC = .26
(a)

Squared Distance: Standard Errors

GEE (n=10)
ADF S
ML e
Robust  -----
2 ! ! ! !
Z0.020 -
A 0.015 o I
= 0.010 C
£ 0.005 4 L
E T T T T
3 50 100 150 200
Number of Groups
Bootstrap (n=10)
@ I I I I
20020 4 -
7
E 0.015 4 -
'% 0.010 4 -
£ 0.005 4 =
=4 -
2l T
50 100 150 200
Number of Groups
Squared Distance: Standard Errors
GEE (n=30)
ADF o
ML e
Robust  -----
g 1 1 1 1
% 0.020 o E
/A 0.015 4 -
= 0010 4 L
Z 0005 4 =
g T T
3 50 100 150 200
Number of Groups
Bootstrap (n=30)
© I I I I
g 0.020 + -
A 0015 H
'g 0.010 A I
£ 0.005 -
=y - N
k2l T T T T
50 100 150 200
Number of Groups
(c)
Squared Distance: Standard Errors
GEE (n=50)
ADF o
ML E—
Robust  -----
g 1 1 1 1
Z 0020 L
A 0015 4 L
g 0.010 A .
= 0.005 4 -
g T T T T
53 50 100 150 200
Number of Groups
Bootstrap (n=50)
© I I I I
<1
; 0.020 4 -
5 0.015 4 I
T 0010 4 -
g
£ 0.005 +
- e O
%

T
150 200

Number of Groups

102



Figure 6.7: D? plots: standard errors, df =9 ICC = .10
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Figure 6.8: D? plots: standard errors, df =9 ICC = .05
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Figure 6.9: D? plots: standard errors, df = 54 ICC = .50
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Figure 6.10: D? plots: standard errors, df = 54 ICC = .26
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Figure 6.11: D? plots: standard errors, df = 54 ICC = .10
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Figure 6.12: D? plots: standard errors, df = 54 ICC = .05
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convergence for low ICCs and small within-group sample sizes. This can be seen
clearly in Figure 6.11a and 6.12a, where the plot of D? for the ML estimator is
nearly a horizontal line. Robust and ADF standard errors based either on fG EE
or T'poor do show good convergence, and for all combinations of ICC and within
group sample size, as the level-2 sample size increases, D? decreases, and is almost
negligible at J = 200. The robust standard errors show noticeably lower D? than

the ADF standard errors at all sample sizes.

6.2.4 Test statistic distributions
6.2.4.1 Type I error rates

Tables 6.3 and 6.4 present the empirical type I error rates for all six test statistics,
as well as Trrsger, the ADF test statistic that uses I'rjsgrr. Under normality,
I'rrsuer is correctly specified, and so Tr;sgrr will have the correct asymptotic
distribution as a central chi square variate. The five test statistics that use either
Terr or T'soor, namely Tapr, Toapr, Tryr, Trapr and Togapr, are presented
side by side for direct comparison of the GEE and cluster bootstrap approaches.
Because it is expected that the empirical error rates will differ somewhat from the
nominal rate, an acceptable empirical error rate is taken as one that falls in the
interval [.028, .079], the estimated 2-sided 99% adjusted Wald confidence interval
(Agresti & Coull, 1998). Empirical rejection rates in this interval are shown in

bold.

Table 6.3: Empirical Type I error rates, df = 9.

Group Sizes

10 30 50
GEE  Bootstrap GEE  Bootstrap GEE  Bootstrap
(a) J =200
Trisger 1CC = .50 0.054 0.036 0.036
ICC = .26 0.058 0.038 0.034

109



Table 6.3 — continued from previous page

Group Sizes

10 30 50
GEE  Bootstrap GEE  Bootstrap GEE  Bootstrap
I1CC =.10 0.036 0.048 0.034
I1CC =.05 0.018 0.034 0.026
Tar I1CC = .50 0.198 0.088 0.074
I1ICC = .26 0.492 0.186 0.104
1CC =.10 0.962 0.544 0.336
ICC =.05 1.000 0.872 0.668
TryvL ICC =.50 0.074 0.076 0.064 0.066 0.062 0.062
ICC =.26 0.058 0.060 0.052 0.058 0.056 0.060
ICC=.10 0.114 0.140 0.070 0.072 0.064 0.068
ICC=.05 0.130 0.270 0.102 0.110 0.088  0.090
Tapr ICC =.50 0.090 0.094 0.086  0.096 0.078 0.104
I1ICC =.26 0.076 0.092 0.072 0.094 0.084  0.096
ICC =.10 0.066 0.110 0.072 0.090 0.082  0.088
I1CC =.05 0.012 0.128 0.070 0.106 0.072 0.090
Toapr ICC =.50 0.064 0.068 0.048 0.058 0.052 0.066
ICC = .26 0.050 0.064 0.044 0.042 0.052 0.058
ICC =.10 0.038 0.072 0.046 0.048 0.052 0.062
ICC =.05 0.002 0.094 0.044 0.072 0.052 0.058
TraADF ICC =.50 0.096 0.094 0.088  0.096 0.078  0.104
ICC =.26 0.076 0.092 0.072 0.094 0.086  0.096
ICC=.10 0.070 0.118 0.076 0.090 0.082  0.098
ICC=.05 0.026 0.152 0.072 0.110 0.076 0.098
Terapr ICC =.50 0.064 0.068 0.050 0.058 0.054 0.068
ICC =.26 0.052 0.064 0.044 0.044 0.054 0.060
ICC =.10 0.038 0.078 0.050 0.056 0.052 0.066
ICC =.05 0.008 0.122 0.048 0.078 0.052 0.054
(b) J =100
Trisper 1CC = .50 0.044 0.018 0.040
ICC =.26 0.038 0.028 0.050
ICC =.10 0.018 0.034 0.050
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Table 6.3 — continued from previous page

Group Sizes

10 30 50
GEE  Bootstrap GEE  Bootstrap GEE  Bootstrap
I1CC =.05 0.004 0.020 0.046
Trr I1CC = .50 0.190 0.092 0.102
1CC =.26 0.514 0.180 0.158
ICC = .10 0.966 0.592 0.382
I1CC =.05 1.000 0.924 0.690
TrumeL ICC =.50 0.072 0.076 0.050 0.058 0.086  0.092
ICC=.26 0.098 0.102 0.064 0.066 0.074 0.076
ICC=.10 0.198 0.266 0.086  0.094 0.086  0.096
ICC=.05 0.09 0.304 0.124 0.154 0.128 0.138
TApr ICC =.50 0.120 0.138 0.116 0.122 0.142 0.154
ICC=.26 0.124 0.128 0.112 0.114 0.138  0.152
ICC=.10 0.046 0.170 0.102 0.116 0.132  0.146
ICC =.05 0.008 0.082 0.074 0.140 0.140  0.160
ToaDpr ICC =.50 0.058 0.060 0.056 0.052 0.068 0.078
ICC =.26 0.040 0.056 0.044 0.050 0.07 0.068
ICC =.10 0.014 0.090 0.040 0.050 0.066 0.074
ICC =.05 0.002 0.026 0.024 0.074 0.064 0.092
TraADF ICC =.50 0.122 0.146 0.118  0.130 0.152  0.154
ICC=.26 0.134 0.138 0.122  0.130 0.150  0.160
ICC=.10 0.070 0.194 0.108 0.128 0.140 0.154
ICC=.05 0.020 0.148 0.086 0.178 0.150 0.170
Terapr ICC =.50 0.064 0.070 0.054 0.060 0.070 0.080
ICC = .26 0.048 0.068 0.048 0.056 0.076 0.078
I1CC =.10 0.024 0.112 0.044 0.056 0.076 0.084
ICC =.05 0.006 0.058 0.034 0.086 0.078  0.110
(¢) J =50
Trisupr 1CC =.50 0.022 0.012 0.044
ICC = .26 0.028 0.040 0.034
ICC =.10 0.006 0.010 0.040
ICC =.05 0.000 0.012 0.030
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Table 6.3 — continued from previous page

Group Sizes

10 30 50
GEE  Bootstrap GEE  Bootstrap GEE  Bootstrap
Trr I1CC = .50 0.258 0.112 0.114
1CC = .26 0.582 0.214 0.178
I1ICC =.10 0.978 0.656 0.436
ICC =.05 0.998 0.924 0.778
TrymeL ICC =.50 0.096 0.112 0.084  0.100 0.102 0.116
I1ICC=.26 0.164 0.182 0.090  0.104 0.114 0.118
ICC=.10 0.222 0.438 0.170  0.204 0.132  0.146
ICC =.05 0.096 0.240 0.124  0.356 0.128  0.304
Tapr ICC =.50 0.154 0.154 0.168 0.174 0.178  0.204
I1CC=.26 0.132 0.162 0.160  0.166 0.184 0.190
ICC=.10 0.042 0.172 0.154  0.200 0.188  0.202
ICC =.05 0.000 0.024 0.094 0.218 0.180  0.082
Teapr I1CC =.50 0.028 0.028 0.016 0.016 0.022  0.032
ICC = .26 0.028 0.038 0.026 0.036 0.026 0.034
I1CC =.10 0.000 0.020 0.016 0.044 0.024  0.042
ICC =.05 0.000 0.000 0.004 0.030 0.026  0.026
TrADF ICC =.50 0.198 0.210 0.204 0.204 0.224  0.238
I1ICC=.26 0.188 0.238 0.198  0.220 0.226  0.246
ICC =.10 0.082 0.232 0.206  0.268 0.25 0.262
ICC =.05 0.006 0.088 0.174  0.304 0.238  0.148
Terapr ICC =.50 0.054 0.054 0.036 0.042 0.066 0.074
ICC =.26 0.038 0.062 0.054 0.054 0.056 0.064
ICC =.10 0.004 0.036 0.046 0.084 0.044 0.050
I1CC =.05 0.000 0.002 0.018 0.074 0.040 0.058

As anticipated based on previous research (Schweig, 2014), because of the clustering
effect, as either ICC or within group sample size decrease Type I error rates increase

for Thr,. Thyr only has acceptable Type I error rates with small models, a larger
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number of groups, 50 individuals per group and an ICC of .50. With IC'C = .05,
n = 10, the correct model is rejected 100% of the time based on Ty, even with
a large number of groups. With larger models (Table 6.4), the empirical Type I
error rates are consistently too high for T),; across all model conditions, and never
get below .132 (ICC = .50, n = 50, J = 200). Of the six test statistics that use
either f‘GEE or I Boor , only the corrected test statistics, Toapr and Torapr show
good rejection rates over a wide range of conditions. Specifically, both T apr and
Terapr generally have empirical Type I error rates in the interval [.028,.076]. One
exception to this is when ICCs are low (/C'C' = .05) and within group sample sizes
are small (n = 10). There, the Type I error rates are too low for the GEE-based
estimator (.002 and .008, for Tcapr and Torapr, respectively) and too high for the
bootstrap-based estimator (.094 and .122, for Toapr and Tograpr, respectively).
The rescaled test statistic Trpsr, performs better than the conventional likelihood
ratio test statistic T),z, and for small models, relatively large sample sizes and
high ICCs, Tra1 has acceptable rejection rates. For example, in Table 6.3a, for
J = 200, Trasr has acceptable rejection rates at /CC' = .26 and IC'C = .50 for all
within-group sample sizes. However, when the full range of simulation conditions
are considered, it becomes clear that Ty cannot adequately control Type I errors
when group sizes are small or when ICCs are low. For example, in Table 6.3c,
Trarr, shows rejection rates above .40 when ICCs are low (/C'C = .10) and within
group sample sizes are small (n = 10).

The rejection rates in Table 6.3 also demonstrate that, for sufficient sample sizes,
the cluster bootstrap based test statistics give inferences that are consistent with
those based on GEE estimation. The Type I error rates are generally comparable
for the two approaches for all models in all conditions. In particular, if the Type I
error rate for the GEE-based test statistics are in the interval [.028,.076], nearly
80% of the Bootstrap-based test statistics are in that interval, as well.

Table 6.4 shows empirical Type I errors for the larger models (df = 54). When
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the model is large and the number of groups is small, Trapr and Typr reject the
correct model nearly 100% of the time. Even with 200 groups (Table 6.4a) the
empirical Type I error rates approach 90%. This is consistent with past results
showing that ADF test statistics converge slowly to the appropriate distribution
(e.g., Curran et al., 1996; Hu et al., 1992; B. O. Muthén & Kaplan, 1985, 1992;
Yuan & Bentler, 2003; Bentler & Yuan, 1999; Powell & Schafer, 2001). Trasr is
also unable to control Type I errors when the model is large. Even with 200 groups
(Table 6.4a), Type I error rates are as high as .600 (with /CC' = .10 and n = 10).
Whereas the rejection rates in Table 6.3 demonstrated that the cluster bootstrap
based test statistics give inferences that are consistent with those based on GEE
estimation, the results in Table 6.4 show that, for larger models, this is not the
case. Specifically, the Type I error rates for Typr and Trapr are systematically
higher for the bootstrap based approach. Even with J = 200 (Table 6.4a), the
Type I error rates for Typr and Trapr are as much as 30% larger based on the
bootstrap based approach.

The corrected test statistics, Torapr and Toapr based on the GEE estimator
show good empirical rejection rates for sufficiently large sample sizes. Specifically,
empirical rejection rates are in the interval [.028,.076] for nearly all ICC and within-
group sample size combination when J = 200 (Table 6.4a). However, when the
number of groups is small relative to the size of the model (for example, in Table
6.4b), the multilevel version of Torapr performs similarly to the conventional
version (Bentler & Yuan, 1999). Specifically, the Type I error rate is too low—in
many conditions, no models are rejected by either Torapr or Toapr. On the
other hand, the bootstrap-based versions of Terapr and Toapr are unable to
appropriately correct the statistics for larger sample sizes (Table 6.4a), and the
Type I error rates for these bootstrap-based statistics are systematically too high.
This is a direct result of the performance of the bootstrap-based Trapr and Tapr

test statistics, which are systematically larger than their GEE-based counterparts.
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For smaller level-2 sample sizes, the bootstrap-based versions of Tcrapr and
Tcapr behave like the GEE-based versions, and the observed Type I error rates

are too low.

Table 6.4: Empirical Type I error rates, df = 54.

Group Sizes

10 30 50
GEE  Bootstrap GEE  Bootstrap GEE  Bootstrap
(a) J =200
Trisger ICC = .50 0.040 0.040 0.056
1CC =.26 0.044 0.040 0.048
ICC =.10 0.028 0.038 0.05
I1CC =.05 0.006 0.038 0.054
Tyr ICC = .50 0.508 0.192 0.132
ICC = .26 0.962 0.432 0.264
ICC =.10 1.000 0.976 0.840
ICC =.05 1.000 1.000 0.996
TrymL I1CC =.50 0.082 0.082 0.088  0.090 0.084  0.086
I1CC=.26 0.172 0.188 0.102 0.110 0.092  0.092
I1CC=.10 0492 0.600 0.184 0.186 0.122  0.130
ICC=.05 0540 0.916 0.354  0.406 0.224  0.232
Tapr ICC =.50 0.638 0.782 0.648 0.772 0.654  0.796
ICC =.26 0.638 0.796 0.628  0.806 0.634  0.792
ICC=.10 0.548 0.876 0.622  0.790 0.658  0.804
ICC =.05 0.156 0.870 0.606  0.796 0.646  0.798
ToaprF ICC =.50 0.048 0.122 0.048 0.134 0.042 0.128
ICC =.26 0.054 0.138 0.05 0.126 0.052 0.134
ICC=.10 0.028 0.258 0.044 0.132 0.05 0.116
ICC =.05 0.000 0.132 0.03 0.216 0.046 0.156
TraDF ICC =.50 0.648 0.800 0.662 0.794 0.668  0.802
I1ICC =.26 0.660 0.802 0.656 0.824 0.66 0.804
I1CC =.10 0.612 0.902 0.642  0.820 0.684 0.818
ICC=.05 0.312 0.948 0.658  0.832 0.668 0.818
Toerapr ICC = .50 0.054 0.150 0.054 0.150 0.052 0.160
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Table 6.4 — continued from previous page

Group Sizes

10 30 50
GEE  Bootstrap GEE  Bootstrap GEE  Bootstrap
ICC =.26 0.068 0.176 0.058 0.152 0.056 0.164
ICC=.10 0.04 0.350 0.054 0.162 0.058 0.140
ICC =.05 0.004 0.312 0.048 0.264 0.064 0.196
(b) J =100
Trisger I1CC = .50 0.020 0.044 0.038
ICC = .26 0.016 0.048 0.036
I1CC =.10 0.004 0.032 0.040
ICC =.05 0.000 0.012 0.026
Tyr ICC =.50 0.63 0.272 0.172
ICC = .26 0.982 0.564 0.350
ICC =.10 1.000 0.992 0.894
I1CC =.05 1.000 1.000 1.000
TrymeL I1CC =.50 0.170 0.176 0.152  0.160 0.108  0.128
I1CC=.26 0.370 0.396 0.194 0.212 0.136  0.158
ICC =.10 0.768 0.904 0.37 0.402 0.234  0.248
ICC =.05 0464 0.964 0.658  0.762 0.45 0.506
Tapr ICC =.50 0978 0.984 0.986  0.998 0.972  0.990
ICC=.26 0972 0.988 0.984  0.990 0.974  0.998
ICC =.10 0.928 0.992 0.976  0.994 0.974  0.988
ICC=.05 0468 0.916 0.964 0.992 0.972  0.992
Toapr ICC =.50 0.002 0.006 0.000  0.002 0.000  0.000
ICC =.26 0.000 0.006 0.002  0.000 0 0.002
ICC =.10 0.000 0.002 0 0.002 0.002  0.006
I1CC =.05 0.000 0.000 0.002  0.004 0 0.010
TraDF I1CC =.50 0.988 0.996 0.99 1.000 0.986  0.992
ICC =.26 0.986 0.992 0.986  0.998 0.984 0.998
ICC=.10 0974 0.992 0.988  0.994 0.982  0.990
ICC =.05 0.682 0.978 0.98 0.996 0.982  0.992
Tcrapr 1CC =.50 0.008 0.018 0.006  0.006 0.006  0.010
ICC=.26 0.012 0.028 0.008 0.016 0.006  0.010
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Table 6.4 — continued from previous page

Group Sizes

10 30 50
GEE  Bootstrap GEE  Bootstrap GEE  Bootstrap
ICC =.10 0.000 0.010 0.01 0.024 0.006 0.016
I1CC =.05 0.000 0.000 0.004 0.016 0.006 0.034
(b) J =50
Tar I1CC = .50 0.788 0.380 0.288
ICC = .26 0.998 0.732 0.53
ICC =.10 1.000 1.000 0.966
ICC =.05 1.000 1.000 1.000
TryL ICC=.50 0.342 0.386 0.244  0.266 0.22 0.262
ICC =.26 0.644 0.722 0.358  0.394 0.284  0.326
ICC=.10 0.864 0.984 0.748  0.800 0.542  0.598
ICC=.05 0.226 0.926 0.914 0.99 0.834  0.902
TraDF 1CC = .50 1.000 1.000 1.000
1CC = .26 1.000 1.000 1.000
1CC = .10 0.998 1.000 1.000
1CC = .05 0.980 1.000 1.000
Terapr 1CC = .50 0.000 0.000 0.000
1CC = .26 0.000 0.000 0.000
1CC = .10 0.000 0.000 0.000
1CC = .05 0.000 0.000 0.000

When the sample size is small (J = 50) and the model is large (df = 54),
the GEE based test statistics Trapr and Terapr are not computable because
[6(0) T appoe(A)] ! (3.19) is not invertible. Interestingly, the bootstrap-based
versions of these test statistics are computable. However, the performance of these
statistics is quite poor. The bootstrap-based Trapr rejects nearly every model
in every condition (Table 6.4c). On the other hand, the corrected test statistic

Torapr failed to reject a single model. In fact, for small sample sizes and large
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models, as presented in Table 6.4c, no test statistics show adequate Type I error

rates.

6.2.4.2 Test statistic means and standard deviations

A test statistic is called well-behaved if its empirical distribution is similar to its
theoretical distribution. For the small models (df =9), the theoretical chi-square
distribution has a mean of 9 and a standard deviation of V18 & 4.24. Likewise,
for the large models (df = 54), the central chi-square distribution has a mean of
54 and a standard deviation of v/108 ~ 10.29. Thus, the empirical means and
standard deviations of the estimated chi-square test statistics should be close to
these values in order for these statistics to be considered well-behaved. However,
while the asymptotic properties of test statistic distributions are well known (with
the exception of Tryr, which is only theorized to have the correct mean), the
small sample properties are generally unknown (Bentler & Chou, 1987; Tanaka,
1987). Thus, it is important to consider not only the empirical means and standard
deviations, but also whether or not these values converge to their theoretical values

as sample sizes increase.
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Table 6.5: Test statistic means and standard deviations, df = 9.

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
(a) J =200
Trisupr I1CC = .50 8.80 (4.40) 8.75 (4.13) 8.81 (4.15)
ICC = .26 8.67 (4.34) 8.73 (4.11) 8.81 (4.07)
ICC =.10 8.28 (4.05) 8.68 (4.05) 8.77 (3.92)
ICC =.05 7.21(3.33) 8.58 (3.95) 8.70 (3.83)
Thr ICC = .50 12.34 (6.09) 10.10 (4.72) 9.76 (4.52)
ICC = .26 18.32 (9.54) 11.71 (5.55) 10.74 (4.98)
ICC =.10 63.00 (50.90) 19.72 (10.07) 15.13 (7.39)
ICC =.05 193.73 (120.24) 39.36 (26.93) 24.25 (14.80)
TryeL ICC =.50 9.42 (4.61) 9.47 (4.61) 9.25 (4.29) 9.31 (4.33) 9.30 (4.31) 9.35 (4.35)
ICC = .26 9.42 (4.83) 9.48 (4.88) 9.27 (4.38) 9.31 (4.39) 9.35 (4.34) 9.39 (4.37)
ICC =10 10.17 (7.29) 10.94 (8.61)  9.44 (4.73)  9.50 (4.77)  9.51 (4.61)  9.57 (4.64)
ICC =.05 9.91 (6.39) 13.62 (9.03)  10.01 (6.26)  10.27 (6.64)  9.87 (5.75) 9.96 (5.83)
Tapr ICC =.50 9.92 (4.99) 10.16 (5.12)  9.78 (4.70) 10.02 (4.91)  9.83 (4.75) 10.08 (4.84)
ICC =.26 9.72 (4.82) 9.94 (5.00) 9.73 (4.62) 9.96 (4.76) 9.86 (4.80) 10.07 (4.94)
ICC =.10 9.24 (4.34) 10.21 (5.60)  9.68 (4.57) 9.94 (4.76) 9.89 (4.81) 10.17 (4.96)
ICC =.05 7.96 (3.42) 10.86 (5.19)  9.63 (4.50) 10.45 (5.43)  9.92 (4.83) 10.24 (5.19)
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Table 6.5 — continued from previous page

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
Teapr ICC = .50 9.34 (4.41) 9.56 (4.52) 9.22 (4.20) 9.44 (4.36) 9.27 (4.23) 9.49 (4.31)
ICC =.26 9.16 (4.28) 9.36 (4.43) 9.18 (4.14) 9.39 (4.25) 9.30 (4.26) 9.49 (4.38)
ICC =.10 8.75 (3.89) 9.58 (4.83) 9.14 (4.08) 9.37 (4.23) 9.32 (4.26) 9.57 (4.38)
ICC =.05 7.60 (3.13) 10.19 (4.58)  9.10 (4.03) 9.80 (4.75) 9.35 (4.28) 9.62 (4.56)
TraDF ICC =.50 9.96 (5.04) 10.21 (5.18)  9.81 (4.73) 10.06 (4.94)  9.86 (4.77) 10.12 (4.87)
ICC = .26 9.76 (4.87) 9.99 (5.07) 9.76 (4.65) 10.01 (4.79)  9.89 (4.83) 10.11 (4.98)
ICC =.10 9.33 (4.44) 10.37 (6.03)  9.73 (4.60) 10.00 (4.81)  9.93 (4.83) 10.21 (4.99)
ICC =.05 8.21 (3.69) 11.20 (5.64)  9.70 (4.55) 10.55 (5.53)  9.97 (4.85) 10.29 (5.22)
Terapr ICC = .50 9.37 (4.45) 9.60 (4.56) 9.25 (4.22) 9.47 (4.39) 9.30 (4.25) 9.52 (4.33)
ICC = .26 9.20 (4.32) 9.40 (4.47)  9.21 (4.16)  9.43 (4.27)  9.32 (4.28)  9.51 (4.40)
ICC =.10 8.83(3.97) 9.70 (5.09) 9.18 (4.11) 9.42 (4.28) 9.35 (4.28) 9.61 (4.40)
ICC =.05 7.82(3.35) 10.46 (4.93)  9.15 (4.07) 9.89 (4.82) 9.39 (4.30) 9.67 (4.59)
(b) J =100
Trisupr ICC = .50 8.29 (4.13) 7.42 (3.55) 8.76 (4.49)
ICC = .26 8.19 (4.14) 8.47 (4.02) 8.73 (4.47)
ICC =.10 7.44 (3.64) 8.40 (3.99) 8.62 (4.36)
ICC =.05 5.76 (2.92) 8.09 (3.74) 8.44 (4.18)
Tar ICC = .50 12.51 (6.22) 10.26 (4.81) 10.20 (5.09)
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Table 6.5 — continued from previous page

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
ICC = .26 19.54 (11.10) 12.01 (5.73) 11.21 (5.62)
ICC =.10 80.96 (61.29) 21.14 (11.75) 15.92 (8.34)
ICC =.05 192.24 (96.31) 47.53 (41.23) 26.96 (19.25)
TrymeL ICC = .50 9.59 (4.76) 9.69 (4.80) 9.41 (4.38) 9.51 (4.42) 9.71 (4.85) 9.81 (4.90)
ICC = .26 991 (5.48) 10.06 (5.64)  9.48 (4.49) 9.59 (4.54) 9.74 (4.90) 9.83 (4.94)
ICC =.10 11.58 (8.01) 13.98 (10.43) 10.05 (5.50)  9.91 (5.20) 10.02 (5.27)
ICC =.05 8.99 (5.74) 14.32 (8.13)  11.33 (9.47)  12.35 (11.12) 10.63 (7.24)  10.93 (7.85)
Tapr ICC =.50 10.71 (5.44) 11.02 (5.68)  10.42 (5.16)  10.66 (5.25)  10.73 (5.57)  11.00 (5.86)
ICC = .26 10.49 (5.29) 10.81 (5.52)  10.39 (5.09)  10.66 (5.21)  10.71 (5.64)  10.87 (5.62)
ICC =.10 9.23 (4.15) 11.54 (6.03)  10.25 (4.85)  10.68 (5.30)  10.63 (5.59)  10.88 (5.71)
ICC =.05 6.86(2.91) 10.41 (4.39)  9.96 (4.55) 11.60 (6.57)  10.58 (5.48)  11.47 (6.53)
Teapr ICC = .50 9.46 (4.23) 9.69 (4.38) 9.24 (4.08) 9.43 (4.14) 9.46 (4.35) 9.65 (4.53)
ICC =.26 9.28 (4.15) 9.53 (4.30) 9.22 (4.03) 9.43 (4.11) 9.44 (4.38) 9.57 (4.37)
ICC =.10 8.32(3.38) 10.08 (4.62)  9.12 (3.87) 9.44 (4.17) 9.38 (4.33) 9.57 (4.40)
ICC =.05 6.34(2.49) 9.27 (3.50) 8.89 (3.67) 10.10 (4.87)  9.35 (4.26) 9.99 (4.86)
TraDF ICC = .50 10.85 (5.60) 11.20 (5.89)  10.56 (5.29)  10.82 (5.39)  10.89 (5.74)  11.17 (6.06)
ICC = .26 10.69 (5.50) 11.04 (5.76)  10.55 (5.24)  10.84 (5.38)  10.88 (5.84)  11.09 (5.88)
ICC =.10 9.64 (4.61) 12.05 (6.59)  10.45 (5.04)  10.93 (5.58)  10.84 (5.84)  11.13 (6.04)
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Table 6.5 — continued from previous page

Group Sizes

10 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
ICC =.05 7.44 (3.50) 11.23 (5.33)  10.26 (4.80)  12.11 (7.05)  10.87 (5.80)  11.86 (6.94)
Terapr ICC =.50 9.55 (4.31) 9.81 (4.49) 9.33 (4.15) 9.53 (4.22) 9.56 (4.45) 9.77 (4.63)
ICC = .26 943 (4.27) 9.69 (4.44) 9.32 (4.12) 9.55 (4.21) 9.55 (4.49) 9.72 (4.52)
ICC =.10 8.61 (3.69) 10.43 (4.97)  9.26 (3.99) 9.61 (4.33) 9.52 (4.46) 9.74 (4.58)
ICC =.05 6.82(2.94) 9.87 (4.13) 9.12 (3.83) 10.45 (5.13)  9.55 (4.46) 10.26 (5.10)
(b) J =50
Trisupr I1CC = .50 7.58 (3.69) 7.61 (3.49) 7.91 (4.15)
ICC =.26 7.28 (3.51) 7.61 (3.51) 7.85 (4.11)
ICC =.10 5.95 (3.01) 7.44 (3.58) 7.71 (4.02)
ICC =.05 4.21 (2.43) 6.78 (3.43) 7.38 (3.79)
Twr ICC = 50 13.53 (8.11) 10.64 (4.97) 10.42 (5.19)
ICC = .26 24.65 (20.46) 12.85 (6.41) 11.63 (5.87)
ICC =.10 93.47 (53.61) 26.78 (19.64) 17.72 (9.96)
ICC =.05 161.61 (67.48) 64.32 (46.88) 35.03 (28.11)
TrmL ICC = .50 10.29 (6.01) 10.52 (6.15)  9.81 (4.45) 10.01 (4.54)  10.03 (5.06)  10.22 (5.14)
ICC = .26 11.83 (9.52) 12.49 (10.37) 10.27 (4.95)  10.16 (5.20)  10.38 (5.33)
ICC =.10 12.21 (7.50) 16.96 (9.84)  11.88 (8.95)  12.56 (9.77)  10.77 (6.06)  11.03 (6.23)
ICC =.05 8.99 (5.74) 13.12 (8.02)  11.33 (9.47)  16.95 (12.64) 10.63 (7.24)  14.32 (8.13)
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Table 6.5 — continued from previous page

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
Tapr ICC = .50 11.70 (5.89) 11.92 (6.12)  11.55 (5.46)  11.81 (5.55)  11.81 (5.78)  12.13 (6.02)
ICC = .26 11.43 (5.52) 12.32 (6.57)  11.62 (5.59)  11.97 (5.83)  11.90 (5.90)  12.27 (6.21)
ICC =.10 9.01 (3.83) 12.12 (5.16)  11.49 (5.64) 1243 (6.51) 11.93 (6.11)  12.24 (6.28)
ICC = .05 5.75 (2.56) 8.93 (3.54) 10.33 (4.60)  12.76 (6.01)  11.66 (5.82)  10.41 (4.39)
TcADF ICC = .50 9.11 (3.52) 9.23 (3.56) 9.04 (3.40) 9.20 (3.44) 9.18 (3.54) 9.36 (3.63)
ICC = .26 8.97 (3.33) 9.46 (3.69) 9.07 (3.44) 9.29 (3.52) 9.23 (3.58) 9.44 (3.68)
ICC =.10 7.44 (2.62) 9.44 (3.20) 8.99 (3.47) 9.51 (3.83) 9.23 (3.66) 9.41 (3.72)
ICC =.05 5.05(2.01) 7.40 (2.47) 8.29 (3.04) 9.77 (3.64) 9.08 (3.56) 9.27 (3.50)
Trapr  1CC =50 12.70 (7.27) 12.99 (7.55) 1233 (6.24) 12,58 (6.39)  12.72 (6.98)  13.05 (7.14)
ICC = 26 12.50 (6.40) 13.49 (7.54) 1249 (6.56)  12.88 (6.75)  12.85 (7.16)  13.22 (7.41)
ICC =.10 9.88 (4.76) 13.09 (6.20)  12.55 (6.61)  13.66 (7.71)  12.92 (7.17)  13.26 (7.34)
ICC =.05 6.58 (3.37) 10.09 (4.66)  11.46 (5.70)  14.10 (7.25)  12.70 (6.86)  11.23 (5.33)
Terapr ICC = .50 9.58 (3.94) 9.74 (4.00) 9.43 (3.70) 9.58 (3.74) 9.60 (3.97) 9.79 (4.04)
ICC = .26 9.53 (3.69) 10.04 (4.04)  9.51 (3.79) 9.73 (3.85) 9.67 (4.02) 9.88 (4.09)
ICC =.10 7.94 (3.08) 9.92 (3.63) 9.53 (3.84) 10.11 (4.25)  9.71 (4.03) 9.91 (4.08)
ICC =.05 5.63 (2.49) 8.10 (3.02) 8.91 (3.54) 10.42 (4.12)  9.61 (3.92) 9.87 (4.13)
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Tables 6.5 and 6.6 display test statistic means and standard deviations for all
six test statistics, as well as Trrsprer, the ADF test statistic that uses I'rrsper.
Under normality, I'r;sgpr is correctly specified, and so Trrsgpr will have the
correct distribution as an asymptotic central chi square variate. The five test
statistics that use either f‘GEE or f‘BOOT, namely Truyrr, Tapr, Toapr, Trapr
and Torapr, are presented side by side for direct comparison of the GEE and
bootstrap approaches.

Turning first to the small models (Table 6.5), it is clear that Ty, only behaves like
a central chi-square variate on 9 degrees of freedom when the within-group sample
sizes are large and the ICCs are high. This can be seen, for example, in Table 6.5a,
when n = 50 and ICC = .50, Ty, has a mean of 9.76 and a standard deviation
of 4.52. There is also some evidence that, for smaller within-group sample sizes
or lower ICCs, Ty, does not achieve the correct chi-square distribution, even
asymptotically. For example, in Table 6.5, for ICC' = .10 and n = 10, as the level
2 sample sizes increase from 50 to 200, the mean of Ty, changes from 93.47 to
63.00, but is nowhere near the theoretical mean of 9.

Trarr, does correct the Ty test statistic, and the means Tgysp are systematically
closer to the theoretical mean of 9 than the means of T),;. This is true for the
GEE and bootstrap-based versions of this statistic. However, particularly with
small samples, the means of Ty, are still higher than anticipated (Table 6.5¢).
There is evidence that Tryr, Tapr, Tocapr, Trapr and Tegrapr do converge to
the correct distribution across all ICC and within-group sample size conditions
as the number of groups increases. This is true for both the GEE and bootstrap
based test statistics. For each of these statistics, the empirical means get closer
to the theoretical mean (9) as the level 2 sample sizes increase from 50 to 200.
For example, at ICC = .50 and n = 10, as J goes from 50 to 200, the means of
Trapr go from 12.70 to 9.96 for the GEE based test statistics, and from 12.99 to

10.21 for the bootstrap based test statistics. For small level 2 sample sizes (6.5¢),
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Terapr and Teoapr have smaller variance than expected (as reported in Bentler
and Yuan (1999) for the conventional version of these statistics).

As J, the level-2 sample size, increases, the performance of the bootstrap-based
test statistics becomes very similar to the GEE-based test statistics. This can be
seen in Table 6.5 because the differences between the GEE and bootstrap based
estimates for a given ICC/within group sample size combination decrease as J goes
from 50 to 200. However, the GEE-based test statistics show better performance
at smaller sample sizes and at lower ICC conditions. For example, in Table 6.5a,
with J = 50, the means of the bootstrap based test statistics Trapr and Typr are
systematically larger than those of the GEE based test statistics. The magnitude
of this difference increases as the ICC decreases: at IC'C' = .50 and n = 10, the
difference averages around .2. At IC'C' = .10, and n = 10, the difference averages
around 2. On the other hand, at ICC = .50 and n = 50, the difference averages
around .2 for all ICCs.

Turning to the large models (Table 6.6), many of the same patterns are visible.
Specifically, in nearly every condition, the mean of Ty, is too high. With J = 100,
ICC = .05 and n = 10 (Table 6.6¢), the mean of T}, is over 1,000, even though
the theoretical mean of the X§4 distribution is 54. Tgrysr corrects the Ty test
statistic, and the means Tgy;, are systematically closer to the theoretical mean of
54 than the means of Ty,r. This is true for the GEE and bootstrap-based versions
of this statistic. However, particularly with small samples, Ty, is unable to scale
the Thyy test statistic adequately (for example, in Table 6.6¢).

The test statistics Trarr, Tapr, Toapr, Trapr and Terapr show a pattern of
convergence as J goes from 50 to 200, in that the means of these statistics steadily
approach 54. However, even with 200 groups, the means and variances of Tapp
and Toapr are too large in all ICC and within group sample size conditions (Table
6.6a). This suggests that when the model is sufficiently large, the number of

groups would have to be enormous in order for Txpr and T apr to provide correct
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inferences. This is consistent with previously reported results (e.g., Curran et al.,
1996; Hu et al., 1992; B. O. Muthén & Kaplan, 1985, 1992; Yuan & Bentler, 2003;
Bentler & Yuan, 1999; Powell & Schafer, 2001). For small level 2 sample sizes

(Table 6.5b and 6.5¢), Torapr and Toapr have smaller variance than expected.
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Table 6.6: Test statistic means and standard deviations, df = 54.

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
(a) J =200
Trisupr I1CC = .50 51.90 (10.83) 52.59 (10.74) 52.36 (10.91)
ICC = .26 51.60 (10.80) 52.47 (10.86) 52.43 (10.90)
ICC =.10 49.90 (10.31) 52.03 (11.13) 52.63 (10.91)
ICC = .05 43.51 (8.85) 51.10 (10.91) 52.47 (10.79)
Tar ICC = .50 7345 (14.97) 61.17 (12.23) 58.67 (11.49)
ICC = .26 113.19 (32.07) 70.75 (14.56) 64.35 (12.70)
ICC =.10 445.88 (163.04) 121.20 (30.51) 91.14 (19.63)
ICC = .05 1233.87 (299.86) 262.93 (109.38) 150.01 (50.77)
TryrL ICC = .50 56.46 (11.50) 56.79 (11.56) 56.11 (11.11) 56.36 (11.18) 55.79 (10.87)  56.11 (10.97)
ICC = .26 59.55 (16.50) 60.14 (16.89) 56.48 (11.54) 56.78 (11.67) 56.19 (11.05)  56.43 (11.11)
ICC =.10 77.47 (28.13) 88.16 (33.80) 59.31 (14.65) 59.84 (14.91) 58.05 (12.39)  58.39 (12.49)
ICC =.05 76.74 (21.20) 110.06 (28.77)  70.37 (28.15) 74.79 (31.55) 62.95 (20.48)  63.94 (21.48)
Tapr ICC = .50 80.03 (18.68) 89.37 (21.54) 80.02 (18.92) 89.33 (21.64) 80.12 (18.29)  89.47 (21.69)
ICC = .26 80.01 (19.00) 90.37 (23.09) 79.65 (18.51) 88.78 (21.20) 80.38 (18.48)  89.40 (21.66)
ICC =.10 75.26 (16.39) 98.80 (25.13) 79.06 (17.89) 89.09 (21.63) 80.53 (18.70)  89.47 (20.89)
ICC =.05 61.24 (11.19) 9.70 (18.16) 78.12 (17.85) 94.65 (26.32) 79.97 (18.35)  91.92 (24.95)
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Table 6.6 — continued from previous page

Group Sizes

10 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
Tcapr ICC = .50 56.45 (9.38) 60.92 (10.13) 56.42 (9.56) 60.89 (10.27) 56.53 (9.05) 60.97 (9.99)
ICC = .26 56.42 (9.51) 61.31 (10.58) 56.26 (9.37) 60.65 (10.06) 56.65 (9.13) 60.94 (9.99)
ICC =.10 54.10 (8.44) 65.11 (10.83) 55.99 (9.12) 60.78 (10.15) 56.72 (9.24) 61.02 (9.70)
ICC = .05 46.55 (6.49) 62.72 (8.34) 55.51 (9.06) 63.11 (11.62) 56.45 (9.16) 61.96 (10.82)
TraADF ICC = .50 81.20 (19.29) 91.12 (22.66) 81.26 (19.61) 91.23 (22.73) 81.19 (18.74)  91.13 (22.37)
ICC = .26 81.75 (20.09) 93.21 (24.99) 81.02 (19.26) 90.89 (22.52) 81.55 (18.98)  91.07 (22.49)
ICC =.10 78.40 (18.18) 105.26 (29.35)  80.73 (18.72) 91.65 (22.95) 81.98 (19.51)  91.52 (22.17)
ICC =.05 65.96 (13.13) 103.85 (22.06)  80.43 (19.01) 98.62 (28.69) 81.86 (19.36)  94.77 (26.47)
Terapr ICC = .50 56.92 (9.55) 61.59 (10.42) 56.93 (9.77) 61.62 (10.59) 56.97 (9.18) 61.62 (10.16)
ICC = 26 57.16 (9.85) 62.43 (11.11)  56.83 (9.61) 61.49 (10.44)  57.13 (9.27)  61.59 (10.21)
ICC =.10 55.57 (9.07) 67.58 (11.95) 56.72 (9.39) 61.82 (10.53) 57.32 (9.47) 61.82 (10.05)
ICC =.05 49.11 (7.32) 67.44 (9.39) 56.55 (9.44) 64.66 (12.22) 57.26 (9.46) 63.10 (11.20)
(b) J =100
Trisupr I1CC = .50 50.09 (10.34) 52.04 (10.97) 51.14 (10.78)
ICC = .26 49.14 (9.97) 51.84 (11.07) 51.05 (10.74)
ICC = .10 44.55 (8.97) 51.08 (10.82) 50.69 (10.55)
ICC = .05 34.67 (7.62) 48.62 (9.92) 49.67 (10.08)
Tar ICC = .50 78.61 (16.35) 64.66 (12.75) 61.08 (11.66)
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Table 6.6 — continued from previous page

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
ICC = .26 136.80 (54.22) 76.32 (16.39) 67.56 (13.37)
ICC =.10 553.57 (153.68) 151.83 (63.90) 100.85 (29.09)
ICC = .05 1144.91 (205.66) 341.58 (110.40) 190.39 (78.90)
TrmL ICC = .50 60.24 (12.45) 60.83 (12.55) 59.41 (11.57) 59.96 (11.69) 58.42 (11.22)  59.00 (11.29)
ICC = .26 70.60 (27.18) 73.06 (28.90) 60.76 (12.92) 61.37 (13.00) 59.17 (11.77)  59.77 (11.88)
ICC =.10 92.50 (26.73) 115.53 (33.23)  72.71 (29.84) 75.00 (31.45) 63.67 (18.20)  64.48 (18.82)
ICC =.05 73.08 (20.97) 117.93 (27.85)  89.19 (29.85) 100.69 (34.23)  77.78 (31.76)  81.95 (34.40)
Tapr ICC = .50 126.57 (33.90) 135.75 (35.96)  127.85 (30.91)  137.78 (33.10)  126.63 (32.33) 136.19 (34.77
ICC =26 123.71 (33.93)  139.02 (39.86)  126.36 (30.77)  136.20 (32.92)  126.14 (32.21) 136.41 (34.59
ICC =.10 103.37 (24.69) 130.26 (30.09)  123.19 (31.31)  138.05 (37.34)  125.46 (31.60) 137.58 (36.72
ICC =.05 71.86 (16.87) 95.61 (19.10) 113.90 (28.08)  135.08 (33.08)  122.52 (30.54) 140.67 (38.25
Tocapr ICC = .50 54.60 (6.40) 56.31 (6.27) 55.01 (5.81) 56.80 (5.85) 54.67 (6.28) 56.43 (6.16)
ICC = .26 54.02 (6.47) 56.71 (6.78) 54.72 (5.85) 56.53 (5.78) 54.59 (6.23) 56.48 (6.11)
ICC =.10 49.87 (5.78) 55.53 (5.57) 54.03 (6.14) 56.67 (6.38) 54.50 (6.04) 56.63 (6.24)
ICC = .05 41.11 (5.40) 48.17 (4.79) 52.20 (5.87) 56.32 (5.80) 53.94 (6.01) 57.12 (6.32)
TrADF ICC = .50 143.50 (45.62) 154.53 (48.58)  144.83 (40.46)  156.19 (43.60)  142.42 (42.70) 152.25 (44.79)
ICC = .26 144.58 (46.83) 161.54 (52.54)  144.95 (40.85)  156.56 (44.07)  142.84 (42.32) 153.94 (44.59)
ICC =.10 123.84 (34.99) 155.72 (42.07)  143.93 (41.81)  161.44 (48.88)  143.83 (41.79) 157.27 (46.64)
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Table 6.6 — continued from previous page

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
ICC = .05 86.06 (23.37) 115.01 (27.61)  137.14 (40.20)  161.64 (44.37)  143.44 (41.20) 164.23 (50.35)
Terapr ICC = .50 56.91 (7.22) 58.66 (7.03) 57.40 (6.44) 59.14 (6.43) 56.83 (7.04) 58.43 (6.82)
ICC = .26 57.03 (7.33) 59.55 (7.36) 57.40 (6.55) 59.19 (6.41) 56.93 (6.95) 58.72 (6.72)
ICC =.10 53.67 (6.70) 59.13 (6.30) 57.17 (6.73) 59.74 (6.80) 57.15 (6.75) 59.18 (6.77)
ICC = .05 45.03 (6.32) 52.20 (5.57) 56.04 (6.75) 59.97 (6.25) 57.12 (6.66) 60.12 (6.79)
(b) J =50
Tar ICC = .50 89.03 (21.13) 69.65 (13.55) 65.74 (12.58)
ICC = .26 182.84 (64.49) 86.86 (22.63) 74.41 (14.99)
ICC =.10 584.55 (108.73) 214.54 (72.76) 134.04 (49.21)
ICC = .05 848.61 (115.48) 433.28 (107.79) 266.90 (77.61)
TryrL ICC = .50 67.59 (15.65) 69.29 (16.27) 64.30 (12.55) 65.57 (12.81) 63.33 (12.09)  64.54 (12.33)
ICC = .26 91.78 (32.45) 99.26 (35.54) 68.76 (17.69) 70.41 (18.16) 65.27 (13.13)  66.52 (13.46)
ICC =.10 96.78 (23.82) 134.45 (29.33)  99.51 (34.03) 108.00 (37.05)  82.93 (30.60)  86.43 (32.13)
ICC =.05 60.35 (20.27) 106.69 (27.20)  109.10 (29.21)  134.94 (35.32)  106.17 (31.95) 118.69 (35.63)
TraDF 1CC = .50 534.09 (192.46) 563.25 (195.35) 565.23 (203.48)
1CC = .26 463.85 (147.62) 551.27 (189.19) 559.70 (202.34)
1CC = .10 249.83 (71.69) 436.85 (123.34) 514.24 (175.05)
1CC = .05 141.38 (41.74) 312.77 (90.29) 407.57 (125.86)
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Table 6.6 — continued from previous page

Group Sizes

10 30 50
GEE Bootstrap GEE Bootstrap GEE Bootstrap
Terapr 1CC = .50 43.64 (1.37) 43.87 (1.27) 43.85 (1.35)
1CC = .26 43.13 (1.41) 43.81 (1.24) 43.80 (1.37)
1CC = .10 39.83 (1.97) 42.95 (1.27) 43.49 (1.48)
1CC = .05 35.26 (2.78) 41.27 (1.49) 42.57 (1.50)
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There is a clearer separation in the performance of the GEE and bootstrap-
based test statistics with the larger model, particularly as regards the corrected
test statistics. For example, as can be seen in Table 6.6a, the means of the
bootstrap-based Trapr and Typp test statistics are systematically larger than
their GEE-based counterparts. As was the case with the small models (df =9),
the magnitude of this difference is related to ICC: as ICC decreases the difference
increases. Because the bootstrap-based test statistics Trapr and TaApp are sys-
tematically larger than their GEE-based counterparts, at smaller sample sizes, the
bootstrap-based Terapr is unable to appropriately correct the performance of
TraDF-

When the sample size is small (J = 50) and the model is large (df = 54),
the GEE based test statistics Trapr and Torapr are not estimable because
[6(0) T appo.(0)] ! (Equation 3.19) is not invertible. The bootstrap-based ver-
sions of these test statistics are computable. However, the performance of these
statistics is quite poor. The bootstrap-based Trapr has a mean far higher than
the theoretical value of 54 (6.6¢). On the other hand, the corrected test statistic
Tecrapr has a mean that is too low. In fact, for small sample sizes and large
models, as presented in Table 6.6¢, no test statistics show good performance, and
none of the statistics have empirical means that reflect the theoretical chi square

distribution.

6.2.4.3 Q-Q plots for test statistic distributions

While the Type I error rates, means, and standard deviations are important
considerations, Q-Q plots provide a way to assess the overall distribution of the
test statistic, particularly the performance in the tails of the distribution. Figures
6.13 and 6.14 present Q-Q plots for two different simulation conditions with small
models (df = 9). Figure 6.13 shows a Q-Q plot for a condition with /CC = .26,
n = 30 and J = 200. Figure 6.14 shows a Q-Q plot for a condition with /C'C' = .26,

132



Figure 6.13: Q-Q plot for df =9, ICC = .26, J =200, n = 30
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Legend: A =Bootstrap, ¢ =GEE

n = 30 and J = 50. The solid line in each plot represents the theoretical chi-square
distribution. In other words, the empirical distribution more closely follows the
theorized chi-square distribution if the points follow the line closely. The GEE-
based estimates are represented by black circles (o), and the cluster bootstrap
based estimates are represented by black triangles (A). For reference, a Q-Q plot
for Trrsuer is included when available. Complete Q-Q plots, for all 72 simulation

conditions, are available in Appendix A.

The Q-Q plots reinforce many of the results presented in Tables 6.3-6.6 above.

133



Quantiles of the observed test statistics
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Ty, does not show the appropriate distribution under either set of conditions.
In Figure 6.14, when the level-2 sample size is smaller, observed T}, values are
systematically greater than values expected based on the theoretical x2 distribution.
This is particularly true for the upper tail of the distribution. The GEE and
bootstrap-based versions of Ty, perform better than Ty, in that the observed
test statistics are closer to the solid line representing the theoretical chi-square
distribution. With small level-2 sample sizes Trapr and Tspr deviate from the
expected distribution, as do Torapr and Teapp. This is particularly true in the
upper tail.

However, as sample sizes increase, the empirical distributions of Try/r, Tapr,
Trapr, Tecapr and Terapr more closely match the theoretical distributions.
In Figure 6.13, these test statistics are well-behaved, in that their empirical
distributions closely match the theoretical distributions. This suggests more
evidence that these statistics are correctly distributed asymptotically. In fact, the
same pattern can be observed for Tr;sypr, which is known to be asymptotically
correct. At J = 50, (Figure 6.14), the observed values of Tr;sypr are systematically
too low. However, at J = 200, the observed values follow the theoretical distribution
closely.

Based on Figures 6.13 and 6.14, it would appear that the overall distribution
of the bootstrap test statistics is very similar to the overall distribution of the
GEE test statistics. The plots of the bootstrap test statistics Trarr, Tapr, TraDF,
Toapr and Torapr—represented by the A symbols—and the GEE test statistics—
represented by the e symbols—are nearly indistinguishable from one another at
both J = 50 and J = 200. This provides some additional evidence that the
bootstrap test statistics converge to the appropriate distribution as sample size

increases.

Turning to the large models (df = 54), Figure 6.15 and 6.16 present Q-Q plots

for two different simulation conditions with small models (df = 54). Figure 6.13
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Quantiles of the observed test statistics

Figure 6.15: Q-Q plot for df = 54, ICC = .26, J = 200, n = 30
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Quantiles of the observed test statistics
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Figure 6.16: Q-Q plot df =54, ICC = .26, J = 50, n = 30
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shows a Q-Q plot for a condition with ICC = .26, n = 30 and J = 200. Figure 6.14
shows a Q-Q plot for a condition with IC'C' = .lor26, n = 30 and J = 50. Here,
Twrir, Trapr and Typr all perform terribly, and are not close to the appropriate
distribution, even with sample sizes of 200 (Figure 6.15). Thus, the larger model
conditions make it clear that, in order for the test statistics to behave as a central
chi square variate, sufficiently large level 2 sample sizes are needed.

The difference in performance between the GEE and bootstrap methods are more
noticeable with the large model (Figure 6.15) . Whereas with the small models,
the GEE and bootstrap plots essentially overlapped, with the large models, there
is a detectible difference between the two plots, and the bootstrap-based estimates
are consistently higher than the GEE-based estimates.

When the sample size is small (J = 50) and the model is large (df = 54), none of
the estimable statistics performs well. Trapr is far too large, and the distribution
of Terapr does not match the theoretical distribution, and deviates greatly from

the correct behavior.

6.2.5 Estimation of I'p

The results presented above suggest that for sufficiently large sample sizes—
particularly relative to the size of the model—the GEE and bootstrap approaches
perform very similarly in terms of parameter bias, parameter mean square error
and test statistic performance. The test statistic means, standard deviations and
rejection rates for the bootstrap approach are similar to those based on the GEE
approach for sufficiently large sample sizes, and both GEE and boostrap-based test
statistics show evidence of converging to the proper chi-square distributions. How-
ever, for moderate sample sizes, even when Tr;sgrgr is appropriately distributed,
the bootstrap-based test statics are systematically larger than the GEE-based test
statistics.

One hypothesis as to why this occurs is that I' is better estimated under the GEE
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method than the bootstrap for small sample sizes. In the context of conventional
factor analysis, Hu et al. (1992) suggested that he poor performance of the ADF
method was related to the poor estimation of the elements of I', and empirical
results in Yung and Bentler (1994) supported this claim.

Since I'prsgpr is correct under the assumption of multivariate normality, the
consistency and accuracy of f‘g g and r oot were assessed through their squared
distances from I'rrsgger , as was done in previous research Yuan and Hayashi
(2006); Yung and Bentler (1994) in conventional confirmatory factor analysis.
If these estimated covariance matrices are consistent, D? should approach zero.
Figures 6.5- 6.12 display results for all model conditions.

The plots in Figures 6.17- 6.24 suggest that as the number groups increases, the
squared distances between the asymptotic covariance matrices decreases. The
fact that the differences disappear asymptotically is reflective of the consistency
property (Yuan & Hayashi, 2006, p. 16). That is, both the GEE and bootstrap
based estimators result in consistent estimates of the asymptotic covariance matrix.
Several other things are worth noting from these plots. As the ICC decreases,
the values of D? increase. For example, at ICC = .50 (Table 6.17), the squared
distances are in the order of 100. At ICC' = .05 (Table 6.20 ), the squared distances
are range from around 300 to around 5,000. As within group sample sizes decrease,
a similar pattern can be found. This occurs for both model sizes. This indicates
that the ICC and the within group sample size play a role in the quality of the
estimation of the asymptotic covariance matrix, particularly at small sample sizes
and low ICCs.

The GEE-based estimator consistently has smaller squared distances for 100 and
200 groups, regardless of ICC or group size conditions, and this may help to explain
the better performance of the test statistics under these conditions. This pattern
does not hold for the J = 50 condition, however. In other words, the squared

distances are systematically lower for the bootstrap-based approach than they are

139



Figure 6.17: D? plots: asymptotic covariance matrices, df =9 ICC = .50
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Figure 6.18: D? plots: asymptotic covariance matrices, df = 9 ICC = .26
(a)
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Figure 6.19: D? plots: asymptotic covariance matrices, df =9 ICC = .10
(a)
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Figure 6.20: D? plots: asymptotic covariance matrices, df =9 ICC = .05
(a)
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Figure 6.21: D? plots: asymptotic covariance matrices, df = 54 ICC = .50
(a)
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Figure 6.22: D? plots: asymptotic covariance matrices, df = 54 ICC = .26
(a)
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Figure 6.23: D? plots: asymptotic covariance matrices, df = 54 ICC = .10
(a)
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Figure 6.24: D? plots: asymptotic covariance matrices, df = 54 ICC = .05
(a)
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for the GEE-based approach with only 50 groups. This is consistent with past
research findings (e.g., Feng et al., 1996; Mancl & DeRouen, 2001; Sherman &
Cessie, 1997). However, this does not translate into better behaved test statistics
with small level-2 sample sizes. In other words, for small samples, regardless of
the precision of the estimation of I', test statistics are not properly distributed as

central chi-square variates.

6.3 Summary of findings for simulation study 1

This section summarizes the results of Simulation study 1. Simulation study 1
examined the relative efficiency of the segregating approach, as compared to the
partially saturated modeling method described in Section 3.5 (research topic 1),
and examined the performance of ADF estimators based on r oot and fg rp under
conditions likely to be encountered in realistic settings with student survey data
(research topic 2). Simulation study 1 focused on two-level models—which would
apply to situations where, for example, students were nested within classrooms. In
addressing these questions, Simulation study 1 suggested four conclusions about the
application of the segregating approach to the analysis of ) B, the between-groups

covariance matrix:

1. When used in conjunction with ML, parameter estimation using the segre-
gating method is as efficient as the partially saturated model method under
a wide range of conditions. At some low ICC conditions, the segregating

method is relatively more efficient.

2. Maximum likelihood and ADF estimators both provide consistent estimates
of model parameters. However, the ML estimator consistently shows lower
mean-square error than either the bootstrap or GEE-based ADF estimators.
Thus, it is recommended that ML estimation be used to obtain parameter

estimates in conjunction with the segregating approach.
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3. Standard errors based either on bootstrap or GEE approaches converged
appropriately. However, the robust standard errors, based on the sandwich
estimator, showed better performance, as measured by distance from the
correct specified standard error at all sample sizes. Thus, robust standard
errors are recommended. ML standard errors did not show appropriate

convergence, particularly for low ICC conditions.

4. Bootstrap-based test statistics showed good performance for large level-2
sample sizes. It is recommended that the corrected residual-based test
statistic Torapr be used, as this statistic showed the best performance
across conditions for moderate to large sample sizes. For very large sample
sizes, Trapr also provides valid inferences about models. For small sample
sizes, no test statistics show adequate performance. The likelihood ratio test
statistic 1) performed poorly overall. Ty, rescales the likelihood ratio
test statistic, and always performs better than T}z, but cannot adequately
control Type I errors when ICCs are low or within group sample sizes are

small.

6.4 Extension to three level models

The vast majority of writing about multilevel factor analysis considers only ex-
plicitly cases where there are two levels of nesting in the hierarchical structure:
Persons nested within groups. There is little guidance on how to handle additional
levels of hierarchy. For example, in the commonly encountered case of three level
hierarchical data structures, with persons nested in subgroups nested in groups.
While several key papers suggest that extensions to multiple levels is conceptually
straightforward (Longford & Muthén, 1992; Yuan & Bentler, 2007), all but one of
the simulation studies (Yau et al., 1993) provide empirical evidence for the appli-

cability of the segregated method with two levels of nesting only. This dissertation
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contributes to the literature by offering empirical evidence of the performance of
the segregated approach in three level hierarchically structured data. Specifically,
simulation study 2 was used to investigate whether the cluster bootstrap could be
applied to three level hierarchical data sets in order to obtain estimates of I'yyq,
the between-subgroups level covariance matrix.

The results for simulation study 1 (section 6.3) were used to inform the selection
of estimators and test statistics in simulation study 2. Specifically, the results of
simulation study 1 showed that maximum likelihood estimates were consistent
and unbiased, and had lower sampling variability than the ADF estimates in all
simulation conditions (2 in section 6.3). Additionally, simulation study 1 showed
that the cluster bootstrap based estimate of I', the asymptotic covariance matrix,
could be used to estimate robust standard errors, and that those robust standard
errors were consistent (3 in section 6.3). Finally, simulation study 1 showed that
for adequate level 2 sample sizes, the test statistics Trapr, Tocrapr and Trasr,
could potentially provide valid model inferences (4 in section 6.3).

Data were generated from multivariate normal distributions and a population
model with one level-1 factor, one level-2 factor, and one level-3 factor (Figure
5.2). Each simulation condition consisted of 250 replications. Simulations were
conducted using MPluss Monte Carlo capabilities. For each of the replicated
data sets, MPlus and the MPlusAutomation package in R were used to obtain an
estimate of Xy . Model parameters and test statistics were estimated in EQS
using the REQS package in R. The correct model was fit to each simulated data

set.
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6.4.1 Using the cluster based bootstrap with three level data
6.4.1.1 Accuracy of parameter estimates

Figure 6.25 present plots of the parameter bias and mean square error for the
estimated factor loadings on the between-subgroup model of the simulated three
level hierarchical data. The left panel displays the parameter bias, and the right
panel displays the mean square error. As in Figures 6.1-6.4, parameter bias is
plotted separately for each factor loading (\). Unbiased factor loadings would have
plotted values close to 0 (the center of the plot). Mean square error (MSE) is also
plotted separately for each factor loading and, as in Figures 6.3-6.4, estimates are
overall more accurate if MSE is close to 0 (the left margin of the plot). Figure
6.25 shows that the parameter bias is essentially 0 for all parameters, and there is
very little variability in the parameter estimates, as the mean square error is close
to 0. Recall that maximum likelihood estimation was used to obtain parameter
estimates, and that ML estimation is not dependent on the use of the cluster
bootstrap. These results give empirical evidence that the segregating approach
can provide accurate and unbiased parameter estimates in three level models, just

as it did for two-level models.

6.4.1.2 Test statistic distributions

The between subgroup (level-2) model in simulation study 2 has 9 degrees of
freedom, equivalent to the small model condition in simulation study 1. Under
the null hypothesis, the theoretical chi-square distribution has a mean of 9 and
a standard deviation of v/18 ~ 4.24. Thus, the empirical mean and standard
deviation should be close to this value in order for the statistic to be considered
well-behaved. The empirical Type I error rates for the three test statistics can be
compared to the nominal rate of @ = .05. As in simulation study 1, an acceptable

empirical error rate is taken as one that falls in the interval [.020, .095], the
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Figure 6.25: Parameter mean square error: three level model df =9
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Figure 6.26: Q-Q plots: three level model df =9
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estimated 2-sided 99% adjusted Wald confidence interval (Agresti & Coull, 1998).

The residual based test statistics are well behaved, with means and standard
deviations that are close to the theoretical values. Specifically, Trapr has a mean
of 8.81 with a standard deviation of 4.43, Torapr has a mean of 8.69 with a
standard deviation of 4.32. The mean and standard deviation for the rescaled test
statistic (Trasr) is actually slightly too small in application to three level models.
Tryr has a mean of 7.96 with a standard deviation of 3.88. In terms of Type I
error rates, the empirical Type I error rates are all within range of the .05 nominal

value. Trapr has an empirical Type I error rate of .056, Torapr has an empirical
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Type I error rate of .048, and Try/r, has an empirical Type I error rate of .028.

Figure 6.26 presents Q-Q plots for the three test statistics. The solid line in
each plot represents the theoretical distribution, and the empirical distribution
more closely follows the theorized chi-square distribution if the points follow this
line closely. The Q-Q plots show that Trapr and Torapr are well behaved and
match expectation closely, even in the tails. Tgry,z, is systematically lower than the

theoretical value, and this discrepancy is even more pronounced in the upper tail.

6.5 Summary of findings for simulation study 2

This section summarizes the results of simulation study 2. Simulation study 2
investigated whether a cluster bootstrap-based approach to estimating the between-
group asymptotic covariance matrix be extended to data sets with three levels.
Specifically, simulation study 2 examined the use of maximum likelihood estimation
to obtain parameter estimates, and the use of [ zoor to estimate robust standard
errors and residual based and rescaled test statistics, Trapr, Tocrapr and Trayr.

Overall, simulation study 2 suggests the following conclusions:

1. ML estimation provides precise and unbiased estimates of model parameters
in three level models. Thus, as was the case in two-level models, it is
recommended that ML estimation be used in conjunction with the segregating

approach to obtain parameter estimates.

2. Residual-based test statistics using Lsoor showed good performance for
large sample sizes in three level models. For sufficient sample sizes, it is
recommended that Trapr, and Torapr be used, as these statistics showed
the best overall performance. The rescaled test statistic Tgy, had a mean
and standard deviation that were slightly too low for use in three level models,

but the Type I error rate was acceptable.
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While simulation study 2 was significantly smaller in scope than simulation study
1, it makes a valuable contribution to the research on multilevel factor analysis
using the segregated approach. The cluster bootstrap has never been applied to
multilevel factor analysis, and while the theory of the bootstrap would suggest
that such applications are possible (e.g., Ren et al., 2010), an important first step
is to establish empirically that the theory holds under realistic data conditions
(e.g., Yung & Bentler, 1994). Simulation study 2, thus, offers evidence that, given
adequate sample sizes, the cluster bootstrap can be applied to datasets with
multiple levels of nesting. This establishes the foundation for Chapter 7, which
offers an illustration of the segregating method on a realistic dataset to investigate
the dimensions of teacher quality that are discernible in a state-wide student survey

of instructional practice.
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CHAPTER 7

Empirical Illustration of a Three Level Factor
Analysis using the Cluster Bootstrap: New

Mexico Student Survey

The fourth research topic concerned the application of the cluster bootstrap
methods to a realistic dataset to investigate the dimensions of instructional practice
that are discernible in a state-wide student survey of instructional practice. First,
descriptive information about the dataset is presented. Second, the dimensionality
of the survey is explored. Finally, the relationship between the survey constructs
and student achievement is investigated.

The Opportunity to Learn (OTL) Survey is a 10 item survey designed to measure
the quality of instruction and the school environment. Different versions of
the survey are administered in elementary (grades 3-5) and middle and high
school (grades 6-12). Each item is scored on a 6-point scale, from 0 to 5, where
the categories are 0 = never, 1 = hardly ever, 2 = sometimes, 3 = usually,
4 = almost always, and 5 = always.

Data used in this study were collected in the 2012-2013 administration of the
OTL survey. This analysis focuses only on the early grades version of the survey,
where student raters are uniquely nested within a single teacher. Table 7.1 shows
descriptive statistics for each item on the survey, including the mean, standard
deviation, and the amount of total item variance that is accounted for by classroom

and school levels, respectively.
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Table 7.1: Item descriptives: OTL Survey

Item Mean Sd variance variance
(teacher)  (school)

My teacher introduces a new lesson by 3.48 1.33 7.89% 3.70%

reminding us of things we already know.

My teacher explains why what we are 3.82 1.26 5.28% 2.73%

learning is important.

My teacher explains how learning each 3.43 1.45 7.32% 2.18%

lesson will help us in the future.

Everybody gets a chance to answer ques- 3.66 1.4 6.45% 1.84%

tions.

My teacher wants me to explain my an- 4.09 1.23 8.15% 3.07%

swers.

My teacher explains things in different 3.85 1.31 5.86% 2.06%

ways so everyone can understand.

My teacher helps me when I do not un- 4.07 1.28 10.12% 2.79%

derstand.

I use different materials and tools to help 3.14 14 6.41% 2.95%

me practice what I am learning.

My teacher makes sure I understand. 4.5 0.96 4.55% 1.14%

My teacher take the time to summarize 3.28 1.51 7.41% 3.05%

what we learned each day.

In general, the mean responses show fairly positive ratings, with three items
having overall means above 4 on a 0-5 scale. This suggests that students feel
relatively positively about the instructional quality in their classroom. For each
item, the percentage of variance at the classroom level is greater than the percentage
of variance at the school level. This suggests that there is more variation in student
ratings across classrooms than there is across schools. This is consistent with past
research on teacher quality, which has found greater variability within schools than
across schools (Rowan & Correnti, 2009). This decomposition also suggests that
nearly 90% of the item variance is between students within the same classroom—
i.e., it is not explained by factors at either the teacher or the school level. In order
to visualize this, consider Figure 7.1, which shows the mean OTL scores for a
random sample of 100 teachers across all schools. Classroom means are represented
by the dots (e), and the horizontal bars extend +1 standard deviation. From this
plot, it is clear that, while there is variation in classroom mean scores, there is

tremendous variability across-students within classrooms.
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Figure 7.1: Distribution of class-mean survey scores
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7.0.1 What dimensions of instructional practice are discernible aggre-

gated student responses in the OTL survey?

In order to determine the dimensions of instructional practice that are discernible
based on aggregated student responses in the OTL Survey, a multilevel factor
analysis using the segregating method was used to following the method outlined
and tested in the previous chapters. Specifically, since there is a three level
hierarchical structure to the data set, with students nested in classrooms nested in
schools, the segregating method was used to first extract the between classroom
covariance matrix. A cluster bootstrap was used to obtain an estimate of the
asymptotic covariance matrix by resampling intact schools. Maximum likelihood
was used to estimate parameters, and robust standard errors were used to make
inferences about those parameters. The residual-based test statistics Trapr and
Torapr were used for model appraisal. In addition, the Root Mean Square Error of
Approximation (RMSEA) (Steiger & Lind, 1980), the Comparative Fit Index (CFI)
(Bentler, 1990) and the average absolute standardized residual were inspected. The
between-teacher covariance matrix is given in the first ten columns of Table 7.2.

There are two possible conceptual models behind the OTL survey. On one hand,
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Table 7.2: Estimated sample between-teacher covariance matrix

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 VAMp VAMy

Q1 0.14

Q2 0.07 0.08

Q3 0.12 0.10 0.16

Q4 0.08 0.06 0.08 0.13

Q5 0.08 0.04 0.07 0.05 0.12

Q6 0.09 0.06 0.09 0.07 0.06 0.10

Q7 0.09 0.04 0.09 0.06 0.07 0.09 0.16

Q8 0.09 0.07 0.09 0.08 0.05 0.07 0.05 0.12

Q9 0.05 0.03 0.05 0.04 0.03 0.05 0.06 0.03 0.04

Q10 0.09 0.08 0.10 0.08 0.05 0.07 0.05 0.09 0.03 0.17
VAMpr 0.01 0.01 0.00 0.01 0.01 0.00 -0.01 0.01 0.00 0.01 0.06
VAM,; 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.03 0.04

it is possible to conceive of instructional practice as being unidimensional. On the
other hand, it is possible that there are discernible subdimensions of instructional
practice, that explain covariation among the items in addition to the general factor.
These subdimensions could include, for example, “social support” (the extent to
which a teacher creates a supportive social environment, as described in Kunter et
al. (2008)) and “context” (the extent to which teacher provide students with a
sense of instructional trajectory, as described in Patrick et al. (2003)).

Because there are two different conceptual models, both a unidimensional model
and a bifactor model with one general factor and two specific factors were fit
to iwg, the estimated between-teacher covariance matrix. The unidimensional
model would support a theory that there is one overall instructional practice factor.
The bifactor model would support a theory that there are two domain specific
factors, social support and context, each of which account for unique variance
beyond the general instructional practice factor. Standardized parameter estimates
for each model are reported in Table 7.3. It should be noted that, regardless of
which test statistic is used (i.e., Trapr or Torapr), the null hypothesis that the
population covariance matrix is a function of the model parameters is rejected by
the chi-square test for both the unidimensional and the bifactor models. These

test statistics can be compared to a central 3. distribution in the case of the
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Table 7.3: Standardized factor loadings: OTL survey

Unidimensional Bifactor

Loading Uniqueness Loadings Uniqueness
Item General Uniqueness General Context Social Support Uniqueness
1 .892 453 915 402
2 .802 .h97 779 524 .345
3 .873 487 .855 379 .353
4 .694 .720 .702 712
5 637 71 .643 766
6 .872 .489 .835 .293 465
7 713 .701 .647 .b75 .500
8 725 .689 157 .654
9 vt .629 .701 712 .033
10 671 741 .689 725

All parameters significant at the o = .05 level.

Table 7.4: Fit statistics and fit indices for unidimensional and bifactor models

Model
Unidimensional Bifactor

TrRADF 495.22 278.29
TorApF 421.54 253.40
RMSEA (Trapr) .068 .053
RMSEA (Tcrapr) 062 .050
CFI (Trapr) .46 .53

CFI (TcrapF) .69 .75
ASR? .054 .035

Note:*ASR=Absolute Standardized Residual

unidimensional model, and a central x3, distribution in the case of the bifactor
model. This indicates a non-negligible amount of misfit between the data and the
models. However, based on fit indices including RMSEA, CFI and the average
absolute standardized residuals, the bifactor model is a better fit (Table 7.4).
In particular, the CFI is higher for the bifactor model, and the RMSEA and
absolute standardized residuals are smaller. Thus, there is more support in the
data for the theory that, in addition to being able to discern overall instructional
practice, aggregated student responses can be used to distinguish two domain
specific factors— social support and context—each of which account for unique

variance beyond the general instructional practice factor.
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7.0.2 How do these survey-derived variables relate to outcomes of

policy interest, such as student achievement gains?

Since the bifactor model was preferred over the unidimensional model, there is
support for the theory that the aggregated survey responses could be explained by
one general instructional practice factor and two specific factors, defined as social
support and context. It is now possible to illustrate how the segregating approach
can be used to explore relationships between latent variables and external variables
of policy interest. Specifically, it is possible to examine whether aggregated ratings
of instructional practice predict student achievement gains in math and reading,
and whether the specific factors of context and social support are predictive “over
and above the general factor” (Chen et al., 2006, p. 197).

The VAM scores do not have any within-classroom variation, and so the steps
taken in this analysis follow the general model outlined in Section 3.7, and given
in Equation 3.59. As was described in Section 3.7, even when variables with level
restricted variation are included, estimators such as those given in Equation 3.54
can still be used to obtain consistent estimates of the between-classroom level
covariance matrix. The variance and covariances of the two VAM scores (labeled
as VAM,; for math and VAMpg for reading) are reported in Table 7.2.

The VAMp estimates have a mean of 0 and a standard deviation of .20, and
the VAM), estimates have a mean of 0 and a standard deviation of .25 (math).
Approximately 90% of the variance in the VAM scores is between teachers within
schools (10% is between schools). Figure 7.2 shows that there are a great number
of teachers close to the mean (indicated by the vertical dotted line), and a few
teachers that are well above or below this mean.

Model parameter estimates are reported in Table 7.5. The general factor (instruc-
tional practice) significantly predicts VAM scores for both math and reading. This
offers some important validity evidence for making inferences about professional

practice based on the OTL survey, as the relationships between professional prac-
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Figure 7.2: Distribution of VAM scores
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Table 7.5: OTL Survey and External Criterion: VAM Math

Item General Context Social Support Uniqueness
1 0.915 0.404
2 0.769 0.540 0.344
3 0.851 0.393 0.345
4 0.701 0.713
5 0.634 0.771
6 0.827 0.299 0.476
7 0.647 0.563 0.510
8 0.750 0.662
9 0.717 0.695 0.000®
10 0.691 0.725
VAMgr 0.092 0.057* -0.047* 0.993
VAM, 0.172 0.081* -0.003* 0.982

Trapr = 526.45. Tocrapr = 443.95 Test statistics can be referred to XEG.
All parameters significant at the o = .05 level except those marked as 2.

tice and VAM scores were positive. However, the specific factors do not predict

VAM scores beyond the general factor for either math or reading.
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CHAPTER 8

Summary and Discussion

Student surveys continue to be one of the most popular and widespread mecha-
nisms for collecting information about instructional practice. Advocates of using
student surveys for either formative or summative evaluation note that students
are natural observers of their classroom environments, and that student ratings
of teacher practice show relatively robust correlations with student achievement
(Burniske & Meibaum, 2011). In a 2012 speech at the Education Commission of
the States National Forum on Education Policy, Bill Gates noted that the three
components of a good evaluation system are test scores, observations, and student
ratings (Gates, 2012).

However, even as their application has increased, there has been relatively little
research into the psychometric properties of these surveys. This is particularly
true of multilevel psychometric research, investigating the psychometric properties
of the aggregated student ratings.

This dissertation investigated four research topics with the objective of addressing
several open issues in multilevel factor analysis, and focused specifically on issues
that were unaddressed in the research literature in the application of multilevel
factor analysis models to aggregated student ratings of instructional practice.
Specifically, this dissertation examined the performance of the segregating ap-
proach to multilevel factor analysis under real world conditions in order to study:
1) The efficiency of the segregating approach compared to the partially saturated

model method in the estimation of parameters in two-level models. 2) The com-
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parative performance of GEE-based ADF, cluster bootstrap-based ADF and ML
estimators in the segregated analysis of between-groups covariance structure 3) The
extension of the bootstrap-based method to three level models. 4) the extension
of the cluster bootstrap-based method to three level models. 4) The application
of these bootstrap methods to a realistic dataset to illustrate how the methods
may be used to investigate the dimensions of teacher professional practice that are
discernible in a state-wide student survey of instructional quality. The results are

worth consolidating and discussing in more detail here.

8.1 The segregating approach is relatively efficient

The segregating approach is implemented in two steps, and so there are questions
as to whether the loss of efficiency that arises from the use of a two-step method
is substantial enough to dissuade researchers from implementing the method, and
using a one-step method of model evaluation—such as the partially saturated
modeling method—instead. This dissertation demonstrated that, when evaluating
the estimation of group level parameters, for balanced group sizes and two level
models, using maximum likelihood estimation in conjunction with the segregating
approach yields parameter estimates that are at least as efficient as those from
the partially saturated modeling method. Beyond that, this dissertation offered
empirical evidence to support the hypothesis of Yuan and Bentler (2007) that in
some cases, the segregating approach may be far more efficient than the partially
saturated modeling method. While Yuan and Bentler (2007) acknowledged that this
could happen as model complexity increases, this dissertation demonstrated that
the segregating approach is relatively more efficient for small models as within-group
sample sizes or ICCs decrease. The relative efficiency of the segregating approach,

along with the fact that it is readily implemented into virtually any conventional
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factor analysis or covariance structure analysis software, makes the segregating
approach an appealing approach to researchers studying the psychometrics of
student surveys of instructional practice, where those exact conditions—small

within-group sample sizes and low ICCs—are commonly encountered.

8.2 The cluster bootstrap can be used to obtain test statis-
tics and standard errors, provided sample sizes are

sufficient

Because maximum likelihood estimation produces the most accurate and precise
parameter estimates, it is recommended to use maximum likelihood estimation
in conjunction with the segregating approach, particularly for the analysis of the
level-2 covariance matrix. However, it is not recommended that the widely used
Likelihood Ratio test statistic Ty, be used to test the null hypothesis of exact
fit, because this statistic will not be asymptotically distributed as a central chi-
square variate when analyzing the between-groups covariance matrix. Additionally,
maximum likelihood estimated standard errors tend to be too small, even when
the model is correctly specified—particularly when ICCs are low or within-group
sample sizes are small.

Results in this dissertation suggest that the residual-based test statistics Trapp
and Tograpr be used for model testing. These statistics, and in particular Torapr,
showed the best performance over a wide variety of simulation conditions. These
statistics are asymptotically distribution free and can be obtained in the frame-
work of ML estimation. In addition, it is recommended that the robust (sandwich
estimated) standard errors be used for inferences about model parameters, as those
standard errors showed the best performance over a wide variety of simulation
conditions, and particularly in cases when item ICCs are low or within-group

sample sizes are small.
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The residual-based test statistics and robust standard errors require an estimate
of I'g, the asymptotic covariance matrix. This dissertation demonstrated that
consistent estimates of this asymptotic covariance matrix can be obtained using the
cluster bootstrap. As far as this author knows, this is the first time that the cluster
bootstrap has been applied to the problem of estimating an asymptotic covariance
matrix for use in conjunction with the segregating method. The cluster bootstrap
has many possible advantages over the Generalized Estimating Equation (GEE)
framework proposed in Yuan and Bentler (2007). Specifically, while the GEE
framework requires researchers to specify a matrix of partial first order derivatives
of the log likelihood function. And, while Yuan and Bentler (2007) provided the
relevant mathematical details (and a SAS macro to do the computation), the
specification of this matrix becomes increasingly more complicated as the number
of hierarchical levels increases. For example, details on the relevant log-likelihood
function for three or four level models are not readily available.

On the other hand, the non-parametric cluster bootstrap requires no such specifications—
researchers only need access to software capable of performing the relevant re-
sampling (with replacement). This is far less technically and mathematically
challenging, and much more straightforward to implement. In fact, it could be
argued that these benefits of the cluster bootstrap outweigh some of the negatives—
specifically, that the cluster bootstrap requires larger sample sizes than GEE
estimation for test statistics to be properly distributed, and the cluster bootstrap
is more computationally expensive, in the sense that it will take longer to run,

even on relatively high performance computer systems.
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8.3 The cluster bootstrap can be extended to three level

models

In many real world applications, and in particular in the context of student surveys
of instructional practice or teacher quality, it is necessary to consider hierarchical
data structures with multiple levels of nesting. For example, a three level model
with students nested within teachers, and teachers nested within schools. In fact,
in the context of secondary school teachers, where individual teachers may teach
multiple sections of a class, it may be necessary to consider hierarchical models
with four levels: students nested in class sections, nested in teachers, nested in
schools.

In spite of this, the research base on how best to implement factor analytic methods
into data structures with more than two levels of nesting is very small. While Yuan
and Bentler (2007) and Longford and Muthén (1992) noted that the theoretical
basis of multilevel factor analysis is readily expanded from two level setting to
settings with two and three levels, and Hox (2010) and Goldstein (2003) noted
that obtaining estimates of the relevant covariance matrices for use in the segre-
gating method is easily done using conventional software, only Yau et al. (1993)
investigated with an empirical example how the segregating approach may be used
in multilevel data sets with three levels of nesting. However, their examples use
conditions that are not likely encountered in the context of student surveys of
professional practice or instructional quality.

Thus, this dissertation makes three contributions to the research on multilevel
factor analysis. Through a simulation study, it was demonstrated that the segre-
gating approach can be used in conjunction with maximum likelihood estimation
in data sets with three levels of nesting to yield accurate parameter estimates. The
simulation study also demonstrated that the cluster bootstrap could be extended

to three levels to estimate 'y, and that—for adequate level 2 sample sizes—the
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residual-based test statistics Trapr and Torapr based on this estimate will be
appropriately distributed and can be used to make inferences about measurement
models. Finally, this dissertation illustrated how the segregated approach can be
applied to a realistic student survey dataset, and illustrated how the segregated
approach can be used to test measurement models and to explore relationships
between aggregated survey variables and outcomes of importance to policy and

practice.

8.4 Limitations of the current study

This dissertation relied on a series of simulation studies in order to make inferences
about the applicability of the segregating approach to a range of conditions and
data configurations. However, as with any simulation study, caution should be used
in generalizing these results to other conditions not included in the study. There
are several conditions that were not included in this dissertation, in particular,
that are worth mentioning here, as more work is needed to investigate how these

conditions would influence parameter estimation and test statistic performance.

8.4.1 Non-normal distributions

All of the population models used in the simulation studies generated data that
was multivariate normal in distribution. However real data is rarely normal in
distribution (Micceri, 1989), and observed variables typically exhibit excess skew
and kurtosis, relative to a normal distribution. When indicators are excessively
skewed or kurtotic, there is limited research in multilevel factor analysis using
the segregating method demonstrating empirically that the residual based test
statistics—which are based on asymptotic distribution free theory—are appropri-

ately distributed under the null hypothesis (e.g. Bentler & Yuan, 1999). However,
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there is substantial research on this issue in conventional factor analysis (e.g.,
Bentler & Yuan, 1999; Hu et al., 1992; B. O. Muthén & Kaplan, 1985, 1992).
Regarding standard errors, there is less research that examines how standard errors
of parameter estimates—and in particular, the robust standard errors—perform
under distributional violation in multilevel factor analysis or covariance structure
analysis. Yuan and Bentler (2006) explored analytically the effect of skew and
kurtosis on standard errors in multilevel factor analysis, and recommended the use
of robust (sandwich estimated) standard errors, though the segregating approach
in particular was not studied.

Finally, while in theory the cluster bootstrap is non-parametric and should provide
consistent estimates of the asymptotic covariance matrix under a wide variety of
distributions, the performance of the cluster bootstrap in this context has not been
studied. The limited work that does exist on the cluster bootstrap (Carpenter et
al., 1999; Field & Welsh, 2007; Ren et al., 2010; Samanta & Welsh, 2013; Van der

Leeden et al., 1997) is focused on univariate models.

8.4.2 Simplified generating model

The population models used in simulation here were relatively simple. For example,
in simulation study 1, the between-groups model contained only one factor, which
influenced the observed indicators. In that study, observed scores for individuals
were simulated based on a common factor model, and so the observed scores are
exact linear combinations of the factor scores and the uniquenesses. However, as
MacCallum and Tucker (1991) pointed out, in practice, this generating model
is unrealistic, and there is some amount of model error that is unaccounted for.
In other words, there is a “lack of correspondence between the model and the
population covariance matrix” ( p. 507). For example, Tucker, Koopman, and Linn
(1969) noted that there may be many minor factors that are not of substantive

interest or importance, but that influence the values of the observed scores, and
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incorporated these minor factors into simulation models, to see how these would

influence model appraisal.

8.4.3 Balanced group sizes

All of the simulation studies included in this dissertation used balanced groups.
That is, all of the groups in simulation study 1, and all of the subgroups in
simulation study 2 contained the same number of units. This condition is not
likely to be encountered in real world research settings, where numbers of students
vary from classroom to classroom, and numbers of teachers vary from school to
school.

While results in Yuan and Bentler (2006, p. 2007) suggested that the ADF and
residual-based test statistics used in this study should be correctly distributed
in the segregating approach even as group sizes are unbalanced, there is little
empirical work demonstrating how differences in group sizes influence test statistic
performance and convergence. Additionally, the influence of unbalanced group
sizes on parameter estimation, accuracy and efficiency have not been systematically
studied. There is also little research on the influence of unbalanced group sizes on
the performance of the cluster bootstrap, and the limited work that does exist on

the cluster bootstrap focuses on univariate models.

8.5 Directions for future research

This study helped to develop and test a framework for implementing the segregating
approach to three level factor models, and focused specifically on the psychometric
properties of aggregated indicators of teacher quality and instructional practice.
The results of this study suggest five areas for future research, each of which are

briefly addressed here.
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8.5.1 Crossed raters

In elementary school settings, the multilevel factor models developed and tested in
this dissertation adequately describe the hierarchical structure of the data. That
is, the model assumptions are that student raters are uniquely associated with
teachers, and that teachers are uniquely associated with schools. Each student
rates only one teacher, and each teacher appears in only one school. This is
sensible for mainstream elementary school settings, because the typical model for
elementary education is to have one general subject teacher providing instruction
to a stable set of students in one school building for an entire academic year.
However, this model is less sensible when applied either to 1) special education or
subject specialist teachers at an elementary level or 2) secondary school teachers.
Special education teachers frequently move classrooms or move school buildings.
Secondary school teachers are often subject specific, and it is common for students
to have separate English, mathematics, and science teachers, say, in middle school
and high school.

When the same student rates multiple teachers, or when teachers move from
school to school, the assumption of a hierarchical data set is violated. This sort
of model may be more accurately described as a cross-classified model. Little
research currently exists on how to incorporate cross-classified rater effects into
factor models or covariance structure models, and more research is needed in this

area.

8.5.2 Measurement error or substantive variation: differences between

students within classrooms

The measurement models used in this study are based on an assumption that
variance between teachers within schools is substantively interesting, and represents

meaningful differences in instructional quality, but that variance between students
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within classrooms represents rater error, and should not be substantively interpreted
(e.g., Marsh et al., 2012).

The tenability of the assumption that variance between students within a classroom
is attributable to error is questionable. It is often difficult to distinguish items
intended to measure individual, psychological constructs from items that are
intended to measure organizational constructs, and many items are not readily
categorized, and it is possible to conceive of microclimates, where individual
students have legitimately different experiences with instruction in a particular
classroom. This raises important questions about what is being measured by a
particular survey. Are the items measuring qualities of the classroom? Or are they
measuring qualities of the students? Or both? (e.g., Sirotnik, 1980). Alternative
models that consider the possibility that differences in ratings across students
within a classroom represent meaningful differences between students should be

developed and explored.

8.5.3 Nonlinear latent variable modeling frameworks

The models in this dissertation are extensions of commonly used confirmatory
factor analysis models, which attempt to structure the covariances between items.
In general, these models are built upon an assumption that items are continuous,
rather than categorical.

There exist other models for categorical data, that do not treat the observed
indicators as continuous, including multilevel item response models (Fox & Glas,
2001) or multilevel item factor models, as well as other nonlinear latent variable
models (Yang & Cai, 2012; Yang, Monroe, & Cai, 2012). There has been relatively
little application of these models to student ratings of instructional practice, and

this is an area that should be further developed and explored.
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8.5.4 Comparison of aggregated and disaggregated analyses

While there is a long tradition of literature (e.g., Cronbach, 1976; Harnqvist, 1978;
Julian, 2001; Longford & Muthén, 1992; Zyphur et al., 2008) demonstrating the
advantages of multilevel factor anlaysis and suggesting that that single-level analytic
methods that do not account for hierarchical data structures are problematic and
can be “substantively misleading” (Reise et al., 2005, p. 130), they are still widely
used in applied research. In the context of student ratings of professional practice,
one relatively unexplored area of research concerns comparisons of the precision and
accuracy of teacher scores that can be estimated using multilevel factor analytic
techniques such as the segregating method compared to other methods. For
example, two widely used analytic approaches involve either 1) assigning teacher
scores based on the means of observed student scores (e.g., Mihaly et al., 2013), or
2) using a disaggregated factor analysis to compute factor scores for individual
students, and then aggregating those factor scores to assign teacher scores (e.g.
DiStefano et al., 2007). In the context of appraising teacher quality, when a single
score is created from all of the survey items, there many open issues regarding how
inferences about individual teachers change depending on the modeling approach,

and whether (and how) perceptions of precision are influenced by model choice.

8.5.5 Small samples and large surveys

One last area of potential future research concerns the investigation of methods—
whether covariance structure methods such as those investigated in this dissertation,
or alternative methods such as nonlinear latent variable models or Bayesian latent
variable models—when sample sizes are small and measurement models complex.
The results of this dissertation suggest that for small level 2 sample sizes, parameter
bias, efficiency, and test statistic performance makes model estimation and appraisal

difficult. However, many studies involving student ratings of instructional practice

173



contain more items than the survey included in this dissertation. At the same
time, the number of teachers, classrooms, or schools tend to be far smaller than
were considered here. How best to estimate models and make inferences about the

psychometric properties of surveys under these conditions is largely unknown.
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Appendix A

Additional Q-Q Plots
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Figure A.2: Q-Q plots df =9 ICC = .26
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Figure A.3: Q-Q plots df =9 ICC = .10

|

ved test statistics
ved test statistics

50 15 ow % 5o o1 owox
, Traoe Terap

S 50 1
T Tewn

:1/:/ i/M/
I T
Quantiles of a central x’ variate

(c) J =200 n =50

Quantiles of the observec
Quantiles of the obser
Quantiles of the obser

Trisuen Tessuen Trisuen

5 ?§L =
1 test statist
2 0w w0 515
N ;
5o %
1 test stat

Quantiles of the observed test statistics

Quantiles of the observed test statistics

1/1/

o
Q ntiles of a entral x% variate Q ntiles of a Q antiles of & «1\

(d) J =100 n =10 (e) J =100 n = 30 (f) J =100 n = 50

ved

50 omow
g ii oo
1 test statist

Quantiles of the observed test statistics

1 test stat)
2 2
= \ I

Quantiles of the obser
Quantiles of the observed test statistic

(g) J =50n=10 (h) J =50 n = 30 (i) J =50 n = 50

Legend: A =Bootstrap, ¢ =GEE

178



Figure A.4: Q-Q plots df =9 ICC = .05
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Figure A.5: Q-Q plots df = 54, ICC' = .50
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Figure A.6: Q-Q plots df =54 ICC = .26
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Figure A.7: Q-Q plots df =54 ICC = .10
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Figure A.8: Q-Q plots df =54 ICC = .05
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