
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Distributed Optimization in Multi-Agent Systems: Continuous-Time Convex Optimization and
Policy Optimization Based Packet Routing

Permalink
https://escholarship.org/uc/item/9t02v6bf

Author
Sun, Shan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9t02v6bf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Distributed Optimization in Multi-Agent Systems: Continuous-Time Convex
Optimization and Policy Optimization Based Packet Routing

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Shan Sun

June 2021

Dissertation Committee:

Dr. Wei Ren, Chairperson
Dr. Jay A. Farrell
Dr. Fabio Pasqualetti

Copyright by
Shan Sun

2021

The Dissertation of Shan Sun is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to express my deepest gratitude to my adviser, Dr. Wei Ren, for his constant

guidance, support, and encouragement through each stage of my Ph.D. career. It has been

a great privilege to work with him and to learn from him over the past four years. He has

made great achievements in academia, yet he is one of the kindest and most humble men I

have ever known. Since met him, I even believe that the most successful people are usually

the most humble ones. He has set a great example that will have a lifetime influence on

my attitude and behavior towards work and life. I feel extremely lucky to be his student.

I would also like to thank my mentors, Dr. Fei Chen, Dr. Jay A. Farrell, and Dr. Mariam

Kiran for their valuable suggestions and advice for my research. The discussions with them

help me a lot. Many thanks to other members in my oral and defense committee, Dr. Matt

Barth, Dr. Jiasi Chen, Dr. Konstantinos Karydis, and Dr. Fabio Pasqualetti. I appreciate

all their useful suggestions and insightful comments to enhance the quality of this work.

I also want to thank all my wonderful colleagues, Yong Ding, Ryan Decker, Qianjun

Liu, Shaoshu Su, Dr. Peng Wang, Jie Xu, Pengxiang Zhu, Yifan Zhang, and all the visiting

scholars in COVEN lab, for much joyful time together as well as many useful discussions,

suggestions and encouragements. Meanwhile, I want to thank to my friends, Yue Chang,

Mengfu Di, Xuan Gong, Shuai Huang, Zeyi Jiang, Xinyue Kan, Junying Liu, Runze Li,

Shasha Li, Zhichao Liu, Zhilu Liu, Zhouyu Lu, Dr. Bashir Mohammed, Ashim Neupane,

Lu Shi, Hanzhe Teng, An Xin, Fangfang Yang, Dr. Luting Yang, Bohan Zhao, for making

my graduate life colorful, enriched, and memorable. I wish you all the best in your future

endeavors.

iv

I owe my deepest gratitude to my family. I am indebted to my parents, Jinggang

Sun and Shengmei Sun, ’s unreserved love and care. Thank my husband Dr. Hongsheng

Yu, for not only accompanying me during my whole Ph.D. life but also providing technical

suggestions whenever I encountered difficulties in research.

This work was supported by National Science Foundation under Grant ECCS-

1920798 and Grant ECCS-1611423. Acknowledge of previously materials: the text of this

dissertation, is partly rewritten based on the material that presented in seven previously

published or submitted papers. The papers are as follows.

1, S. Sun, F. Chen, and W. Ren, Distributed average tracking over weight-unbalanced di-

rected graphs, American Control Conference, 2019.

2, S. Sun, F. Chen, and W. Ren, Distributed average tracking in weight-unbalanced directed

networks, IEEE Transactions on Automatic Control, 2020, DOI: 10.1109/TAC.2020.3046029.

3, S. Sun, Y. Zhang, P. Lin, W. Ren, and J. A. Farrell, Distributed time-varying opti-

mization with state-dependent gains: algorithms and experiments, IEEE Transactions on

Control Systems Technology, 2021, DOI: 10.1109/TCST.2021.3058845.

4, S. Sun, W. Ren, Distributed continuous-time optimization with time-varying objective

functions and inequality constraints, IEEE Conference on Decision and Control, 2020.

5, S. Sun, J. Xu, and W. Ren, Distributed continuous-time algorithms for time-varying

constrained convex optimization, IEEE Transactions on Automatic Control, under review.

6, S. Sun, M. Kiran, Multi-agent meta reinforcement learning for packet routing in dynamic

network environments, ACM/IEEE Supercomputing Conference, 2020.

7, S. Sun, M. Kiran, and W. Ren, MAMRL: Exploiting multi-agent meta reinforcement

v

learning in WAN traffic engineering, ACM SIGCOMM Computer Communication Review,

under review.

vi

Dedicated to my parents,

Jinggang and Shengmei,

and to my husband, Hongsheng.

Anything good that has come to my life has been because of your love.

vii

ABSTRACT OF THE DISSERTATION

Distributed Optimization in Multi-Agent Systems: Continuous-Time Convex
Optimization and Policy Optimization Based Packet Routing

by

Shan Sun

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2021

Dr. Wei Ren, Chairperson

A multi-agent system is defined as a collection of intelligent agents which are able

to interact with each other or with their environments to solve problems that are beyond

the individual capacities or knowledge of each problem solver. Distributed optimization in

multi-agent system allows for acting the agents in a distributed manner (using only local

information from their neighbors) to achieve global optimization objectives cooperatively

so as to increase flexibility and robustness. Examples of cooperative tasks include optimiza-

tion of network flows, big-data analysis, design of sensor networks, multi-robot teams, and

resource allocation. In this dissertation, two distributed optimization problems are investi-

gated, where two different methods of convex optimization and reinforcement learning are

employed to solve these problems.

In our first problem, a distributed time-varying convex optimization problem is

studied for continuous-time multi-agent systems. The objective is to minimize the sum

of local time-varying objective functions, each of which is known to only an individual

agent, through local interaction. Here, the optimal point is time varying and creates an

viii

optimal trajectory, which renders extra challenge to well-studied distributed time-invariant

optimization problems. To begin with, we study distributed time-varying optimization

problems with convex objective functions for undirected topologies. We propose multiple

optimization algorithms for different application scenarios: 1) optimization problems that

do not have explicit bounds on any information about the local objective functions, 2) opti-

mization problems with linear equality constraints, 3) optimization problems with nonlinear

inequality constraints, and 4) optimization problems with both linear equality and nonlinear

inequality constraints. Furthermore, we aim to seek a design methodology for distributed

time-varying optimization under possibly weight-unbalanced directed networks—the most

general and thus most challenging case from the network topology perspective. Particu-

larly, we study distributed time-varying optimization problems with quadratic objective

functions, which are equivalent to distributed average tracking problems.

In the last part of this dissertation, the packet routing (path optimization) problem

is addressed for distributed communication network systems that are consist of multiple

routers and multiple links. Here, the goal is that all the routers work cooperatively to get

all the packets delivered to their destinations through available paths with minimum time

overall. Specifically, we aim to find optimal paths for packets in the presence of link failures,

which is a crucial challenge faced by communication networks. We propose to leverage deep

policy optimization (reinforcement learning) algorithms for enabling distributed model-free

control in communication networks and present a novel meta-learning-based framework for

enabling quick adaptation to topology changes.

ix

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Related Literature . 2

1.2.1 Distributed Convex Optimization . 3
1.2.2 Distributed Average Tracking . 5
1.2.3 Packet Routing . 9

1.3 Contributions . 13
1.4 Organization . 18

2 Preliminaries 19
2.1 Notation . 19
2.2 Graph Theory . 20
2.3 Nonsmooth Analysis . 22
2.4 Convex Optimization . 23
2.5 Reinforcement Learning . 24

3 Distributed Convex Optimization with Time-Varying Objective Func-
tions 27
3.1 Distributed Time-Varying Optimization With

State-Dependent Gains . 28
3.1.1 Problem Formulation . 28
3.1.2 Algorithm Design . 31
3.1.3 Algorithm Analysis . 33
3.1.4 Simulations . 38
3.1.5 Experimental Validation . 40

3.2 Distributed Time-Varying Optimization With Equality Constraints 46
3.2.1 Problem Formulation . 46
3.2.2 Algorithm Design . 47

x

3.2.3 Algorithm Analysis . 49
3.2.4 Simulations . 51

3.3 Distributed Time-Varying Optimization With Inequality Constraints 52
3.3.1 Problem Formulation . 52
3.3.2 Algorithm Design . 55
3.3.3 Algorithm Analysis . 59
3.3.4 Simulations . 70
3.3.5 Experimental Validation . 71

3.4 Distributed Time-Varying Optimization With Both Inequality and Equality
Constraints . 77
3.4.1 Problem Formulation . 77
3.4.2 Algorithm Design . 78
3.4.3 Algorithm Analysis . 81
3.4.4 Simulations . 86

3.5 Conclusions . 87

4 Distributed Average Tracking in Weight-Unbanlaced Networks 88
4.1 Preliminary . 89
4.2 Distributed Average Tracking For Single-Integrator Dynamics 90

4.2.1 Problem Formulation . 90
4.2.2 Algorithm Design . 91
4.2.3 Algorithm Analysis . 93
4.2.4 Simulations . 98

4.3 Distributed Average Tracking For High-Order Integrator Dynamics 101
4.3.1 Problem Formulation . 101
4.3.2 Algorithm Design . 102
4.3.3 Algorithm Analysis . 103
4.3.4 Simulations . 113

4.4 Conclusions . 116

5 Distributed Packet Routing Using Reinforcement Learning 118
5.1 Problem Formulation . 119
5.2 Background . 120

5.2.1 Performance under Partial Observability 120
5.2.2 Model-agnostic Meta-learning . 122

5.3 Design: MAMRL Approach . 123
5.4 Evaluation . 129

6 Summary 138

Bibliography 140
.1 Appendix . 150

xi

List of Figures

2.1 A global reinforcement learning agent learning network states. 24

3.1 The undirected graph representing the communication topology between
agents. 38

3.2 Simulation results showing state convergence using the controller (3.5). . . . 40
3.3 Simulation results using controller (3.5) with the deviation vectors intro-

duced. 40
3.4 The experimental setup and information flow. 41
3.5 Normalized trajectory of Crazyflies using controller (3.5). 42
3.6 Trajectory of Crazyflies using controller (3.5). 43
3.7 Normalized trajectory of Crazyflies in the target tracking experiment. . . . 45
3.8 Trajectory of Crazyflies in the target tracking experiment. 46
3.9 Simulation results showing state convergence to the optimal solution using

controller (3.20). 52
3.10 Simulation results showing convergence of the constraint using controller (3.20). 52
3.11 The undirected graph. 70
3.12 State trajectories of all the agents with the system (3.1) under the controller

(3.27). The red dashed line is the optimal solution and the other solid lines
are the trajectories of all agents’ states. 70

3.13 Plots of the constraint results with the system (3.1) under the controller (3.27). 71
3.14 Multi-robot multi-target navigation problem 72
3.15 The communication topology between crazyflies. 72
3.16 Simulation result with Crazyswarm simulator (a) Initial positions of all the

crazyflies (blue circles) and all the targets (red stars). Subplots (b)-(e) show
the trajectories of all the crazyflies up to time instance 25 s, 50 s, 75 s, 100
s. The positions of all the crazyflies and all the targets at each time instance
are represented by blue circles (crazyflies) and red stars (targets). (f) The
geometric center trajectory of all the crazyflies (blue line) and the geometric
center trajecotry of all the targets (red line). 73

xii

3.17 Experimental result with crazyflies (a) Initial positions of all the crazyflies
(blue circles) and all the targets (red stars). Subplots (b)-(e) show the tra-
jectories of all the crazyflies up to time instance 25 s, 50 s, 75 s, 100 s. The
positions of all the crazyflies and all the targets at each time instance are
represented by blue circles (crazyflies) and red stars (targets). (f) The ge-
ometric center trajectory of all the crazyflies (blue line) and the geometric
center trajecotry of all the targets (red line). 73

3.18 State trajectories of all the agents with the system (3.1) under the controller
(3.63). The red dashed line is the optimal solution and the other solid lines
are the trajectories of all agents’ states. 86

3.19 Plots of the constraint results with the system (3.1) under the controller (3.63). 86

4.1 A weight-unbalanced directed communication topology. 98
4.2 State trajectories of all the robots for the case in Section 4.2.4 99
4.3 State trajectories of all the follower robots without the offsets and the geo-

metric center of all the leader robots in X-coordinate for the case in Section
4.2.4 . 100

4.4 State trajectories of all the follower robots without the offsets and the geo-
metric center of all the leader robots in Y-coordinate for the case in Section
4.2.4 . 100

4.5 State trajectories of all the robots for the case in Section 4.3.4 115
4.6 State trajectories of all the follower robots without the offsets and the geo-

metric center of all the leader robots in X-coordinate for the case in Section
4.3.4 . 116

4.7 State trajectories of all the follower robots without the offsets and the geo-
metric center of all the leader robots in Y-coordinate for the case in Section
4.3.4 . 116

5.1 The framework of model-agnostic meta learning. 122
5.2 MAMRL framework. 123
5.3 Comparing average packet delivery time as load increases. 131
5.4 Packet loss results in the presence of link failures. 133
5.5 Average packet delivery time results in the presence of link failures. 137
5.6 Reward in the presence of link failures. 137

xiii

List of Tables

5.1 Network topologies used in our evaluations. 129
5.2 Average number of episodes used to adapt to link failures. 135

xiv

Chapter 1

Introduction

1.1 Motivation

In this dissertation, we study optimization problems in multi-agent systems. A

multi-agent system is defined as a collection of intelligent agents which are able to interact

with each other or with their environments to solve desirable global objectives cooperatively.

Applications for multi-agent systems include but are not limited to power systems, commu-

nication networks, smart buildings, and networked robotics. There are two commonly-used

approaches in multi-agent technologies: the centralized approach and the distributed (de-

centralized) approach. In the centralized approach, there is at least one central agent that

collects all of the information from other agents to make decisions for the whole group of

agents. On the contrary, in the distributed approach, each agent only uses local informa-

tion to achieve the desirable global objective. Compared to the centralized approach, the

major motivations of using distributed approaches include, 1) many real world problems

are considered distributed systems by nature and not by choice. Such systems cannot be

1

dealt with by centralized strategies, 2) distributed systems are more tolerant to faults (more

robust). Crashes in a distributed system may cause less degradation on the performance

since the agents work on local information. Many problems in multi-agent systems can

be posed in the framework of convex optimization [13]. In this dissertation, we consider

two optimization problems in multi-agent systems: continuous-time convex optimization

with time-varying objective functions and packet routing (path optimization) problems for

communication networks. More specifically:

• First, we consider the distributed time-varying optimization with general convex ob-

jective functions for undirected topologies, where the goal is to minimize the sum of

local time-varying objective functions.

• Next, we consider a special case of distributed time-varying optimization for possi-

bly unbalanced graphs: distributed average tracking problems, where each objective

function is quadratic.

• Finally, we consider packet routing problem in communication networks that are con-

sist of multiple routers and multiple links. We aim to find optimal paths for the

packets, through which the packets can be delivered to their destinations with mini-

mum time.

1.2 Related Literature

In this section, we present literature review on three topics: distributed time-

varying optimization with general convex objective functions, distributed time-varying op-

2

timization with quadratic objective functions (distributed average tracking) and packet

routing.

1.2.1 Distributed Convex Optimization

There has been significant attention on distributed convex optimization problems,

where the goal is to cooperatively seek the optimal solution that minimizes the sum of private

convex objective functions available to each individual agent. In this context, discrete-time

distributed optimization algorithms have been studied extensively (see e.g., [73, 116] and

references therein).

There exists another body of literature on distributed continuous-time optimiza-

tion algorithms (see e.g., [61, 57, 129, 115, 28, 79, 65, 58]). The distributed continuous-time

optimization algorithms have applications in coordinated control of multi-agent teams. For

example, multiple physical robots modeled by continuous-time dynamics might need to

track a team optimal trajectory. Note that most studies in the literature focus on station-

ary optimization problems in which both the objective functions and constraints do not

explicitly depend on time. However, in many applications, the local performance objectives

or engineering constraints may evolve in time, reflecting the fact that the optimal solution

could be changing over time and create a trajectory (see e.g., [54, 108, 93, 104]), which makes

the design and analysis much more complex. Moreover in practical optimization problems,

constraints are sometimes inevitable. In this paper, we are interested in the distributed

continuous-time algorithms for time-varying constrained optimization problems.

There are just a few works in the literature addressing the distributed continuous-

time optimization problem with time-varying objective functions [95, 41, 20, 117, 110, 82,

3

42]. Specifically, [95, 41] solve the distributed continuous-time time-varying optimization

problems with convex set constraints. However, [95] and [41] are limited to solve, respec-

tively, optimization problems with quadratic objective functions and linear programming

optimization problems. Moreover, both [95] and [41] can only achieve bounded tracking er-

rors to the optimal solutions. Ref. [117] addresses a Nash equilibrium seeking problem for

non-cooperative games where the Nash equilibrium under consideration can be time vary-

ing. However, [117] does not consider state constraints in the game problems. Distributed

time-varying resource allocation problems are studied in [20, 110], where time-varying ob-

jective functions or time-varying loads are considered. However, both [20] and [110] do

not consider nonlinear inequality state constraints. Recently, the second-order optimization

methods are proven to work well in centralized time-varying optimization problems (see e.g.,

[93, 104, 27]). However, their use in distributed settings has been prohibited as they require

global information of the network to compute the inverse of the global Hessian matrix.

Refs. [82, 42] solve the distributed time-varying optimization problems using second-order

optimization methods. However, the algorithm in [42] and the consensus-based algorithm

in [82] (Section III.B) are limited to the unconstrained problem with local objective func-

tions that have identical Hessians. While the estimator-based algorithm in [82] (Section

III.C) can deal with certain objective functions with nonidentical Hessians, it relies on the

distributed average tracking techniques [15] and hence poses restrictive assumptions that

the time derivatives of the Hessians and the time derivatives of the gradients of the local ob-

jective functions exist and be bounded. In addition, because the estimator-based algorithm

has to estimate the Hessian inverse of the global objective function, it necessitates the com-

4

munication of certain virtual variables between neighbors with increased computation costs.

While it is possible to convert the constrained optimization problem to an unconstrained one

using penalty methods, the resulting penalized objective functions would not have identical

Hessians due to the involvement of the nonuniform local constraint functions (even if the

original objective functions would), and they might not satisfy the restrictive assumptions

mentioned above. As a result, the algorithms in [82, 42] cannot be applied to address the

distributed time-varying constrained optimization problem. For distributed time-varying

optimization algorithms in discrete-time settings, the readers are referred to [118, 89]. It

is worth mentioning that in the literature on discrete-time time-varying optimization algo-

rithms, all the works can only achieve bounded tracking errors, which are usually related

to the sampling rate or step size. The continuous-time and discrete-time algorithms serve

in different application domains. In this work, we focus on the continuous-time algorithms,

which have applications especially in motion coordination.

1.2.2 Distributed Average Tracking

In distributed average tracking, the agents are coupled through the common task

that they try to track the average of a set of reference signals, each of which is available to

a single agent and is generally time varying; the task should be completed on the basis of

local information and local communication among the agents. Recent years have witnessed

a growing interest in the study of distributed average tracking, partially due to its broad ap-

plications. Distributed average tracking has found applications in distributed sensor fusion

[23] and distributed Kalman filtering [75], where the technique has mainly been applied from

an estimation perspective. There are also various applications, where distributed average

5

tracking is employed to design control laws for physical agents. Examples include dynamic

region-following formation control [17] and distributed convex optimization [82]. It has

been recognized that distributed average tracking has its own unique difficulties and faces

not only theoretical but also practical challenges, since the tracking objective of distributed

average tracking is time varying and unavailable to any agent.

From the estimation perspective, the goal of the distributed average tracking prob-

lem is to, in a distributed manner, fuse information or compute common estimates of cer-

tain time-varying quantities of interest. A typical example is to estimate and track the

averaged position of a moving target by multiple cameras. In this case, the local ref-

erence signal is the position data, sensed by each camera, of the moving target. Some

distributed average tracking results from the estimation perspective have been presented in

[92, 32, 8, 15, 125, 33, 74]. For example, in [92], the authors propose a linear algorithm to

achieve distributed average tracking for reference signals with steady states. A proportional

algorithm and a proportional-integral (PI) algorithm are proposed in [32] to achieve dis-

tributed average tracking with a bounded tracking error under constant or slowly-varying

inputs. Based on the nonsmooth sliding mode control theory for nonlinear systems, [15]

presents a distributed nonlinear algorithm to achieve accurate distributed average tracking

for time-varying reference signals with bounded derivatives. In order to remove the chat-

tering effect caused by the discontinuous signum function, the authors in [125] propose a

class of distributed continuous nonlinear algorithms with, respectively, static and adaptive

coupling strengths for signals generated by linear dynamics. Different from [125], our note

focuses on distributed average tracking over a weight-unbalanced directed graph, which in-

6

troduces more challenges than its undirected counterpart. Furthermore, in [33], considering

the robustness to initial errors, the authors develop a nonlinear distributed average tracking

algorithm for arbitrary reference signals with known bounded derivatives.

From the control perspective, some physical agents cooperatively track a desired

tracjectory generated by multiple reference signals. For example, the desired trajectory

might be the geometric center of multiple leader robots. In this case, the local reference

signal is the state of each leader robot. In practice, the physical agents might have more

complicated dynamics than single-integrator dynamics. Some researchers have solved the

distributed average tracking problem via linear distributed algorithms [49, 83], and some

researchers have employed nonlinear distributed algorithms [18, 34, 126, 17, 127]. Both

the linear algorithms and the nonlinear algorithms have their features and advantages while

with trade-off. For weight-balanced directed graphs, considering single-integrator dynamics,

the authors in [49] investigate a continuous algorithm to make agents track the average

of the dynamic inputs with a bounded steady-state error. Recently, the authors in [83]

propose a linear distributed algorithm with a chain of two integrators for single-integrator

dynamics, which can deal with a class of reference signals with steady deviations among

the reference signal velocities. However, in the linear algorithms, a common assumption is

that the multiple reference signals tend to constant values, and most of the results cannot

guarantee accurate tracking. Therefore, to achieve accurate distributed average tracking,

the nonlinear algorithm in [15] is further extended in [18] to double-integrator systems for

reference signals with bounded accelerations. To address the distributed average tracking

problem for physical agents with nonlinear systems, in [34] the authors introduce an exact

7

distributed average tracking algorithm for systems with heterogeneous unknown nonlinear

dynamics, where no constraints are imposed on the input reference signals. Furthermore,

a distributed algorithm is developed in [126] for agents with nonlinear dynamics to achieve

distributed average tracking in finite time. Distributed average tracking algorithms are

proposed for agents with general linear dynamics in [17] and for agents with additional

Lipschitz-type nonlinear dynamics in [127], where exact distributed average tracking is

achieved. However, the trade-off is that the signum function used in some of the above

nonlinear algorithms may cause chattering phenomena.

It should be recognized, nevertheless, that the distributed average tracking works

alluded to above are all built upon the assumption that the network topology is either

undirected or directed but weight-balanced; both cases are highly idealistic and seldom seen

in practice. For example, if a camera is used to get the relative positions between agents,

due to the limited field of view, it is possible that one agent can sense another agent but not

vice versa. In addition, if the agents use communication devices to exchange information

with others, the agents might broadcast at different power levels. As a result, the above

situations might result in weight-unbalanced directed graphs. Moreover, if the convergence

of an algorithm remains unchanged even after removing a few slow communication links

or package loss, which might in turn result in a weight-unbalanced directed graph, the

algorithm will be more robust and reliable. In order to solve distributed average tracking

for generic directed networks, the authors in [6] propose a distributed algorithm to drive the

states of all agents to a neighborhood of the average of the reference signals. A prerequisite

for the algorithm to work is that the left eigenvector, corresponding to the zero eigenvalue, of

8

the Laplacian matrix should be available to the agents, which is seldom possible in practice,

particularly for large networks.

1.2.3 Packet Routing

Modern communication networks have become very challenging mainly due to the

following two reasons [11]. Firstly, communication networks have become very complicated

and highly dynamic, which makes them hard to model and control. For example, in vehicular

and ad hoc networks, nodes frequently move, and link failures might occur during working

hours, which might result in topology changes [35, 40]. Second, as the scale of networks

continue to multiply, a central controller may be costly to install and slow to configure and

be robust to malicious attacks [90, 3]. Therefore, there is a need to develop innovative

ways in which traffic routing does not rely on accurate mathematical models and can be

managed in a distributed manner. Examples of distributed path planning such as ant

colony optimization and swarm approaches have shown success in static environments, but

still need more learning for dynamic environments [84].

There are multiple routing algorithms in the literature of traditional packet routing

[60, 45, 19]. Among these traditional packet routing algorithms, the shortest path algorithm

is the most commonly used routing algorithm [2]. The shortest path algorithm aims to find

the shortest path between source and destination nodes and get the packet delivered to

the destination node as quickly as possible. The shortest path algorithm is regarded as

the best routing algorithm on lower network load since packets can be delivered using the

least amount of time along the shortest path between two nodes provided that there is no

congestion along the route. However, when the network load is high, the shortest path

9

algorithm will cause a serious backlog in busy routers. Another problem with the shortest

path algorithm is that it relies on having full knowledge of the network topology to design

routing algorithms and hence needs manual adjustment when topology or traffic changes

happen.

Using reinforcement learning for packet routing has attracted increasing interest

recently. Various reinforcement learning methods have been proposed to deal with this

classical communication network problem and achieved better performances compared with

traditional routing methods. Applications of traditional RL to solve packet routing prob-

lems started in the early 1990s with the seminal work [12], where Q-routing was proposed.

Q-routing [12] is an adaptive routing approach based on a reinforcement learning algo-

rithm known as Q-learning. Q-routing routes packets based on the learned delivery times

(Q values) and achieves a much smaller average delivery time compared with the bench-

mark shortest-path algorithm [103]. Since then, several extensions of Q-routing have been

proposed, e.g., Dual Q-routing [52], Predictive Q-routing [21], Full Echo Q-routing [46],

Hierarchical Q-routing [62] and Ant-based Q-routing [94]. However, Q-routing is a value-

based RL algorithm. That is, Q-routing is a deterministic algorithm that might cause

traffic congestion at high loads and does not distribute incoming traffic across the available

links. Due to the drawbacks of a value-based algorithm, some researchers begin to consider

policy-based RL algorithms for packet routing problems [105, 77]. Since policy-based RL

algorithms can explore the class of stochastic policies, it is natural to expect policy-based

algorithms to be superior for certain types of network topologies and loads, where the opti-

mal policy is stochastic. In [77], the results show that policy-based RL algorithms perform

10

better than value-based algorithms, especially on high flow load. These traditional rein-

forcement learning routing algorithms use tabular functions or simple algebraic functions

to estimate the Q functions or policy functions. This is limiting for a large number of states

and thus cannot take full advantage of the network traffic history and dynamics. In this

work, we investigate the policy-based deep reinforcement learning algorithm and use deep

neural networks to approximate the policy function. The combination of deep learning tech-

niques with reinforcement learning methods can learn useful representations for the routing

problems with high dimensional raw data input and thus achieve superior performance.

Deep reinforcement learning is the combination of reinforcement learning and deep

learning, which has been able to solve a wide range of complex decision-making tasks.

However, rare works are investigating how deep reinforcement learning can be leveraged

for packet routing problems since the wireless network is a multi-agent environment and

the network environment is non-stationary from the perspective of any individual router.

This prevents the straightforward use of experience replay, which is crucial for stabilizing

deep Q learning [64]. [71] combines the Q-routing and deep Q-learning to solve the routing

problem. However, the training process of the algorithm proposed in [71] is in a centralized

manner (all the routers need to share parameters), which might cause issues in real-world

large-scale network environments. The authors in [114] propose to use a deep actor-critic

reinforcement learning algorithm to optimize the performance of the communication net-

work. However, the training and testing process in [114] are also in a centralized manner.

Recently, distributed Deep Q-routing has been proposed in [119], where deep recurrent neu-

ral network (LSTM) has been utilized to tackle the non-stationary problem in multi-agent

11

reinforcement learning. However, in [119], it is assumed that the bandwidth of each link

equals the packet size, in which case only a single packet can be transmitted at a time.

There is a huge body of literature on single-agent deep reinforcement learning al-

gorithms, where the environment stays largely stationary. Unfortunately, traditional deep

reinforcement learning algorithms are poorly suited to multi-agent environments, where the

environment becomes non-stationary from the perspective of any individual agent. This

might cause divergence for value-based reinforcement learning and very high variance for

policy-based reinforcement learning algorithms. In the literature, researchers propose multi-

ple methods to apply reinforcement learning algorithms in multi-agent settings. To name a

few, centralized training and distributed execution [64, 43, 55], distributed training and ex-

ecution under fully-observable environments [121], and independent Q-learning [37, 67, 31].

However, independent Q-learning is a value-based reinforcement learning algorithm, and in

this work, we aim to investigate the policy-based reinforcement learning routing algorithm.

The ideas of centralized training and fully observable state space work well when there ex-

ists a small number of agents in the communication network. With increasing the number

of agents, the volume of the information might overwhelm the capacity of a single unit. To

tackle this problem, one effective idea to remove the central unit and only allow the agents

to share information with only a subset of agents, to reach a consensus over a variable with

these agents (called neighbors) [109, 120].

12

1.3 Contributions

In this dissertation, we focus on the following two problems for multi-agent sys-

tems:

1. Distributed convex optimization with time-varying objective functions.

2. Packet routing problem in a network environment in the presence of link failures.

Some materials of this dissertation have been published in [100, 96, 98, 102, 99]. In this

section, we briefly talk about the contributions of this dissertation as follows.

• The first part of this dissertation aims to develop distributed algorithms to solve the

continuous-time optimization problems with private time-varying convex objective

functions for undirected topologies. We propose multiple optimization algorithms for

different application scenarios. The main contributions are given as follows.

– First, we propose a distributed nonsmooth algorithm with state-dependent gains

for the unconstrained case. Here the interaction gain of each agent is adjusted

according to the variation of the Hessian and gradient information of the convex

local objective functions, so that the algorithm can solve the time-varying opti-

mization problem without imposing a bound on any information about the local

objective functions. Therefore, the proposed algorithm can deal with more gen-

eral objective functions. To the best of our knowledge, this is the first work in the

literature of distributed continuous-time time-varying optimization that the op-

timization problem can be solved without imposing a bound on any information

about the local objective functions. It is shown that all agents achieve consen-

sus in finite time and the consensus solution converges to the optimal solution

13

asymptotically. Numerical simulations are presented to illustrate the theoreti-

cal results. Moreover, the proposed algorithm is experimentally validated on a

multi-Crazyflie platform.

– Second, for the case where there exist common time-varying linear equality con-

straints, an extended algorithm is proposed. Local Lagrangian functions are

introduced to address the equality constraints. Similarly, the time-varying con-

strained optimization problem can be solved without imposing a bound on any in-

formation about the local objective functions and constraint functions. Note that

the distributed time-varying constrained optimization problem has its unique dif-

ficulties and is more challenging than the unconstrained counterpart since the

local constraints are also time varying. Numerical simulations are presented to

illustrate the theoretical results.

– For the case where there exist only time-varying inequality constraints, we de-

velop a sliding-mode method with a Hessian-dependent gain for all the agents

to achieve consensus on the states. Meanwhile, a Hessian-based (second-order)

optimization method coupled with the log-barrier penalty functions is proposed

to track the local time-varying optimal solution. Although [111, 27] also use log-

barrier penalty functions to address the inequality constraints, our work is the

first to leverage the log-barrier penalty functions to the distributed time-varying

optimization problems. To implement the algorithm, each agent just needs its

own state and the relative states between itself and its neighbors. When the

agents’ states are their positions, the algorithm can be implemented based on

14

purely local sensing (e.g., absolute and relative positions) without the need for

communicating virtual variables. The asymptotical convergence to the optimal

solution is established based on nonsmooth analysis, Lyapunov theory and convex

optimization theory. Both numerical simulation and real experimental results are

presented to illustrate the effectiveness of the theoretical results. To the best of

our knowledge, this is the first work in the literature on distributed continuous-

time optimization with time-varying inequality constraints that guarantees zero

tracking errors.

– Furthermore, we extend the previous result with the following improvements. We

add quadratic penalty functions to account for equality constraints to make the

algorithm be applicable to more general problems and we present an adaptive

control gain design under which the restriction on knowing the upper bounds

on certain prior information is removed. And the asymptotical convergence of

the extended algorithm to the vicinity of the optimal solution is studied under

suitable assumptions. Numerical simulation results are presented to illustrate

the effectiveness of the theoretical results.

• The second part of the dissertation is devoted to studying distributed time-varying

optimization for generic directed networks, which are possibly weight-unbalanced.

We aim to investigate distributed time-varying optimization with quadratic objec-

tive functions, which is equivalent to distributed average tracking problems. To the

best of our knowledge, the distributed average tracking problem has not yet been ad-

dressed in the literature for weight-unbalanced directed graphs without knowing the

15

left eigenvector of the Laplacian matrix. Specifically, we introduce two algorithms for

different application scenarios, each of which has its own relative benefits. The main

contributions are given as follows.

– In the first algorithm, we consider single-integrator dynamics and avoid the use

of the left eigenvector of the Laplacian matrix. The proposed algorithm accounts

for a generic directed network and a wide class of time-varying reference signals

of which the accelerations have bounded deviations; hence, it is practically more

relevant and meaningful. Particularly, we introduce a distributed linear algo-

rithm with a chain of two integrators coupled with a distributed estimator for

the left eigenvector of the Laplacian matrix associated with the zero eigenvalue.

We prove that if the deviations among the reference signal accelerations tend

to zero (respectively, bounded), the algorithm can achieve distributed average

tracking with zero (respectively, bounded) tracking error.

– In the second algorithm, we consider agents with high-order integrator dynamics.

We propose a distributed nonlinear algorithm coupled with a distributed esti-

mator for the left eigenvector of the Laplacian matrix associated with the zero

eigenvalue. In addition, we replace the signum function in [17] with a continuous

approximation in order to remove the chattering effect caused by the discontinu-

ous signum function. The approximate function is widely adopted in the sliding

mode control field [26]. The results show that if the reference signals and signal

control inputs are bounded, the algorithm can achieve distributed average track-

ing with arbitrarily small tracking errors. The convergence of the algorithm to

16

the vicinity of the average of the reference signals is established via Lyapunov

stability theory and input-to-state stability theory.

• The last part of this dissertation investigates the challenge of how can one build

an adaptive network routing controller that continue to provide optimum network

performance, even when the topology changes. For this we model the challenge as a

path optimization technique that can be adaptive to various network load and topology

changes, via novel deep reinforcement learning. Modern communication networks are

highly dynamic and hard to model and predict, therefore, we aim to develop a novel

experience-driven algorithm that can learn to select paths from its experience rather

than an accurate mathematical model. Additionally, due to difficulties in installing

a central node to gather information from large-scale and widely distributed routers,

we design a distributed optimization framework to learn the local optimal strategy.

Our specific contributions are:

– Using a policy-based deep reinforcement learning method, we train the model at

a variety of network loads and save the optimal neural network. Once deployed,

our trained neural network can perform superiorly at high network load compared

to value-based RL learning.

– Our neural networks are optimized for multi-objective optimization for both

packet delivery time and packet loss on the network links. We design an ap-

propriate reward (utility) function, which well represents the preference of the

network controller, to minimize both packet delivery time and packet loss when

link failures occur.

17

– Our proposed MAMRL framework aims to make good online decisions under the

guidance of powerful Deep Neural Networks (DNNs). In addition, by leveraging

the model-agnostic meta-learning technique [30], our neural networks can quickly

alternate paths to minimize both packet delivery time and packet loss when link

failures occur.

– Our neural network model is deployed per multiple agents to represent multi-

ple routers, allowing each router agent to learn and optimize the traffic routing

based on their local information. To achieve this, we leverage a dynamic consen-

sus estimator [50] to diffuse local information and estimate global rewards, still

achieving the best average packet delivery time.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we describe some prelimi-

naries on graph theory, nonsmooth analysis, convex optimization and reinforcement learn-

ing. In Chapter 3, we consider distributed time-varying optimization problems for undi-

rected topologies and show four algorithms for different application scenarios. In Chapter

4, we focus on distributed average tracking for directed graphs. We propose two algorithms,

respectively, for single-integrator and high-order integrator dynamics. In Chapter 5, we in-

vestigate policy optimization algorithm for packet routing problems in the presence of link

failures. Finally, in Chapter 6, we give a summary of this dissertation.

18

Chapter 2

Preliminaries

In this Chapter, we introduce some preliminaries used in this dissertation.

2.1 Notation

The following notations are defined throughout this dissertation to avoid possible

ambiguities. Let R,Rn and Rn×m denote the sets of real numbers, real vectors of dimension

n, and real matrices of size n ×m, respectively. Let R>0 represent the set of positive real

numbers. Let 1n (resp. 0n) be the vector of n ones (resp. n zeros), In denote the n × n

identity matrix, and 0̄n (resp. 0̄m×n) denote the n×n (resp. m×n) matrix of all zeros. For

a matrix A ∈ Rm×n, σmax(A) denotes the maximal singular value of matrix A, AT is the

transpose of A, and vec(A) = [col1(A)T , · · · , coln(A)T]T ∈ Rnm is the column vector of size

nm×1 obtained by stacking the columns of A, where coli(A) ∈ Rm represents the ith column

of matrix A. For a square matrix A ∈ Rm×m, A−1 denotes the inverse of A. For a vector x ∈

Rn×1, diag(x) ∈ Rn×n represents the diagonal matrix with the elements in the main diagonal

19

being the elements of x, ‖x‖p denotes the p-norm of the vector x, B(x, δ) represents the open

ball of radius δ centered at x, and sgn(x) = [sgn(x1), · · · , sgn(xn)]T , where sgn(xi) = −1 if

xi < 0, sgn(xi) = 1 if xi > 0, and otherwise sgn(xi) = 0. Let ∇f(x, t) and ∇2f(x, t) denote,

respectively, the gradient and Hessian of the function f(x, t) : Rn × R≥0 7→ R with respect

to the vector x. Let ⊗ be the Kronecker product. Let n! be the product of n consecutive

natural numbers from 1 to n. Let f2 ◦ f1(·) be the composition of two functions f1(·) and

f2(·). Let f−1(·) denote the inverse of a function f(·). Let bac be the largest integer that

is smaller than or equal to a.

Proposition 1. [9] Let A ∈ Rm×n, B ∈ Rn×l and D ∈ Rl×k. Then, vec(ABD) = (DT ⊗

A)vec(B).

2.2 Graph Theory

We present some basic definitions and relations regarding graphs in this section.

Graph

A graph is denoted by G = (V, E ,A), where

• V = {1, ..., n} is the node set,

• E ⊆ V × V is the edge set,

• A = [aij] ∈ Rn×n is the weighted adjacency matrix with aij ∈ R>0 if (j, i) ∈ E and

aij = 0 otherwise.

An edge (j, i) implies that node i can receive information from j. Let Ni = {j ∈ V : (j, i) ∈

E} denote the set of in-neighbors of node i. A path is a sequence of nodes connected by edges.

20

The Laplacian matrix L = [lij] ∈ Rn×n associated with A is defined as lii =
∑n

j=1,j 6=i aij

and lij = −aij , where i 6= j. Note that L1n = 0n.

Undirected graph and directed graph

An undirected graph is a graph where all the edges are bidirectional. In contrast,

a graph where there exists at least one edge point in a direction is called a directed graph.

Moreover, aij = aji for all i, j ∈ V for undirected graphs, yet it is possible that aij 6= aji for

directed graphs

Unbalanced graph and balanced graph

All the undirected graphs are balanced graphs. A directed graph is balanced if

and only if 1TnL = 0Tn .

Connected graph and stronlgy connected graph

An undirected graph is connected if for every pair of nodes there is a path con-

necting them. A directed graph is strongly connected if for every pair of nodes there is a

directed path connecting them.

Lemma 2. [76] [56] Let G = (V, E ,A) be a directed graph with the Laplacian matrix L ∈

Rn×n. If G is strongly connected, then the following statements hold.

• There exists a positive left eigenvector p = [p1, ..., pn]T of L associated with the zero

eigenvalue, such that pi > 0, i = 1, ..., n, pTL = 0Tn , and
∑n

i=1 pi = 1.

• The Laplacian matrix L has a simple zero eigenvalue corresponding to the right eigen-

vector 1n, and all the nonzero eigenvalues have positive real parts.

• minaT x=0,x 6=0n x
T L̄x > λ2(L̄)xTx

/
n, where x is any vector, L̄ = LTP + PL and

P = diag(p), a is any vector with positive entries, and λ2(L̄) is the smallest nonzero

21

eigenvalue of matrix L̄.

• lim
t→∞

exp(−Lt) = 1np
T .

2.3 Nonsmooth Analysis

In this section, we recall some important definitions of the nonsmooth systems

that will be exploited in our main result.

Definition 3. (Filippov Solution)[87] Consider the vector differential equation

ẋ = f(x, t), (2.1)

where f : Rd × R → Rd is Lebesgue measurable and locally essentially bounded. A vec-

tor function x(·) is called a Filippov solution of (2.1) on [t0, t1], if x(·) is absolutely con-

tinuous on [t0, t1] and for almost all t ∈ [t0, t1], ẋ(t) ∈ K[f](x, t), where K[f](x, t) :=⋂
δ>0

⋂
µ(N)=0 cof

(
B(x, δ) − N, t

)
is the Filippov set-valued map of f(x, t) and

⋂
µ(N)=0

denotes the intersection over all sets N of Lebesgue measure zero.

Definition 4. (Clarke’s Generalized Gradient) [87] Consider a locally Lipschitz continuous

function V (x) : Rd → R, the generalized gradient of the function V at x is given by ∂V (x) :=

co{lim∇V (xi)|xi → x, xi 6∈ ΩV }, where ΩV is the set of Lebesgue measure zero where the

gradient of V is not defined.

Definition 5. (Chain Rule)[87] Let x(·) be a Filippov solution of ẋ = f(x, t) and V (x) :

Rd → R be a locally Lipschitz continuous function. Then for almost all t,

d

dt
V [x(t)] ∈ ˙̃V,

where ˙̃V is the set-valued Lie derivative defined as ˙̃V :=
⋂
ξ∈∂V ξ

TK[f].

22

2.4 Convex Optimization

In this section, we review some basics in convex optimization. Specifically, we list

some standard definitions and properties in convex optimization. The details can be found

in Ref. [13].

Convex functions: A function f(x) : Rp → R is convex if, for any points x, y ∈

Rp, and θ ∈ [0, 1], is satisfies that

f [θx+ (1− θ)y] ≤ θf(x) + (1− θ)f(y). (2.2)

Gradients and Hessian: The gradient of a function f(x) : Rp → R (assume it

is differentiable), ∇f(x), is the vector-valued function whose values at a point x are the

partial derivatives of f(x) with respect to x:

∇f(x) =

∂f
∂x1

(x)

...

∂f
∂xp

(x)

 , (2.3)

where xi is the ith element of vector x.

The Hessian of a function f(x) : Rp → R (assume it is twice differentiable),∇2f(x),

is a p× p square matrix, which is defined as follows:

∇2f(x) =

∂2f
∂x21

(x) ∂2f
∂x1x2

(x) · · · ∂2f
∂x1xp

(x)

∂2f
∂x2x1

(x) ∂2f
∂x22

(x) · · · ∂2f
∂x2xp

(x)

...
...

...
...

∂2f
∂xpx1

(x) ∂2f
∂xpx2

(x) · · · ∂2f
∂x2p

(x)

. (2.4)

Strong convexity: A convex function f(x) : Rp → R is further said to be strongly convex

if it is twice differentiable and there exists a positive scalar m such that for any points x, y,

23

it satisfies

[∇f(x)−∇f(y)]T (x− y) ≥ m‖x− y‖2. (2.5)

2.5 Reinforcement Learning

In this section, we introduce some important definitions of reinforcement learn-

ing that will be used in this dissertation. Reinforcement learning is concerned with how

an intelligent agent learns a good strategy from experimental trials and relative feedback

received. With the optimal strategy, the agent is capable to actively adapt to the environ-

ment to maximize cumulative rewards. Almost all the deep RL problems can be framed as

Markov Decision Processes (MDPs), which consists of four key elements 〈S,A, P , R〉. More

specifically, at each decision epoch t, the intelligent agent can stay in state st that belongs

to the state space S of the environment, and choose to take an action at that belongs to

the action space A to switches from one state to another. The probability that the process

moves into its new state st+1 is given by the state transition function P (st+1|st, at). Once

an action is taken, the environment delivers a reward r as feedback. Figure 2.1 shows the

general process of reinforcement learning (the definition of policy will be given below).

Agent

𝜋(𝑎|𝑠)Policy

Environment

Observe	state

Take	
action

Reward

Figure 2.1: A global reinforcement learning agent learning network states.

24

There are two key functions in RL: policy function π(at|st) and value function

Vπ(st)/Qπ(st, at). The policy is a mapping from state st to action at and tells the agent

which action at to take in state st. For example, in the path optimizing problem, the policy

is the router’s strategy that finds the best adjacent router to send out current packets given

the current utilization state of the communication network. The state value function Vπ(st)

measures how rewarding a state is under policy π by a prediction of future reward. Simi-

larly, the action-state value function Qπ(st, at) tells, for a given policy, what the expected

cumulative reward of taking action at in state st is.

The goal of RL is to find the optimal policy that achieves optimal value functions:

π∗ = argmaxπVπ(st) = argmaxπQπ(st, at). Traffic engineering is a natural application of

RL by exploring with different routing policies, gathering statistics about which policies

maximize the utility function, and learning the best policy accordingly.

Value-based algorithms versus Policy-based algorithms: Value-based RL

algorithms attempt to learn the tabular or approximation of the state-action value Qπ(s, a)

and selects the action based on the maximal value function of all available actions for a given

state. For example, the Q-routing algorithm enables the routers to restore Q-values as the

estimate of the negative transmission time between that router and the others. To shorten

the average packet delivery time, routers will choose the action with maximal Q-values.

Policy-based RL algorithms instead learn the policy directly with a parameterized function

concerning θ, πθ(at|st) and train the policy to maximize the expected cumulative reward

function. Policy-based algorithms can learn stochastic policies. It is worthwhile to note

that stochastic means stochastic in some action-state pairs where it makes sense. Usually,

25

value-based algorithms, which choose the actions with the maximal values, can only follow

deterministic policies or stochastic policies with predetermined distributions. That is not

quite the same as learning the real optimal stochastic policy. Since the current commu-

nication networks are highly dynamic and stochastic, we can expect that the policy-based

RL algorithms perform superiorly to the value-based RL algorithms for certain scenarios,

where the optimal policy is stochastic. In this work, to enable high-dimensional state rep-

resentations (such as action histories), we consider deep RL algorithms, which adopt deep

neural networks to approximate the policy functions. Here the policy parameters θ are the

weights of the deep neural networks.

26

Chapter 3

Distributed Convex Optimization

with Time-Varying Objective

Functions

In this Chapter, we address distributed continuous-time optimization problems

with time-varying objective functions for undirected topologies. The goal is for multiple

agents to cooperatively minimize the sum of local time-varying objective functions with only

local interaction and information. Here, the optimal point is time varying and creates an

optimal trajectory. First, for the unconstrained case, a distributed nonsmooth algorithm

coupled with a state-dependent gain is proposed. It is shown that the interaction gain

for each agent can be computed according to the variation of the Hessian and gradient

information of the convex local objective functions, so that the algorithm can solve the

time-varying optimization problem without imposing a bound on any information about

27

the local objective functions. Second, for the case where there exist common time-varying

linear equality constraints, an extended algorithm is presented, where local Lagrangian

functions are introduced to address the equality constraints. Third, for the case where there

exist only time-varying nonlinear inequality constraints, we present a distributed control

algorithm that consists of a sliding-mode consensus part and a Hessian-based optimization

part coupled with the log-barrier penalty functions. The algorithm can guarantee the

asymptotical tracking of the optimal solution with a zero tracking error. Finally, we extend

the previous result to the case where there exist not only time-varying nonlinear inequality

constraints but also linear equality constraints. An extended algorithm is presented, where

quadratic penalty functions are introduced to account for the equality constraints and an

adaptive control gain is designed to remove the restriction on knowing the upper bounds

on certain information. The asymptotical convergence of the extended algorithm to the

vicinity of the optimal solution is studied under suitable assumptions. The effectiveness of

the proposed algorithms is illustrated in simulation. In addition, two proposed algorithms

are applied to a multi-robot navigation problem with experimental demonstration on a

multi-Crazyflie platform to validate the theoretical results.

3.1 Distributed Time-Varying Optimization With

State-Dependent Gains

3.1.1 Problem Formulation

Consider a multi-agent system consisting of n agents with an interaction topol-

ogy described by the undirected graph G(t). Each agent can interact only with its local

28

neighbors. Suppose that the agents satisfy the following single-integrator dynamics

ẋi(t) = ui(t), (3.1)

where xi(t) ∈ Rm and ui(t) ∈ Rm are the state and control input of agent i. Our goal here

is to design ui(t) using only local information and interactions with neighbors, such that

all the agents cooperatively find the optimal solution y∗(t) ∈ Rm (assuming it exists for all

t ≥ 0) which is defined as

y∗(t) = argmin
y(t)

{
n∑
i=1

fi[y(t), t]

}
, (3.2)

where fi[y(t), t] : Rm × R≥0 7→ R are the local objective functions. It is assumed that

fi[y(t), t] is only known to agent i and is twice continuously differentiable with respect

to y(t) and continuously differentiable with respect to t. Note that
∑n

i=1 fi[xi(t), t] =∑n
i=1 fi[y(t), t], if xi(t) = xj(t) = y(t) for all i, j ∈ V, the above problem (3.2) is equivalent

to finding the optimal solution x∗(t) ∈ Rm∗n which is defined as

x∗(t) = argmin
x(t)

{
n∑
i=1

fi[xi(t), t]

}
,

s.t. xi(t) = xj(t), ∀i, j ∈ V,

(3.3)

where x(t) is the vector that concatenates the state vectors xi(t) ∈ Rm of all the agents. Note

that problem (3.2) will be solved as a consensus minimization problem with the time-varying

team objective function
n∑
i=1

fi[xi(t), t]. Here, the goal is that each state xi(t) converges to

the optimal solution y∗(t), i.e.,

lim
t→∞

[xi(t)− y∗(t)] = 0m. (3.4)

We introduce the following assumptions and the following lemma which are all standard in

the recent literature [82].

29

Assumption 1. The graph G(t) is undirected and connected for all t ≥ 0.

Assumption 2. The length of the time interval between any two contiguous switching

topologies is greater than or equal to a given positive constant.

Arbitrary switching of the graph G(t) might lead to the Zeno behavior. Hence

Assumption 2 is imposed to prevent the system from exhibiting the Zeno behavior.

Assumption 3. Each objective function fi[xi(t), t] is uniformly strongly convex in xi(t) and

its Hessian matrix ∇2fi[xi(t), t] is identical under identical local states xi(t) for all t ≥ 0,

i.e., ∇2fi[xi(t), t] ≥ αIm, for some α > 0 and ∇2fi[xi(t), t] = ∇2fj [xj(t), t] if xi(t) = xj(t)

for all i, j ∈ V.

The uniform strong convexity of each objective function fi[y(t), t] implies the uni-

form strong convexity of
∑n

i=1 fi[y(t), t], such that the optimal trajectory y∗(t) (assuming

it exists for all t ≥ 0) is unique for all t ≥ 0. Moreover, due to the equivalence between

(3.2) and (3.3), the optimal solution x∗(t) defined in (3.3) is unique for all t ≥ 0.

Remark 6. Assumption 3 requires that the Hessian matrix ∇2fi[xi(t), t] be identical under

identical local states xi(t) for all t ≥ 0, which might be restrictive. However, in the litera-

ture of distributed continuous-time time-varying optimization, it is common to assume that

all the Hessian matrices ∇2fi[xi(t), t] are identical, i.e., ∇2fi[xi(t), t] = ∇2fj [xj(t), t] for

all i, j ∈ V and all t ≥ 0 (see [82], [42]). In this paper, we reconsider the identical Hes-

sian assumption, and relax it further. The algorithms herein do not need ∇2fi[xi(t), t] =

∇2fj [xj(t), t] for all xi(t) and xj(t). Instead, they only need ∇2fi[xi(t), t] = ∇2fj [xj(t), t]

when xi(t) = xj(t). Note that the identical Hessian condition can be satisfied in many sit-

30

uations, e.g., fi[xi(t), t] = [αxi(t) + bi(t)]
2 with a positive constant α and a time-varying

function bi(t), which is commonly used for robot control and energy minimization.

Lemma 7. [13] Let f(r) : Rm → R be a continuously differentiable convex function with

respect to r. The function f(r) is minimized at r∗ if and only if ∇f(r∗) = 0.

3.1.2 Algorithm Design

This subsection presents and analyzes a distributed adaptive control algorithm for

the time-varying optimization problem in (3.3). The controller for agent i is:

ui(t) = φi(t)−
∑

j∈Ni(t)

{
[‖φi(t)‖∞ + ‖φj(t)‖∞ + γi + γj]sgn[xi(t)− xj(t)]

}
,

φi(t) = −
{
∇2fi[xi(t), t]

}−1
{
∇fi[xi(t), t] +

∂

∂t
∇fi[xi(t), t]

}
,

(3.5)

where γi ∈ R>0 is a constant control gain. The auxiliary variables φi(t) and φj(t) ∈ Rm

automatically adjust the gain of the interaction term sgn[xi(t)− xj(t)] for j ∈ Ni(t).

Remark 8. Algorithm (3.5) solves the time-varying optimization problem of (3.2) as a

consensus minimization problem with the time-varying team objective function
n∑
i=1

fi[xi(t), t].

The term −
∑

j∈Ni(t)

{
[‖φi(t)‖∞ + ‖φj(t)‖∞ + γi + γj] sgn[xi(t) − xj(t)]

}
is introduced to

achieve consensus among the agents, that is xi(t)→ xj(t), ∀i, j ∈ V. The auxiliary variable

φi(t) is employed to force the consensus state to track the optimal solution y∗(t). Note that

the three terms in φi(t), namely, {∇2fi[xi(t), t]}−1, ∇fi[xi(t), t] and ∂∇fi[xi(t), t]/∂t, could

become unbounded due to the involvement of xi(t) and t. Here, the state-dependent gain

‖φi(t)‖∞ + ‖φj(t)‖∞ + γi + γj is used to overcome the possible unboundedness of φi(t).

Remark 9. Algorithm (3.5) is distributed, because each agent only uses information about

its own objective function and information communicated by its neighbors. Take agent i

31

as an example. Agent i uses its own information: xi(t) and the Hessian and gradient

information of its objective function fi[xi(t), t]; as well as information received from its

neighbors: xj(t) ∈ Rm, γj ∈ R>0 and ‖φj(t)‖∞ ∈ R for j ∈ Ni(t). Moreover, in order

to implement the proposed algorithm (3.5), all agents need to share a common coordinate

system. Note that many global coordinate systems exist worldwide, such as GPS.

Remark 10. The design of the algorithm (3.5) is partly motivated by the algorithm given

in [82]:

ui(t) = −
∑
j∈Ni

βij(t) sgn[xi(t)− xj(t)] + φi(t),

β̇ij(t) = ‖xi(t)− xj(t)‖1, j ∈ Ni,

(3.6)

where φi(t) is the same as that in (3.5). Compared with the algorithm (3.6), the algorithm

(3.5) has two advantages. First, the algorithm in [82] places a bound on the Hessians and

the rate of the change of the gradients of the local objective functions. These requirements

can limit the applicable class of objective functions. For example, as stated in Remark 6, a

commonly used objetive function for robot control and energy minimization is fi[xi(t), t] =

[αxi(t) + bi(t)]
2. If ḃi(t) is unbounded, then it is obvious that it does not satisfy the above

requirement. In this paper, we introduce a novel state-dependent control gain design to

remove the above requirement. The proposed algorithm (3.5) can deal with more general

objective functions that cannot be handled by [82]. Second, the adaptive control gain βij(t)

designed in (3.6) keeps increasing until the consensus is achieved. Therefore, the control

gain might become unnecessarily large. In contrast, the state-dependent gain in this paper

is computed such that the above situation is eliminated. The state-dependent control gain

approach introduces new theoretical challenges that are the focus of this paper. However, the

32

algorithm (3.5) has a disadvantage as well. That is, each agent is required to be able to get

the information of the variable φj(t) and γj from its neighbors, which requires the existence

of the communication capabilities, while the algorithm (3.6) can be implemented using only

local sensing without the need for the existence of the communication capabilities as long as

the relative position (xi − xj) between each agent and its neighbors can be measured.

3.1.3 Algorithm Analysis

This subsection establishes the asymptotic convergence of system (3.1) under con-

troller (3.5) to the optimal solution in (3.2).

Lemma 11. Given Assumptions 1 and 2, using (3.5) for (3.1), all the states xi(t) will

achieve consensus in finite time, i.e., there exists a time T such that ‖xi(t)− xj(t)‖2 = 0

for all i, j ∈ V and for all t > T .

Proof. The main idea of our proof is to show that each corresponding component of the

agents’ state vectors reaches a consensus separately in finite time. Let ẋik(t), xik(t) and

φik(t) denote, respectively, the kth components of ẋi(t), xi(t) and φi(t). Define

A1k(t) , {i | xik(t) = max
i∈V

[xik(t)]},

A2k(t) , {i | xik(t) = min
i∈V

[xik(t)]},

x̄k(t) ,
1

|A1k(t)|
∑

i∈A1k(t)

xik(t),

xk(t) ,
1

|A2k(t)|
∑

i∈A2k(t)

xik(t),

where |A1k(t)| ≥ 1 and |A2k(t)| ≥ 1 denote, respectively, the cardinality of A1k(t) and

33

A2k(t). Clearly, using (3.5) for (3.1), the kth component of each ẋi(t) can be written as

ẋik(t) = φik(t)−
∑

j∈Ni(t)

{
[‖φi(t)‖∞ + ‖φj(t)‖∞ + γi + γj]sgn[xik(t)− xjk(t)]

}
. (3.7)

We first show that, when x̄k(t) 6= xk(t), xik(t) for all i ∈ A1k(t) are nonincreasing and xik(t)

for all i ∈ A2k(t) are nondecreasing. Note that even though all elements xik(t), i ∈ A1k(t)

have the same value, they need not have the same derivative. The proof will proceed by

induction to establish a contradiction.

Assume that for agent l ∈ A1k(t) there exist two time instants t1 < t2 such that

ẋlk(t) > 0 for all t ∈ [t1, t2] almost everywhere (i.e., except for some isolated time instants of

measure zero).1 Note that ‖φl(t)‖∞+‖φj(t)‖∞+γl+γj > φlk(t), and sgn[xlk(t)−xjk(t)] = 1

when j ∈ Nl(t) and xjk(t) 6= xlk(t). Therefore, it follows from (3.7) and the fact that

ẋlk(t) > 0 for all t ∈ [t1, t2] almost everywhere that φlk(t) > 0 and xjk(t) = xlk(t) for all

j ∈ Nl(t) and all t ∈ [t1, t2]. Further recall that l ∈ A1k(t) and ẋlk(t) > 0 for all t ∈ [t1, t2]

almost everywhere. Given these facts, there must exist two time instants t3 < t4 satisfying

[t3, t4] ⊆ [t1, t2] such that ẋjk(t) > 0 for all j ∈ Nl(t) and all t ∈ [t3, t4] almost everywhere.

Similarly, it can be obtained that xqk(t) = xjk(t) (and hence xlk(t)) for all t ∈ [t3, t4] and

all q ∈ Nj(t) with j ∈ Nl(t). Since the graph G(t) is connected, by induction, we have

xik(t) = xlk(t) for all i and all t within a certain time interval, which contradicts with

the assumption that x̄k(t) 6= xk(t). Thus, xik(t) for all i ∈ A1k(t) are nonincreasing when

x̄k(t) 6= xk(t). Similarly, xik(t) are nondecreasing for all i ∈ A2k(t) when x̄k(t) 6= xk(t).

To show that consensus is reached in finite time consider V (t) = x̄k(t) − xk(t) as

a Lyapunov function candidate for all x̄k(t) 6= xk(t). Note that V (t) > 0 when x̄k(t) 6=
1Here, we do not consider the sets of measure zero in [t1, t2] on which the derivatives at certain isolated

time instants are nonpositive as these sets have no effect on the state value xik(t).

34

xk(t). Based on the above analysis, when x̄k(t) 6= xk(t), ẋik(t) ≤ 0 for all i ∈ A1k(t) and

ẋik(t) ≥ 0 for all i ∈ A2k(t) almost everywhere. Because the graph G(t) is connected, when

x̄k(t) 6= xk(t), there exists at least a node ` ∈ A1k(t) having an edge to a node j /∈ A1k(t),

implying that x`k(t) > xjk(t). Note that here the indices ` and j might change over time.

It follows from (3.7) that when x̄k(t) 6= xk(t),

ẋ`k(t) ≤ φ`k(t)− [‖φ`(t)‖∞ + ‖φj(t)‖∞ + γ` + γj]sgn[x`k(t)− xjk(t)]

≤ −(γ` + γj).

Note that when x̄k(t) 6= xk(t),

˙̄xk(t) =
1

|A1k(t)|
∑

i∈A1k(t)

ẋik(t)

=
1

|A1k(t)|
[ẋ`k(t) +

∑
i∈A1k(t)\{`}

ẋik(t)].

Recall that when x̄k(t) 6= xk(t), ẋik(t) ≤ 0 for all i ∈ A1k(t) \ {`} almost everywhere. We

have ˙̄xk(t) ≤ −
(γ`+γj)
|A1k(t)| ≤ −

2 mini∈V (γi)
n−1 almost everywhere. Note that when x̄k(t) 6= xk(t),

ẋk(t) = 1
|A2k(t)|

∑
i∈A2k(t) ẋik(t) ≥ 0 almost everywhere. We hence have

V̇ (t) = ˙̄xk(t)− ẋk(t) ≤ −2 min
i∈V

(γi)
/

(n− 1),

almost everywhere when x̄k(t) 6= xk(t). Based on the Lebesgue’s theory for the Riemann

integrability, a function on a compact interval is Riemann integrable if and only if it is

bounded and the set of its discontinuous points has measure zero [5]. Therefore, although

the time-derivative V̇ (t) here is discontinuous at some time points, it is Riemann integrable.

Then, we have

V (t)− V (0) =

∫ t

0
V̇ (τ)dτ ≤ −2tmini∈V(γi)

n− 1
,

35

where t > 0. It follows that

V (t) ≤ V (0)−
[
2 min
i∈V

(γi)
/

(n− 1)

]
t, (3.8)

It then can be concluded that V (t) converges to zero in finite time and the convergence

time T satisfies T ≤ (n−1)V (0)
2 mini∈V (γi)

. That is, consensus is reached in finite time and there exists

a positive number T such that xi(t) = xj(t) for all t ≥ T and all i, j ∈ V.

Remark 12. It follows from (3.46) that the convergence time T of the consensus process

can be made smaller by selecting larger γi. However, if γi is too large, the chattering

phenomenon would become worse due to the discontinuous signum function in (3.5).

Following is the main result of this section.

Theorem 13. If Assumptions 1 to 3 hold, for the system (3.1) under the controller (3.5),

all the states xi(t) will converge asymptotically to the optimal solution y∗(t) in (3.2).

Proof. Under Assumptions 1 and 2, it follows from Lemma 11 that the states of all the

agents achieve consensus in finite time, i.e., there exists a time T such that xi(t) = xj(t)

for all i, j ∈ V and all t ≥ T . For t ≥ T , consider the Lyapunov function candidate

V2(t) =
1

2

{
n∑
i=1

∇fi[xi(t), t]

}T { n∑
i=1

∇fi[xi(t), t]

}
. (3.9)

It follows from Theorem 3.9 in [82] that the derivative of V2(t) is,

V̇2(t) =

{
n∑
i=1

∇fi[xi(t), t]

}T { n∑
i=1

d∇fi[xi(t), t]
dt

}

= −

{
n∑
i=1

∇fi[xi(t), t]

}T [n∑
i=1

(
∇fi[xi(t), t]

+∇2fi[xi(t), t]
∑

j∈Ni(t)

{
[‖φi(t)‖∞ + ‖φj(t)‖∞ + γi + γj]sgn[xi(t)− xj(t)]

})]
.

(3.10)

36

Note from Assumptions 1 and 3 that the graph G(t) is undirected and ∇2fi[xi(t), t] =

∇2fj [xj(t), t] if xi(t) = xj(t) for all i, j ∈ V, it follows that for all t ≥ T ,

n∑
i=1

∇2fi[xi(t), t]
∑

j∈Ni(t)

{
[‖φi(t)‖∞ + ‖φj(t)‖∞ + γi + γj]sgn[xi(t)− xj(t)]

}

= ∇2fi[xi(t), t]

n∑
i=1

∑
j∈Ni(t)

{
[‖φi(t)‖∞ + ‖φj(t)‖∞ + γi + γj]sgn[xi(t)− xj(t)]

}
= 0m.

Then we have for all t ≥ T

V̇2(t) = −

{
n∑
i=1

∇fi[xi(t), t]

}T { n∑
i=1

∇fi[xi(t), t]

}

= −2V2(t),

(3.11)

which indicates that V2(t) = e−2tV2(T) for all t ≥ T . It can be concluded that lim
t→∞

V2(t) = 0,

and thus lim
t→∞

n∑
i=1
∇fi[xi(t), t] = 0m. Due to Assumption 3, the Lyapunov function V2(t)

defined in (3.9) has a unique time-varying global minimum y∗(t) such that

{ n∑
i=1

∇fi[y∗(t), t]
}T{ n∑

i=1

∇fi[y∗(t), t]
}

= 0.

Recall that xi(t) = xj(t) for all i, j ∈ V and all t ≥ T , which in turn implies that all xi(t)

will converge to the optimal solution y∗(t) in (3.2) based on Lemma 7.

Remark 14. In some robotic applications, it is desirable for the agents to come into a

formation, while the center of the formation moves along the optimal trajectory. To achieve

this goal, we introduce a deviation vector δi(t) for each agent i and replace xi(t) in (3.5) with

xi(t)−δi(t). It follows that Algorithm (3.5) will guarantee that xi(t)−δi(t) converges to the

optimal trajectory, which in turn implies that xi(t)− xj(t) converges to δi(t)− δj(t). Here,

δi(t) − δj(t) defines the desired relative position from agent j to agent i in the formation.

That is, the agents will be able to converge to the optimal trajectory with the deviation vector

37

δi(t). The analysis follows directly by letting xi(t)−δi(t) play the role of xi(t) in the previous

proof.

3.1.4 Simulations

The simulation results in this section illustrate the effectiveness of the theoretical

results obtained in Sections 3.1.2. Assume that there are six agents (n = 6) in 2-D (m =

2). The network topology shown in Figure 3.1 is undirected and connected. Let xi(t) =

[xpi (t), y
p
i (t)]

T ∈ R2 denote the state (position) of agent i, where xpi (t) ∈ R (respectively,

ypi (t) ∈ R) denotes the position of agent i in the x coordinate (respectively, y coordinate).

1 2 3

654

Figure 3.1: The undirected graph representing the communication topology between agents.

First, we show the simulation result using Algorithm (3.5). Consider the following

unconstrained optimization problem

min
n∑
i=1

{
[xpi (t)− 0.1(0.25 + 0.5i)t]2 + [ypi (t)− 0.1(0.25 + 0.5i)t]2

}
. (3.12)

This problem is an instance of (3.2). The goal is that each state xi(t) converges to the op-

timal solution defined in (3.12). The intuition of the problem (3.12) is from the multi-robot

target tracking problem, where [0.1(0.25 + 0.5i)t, 0.1(0.25 + 0.5i)t]T encodes the tracking

target of agent i. Here, multiple robots aim to cooperatively find the optimal position that

is close to all the targets. Choose γi = 1, ∀i ∈ V. The proof of Lemma 11 proves that

38

the maximum time for consensus to be achieved satisfies T ≤ (n−1)V (0)
2 mini∈V (γi)

. Therefore, with

γi = γj = γ̄, the time to achieve consensus, for any given set of initial conditions, is inversely

proportional to γ̄.

The initial states of the agents are chosen as x1(0) = [0, 1]T , x2(0) = [0.5, 1]T ,

x3(0) = [0.5, 0.5]T , x4(0) = [0, 0.5]T , x5(0) = [−0.5, 0]T , x6(0) = [0, 0]T . The agents’ states

and the optimal trajectory in the (x, t) (respectively, (y, t)) coordinates are shown in Figure

3.2(a) (respectively, (b)). The red dashed line is the optimal solution and the other solid

lines are the trajectories of all agents’ states. It is clear that all the agents track the optimal

trajectory asymptotically (i.e, lim
t→∞
‖xi(t) − y∗(t)‖2 = 0 for all i ∈ V) which is consistent

with Theorem 13. We introduce a deviation vector to (3.5) by replacing xi with xi − δi

(see Remark 14). Here, δ1 = [0.5, 0.5]T , δ2 = [0.5, 0]T , δ3 = [0.5,−0.5]T , δ4 = [−0.5, 0.5]T ,

δ5 = [−0.5, 0]T , δ6 = [−0.5,−0.5]T . In Figure 3.3, the blue circles present a snapshot of all

the agents’ initial positions and the blue crosses present two snapshots of all the agents at

4.5 s and 9 s, respectively. Figure 3.3 shows each agent’s trajectories with the deviation

vectors introduced (blue dashed lines), the center position of all the agents (solid black

line), and the optimal trajectory (red dashed line) in the (x, y, t) coordinates. Note that

the agents asymptotically form a rectangle formation with its center tracking the optimal

trajectory, implying that lim
t→∞
‖xi(t)− δi − r∗(t)‖2 = 0 for all i ∈ V.

39

0 2 4 6 8 10 12 14

-1

0

1

2

3

(a)

0 0.5

-0.5

0

0.5

0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

(b)

0 0.5

0

0.5

1

Figure 3.2: Simulation results showing state convergence using the controller (3.5).

Figure 3.3: Simulation results using controller (3.5) with the deviation vectors introduced.

3.1.5 Experimental Validation

In this section, the algorithm designed in Section 3.1.2 is applied to the multi-

agent formation control problem and the multi-agent moving target tracking problem and

is tested in experiments. The experiments are conducted in the Cooperative Vehicle Net-

works (COVEN) Laboratory at the University of California, Riverside with six Crazyflie

2.0 quadrotors [78] in an 5×5 m2 indoor environment covered by a VICON motion capture

40

Host	Computer

Motion	Capture	(Vicon)
Quadcopters in clustered environment

Optimization	
Algorithm

EKF

Pose
@ 100 Hz

Mellinger
controller

Control
input 2
@ 100 Hz

Control input n
@ 100 Hz……

Control
input 1
@ 100 Hz

!"#��!"$

Figure 3.4: The experimental setup and information flow.

system [1]. The Crazyflies are controlled by the velocity commands (i.e., the control signals

ui(t) are the velocity commands that are sent to the Crazyflies) such that their dynamics

follow the single-integrator system given by (3.1). The experimental setup is illustrated

in Figure 3.4. In this experiment, the control system is divided into two parts, namely,

high level and low level. The high-level control involves the setup of the network topology,

implementation of the distributed optimization algorithm and generation of the velocity

commands ui(t). The host computer is used to run the high-level controller due to the fact

that the Crazyflies used in the experiments do not have sufficient computation capability

to run the controller in real time. A VICON motion capture system coupled with the Ex-

tended Kalman filter is used to estimate the positions of each agent. The host computer

requests the information packet from the Vicon system every 0.01 s. The low-level control is

responsible for achieving the velocity commands (using the Mellinger controller [68]). The

host computer sends control commands to the Crazyflies every 0.01 s. The restrictions of a

distributed environment are fully considered and the distributed network topology defined

41

by Figure 3.1 is emulated. We establish six nodes under the robotics operating system

(ROS) to control the six Crazyflies in parallel.

Multi-agent Formation Control

Figure 3.5: Normalized trajectory of Crazyflies using controller (3.5).

First, the distributed time-varying optimization algorithm given by (3.5) is imple-

mented experimentally to solve the problem (3.12). The desired deviations from the optimal

trajectory and the Crazyflies’ initial positions have the same values as in Section V. Figure

3.5(a) (respectively, (b)) shows the six Crazyflies’ normalized positions (i.e., xi(t)− δi) and

the optimal trajectory in the (x, t) coordinate (respectively, (y, t) coordinate). The solid

black lines are the normalized positions of each Crazyflie. The red solid line is the optimal

trajectory. Here δi = [δix, δiy]
T . Based on Theorem 13, all xi(t)− δi should converge to the

optimal trajectory asymptotically, i.e., lim
t→∞
‖xi(t) − δi − r∗(t)‖2 = 0. This is achieved to

within a tracking accuracy of 0-2cm. Various factors from the experiment might explain the

tracking error: communication time-delay within the VICON system, failure to perfectly

achieve the velocity commands, or interaction forces among the Crazyflies. Tracking errors

42

Figure 3.6: Trajectory of Crazyflies using controller (3.5).

of 2 cm are similar to those experiences in other multi-Crazyflie experiments [78]. The

trajectories of all the Crazyflies (blue dashed lines), the center position of all the Crazyflies

(solid black line) and the optimal trajectory (red solid line) in the (x, y, t) coordinates are

shown in Figure 3.6, where the blue circles present a snapshot of all the Crazyflies’ initial

positions. The blue crosses present two snapshots of all the Crazyflies at 4.5 s and 9 s,

respectively. As it can be seen, the center of the Crazyflies’ positions tracks the optimal

trajectory with small tracking errors (about 0.05cm) while the Crazyflies converge to the

desired formation. When considering the center of all the Crazyflies’ positions, the tracking

gaps caused by the interaction forces among them should cancel.

Multi-agent Moving Target Tracking

In this subsection, we solve the moving target tracking problem using Algorithm

(3.5). More precisely, the moving target tracking problem can be formulated as the following

43

convex optimization problem:

minimize
1

2

n∑
i=1

‖xi(t)− Ti(t)‖22, (3.13)

where xi(t) is the position of robot i, and Ti(t) is the position of the moving target sensed by

agent i. Due to the sensing capability limitation of each agent, the position of the moving

target sensed by different robots can be different. It is obvious that the optimal trajectory

of problem (3.13) is 1
n

n∑
i=1

Ti(t).

In our experiment, we let six Crazyflies track a moving white board (see Figure

3.4). The white board is placed on a cart that is dragged by a person to move it around.

There are six marked areas located in the four corners and the middle of the two long edges

on the white board. Each area is identified by three markers. The center position of each

marked area (i.e., the center of three markers in the area) is sent to one assigned Crazyflie,

representing the position of the moving target (white board) sensed by that Crazyflie (i.e.,

Ti(t) in (3.13)). Essentially each Crazyflie senses a different biased position of the white

board. The Crazyflies obtain their target’s positions from the VICON system and calculate

their targets’ velocities (i.e., Ṫi(t) in (3.13)) based on the position data received between

consecutive camera frames. We apply controller (3.5) with the same deviation vectors as

those in Section V introduced to the multi-robot moving target tracking problem given

by (3.13). In the experiment, we move the cart around and let the Crazyflies track the

white board while maintaining the desired formation shape. Figure 3.7(a) (respectively,

(b)) shows the six Crazyflies’ normalized positions represented by xi(t)− δi and the moving

white board’s center position represented by 1
6

∑6
i=1 Ti(t) in the (x, t) (respectively, (y, t))

coordinate. The black lines are the normalized positions of each Crazyflie. The red line

44

is the center position of the white board. Figure 3.8 shows the trajectories of all the

Crazyflies (blue dashed lines), the center position of all the six Crazyflies (solid black line)

and the center position of the moving white board (solid red line) in the (x, y, t) coordinate,

where the blue circles present a snapshot of all the Crazyflies’ initial positions. The blue

crosses present two snapshots of all the Crazyflies at 15 s and 28 s, respectively. It can

be seen that the six Crazyflies work together to estimate and track the center position of

the moving white board with small tracking errors successfully. The tracking error between

each Crazyflie’s actual position xi(t) and its desired position 1
6

∑6
i=1 Ti(t)+δi is up to 2 cm,

and the tracking error between the average trajectory of all the Crazyflies and the target’s

trajectory is up to 0.05 cm. The tracking errors are also acceptable.

Figure 3.7: Normalized trajectory of Crazyflies in the target tracking experiment.

45

Figure 3.8: Trajectory of Crazyflies in the target tracking experiment.

3.2 Distributed Time-Varying Optimization With Equality

Constraints

3.2.1 Problem Formulation

In this section, we extend the results in Section 3.1 to take into account common

time-varying linear equality constraints. The goal is to design ui(t) such that all the agents

cooperatively find the optimal solution r∗(t) ∈ Rm defined as

r∗(t) = argmin
r(t)

{
n∑
i=1

fi[r(t), t]

}
,

s.t. A(t)r(t) = b(t),

(3.14)

where A(t) ∈ Rq×m and b(t) ∈ Rq are the equality constraint functions. Note that

A(t)xi(t) = A(t)r(t) for all i ∈ V and
∑n

i=1 fi[xi(t), t] =
∑n

i=1 fi[r(t), t], if xi(t) = xj(t) =

r(t) for all i, j ∈ V. Therefore, the above problem (3.14) is equivalent to finding the optimal

46

solution x∗(t) ∈ Rm∗n which is defined as

x∗(t) = argmin
x(t)

{
n∑
i=1

fi[xi(t), t]

}
,

s.t. A(t)xi(t) = b(t), ∀i ∈ V and xi(t) = xj(t) ∀i, j ∈ V.

(3.15)

Here, the goal is that each state xi(t) converges to the optimal solution r∗(t), i.e.,

lim
t→∞

[xi(t)− r∗(t)] = 0m. (3.16)

Here agent i only has access to its own objective function fi[xi(t), t], the constraint function

A(t) and b(t), its own state xi(t), and information received from its neighbors j ∈ Ni(t).

We need an additional assumption.

Assumption 4. The number of equality constraints is less than the dimension of the state

variable xi, i.e., q < m. Moreover, the rows of A(t) are linearly independent for all t ≥ 0,

i.e., rank[A(t)] = q.

Assumption 4 ensures that the constraint function has infinitely many solutions

at each t ≥ 0.

3.2.2 Algorithm Design

In this subsection, we derive a distributed control algorithm such that (3.16) holds.

The Lagrangian function of problem (3.14) is

L[r(t), t] =

n∑
i=1

fi[r(t), t] + νT (t)[A(t)r(t)− b(t)], (3.17)

where ν(t) ∈ Rq is the Lagrangian multiplier. Note that the function L[r(t), t] is strongly

convex in r(t) and concave in ν(t). Based on the KKT conditions, we know that the optimal

47

solution of problem (3.14) must satisfy

n∑
i=1

∇fi[r∗(t), t] +AT (t)ν∗(t) = 0m,

A(t)r∗(t)− b(t) = 0q.

(3.18)

Let λi(t) ∈ Rq be local internal states playing the role of the local counterparts of the global

Lagrangian multiplier ν(t). Then the optimal solution in (3.18) is equivalent to

lim
t→∞
‖xi(t)− xj(t)‖2 = 0, ∀i, j ∈ V, (3.19a)

lim
t→∞
‖λi(t)− λj(t)‖2 = 0, ∀i, j ∈ V, (3.19b)

n∑
i=1

∇fi[xi(t), t] +AT (t)λi(t) = 0m, (3.19c)

A(t)xi(t)− b(t) = 0q, ∀i ∈ V. (3.19d)

The controller for agent i is defined as

ui(t) = ψFi (t)−
∑

j∈Ni(t)

{
[‖ψi(t)‖∞ + ‖ψj(t)‖∞ + γi + γj]sgn[xi(t)− xj(t)]

}
,

λ̇i(t) = ψLi (t)−
∑

j∈Ni(t)

{
[‖ψi(t)‖∞ + ‖ψj(t)‖∞ + γi + γj]sgn[λi(t)− λj(t)]

}
,

ψi(t) = −
{
∇2L̃i[si(t), t]

}−1
{
∇L̃i[si(t), t] +

∂

∂t
∇L̃i[si(t), t]

}
,

(3.20)

where L̃i[si(t), t] = fi[xi(t), t] + λTi (t)[A(t)xi(t)− b(t)] with si(t) ∈ Rm+q = [xTi (t), λTi (t)]T ,

and ψFi (t) and ψLi (t) denote, respectively, the first m components and the last q compo-

nents of the vector ψi ∈ Rm+q. It follows from Assumptions 3 and 4 that ∇2L̃i[si(t), t]

is invertible [13]. There are four conditions in (4.17). In algorithm (3.20), the term

−
∑

j∈Ni(t)

{
[‖ψi(t)‖∞ + ‖ψj(t)‖∞ + γi + γj] sgn[xi(t) − xj(t)]

}
is introduced to ensure that

all the agents achieve consensus on states xi(t), i.e., the condition (3.19a). The term

48

−
∑

j∈Ni(t)

{
[‖ψi(t)‖∞+ ‖ψj(t)‖∞+ γi + γj] sgn[λi(t)− λj(t)]

}
is employed to ensure that all

the agents achieve consensus on λi(t), i.e., the condition (3.19b). The term ψi is introduced

to achieve the optimal condition given by (3.19c)-(3.19d).

Remark 15. It is worth mentioning that the discontinuous signum function in (3.5) and

(3.20) might cause chattering behavior. In practice, a simple and useful way to solve this

oscillating problem is to approximate the signum function using a continuous function in

a region called the boundary layer around the sliding surface [26]. For example, we can

replace the signum function with the function h(z) = z
||z||2+ε , where z ∈ Rm and ε is a

positive constant. Despite the drawback of the chattering effect, sliding-mode control has

its own merits such as fast convergence and robustness against system uncertainties and

disturbances.

3.2.3 Algorithm Analysis

This subsection establishes the asymptotic convergence of system (3.1) under con-

troller (3.20) to the optimal solution in (3.14).

Theorem 16. If Assumptions 1 to 4 hold, for system (3.1) under controller (3.20), then

all the states xi(t) will converge asymptotically to the optimal solution r∗(t) in (3.14).

Proof. First, we show that the conditions given by (3.19a)-(3.19b) can be achieved. Apply-

ing controller (3.20) to system (3.1) leads to

ṡi(t) = ψi(t)−
∑

j∈Ni(t)

{
[‖ψi(t)‖∞ + ‖ψj(t)‖∞ + γi + γj]

× sgn[si(t)− sj(t)]
}
.

(3.21)

49

The desired result follows under Assumptions 1 and 2 by letting ṡi(t), si(t) and ψi(t),

respectively, play the role of ṗi(t), xi(t) and φi(t) in the proof of Lemma 11. That is,

consensus on si(t) will be achieved in finite time. Then there exists a time T such that

si(t) = sj(t) for all t > T and all i, j ∈ V and thus xi(t) = xj(t) and λi(t) = λj(t) for all

t > T and all i, j ∈ V.

Next we show that the conditions (3.19c)-(3.19d) will be achieved. The gradient

and Hessian of the function L̃i[si(t), t] with respect to si(t) are

∇L̃i[si(t), t] =

 ∇fi[xi(t), t] +AT (t)λi(t)

A(t)xi(t)− b(t)

 ,

∇2L̃i[si(t), t] =

 ∇2fi[xi(t), t] AT (t)

A(t) 0q

 ,
(3.22)

where∇2L̃i[si(t), t] is invertible due to Assumptions 3 and 4. It is obvious that if∇2fi[xi(t), t] =

∇2fj [xj(t), t] under xi(t) = xj(t) for all i, j ∈ V, then it holds that ∇2L̃i[si(t), t] =

∇2L̃j [sj(t), t] under xi(t) = xj(t) for all i, j ∈ V. Consider the Lyapunov function can-

didate

V3(t) =
1

2

{
n∑
i=1

∇L̃i[si(t), t]

}T { n∑
i=1

∇L̃i[si(t), t]

}
.

Similar to the analysis in Theorem 13, it can be concluded that as t → ∞, V3(t) → 0, we

have

lim
t→∞

n∑
i=1

∇L̃i[si(t), t] = 0m+q

and thus

lim
t→∞

n∑
i=1

∇fi[xi(t), t] +AT (t)λi(t) = 0m

50

and

lim
t→∞

n∑
i=1

A(t)xi(t)− b(t) = 0q

based on the definition in (3.22). The conclusion of the theorem then follows by combining

the above statements.

3.2.4 Simulations

Second, we show a simulation result using the algorithm (3.20). Let r = [rx, ry]
T

and consider the following constrained optimization problem

r∗(t) ∈ R2 = argmin
n∑
i=1

{
[rx(t)− it]2 + [ry(t)− it]2

}
,

s.t. cos(t)rx(t) + sin(t)ry(t) = 3.

(3.23)

The problem (3.23) is an instance of the problem (3.14). The goal here is that each state

xi(t) converges to the optimal solution r∗(t) defined in (3.23). The intuition of the problem

(3.23) is also from the multi-robot target tracking problem, where [i ∗ t, i ∗ t]T encodes the

tracking signal of agent i and the function cos(t)rx(t) + sin(t)ry(t) = 3 represents some

physical constraints for the robots. For this simulation, ∀i ∈ V, we select γi = 5 and choose

the initial states xi(0) and yi(0) randomly from the range [−10, 10]. The state trajectories

of the agents (solid lines) and the optimal trajectory r∗(t) defined in (3.23) (red dashed

line) are shown in Figure 3.18. It is clear that all the agents track the optimal trajectory

asymptotically, i.e, lim
t→∞
‖xi(t)− r∗(t)‖2 = 0 for all i ∈ V. Figure 3.10 shows convergence of

the constraint for each agent. We can see that cos(t)xi(t) + sin(t)yi(t)− 3 converge to zero

asymptotically for all the agents, which is consistent with Theorem 16.

51

0 1 2 3 4 5 6

-5

0

5

(a)

0 0.2 0.4 0.6

-4

-2

0

2

0 1 2 3 4 5 6

-10

-5

0

5

(b)

0 0.2 0.4 0.6

-6

-4

-2

0

2

Figure 3.9: Simulation results showing state convergence to the optimal solution using
controller (3.20).

0 1 2 3 4 5 6

-10

-8

-6

-4

-2

0

2

0 0.1 0.2 0.3 0.4 0.5 0.6

-10

-8

-6

-4

-2

0

Figure 3.10: Simulation results showing convergence of the constraint using controller (3.20).

3.3 Distributed Time-Varying Optimization With Inequality

Constraints

3.3.1 Problem Formulation

Consider a network consisting of n agents. Each agent is regarded as a node in an

undirected graph, and each agent can only interact with its local neighbors in the network.

Similary, suppose that each agent satisfies the continuous-time dynamics in (3.1). In this

52

section, we study the distributed time-varying optimization problem with time-varying non-

linear inequality constraints. The goal is to design ui(t) using only local information and

interaction, such that all the agents work together to find the optimal trajectory ȳ∗(t) ∈ Rm

which is defined as

ȳ∗(t) = argmin
n∑
i=1

fi[y(t), t],

s.t. gi[y(t), t] � 0qi , i ∈ V,

(3.24)

where fi[y(t), t] : Rm × R>0 → R are the local objective functions, and gi[y(t), t] : Rm ×

R>0 → Rqi are the local inequality constraint functions. It is assumed that fi[y(t), t] and

gi[y(t), t] are known only to agent i. We assume that the minimizer ȳ∗(t) is unique for each

t (see Assumption 6).

If the underlying network is connected, the above problem (3.24) is equivalent

to the problem that all the agents reach consensus while optimizing the team objective

function
n∑
i=1

fi[xi(t), t] under constraints, more formally,

x∗(t) ∈ Rm∗n = argmin
n∑
i=1

fi[xi(t), t],

s.t. gi[xi(t), t] � 0qi , xi(t) = xj(t), ∀i, j ∈ V,

(3.25)

where x(t) ∈ Rm∗n is the stack of all the agents′ states. Here, the goal is that each state

xi(t), ∀i ∈ V, converges to the optimal solution ȳ∗(t), i.e.,

lim
t→∞

[xi(t)− ȳ∗(t)] = 0m. (3.26)

Remark 17. This architecture of the distributed time-varying constrained optimization

problem (3.24) with networked agents finds broad applications in distributed cooperative

control problems, including multi-robot navigation [54, 108] and resource allocation of power

53

network [104]. For example, in a motion coordination case, knowing only their own and

their neighbors′ positions, multiple UAVs might need to dock at a moving location without

collision such that the total team performance is optimized. Here, the constraints can denote

that the UAVs need to be located in safe areas.

For notational simplicity, we will remove the time index t from the variables xi(t)

and ui(t) in most remaining parts of this paper and only keep it in some places when

necessary.

We make the following assumptions which are all standard in the literature and

are used in recent works like [82, 27, 42].

Assumption 5. The graph G is fixed, undirected and connected.

Assumption 6. All the objective functions fi(xi, t) and the inequality constraint functions

gi(xi, t) are twice continuously differentiable with respect to xi and continuously differen-

tiable with respect to t. Furthermore, all the objective functions fi(xi, t) are uniformly

strongly convex in xi, for all t ≥ 0 and all the constraint functions gi(xi, t) are uniformly

convex in xi, for all t ≥ 0.

Assumption 7. For all t ≥ 0, there exists at least one y such that gi(y, t) ≺ 0qi for all

i ∈ V. Therefore, the Slater′s condition holds for all time.

The uniform strong convexity of the objective functions implies that the optimal

trajectory ȳ∗(t) is unique for all t ≥ 0 (assume it exists) if there are no constraints about

the agents’ states. Furthermore, we assume that ȳ∗(t) is still unique for all t ≥ 0 when the

constraints in (3.24) are considered. By Assumption 7, the interior of the feasible region

54

is nonempty for all t ≥ 0 and the optimal solution ȳ∗(t) in (3.24) at each t ≥ 0 can be

characterized using the Karush–Kuhn–Tucker (KKT) conditions.

3.3.2 Algorithm Design

In this subsection, we derive our distributed control algorithm for the time-varying

constrained optimization problem in (3.25).

We design the following controller for agent i:

ui = −β[∇2L̃i(xi, t)]
−1
∑
j∈Ni

sgn(xi − xj) + φi(t),

φi(t) = −[∇2L̃i(xi, t)]
−1

[
∇L̃i(xi, t) +

∂

∂t
∇L̃i(xi, t)

]
,

(3.27)

where β ∈ R>0 is a fixed control gain, and L̃i(xi, t) is a penalized objective function of agent

i, defined as,

L̃i(xi, t) = fi(xi, t)−
1

ρi(t)

qi∑
j=1

log[σi(t)− gij(xi, t)], (3.28)

where gij(xi, t) : Rm × R>0 → R denotes the j−th component of function gi(xi, t), ρi(t) ∈

R>0 is time-varying barrier parameter, and σi(t) ∈ R>0 is a time-varying slack function

satisfying

ρi(t) = ai1e
ai2t, σi(t) = ai3e

−ai4t, ai1, ai2, ai3, ai4 ∈ R>0. (3.29)

Note that the domain of the penalized objective function L̃i(xi, t) isDi = {xi ∈ Rm | gi(xi, t) ≺

σi(t)1qi}. This would require that the dynamical system (3.1) with controller (3.27) is ini-

tialized at a point inside Di(0), i.e., xi(0) ∈ Di(0). It is worthwhile to mention that the

introduction of σi(t) is to enlarge the initial feasible set. To make the algorithm (3.27)

work, the initial states xi(0) need satisfy

gij [xi(0), 0] < σi(0), ∀i ∈ V, j = 1, · · · , qi. (3.30)

55

We will prove that the dynamical system (3.1) is well-defined under controller (3.27), initial

condition (3.30), and certain other assumptions (see Lemma 24).

Remark 18. In this work, the time-varying optimization problem (3.25) is deformed as

a consensus subproblem and a minimization subproblem on the team objective function.

We develop a distributed sliding-mode control law to address the consensus part. That is,

the role of term −β[∇2L̃i(xi, t)]
−1
∑

j∈Ni sgn(xi − xj) in (3.27) is to drive all the agents

to reach a consensus on states (lim
t→∞
‖xi(t) − 1

n

∑n
j=1 xj(t)‖2 = 0). Here, the Hessian-

dependent gain β[∇2L̃i(xi, t)]
−1 is introduced to guarantee the convergence of our algorithm

under nonidentical ∇2L̃i(xi, t). While the second term, φi(t) ∈ Rm, is an auxiliary variable

playing a role in minimizing the penalized objective function L̃i(xi, t) given by (3.28). Note

that we use the log-barrier penalty functions (see the second term in (3.28)) to incorporate

the inequality constraints into the penalized objective function. As shown in (3.27), we

use the second-order/Hessian information of the penalized objective function to achieve the

optimization goal.

Remark 19. In this work, we convert the considered constrained optimization problem into

an unconstrained one using the penalty functions. Multiple penalty functions might be useful

to address the inequality constraints, for example, {max[0, gij(xi, t)]}2 and the log-barrier

function used in (3.28). In this work, we aim to leverage the Hessian information to solve the

time-varying optimization problem. Therefore, we need a smooth and differentiable penalty

function. That is why we choose log-barrier penalty functions to address the inequality

constraints. While log-barrier penalty functions are not novel in its use for optimization

problems with inequality constraints [111, 13, 27], our work is the first to leverage its use

56

to the distributed time-varying optimization settings. Therefore, extra challenge has been

introduced.

In addition, we have

∇L̃i(xi, t) = ∇fi(xi, t) +

qi∑
j=1

∇gij(xi, t)
ρi(t)[σi(t)− gij(xi, t)]

, (3.31)

∂

∂t
∇L̃i(xi, t) =

∂

∂t
∇fi(xi, t) +

qi∑
j=1

∂∇gij(xi, t)/∂t
ρi(t)[σi(t)− gij(xi, t)]

−
qi∑
j=1

ρ̇i(t)∇gij(xi, t)
ρ2
i (t)[σi(t)− gij(xi, t)]

−
qi∑
j=1

σ̇i(t)∇gij(xi, t)
ρi(t)[σi(t)− gij(xi, t)]2

+

qi∑
j=1

∇gij(xi, t)∂gij(xi, t)/∂t
ρi(t)[σi(t)− gij(xi, t)]2

,

(3.32)

∇2L̃i(xi, t) = ∇2fi(xi, t) +

qi∑
j=1

∇2gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]
+

qi∑
j=1

∇gij(xi, t)∇gij(xi, t)T

ρi(t)[σi(t)− gij(xi, t)]2
,

(3.33)

where ∂
∂t∇fi(xi, t),

∂
∂t∇gij(xi, t) and ∂

∂tgij(xi, t) are, respectively, the partial derivatives of

∇fi(xi, t), ∇gij(xi, t) and gij(xi, t) with respect to t.

Also, for notational simplicity, we will remove the time index t from the auxiliary

variable φi(t) in most remaining parts of this paper and only keep it in some places when

necessary.

Remark 20. In this work, we convert the considered constrained optimization problem

into an unconstrained one using the log-barrier penalty functions. It is worth noting that

the proposed algorithm (3.27) is not a simple extension of the existing distributed time-

varying unconstrained optimization algorithms in [82, 42]. Especially, to apply the algorithm

in [42] and the consensus-based algorithm in [82] (Section III.B), it is required that the

Hessians of all the local objective functions be identical. In contrast, in our context with the

penalized objective functions, the Hessians of them are nonuniform due to the involvement

57

of the nonuniform local constraint functions even if the original objective functions have

identical Hessians. The estimator-based algorithm in [82] (Section III.C) can deal with

certain objective functions with nonidentical Hessians. However, it not only necessitates the

communication of certain virtual variables between neighbors with increased computation

costs, but requires that the time derivatives of the Hessians and the time derivatives of

the gradients of the objective functions exist and be bounded. Unfortunately, due to the

complexity of the penalized objective functions in the considered constrained problem, such

a requirement might be no longer guaranteed to hold and hence the result therein might not

be applicable to our problem. In this paper, we introduce a novel algorithm with a Hessian-

dependent gain to account for the complexity caused by the penalized objective functions,

where only the partial derivatives of the gradients of the penalized objective functions with

respect to time t are pre-assumed to be bounded (see Assumptions 8 and 9). Note that in

[82, 42], the partial derivatives of the gradients of the objective functions with respect to time

t are also required to be bounded. In this paper, we do not pre-assume that the Hessians and

gradients of the penalized objective functions are bounded; however, we will prove that the

Hessians and gradients of the penalized objective functions are bounded automatically under

our proposed algorithms. The novel algorithm design in turn introduces new challenges in

theoretical analysis, which will be addressed in the following.

Remark 21. In algorithm (3.27), each agent just needs its own information and the relative

states between itself and its neighbors. In some robotic applications, the agents’ states are

their spatial positions. As a result, the relative positions can be obtained by local sensing

and the communication necessity might be eliminated.

58

3.3.3 Algorithm Analysis

In this subsection, the asymptotical convergence of the system (3.1) under the

controller (3.27) to the optimal solution in (3.24) is established. To establish our results,

we require the following assumptions.

Assumption 8. If all local states xi are bounded, then there exists a constant ᾱ such that

sup
t∈[0,∞)

‖ ∂∂t∇fi(xi, t)‖2 ≤ ᾱ for all i ∈ V and t ≥ 0.

Assumption 9. If all local states xi are bounded, then there exist constants β̄ and γ̄ such

that supt∈[0,∞) ‖ ∂∂t∇gij(xi, t)‖2 ≤ β̄ and supt∈[0,∞) ‖ ∂∂tgij(xi, t)‖2 ≤ γ̄, for all i ∈ V, j =

1, · · · , qi and t ≥ 0.

Remark 22. In Assumption 8, we assume that all ‖ ∂∂t∇fi(xi, t)‖2 are bounded under

bounded xi. The assumption holds for an important class of situations. For example, con-

sider the normal quadratic objective functions ‖cixi + hi(xi, t)‖22. As long as ∂
∂thi(xi, t)

(e.g. sin(t), t) are bounded under bounded xi, ‖ ∂∂t∇fi(xi, t)‖2 will be bounded. In As-

sumption 9, we assume that all ‖ ∂∂t∇gij(xi, t)‖2 and ‖ ∂∂tgij(xi, t)‖2 are bounded under

bounded xi. The assumption holds for an important class of situations. The boundedness

of ‖ ∂∂t∇gij(xi, t)‖2 and ‖ ∂∂tgij(xi, t)‖2 holds for most commonly used boundary constraint

functions, e.g., xi ≤ b(t) or x2
i ≤ b(t) under bounded ḃ(t).

Remark 23. With the piecewise-differentiable signum function involved in algorithm (3.27),

the solution should be investigated in the sense of Filippov. However, since the signum func-

tion is measurable and locally essentially bounded, the Filippov solutions of the proposed sys-

tem dynamics always exist [29]. To avoid symbol redundancy, we do not use the differential

59

inclusions in the proofs when the Lyapunov candidates are continuously differentiable due

to the following reason: if the Lyapunov function candidates are continuously differentiable,

the set-valued Lie derivative of them is a singleton at the discontinuous points and the proof

still holds without employing the nonsmooth analysis [22].

In this work, we convert the considered constrained optimization problem into

an unconstrained optimization problem using the log-barrier penalty functions. That the

log-barrier penalty function involved in (3.28) is always well defined under our proposed

algorithm is important. This is described in the next lemma.

Lemma 24. Suppose that Assumptions 6 and 7 and the initial condition (3.30) hold. For

the system (3.1) under the controller (3.27), each xi(t) belongs to the set Di = {xi ∈

Rm | gi(xi, t) ≺ σi(t)1qi} for all t ≥ 0. That is, (3.28) is always well defined.

Proof. Assumption 7 ensures the existence of initial condition (3.30). Moreover, the time

derivative of ∇L̃i(xi, t) is given by

∇̇L̃i(xi, t) =
∂

∂xi
∇L̃i(xi, t)× ẋi +

∂

∂t
∇L̃i(xi, t)

= ∇2L̃i(xi, t)ẋi +
∂

∂t
∇L̃i(xi, t).

(3.34)

Here, Assumption 6 ensures the existence of the Hessians of the penalized functions L̃i(xi, t),

i.e., ∇2L̃i(xi, t). Substituting the solution of (3.1) with (3.27) into (3.34) leads to

∇̇L̃i(xi, t) = −β
∑
j∈Ni

sgn(xi − xj)−∇L̃i(xi, t), (3.35)

Then we can use the input-to-state stability [48] to analyze the system (3.35) by treating

the term −β
∑
j∈Ni

sgn(xi − xj) as the input and ∇L̃i(xi, t) as the state. Since the term

60

−β
∑
j∈Ni

sgn(xi − xj) is always smaller than nβ, it is obvious that each ∇L̃i(xi, t) remains

bounded for all t ≥ 0. Notice that (3.31) implies that ∇L̃i(xi, t) is unbounded at the

boundary of Di. Therefore, it follows from initial condition (3.30) that each xi is in the set

Di = {xi ∈ Rm | gi(xi, t) ≺ σi(t)1qi} for all t ≥ 0. That is, (3.28) is always well defined.

In the following, in Lemma 25, we prove that the eventual states of the agents

satisfy the optimal requirement shown in Lemma 7, i.e., lim
t→∞

∑n
i=1∇L̃i(xi, t) = 0m. The

goal of problem (3.25) is that all the agents’ states reach consensus on the optimal trajectory,

and thus in Lemma 11, we prove that consensus can be achieved in finite time if all φi in the

controller (3.27) are bounded, i.e., there exists a time T2 such that ‖xi(t)− 1
n

∑n
j=1 xj(t)‖ = 0

for all t > T2 if all φi are bounded. Then in Lemma 27, we prove that all φi associated

with the system (3.1) under the controller (3.27) are indeed bounded. Finally, in Theorem

13, we present that the goal in (3.26) can be achieved, i.e., lim
t→∞
‖xi(t)− ȳ∗(t)‖2 = 0 for all

i ∈ V.

Lemma 25. Suppose that Assumptions 1, 6 and 7 hold, the gain condition (3.29) and

the initial condition (3.30) hold. For the system (3.1) under the controller (3.27), the

summation of all ∇L̃i(xi, t) exponentially converges to 0m.

Proof. It follows from Assumption 6 that all fi(xi, t) are strongly convex in xi. Also it

follows from Assumption 6 that all gij(xi, t) are convex in xi. From gain condition (3.29),

we know that ρi(t) and σi(t) are always positive. Then it follows from initial condition (3.30)

that L̃i(xi, t) given by (3.28) must be continuously differentiable and strongly convex in xi if

xi is in set Di = {xi ∈ Rm | gi(xi, t) ≺ σi(t)1qi}. Note that Assumptions 6 and 7 and initial

condition (3.30) hold. Lemma 24 has indicated that this is indeed the case. Therefore,

61

each L̃i(xi, t) must be continuously differentiable and strongly convex in xi based on our

algorithm. Consider the Lyapunov function candidate,

W1 =
1

2

[
n∑
i=1

∇L̃i(xi, t)

]T [n∑
i=1

∇L̃i(xi, t)

]
. (3.36)

Note that the Lyapunov candidate W1 is continuously differentiable. Based on the state-

ments in Remark 23, we do not need to employ nonsmooth analysis in the stability analysis.

Then we have

Ẇ1(t) =

[
n∑
i=1

∇L̃i(xi, t)

]T [n∑
i=1

∇2L̃i(xi, t)ẋi +
∂

∂t
∇L̃i(xi, t)

]
. (3.37)

Substituting the solution of (3.1) with (3.27) into (3.37) leads to

Ẇ1(t) =

[
n∑
i=1

∇L̃i(xi, t)

]T (n∑
i=1

∇2L̃i(xi, t)
{

[∇2L̃i(xi, t)]
−1

×β
∑
j∈Ni

sgn(xj − xi) + φi

+
∂

∂t
∇L̃i(xi, t)

 .

Since the network is undirected (Assumption 5), we have
n∑
i=1

β
∑
j∈Ni

sgn(xj − xi) = 0m for

all t ≥ 0. It follows that

Ẇ1(t) =

[
n∑
i=1

∇L̃i(xi, t)

]T [
−

n∑
i=1

∇L̃i(xi, t)

]
= −2W1(t),

which indicates that W1(t) = e−2tW1(0) for all t ≥ 0. It can be concluded that W1(t)

exponentially converges to zero, and thus
∑n

i=1∇L̃i(xi, t) exponentially converges to 0m.

Lemma 26. Suppose that Assumptions 1, 6 and 7 hold, the gain condition (3.29) and the

initial condition (3.30) hold. For the system (3.1) under the controller (3.27), if there exists

62

a constant φ̄ such that sup
t∈[0,∞)

‖φi(t)‖2 ≤ φ̄, ∀i ∈ V and β satisfies that,

β ≥ 2φ̄mn2|E|
mini∈V{λmin[(∇2L̃i)−1]}

+ ε, 2 (3.38)

where ε > 0 is a constant, all the states xi will achieve consensus in finite time, i.e., there

exists a time T2 such that ‖xi(t)− xj(t)‖2 = 0, for all i, j ∈ V and for all t > T2.

Proof. Define

[∇2L̃(x, t)]−1 = diag{[∇2L̃1(x1, t)]
−1, · · · , [∇2L̃n(xn, t)]

−1}, x = [xT1 , · · · , xTn]T , and Φ =

[φT1 , · · · , φTn]T . Consider the Lyapunov candidate

W2(t) = ‖(DT ⊗ Im)x‖1. (3.39)

The solution of (3.1) with (3.27) can be written in compact form as

ẋ = −β[∇2L̃(x, t)]−1(D ⊗ Im)sgn[(DT ⊗ Im)x] + Φ. (3.40)

It is obvious that W2(t) is locally Lipschitz continuous but nonsmooth at some points. Then

according to Definition 4, the generalized gradient of W2(t) is given by

∂W2(t) = (DT ⊗ Im)T {SGN[(DT ⊗ Im)x]}, (3.41)

where SGN(·) 3 is the multivalued function defined as (see Equation (20) in [22])

SGN(z) =

1 if z > 0,

[−1, 1] if z = 0,

−1 if z < 0.

(3.42)

2Here mini∈V{λmin[(∇2L̃i)
−1]} denotes the smallest value in the set[

λmin[(∇2L̃1)−1], λmin[(∇2L̃2)−1], · · · , λmin[(∇2L̃n)−1]
]
, where λmin[(∇2L̃i)

−1] is defined in Sec. II.

A.
3With the piecewise-differentiable signum function involved in algorithm (3.27), the solution of (3.1) with

(3.27) should be replaced by inclusions at a point of discontinuity.

63

Then based on Definition 5, the set-valued Lie derivative of W2(t) is given by

˙̃W2(t) =
⋂

ξ∈SGN[(DT⊗Im)x]

ξT (DT ⊗ Im)K[f], (3.43)

where K[f] = Φ− β[∇2L̃(x, t)]−1(D⊗ Im)SGN[(DT ⊗ Im)x] is the set-valued Filippov map

of the dynamical system (3.40).

Since there is an intersection operation on the right side of (3.43), it follows that

as long as ˙̃W2(t) is not empty and there exists ξ ∈ SGN[(DT ⊗ Im)x] such that ξT (DT ⊗

Im)f̃ < 0, ∀f̃ ∈ K[f], then the result of ˙̃W2(t) falls into the negative half plane of the

real axis. Arbitrarily choose η ∈ SGN[(DT ⊗ Im)x]. Choose ξk = sgn[(DT ⊗ Im)k•x] if

sgn[(DT ⊗ Im)k•x] 6= 0 and ξk = ηk if sgn[(DT ⊗ Im)k•x] = 0, where ξk and ηk denote the

kth element in vectors ξ and η respectively. If ˙̃W2(t) 6= ∅, suppose that ã ∈ ˙̃W2(t). It follows

that

ã = −β{ξT (DT ⊗ Im)[∇2L̃(x, t)]−1(D ⊗ Im)η}+ ξT (DT ⊗ Im)Φ

≤ −β{ξT (DT ⊗ Im)[∇2L̃(x, t)]−1(D ⊗ Im)ξ}+ ξT (DT ⊗ Im)Φ

≤ −βλmin[(∇2L̃)−1]‖(D ⊗ Im)ξ‖22 + 2φ̄mn2|E|,

(3.44)

If there exists an edge (i2, j2) ∈ E such that xi2 6= xj2 , then ‖(D ⊗ Im)ξ‖ ≥ 1. It follows

that

ã ≤ −βλmin[(∇2L̃)−1] + 2φ̄mn2|E|. (3.45)

Since β ≥ 2φ̄mn2|E|
mini∈V{λmin[(∇2L̃i)−1]} + ε = 2φ̄mn2|E|

λmin[(∇2L̃)−1]
+ ε, it follows that if there exists an edge

(i2, j2) ∈ E such that xi2 6= xj2 , then ã ≤ −ε. Thus, we can conclude that ˙̃W2(t) ≤ −ε if

there exists an edge (i2, j2) ∈ E such that xi2(t) 6= xj2(t). Based on the Lebesgue’s theory

for the Riemann integrability, a function on a compact interval is Riemann integrable if and

only if it is bounded and the set of its discontinuous points has measure zero [5]. Therefore,

64

although the time derivative Ẇ2(t) here is discontinuous at some time points, it is Riemann

integrable. Then, we have

W2(t)−W2(0) =

∫ t

0
Ẇ2(τ)dτ ≤ −εt,

where t > 0. It follows that

W2(t) ≤W2(0)− εt, (3.46)

Then it follows that W2(t) converges to zero in finite time and the convergence time is

smaller than or equal to W2(0)/ε. Based on the definition of W2(t) in (3.39), we have

W2(t) = ‖(DT ⊗ Im)x‖1

=
1

2

n∑
i=1

∑
j∈Ni

‖xi − xj‖1.
(3.47)

That is, W2(t) → 0 implies that ‖xi − xj‖1 → 0 for all i ∈ V and j ∈ Ni. Because the

network is undirected (see Assumption 5, it follows that all agents reach a consensus in

finite time. That is, there exists a time T2 such that ‖xi(t) − 1
n

∑n
j=1 xj(t)‖2 = 0 for all

i ∈ V and for all t > T2.

Lemma 27. Suppose that Assumptions 1 and 6 to 9 hold, the gain condition (3.29) and

the initial condition (3.30) hold. For the system (3.1) under the controller (3.27), all φi

remain bounded. That is, there exists a constant φ̄ such that supt∈[0,∞) ‖φi(t)‖2 ≤ φ̄, for all

i ∈ V.

Proof. To begin with, we prove that each xi associated with the system (3.1) under the

controller (3.27) remains in a bounded region, which in turn guarantees that all φi are

bounded. Note that Assumptions 6 and 7, the initial condition (3.30), and the gain condition

(3.29) hold. Then using a similar analysis to that in Lemma 25, we have each L̃i(xi, t) is

65

continuously differentiable and strongly convex in xi. The time derivative of ∇L̃i(xi, t) is

shown in (3.35). Assume that there exists at least one xi such that xi → +∞ or xi → −∞.

Then due to the strongly convexity and the continuously differentiability of L̃i(xi, t), we

have ∇L̃i(xi, t) → +∞ as xi → +∞ and ∇L̃i(xi, t) → −∞ as xi → −∞. Note that

Assumptions 1, 6 and 7, the initial condition (3.30), and the gain condition (3.29) hold.

Then it follows from Lemma 25 that it is impossible that all xi go to infinity at the same

time. Without loss of generality, let us assume that xi1 → +∞, where i1 = argmaxj∈V(xj).

It follows that −β
∑

j∈Ni1
sgn(xi1−xj) ≤ 0 when xi → +∞. Therefore, from (3.35), it is clear

that ∇̇L̃i(xi1 , t) must be negative when xi1 → +∞. Similarly, assume that xi2 → −∞,

where i2 = argminj∈V(xj). It follows that −β
∑

j∈Ni2
sgn(xi2 − xj) ≥ 0 when xi2 → −∞.

Therefore ∇̇L̃i(xi2 , t) must be positive when xi2 → −∞. The decreasing ∇L̃i(xi, t) when

xi → +∞ and increasing ∇L̃i(xi, t) when xi → −∞ will result in a bounded ∇L̃i(xi, t)

and thus a bounded xi, which contradicts with the unbounded xi assumption. Hence all xi

must be bounded.

Then, we will prove that all ∇L̃i(xi, t) are bounded for all time. It follows from

Lemma 25 that
n∑
i=1
∇L̃i(xi, t) is always bounded. Since all xi are bounded, we have all

∇fi(xi, t) and ∇gij(xi, t) must be bounded. Then using an argument similar to Lemma 2

in [27], all 1
σi(t)−gij(xi,t) are bounded. Therefore each ∇L̃i(xi, t) is always bounded for all

t ≥ 0 and for all i ∈ V.

Next, we will prove that all [∇2L̃i(xi, t)]
−1 are bounded for all time. Since all

L̃i(xi, t) are continuous differentiable and strongly convex in its corresponding xi, then

66

based on the statements in Section 9.1.2 in [13], we know that all ∇2L̃i(xi, t) satisfy

m(t)In ≤ ∇2L̃i(xi, t) ≤M(t)In,

with m(t),M(t) ∈ R>0, which implies that all [∇2L̃i(xi, t)]
−1 are bounded and positive

definite for all t ≥ 0.

At last, given that all ∇L̃i(xi, t) and ∇2L̃i(xi, t) are bounded for all time, under

Assumptions 8 and 9, it is easy to see that all ∂
∂t∇L̃i(xi, t) remain bounded for all t ≥ 0.

Since [∇2L̃i(xi, t)]
−1, ∇L̃i(xi, t) and ∂

∂t∇L̃i(xi, t) are bounded for all i ∈ V and for

all t ≥ 0, we can get the conclusion that φi(t) is bounded for all i ∈ V and for all t ≥ 0.

Theorem 28. Suppose that Assumptions 1 and 6 to 9 hold, the initial condition (3.30)

and the gain conditions (3.29) and (3.38) hold. For the system (3.1) under the controller

(3.27), all the states xi will converge to the optimal solution ȳ∗(t) in (3.24) eventually.

Proof. Define

ỹ(t)∗ ∈ Rm = argmin

n∑
i=1

L̃i[y(t), t], (3.48)

where L̃i[y(t), t] is each agent’s penalized objective function defined by (3.28). Note that

Assumptions 1 and 6 to 9, initial condition (3.30) and gain condition (3.29) hold. It follows

from Lemma 27 that all φi associated with the system (3.1) under the controller (3.27) are

bounded for all t ≥ 0, which in turn implies that xi(t) = xj(t), ∀i, j ∈ V in finite time

according to Lemma 26. Moreover, based on Lemma 25 we know that lim
t→∞

n∑
i=1
∇L̃i(xi, t) =

0m. Using a similar analysis to that in Lemma 25, we have each L̃i(xi, t) is continuously

differentiable and strongly convex in xi. Based on Lemma 7, we have

n∑
i=1

∇L̃i[ỹ∗(t), t] = 0m (3.49)

67

Then it follows that all xi will converge to the optimal solution ỹ∗(t) in (3.48), i.e., lim
t→∞

xi(t) =

ỹ∗(t), ∀i ∈ V.

Define

ŷ∗(t) ∈ Rm = argmin
n∑
i=1

fi[y(t), t]

s.t. gij [y(t), t] ≤ σi(t), ∀i ∈ V, j = 1, · · · , qi.

(3.50)

The Lagrangian function of problem (3.50) can be written as

Lag =
n∑
i=1

fi[y(t), t] +
n∑
i=1

qi∑
j=1

λij(t) {gij [y(t), t]− σi(t)} , (3.51)

where λij(t) > 0 are the Lagrangian multipliers. The corresponding dual function of prob-

lem (3.50) is

g[λij(t)] = sup

 n∑
i=1

fi[y(t), t] +
n∑
i=1

qi∑
j=1

λij(t) {gij [y(t), t]− σi(t)}

 . (3.52)

It follows from (3.49) and (3.31) that

n∑
i=1

∇L̃i[ỹ∗(t), t] =
n∑
i=1

∇fi[ỹ∗(t), t] +
n∑
i=1

qi∑
j=1

∇gij [ỹ∗(t), t]
ρi(t){σi(t)− gij [ỹ∗(t), t]}

= 0m. (3.53)

Define λ∗ij(t) = 1
ρi(t){σi(t)−gij [ỹ∗(t),t]} . We see that ỹ∗(t) minimizes the Lagrangian function

of problem (3.50), which is defined in (3.51), for λij(t) = λ∗ij(t). Therefore the dual function

(3.52) at point λ∗ij(t) is

g
[
λ∗ij(t)

]
=

n∑
i=1

fi[ỹ
∗(t), t] +

n∑
i=1

qi∑
j=1

λ∗ij(t){gij [ỹ∗(t), t]− σi(t)}

=
n∑
i=1

fi[ỹ
∗(t), t]−

n∑
i=1

qi∑
j=1

1

ρi(t)

≤
n∑
i=1

fi[ŷ
∗(t), t].

(3.54)

The last inequality in (3.54) holds since the dual function provides a lower bound to the

solution of the primal problem (3.50).

68

It follows that∣∣∣∣∣
n∑
i=1

fi[ŷ
∗(t), t]−

n∑
i=1

fi[ỹ
∗(t), t]

∣∣∣∣∣ ≤
n∑
j=1

qj∑
k=1

ρ−1
j (t). (3.55)

Note that ȳ∗(t) ∈ Rm is the optimal solution of problem (3.24). Then we can use the

perturbation and sensitivity analysis in [13] (Sec. 5.9) to analyze problem (3.50) by treating

(3.50) as a perturbed version of the problem (3.24) after including the slack variables σi(t)

in the constraints. Under Assumption 7, the optimal solution ȳ∗(t) can be characterized

using the Karush–Kuhn–Tucker (KKT) conditions for all t ≥ 0. Then we have∣∣∣∣∣
n∑
i=1

fi[ŷ
∗(t), t]−

n∑
i=1

fi[ȳ
∗(t), t]

∣∣∣∣∣ ≤
n∑
j=1

qj∑
k=1

λ∗jk(t)σj(t), (3.56)

Hence, because limt→∞ ρi(t) =∞ and limt→∞ σi(t) = 0 for all i ∈ V, we have

lim
t→∞

∣∣∣∣∣
n∑
i=1

fi[ȳ
∗(t), t]−

n∑
i=1

fi[ỹ
∗(t), t]

∣∣∣∣∣ = 0. (3.57)

Since we assume that the optimal solution ȳ∗(t) is unique, it follows that lim
t→∞

xi(t) =

ȳ∗(t), ∀i ∈ V.

Remark 29. As a byproduct, the algorithm (3.27) can also be used for distributed un-

constrained optimization problems with much more relaxed assumptions on the objective

functions (e.g., those with nonidentical Hessians) than those in [82]. In particular, it is

applicable to objective functions that are strongly convex and twice continuously differen-

tiable with respect to xi and whose partial gradients with respect to time, i.e., ∂∇fi(xi,t)
∂t , are

bounded.

69

3.3.4 Simulations

In this section, the proposed distributed time-varying constrained optimization

algorithms are illustrated through two simulation cases. In both cases, we consider a network

with n = 12 and m = 2. The network topology is shown by the undirected graph in Figure

3.11. Let xi = [xpi , y
p
i]
T ∈ R2 denote the states of each agent. Agent i is assigned a local

objective function fi = 1
2 [xpi (t) + i sin(t)]2 + 3

2 [ypi (t)− i cos(t)]2, i ∈ V.

1 2 3 4 5

6 7

9 10

8

11

12

Figure 3.11: The undirected graph.

0 1 2 3 4 5 6 7 8
-10

-5

0

5

10
(a)

0 1 2 3 4 5 6 7 8

-10

-5

0

5
(b)

Figure 3.12: State trajectories of all the agents with the system (3.1) under the controller
(3.27). The red dashed line is the optimal solution and the other solid lines are the trajec-
tories of all agents’ states.

First, we show the simulation result using the algorithm (3.27). Assume that agent

j is assigned a constraint function ypj (t) − x
p
j (t) − cos(t) ≤ 0, for all j ∈ [1, 2, · · · , 6], and

70

0 5 10
-9

-8

-7

-6

-5

-4

-3

-2

-1

0
(a)

0 5 10
-12

-10

-8

-6

-4

-2

0
(b)

Figure 3.13: Plots of the constraint results with the system (3.1) under the controller (3.27).

agent k is assigned a constraint function ypk(t) − t ≤ 0, for all k ∈ [7, 8, · · · , 12]. All the

initial states xpi (0) are generated randomly from the range [−10, 0], and ypi (0) = xpi (0)− 2,

for all i ∈ V. Therefore, the initial condition (3.30) is satisfied. We choose β = 15 and

ρ(t) = 10 exp(0.05t). Therefore the gain condition (3.29) is satisfied. The state trajectories

of the agents are shown in Figure 3.12. We can see that all the agents track the optimal

trajectory eventually which is consistent with Theorem 28. The constraint result is shown in

Figure 3.13. In our simulation, agents 1−6 are assigned the constraint function ypi (t)−x
p
i (t)−

cos(t) ≤ 0, i ∈ [1, · · · , 6] , so all ypi (t)− x
p
i (t)− cos(t)− 1/ρ(t), i ∈ [1, · · · , 6] always remain

negative. Agents 7− 12 are assigned the constraint function ypi (t)− t ≤ 0, i ∈ [7, · · · , 12] ,

and thus all ypi (t)− t− 1/ρ(t), i ∈ [7, · · · , 12] always remain negative.

3.3.5 Experimental Validation

The introduced framework, distributed continuous-time time-varying constrained

optimization, is of great significance in motion coordination. In this section, we apply the

71

Sensing	range

Communication
range

W

Figure 3.14: Multi-robot multi-target navigation problem

cf1

cf2 cf3 cf4

cf5

Figure 3.15: The communication topology between crazyflies.

proposed optimization algorithm (3.27) to a class of the motion coordination problems:

the multi-robot multi-target navigation problem. As shown in Figure 3.14, let us consider

a closed and convex workspace W ∈ R2. Consider the scenario where there are n disk-

shaped robots (blue quadrotors) with center positions xi, i ∈ [1, · · · , n] and radius ri >

0, i ∈ [1, · · · , n] and k moving targets (red triangles) in an unknown space having obstacles

inside. The objective here is to have the robots stay close while simultaneously ensuring

that each independent moving target stays in the detection range of at least one robot.

Assume that the workspace is populated with Q nonintersecting spherical obstacles (black

circles), where the center and radius of the ith obstacle are denoted by oi ∈W and roi > 0,

respectively. Since there are unknown obstacles in the environment, we have to guarantee

no collisions during the tracking process.

72

Figure 3.16: Simulation result with Crazyswarm simulator (a) Initial positions of all the
crazyflies (blue circles) and all the targets (red stars). Subplots (b)-(e) show the trajectories
of all the crazyflies up to time instance 25 s, 50 s, 75 s, 100 s. The positions of all the
crazyflies and all the targets at each time instance are represented by blue circles (crazyflies)
and red stars (targets). (f) The geometric center trajectory of all the crazyflies (blue line)
and the geometric center trajecotry of all the targets (red line).

Figure 3.17: Experimental result with crazyflies (a) Initial positions of all the crazyflies
(blue circles) and all the targets (red stars). Subplots (b)-(e) show the trajectories of all
the crazyflies up to time instance 25 s, 50 s, 75 s, 100 s. The positions of all the crazyflies
and all the targets at each time instance are represented by blue circles (crazyflies) and red
stars (targets). (f) The geometric center trajectory of all the crazyflies (blue line) and the
geometric center trajecotry of all the targets (red line).

73

We define the so-called collision-free local workspace around xi as [27]

LF (xi) = {p ∈W : aj(xi)
T p− bj(xi) ≤ 0, j = 1, · · · , Q}, (3.58)

where

aj(xi) = oj − xi, θj(xi) =
1

2
−

roj
2 − r2

i

2‖oj − xi‖2
,

bj(xi) = (oj − xi)T
[
θjoj + (1− θj)xi + ri

xi − oj
‖xi − oj‖

]
.

(3.59)

In order to have the robots stay close while simultaneously ensuring that each

target stays in the sensing range of at least one robot, one method is to let all the robots

assemble in the geometric center of all the targets with deviation vectors introduced to each

robot. We tackle the navigation task by solving the following optimization problem with

nonlinear inequality constraints,

min
n∑
i

fi = ‖xi − Ti(t)‖22

s.t. xi = xk ∀i, k ∈ V,

aj(xi)
Txi − bj(xi) ≤ 0, ∀i ∈ V, j ∈ [1, · · · , qi],

(3.60)

where Ti(t) is the geometric center of all the moving targets that robot i can sense and qi

is the number of obstacles that robot i can sense. Note that a robot might not be able to

sense all the Q obstacles in the workspace, but it is safe enough to stay in the collision free

area determined by the nearby obstacles. Since aj(xi) and bj(xi) depend on the position

of robot i, the above optimization problem has an implicit dependence on time through

xi. However, it is very hard to directly address the inequality constraints in (3.60) due to

the complexity of aj(xi) and bj(xi) given by (3.59). Therefore here we treat aj(xi) and

bj(xi) as aj(t) and bj(t). Based on (3.28), the corresponding penalized objective function

74

is defined as L̃i = fi(xi, t) − 1
ρ(t)

qi∑
j=1

log{1 − ρ(t)[aj(t)
Txi + bj(t)]}. If the communication

topology between the robots is undirected and connected, problem (3.60) satisfies all the

Assumptions 1 and 6 to 9 in Theorem 28. Therefore, for robots with single-integrator

dynamics defined by (3.1), the proposed constrained optimization algorithm (3.27) can be

applied to reach on agreement at the geometric center of the targets and spread the robots

in a desired formation about this center. Therefore, we introduce an offset vector δi for each

robot i and replace xi in algorithms (3.27) with xi − δi. Here, δi − δj defines the desired

relative position from robot j to robot i in the formation.

Our proposed algorithm is tested in the experiment with five Crazyflie 2.1 quadro-

tors [78] in an indoor environment. The experimental setup is the same as that in Section

3.1.5. The communication topology between the crazyflies is shown in Figure 3.15.

In our experiment, a 5 × 5 m2 area is used to implement the experiment. To

simplify the experiment, we assume that each crazyflie is only assigned one target moving

in the environment. Note that our algorithm still works for multiple targets since we only

care about the geometric center of all the targets that the crazyflie can sense. The obstacles

are located at o1 = [−2.1 m,−0.5 m] and o2 = [1.8 m, 1.6 m] with radius r0
1 = 0.9 m, and

r0
2 = 0.7 m. Each crazyflie is able to sense an obstacle if any point of the obstacle falls into

the circle with the center being the crazyflie position and the radius being 1.0 m. The offset

75

vectors are chosen as

δ1 = [0.2 sin(0.2π) m,−0.2 cos(0.2π) m]T ,

δ2 = [−0.2 sin(0.2π) m,−0.2 cos(0.2π) m]T ,

δ3 = [−0.2 cos(0.1π) m, 0.2 sin(0.1π) m]T ,

δ4 = [0 m, 0.2 m]T ,

δ5 = [0.2 cos(0.1π) m, 0.2 sin(0.1π) m]T .

The initial positions of the five crazyflies are chosen as x1(0) = [−0.4 m, 0.4 m], x2(0) =

[−1.1 m, 0.4 m], x3(0) = [−1.1 m, 1.1 m], x4(0) = [−0.4 m, 1.1 m], and x5(0) = [0.3 m, 1.1 m].

We choose ρ(t) = 125 exp(0.01t) and β = 5. The trajectories of the crazyflies in the

Crazyswarm simulator [78] and in the experiment are, respectively, shown in Figures 3.16

and 3.17. In both figures, the black circles are obstacles and the blue lines are the trajecto-

ries of the crazyflies. Subplots (a)-(e) show the trajectories of all the crazyflies up to time

instances 0 s, 25 s, 50 s, 75 s and 100 s. In addition, five snapshots at 0 s, 25 s, 50 s, 75

s and 100 s denoted by the red stars (targets) and blue circels (crazyflies) are shown in

subplots (a)-(e). It is obvious that all the crazyflies assemble together and avoid obstacles

successfully both in the Crazyswarm simulator and real experiment. Subplot (f) shows the

trajectories of the geometric center of all the crazyflies (blue line) and all the targets (red

line). In the crazywarm simulator, the geometric center of all crazyflies are able to track the

geometric center of all the targets with zero tracking error which are consistent with Theo-

rem 28. In our experimental result, the crazyflies tremble slightly in flight and the geometric

center of all crazyflies are able to track the geometric center of all the targets with small

tracking error (about 0.001 m). It is worthwhile to mention that the trembling phenomena

76

and tracking error in the experiment might stem from the time-delay of communication

with the Vicon system and failure of achieving the velocity commands accurately.

3.4 Distributed Time-Varying Optimization With Both In-

equality and Equality Constraints

3.4.1 Problem Formulation

In this section, we extend the results in Section III.A to take into account both

time-varying nonlinear inequality and linear equality constraints. The goal is to design

ui(t) using only local information and local interaction for the system (3.1), such that all

the agents work together to find the optimal trajectory r∗(t) ∈ Rm defined as

r̄∗(t) = argmin

n∑
i=1

fi[r(t), t],

s.t. gi[r(t), t] � 0qi , Ai(t)r(t) = bi(t), ∀i ∈ V,

(3.61)

where Ai(t) ∈ Rpi×m and bi(t) ∈ Rpi are the local equality constraint functions. It is

assumed that Ai(t) and bi(t) are known only to agent i and are continuously differentiable

with respect to t. Here the goal is that each state xi(t) converges to the optimal solution

r̄∗(t), i.e.,

lim
t→∞

[xi(t)− r̄∗(t)] = 0m (3.62)

We need an additional assumption.

Assumption 10. The number of the equality constraints is less than the dimension of the

agents′ states, i.e. pi < m, and rank(Ai) = pi, for all i ∈ V. And for all t ≥ 0, there exists

at least one r such that Ai(t)r = bi(t) for all i ∈ V.

77

Assumption 10 ensures that the system of equations Ai(t)xi(t) = bi(t) is consistent

and has infinitely many solutions at each t ≥ 0. We assume that the optimal solution r̄∗(t)

in (3.61) is unique for all t ≥ 0. For notational simplicity, we will remove the time index t

from the variables Ai(t) and bi(t) in most remaining parts of this paper and only keep it in

some places when necessary.

3.4.2 Algorithm Design

In this subsection, we derive a distributed control algorithm such that (3.62) holds.

In addition, in the algorithm (3.27), it is required that the upper bounds on auxiliary

variable φi be known in advance such that the control gain β can be chosen to satisfy

(3.38). To remove this restriction, we introduce an adaptive gain design in the algorithm.

We design the following controller for agent i:

ui = −wi(t)[∇2L̂i(xi, t)]
−1
∑
j∈Ni

sgn(xi − xj) + φi, (3.63a)

φi = −[∇2L̂i(xi, t)]
−1

[
∇L̂i(xi, t) +

∂

∂t
∇L̂i(xi, t)

]
, (3.63b)

ṡi(t) =
∑
j∈Ni

sgn(‖xi − xj‖1), (3.63c)

wi(t) = zi(t) + si(t), (3.63d)

żi(t) = −α
∑
j∈Ni

sgn[wi(t)− wj(t)]. (3.63e)

In (3.63a) and (3.63b), wi(t) ∈ R is a dynamic gain, and L̂i(xi, t) is the penalized objective

function of agent i given by

L̂i(xi, t) = fi(xi, t)−
1

ρi(t)

qi∑
j=1

log[σi(t)− gij(xi, t)] +
κi
2
‖Aixi − bi‖22, (3.64)

78

where κi ∈ R>0 is a constant gain. Note that (3.64) includes the local log-barrier penalty

functions and the local quadratic penalty functions to account for, respectively, the inequal-

ity and equality constraints in (3.61). In (3.63c), the gain si(t) ∈ R is adapted according

to the state differences between agent i and its neighbors. The dynamic gain wi(t) is the

output of a distributed average tracking estimator given by (3.63d)) and (3.63e), where

α ∈ R>0 is a constant gain, zi(t) ∈ R is the internal state, and si(t) is the reference signal

associated with agent i. In the next subsection, we will show that the dynamic gain wi(t)

can help all the agents achieve consensus without knowing certain prior information. In

addition, we have

∇L̂i(xi, t) = ∇fi(xi, t) +

qi∑
j=1

∇gij(xi, t)
ρi(t)[σi(t)− gij(xi, t)]

+ κiA
T
i (Aixi − bi), (3.65)

∂

∂t
∇L̂i(xi, t) =

∂

∂t
∇fi(xi, t) +

qi∑
j=1

∂∇gij(xi, t)/∂t
ρi(t)[σi(t)− gij(xi, t)]

−
qi∑
j=1

ρ̇i(t)∇gij(xi, t)
ρ2
i (t)[σi(t)− gij(xi, t)]

−
qi∑
j=1

σ̇i(t)∇gij(xi, t)
ρi(t)[σi(t)− gij(xi, t)]2

+

qi∑
j=1

∇gij(xi, t)∂gij(xi, t)/∂t
ρi(t)[σi(t)− gij(xi, t)]2

+ 2κiA
T
i Ȧixi − κiȦibi − κiAiḃi,

(3.66)

∇2L̂i(xi, t) = ∇2fi(xi, t) +

qi∑
j=1

∇2gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]

+

qi∑
j=1

∇gij(xi, t)∇gij(xi, t)T

ρi(t)[σi(t)− gij(xi, t)]2
+ κiA

T
i Ai,

(3.67)

To make the algorithm (3.63) work, the gain α, and the initial internal states si(0)

and zi(0) need satisfy

α > n, (3.68)

si(0) > 0, ∀i ∈ V, (3.69)

zi(0) = 0, ∀i ∈ V. (3.70)

79

Remark 30. In the algorithm (3.27), it is required that the bounds on the auxiliary vari-

ables φi be known in advance such that the control gain β can be chosen to satisfy (3.38).

However, these bounds might not be obtained or estimated accurately in certain circum-

stances. Therefore, in the algorithm (3.63), adaptive control gains are designed to remove

the need for using the information of these bounds. The tradeoff is that the virtual variable

wi(t) need to be communicated between neighbors to implement the algorithm (3.63).

Remark 31. Algorithm (3.63) is distributed since each agent only needs its own information

and information received from its neighbors. Take agent i as an example. Agent i uses it own

information: xi(t), wi(t), si(t), zi(t), and Hessian and gradient information of its penalized

objective function. It is worthwhile to mention that agent i only needs to know its own

penalty parameters: ρi(t), σi(t) and κi(t). Moreover, agent i needs to know information

received from it neighbors: xj(t) and wj(t), j ∈ Ni. While a common control gain α is

needed for all the agents, α is a constant and only required to be larger than n. Ref. [18]

provides an answer about how to estimate n in a distributed way.

The estimator given by (3.63d) and (3.63e) guarantees that the gains wi(t) for all

agents become uniform after a finite time as shown in the following lemma.

Lemma 32. Suppose that Assumption 5 hold, the gain condition (4.23) and the initial con-

dition (3.70) hold. For the system (3.1) under the controller (3.63), all wi(t) will converge

to 1
n

n∑
j=1

sj(t) in finite time. That is there exists a time T0 such that wi(t) = 1
n

n∑
i=j

sj(t) for

all i ∈ V, and t ≥ T0.

Proof. The proof is evident based on Theorem 1 in [15].

80

In the following, for notational simplicity, we will remove the time index t from

si(t), zi(t), and wi(t) in most remaining parts of this paper and only keep it in some places

when necessary.

3.4.3 Algorithm Analysis

In this subsection, the asymptotical convergence of the system (3.1) under the

controller (3.63) to the vicinity of the optimal solution in (3.61) is established. Note that

in the case where there only exist nonlinear inequality constraints, the algorithm (3.27)

is capable of tracking the optimal solution in (3.24) with a zero tracking error. Since we

use the quadratic penalty functions to account for the equality constraints, the larger the

penalty weight κ, the better the approximation xi to a solution of the original problem

(3.61). We need an additional assumption.

Assumption 11. The time derivatives of the local constraint parameters are bounded. That

is, there exist constants ā and b̄ such that supt∈[0,∞) ‖Ȧi(t)‖2 ≤ ā and supt∈[0,∞) ‖ḃi(t)‖2 ≤ b̄,

for all i ∈ V, and for all t ≥ 0.

In the following, we give the main results on the distributed continuous-time op-

timization with time-varying nonlinear inequality and linear equality constraints.

Theorem 33. Suppose that Assumptions 1, 4, 6 to 9 and 11 hold, the initial conditions

(3.30), (3.69), and (3.70) hold, and the gain conditions (3.29) and (4.23) hold. For the

system (3.1) under the controller (3.63), all the states xi will converge to the vicinity of the

optimal solution r̄∗(t) in (3.61) eventually.

Proof. We first show that (3.64) is always well defined under our proposed algorithm (3.63).

81

The time derivative of ∇L̂i(xi, t) is given by

∇̇L̂i(xi, t) = ∇2L̂i(xi, t)ẋi +
∂

∂t
∇L̂i(xi, t). (3.71)

Substituting the solution of (3.1) with (3.63) into (3.71) leads to

∇̇L̂i(xi, t) = −wi
∑
j∈Ni

sgn(xi − xj)−∇L̂i(xi, t), (3.72)

Then using a similar analysis to that in Lemma 24, we have that each ∇L̂i(xi, t)

must remain bounded for all time and thus each xi is in the set Di = {xi ∈ Rm | gi(xi, t) ≺

σi(t)1qi} for all t ≥ 0. That is, (3.65) is well defined for all t ≥ 0.

Then we show that the agents’ states under the controller (3.63) satisfy the optimal

requirement shown in Lemma 7 eventually. It follows from Assumption 6 that all fi(xi, t) are

strongly convex in xi. Also it follows from Assumption 6 that all gij(xi, t) are convex in xi.

From gain condition (3.29), we know that ρi(t) and σi(t) are always positive. In addition,

from Assumption 10, we know that ATi Ai must be positive semidefinite. Note that κi is

a positive constant. Therefore, from initial condition (3.30) we know that L̂i(xi, t) given

by (3.64) must be continuously differentiable and strongly convex in xi if xi is in the set

Di = {xi ∈ Rm | gi(xi, t) ≺ σi(t)1qi}. The above analysis has indicated that this is indeed

the case. Therefore, each L̂i(xi, t) must be continuously differentiable and strongly convex

in xi based on our algorithm (3.63). Consider the Lyapunov function candidate,

W3 =
1

2

[
n∑
i=1

∇L̂i(xi, t)

]T [n∑
i=1

∇L̂i(xi, t)

]
. (3.73)

Similarly, based on the statements in Remark 23, there is no need to employ the nonsmooth

analysis. Then we have

Ẇ3(t) =

[
n∑
i=1

∇L̂i(xi, t)

]T [n∑
i=1

∇2L̂i(xi, t)ẋi +
∂

∂t
∇L̂i(xi, t)

]
. (3.74)

82

Substituting the solution of (3.1) with (3.63) into (3.74) leads to

Ẇ3(t) =

[
n∑
i=1

∇L̂i(xi, t)

]T (n∑
i=1

∇2L̂i(xi, t)
{

[∇2L̂i(xi, t)]
−1

×wi
∑
j∈Ni

sgn(xj − xi) + φi

+
∂

∂t
∇L̂i(xi, t)

 .

Notice that Assumption 5, the initial condition (3.70), and the gain condition (4.23) hold,

it follows from Lemma 32 that wi = wj , for all i, j ∈ V and for all t ≥ T0. Since the network

is undirected (Assumption 5), we have
n∑
i=1

wi
∑
j∈Ni

sgn(xj − xi) = 0m for all t ≥ T0. Then

for all t ≥ T0, we have

Ẇ3(t) =

[
n∑
i=1

∇L̂i(xi, t)

]T [
−

n∑
i=1

∇L̂i(xi, t)

]
= −2W3(t),

indicating that W3(t) = e−2(t−T0)W3(T0) for all t ≥ T0. The time derivative of ∇L̂i(xi, t) is

given by (3.71). It follows that each ∇L̂i(xi, t) is bounded at all time. Therefore, W3(T0) is

bounded. Then it can be concluded that W3(t) exponentially converges to zero, and thus∑n
i=1∇L̂i(xi, t) exponentially converges to 0m.

Next, we show that all xi remain bounded under the algorithm (3.63). Based on

(3.63c)-(3.63e), the time derivative of wi is given by

ẇi = żi + ṡi

= −α
∑
j∈Ni

sgn(wi − wj) +
∑
j∈Ni

sgn(‖xi − xj‖1).

It follows that ẇmin must be non-negative, where wmin is defined as min
i
wi. The reason is

that sgn(wmin −wj) must be non-positive. Note that wi(0) = zi(0) + si(0). It follows from

(3.69) and (3.70) that wi(0) > 0, ∀i ∈ V, which in turn guarantees that wmin and thus all

wi are positive for all t ≥ 0. Then similar to the proof in Lemma 27, we have that all xi

83

remain bounded for all t ≥ 0. Given the above results and Assumption 11, using similar

analysis to that in Lemma 27, it is easy to prove that each φi(t) is bounded for all the time.

Next, we show that all the agents reach a consensus in finite time. Consider any

edge (i, j) ∈ E . Let 0 < tij11 < tij12 < tij21 < tij22 < · · · denote the contiguous switching

times such that xi 6= xj during the time interval [tijk1, t
ij
k2] and xi = xj during the time

interval [tijk2, t
ij
k+1,1), k = 1, 2, · · · . From the dynamics of si in (3.63c), it is easy to see that

si(∞) =
∑
j∈Ni

∞∑
k=1

(tijk2−t
ij
k1)+si(0). It follows from Lemma 32 that wi(t) = wj(t) = 1

n

n∑
k=1

sk(t)

for all i, j ∈ V and for all t ≥ T0. If for all edges,
∞∑
k=1

(tijk2 − t
ij
k1) < ∞, ∀(i, j) ∈ E , it is

clear that tijk2 − tijk1 → 0 as k → ∞. Since the graph is connected (Assumption 1), it

follows that consensus can be achieved eventually. If there exists an edge (i, j) such that

∞∑
k=1

(tijk2 − t
ij
k1) = ∞, then we have si(∞) = ∞ and wi(∞) = wj(∞) = ∞ for all i, j ∈ V.

Then there must exist a time T1 > T0 such that wi(T1) = wj(T1) > 2φ̄mn2|E|
mini∈V{λmin[(∇2L̂i)−1]}

for

all i, j ∈ V and all t ≥ T1. Then similar to the proof of Lemma 26, we have that all agents

reach a consensus in finite time, i.e., there exists a time T2 such that ‖xi(t) − xj(t)‖2 = 0

for all t > T2.

Now, we show that all the agents with the system (3.1) under the controller (3.63)

converge to the vicinity of the optimal solution r̄∗(t) in (3.61). Define

r̃∗(t) ∈ Rm = argmin

n∑
i=1

L̂i[r(t), t],

where L̂i[r(t), t] is each agent’s penalized objective function defined by (3.64). Summarizing

the above analysis and similar to the analysis in Theorem 28, it follows from Lemma 7 that

all xi converge to the optimal solution r̃∗(t), i.e., lim
t→∞

xi(t) = r̃∗(t), ∀i ∈ V.

84

Define

r̂∗(t) ∈ Rm = argmin
n∑
i=1

fi[r(t), t] +
κi
2
‖Air(t)− bi‖22

s.t. gij [r(t), t] ≤ σi(t), ∀i ∈ V, j = 1, · · · , qi.

Similar to the analysis in Theorem 28, we know that∣∣∣∣∣
n∑
i=1

{
fi[r̂

∗(t), t] +
κi
2
‖Air̂∗(t)− bi‖22

}
−

n∑
i=1

{
fi[r̃

∗(t), t] +
κi
2
‖Air̃∗(t)− bi‖22

}∣∣∣∣∣
≤

n∑
j=1

qj∑
k=1

ρ−1
j (t).

Define

¯̄r(t)∗ ∈ Rm = argmin

n∑
i=1

fi[r(t), t] +
κi
2
‖Air(t)− bi‖22

s.t. gij(xi, t) ≤ 0, ∀i ∈ V, j = 1, · · · , qi.

(3.75)

Then based on [13] (Sec. 5.9), we have∣∣∣∣∣
n∑
i=1

{
fi[r̂

∗(t), t] +
κi
2
‖Air̂∗(t)− bi‖22

}
−

n∑
i=1

{
fi[¯̄r

∗(t), t] +
κi
2
‖Ai ¯̄r∗(t)− bi‖22

}∣∣∣∣∣
≤

n∑
j=1

qj∑
k=1

λ∗jk(t)σj(t),

where λjk(t) are the Lagrangian multipliers corresponding to the inequality constraint

defined in (3.75), and λ∗jk(t) are the optimal Lagrangian multipliers. Hence, because

limt→∞ ρi(t) =∞ and limt→∞ σi(t) = 0 for all i ∈ V, we have

lim
t→∞

∣∣∣∣∣
n∑
i=1

{
fi[¯̄r

∗(t), t] +
κi
2
‖Ai ¯̄r∗(t)− bi‖22

}
−

n∑
i=1

{
fi[r̃

∗(t), t] +
κi
2
‖Air̃∗(t)− bi‖22

}∣∣∣∣∣ = 0,

which indicates that lim
t→∞

xi(t) = ¯̄r∗(t), ∀i ∈ V. Then based on the standard quadratic

penalty theory [13], ¯̄r∗(t) is in the neighborhood of the optimal solution r̄∗(t) ∈ Rm in

(3.61). The conclusion of the theorem then follows by combining the above statements.

85

0 2 4 6 8 10 12
-10

0

10

20

(a)

0 2 4 6 8 10 12

-10

0

10

(b)

Figure 3.18: State trajectories of all the agents with the system (3.1) under the controller
(3.63). The red dashed line is the optimal solution and the other solid lines are the trajec-
tories of all agents’ states.

0 5 10 15
-16

-14

-12

-10

-8

-6

-4

-2

0

(a)

0 5 10 15
-25

-20

-15

-10

-5

0

5

(b)

Figure 3.19: Plots of the constraint results with the system (3.1) under the controller (3.63).

3.4.4 Simulations

We then show the simulation result using the algorithm (3.63). Assume that

agent j is assigned a constraint function ypj (t)−x
p
j (t)− cos(t) ≤ 0, for all j ∈ [1, · · · , 6], and

agent k is assigned a constraint function ypk(t) + xpk(t) − t − 3 = 0, for all k ∈ [7, · · · , 12].

The initial states xpi (0), i ∈ V are generated randomly from the range [−10, 0], ypi (0) =

xpi (0) − 2, ∀i ∈ V. Therefore, the initial condition (3.30) is satisfied. We choose κ =

12, α = 15, ρ(t) = 10 exp(0.05t), and zi(0) = 0, si(0) = 5 for all i ∈ V. Therefore, the

initial conditions (3.69) and (3.70) and the gain conditions (3.29) and (4.23) are satisfied.

86

The state trajectories of the agents are shown in Figure 3.18. We can see that all the

agents converge to the vicinity of the optimal trajectory eventually which is consistent with

Theorem 33. The constraint results are shown in Figure 3.19. In our simulation, agents

1 − 6 are assigned the constraint function ypi (t) − x
p
i (t) − cos(t) ≤ 0, i ∈ [1, · · · , 6], and

thus all ypi (t) − x
p
i (t) − cos(t) − 1/ρ(t), i ∈ [1, · · · , 6] always remain negative. Moreover,

all the equality constraint functions ypi (t) + xpi (t) − t − 3, i ∈ [7, · · · , 12] converge to the

neighborhood of the zero line eventually.

3.5 Conclusions

In this Chapter, we have studied the distributed continuous-time constrained opti-

mization problem with time-varying objective functions and time-varying constraints. The

goal is for a set of networked agents to cooperatively track the time-varying optimal solution

that minimizes the summation of all the local time-varying objective functions subject to

all the local time-varying constraints, where each agent has only local information and local

interaction. We have proposed distributed sliding-mode algorithms built on the Hessian-

based optimization methodology. We have shown that asymptotical convergence to the

optimal solution or its vicinity is guaranteed under some reasonable assumptions. Both

numerical simulation results and experimental results are given to illustrate the theoretical

algorithm.

87

Chapter 4

Distributed Average Tracking in

Weight-Unbanlaced Networks

In this Chapter, we study distributed time-varying optimization under possibly

weight-unbalanced directed networks—the most general and thus most challenging case from

the network topology perspective. Particularly, we aim to seek distributed time-varying op-

timization algorithms for quadratic objective functions under unbalanced graphs, which is

equivalent to distributed average tracking problem. In distributed average tracking prob-

lem, a collection of agents work collaboratively, subject to local communication, to track

the average of a set of reference signals, each of which is available to a single agent. For this

purpose, we propose a distributed algorithm based on a chain of two integrators which are

coupled with a distributed estimator. It is found that the convergence depends on not only

the network topology but also the deviations among the reference signal accelerations. An-

other primary interest of this note stems from the dynamics perspective—a point perceived

88

as a main source of control design difficulty for multi-agent systems. Indeed, we devise a

nonlinear algorithm which is capable of achieving distributed average tracking under weight-

unbalanced directed networks for agents subject to high-order integrator dynamics. The

results show that the convergence to the vicinity of the average of the reference signals is

guaranteed as long as the signals’ states and control inputs are all bounded. Both algo-

rithms are robust to initialization errors, i.e., distributed average tracking is insured even

if the agents are not correctly initialized, enabling the potential applications in a wider

spectrum of application domains.

4.1 Preliminary

In this section, we show the connection of distributed average tracking with dis-

tributed time-varying optimization. For the distributed time-varying optimization problem

given by (3.3), consider quadratic objective functions, i.e.,

fi[xi(t), t] = [xi(t)− ri(t)]2, (4.1)

where ri(t) ∈ Rm is a private time-varying signal of agent i. The gradient of the quadratic

objective function in (4.1) is ∇fi[xi(t), t] = 2[xi(t) − ri(t)]. Then it follows from Lemma

7 that the optimal solution of problem (3.3) with quadratic objective function in (4.1) is

given by

x∗(t) = xi(t) = xj(t),∀i, j ∈ V,
n∑
i=1

2[x∗(t)− ri(t)] = 0m.

(4.2)

Then we have x∗(t) = xi(t) = xj(t) = 1
n

∑n
i=1 ri(t). It is obvious that the optimal solution

is the average of all the signals. Here, we call this problem distributed average tracking.

89

4.2 Distributed Average Tracking For Single-Integrator Dy-

namics

4.2.1 Problem Formulation

In this section, the distributed average tracking problem for multi-agent systems

with single-integrator dynamics over weight-unbalanced directed graphs is studied. Consider

a multi-agent system consisting of n agents with an interaction topology described by a

weighted directed graph G.

Assumption 12. The directed graph G is time invariant and strongly connected 1.

Suppose that the agents follow the single-integrator dynamics in (3.1). Each agent

has a time-varying reference signal ri(t) ∈ Rm, i = 1, ..., n, satisfying

ṙi(t) = vri (t), v̇ri (t) = ari (t), (4.3)

where vri (t) ∈ Rm and ari (t) ∈ Rm are, respectively, the velocity and acceleration of the ith

reference signal. For example, the reference signal ri might be the position, sensed by the

ith camera, of a mobile target of interest.

Our main objective is to design a distributed algorithm for agent i ∈ V based

on ri(t), v
r
i (t), a

r
i (t), xi(t) and xj(t), j ∈ Ni, such that it tracks the average of all the

time-varying reference signals, i.e.,

lim
t→∞

∥∥∥∥∥∥xi(t)− (1/n)

n∑
j=1

rj(t)

∥∥∥∥∥∥
2

= 0. (4.4)

1Note that there is no requirement that G be weight-balanced.

90

We call a distributed average tracking algorithm robust to initialization errors if the objec-

tive (4.4) can be achieved regardless of the agents’ initial states. For notational simplicity,

we will remove the time index t from variables in the reminder of the section.

4.2.2 Algorithm Design

We propose the following algorithm:

ui = −κ(xi − ri)− κzii
∑
j∈Ni

aij(xi − xj) + vri − w1i,

ẇ1i = κ2zii
∑
j∈Ni

aij(xi − xj)− zii
∑
j∈Ni

aij(w2i − w2j),

ẇ2i = w1i − κri − vri , żi = −
∑
j∈Ni

aij(zi − zj),

(4.5)

where κ ∈ R>0 is a positive control gain, zi ∈ Rn is agent i’s estimate of the left eigenvector

corresponding to the zero eigenvalue of the Laplacian matrix, zii is the ith component of

zi, w1i ∈ Rm and w2i ∈ Rm are the internal states of a chain of two integrators, and aij is

the (i, j)th entry of the adjacency matrix. We initialize the internal states w1i, w2i, and the

estimators zi to satisfy the following conditions:

n∑
i=1

w1i(0) = 0m, zij(0) = 0, ∀i 6= j, zii(0) = 1, ∀i ∈ V. (4.6)

We note that each component of xi is decoupled in (4.5). Therefore, in the following, we

will only tackle the one-dimensional case, i.e., m = 1. The same conclusion holds for any

m ≥ 2 by using the Kronecker product. Substituting (4.5) into (3.1) leads to a vector form

91

as

ẋ = −κ(x− r)− κZnLx+ vr − w1,

ẇ1 = κ2ZnLx− ZnLw2,

ẇ2 = w1 − κr − vr, ż = −(L ⊗ In)z,

(4.7)

where r = [r1, ..., rn]T ∈ Rn, vr = [vr1, ..., v
r
n]T ∈ Rn, x = [x1, ..., xn]T ∈ Rn, w1 =

[w11, ..., w1n]T ∈ Rn, w2 = [w21, ..., w2n]T ∈ Rn, z = [zT1 , ..., z
T
n]T ∈ Rn2

and Zn =

diag([z11, z22, ..., znn]) ∈ Rn×n.

Lemma 34. If Assumption 12 holds and z(0) satisfies (4.6), then lim
t→∞

Zn → P , where P

is defined in Lemma 2.

Proof. We know that z = exp [(−L⊗ In)t]z(0). By Lemma 2, it can be obtained that

lim
t→∞

z = exp (1np
T ⊗ In)z(0) = 1n ⊗ p if z(0) satisfies (4.6), yielding lim

t→∞
Zn → P .

Remark 35. Compared with [83] which requires the network be undirected, the algorithm

(4.5) can work for generic directed networks. Due to Lemma 34, we know that Zn is utilized

to estimate the matrix P . It follows from 1TnPL = 0Tn that PL is equivalent to the Laplacian

matrix of a balanced directed graph [63].

Remark 36. In the proposed algorithm (4.5), a chain of two integrators with the internal

states w1i and w2i are introduced to make (4.5) work for more general reference signals, the

term −κ(xi−ri) is introduced to achieve sum tracking, i.e., limt→∞ ‖
∑n

i=1 xi−
∑n

i=1 ri‖2 =

0, and the term −κzii
∑

j∈Ni aij(xi−xj) is introduced to achieve consensus with the aid of the

chain of two integrators w1i and w2i. The distributed estimator given by the last equation in

(4.5) is used by agent i to estimate the left eigenvector, corresponding to the zero eigenvalue,

of the Laplacian matrix.

92

Remark 37. In the proposed algorithm (4.5), only correct initializations of internal states

w1i(0) and zi(0) are needed, and correct initializations of agents’ states xi(0) and w2i(0)

are not required, which makes the algorithm robust to the state initialization errors. Note

that the initialization condition (4.6) can be easily satisfied, e.g., to satisfy
n∑
i=1

w1i(0) = 0,

we can choose w1i = 0, ∀i = 1, ..., n.

4.2.3 Algorithm Analysis

The main assumption and result of this section are stated in the following theorem.

Assumption 13. The deviations among the accelerations of the references all tend to zero,

i.e., limt→∞(ari − arj) = 0, i 6= j.

Theorem 38. Using (4.5) for (3.1), if Assumptions 12 and 13 and the initial condition

(4.6) hold, and κ� 1, then lim
t→∞

∥∥∥xi − 1
n

∑n
j=1 rj

∥∥∥
2

= 0 for all i = 1, ..., n.

Proof. Define x̃ = x − 1
n1n1

T
nr, w̃1 = w1 − κΩr − Ωvr, w̃2 = ZnLw2 + κΩvr + Ωar, and

Y = [x̃T , w̃T1 , w̃
T
2]T where Ω = In − 1

n1n1
T
n . It can be verified that Lx̃ = Lx and LΩ = L.

The first three equations in (4.7) can be rewritten in terms of Y as

Ẏ = f(Y) + g(Y) + h, (4.8)

where

f(Y) =

−κx̃− κPLx̃− w̃1

κ2PLx̃− w̃2

PLw̃1

 , g(Y) =

κ(P − Zn)Lx̃

κ2(Zn − P)Lx̃

(Zn − P)Lw̃1

 , h =

0

0

κΩar + Ωȧr

 .

Based on Assumption 13, we know that h will approach zero as time goes to infinity.

Therefore, by taking h in (4.8) as the system input, we first analyze the stability and

93

convergence properties of the unforced system, i.e.,

Ẏ = f(Y) + g(Y), (4.9)

Due to Lemma 34, we know that as t→∞, Zn − P tends to zero, so by Corollary 9.1 and

Lemma 9.5 in [48] the convergence of (4.9) can be analyzed via Ẏ = f(Y) only, i.e.,
˙̃x

˙̃w1

˙̃w2

 = Ã

x̃

w̃1

w̃2

 , (4.10)

where

Ã =

−κ− κPL −In 0̄n

κ2PL 0̄n −In

0̄n PL 0̄n

 .

In the following, we show that the dynamical system (4.10) is stable and convergent by

studying the dynamics of two related systems. Define T1 =

[
q1 QT

]T
, where q1 = 1√

n
1n,

Qq1 = 0n−1 and QQT = In−1. It follows that T1PLT T1 =

 0 0Tn−1

0n−1 Λ

, where Λ is an

upper triangular matrix whose diagonal entries are the nonzero eigenvalues of PL. Thus

x̂ =
[
x̂1 x̂T2:n

]T
= T1x̃, ŵ1 =

[
ŵ11 ŵT12:1n

]T
= T1w̃1 and ŵ2 =

[
ŵ21 ŵT22:2n

]T
= T1w̃2,

where x̂1, ŵ11 and ŵ21 ∈ R. We can rewrite (4.10) as
˙̂x1

˙̂w11

˙̂w21

 = A
¯

x̂1

ŵ11

ŵ21

 ,

˙̂x2:n

˙̂w12:1n

˙̂w22:2n

 = Â

x̂2:n

ŵ12:1n

ŵ22:2n

 , (4.11)

94

where

A
¯

= −

κ 1 0

0 0 1

0 0 0

 , Â =

−κ− κΛ −In−1 0̄n−1

κ2Λ 0̄n−1 −In−1

0̄n−1 Λ 0̄n−1

 .

The matrix A
¯

has two eigenvalues 0 (with multiplicity 2) and −κ. Define

T2 =

In−1 0̄n−1 0̄n−1

κIn−1 In−1 0̄n−1

0̄n−1 0̄n−1 In−1

 ,

such that [x̄T , w̄T1 , w̄
T
2]T = T2[x̂T2:n, ŵ

T
12:1n, ŵ

T
22:2n]T . It follows from Eq. (4.11) that

˙̄x

˙̄w1

˙̄w2

 = Ā

x̄

w̄1

w̄2

 , (4.12)

where

Ā =

−κΛ −In−1 0̄n−1

0̄n−1 −κIn−1 −In−1

−κΛ Λ 0̄n−1

 .

The determinant det(λIn−1 − Ā) is given by

det

λIn−1 + κΛ In−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 In−1

κΛ −Λ λIn−1

 = det

λIn−1 + κΛ In−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 In−1

0̄n−1 0̄n−1 Γ

 ,
(4.13)

where Γ = λIn−1 + (λIn−1 + κIn−1)−1[Λ + κ(λIn−1 + κΛ)−1Λ]. Noting that the inverse of

an upper triangular matrix is also an upper triangular matrix, and the multiplication of

95

two upper triangular matrices is also an upper triangular matrix, it follows that Γ is an

upper triangular matrix. Define Ξ ∈ Rn−1×n−1 where Ξi,i = Λi,i for all i = 1, 2, ..., n − 1

and Ξi,j = 0 for all i 6= j. We have

det

λIn−1 + κΛ In−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 In−1

0̄n−1 0̄n−1 Γ

 = det

λIn−1 + κΞ 0̄n−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 0̄n−1

0̄n−1 0̄n−1 Γ̃

 ,
(4.14)

where Γ̃ = λIn−1 + (λIn−1 + κIn−1)−1[Ξ + κ(λIn−1 + κΞ)−1Ξ]. The eigenvalues λ of Ā can

be obtained by calculating the following equations,

λ3 + κλ2 + κΞiiλ
2 + κ2Ξiiλ+ Ξiiλ+ κΞ2

ii + κΞii = 0, i = 1, .., n− 1. (4.15)

To solve Eq. (4.15), we consider the corresponding perturbed cubic equation:

λ3 +

(
κ+ κΞii +

1

κ
− ε
)
λ2 +

(
κ2Ξii + Ξii + 1− κε

)
λ+ κΞ2

ii + κ2Ξiiε = 0, i = 1, .., n− 1.

(4.16)

With ε beging the perturbation parameter, it is worth noting that when ε = 1
κ , the per-

turbed cubic equation (4.16) reduces to (4.15). It follows from κ � 1 that (1/κ) � 1.

Based on perturbation theory [38], the eigenvalues λ are given by λ = λ0 + ελ1 + O(ε) =

λ0 + 1
κλ1 +O(ε), where λ0 is the solution of the following equations

(
λ+

1

κ

)
(λ+ κ) (λ+ κΞii) = 0, i = 1, .., n− 1, (4.17)

and λ1 =
λ20+κλ0−κ2Ξ2

ii

λ20+2λ0+2Ξiiκ+2κ+2/κ+Ξiiκ2+Ξii+1
, i = 1, ..., n − 1, with O(ε) being the higher

order term.

96

It follows from Eq. (4.17) that for each i = 1, · · · , n− 1, λ0 = −1/κ,−κ,−κΞii, along with

λ1 =

(1/κ)2−1−κ2Ξ2
ii

(1/κ)2+2Ξiiκ+2κ+Ξiiκ2+Ξii+1
if λ0 = − 1

κ ,

−κ2Ξ2
ii

(κ)2+2Ξiiκ+2/κ+Ξiiκ2+Ξii+1
if λ0 = −κ,

−κ2Ξii
(κΞii)

2+2κ+2/κ+Ξiiκ2+Ξii+1
if λ0 = −κΞii.

(4.18)

Recall that the nonzero eigenvalues of PL all have positive real parts, therefore λ0 and λ1 all

have negative real parts, which indicates that the eigenvalues λ of (4.15) all have negative

real parts. Hence the dynamical system (4.12) is exponentially stable. Noting that T1 and

T2 are all nonsingular matrices, the dynamical system (4.10) must be exponentially stable.

The null space of the system matrix Ã of (4.10) is spanned by [1Tn ,−κ1Tn ,0
T
n]T , the

eigenvector associated with the zero eigenvalue. Therefore, (4.10) converges exponentially

fast to the set {(x̃, w̃1, w̃2) | x̃ = a1n, w̃1 = −aκ1n, w̃2 = 0n, a ∈ R}. According to the

definition of w̃1, we know that 1Tn w̃1 = 1Tnw1. It follows from 1Tn
(
κ2PLx− PLw2

)
= 0

that 1Tn ẇ1 = 0, leading to 1Tn w̃1 = 1Tnw1 = 1Tnw1(0) = 0. Therefore, if (4.6) holds, system

(4.10) converges exponentially to the set {(x̃, w̃1, w̃2) | x̃ = 0n, w̃1 = 0n, w̃2 = 0n}. Based on

Corollary 9.1 and Lemma 9.5 in [48], the perturbed system (4.9) is exponentially stable with

respect to the equilibrium point. Therefore, under Assumption 13, Y in (4.8) asymptotically

converges to 03n.

In practice, the reference signals may not always satisfy Assumption 13. A more

realistic assumption is to require the deviations among the reference signal accelerations be

bounded, which is formally stated in the following.

Assumption 14. The deviations among the accelerations of the reference signals are bounded,

i.e., there exists ār ∈ R>0 such that supt∈[0,∞)(a
r
i − arj) = ār, ∀i ∈ V, j ∈ V, i 6= j.

97

1 2 3

456

1

0.8

1.5
0.6

1
0.8

1.2

1

Figure 4.1: A weight-unbalanced directed communication topology.

Theorem 39. Using (4.5) for (3.1), if Assumption 14 and the internal state’s initial con-

ditions (4.6) hold, and κ� 1, then sup
t∈[0,∞)

∥∥∥xi − 1
n

n∑
j=1

rj

∥∥∥
2

is bounded for all i = 1, ..., n.

Proof. Because of the boundedness of h, system (4.8) is input-to-state stable by Lemma 4.6

given in [48]. If Assumption 14 holds, it follows from Definition 4.7 in [48] that the whole

tracking error is upper bounded by lim
t→∞

sup ‖x̃(t)‖2 ≤ lim
t→∞

sup ‖Y (t)‖2 ≤ εār, where ε is a

positive constant.

4.2.4 Simulations

In this section, the proposed distributed average tracking algorithms are applied in

the leader follower containment control problem (see Example: distributed formation control

revisited in [51]) to reach on agreement at the geometric center of some leader robots so that

the containment can be achieved by spreading the follower agents in a desired formation

about this center. This kind of distributed containment control is particularly useful in

some practical applications, such as cooperative protection of a group of robots through

a polluted region. Therefore, we introduce an offset vector δi for each follower robot i

and replace xi in algorithm (4.5) with xi − δi. Here, δi − δj defines the desired relative

position from robot j to robot i in the formation. We consider n = 6, and use the weight-

98

unbalanced directed graph in Figure 4.1 as the network topology. In this case, we implement

the algorithm (4.5) to illustrate Theorem 38. Here the state of follower robot i is denoted

by xi = [xpi , y
p
i]
T , where (xpi , y

p
i) is the X-Y coordinates of follower robot i. We choose the

following offset vectors: δ1 = [2, 3.5]T , δ2 = [0, 3.5]T , δ3 = [−2, 3.5]T , δ4 = [2,−3.5]T , δ5 =

[0,−3.5]T , δ6 = [−2,−3.5]T . Each follower robot i has a corresponding leader robot whose

state is the reference signal ri = [rxi , r
y
i]T , where (rxi , r

y
i) is the X-Y coordinates of leader

robot i. The initial positions of the follower robots and leader robots are chosen randomly,

and the initial velocities of the leader robots are all chosen as vri (0) = [1, 0]T . We choose

the control gain κ as 15. We assume that leader robot i is operating in the environment

with trajectories satisfying r̈xi = 0 and r̈yi = sin(t) + 0.03e−0.8ti sin(t).

-5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

20

25

Figure 4.2: State trajectories of all the robots for the case in Section 4.2.4

The simulation results are shown in Figures 4.2-4.4. In particular, Figure 4.2 show

the X-Y coordinates of all the robots, where the blue solid lines denote the positions of

the follower robots and the black dashed lines denote the positions of the leader robots.

Two snapshots at 10 s and 20s, denoted by the blue stars (follower robots) and red squares

(leader robots) in Figure 4.2, show that all followers follow the group of all the leader robots

99

in a containment fashion in both cases. Figure 4.3 (respectively, Figure 4.4) shows the state

trajectories of all the follower robots without the offsets and the geometric center of all the

leader robots in X-coordinate (respectively, in Y-coordinate). We can see that the follower

robots track the geometric center of all leader robots eventually, which are consistent with

Theorem 38.

0 2 4 6 8 10 12 14 16 18 20

Time(s)

-5

0

5

10

15

20

x
p

1
x

p

2
x

p

3

x
p

4
x

p

5
x

p

6

r
x

Avg

Figure 4.3: State trajectories of all the follower robots without the offsets and the geometric
center of all the leader robots in X-coordinate for the case in Section 4.2.4

0 2 4 6 8 10 12 14 16 18 20

Time(s)

-20

-15

-10

-5

0

5

10

15

20

25

y
p

1
y

p

2
y

p

3

y
p

4
y

p

5
y

p

6

r
y

Avg

Figure 4.4: State trajectories of all the follower robots without the offsets and the geometric
center of all the leader robots in Y-coordinate for the case in Section 4.2.4

100

4.3 Distributed Average Tracking For High-Order Integrator

Dynamics

4.3.1 Problem Formulation

In this section, the distributed average tracking problem for multi-agent systems

with high-order integrator dynamics over weight-unbalanced directed graphs is studied. In

some applications, it might be more realistic to model the dynamics of the agents with high-

order integrators. Unlike single-integrator dynamics, in the case of high-order integrator

dynamics, the agents’ system inputs might have a different dimension from that of the

agents’ state. Consider a network of n agents whose states are governed by

ẋi(t) = Axi(t) +Bui(t), (4.19)

where xi(t) ∈ Rm, ui(t) ∈ R are the system state and control input of the ith agent,2

A ∈ Rm×m is the state matrix, and B ∈ Rm×1 is the input matrix. Here A and B are

defined as

A =

 0m−1 Im−1

0 0Tm−1

 , B =

 0m−1

1

 .
Each agent has a time-varying reference signal ri(t) ∈ Rm given by

ṙi(t) = Ari(t) +Buri (t), (4.20)

where ri(t) ∈ Rm, uri (t) ∈ R is the state and control input of the ith time-varying reference

signal. The input uri (t) can be properly designed such that (4.20) can generate a general

time-varying reference signal ri(t). The following standard assumption is made:

2Note that the dimensions of the control input ui in Secs. III and IV are different.

101

Assumption 15. The reference signals are bounded, and their control inputs are bounded,

i.e., there exist r̄ > 0 and ūr > 0 such that supt∈[0,∞) ‖ri(t)‖2 ≤ r̄ and supt∈[0,∞) ‖uri (t)‖2 ≤

ūr, for all i ∈ V.

Again, for notational simplicity, we will remove the time index t from variables in

the reminder of this section and only keep it in some places when necessary.

4.3.2 Algorithm Design

We study the following control algorithm

ui = uri +K1(xi − ri)− βh̃

zii ∑
j∈Ni

aijK2(xi − xj)

 ,
żi = −

∑
j∈Ni

aij(zi − zj),

(4.21)

where zi ∈ Rn is agent i’s estimate of the left eigenvector corresponding to the zero

eigenvalue of the Laplacian matrix, zii is the ith element in vector zi, aij is the (i, j)th

element of the adjacency matrix A, and h̃(·) is a function defined component-wise as

h̃ (s) =

s
|s| if |s| ≥ ε,

s
ε otherwise,

where ε ∈ R>0 is a small positive constant. In addition,

K1 , −(K2A+K2) ∈ R1×m,

K2 , [C0
m−1, C

1
m−1, · · · , Cm−1

m−1] ∈ R1×m,

(4.22)

where Ckm−1 = (m−1)!
(m−1−k)!k! , k ∈ [0,m− 1], and β is a control gain satisfying

β >
2n

5
2σmax(PL)[ūr + σmax(K1)r̄]

λ2(L̄)
, (4.23)

where L̄ and P are defined in Lemma 2. We initialize the estimators zi, i ∈ V, to satisfy the

last two equations in (4.6). Define z ∈ Rn2
= [zT1 , · · · , zTn]T , Zn = diag([z11, z22, · · · , znn]) ∈

102

Rn×n, x ,
[
xT1 , · · · , xTn

]T ∈ Rnm, u , [u1, · · · , un]T ∈ Rn, r , [rT1 , · · · , rTn]T ∈ Rnm and

ur , [ur1, · · · , urn]T ∈ Rn. Then the closed-loop system (4.19) can be written in a vector

form as

ẋ = (In ⊗A)x+ (In ⊗B){ur + (In ⊗K1)(x− r)− βh̃[(ZnL ⊗K2)x]},

ż = −(L ⊗ In)z.

(4.24)

Remark 40. For the high-order integrator case in Section IV, we only tackle the one-

dimension case (i.e., xi ∈ Rm and ui ∈ R for m-order integrators), since each dimension

of the high-order integrators is decoupled. Please note that our alrogithm can be easily

extended to multi-dimension high-order integrator cases (i.e., xi ∈ Rmq and ui ∈ Rq for

m-order integrators) by using the Kronecker product.

Remark 41. In the proposed algorithm (4.21), the term K1(xi−ri) is introduced to achieve

sum tracking (i.e., limt→∞ ‖
∑n

i=1 xi(t)−
∑n

i=1 ri(t)‖2 = 0) with the help of the distributed

estimator zi, and the term −βh̃
[
zii
∑

j∈Ni aijK2(xi − xj)
]

is introduced to guarantee con-

sensus.

4.3.3 Algorithm Analysis

This subsection establishes the convergence properties of the system (4.19) under

the controller (4.21).

Lemma 42. For any strongly connected directed graph G of order n, let (PL)+ ∈ Rn×n

be the generalized inverse of PL with P and L being defined in Section II.B, we have

(PL)+(PL) = In − 1
n1n1

T
n .

Proof. Note that 1TnPL = 0Tn and PL1n = 0n, i.e., PL can be viewed as the Laplacian

103

matrix of a weight-balanced directed graph. Consequently, the proof follows directly from

the proof of Lemma 3 in [33].

Lemma 43. Let Assumption 12 hold. Using (4.21) for (4.19), if ‖(PL ⊗ K2)x(t)‖1 is

bounded for all t ≥ 0 and

lim
t→∞

sup ‖(PL ⊗K2)x(t)‖1 ≤ b̄, (4.25)

where b̄ is an arbitrary positive constant, then lim
t→∞

sup ‖(Ω⊗ Im)x(t)‖1 ≤ ‖(PL)+⊗

Im‖12m−1b̄
∑m

i=1 i!
(∏i−1

j=0C
bj/2c
j

)
, where Ω = In − 1

n1n1
T
n , and (PL)+ is the generalized

inverse of PL.

Proof. Define X = [x1, · · · , xn] ∈ Rm×n, where xi ∈ Rm, i ∈ [1, n], is defined in (4.19).

Define Xi ∈ R1×n as the ith row of X. It follows from Proposition 1 and (4.22) that

(PL ⊗K2)x = (PL ⊗K2)vec(X) = vec[K2X(PL)T]

=vec[(C0
m−1X1 + · · ·+ Cm−1

m−1Xm)(PL)T]

=C0
m−1vec[X1(PL)T] + · · ·+ Cm−1

m−1vec[Xm(PL)T]

=C0
m−1X̃1 + · · ·+ Cm−1

m−1X̃m,

(4.26)

where X̃i = vec[Xi(PL)T]. For ` ∈ [0,m− 1], define

s` = C0
m−`−1X̃1 + C1

m−`−1X̃2 + · · ·+ Cm−`−1
m−`−1X̃m−`, (4.27)

and thus

ṡ` = C0
m−`−1

˙̃X1 + C1
m−`−1

˙̃X2 + · · ·+ Cm−`−1
m−`−1

˙̃Xm−`.

104

By (4.19), we have ˙̃Xk = X̃k+1 for k ∈ [1,m− 1]. It follows that for ` ∈ [1,m− 1],

s` + ṡ` = C0
m−`−1X̃1 + C1

m−`−1X̃2 + · · ·+ Cm−`−1
m−`−1X̃m−` + C0

m−`−1
˙̃X1 + C1

m−`−1
˙̃X2

+ · · ·+ Cm−`−1
m−`−1

˙̃Xm−`

= C0
m−`−1X̃1 + C1

m−`−1X̃2 + · · ·+ Cm−`−1
m−`−1X̃m−` + C0

m−`−1X̃2 + C1
m−`−1X̃3

+ · · ·+ Cm−`−1
m−`−1X̃m−`+1.

Because Ckn = Ck−1
n−1 + Ckn−1 and C0

n = Cnn = 1, we have for ` ∈ [1,m− 1],

s` + ṡ` = C0
m−`−1X̃1 +

(
C1
m−`−1 + C0

m−`−1

)
X̃2 + · · ·

+
(
Cm−`−1
m−`−1 + Cm−`−2

m−`−1

)
X̃m−` + Cm−`−1

m−`−1X̃m−`+1

= C0
m−`X̃1 + C1

m−`X̃2 + · · ·

+ Cm−`−1
m−` X̃m−` + Cm−`m−`X̃m−`+1 = s`−1.

(4.28)

The proof will proceed by the mathematical induction method. Recall the defi-

nition of s` given by (4.27). It follows from (4.26) that s0 = C0
m−1X̃1 + · · · + Cm−1

m−1X̃m =

(PL ⊗ K2)x. Therefore, it follows from (4.25) that s0(t) is bounded for all t ≥ 0 and

lim
t→∞

sup ‖s0(t)‖1 ≤ b̄. Next, we will prove that for ` ∈ [1,m − 1], if s`−1(t) is bounded for

all t ≥ 0 and lim
t→∞

sup ‖s`−1(t)‖1 ≤ b̃ with b̃ being a positive constant, then s`(t) is bounded

for all t ≥ 0 and lim
t→∞

sup ‖s`(t)‖1 ≤ 2b̃, using the input-to-state stability concept. It follows

from (4.28) that ṡ` = −s` + s`−1, which is obviously an input-to-state stable system by

viewing s` as the state and s`−1 as the input. Consider the Lyapunov function

V̄ (s`) =
1

2
‖s`‖22.

It follows that α1(‖s`‖2) ≤ V̄ (s`) ≤ α2(‖s`‖2), where α1(y) = 1
2y

2 and α2(y) = 1
2y

2 are

105

both class K∞ functions. The derivative of V̄ (s`) is given by

˙̄V (s`) = sT` ṡ` = sT` (−s` + s`−1) ≤ −‖s`‖22 + ‖s`‖2‖s`−1‖2.

It follows that for all ‖s`‖2 ≥ ρ(‖s`−1‖2), where ρ(y) = 2y is a class K function, ˙̄V (s`) ≤

−1
2‖s`‖

2
2. Based on Theorem 4.19 and Definition 4.7 in [48], the system ṡ` = −s` + s`−1 is

an input-to-state stable system by viewing s` as the state and s`−1 as the input, and there

must exist a class KL function α(·, t) and a class K function γ(y) = α−1
1 ◦ α2 ◦ ρ = 2y such

that for any initial state s`(t0) and any bounded input s`−1(t), the solution s`(t) exists and

satisfies

‖s`(t)‖1 ≤ α(‖s`(t0)‖1, t− t0) + 2

(
sup

t0≤τ≤t
‖s`−1(τ)‖1

)
. (4.29)

Since ‖s`−1(t)‖1 ≤ b̃ as t → ∞, for an arbitrary number ζ > 0, there must exist a time

T1 > 0 such that ‖s`−1(t)‖1 ≤ b̃+ ζ for all t ≥ T1. Consequently, for all t ≥ T1, we have

‖s`(t)‖1 ≤ α(‖s`(T1)‖1, t− T1) + 2

(
sup

T1≤τ≤t
‖s`−1(τ)‖1

)

≤ α(‖s`(T1)‖1, t− T1) + 2
(
b̃+ ζ

)
.

(4.30)

Since α(‖s`(T1)‖1, t − T1) is a class KL function, α(‖s`(T1)‖1, t − T1) → 0 as t → ∞.

Therefore, there must exist a time T2 > T1 such that α(‖s`(T1)‖1, t−T1) < ζ for all t ≥ T2.

It follows that for all t ≥ T2, ‖s`(t)‖1 < ζ + 2b̃ + 2ζ = 3ζ + 2b̃. Since ζ is an arbitrary

positive number, we have ‖s`(t)‖1 ≤ 2b̃ as t→∞. Therefore, we obtain the conclusion that

for ` ∈ [1,m− 1], if s`−1(t) is bounded for all t ≥ 0 and lim
t→∞

sup ‖s`−1(t)‖ ≤ b̃, then s`(t) is

bounded for all t ≥ 0 and lim
t→∞

sup ‖s`(t)‖ ≤ 2b̃. Since we have proved that s0(t) is bounded

for all t ≥ 0 and lim
t→∞

sup ‖s0(t)‖1 ≤ b̄, we have that s`(t), ` ∈ [0,m− 1], is bounded for all

t ≥ 0 and

lim
t→∞

sup ‖s`(t)‖1 ≤ 2`b̄. (4.31)

106

Then, we will derive the bound of ‖X̃i‖1, i ∈ [1,m], based on the bound of

‖s`‖1, ` ∈ [0,m − 1], using the mathematical induction method again. It can be veri-

fied that sm−1 = X̃1 by (4.27). Then it follows from (4.31) that lim
t→∞

sup ‖X̃1(t)‖1 =

lim
t→∞

sup ‖sm−1(t)‖1 ≤ 2m−1b̄. Therefore there exists a positive constant B̄2 = 2m−1b̄ >

2m−2b̄ such that lim
t→∞

sup ‖X̃1(t)‖1 ≤ B̄2. Next, we will prove that for i ∈ [2,m], if there

exists a positive constant B̄i ≥ 2m−ib̄ such that lim
t→∞

sup ‖X̃k(t)‖1 ≤ B̄i, ∀k ∈ [1, i−1], then

there exists a positive constant B̄i+1 = iC
b i−1

2
c

i−1 B̄i ≥ 2m−i−1b̄ such that lim
t→∞

sup ‖X̃k(t)‖1 ≤

B̄i+1, ∀k ∈ [1, i]. For i ∈ [2,m], if there exists a positive constant B̄i ≥ 2m−ib̄ such that

lim
t→∞

sup ‖X̃k(t)‖1 ≤ B̄i, ∀k ∈ [1, i− 1], it follows from (4.27) and (4.31) that

lim
t→∞

sup ‖X̃i(t)‖1 = lim
t→∞

sup ‖sm−i(t)− C0
i−1X̃1(t)− · · · − Ci−2

i−1X̃i−1(t)‖1

≤ lim
t→∞

sup ‖sm−i(t)‖1 + C0
i−1 lim

t→∞
sup ‖X̃1(t)‖1 + · · ·

+ Ci−2
i−1 lim

t→∞
sup ‖X̃i−1(t)‖1

≤Cb
i−1
2
c

i−1 lim
t→∞

sup ‖sm−i(t)‖1 + C
b i−1

2
c

i−1 lim
t→∞

sup ‖X̃1(t)‖1 + · · ·

+ C
b i−1

2
c

i−1 lim
t→∞

sup ‖X̃i−1(t)‖1

≤Cb
i−1
2
c

i−1 2m−ib̄+ C
b i−1

2
c

i−1 B̄i + · · ·+ C
b i−1

2
c

i−1 B̄i

≤Cb
i−1
2
c

i−1 B̄i + C
b i−1

2
c

i−1 B̄i + · · ·+ C
b i−1

2
c

i−1 B̄i = iC
b i−1

2
c

i−1 B̄i,

where the last third inequality holds since C
b i−1

2
c

i−1 ≥ 1 is the biggest coefficient among all

C li−1, l ∈ [0, i − 1]. Since i > 1 and C
b i−1

2
c

i−1 ≥ 1, we have iC
b i−1

2
c

i−1 B̄i ≥ B̄i. If B̄i ≥ 2m−ib̄, it

follows that iC
b i−1

2
c

i−1 B̄i ≥ 2m−ib̄ ≥ 2m−i−1b̄. Therefore, for i ∈ [2,m], if there exists a positive

constant B̄i ≥ 2m−ib̄ such that lim
t→∞

sup ‖X̃k(t)‖1 ≤ B̄i, ∀k ∈ [1, i − 1], then there exists a

positive contant B̄i+1 = iC
b i−1

2
c

i−1 B̄i ≥ 2m−i−1b̄ such that lim
t→∞

sup ‖X̃k(t)‖1 ≤ B̄i+1, ∀k ∈

107

[1, i]. We have proved that there exists B̄2 = 2m−1b̄ > 2m−2b̄ such that lim
t→∞

sup ‖X̃k(t)‖1 ≤

B̄2, ∀k ∈ [1]. It thus follows that lim
t→∞

sup ‖X̃i(t)‖1 ≤ i!
(∏i−1

j=0C
bj/2c
j

)
2m−1b̄ for i ∈ [1,m].

Recall the definition of X̃i. Based on Proposition 1, we have

‖(PL ⊗ Im) vec(X)‖1 =
∥∥vec

[
X(PL)T

]∥∥
1

=

m∑
i=1

∥∥vec
[
Xi(PL)T

]∥∥
1

=

m∑
i=1

∥∥X̃i

∥∥
1
.

Therefore,

lim
t→∞

sup ‖(PL ⊗ Im)x(t)‖1 = lim
t→∞

sup ‖(PL ⊗ Im) vec[X(t)]‖1

= lim
t→∞

sup
m∑
i=1

∥∥X̃i(t)
∥∥

1

≤ 2m−1b̄
m∑
i=1

i!

i−1∏
j=0

C
bj/2c
j

 .

It follows from Lemma 42 that if Assumption 12 holds, then (PL)+PL = In − 1
n1n1

T
n ,

which further leads to

lim
t→∞

sup ‖(Ω⊗ Im)x(t)‖1 = lim
t→∞

sup ‖
[
(PL)+ ⊗ Im

]
(PL ⊗ Im)

× x(t)‖1 ≤ ‖(PL)+ ⊗ Im‖12m−1b̄
m∑
i=1

i!

i−1∏
j=0

C
bj/2c
j

 .

The main result of this section is given as follows.

Theorem 44. Using (4.21) for (4.19), if Assumptions 12 and 15, the gain condition (4.23)

and last two initial conditions in (4.6) hold, then lim
t→∞

sup
∑n

k=1

∥∥∥xk(t)− (1/n)
∑n

j=1 rj(t)
∥∥∥

1
≤

‖(PL)+⊗Im‖1nε2m−1
∑m

i=1 i!
(∏i−1

j=0C
bj/2c
j

)
, where (PL)+ is the generalized inverse of ma-

trix PL.

108

Proof. Consider the Lyapunov function candidate

V (x) =
n∑
i=1

g̃

pi ∑
j∈Ni

aijK2(xi − xj)

 , (4.32)

where pi is defined in Lemma 2, g̃(s) : R→ R is a function defined as g̃(s) =

|s| if |s| ≥ ε,

s2

2ε + ε
2 otherwise.

It can be shown that the derivative of V (x) is

V̇ (x) =
n∑
i=1

ξi

pi ∑
j∈Ni

aijK2(ẋi − ẋj)

 , (4.33)

where ξi ∈ R, i ∈ [1, · · · , n], is defined as

ξi =

1 if pi
∑

j∈Ni aijK2(xi − xj) ≥ ε,

−1 if pi
∑

j∈Ni aijK2(xi − xj) ≤ −ε,

pi
∑
j∈Ni

aijK2(xi−xj)
ε otherwise.

(4.34)

Define ξ = [ξ1, · · · , ξn]T ∈ Rn. Then the derivative of V (x) along the trajectory of (4.24)

can be calculated as follows:

V̇ (x) = ξT (PL ⊗K2) ẋ

= ξT (PL ⊗K2) ((In ⊗A)x+ (In ⊗B)

× {ur + (In ⊗K1)(x− r)− βh̃[(ZnL ⊗K2)x]})

= ξT (PL ⊗K2B)ur + ξT [PL ⊗K2(A+BK1)]x

− ξT (PL ⊗K2BK1)r − βξT (PL ⊗K2B)h̃[(ZnL ⊗K2)x].

(4.35)

Recall the difinition of K2 and B, we have K2B = Cm−1
m−1 = 1, it follows that

V̇ (x) = ξTPLur + ξT [PL ⊗K2(A+BK1)]x

− ξT (PL ⊗K1)r − βξTPLh̃[(ZnL ⊗K2)x].

(4.36)

109

Consider the first term in (4.36). It follows from the Schwartz inequality that

ξTPLur ≤ ‖ξ‖2‖PL‖2‖ur‖2 ≤ n
3
2σmax(PL)ūr. (4.37)

Similarly, we have ξT (PL⊗K1)r ≤ n
3
2σmax(PL)σmax(K1)r̄. Next, consider the second term

in (4.36). Due to the definitions of K1 and K2 in (4.22), we know that K2(A+BK1) = −K2.

Recall the definition of ξ in (4.34), it follows that ξ = h̃[(PL ⊗K2)x] and thus ξi and the

ith element of (PL ⊗ K2)x have the same sign. Therefore ξT [PL ⊗ K2(A + BK1)]x =

−ξT (PL ⊗K2)x ≤ 0.

Consider the forth term in (4.36). Define η ∈ Rn = h̃[(ZnL⊗K2)x] and ψ ∈ Rn =

η − ξ, then we have

− βξTPLh̃[(ZnL ⊗K2)x] = −βξTPLη

=− βξTPL(ξ + ψ) = −β
2
ξTPLξ − β

2
ξTLTPξ − βξTPLψ

=− β

2
ξT L̄ξ − βξTPLψ ≤ −β

2
ξT L̄ξ + βn

1
2σmax(PL)‖ψ‖2.

Here L̄ is defined in Lemma 2. In addition, if there exists i ∈ V such that
∣∣pi∑j∈Ni aijK2(xi−

xj)
∣∣ ≥ ε, there is at least a 1 and a negative number or a −1 and a positive number in the

elements of vector ξ. Therefore, there must exist a positive vector a such that aT ξ = 0. It

follows from Lemma 2 that if there exists i ∈ V such that
∣∣pi∑j∈Ni aijK2(xi − xj)

∣∣ ≥ ε,

then ‖ξ‖22 ≥ 1 and

β
2 ξ

T L̄ξ > β
2nλ2(L̄)‖ξ‖22 ≥

β
2nλ2(L̄). (4.38)

110

Then we have if there exists i ∈ V such that
∣∣pi∑j∈Ni aijK2(xi − xj)

∣∣ ≥ ε,
V̇ (x) ≤ −ξT

(
PL ⊗K2

)
x+ n

3
2σmax(PL)[ūr + σmax(K1)r̄]

− β

2n
λ2(L̄) + βn

1
2σmax(PL)‖ψ‖2

< −ξT
(
PL ⊗K2

)
x+ βn

1
2σmax(PL)‖ψ‖2.

(4.39)

Here the last inequality is under the gain condition (4.23). Next, we show that all
∣∣pi∑j∈Ni aijK2(xi−

xj)
∣∣ remains in a bounded region. According to the definition of V (x), we know that the

existence of i ∈ V such that
∣∣pi∑j∈Ni aijK2(xi − xj)

∣∣ → ∞ is a necessary and sufficient

condition of V (x) → ∞. If there exists i ∈ V such that
∣∣pi∑j∈Ni aijK2(xi − xj)

∣∣ → ∞, it

will also hold that ξT
(
PL⊗K2

)
x→∞ and V̇ (x) < 0, which will result in a bounded V (x)

and thus all bounded
∣∣pi∑j∈Ni aijK2(xi−xj)

∣∣. It follows that all
∣∣pi∑j∈Ni aijK2(xi−xj)

∣∣
and thus V (x) remain bounded. According to the gain condition in (4.23), we know that

there exists a positive number ς such that V̇ ≤ ς − ξT
(
PL ⊗K2

)
x+ βn

1
2σmax(PL)‖ψ‖2 if

there exists i ∈ V such that
∣∣pi∑j∈Ni aijK2(xi − xj)

∣∣ ≥ ε. It follows from Lemma 34 that

ψ → 0n as t → ∞, therefore there must exist a time T3 such that βn
1
2σmax(PL)‖ψ‖2 < ς

for all t ≥ T3. Then we have V̇ (x) < 0 for all t ≥ T3 if there exists i ∈ V such that∣∣pi∑j∈Ni aijK2(xi − xj)
∣∣ ≥ ε. Then we can get the conclusion that ‖(PL ⊗ K2)x(t)‖1 is

bounded for all t ≥ 0, and all
∣∣pi∑j∈Ni aijK2(xi − xj)

∣∣ ≤ ε as t→∞ and thus

lim
t→∞

sup ‖(PL ⊗K2)x(t)‖1 ≤ nε. (4.40)

Note that Assumption 12 holds. It then follows from Lemma 43 that

lim
t→∞

sup ‖(Ω⊗ Im)x(t)‖1 = lim
t→∞

sup
n∑
k=1

∥∥∥∥∥∥xk(t)− 1

n

n∑
j=1

xj(t)

∥∥∥∥∥∥
1

≤‖(PL)+ ⊗ Im‖1nε2m−1
m∑
i=1

i!

i−1∏
j=0

C
bj/2c
j

 .

(4.41)

111

In what follows, the term (1Tn ⊗ Im)(x − r) is analyzed. The derivative of (1Tn ⊗

Im)(x− r) can be calculated as follows

d
[
(1Tn ⊗ Im)(x− r)

]
dt

= (1Tn ⊗ Im)(ẋ− ṙ)

= (1Tn ⊗ Im){[In ⊗ (A+BK1)](x− r)− β(In ⊗B)h̃[(ZnL ⊗K2)x]}

= [1Tn ⊗ (A+BK1)](x− r)− β(1Tn ⊗B)h̃[(ZnL ⊗K2)x].

(4.42)

It follows from the definitions of K1 and K2 that det [λIm − (A+BK1)]

=

λ −1 0 0 0

· · · · · · · · · · · · · · ·

0 0 0 λ −1

C0
m C1

m C2
m · · · λ+ Cm−1

m

= (λ+ 1)m, which indicates that the eigenvalues of

A + BK1 all have negative real parts. Here det(·) denotes the determinant of a matrix.

Define the variable S = (1Tn ⊗ Im)(x− r), then we can rewrite (4.42) as

Ṡ = [In ⊗ (A+BK1)]S − β(1Tn ⊗B)h̃[(ZnL ⊗K2)x]. (4.43)

Then we can use the input-to-state stability to analyze the system (4.43) by treating the

term β(1Tn ⊗ B)h̃[(ZnL ⊗ K2)x] as the input and S as the state. From Lemma 34, we

know that Zn(t) → P as t → ∞, leading to h̃{[Zn(t)L ⊗ K2]x(t)} → h̃[(PL ⊗ K2)x(t)].

It has been proved that |pi
∑

j∈Ni aijK2[xi(t) − xj(t)]| ≤ ε, ∀i ∈ V, is reached as t → ∞,

therefore we have h̃{[Zn(t)L ⊗ K2]x(t)} → [(PL⊗K2)x(t)]
ε as t → ∞. It thus follows that

β(1Tn ⊗ B)h̃{[Zn(t)L ⊗K2]x(t)} → β (1TnPL⊗BK2)x(t)
ε = 0m as t → ∞, which gives S → 0m

112

and thus lim
t→∞

∑n
i=1[xi(t)− ri(t)]→ 0m as t→∞. It follows from (4.41) that

lim
t→∞

sup
n∑
k=1

∥∥∥∥∥∥xk(t)− 1

n

n∑
j=1

rj(t)

∥∥∥∥∥∥
1

≤‖(PL)+ ⊗ Im‖12m−1nε
m∑
i=1

i!

i−1∏
j=0

C
bj/2c
j

 .

(4.44)

Remark 45. Both the linear and nonlinear algorithms have their unique features and ad-

vantages while with trade-offs. The advantage of the linear algorithm (4.5) is that it is

smooth and linear and hence is easier to implement in practice. However, the trade-off

is that the tracking error is zero only for reference signals whose acceleration deviations

approach zero and bounded for signals with bounded acceleration deviations. On the other

hand, the advantages of the nonlinear algorithm (4.21) are that it can achieve distributed

average tracking with relatively small tracking errors for reference signals whose states and

velocities are both bounded (it follows from (4.44) that the tracking error can be arbitrarily

small by adjusting ε) and it can deal with more general high-order integrator systems. But

the trade-off is that the nonlinear algorithm may be more “expensive” to implement than

the linear one in practice.

4.3.4 Simulations

In this section, the proposed distributed average tracking algorithms are also ap-

plied in the leader follower containment control problem, which is stated in Section 4.2.4.

Similarly, we introduce an offset vector δi for each follower robot i and replace xi in algo-

rithm (4.21) with xi − δi. We still consider n = 6, and use the weight-unbalanced directed

113

graph in Figure 4.1 as the network topology. In this case, we implement the algorithm

(4.21) to illustrate Theorem 44. Here suppose the dynamics of the follower robots and

the leader robots are all third-order integrators. Therefore, the state of follower robot i is

xi = [xpi , ẋ
p
i , ẍ

p
i , y

p
i , ẏ

p
i , ÿ

p
i]
T , where (xpi , y

p
i) is the X-Y coordinates of follower robot i, and

the control input of follower robot i is ui = [uxi , u
y
i]
T . Similarly, the state of leader robot

i is ri = [rxi , ṙ
x
i , r̈

x
i , r

y
i , ṙ

y
i , r̈

y
i]T , where (rxi , r

y
i) is the X-Y coordinates of leader robot i, and

the control input of each leader robot is denoted by uri = [urxi , u
ry
i]. As stated in Remark

40, although we only tackle the one-dimension case in Section 4.3.3, the algorithm (4.21)

works in multi-dimension high-order integrators. Therefore, in this section, we consider a

two-dimension third-order integrator case. We choose the following offset vectors:

δ1 = [2,0T2 , 3.5,0
T
2]T , δ2 = [0,0T2 , 3.5,0

T
2]T ,

δ3 = [−2,0T2 , 3.5,0
T
2]T , δ4 = [2,0T2 ,−3.5,0T2]T ,

δ5 = [0,0T2 ,−3.5,0T2]T , δ6 = [−2,0T2 ,−3.5,0T2]T .

The dynamics of the follower robots and the leader robots are then given by ẋi = Axi +

Bui, ṙi = Ari +Buri , where

A =

 A1, 0̄3

0̄3, A1

 , B =

 B1

B2

 ,
with

A1 =

0, 1, 0

0, 0, 1

0, 0, 0

 , B1 =

0, 0

0, 0

1, 0

 , B2 =

0, 0

0, 0

0, 1

 .

114

Therefore, we have K1 =

 −1,−3,−3, 0, 0, 0

0, 0, 0,−1,−3,−3

 and K2 =

 1, 2, 1, 0, 0, 0

0, 0, 0, 1, 2, 1

. The initial

states of the follower robots are chosen as x1(0) = [0, 1, 0, 25, 0, 0]T , x2(0) = [2, 1, 0, 20, 0, 0]T , x3(0) =

[3, 1, 0, 10, 0, 0]T , x4(0) = [2, 1, 0,−10, 0, 0]T , x5(0) = [1, 1, 0,−15, 0, 0]T , x6(0) = [0, 1, 0,−25, 0, 0]T ,

the initial states of the leader robots are chosen as r1(0) = [0, 1, 0, 5, 0, 0]T , r2(0) =

[2, 1, 0, 5, 0, 0]T , r3(0) = [3, 1, 0, 2.5, 0, 0]T , r4(0) = [2, 1, 0,−2.5, 0, 0]T , r5(0) = [1, 1, 0,−5, 0, 0]T , r6(0) =

[0, 1, 0,−5, 0, 0]T . We assume the leader agent i is operating in the environment with tra-

jectories satisfying urxi = 0 and uryi = cos(t) + 0.1× i× cos(t). The control gain β is chosen

as 80.

0 5 10 15 20 25

-30

-20

-10

0

10

20

30

Figure 4.5: State trajectories of all the robots for the case in Section 4.3.4

The simulation results are shown in Figures 4.5-4.7. In particular, Figure 4.5

shows the X-Y coordinates of all the robots, where the blue solid lines denote the positions

of the follower robots and the black dashed lines denote the positions of the leader robots.

Two snapshots at 10 s and 20s, denoted by the blue stars (follower robots) and red squares

(leader robots) in Figure 4.5, show that all followers follow the group of all the leader

robots in a containment fashion in both cases. Figure 4.6 (respectively, Figure 4.7) shows

115

the state trajectories of all the follower robots without the offsets and the geometric center

of all the leader robots in X-coordinate (respectively, in Y-coordinate). We can see that the

follower robots converge to the vicinity of the geometric center of all leader robots, which

are consistent with Theorems 44.

0 2 4 6 8 10 12 14 16 18 20

Time(s)

0

5

10

15

20

25

x
p

1
x

p

2
x

p

3

x
p

4
x

p

5
x

p

6

r
x

Avg

Figure 4.6: State trajectories of all the follower robots without the offsets and the geometric
center of all the leader robots in X-coordinate for the case in Section 4.3.4

0 2 4 6 8 10 12 14 16 18 20

Time(s)

-30

-20

-10

0

10

20

30

y
p

1
y

p

2
y

p

3

y
p

4
y

p

5
y

p

6

r
y

Avg

Figure 4.7: State trajectories of all the follower robots without the offsets and the geometric
center of all the leader robots in Y-coordinate for the case in Section 4.3.4

4.4 Conclusions

In this chapter, we have studied distributed average tracking in weight-unbalanced

directed graphs, which attempts to push a set of networked agents to track the average of

116

the locally available time-varying reference signals, where each agent can only receive in-

formation from its neighbors. We first propose a linear algorithm for single-integrator

dynamics. We have shown that the tracking error is upper bounded if the reference sig-

nals have bounded acceleration deviations. We also investigate a nonlinear algorithm for

high-order integrator dynamics, which guarantees that distributed average tracking can be

achieved with arbitrarily small tracking errors if the reference signals and their velocities

are all bounded, and the control gain is properly chosen.

117

Chapter 5

Distributed Packet Routing Using

Reinforcement Learning

In this chapter, we consider a path optimization problem, specifically for packet

routing, in large complex networks. We develop and evaluate a model-free approach, apply-

ing multi-agent meta reinforcement learning (MAMRL) that can determine the next-hop

of each packet to get it delivered to its destination with minimum time overall. Specifi-

cally, we propose to leverage and compare deep policy optimization RL algorithms for en-

abling distributed model-free control in communication networks and present a novel meta-

learning-based framework, MAMRL, for enabling quick adaptation to topology changes.

To evaluate the proposed framework, we simulate with various WAN topologies. Our ex-

tensive packet-level simulation results show that compared to classical shortest path and

traditional reinforcement learning approaches, MAMRL significantly reduces the average

packet delivery time even when network demand increases; and compared to a non-meta

118

deep policy optimization algorithm, our results show the reduction of packet loss in much

fewer episodes when link failures occur while offering comparable average packet delivery

time.

5.1 Problem Formulation

In the packet routing problem, packets are transmitted from a source to its desti-

nation through intermediate routers and available links. The mathematical model is given

below.

Environment. We consider a possibly time-varying communication network envi-

ronment, which is characterized by an undirected graph Gt = (V, Et), where V = {1, · · · , n}

is a set of routers and Et ⊆ V ×V are transmission links between the routers at time t. The

bandwidth of each link is limited and packet loss might occur when the size of the packet to

be transmitted is greater than the link’s capacity. The communication network is possibly

time varying since link failures might happen during working hours. When the link failure

happens, the capacity of the link becomes zero. Each router i has a set of neighbor routers

denoted by Ni(t) = {j ∈ V : (i, j) ∈ Et}.

Routing. Packets are introduced into the network with a node of origin and

another node of destination. They travel to their destination nodes by hopping on interme-

diate nodes. Each router only has one local port/queue used to store traffic. The queue of

routers follows the first-in-first-out (FIFO) criterion. The node can forward the top packet

in its local queue to one of its neighbors. Once a packet reaches its destination, it is removed

from the network.

119

Objective. The packet routing problem aims at finding the optimal transmission

path between source and destination routers to minimize the average packet delivery time,

which is the sum of queuing time and transmission time while preventing packet loss when

link failures happen.

5.2 Background

5.2.1 Performance under Partial Observability

Figure 2.1 shows the general process of reinforcement learning, where the agent

is able to observe the global information of the environment. In this work, we consider

a path optimization problem in the distributed network environment, indicating that each

router only has access to its own information and the information received from its adjacent

routers. It follows that the path optimization problem can be modeled as a multi-agent

partially observable Markov decision process (POMDP). A POMDP, referred as M, for n

routers is defined by a tuple 〈S, {Oi}i∈V , {Ai}i∈V , P , {Ri}i∈V〉, where S and P carry the

same meaning as those in Section 2.5 and V denotes the set of all routers. Oi, Ai, and

Ri are the local observation space, local action space and local reward function of router i,

respectively. Then we have A = Πn
i=1Ai is the joint action space of all routers. Each router

only has access to a private local observation correlated with the state oit. To choose actions,

each router i uses a stochastic parametric policy πi
θi

: Oi × Ai → [0, 1], where πi
θi

(ait|oit)

represents the probability of choosing action ait at observation oit. Thus, the joint policy of

all routers πθ : S × A → [0, 1] satisfies πθ(at|st) = Πn
i=1π

i
θi

(ait|oit). For a given time horizon

H we define the trajectory τ := (s0, a0, · · · , sH , aH , sH+1) as the collection of state action

120

pairs ended at time t = H. The probability distribution of the initial state is denoted by

ρ(s0). In the path optimization problem (cooperative multi-agent problem), the collective

objective of all the routers is to collaboratively find policies πi
θi

for all i ∈ V that maximize

the globally expected trajectory reward over the whole network. The goal of all routers is

as follows,

max
θi,i∈V

J(θ) = Eτ [R(τ)] , (5.1)

where

R(τ) =

H∑
t=0

rit =
H∑
t=0

(
r̃it +

1

n

n∑
i=1

r̂it

)
,

and rit denotes the reward needed by router i at time t. rit consists of two parts: 1) r̃it

denotes the reward signal based solely on individual behavior, and 2) 1
n

∑n
i=1 r̂

i
t denotes the

reward signal based on global behavior. Note that only r̃it and r̂it can be known by router i

in a partially observable environment.

As stated in Section 2.5, in this work, we investigate how deep policy optimization

algorithms work in path optimization problems. The main idea is to directly adjust the

parameters θi, i ∈ V of the policies in order to maximize the objective in (5.1) by taking

steps in the direction of ∇θiJ(θi, · · · , θn). For POMDP, the gradient of the expected return

for router i can be written1 as,

∇θiJ(θi) = Eτ

[
H∑
t=0

∇θi log πiθi(a
i
t|oit)R(τ)

]
. (5.2)

Note that with only local information, function R(τ) cannot be well estimated since the

estimation requires the reward r̂i of all routers. In this work, we propose to use a dynamic

consensus algorithm to estimate R(τ) using only local information, described in Section 5.3.

1The derivation of Equation (5.2) is provided in Appendix .1.

121

5.2.2 Model-agnostic Meta-learning

!# !#7

!#M

!#N

OB

OBOB

Topology	1

Topology	3

Topology	2

Figure 5.1: The framework of model-agnostic meta learning.

In this work, we consider path optimization in the presence of link failures. It

follows that, once there is a link failure, the state transition function of the environment

changes accordingly, indicating that a new POMDP occurs. Let M0 denote the Markov

process modeled by the full network environment (no link failures) and Mk, where k > 0,

denote the Markov process modeled by the network environment with different link failure

scenarios. Suppose that the distribution of all POMDPs follows η(M). To make the routing

algorithm adapt to link failures (different POMDPs) quickly, we leverage the model-agnostic

meta-learning [30] into the policy optimization algorithms. Meta-reinforcement aims to

learn an algorithm that can quickly learn optimal policies inMk drawn from a distribution

η(M) over a set of Markov decision processes. Our approach trains a well-generalized

parametric policy initialization that is close to all the possible environments (POMDPs),

such that it can quickly improve its performance on a new environment with one or a few

vanilla policy gradient steps (see Figure 5.1). The meta-learning objective can be written

122

as:

max
θ

EM∼η(M),τ∼p(τ |πθ̂) [R(τ)]

s.t. θ̂ = θ + α∇θEτ∼p(τ |πθ)[R(τ)],

(5.3)

where α > 0 is the learning rate and p(τ |πθ) represents the distribution of trajectory τ

given policy πθ. Model-agnostic meta-learning attempts to learn an initialization θ∗ such

that for any environment Mk the policy attains maximum performance after a few policy

gradient steps.

5.3 Design: MAMRL Approach

Our standard RL setup consists of multiple router agents interacting with an en-

vironment (communication networks) in discrete decision epochs. We investigate the deep

policy optimization algorithm to address packet routing in a partially observable network

environment. To make the router controllers adapt to link failures more quickly, we leverage

the model-agnostic meta-learning technique to learn the well-generalized policy initializa-

tion.

𝑀"
𝑀# 𝑀#

𝑀$

𝑀%

Policy	𝜋'(
) 	(𝑎)|𝑜))

5	hidden	layers	
+	Relu activation

Input	
layers	

output	
layers	+	
Softmax

128 128128|𝑂)| |𝐴)|

Dynamic	
consensus

𝑥)

𝑟), 𝑟5 5∈7(

Local	reward

Global	reward
estimate

𝑜)
Local	
observation

Local	action	𝑎)

128 128

�̃�) 𝑒)

𝑀%

𝑀"

𝑀$

𝑀#

𝑀#

𝑀#

𝑀# 𝑀#𝑀#

𝑀#

𝑀#

𝑀#

𝑀#

𝑀#

𝑀#

𝑀# 𝑀#

𝑀# Sample	task

Training	process

Policy	𝜋'(
) 	(𝑎)|𝑜))

5	hidden	layers	
+	Relu activation

Input	
layers	

output	
layers	+	
Softmax

128 128128|𝑂)| |𝐴)|

Dynamic	
consensus

𝑥)

𝑟), 𝑟5 5∈7(

Local	reward

Global	reward
estimate

𝑜)
Local	
observation

Local	action	𝑎)

128 128

�̃�) 𝑒)

Testing	process

A	well-generalized
policy	initialization

Figure 5.2: MAMRL framework.

Figure 5.2 shows the MAMRL setup (training and testing process) per router. In

123

the testing process, each router uses the deep policy optimization algorithm coupled with the

dynamic consensus estimator to learn the optimal policy. In order to let the routers adapt

to topology changes quickly, the policy of each router is initialized using the well-generalized

policy initialization, which is the output of the training process. The training process follows

the traditional model-agnostic meta-reinforcement learning framework. The basic idea is

letting the network controller encounter multiple link failures in the training process. It

can use this experience to learn how to adapt if similar situations occur while deployed.

In Figure 5.2, M0 denotes the Markov process modeled by the full network environment

(no link failures) and Mk, where k > 0, denotes the Markov process modeled by the

network environment with link failures. In the training process, the network controller

collects data samples from all possible network environments according to the distribution

η(M). However, the traditional design of model-agnostic meta-learning mainly focuses on

single-agent (centralized) reinforcement learning problems. How to solve a multi-agent RL

problem using model-agnostic meta-learning in a distributed manner is rarely studied. In

this work, we aim to train and execute the network controller in a distributed manner. As

shown in Figure 5.2, each router has an independent policy model that is represented by a

deep neural network. The core of the proposed control framework is letting each router run

a deep reinforcement learning algorithm to find the best action at each decision time instant,

using only local information and local interaction. Since the routers aim to minimize the

average packet delivery time of the whole network, each router needs to feed the global

packet delivery time into its policy model as feedback/reward. To achieve this goal, we

leverage the dynamic consensus algorithm to estimate the global reward function.

124

The policy optimization algorithms aim to find the best policy parameters that

produce the highest long-term expected return using gradient ascent. The gradient of the

long-term expected return for the parameters of each router’s policy is defined in Equation

(5.2). However, with only local information, function R(τ) cannot be well estimated since

the estimation requires the rewards r̂i of all routers ∀i ∈ V. This motivates our consensus-

based policy gradient algorithm that leverages the communication network to diffuse the

local information, fostering collaboration among routers. We adapt the following dynamic

consensus algorithm [50] into the policy optimization method.

xit = r̂it − yit,

yit+1 = β
∑
j∈Ni

(xit − x
j
t) + yit,

(5.4)

where 0 < β < 1 is the control gain, xit and yit are local estimators, and Ni denotes the

neighbor sets of router i. It can be proved that xit converges to the vicinity of 1
n

∑n
i=1 r̂

i
t

within a few time steps. It is worthy to mention that only local information is used in the

designed estimator Equation (5.4).

We develop the following policy optimization method for POMDP,

∇θi J̄(θi) = Eτ

[
H∑
t=0

∇θi log πiθi(a
i
t|oit)R̄i(τ)

]
, (5.5)

where

R̄i(τ) =

H∑
l=0

eil =

H∑
l=0

r̃il + xil ≈
H∑
l=0

(
r̃il +

1

n

n∑
i=1

r̂il

)
. (5.6)

Here, eil denotes the sum of the local reward signal r̃il and global reward estimate xil. And

xil is obtained by the dynamic consensus estimator designed in Equation (5.4). Note that

both r̃i and xi can be obtained locally.

125

We build the deep neural network with one input layer, five hidden layers of size

128 with ReLU, and one output layer with Softmax (see Figure 5.2). As shown in Figure 5.2,

at each decision epoch t, each router i provides the local observation oit to the policy model

πθi and gets the action ai back. Router i performs action ait and switch to a new state. Then

router i feeds the local reward r̃it+1 and global reward estimate xit+1, which is the output of

the dynamic consensus estimator, to the policy model and the policy model πθi updates its

weights θi with respect to the received reward estimate ei. It is worthwhile to mention that

to update the policy in the direction of greater cumulative reward using Equation (5.5), only

local information oit, a
i
t and eit are required. By integrating model-agnostic meta-learning

and the proposed multi-agent policy optimization algorithm, MAMRL for packet routing

problem, where both training and execution process is distributed. These are shown in

Algorithms 1 and 2.

We design the local observation oit, local action ait and local estimation of the

reward function eit below,

• Observation of router i, oi: 1) destination router of first packet in the local queue;

2) the last ten step actions taken by router i; 3) the address of the router which has

the longest queue among all the neighbor router of router i.

• Action of router i, ai: next hop of current packet in the queue.

• Reward estimate of router i, ei: sum of r̃i and xi, where r̃i is negative number

of packet loss occurred at router i and xi is the estimate of 1
n

∑n
j=1 r̂

j using Equation

(5.4). Here, r̂j denotes the negative average delivery time of all the packets delivered

126

Algorithm 1: Multi-agent meta reinforcement learning algorithm (MAMRL
train time)

Input: η(M): distributions of network environments;
Input: α: step size hyper-parameter;
randomly initialize θi, i ∈ V;
while not done do

sample batch of environments Mk ∼ η(M);
for all Mk do

for all routers i ∈ V do
Sample K trajectories Di = {(oi0, ai0, ei0, · · · , oiH , aiH , eiH)} using πi

θi

and Equation (5.4) in Mk;

end
for all routers i ∈ V do

Evaluate ∇θi J̄(θ) using Di based on Equation (5.5);
Compute adapted parameters with gradient descent:
θ̂i = θi − α∇θi J̄(θ);

end
for all routes i ∈ V do

Sample K trajectories D̂i = {(oi0, ai0, ei0, · · · , oiH , aiH , eiH)} using πi
θ̂i

and Equation (5.4) in Mk;

end

end
for all routes i ∈ V do

Evaluate ∇θ̂i J̄(θ̂) using {D̂i}i∈V based on Equation (5.5);

Update θi with gradient descent: θi = θi − α∇θ̂i J̄(θ̂);

using D̂i based on Equation (5.5);

end

end
Return θi, i ∈ V as parameter initialization.

127

Algorithm 2: Multi-agent meta reinforcement learning algorithm (MAMRL
test time)

Input: A dynamic network environment with possible task distribution η(M);
Input: α: step size hyper-parameter;
Input: Learned parameter initialization θi, i ∈ V;
while not done do

if Link failure is True then
θit ← θi, i ∈ V

end
for all routers i ∈ V do

Sample K trajectories D = {(oi0, ai0, ei0, · · · , oiH , aiH , eiH)} using πi
θi

and
Equation (5.4);

end
Evaluate ∇θi J̄(θi) using D based on Equation (5.5);
for all routers i ∈ V do

Compute adapted parameters with gradient descent:
θit+1 = θit − α∇θi J̄(θi);

end

end

to router j.

Note that the design of state space and reward is critical to the success of a deep

reinforcement learning method. Our design of the state space captures key components

of the network environment. For our design of the reward function, element 1
n

∑n
j=1 r̂

j is

introduced to minimize the average packet delivery time of the whole network, element r̃i

is included to minimize the packet loss occurred at router i in the presence of link failures.

Note that in our design ei = xi+ r̃i, where r̃i is the negative number of packet loss occurred

only at router i but xi is the estimate of the negative average delivery time of the whole

network environment. The reasons are summarized below.

Optimizing for packet delivery time: To achieve this goal, all the routers need

to collaboratively find the best paths to reroute the traffic. And the delivery time of the

packets that are delivered to router i is determined by the decisions of all the intermediate

128

Topology Name Number of nodes Number of edges

B4 12 19
Geant 21 32
ATT 25 56

Table 5.1: Network topologies used in our evaluations.

routers. That is, packet delivery time is a signal based on global behavior, it is not enough

for router i to only know the delivery time of the packets delivered to itself.

Optimizing for link failures: Although this goal also involves reading packet

loss in the whole network, the link failures have little effect on the routers that are not

directly connected to the failed links. Therefore, in our design, we only provide the packet

loss that occurred at router i to the policy πθi as the feedback.

5.4 Evaluation

We conduct extensive simulations to evaluate the performance of the proposed

MAMRL framework in a path optimization problem with static topologies and topologies

with possibly failed links.

We evaluate the results to,

• Benchmark the RL techniques against existing path optimization approaches, and

• Show how quickly MAMRL adapts to link failures.

The simulation runs are performed on three network topologies, B4, Geant, and

ATT network. See Table 5.1 for a specification of network sizes. The B4 and ATT topologies

(link capacities) and their traffic matrices (packet size) were obtained from the authors of

129

Teavar [10]. The Geant topology is the European Research network providing connectivity

to science experiments across Europe and US labs (www.geant.org).

To model the packet arrival, a discrete event network simulator is developed, based

on Open AI gym. Packets are introduced into the network with a node of origin and another

node of destination. The packet arrives according to the Poisson process of rate λ. They

travel to their destination node by hopping on intermediate nodes. Each router only has a

one local port/queue used to store traffic. The queue of routers follows the FIFO criterion.

In each time unit, the node forwards the top packet in its local queue to one of its neighbors.

Once a packet reaches its destination, it is removed from the network environment. The

bandwidth of each link is limited and packet loss might occur when the size of the packet

to be transmitted is greater than the link’s capacity. When the link failure happens, the

capacity of the link becomes zero.

In the experiments, we choose the step size α as 0.01. In addition, we use trust-

region policy optimization (TRPO) [85] as the meta-optimizer and the standard linear

feature baseline [24] is used.

•Impact of Increasing Network Load

We first test the MAMRL algorithm with static topologies (no link failures). We

compare with the classical shortest path algorithm and two existing RL-based routing al-

gorithms:

• Shorted path algorithm (SPA) [103]: a traditional packet routing algorithm.

• Q-routing [12]: a value-based reinforcement learning algorithm.

• Policy gradient (PG) [77]: a policy-based reinforcement learning algorithm.

130

Figure 5.3: Comparing average packet delivery time as load increases.

In the experiments, the episodes terminate at the horizon of H = 500. After

10000 training episodes, we restored the well-trained models to compare their performance

in a new test environment where packets were generated at the corresponding network load

level. Note that the SPA does not need training and can be applied to test directly. We

tested the network on loads ranging from 0.005 to 0.5 and measured the average packet

delivery time of several episodes in the testing process to compare with the results given

by the above-mentioned baseline controllers. The load corresponds to the value of λ of the

Poisson arrival process for the average number of packets injected per unit time.

The average packet delivery time results versus different network load are shown

in Figure 5.3. Under conditions of low load for all the three topologies, MAMRL is slightly

131

inferior to Q-routing and SPA. As the load increases, the MAMRL performs much better

than the baseline algorithms. On the B4 topology, when the traffic load is high (i.e., λ =

0.5), MAMRL reduces the average packet delivery time by 25%, 24%, and 14%, respectively,

compared to SPA, Q-routing, and policy gradient algorithms. On the Geant topology, when

the traffic load λ = 0.5, MAMRL significantly reduces the average packet delivery time

by 37%, 37%, and 10%, respectively, compared to SPA, Q-routing, and policy gradient

algorithms. And on the ATT topology, when the traffic load λ = 0.5, MAMRL reduces

the average packet delivery time by 33%, 28%, and 10%, respectively, compared to SPA,

Q-routing, and policy gradient algorithms. The reason is described as follows. Under

conditions of low load, there is no congestion along the route. Therefore, the deterministic

policy learned by Q-routing performs as well as SPA, which is the optimal routing policy

under low load. However, the routing policy learned by MAMRL is stochastic, which means

that not all of the packets are sent down the optimal link. That is why the performance of

MAMRL is slightly inferior to Q-routing and SPA under low load. As the load increases,

the routes are getting crowded and the length of the queues is getting longer. Due to the

stochastic nature of the communication network environment, the optimal policy should

be stochastic under conditions of high load. This explains why MAMRL performs much

better than the Q-routing and SPA controllers under high load. The results in [77] also

show that policy-based reinforcement learning algorithm performs better than value-based

algorithms, especially on high flow load. However, the work in [77] only considers a simple

policy gradient algorithm for the packet routing problem. Instead, we investigate a deep

policy optimization algorithm that can take much more information as its inputs, enlarging

132

the state-action space for better policy making. The results in Figure 5.3 indicate that our

MAMRL algorithm achieves a shorter delivery time than a simple policy gradient algorithm.

Figure 5.4: Packet loss results in the presence of link failures.

•Impact of Link Failures

Next, we test the MAMRL algorithm in the presence of link failures with network

load λ = 0.3. We let the router train and encounter all possible network environments (link

failure scenarios) according to the distribution η(M) and return policy parameters using

Algorithm 1. We restored the well-trained models in a new test environment where the

links get disconnected according to the distribution η(M) (We assume that only one link

gets failed at one time). We compare results of using the following three controllers: (1)

testing the policy from the initialization parameters obtained by MAMRL, (2) testing the

policy from randomly initialized weights (called random in the following), (3) shortest path

133

algorithm (SPA) [103], and (4) Q-routing algorithm [12]. Figure 5.4 show the results of the

packet loss versus episodes and Figure 5.5 show the results of the average packet delivery

time versus episodes. Also, we show the performance of reinforcement learning routing

algorithms (MAMRL, random, Q-routing) over the three network topologies during the

online learning procedure in terms of the reward. We present the corresponding simulation

results in Figure 5.6. We can make the following observations from these results.

1. In Figure 5.4, when there is a link failure, the model-based routing algorithm (i.e.,

SPA) witnesses a huge packet loss. The reason is that the SPA algorithm relies on

previous knowledge of the network topology to make decisions. Here we assume that

as the networks grows, it becomes longer to update the ISIS/OSPF protocols for link

failures and update the tables. Both ISIS/OSPF use the same Dijkstra algorithm

for computing the best path through the network. The other learning algorithms

(MAMRL, random, Q-routing) are model-free controllers and the policy of the model-

free controller. When link failure happens, the packet loss sensor will tell the RL

routing controllers that there are many packet loss at the particular link. Based

on our design, the packet loss hurts the reward of the RL routing controllers. To

maximize the reward function, the RL routing controller will adjust their policies to

improve the reward function and hence reduce the packet loss accordingly.

2. Figure 5.6 shows how the reward value changes during online learning over the three

network topologies. It is seen that when there is a link failure, for the B4 topology,

Q-routing adapts to the link failure (reward values converge to the stable states) after

about 30 episodes, MAMRL (our algorithm) adapts to the link failure after about 35

134

Topology Name Q-routing MAMRL Random

B4 23 25 800
Geant 35 35 100
ATT 29 30 1000

Table 5.2: Average number of episodes used to adapt to link failures.

episodes and random algorithm (deep policy optimization with randomly initialized

weights) adapts to the link failure after about 800 episodes. The results for Geant

topology and ATT topology are shown in Table 5.2. Q-routing is based on a value-

based Q-learning algorithm and is often much faster to learn a policy than policy

optimization algorithms [72]. In this work, we propose the MAMRL algorithm which

leverages model-agnostic meta-learning to help the policy optimization adapt to link

failures quickly. The basic idea of MAMRL is letting the network controller encounter

all possible link failures in the training process. It can then use that experience to

learn how to adapt. MAMRL aims to learn a well-generalized policy initialization that

is close to all possible situations of the environment. Whenever there are continual

packet losses at a particular link, the MAMRL controller will reinitialize the policy

models based on the pre-trained well-generalized policy initialization. It can be seen

from Figure 5.6, the MAMRL controller adapts to link failures with a speed that

is comparable to the Q-routing algorithm. However, the normal policy optimization

controller adapts to the link failures much more slowly.

Policy optimization algorithms use gradient descent to optimize an optimization

problem. And traffic engineering aims at finding a solution to forward the data traffic to

135

maximize a utility function. The utility function might concern a set of values. In our

design, the objective is to minimize the packet delivery time and packet loss, therefore, the

utility function, which corresponds to the reward function in the RL algorithms, consists of

a function of packet loss and a function of packet delivery.

In future works, we can add multiple objectives such as bandwidth utilization,

latency and more, if we want the RL controller to optimize on a number of multiple param-

eters.

136

Figure 5.5: Average packet delivery time results in the presence of link failures.

Figure 5.6: Reward in the presence of link failures.

137

Chapter 6

Summary

In this dissertation, we have studied two distributed optimization problems for

multi-agent systems: distributed continuous-time optimization with time-varying objective

functions, 2) packet routing for communication networks.

We have proposed multiple algorithms for different application scenarios, more

specifically,

• We address distributed continuous-time optimization problems with convex time-

varying objective functions for undirected graphs. First, for the unconstrained case,

a distributed nonsmooth algorithm coupled with a sate-dependent gain is proposed.

This algorithm can solve the time-varying optimization problem without imposing a

bound on any information about the local objective functions. Then, we investigate

distributed constrained time-varying optimization problems and propose three dis-

tributed algorithms, respectively, for 1) the case where there only exist common time-

varying linear equality constraints, 2) the case where there exist only time-varying

138

nonlinear inequality constraints, and the case where there exist not only time-varying

nonlinear inequality constraints but also linear equality constraints.

• We study distributed time-varying optimization with quadratic objective function,

which is equivalent to distributed average tracking problem. We seek a design method-

ology for distributed average tracking under possibly unbalanced graphs and propose

two distributed algorithms, respectively, for single-integrator and high-order integra-

tor dynamics.

• We consider packet routing problem for distributed communication networks. We

aim to find optimal paths for the packets in the presence of link failures and propose

to leverage policy optimization reinforcement learning algorithms for enabling quick

adaption to topology changes.

139

Bibliography

[1] https://www.vicon.com/.

[2] Mehran Abolhasan, Tadeusz Wysocki, and Eryk Dutkiewicz. A review of routing
protocols for mobile ad hoc networks. Ad hoc networks, 2(1):1–22, 2004.

[3] Hasan AA Al-Rawi, Ming Ann Ng, and Kok-Lim Alvin Yau. Application of rein-
forcement learning to routing in distributed wireless networks: a review. Artificial
Intelligence Review, 43(3):381–416, 2015.

[4] Ramy E Ali, Bilgehan Erman, Ejder Baştuğ, and Bruce Cilli. Hierarchical deep double
q-routing. In Proceedings of the International Conference on Communications, pages
1–7, online, 2020.

[5] Tom M Apostol and CM Ablow. Mathematical analysis. Physics Today, 11(7):32,
1958.

[6] Mohammad Mehdi Asadi, Stephane Blouin, and Amir G Aghdam. Distributed dy-
namic average consensus in asymmetric networks. In Proceedings of the American
Control Conference, pages 864–869, Milwaukee, USA, 2018.

[7] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and principles
of internet traffic engineering. RFC3272, 2002.

[8] He Bai, Randy A Freeman, and Kevin M Lynch. Robust dynamic average consensus of
time-varying inputs. In Proceedings of the IEEE Conference on Decision and Control,
pages 3104–3109, Atlanta, USA, 2010.

[9] Dennis S Bernstein. Matrix mathematics: theory, facts, and formulas. Princeton:
Princeton university press, 2009.

[10] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjørner, Asaf
Valadarsky, and Michael Schapira. Teavar: striking the right utilization-availability
balance in wan traffic engineering. In Proceedings of the ACM SIGCOMM, pages
29–43. Beijing, China, 2019.

140

[11] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities.
Journal of Internet Services and Applications, 9(1):16, 2018.

[12] Justin A Boyan and Michael L Littman. Packet routing in dynamically changing
networks: A reinforcement learning approach. In Advances in neural information
processing systems, pages 671–678, Denver, USA, 1993.

[13] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge: Cambridge university press, 2004.

[14] Armir Bujari, Claudio E Palazzi, and Daniele Ronzani. A comparison of stateless
position-based packet routing algorithms for fanets. IEEE Transactions on Mobile
Computing, 17(11):2468–2482, 2018.

[15] Fei Chen, Yongcan Cao, and Wei Ren. Distributed average tracking of multiple time-
varying reference signals with bounded derivatives. IEEE Transactions on Automatic
Control, 57(12):3169–3174, 2012.

[16] Fei Chen, Gang Feng, Lu Liu, and Wei Ren. Distributed average tracking of networked
Euler-Lagrange systems. IEEE Transactions on Automatic Control, 60(2):547–552,
2015.

[17] Fei Chen and Wei Ren. A connection between dynamic region-following formation con-
trol and distributed average tracking. IEEE Transactions on Cybernetics, 48(6):1760–
1772, 2018.

[18] Fei Chen, Wei Ren, Weiyao Lan, and Guanrong Chen. Distributed average tracking
for reference signals with bounded accelerations. IEEE Transactions on Automatic
Control, 60(3):863–869, 2015.

[19] Chunhsiang Cheng, Ralph Riley, Srikanta PR Kumar, and Jose J Garcia-Luna-Aceves.
A loop-free extended bellman-ford routing protocol without bouncing effect. ACM
SIGCOMM Computer Communication Review, 19(4):224–236, 1989.

[20] Ashish Cherukuri and Jorge Cortes. Initialization-free distributed coordination for
economic dispatch under varying loads and generator commitment. Automatica,
74:183–193, 2016.

[21] Samuel PM Choi and Dit-Yan Yeung. Predictive q-routing: A memory-based re-
inforcement learning approach to adaptive traffic control. In Advances in Neural
Information Processing Systems, pages 945–951, Denver, USA, 1996.

[22] Jorge Cortes. Discontinuous dynamical systems. IEEE Control Systems Magazine,
28(3):36–73, 2008.

[23] Jorge Cortés. Distributed Kriged Kalman filter for spatial estimation. IEEE Trans-
actions on Automatic Control, 54(12):2816–2827, 2009.

141

[24] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking deep reinforcement learning for continuous control. In Proceedings of the
International Conference on Machine Learning, pages 1329–1338, New York City,
USA, 2016.

[25] Amit Dvir and Athanasios V Vasilakos. Backpressure-based routing protocol for dtns.
In Proceedings of the ACM SIGCOMM, pages 405–406, New Delhi, India, 2010.

[26] Christopher Edwards and Sarah Spurgeon. Sliding mode control: theory and applica-
tions. London: Crc Press, 1998.

[27] Mahyar Fazlyab, Santiago Paternain, Victor M Preciado, and Alejandro Ribeiro.
Prediction-correction interior-point method for time-varying convex optimization.
IEEE Transactions on Automatic Control, 63(7):1973–1986, 2017.

[28] Zhi Feng and Guoqiang Hu. Finite-time distributed optimization with quadratic ob-
jective functions under uncertain information. In Proceedings of the IEEE Conference
on Decision and Control, pages 208–213, Melbourne, Australia, 2017.

[29] Aleksei Fedorovich Filippov. Differential equations with discontinuous righthand sides:
control systems. Berlin: Springer Science & Business Media, 2013.

[30] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. Proceedings of the International Conference on
Machine Learning, pages 1126–1135, 2017.

[31] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS
Torr, Pushmeet Kohli, and Shimon Whiteson. Stabilising experience replay for deep
multi-agent reinforcement learning. In Proceedings of the International Conference on
Machine Learning, pages 1146–1155, Sydney, Australia, 2017.

[32] Randy A Freeman, Peng Yang, and Kevin M Lynch. Stability and convergence proper-
ties of dynamic average consensus estimators. In Proceedings of the IEEE Conference
on Decision and Control, pages 338–343, San Diego, USA, 2006.

[33] Jemin George and Randy A Freeman. Robust dynamic average consensus algorithms.
IEEE Transactions on Automatic Control, 64(11):4615–4622, 2019.

[34] Sheida Ghapani, Salar Rahili, and Wei Ren. Distributed average tracking of physical
second-order agents with heterogeneous unknown nonlinear dynamics without con-
straint on input signals. IEEE Transactions on Automatic Control, 64(3):1178–1184,
2019.

[35] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
Evolve or die: High-availability design principles drawn from googles network infras-
tructure. In Proceedings of the ACM SIGCOMM, pages 58–72, Salvador, Brazil, 2016.

[36] Martin Gregurić, Miroslav Vujić, Charalampos Alexopoulos, and Mladen Miletić. Ap-
plication of deep reinforcement learning in traffic signal control: An overview and
impact of open traffic data. Applied Sciences, 10(11):4011, 2020.

142

[37] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observ-
able mdps. arXiv preprint:1507.06527, 2015.

[38] Mark H Holmes. Introduction to perturbation methods. New York: Springer Science
& Business Media, 2012.

[39] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven
wan. In ACM SIGCOMM, pages 15–26, Hong Kong, China, 2013.

[40] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev, et al.
B4 and after: managing hierarchy, partitioning, and asymmetry for availability and
scale in google’s software-defined wan. In Proceedings of the ACM SIGCOMM, pages
74–87, New York, USA, 2018.

[41] Mehdi Hosseinzadeh, Emanuele Garone, and Luca Schenato. A distributed method
for linear programming problems with box constraints and time-varying inequalities.
IEEE Control Systems Letters, 3(2):404–409, 2018.

[42] Bomin Huang, Yao Zou, Ziyang Meng, and Wei Ren. Distributed time-varying con-
vex optimization for a class of nonlinear multiagent systems. IEEE Transactions on
Automatic Control, 65(2):801–808, 2019.

[43] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learn-
ing. In Proceedings of the International Conference on Machine Learning, pages 2961–
2970, Long Beach, USA, 2019.

[44] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan. ACM SIGCOMM Computer
Communication Review, 43(4):3–14, 2013.

[45] Donald B Johnson. A note on dijkstra’s shortest path algorithm. Journal of the ACM,
20(3):385–388, 1973.

[46] Maksim Kavalerov, Yuliya Likhacheva, and Yuliya Shilova. A reinforcement learning
approach to network routing based on adaptive learning rates and route memory. In
Proceedings of the IEEE SoutheastCon, pages 1–6, Charlotte, USA, 2017.

[47] Hiroki Kawamoto and Akito Igarashi. Efficient packet routing strategy in complex
networks. Physica A: Statistical Mechanics and its Applications, 391(3):895–904, 2012.

[48] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems. Upper Saddle River:
Prentice hall, 2002.

[49] Solmaz S Kia, Jorge Cortés, and Sonia Martinez. Dynamic average consensus under
limited control authority and privacy requirements. International Journal of Robust
and Nonlinear Control, 25(13):1941–1966, 2015.

143

[50] Solmaz S Kia, Bryan Van Scoy, Jorge Cortes, Randy A Freeman, Kevin M Lynch,
and Sonia Martinez. Tutorial on dynamic average consensus: The problem, its appli-
cations, and the algorithms. IEEE Control Systems Magazine, 39(3):40–72, 2019.

[51] Solmaz S Kia, Bryan Van Scoy, Jorge Cortes, Randy A Freeman, Kevin M Lynch, and
Sonia Martinez. Tutorial on dynamic average consensus: the problem, its applications,
and the algorithms. IEEE Control Systems Magazine, 39(3):40–72, 2019.

[52] Shailesh Kumar and Risto Miikkulainen. Dual reinforcement q-routing: An online
adaptive routing algorithm. In Proceedings of the International Conference on Arti-
ficial Neural Networks Engineering, pages 231–238, Lausanne, Switzerland, 1997.

[53] Hariharan Lakshmanan and Daniela Pucci De Farias. Decentralized resource alloca-
tion in dynamic networks of agents. SIAM Journal on Optimization, 19(2):911–940,
2008.

[54] Sung G Lee, Yancy Diaz-Mercado, and Magnus Egerstedt. Multirobot control using
time-varying density functions. IEEE Transactions on Robotics, 31(2):489–493, 2015.

[55] Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust
multi-agent reinforcement learning via minimax deep deterministic policy gradient.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4213–4220, Hawaii, USA, 2019.

[56] Zhenhong Li, Zhengtao Ding, Junyong Sun, and Zhongkui Li. Distributed adaptive
convex optimization on directed graphs via continuous-time algorithms. IEEE Trans-
actions on Automatic Control, 63(5):1434–1441, 2018.

[57] Zhenhong Li, Zizhen Wu, Zhongkui Li, and Zhengtao Ding. Distributed optimal
coordination for heterogeneous linear multiagent systems with event-triggered mech-
anisms. IEEE Transactions on Automatic Control, 65(4):1763–1770, 2019.

[58] Shu Liang, Xianlin Zeng, and Yiguang Hong. Distributed nonsmooth optimization
with coupled inequality constraints via modified lagrangian function. IEEE Transac-
tions on Automatic Control, 63(6):1753–1759, 2017.

[59] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint:1509.02971, 2015.

[60] Hyojun Lim and Chongkwon Kim. Flooding in wireless ad hoc networks. Computer
Communications, 24(3-4):353–363, 2001.

[61] Peng Lin, Wei Ren, and Jay A Farrell. Distributed continuous-time optimization:
nonuniform gradient gains, finite-time convergence, and convex constraint set. IEEE
Transactions on Automatic Control, 62(5):2239–2253, 2016.

144

[62] Antonio Mira Lopez and Douglas R Heisterkamp. Simulated annealing based hier-
archical q-routing: a dynamic routing protocol. In Proceedings of the International
Conference on Information Technology: New Generations, pages 791–796, Las Vegas,
USA, 2011.

[63] Youcheng Lou, Yiguang Hong, Lihua Xie, Guodong Shi, and Karl Henrik Johans-
son. Nash equilibrium computation in subnetwork zero-sum games with switching
communications. IEEE Transactions on Automatic Control, 61(10):2920–2935, 2016.

[64] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. Multi-agent actor-critic for mixed cooperative-competitive environments.
In Advances in neural information processing systems, pages 6379–6390, Long Beach,
USA, 2017.

[65] Jie Lu and Choon Yik Tang. Zero-gradient-sum algorithms for distributed convex
optimization: The continuous-time case. IEEE Transactions on Automatic Control,
57(9):2348–2354, 2012.

[66] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource
management with deep reinforcement learning. In ACM Workshop on Hot Topics in
Networks, pages 50–56, Atlanta, USA, 2016.

[67] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-
learning: an algorithm for decentralized reinforcement learning in cooperative multi-
agent teams. In Proceedings of the International Conference on Intelligent Robots and
Systems, pages 64–69, San Diego, USA, 2007.

[68] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control
for quadrotors. In Proceedings of the IEEE Conference on Robotics and Automation,
pages 2520–2525. Shanghai, China, 2011.

[69] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint:1312.5602, 2013.

[70] Daniel K Molzahn, Florian Dörfler, Henrik Sandberg, Steven H Low, Sambuddha
Chakrabarti, Ross Baldick, and Javad Lavaei. A survey of distributed optimization
and control algorithms for electric power systems. IEEE Transactions on Smart Grid,
8(6):2941–2962, 2017.

[71] Dmitry Mukhutdinov, Andrey Filchenkov, Anatoly Shalyto, and Valeriy Vyatkin.
Multi-agent deep learning for simultaneous optimization for time and energy in dis-
tributed routing system. Future Generation Computer Systems, 94:587–600, 2019.

[72] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the
gap between value and policy based reinforcement learning. Advances in Neural In-
formation Processing Systems, 30:2775–2785, 2017.

145

[73] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[74] Shahram Nosrati, Masoud Shafiee, and Mohammad Bagher Menhaj. Dynamic average
consensus via nonlinear protocols. Automatica, 48(9):2262–2270, 2012.

[75] Reza Olfati-Saber. Distributed Kalman filtering for sensor networks. In Proceedings
of the IEEE Conference on Decision and Control, pages 5492–5498, New Orleans,
USA, 2007.

[76] Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic Control,
49(9):1520–1533, 2004.

[77] Leonid Peshkin and Virginia Savova. Reinforcement learning for adaptive routing. In
Proceedings of the International Joint Conference on Neural Networks, pages 1825–
1830, Hawaii, USA, 2002.

[78] James A Preiss, Wolfgang Honig, Gaurav S Sukhatme, and Nora Ayanian.
Crazyswarm: A large nano-quadcopter swarm. In Proceedings of the IEEE Conference
on Robotics and Automation, pages 3299–3304, Singapore, 2017.

[79] Zhirong Qiu, Shuai Liu, and Lihua Xie. Distributed constrained optimal consensus of
multi-agent systems. Automatica, 68:209–215, 2016.

[80] Muhannad Quwaider and Subir Biswas. Dtn routing in body sensor networks with
dynamic postural partitioning. Ad Hoc Networks, 8(8):824–841, 2010.

[81] Michael Rabbat and Robert Nowak. Distributed optimization in sensor networks.
In Proceedings of the International Symposium on Information Processing in Sensor
Networks, pages 20–27, 2004.

[82] Salar Rahili and Wei Ren. Distributed continuous-time convex optimization with
time-varying cost functions. IEEE Transactions on Automatic Control, 62(4):1590–
1605, 2017.

[83] Muhammad Saim, Sheida Ghapani, Wei Ren, Khalid Munawar, and Ubaid M Al-
Saggaf. Distributed average tracking in multi-agent coordination: extensions and
experiments. IEEE Systems Journal, 12(3):2428–2436, 2018.

[84] Lutz Schönemann. Evolution strategies in dynamic environments. In Evolutionary
Computation in Dynamic and Uncertain Environments, pages 51–77. Springer, 2007.

[85] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In Proceedings of the International Conference on
Machine Learning, pages 1889–1897, Lille, France, 2015.

[86] Mohamad T Shahab and Moustafa Elshafei. Distributed optimization of multi-robot
motion with time-energy criterion. In Path Planning for Autonomous Vehicles-
Ensuring Reliable Driverless Navigation and Control Maneuver. IntechOpen, 2019.

146

[87] Daniel Shevitz and Brad Paden. Lyapunov stability theory of nonsmooth systems.
IEEE Transactions on Automatic Control, 39(9):1910–1914, 1994.

[88] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

[89] Andrea Simonetto, Alec Koppel, Aryan Mokhtari, Geert Leus, and Alejandro Ribeiro.
Decentralized prediction-correction methods for networked time-varying convex opti-
mization. IEEE Transactions on Automatic Control, 62(11):5724–5738, 2017.

[90] Marcos A Simpĺıcio Jr, Paulo SLM Barreto, Cintia B Margi, and Tereza CMB Car-
valho. A survey on key management mechanisms for distributed wireless sensor net-
works. Computer networks, 54(15):2591–2612, 2010.

[91] João Lúıs Sobrinho and Miguel Alves Ferreira. Routing on multiple optimality criteria.
In Proceedings of the ACM SIGCOMM, pages 211–225, online, 2020.

[92] Demetri P Spanos, Reza Olfati-Saber, and Richard M Murray. Dynamic consensus
on mobile networks. IFAC World Congress, Prague, Czech Republic, 2005, pp. 1–6.

[93] Wenjing Su. Traffic engineering and time-varying convex optimization. 2009.

[94] Devika Subramanian, Peter Druschel, and Johnny Chen. Ants and reinforcement
learning: A case study in routing in dynamic networks. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 832–839, Nagoya, Japan,
1997.

[95] Chao Sun, Maojiao Ye, and Guoqiang Hu. Distributed time-varying quadratic opti-
mization for multiple agents under undirected graphs. IEEE Transactions on Auto-
matic Control, 62(7):3687–3694, 2017.

[96] Shan Sun, Fei Chen, and Wei Ren. Distributed average tracking over weight-
unbalanced directed graphs. In Proceedings of the American Control Conference,
pages 1400–1405, Philadelphia, USA, 2019.

[97] Shan Sun, Fei Chen, and Wei Ren. Distributed average tracking over weight-
unbalanced directed graphs. In Proceedings of the American Control Conference,
pages 1400–1405, Philadelphia, USA, 2019.

[98] Shan Sun, Fei Chen, and Wei Ren. Distributed average tracking in weight-unbalanced
directed networks. IEEE Transactions on Automatic Control, 2020.

[99] Shan Sun and Mariam Kiran. Multi-agent meta reinforcement learning for packet
routing in dynamic network environments. 2020.

[100] Shan Sun and Wei Ren. Distributed continuous-time optimization with time-varying
objective functions and inequality constraints. In Proceedings of the IEEE Conference
on Decision and Control, pages 5622–5627, online, 2020.

147

[101] Shan Sun and Wei Ren. Distributed continuous-time optimization with time-varying
objective functions and inequality constraints. In Proceedings of the IEEE Conference
on Decision and Control, pages 5622–5627, Jeju, Korea, 2020.

[102] Shan Sun, Yifan Zhang, Peng Lin, Wei Ren, and Jay A Farrell. Distributed time-
varying optimization with state-dependent gains: algorithms and experiments. IEEE
Transactions on Control Systems Technology, 2021.

[103] Andrew S Tanenbaum et al. Computer networks. Upper Saddle River: Prentice hall,
1996.

[104] Yujie Tang. Time-varying optimization and its application to power system operation.
2019.

[105] Nigel Tao, Jonathan Baxter, and Lex Weaver. A multi-agent, policy-gradient ap-
proach to network routing. In Proceedings of the International Conference on Machine
Learning, pages 553–560, Williamstown, USA, 2001.

[106] Ageliki Tsioliaridou, Christos Liaskos, Eugen Dedu, and Sotiris Ioannidis. Packet
routing in 3d nanonetworks: A lightweight, linear-path scheme. Nano communication
networks, 12:63–71, 2017.

[107] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. Learning to
route. In ACM workshop on hot topics in networks, pages 185–191, Palo Alto, USA,
2017.

[108] Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and Moritz
Diehl. Time-optimal path tracking for robots: A convex optimization approach. IEEE
Transactions on Automatic Control, 54(10):2318–2327, 2009.

[109] Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. Multi-agent reinforce-
ment learning via double averaging primal-dual optimization. In Advances in Neural
Information Processing Systems, pages 9649–9660, Montreal, Canada, 2018.

[110] Bo Wang, Shan Sun, and Wei Ren. Distributed continuous-time algorithms for optimal
resource allocation with time-varying quadratic cost functions. IEEE Transactions on
Control of Network Systems, 7(4):1974–1984, 2020.

[111] Jing Wang and Nicola Elia. A control perspective for centralized and distributed
convex optimization. In Proceedings of the IEEE conference on decision and control
and European control conference, pages 3800–3805, Orlando, USA, 2011.

[112] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3-4):229–256, 1992.

[113] Chenguang Xi, Van Sy Mai, Ran Xin, Eyad H Abed, and Usman A Khan. Linear
convergence in optimization over directed graphs with row-stochastic matrices. IEEE
Transactions on Automatic Control, 63(10):3558–3565, 2018.

148

[114] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold Liu,
and Dejun Yang. Experience-driven networking: A deep reinforcement learning based
approach. In Proceedings of the IEEE Conference on Computer Communications,
pages 1871–1879, Honolulu, USA, 2018.

[115] Shaofu Yang, Qingshan Liu, and Jun Wang. A multi-agent system with a proportional-
integral protocol for distributed constrained optimization. IEEE Transactions on
Automatic Control, 62(7):3461–3467, 2016.

[116] Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong,
Hong Wang, Zongli Lin, and Karl H Johansson. A survey of distributed optimization.
Annual Reviews in Control, 47:278–305, 2019.

[117] Maojiao Ye and Guoqiang Hu. Distributed seeking of time-varying nash equilibrium
for non-cooperative games. IEEE Transactions on Automatic Control, 60(11):3000–
3005, 2015.

[118] Xinlei Yi, Xiuxian Li, Lihua Xie, and Karl H Johansson. Distributed online convex
optimization with time-varying coupled inequality constraints. IEEE Transactions on
Signal Processing, 68:731–746, 2020.

[119] Xinyu You, Xuanjie Li, Yuedong Xu, Hui Feng, Jin Zhao, and Huaicheng Yan. Toward
packet routing with fully distributed multiagent deep reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[120] Huaguang Zhang, He Jiang, Yanhong Luo, and Geyang Xiao. Data-driven optimal
consensus control for discrete-time multi-agent systems with unknown dynamics us-
ing reinforcement learning method. IEEE Transactions on Industrial Electronics,
64(5):4091–4100, 2016.

[121] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Networked multi-agent reinforce-
ment learning in continuous spaces. In Proceedings of the International Conference
on Decision and Control, pages 2771–2776, Miami Beach, USA, 2018.

[122] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully de-
centralized multi-agent reinforcement learning with networked agents. In Proceedings
of the International Conference on Machine Learning, pages 5872–5881, Stockholm,
Sweden, 2018.

[123] Ruiliang Zhang and James Kwok. Asynchronous distributed admm for consensus
optimization. In Proceedings of the International Conference on Machine Learning,
pages 1701–1709, Beijing, China, 2014.

[124] Yanqiong Zhang, Zhenhua Deng, and Yiguang Hong. Distributed optimal coordina-
tion for multiple heterogeneous Euler-Lagrangian systems. Automatica, 79:207–213,
2017.

149

[125] Yu Zhao, Yongfang Liu, Zhongkui Li, and Zhisheng Duan. Distributed average track-
ing for multiple signals generated by linear dynamical systems: an edge-based frame-
work. Automatica, 75:158–166, 2017.

[126] Yu Zhao, Yongfang Liu, Guanghui Wen, and Tingwen Huang. Finite-time distributed
average tracking for second-order nonlinear systems. IEEE Transactions on Neural
Networks and Learning systems, 30(6):1780–1789, 2019.

[127] Yu Zhao, Yongfang Liu, Guanghui Wen, Xinghuo Yu, and Guanrong Chen. Dis-
tributed average tracking for lipschitz-type of nonlinear dynamical systems. IEEE
Transactions on Cybernetics, 49(12):4140–4152, 2019.

[128] Minghui Zhu and Sonia Mart́ınez. Discrete-time dynamic average consensus. Auto-
matica, 46(2):322–329, 2010.

[129] Yanan Zhu, Wenwu Yu, Guanghui Wen, and Wei Ren. Continuous-time coordina-
tion algorithm for distributed convex optimization over weight-unbalanced directed
networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(7):1202–
1206, 2019.

.1 Appendix

Here, we provide the derivation of Equation (5.2). All the notations carry the same

meaning as those in Section 5.2.1. The probability of a trajectory τ = (s0, a0, · · · , sH , aH , SH+1)

given that actions come from πθ is

P (τ |πθ) = ρ(s0)ΠH
t=0P (st+1|st, at)πθ(at|st)

= ρ(s0)ΠH
t=0P (st+1|st, at)Πn

i=1π
i
θi(a

i
t|oit).

The log-probability of a trajectory is

logP (τ |πθ) = log ρ(s0) +

H∑
t=0

log
[
P (st+1|st, at)Πn

i=1π
i
θi(a

i
t|oit)

]
= log ρ(s0) +

H∑
t=0

log [P (st+1|st, at)]

+

H∑
t=0

n∑
i=1

log
[
πiθi(a

i
t|oit)

]
.

150

The gradient of the log-probability of a trajectory is

∇θ logP (τ |πθ) = ∇θ log ρ(s0) +

H∑
t=0

∇θ log [P (st+1|st, at)]

+

H∑
t=0

n∑
i=1

∇θ log
[
πiθi(a

i
t|oit)

]
=

H∑
t=0

n∑
i=1

∇θ log πiθi(a
i
t|oit),

and thus

∇θi logP (τ |πθ) =

H∑
t=0

∇θi log πiθi(a
i
t|oit).

Putting the above equations together, we have the following

∇θiJ(θ) = ∇θiE[R(τ)]

= ∇θi
∫
τ
P (τ |πθ)R(τ) =

∫
τ
∇θiP (τ |πθ)R(τ)

=

∫
τ
P (τ |πθ)∇θi logP (τ |πθ)R(τ)

= E [∇θi logP (τ |πθ)R(τ)]

= E

[
H∑
t=0

∇θi log πiθi(a
i
t|oit)R(τ)

]
.

151

