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AbstractAccording to current policy, chemicals are evaluated for possible cancer risk tohumans at low dose by testing in bioassays, where high doses of the chemical aregiven to rodents. Thus, risk is extrapolated from high dose in rodents to low dose inhumans. The accuracy of these extrapolations is generally unveri�able, since data onhumans are limited. However, it is feasible to examine the accuracy of extrapolationsfrom mice to rats. If mice and rats are similar with respect to carcinogenesis, thisprovides some evidence in favor of inter-species extrapolations; conversely, if miceand rats are di�erent, this casts doubt on the validity of extrapolations from mice tohumans.One measure of inter-species agreement is concordance, the percentage of chemi-cals that are classi�ed the same way as to carcinogenicity in mice and rats. Observedconcordance in NCI/NTP bioassays is around 75%, which may seem on the low side|because mice and rats are closely related species tested under the same experimentalconditions. Theoretically, observed concordance could under-estimate true concor-dance, due to measurement error in the bioassays. Thus, bias in concordance is ofpolicy interest. Expanding on previous work by Piegorsch et al. (1992), we show thatthe bias in observed concordance can be either positive or negative: an observed con-cordance of 75% can arise if the true concordance is anything between 20% and 100%.In particular, observed concordance can seriously overestimate true concordance.



We also consider quantitative correlations of carcinogenic potency. FollowingBernstein et al. (1985), we show these correlations can be explained by statisticalartifact. Our simulations expand on previous work by considering both carcinogensand non-carcinogens, while distinguishing between \observed" and \true" potencies.Thus, we develop a complete statistical model for chemicals and bioassays; withinthis model, biases in quantitative and qualitative concordance can be examined.A variety of models more or less �t the data, with quite di�erent implicationsfor bias. Therefore, given our present state of knowledge, it seems unlikely that trueconcordance can be determined from bioassay data.



1. IntroductionAccording to current regulatory policy, chemicals are tested for safety. The mostrelevant data would come from human subjects. However, careful epidemiologicalstudies have been done in relatively few cases, and screening is routinely done inanimal experiments.In a bioassay, rats and mice are exposed to near-toxic doses of the agent on test.High doses are needed in order to demonstrate a statistically signi�cant response witha limited number of animals. But there is an upper bound: if the dose level is settoo high, animals will not live long enough to develop cancer. Thus, chemicals areadministered at the \Maximum Tolerated Dose," or MTD. (Details on the MTD andbioassay design are in Section 2.)Typically, the MTD is orders of magnitude higher than the environmental expo-sures of concern for the general population. To use bioassay results for risk assess-ment, then, two extrapolations are needed: (1) the species extrapolation from rats ormice to humans, and (2) the extrapolation from high dose to low dose. The �rst ex-trapolation is qualitative; the second is quantitative and depends on a dose-responsemodel like the \one-hit model" (Section 2). In brief, if P (cancer) is the probabilityof developing cancer at dose D, the one-hit model saysP(cancer) = p0 + (1� p0)(1� e�bD):The model has two parameters, p0 and b. The parameter p0 is the background rateof cancer when the dose D is 0. The parameter b is called \potency." This parametercan be estimated from bioassay data and a chemical can be classi�ed as carcinogenicif its estimated potency is statistically signi�cant|in other words, b̂ exceeds zero by1



an amount that is statistically signi�cant.The focus of the present paper is the validity of the qualitative extrapolation (al-though the quantitative extrapolation and the one-hit model will be discussed too).Little direct evidence is available on the qualitative extrapolation because so fewchemicals have been evaluated in human studies. It is often said that most knownhuman carcinogens are also animal carcinogens. This familiar argument, however,faces certain empirical di�culties (Freedman and Zeisel, 1988). Moreover, the argu-ment bypasses a question of considerable policy interest|are most animal carcinogensalso human carcinogens?Indirect evidence can be used to validate the species extrapolation; for exam-ple, the accuracy of extrapolations from mice to rats can be examined. If mice andrats are similar with respect to carcinogenesis, this provides some evidence in favorof inter-species extrapolation; conversely, if mice and rats are di�erent, this castsdoubt on extrapolations from rodents to humans. Data from National Cancer In-stitute/National Toxicology Program (NCI/NTP) are convenient for this purpose.NCI/NTP bioassays are run on a standard protocol and (with few exceptions) eachchemical is tested both on rats and on mice.Using the Carcinogenic Potency Data Base, we identi�ed 297 chemicals tested byNCI/NTP in female mice and female rats (Gold et al., 1984, 1986, 1987, 1990; Goldand Manley et al., 1993). We classi�ed each chemical as positive (+) or negative(�) in the female mouse and in the female rat, based on signi�cance at the .005level, one sided. This rule produces a classi�cation in good agreement with \authors'opinion" (Haseman, 1983b; Gold et al., 1989). Being mechanical, the rule is subject tosimulation study; using females avoids complications created by sex-speci�c responses.One measure of inter-species agreement is concordance, the percentage of chemi-cals that are classi�ed the same way in both species. Results for NCI/NTP bioassaysare shown in Table 1. There were 53 + 48 + 22 + 174 = 297 chemicals; of them,2



53 + 174 = 227 were classi�ed the same way in mice and in rats; the concordance is227/297 = 76%. (Concordance has been computed by a number of authors, and 75%is a typical �gure; see Gold et al. 1989 or Krewski et al. 1993; other literature isreviewed below.) NCI/NTPRats+ �Mice + 53 48� 22 174Table 1: Concordance table for 297 NCI/NTP bioassaysMice and rats are, after all, very similar species being tested under virtuallyidentical experimental conditions; it might be argued that a concordance of 75% is onthe low side, bringing into question the validity of the extrapolation from rodents tohumans. A possible counter-argument: the concordance observed in the NCI/NTPdata is just an estimate based on limited data. Since each bioassay only involves arelatively small number of mice and rats, statistical power may be low. Theoretically,observed concordance could be lower than true concordance, due to measurementerror in the bioassays; indeed, an observed concordance of 75% could imply a trueconcordance near 100%.Here, we follow Piegorsch et al. (1992) in exploring this question via computersimulations of the bioassay process. We expand the framework used by those authorsto include the case where true concordance is less than 100%, and we make the sim-ulations more realistic in other ways too. The data generated in our simulations lookrather like the real NCI/NTP data, with respect to summary statistics on potencyand toxicity. We show that observed concordance can be 75% if true concordanceis 20%, 100%, or anything in between|depending on the choice of parameters. In3



other words, a variety of models more or less �t the data, but have radically di�erentimplications for bias in observed concordance. Thus, we doubt the data su�ce todetermine the bias, or give any very precise estimate of the true concordance of ratsand mice|nor yet the validity of the species extrapolation from rodents to humans.Work on the quantitative extrapolation may be summarized this way. UsingNCI/NTP data, Crouch and Wilson (1979) found a strong correlation between esti-mated potencies in rats and mice. Following Bernstein et al. (1985), we show thiscorrelation to be explicable in terms of statistical artifact. The correlation is due to(1) the choice of data set, namely, all chemicals with potency estimates that werestatistically signi�cant in both species, (2) the high correlation between the MTDs inmice and rats, and (3) absence of 100% cancer rates in the NCI/NTP data.We can set up our simulation model so the true classi�cation of chemicals as car-cinogens is independent from rats to mice; among the carcinogens, tumor yields inthe two species are independent too. But estimated potencies|among those chemi-cals with statistically signi�cant estimates|are highly correlated, as in the NCI/NTPdata. In the simulation, the observed inter-species correlation is purely artifactual.This expands on previous work (Freedman et al., 1993) by explicitly considering bothcarcinogens and non-carcinogens, while distinguishing \observed" potencies from the\true" ones. Thus, we develop a statistical model for chemicals and bioassays; withinthis model, biases in quantitative and qualitative concordance can be examined.Can risks be extrapolated from mice to rats? Previous arguments in the literaturedo not demonstrate the validity of the extrapolation. (Nor do we demonstrate invalid-ity.) The question remains open, as do more serious questions about extrapolationsfrom rodents to humans. The statistical implications are worth stating explicitly:(1) simulation results may be driven by assumptions rather than data, and (2) cor-relations may be driven by selection of samples. When it comes to policy analysis,such possibilities should be carefully considered.4



The balance of this paper is organized as follows. Section 2 gives some detail onbioassays and the one-hit dose-response model. Section 3 describes previous simula-tion studies, identi�es the crucial assumptions, and compares the results to real data.Section 4 describes our simulations. Section 5 extends the results to other measuresof qualitative agreement such as the odds ratio. Section 6 discusses the quantitativeextrapolation. Literature is reviewed in sections 5 and 6.
2. BackgroundIn bioassays, animals are exposed to chemicals in order to determine carcinogenicity.Standard NCI/NTP protocols call for testing a chemical in two species (mice and rats)and in both sexes. For a given sex and species, there are three dose groups (high dose,low dose, control), each with 50 animals. The high dose group is given the MaximumTolerated Dose (MTD), estimated using data from a preliminary experiment; theMTD is the dose that produces a 10% decrement in predicted weight gain but doesnot cause death or overt toxicity (Sontag et al., 1976). The low dose group receiveshalf the MTD. The control group receives none of the chemical. For a detaileddescription of bioassay design, see (Freedman and Zeisel, 1988).The probability that an animal develops cancer is often assumed to follow theone-hit model: P(cancer) = p0 + (pmax � p0)(1� e�bD):(1)In equation (1), p0 is the background rate of tumors, pmax is the maximum probabilityof developing cancer, and D is the dose; pmax is usually taken to be 1. Smaller values ofpmax may be used to re
ect residual genetic heterogeneity in the test animals, errors intumor detection at necropsy, and other forms of miss-speci�cation in the conventional5



one-hit model. The parameter b in equation (1) is the potency; if a chemical is a not acarcinogen, its potency is zero, by de�nition. The one-hit model can be �t to bioassaydata to estimate the potency, as in (Crouch et al., 1987) and (Shlyakhter et al., 1992).This model is often used, despite a number of di�culties (Freedman and Zeisel, 1988).The Cochran-Armitage Trend Test (Snedecor and Cochran, 1967; Gart et al., 1986)can be used to determine if bioassay results are \statistically signi�cant," meaningthey show a signi�cant (positive) trend with dose. On heterogeneity, see Gaylor etal. (1993), Peto et al. (1985, p.46); also see Peto et al. (1975), Peto et al. (1984).The data in this paper cover 297 chemicals tested by NCI/NTP with results infemale mice and female rats (Gold et al., 1984, 1986, 1987, 1990; Gold and Manleyet al., 1993). Potencies were standardized to a two-year lifespan.
3. Previous SimulationsPiegorsch et al. (1992) use a simulation study to examine potential bias in observedconcordance. The study is keyed to data from the Carcinogenic Potency Data Baseof Gold et al. (1984,1986,1987). From this database, Piegorsch et al. select the 405chemicals with results both in mice and in rats. Each chemical is characterized bysix numbers: dm, the MTD in mice; bm, the estimated potency in mice; cm, the \car-cinogenicity" in mice (\+" for mouse carcinogens, \�" for mouse noncarcinogens);and dr, br, and cr, for rats. If cm is \�", then bm is set to zero; likewise for cr and br.The study uses a new measure of carcinogenicity for mice:�m = ln 1 + bmln 2! :(2)A similar equation de�nes �r for rats. Finally, pairs (d; �) are obtained by poolingdata for mice and rats. (Piegorsch et al. use \the literature" as well as NCI/NTP, and6



take the site with highest estimated potency in males or females; see their AppendixA.)Piegorsch et al. report a regression of ln d on ln �:ln d = 4:103� 0:097 ln �:(3)Substituting equation (2) into equation (3) yieldsln d = 4:103� 0:097 ln "ln 1 + bln 2!# ;(4)where d is the MTD and b is the potency.Each simulation is characterized by three parameters: p0, the background rate ofcancer; �, a parameter that controls the inter-species correlation; and �, a one-sidedsigni�cance level. Based on these parameters, 2000 sets of 100 \chemicals" are gen-erated. A \chemical" is generated as follows. Choose a pair (zm; zr) from a bivariatenormal distribution with mean 0, variance 1, and correlation �; let �m = 10�4+2�(zm)and �r = 10�4+2�(zr), where � is the standard normal distribution function; computethe simulated MTD in mice dm from �m, using equation (3); compute the simulatedpotency in mice bm from the identity bm = (e�m�1)� ln 2; for rats, compute the MTDdr and the potency br from �r. The resulting quadruplet (dm; bm; dr; br) characterizesa simulated chemical.Each \chemical" is then subjected to a simulated NCI/NTP bioassay involvingtwo species (mice and rats), three dose groups (control, low dose, high dose), and50 animals per dose group. The probability of cancer follows the standard one-hitmodel: equation (1) with pmax = 1:0. A chemical is classi�ed as \+" if a Cochran-Armitage Test on the bioassay results shows a statistically signi�cant positive trendat the � level, one-sided. This leads to a classi�cation as \++", \+�", \�+", or\��", where the �rst and second symbols denote the observed carcinogenicity inmice and rats, respectively. The original carcinogenicity indicators cm and cr and7



the initial measures �m and �r of carcinogenicity play no role in these simulations,except to derive equations (3) and (4). By construction, all simulated chemicals arecarcinogenic in both species, with positive values for �m and �r chosen as describedabove. (The test for trend is applied to tumor rates in the three dose groups; time-to-tumor is not considered: in the jargon of the �eld, the analysis is based on summarydata rather than lifetable data.)For a given triple of parameters (p0, �, �), 2000 sets of 100 chemicals are generatedand classi�ed. For each set of 100 chemicals, the concordance is computed. Then, the2000 concordances are averaged. This entire process is repeated for many di�erentvalues of p0, �, and �. The principal �nding is that the observed concordances werealways less than the true concordance, with an upper bound of about 80%.Piegorsch et al. report that p0 = :10, � = :9, and � = :025 give simulated con-cordances that are similar to NCI/NTP data (Table 1). However, other aspects ofthat simulation are quite unrealistic, as shown in Figure 1 for mice (the plot for ratswould be similar). The horizontal axis shows log potency; the vertical axis showslog(1/MTD). Each of the 143 dots corresponds to an NCI/NTP bioassay that hadsigni�cant results in mice at the .025 level. The dotted line is the graph of equation(4), which is the relationship between MTD and potency built into the simulations.The real NCI/NTP data do not follow the theoretical line.The box in Figure 1 was computed by generating 100,000 statistically signi�cant(� = :025) chemicals according to the procedure described above, using p0 = :10 and� = :9. The horizontal edges of the box show the mean log potency, plus or minusthree standard deviations. The vertical edges of the box show the mean log(1/MTD),plus or minus three standard deviations. Among the 100,000 simulated chemicals,98.1% had values inside the box. By contrast, among the 143 NCI/NTP chemicals,only 8 had values inside the box. The box covers only a very small part of thereal data. Adding points to represent experiments in \the literature" other than8



-6-6 -4-4 -2
-2

0
0

2

2

4

4
qqq qqq qqqq qq q q q qqqq qqq qq

q
qq q q qqq q qqqq qqqq q q qq qq qq

q
q qqqq qq qq q q qq qq q qq qq qqq qq q q q qq q qqq qqq qq q qqq q qqq qq qqq q qqq q qqq qqqqq qqq q qqq qq qq qq qq qqq qqq qq q q qq qp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

log potency in mice
log(1/MTD
)inmice

Figure 1: Assumptions in Piegorsch et al. (1992) Compared to NCI/NTP Data;Chemicals that are Statistically Signi�cant Carcinogens in the MouseNCI/NTP only accentuates the discrepancy: Piegorsch et al.'s trend line does notfollow the data. For further discussion, see (Lin, 1994).There is another unrealistic assumption that drives the results. In the simulations,all chemicals are carcinogenic both for mice and for rats by construction, so thetrue concordance is 100%|by assumption. It is not surprising that concordance isunderestimated: the observed concordance has nowhere to go but down.

9



4. New SimulationsThis section presents results from new simulations, with more plausible assumptions.Each \chemical" is generated as a set of \true" values (cm, cr, xm, xr, ym, yr). Thevalues cm and cr indicate carcinogenicity: cm = 1 for mouse carcinogens, and cm = 0otherwise; likewise for cr. The values xm and xr are the log MTD's for mice andrats. The values ym and yr are the \true" log potencies for mice and rats. For mousenoncarcinogens, ym = �1; for rat noncarcinogens, yr = �1.Each \chemical" is subjected to the simulated NCI/NTP bioassay described inthe previous section. The probability of cancer follows the one-hit model, equation(1), with a background cancer rate of p0 = 10% and an upper bound of pmax = 90%.(Compare Shlyakhter et al., 1992, p. 78.) If ym = �1 or yr = �1, the correspondingprobability of cancer is simply the background rate. In e�ect, this procedure �ts thestandard one-hit model (pmax = 1) to the data, although the true value for pmax is 0.9.This amount of speci�cation error does not seem unrealistic (Section 2).As before, chemicals are classi�ed by the Cochran-Armitage Trend Test. Aftertesting, a chemical is characterized by a set of \observed" values (ĉm, ĉr, xm, xr, ŷm,ŷr). The values ĉm and ĉr indicate statistical signi�cance: ĉm = 1 if the trend for miceis statistically signi�cant at the .005 level, and ĉm = 0 otherwise, and similarly for ĉr;recall that xm and xr are log MTD's. Finally, ŷm and ŷr are the maximum likelihoodestimates for log potency. There is an artifactual constraint on estimated potencies(Bernstein et al., 1985): in essence, xm+ ŷm must be around 0 for mice when ĉm = 1,and likewise for rats. However, there is no constraint on \true" potencies, that is,xm + ym varies freely as does xr + yr. The artifact is discussed below, in Section 6.Each \chemical" (cm, cr, xm, xr, ym, yr) is generated as an independent andidentically distributed observation from random variables Cm, Cr, Xm, Xr, Ym, Yr,�m, and �r. The variables Cm and Cr are carcinogenicity indicators. Conditioned on10



Cm and Cr, the log MTD variables Xm and Xr have a bivariate normal distributionwith corr(Xm;Xr) = :93. (In the NCI/NTP data, the correlation between Xm andXr was .93 for the 53 \++" chemicals, and did not vary much from cell to cell in the2 � 2 table.) Given Cm and Cr, the variables �m and �r are independent of each otherand of the pair (Xm;Xr). If Cm = 1, then �m is normally distributed, and otherwise�m = �1 with probability one; likewise for Cr and �r. Finally, the log potencyvariables Ym and Yr are de�ned by the equations Ym = �Xm+ �m and Yr = �Xr+ �r.Each model is completely speci�ed by the joint distribution of (Cm, Cr, Xm, Xr, Ym,Yr, �m, �r). The statistical power of a simulated bioassay is determined by the �'s.Indeed, �m and �r govern tumor yield via the one hit model (1): bD = exp(�) whenD is the MTD, while bD = 0:5�exp(�) when D is 0.5�MTD. Moreover, if a chemicalis not a carcinogen, it does not cause cancer at any dose; thus, b = 0, bD = 0,Y = �1, and � = �1. See (Freedman et al., 1993; Lin, 1994). In the simulations,we use the 0.005 level, one-sided; this closely matches classi�cation by \authors'opinion" (Haseman, 1983b; Gold et al., 1989). In the NCI/NTP data, there were 53chemicals signi�cant at the .005 level in both species; Freedman et al. (1993) usedthe .025 level and found 87 chemicals signi�cant in both species. (Changing levelsfrom .005 to .025 in our simulations would not alter the concordances appreciably;however, the 2� 2 table would no longer match the NCI/NTP data so well, unlessother parameters were also changed.)
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Model AWe chose the parameters for Model A (Table 2) so that summary characteristicsof simulated data would match the real NCI/NTP data, while observed concordancewould overestimate true concordance: the bias is about 25 percentage points. The �rstrow in Table 2 gives parameters for simulated chemicals that are \true" carcinogensin the mouse and in the rat (Cm = Cr = 1). As shown in the third column, thiscategory has 20% of the probability. The remaining columns describe the conditionaldistribution for Xm, Xr, �m, and �r, given Cm and Cr. For example, given thatCm = Cr = 1, the log MTD for mice Xm is normally distributed with a mean of2.0 and a standard deviation of 1.0; the log MTD for rats Xr is normally distributedwith a mean of 1.6 and a standard deviation of 1.0; and so forth. The other threerows are read similarly; the dots in Table 2 indicate that the corresponding � is �1.Recall that within each row, Xm and Xr have a correlation of .93, while �m and �rare independent of each other and of the pair (Xm;Xr). (Appendix A explains howparameters were chosen.)In Model A, the variables Cm and Cr are independent, due to the choice of prob-abilities in Table 2. Speci�cally, the probability that a chemical is a rat carcinogen is50%, whether or not it is a mouse carcinogen; likewise, the probability that a chemicalis a mouse carcinogen is 40%, whether or not it is a rat carcinogen. Furthermore, forchemicals carcinogenic in both species, the yields �m and �r are independent. In thatsense, mice and rats are qualitatively and quantitatively independent.The primary statistic of interest is concordance. Classifying chemicals based oncm and cr gives a \true" 2 � 2 concordance table; classifying chemicals based on ĉmand ĉr gives an \observed" 2 � 2 concordance table. For each set of chemicals, the12



Dist. of (Cm; Cr) Dist. of Xm Dist. of Xr Dist. of �m Dist. of �rcm cr prob. Mean SD Mean SD Mean SD Mean SD1 1 .20 2.0 1.0 1.6 1.0 0.35 0.50 0.25 0.501 0 .20 2.3 0.9 1.8 0.9 �0:20 0.50 � �0 1 .30 2.1 1.5 1.8 1.5 � � �1:01 0.500 0 .30 2.7 1.0 2.2 0.9 � � � �Table 2: Parameters in Model A\true" and \observed" concordance tables are computed. In order to check on therealism of the simulation, we also compute the mean and standard deviation of thelog MTD variables xm and xr, for each of the four cells in the observed concordancetable. For each of the two cells with ĉm = 1, we compute the mean and standarddeviation of the estimated log potency ŷm. Likewise, for each of the two cells withĉr = 1, we compute the mean and standard deviation of ŷr. Finally, for chemicalswith ĉm = 1 and ĉr = 1, the correlations among xm, xr, ŷm, and ŷr are computed.Each simulated dataset contains 297 chemicals, the number of NCI/NTP bioas-says. The whole procedure of generating, testing, and classifying a set of 297 chemicalsis repeated 1000 times. At the end of each simulation, there are 1000 \true" and 1000\observed" concordance tables; there are also 1000 sets of means and standard de-viations; and 1000 correlation matrices. The results are averaged and compared toNCI/NTP data.Results for Model AResults are presented in Table 3. The left hand 2 � 2 table is the average of the 1000\true" concordance tables in the simulation. For each set of 297 chemicals, the numberof \true ++" chemicals is random; on average, 59.3 chemicals were truly \++", and13



the average true concordance was 50%. The right hand 2 � 2 table is the average ofthe observed concordance tables: on average, 52.8 chemicals were classi�ed as \++",and the average observed concordance was 76%. The average observed concordancetable from Model A was virtually identical to the observed concordance table for theNCI/NTP data (Table 1). The bias in observed concordance is about 25 percentagepoints, because the true concordance is 50%.The MTD's and potencies generated according to Model A are very similar toNCI/NTP data. For example, consider the chemicals with statistically signi�cantresults in both species (observed \++"). Over 1000 sets of 297 simulated chemicals,the mean log MTD in mice of the observed ++'s averaged 2.00, and the standarddeviation of the log MTD's averaged 1.00. In NCI/NTP data, the \++" chemicalshave a mean log MTD in mice of 1.99 and a standard deviation of 1.02. See Table4. Finally, the correlations among the simulated \++" chemicals closely match thecorrelations from NCI/NTP (Table 5). For results on the \+�", \�+", and \��"chemicals, see Appendix B.Model A: \True" Model A: ObservedRats Rats+ � + �Mice + 59.3 59.4 Mice + 52.8 48.4� 89.4 89.0 � 22.1 173.8Table 3: Concordance for 297 Chemicals tested both in Mice and Rats
14



Model A NCI/NTPAverage Averageof Means of SD's Mean SDlog MTD in mice 2:00 1.00 1:99 1.02log potency in mice �1:82 1.04 �1:80 1.09log MTD in rats 1:60 1.00 1:60 1.02log potency in rats �1:47 1.04 �1:46 1.16Table 4: Means and SD's for \++" Chemicals (ĉm = ĉr = 1)

Model A NCI/NTPXm Xr Ŷm Ŷr Xm Xr Ŷm ŶrXm 1.00 Xm 1.00Xr .93 1.00 Xr .93 1.00Ŷm {.96 {.89 1.00 Ŷm {.92 {.85 1.00Ŷr {.89 {.96 .85 1.00 Ŷr {.85 {.88 .86 1.00Table 5: Correlations for \++" Chemicals (ĉm = ĉr = 1)
15



The Source of Bias in ConcordanceIt is natural to think that errors in classifying chemicals will cause concordance to godown, but this is not necessarily so. Each chemical belongs to one of four categories,depending on \true" mouse- and rat-carcinogenicity (i.e., \++", \+�", and so forth);also, each chemical belongs to one of four categories, depending on \observed" car-cinogenicity. This gives rise to a 4 � 4 matrix. Results for Model A are presentedin Table 6. The row totals give the average \true" number of each type of chemical,as reported at the left in Table 3. The column totals give the average \observed"number of each type of chemical, as reported at the right in Table 3.On the average, over the 1000 sets of 297 chemicals, 59.3 were \true ++". Mostof these (52.5) were observed as \++" in the simulated bioassays, but an average of3.9+2.7=6.6 were misclassi�ed as discordant (\+�" or \�+"). Also, 89.0 chemicalswere \true ��"; of these, an average of .4+.4=.8 were misclassi�ed as discordant.The average total number of \false discordances" can thus be computed from the�rst and fourth lines of the table as 3:9 + 2:7 + :4 + :4 = 7:4. On the other hand,the average total number of \false concordances" is, from the second and third lines,True Observed++ +� �+ �� Total++ 52.5 3.9 2.7 .2 59.3+� .2 43.7 .1 15.4 59.4�+ .1 .3 18.9 70.0 89.4�� .0 .4 .4 88.1 89.0Total 52.8 48.4 22.1 173.8 297.0Table 6: Simulation Results for Model A: Matrix of Classi�cations16



:2 + 15:4 + :1 + 70:0 = 85:7. The number of false concordances is much larger thanthe number of false discordances: in particular, the \observed ��" cell is in
ated,due to lack of power in the bioassay. This is what makes the observed concordancemuch larger than the true concordance.
Model BWe chose the parameters for Model B (Table 7) so that summary characteristics ofsimulated data would match the real NCI/NTP data, while observed concordancewould greatly overestimate true concordance. In Model B, all chemicals are carcino-genic in at least one species, but only 18% are carcinogenic in both species. Averagedover 1000 sets of 297 chemicals, the true concordance was 18%, and the observedconcordance was 77%. As with Model A, the average observed concordance table wasvirtually identical to the concordance table for NCI/NTP. The MTD's, estimatedpotencies, and correlations generated according to Model B were similar to those forNCI/NTP data (Appendix B). In particular, Model B more or less �ts the NCI/NTPdata; yet mouse carcinogens are, in this model, much less likely than mouse non-carcinogens to be rat carcinogens|25% versus 100%.Dist. of (Cm; Cr) Dist. of Xm Dist. of Xr Dist. of �m Dist. of �rcm cr prob. Mean SD Mean SD Mean SD Mean SD1 1 .18 2.0 1.0 1.6 1.0 0.90 0.50 0.90 0.501 0 .53 2.3 0.9 1.8 0.9 �0:85 0.50 � �0 1 .29 2.1 1.5 1.8 1.5 � � �0:95 0.50Table 7: Parameters in Model B
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Model COur next simulation (Model C, Table 8) is designed to show that current bioassaydesign allows observed concordance in excess of 90%, with a true concordance evenhigher|by a little. In this simulation, means and SD's of log MTD and log potencymatch the real data reasonably well, as do the correlations (Appendix B); of course,the simulated observed concordance is much larger than the concordance seen inNCI/NTP data. As it turns out, the simulated observed concordance of 92% over-estimates the \true" concordance in Model C, by about two percentage points.Dist. of (Cm; Cr) Dist. of Xm Dist. of Xr Dist. of �m Dist. of �rcm cr prob. Mean SD Mean SD Mean SD Mean SD1 1 .20 2.0 1.0 1.6 1.0 0:35 0.50 0:25 0.501 0 .05 2.3 0.9 1.8 0.9 �0:20 0.50 � �0 1 .05 2.1 1.5 1.8 1.5 � � �1:01 0.500 0 .70 2.4 1.0 2.0 0.9 � � � �Table 8: Parameters in Model C

18



Model DModel D is characterized in Table 9. All chemicals are either carcinogenic in bothspecies, or carcinogenic in neither species. The true concordance in Model D is 100%.Averaged over 1000 sets of 297 chemicals, the observed concordance was 77%; theaverage concordance table from Model D was virtually identical to the concordancetable from NCI/NTP data. Furthermore, the MTD's, estimated potencies, and corre-lations generated according to Model D were similar to NCI/NTP data (Appendix B).Thus, the bias in observed concordance can be downward by a substantial amount,as suggested by Piegorsch et al. (1992).Dist. of (Cm; Cr) Dist. of Xm Dist. of Xr Dist. of �m Dist. of �rcm cr prob. Mean SD Mean SD Mean SD Mean SD1 1 .47 2.0 1.0 1.6 1.0 �0:24 0.50 �0:51 0.500 0 .53 2.5 1.0 2.1 1.0 � � � �Table 9: Parameters in Model D
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DiscussionPiegorsch et al. (1992) suggest that true concordance is greater than observed concor-dance, especially for chemicals that are only weakly carcinogenic; indeed, an observedconcordance of 75% may imply a true concordance of nearly 100%, and observed con-cordance may have an upper bound of about 80%:\investigations, using computer simulations, illustrate that the concordance underes-timation can be rather severe even when restricted to a narrow range of relatively lowunderlying potencies. At these levels, average observed concordance may be limitedto only about 80%, suggesting that observed values at or near 75% may in fact beindicative of greater agreement than previously considered : : : concordance informa-tion at relatively low levels of potency can be seriously underestimated, weakeningthe overall measure of agreement exhibited by the data, and leading to suspect orunsure inferences. [p.119]"These results have been cited as showing that observed concordance is biaseddownward, so that 80% is an upper bound on observable concordance; see, for in-stance, (Hu� et al., 1991) and (Haseman and Seilkop, 1992). However, the results arebased on assumptions about the true (unobservable) parameters governing chemicalcarcinogenicity. These assumptions are somewhat unrealistic (�gure 1). Further-more, Piegorsch et al. have in e�ect assumed that all chemicals are carcinogenic inboth species, so true concordance is 100%. On that basis, observed concordance hasnowhere to go but down.As Models A and B demonstrate, it is possible to have low true concordancebut moderately high observed concordance. It is even possible to have a high trueconcordance and a higher observed concordance (Model C). In these models, observed20



concordance is biased high, on the average across all chemicals. Of course, it is alsopossible to have a true concordance of 100% but only moderately high observedconcordance (Model D).Piegorsch et al. pointed out that bias in concordance could depend on toxicity;if so, strati�cation by the MTD would help. We examined this idea in Model A, bycomputing concordance separately for chemicals with mouse MTDs above and below100. (The units of dose are \milligrams per kilogram of body-weight per day.") As itturned out, observed concordance was higher than true concordance for both groupsof chemicals, by about 25 percentage points. Strati�cation does not seem to resolvethe problem.So far, we have shown that a variety of models|with radically di�erent trueconcordances|can be �tted to the NCI/NTP data. It therefore seems unlikely thatthe true concordance can be estimated with any reasonable degree of con�dencefrom bioassay data, without imposing further constraints. Like previous authors, weused a variant of the one-hit model; we made some allowance for speci�cation error,because|if examined in detail|the one-hit model will be rejected. For reviews, seeFood Safety Council (1980), Freedman and Zeisel (1988); also see Peto et al. (1984),Cancer Research (1991) Vol. 51 No. 23 Part 2 pp.6407{6491, Hoel and Portier (1994).Too, there are familiar di�culties in using the data to discriminate among models;for a recent discussion, see Kopp-Schneider and Portier (1991). The one-hit modelis a special case of the \multistage model"; even this more general model will not�t a number of data sets (Freedman and Navidi, 1989, 1990). Also see Moolgavkar(1990, 1991, 1993, 1994), who discusses alternative models. Because of uncertaintiesabout dose-response models, simulation studies are rather idealized versions of reality.Such studies cannot give de�nitive evidence about concordance, but can indicate thecomplexities in estimating measures of inter-species agreement from bioassay data.21



Other literatureThere have been many studies of concordance, either to validate species extrapo-lation or to analyze possible modi�cations of bioassay design. Some papers have beencited above. Also see, for instance, Griesemer and Cueto (1980), Purchase (1980),Haseman and Hu� (1987), Haseman et al. (1987), Byrd, Crouch and Wilson (1990),Krewski, Goddard, and Withey (1990), Gold and Slone (1993), or Haseman and Lock-hart (1993). Reproducibility of bioassay results is considered by Gold et al. (1987).For studies with a policy analysis 
avor, see Lave et al. (1988), who use concordancedata to argue that the current regulatory framework is not cost-e�ective; Ennever etal. (1990) consider the costs of uncertainties about concordance.Worst-case analysisIn a bioassay, some 25 target tissues are examined, and risk assessment is based onthe most sensitive site. In other words, classi�cation of carcinogenicity is based on theresponse at the most sensitive site, and extrapolations from rodent to human are basedon the potency at this site. However, rodent carcinogens often increase the tumorrate at some sites but decrease the rate at other sites|even in the same sex-speciesgroup in the same experiment. (A further complication: animals in the treatmentgroups tend to weigh less, and body weight is associated with tumor incidence.)We think that both the positive and the negative trends should be considered whenassessing carcinogenicity|a topic not addressed in our simulations. (In e�ect, likeprevious authors, we studied concordance of worst-case analyses in mice and rats.)For reviews, see Haseman (1983a), Salsburg (1983), Freedman and Zeisel (1988),Davies and Monro (1994), Haseman and Johnson (1995).
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5. Other MeasuresThere are many possible alternative measures to concordance. \Correlation" is thePearson product moment correlation of the carcinogenicity indicators cm and cr.The true correlation is denoted corr(cm; cr) and is estimated by corr(ĉm; ĉr). ForNCI/NTP data, the correlation is 0.45; see Table 10. Over 1000 sets of chemicals, theobserved correlations in our four models averaged about 0.45, 0.45, 0.78, and 0.45,respectively. The \true" correlations averaged 0.0, �0:68, 0.73, and 1.00. (Models Cand D were constructed so the true association would be strong.)The \odds ratio" is de�ned as follows. Let n11 be the number of chemicals withcm = 1 and cr = 1; let n10 be the number of chemicals with cm = 1 and cr = 0; andso forth. Then true odds ratio = n11=n10n01=n00 = n11 n00n10 n01 :The corresponding estimator isobserved odds ratio = n̂11=n̂10n̂01=n̂00 = n̂11 n̂00n̂10 n̂01 ;Correlation Odds Ratio\True" Observed \True" ObservedNCI/NTP ? 0.45 ? 8.7Model A 0.00 0.45 1.0 9.2Model B �0:68 0.45 0.0 9.5Model C 0.73 0.78 56 107Model D 1.00 0.45 1 9.6Table 10: Bias in Correlation and Odds Ratio23



where n̂11 is the number of chemicals with ĉm = 1 and ĉr = 1, and so on. The oddsratio for NCI/NTP data is 8.7. The models gave average observed odds ratios of 9.2,9.5, 107, and 9.6; however, the \true" odds ratios averaged 1.0, 0.0, 56, and +1.Correlation coe�cients and odds ratios, like concordance, can be seriously biased;and the bias can go in either direction.
6. Inter-species Correlations of Carcinogenic PotencyInter-species agreement can also be measured quantitatively. Crouch and Wilson(1979) observed a high inter-species correlation of log potencies among chemicalswith statistically signi�cant results in both mice and rats. Bernstein et al. (1985)demonstrated that this high correlation could be explained as a statistical artifact;also see (Freedman et al., 1993). This section extends previous work, using a sta-tistical model which explicitly represents both carcinogens and non-carcinogens, anddistinguishes between \observed" and \true" potencies. The context is the NCI/NTPdata discussed above.The correlation of log potencies is 0.86 for the 53 NCI/NTP chemicals with sta-tistically signi�cant (p � 0:005, one-sided) potencies in both species; see the bottomright panel of Figure 2. To demonstrate the artifact in this correlation, suppose 10%of the animals in the control group of a standard NCI/NTP bioassay develop cancer.If the bioassay results are statistically signi�cant and not all the dosed animals de-velop cancer, then the maximum likelihood estimate of log potency will be within 0.9of log(1/MTD); that is,log(1/MTD)� 0:9 < log(estimated potency) < log(1/MTD) + 0:9:(5) 24
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Figure 2: MTD's and Potencies; Chemicals with Statistically Signi�cant Potencies inNCI/NTP Bioassays; Logs to Base 10
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Inequality (5) is essentially the one in Bernstein et al. (1985), except the boundsare appropriate for NCI/NTP data (Lin, 1994); also see Gaylor and Gold (1995). In(5) and in Figure 2, logs are to base 10. Variability in control tumor rates may widenthe bounds a little; so do lifetable adjustments to the estimates.Let d be the MTD for a chemical, and let b̂ be the estimated potency. Use thesubscripts m and r to denote species. As shown in the top left panel of Figure 2,log(dm) � log(dr). Equation (2) says that �0:9 < log(b̂m) + log(dm) < 0:9 and�0:9 < log(b̂r) + log(dr) < 0:9. Thus, log(b̂m) � � log(dm), as shown in the top rightpanel; also, log(b̂r) � � log(dr), as shown in the bottom left panel. It follows thatlog(b̂m) � log(b̂r). This is the artifact, which explains the high correlation in thebottom right panel.In our simulations, the correlations for chemicals classi�ed as ++ were similarto the correlations in NCI/NTP data. Take Model A, for instance, and restrict at-tention to chemicals with statistically signi�cant potency estimates: the inter-speciescorrelation of estimated log potencies averaged 0.85, which is virtually identical tothe correlation of 0.86 in NCI/NTP data (Table 5). Mice and rats were qualitativelyindependent in Model A, in the sense that the carcinogenicity indicators Cm and Crare independent. Among the true carcinogens (Cm = Cr = 1), the true tumor yields�m and �r are independent. These results suggest that the inter-species correlationof log potencies could be almost entirely artifactual, which con�rms the �ndings inBernstein et al. (1985) and Freedman et al. (1993). The results would also seem todispose of the suggestion by Goodman and Wilson (1991, p.212) \that the relation-ship [between potencies in mice and rats] is indeed stronger than what is implied bythe constraints alone."If all the animals in the nonzero dose groups develop tumors at the same site, thenthe estimated potency is in�nite. However, very few chemicals cause 100% tumorincidence. This might have some biological signi�cance, but it might also point to26



other artifacts, such as errors in necropsy reports; for dicussion, see (Bernstein et al.,1985; Freedman et al., 1993; Krewski et al., 1993).Crouch et al. (1987) responded to Bernstein et al. (1985) by claiming that therelationship between potency and MTD is based on biology, not statistics. Likewise,Goodman and Wilson (1992) observed that few chemicals have log(estimated potency� MTD)>1, and argued for biological signi�cance; however, on the whole, this seemsto be another manifestation of the artifact|and the absence of 100% tumor rates.The MTD is barely sub-toxic. Therefore, animals in the high dose group mayexperience chronic cell killing and cell replacement, which tends to increase the riskof cancer. Thus, toxicity is viewed as related to carcinogenicity. Inequality (5), onthe other hand, derives from bioassay design; it is the design of the experiments thatprecludes estimated potencies in the range (0, MTD/10) or (10MTD, 1). Further-more, the relationship between toxicity and carcinogenicity is a major complication indose extrapolation, if tissue damage is much less|or much more easily repaired|atlow environmental doses. For discussion of such issues, see Bernstein et al. (1985),Gold et al. (1989), Gold (1990), Ames and Gold (1990), Cunningham and Matthews(1991), Gold et al. (1992), Cohen and Ellwein (1992), Freedman et al. (1993), orAmes, Gold, and Willett (1995); the last is a compact introduction to cancer biologyand epidemiology.Recent papers on quantitative inter-species agreement and the artifact includeWhipple (1985), Rieth and Starr (1989), (Krewski et al., 1990, 1993); Kodell et al.(1991) discuss the role of the model. The extrapolation from rodents to humans isdiscussed in (Freedman and Zeisel, 1988), (Gold et al., 1989), (Gold et al., 1992);also see (Gaylor et al., 1993); Allen et al. (1988) take a more optimistic view, asdo Goodman and Wilson (1991, 1992). Kodell et al. (1995) suggest that the ob-served interspecies correlation in potency may be biased low; they use the one-hitmodel, assuming further that (1) all chemicals are carcinogenic in both species, and27



(2) bioassays give unbiased estimates of potencies; in e�ect, measurement error at-tenuates the correlation. Our simulations indicate, however, that the situation maybe more complicated than pure measurement error.To avoid the artifact, various authors have suggested expanding the test set ofchemicals, for instance, to include positive but insigni�cant potencies, or to replaceestimates that are 0 by upper 95%-con�dence limits, or to truncate estimates frombelow at small, positive values. None of these strategies seem to be e�ective: seeBernstein et al. (1985), Freedman et al. (1993), or Lin (1994).We turn now to the \true" values in our simulations. Recall that X is log MTD,Y is log potency, and � = X +Y is the log tumor yield; X is observable, but Y and �are unobservable. In all our models, the X's for mice and rats are highly correlatedand vary widely across experiments, just as in real data. Now, we restrict attention tochemicals carcinogenic in both species. The �'s are independent and have a relativelysmall standard deviation (for instance, see line 1 of Table 2). It follows that the Y 'smust be highly correlated, since Y = �X + �. The correlation in the Y 's is purelyartifactual, driven solely by the correlation between the X's. This artifact holds atthe level of \true" but unobservable quantities, and mimics the artifact discovered byBernstein et al. (1985), which holds at the level of data.On the other hand, if the X's are highly correlated but the Y 's are made to beindependent, then the �'s would necessarily be correlated. In short, given the highcorrelation in the X's, either the Y 's must be correlated or the �'s; that is arithmetic,not biology. Of course, in Tables 2 and 7{8{9, the parameters for �m depend on Cr;the same is true for �r and Cm. If carcinogens and non-carcinogens are consideredtogether, so that �1 is a permitted value, �m and �r are dependent.
28



7. ConclusionsIn NCI/NTP data, the observed concordance between mice and rats is about 75%.However, true concordance may be much higher|or much lower. Simulation studiesdo not determine the direction of the bias, but suggest that bias can be substantial,and in either direction. Since a variety of models more or less �t the data, it doesnot seem likely that true concordance can be determined without making substan-tial additional modeling assumptions. Furthermore, previously reported quantitativecorrelations of interspecies potencies can easily be explained in terms of statisticalartifact. In our present state of knowledge, it seems unlikely that the true correlationcan be estimated from bioassay data.
Appendix AThis section explains how parameters were chosen. Use the letters C, X, Y , and �for random variables. The variable C indicates \true" carcinogenicity: C = 1 for\true" carcinogens, and C = 0 otherwise. The variable X stands for log MTD. Thevariable Y stands for true log potency; if a chemical is not a carcinogen, Y = �1.Finally, the letter � stands for true log yield. For the carcinogens, � = X + Y ; for thenoncarcinogens, � = �1:Use \hats" to denote observed values from the bioassay. Among the random vari-ables, Ĉ indicates whether the chemical was an \observed" carcinogen (i.e., had astatistically signi�cant trend at the .005 level), Ŷ is the maximum likelihood esti-mate of log potency, and �̂ is the maximum likelihood estimate of log yield. AmongNCI/NTP chemicals, U is log MTD, V̂ is estimated log potency, D̂ indicates whetherV̂ is statistically signi�cant, and �̂ = U + V̂ . (It is assumed that log MTD can be29



Model NCI/NTPMice Rats Mice Rats\true" carcinogenicity Cm Cr\true" log MTD Xm Xr Um Ur\true" log potency Ym Yr\true" log yield �m �rstatistical signi�cance Ĉm Ĉr D̂m D̂restimated log potency Ŷm Ŷr V̂m V̂restimated log yield �̂m �̂r �̂m �̂rTable 11: Notationmeasured without error.) The notation is laid out in Table 11.Use the subscripts m and r to denote species. Each of the pairs (�m; �r) and(Xm;Xr) is assumed to have a bivariate normal distribution. The pair (�m; �r) isassumed to be independent of the pair (Xm;Xr), that is, tumor yields are independentof MTDs. These assumptions are at least approximately true for real data. Forexample, for the 53 NCI/NTP chemicals with D̂m = 1 and D̂r = 1, the pair (�̂m; �̂r)is approximately uncorrelated with the pair (Um; Ur); see Table 12. (Of course, inreal data, the \true" tumor yields are unobservable.)Picking the parameters involves choosing the yields, the true concordance, and theMTD's. The �rst step was choosing parameters for the �'s. Given Cm = 1 and Cr = 1,the conditional expected value for �m was chosen by judgment, and likewise for theconditional expected value for �m given Cm = 1 and Cr = 0. Also, given Cm = 1and Cr = 1, the conditional expected value for �r was chosen by judgment, andlikewise for the conditional expected value for �r given Cm = 0 and Cr = 1. (Initially,30



Um Ur �̂m �̂rUm 1.00Ur .93 1.00�̂m .04 .03 1.00�̂r {.07 {.01 .45 1.00Table 12: Correlations in NCI/NTP Data, the 53 \++" Chemicalsthe conditional expectations for the �'s were set equal to the observed values fromNCI/NTP data; for example, the conditional expectation for �m given Cm = 1 andCr = 1 was set equal to the average value of �̂m for chemicals with D̂m = 1 andD̂r = 1. The initial values for the conditional expectations were then modi�ed byjudgment.) Then, for chemicals with Cm = 1, the conditional standard deviation of�m was set at 0.5, which was the value for SD(�̂mjD̂m = 1), rounded to one decimalplace. Likewise, for chemicals with Cr = 1, the conditional standard deviation of �rwas set at 0.5, which was the value for SD(�̂rjD̂r = 1), again rounded to one decimalplace. Finally, corr(�m; �r) was set to zero; this makes the interspecies correlation oflog potencies purely artifactual.The next step was determining the probabilities for the \true" concordance table.There are four possible values for the pair (Cm; Cr). Given a particular set of valuesfor Cm and Cr, there are four possible classi�cations (Ĉm,Ĉr). This gives rise to a 4� 4 transition matrix. Call this matrix M ; the ijth entry of M gives the probabilitythat a chemical of type i will be observed to be type j, where a type 1 chemical is\++", a type 2 chemical is \+�", and so forth. The matrix M controls the rateat which chemicals are misclassi�ed. The various probabilities in M were found bynumerical integration; of course, these depend on the mean and SD of the �'s, whichcontrol the power of the trend test. (Table 6 is an empirical analog to M in Model31



A, rescaled from probabilities to numbers.)Let p be the row vector of proportions of NCI/NTP chemicals that are observed\++", \+�", \�+", and \��". For example, p(++) = 53=297 = :178; see Table 3.Let � be the row vector of probabilities for the model chemicals. The column vector�0 for Model A is shown in Column 3 of Table 2. The row vector � was chosen forModel A as follows: �rst, �0 was set equal to pM�1; then �0 was rounded slightlyto achieve independence. For Models B and D, some elements of �0 were slightlynegative; these were truncated at zero, then �0 was scaled and rounded so that thesum of entries was equal to 1. For Model C, the vector � was chosen by judgment.The �nal step was determining parameters for the log MTD's. The conditionaldistribution for the X's was chosen as follows. Given Cm and Cr, the conditionalcorrelation corr(Xm;Xr) was set at .93; see Table 12. Next, SDfXmjCm = a and Cr =bg was set equal to the standard deviation of Um for those NCI/NTP chemicals withD̂m = a and D̂r = b. The conditional standard deviation for Xr was chosen similarly.If a > 0 or b > 0, then EfXmjCm = a and Cr = bg was set equal to the mean ofUm for those NCI/NTP chemicals with D̂m = a and D̂r = b; likewise for Xr. Forchemicals with Cm = 0 and Cr = 0, the conditional mean of Xm was chosen so thatthe unconditional mean E(Xm) would match the overall average of Um for NCI/NTPchemicals; likewise forXr. Finally, all the conditional means and conditional standarddeviations for the X's were rounded to one decimal place.Other things being equal, the observed concordance depends on the parametersfor the true log yields �m and �r. Among truly \++" chemicals, if the true yieldsare both either very high or very low, the observed concordance is maximized; if onetrue yield is high and the other is low (say, �m is high and �r is low), then observedconcordance goes down. In the true \+�" and \�+" cells, high true yields in onespecies lead to low observed concordance, and low true yields lead to high observedconcordance (classi�cation as \��"). 32



Appendix BThis section presents results for the simulations. As before, Xm is log MTD in mice,Xr is log MTD in rats, Ŷm is estimated log potency in mice, and Ŷr is estimated logpotency in rats. The \++" part of Table 13 appears as Text Table 4.\++" Chemicals \+�" ChemicalsModel A NCI/NTP Model A NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:00 1:00 1:99 1:02 2:27 0:91 2:28 0:86log potency �1:82 1:04 �1:80 1:09 �2:35 0:98 �2:30 1:05Rats:log dose 1:60 1:00 1:60 1:02 1:79 0:91 1:80 0:90log potency �1:47 1:04 �1:46 1:16 � � � �\�+" Chemicals \��" ChemicalsModel A NCI/NTP Model A NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:11 1:42 2:10 1:45 2:42 1:25 2:41 0:95log potency � � � � � � � �Rats:log dose 1:80 1:42 1:75 1:49 2:00 1:19 2:01 0:89log potency �2:13 1:47 �2:15 1:58 � � � �Table 13: Means and SD's for Model A33



Model B: \True" Model B: Observed NCI/NTPRats Rats Rats+ � + � + �Mice + 53.3 157.8 Mice + 53.2 47.9 Mice + 53 48� 85.9 0.0 � 21.8 174.1 � 22 174Table 14: Concordance for 297 Chemicals tested both in Mice and Rats
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\++" Chemicals \+�" ChemicalsModel B NCI/NTP Model B NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:00 1:00 1:99 1:02 2:29 0:90 2:28 0:86log potency �1:61 1:02 �1:80 1:09 �2:63 0:94 �2:30 1:05Rats:log dose 1:60 1:00 1:60 1:02 1:79 0:90 1:80 0:90log potency �1:21 1:02 �1:46 1:16 � � � �\�+" Chemicals \��" ChemicalsModel B NCI/NTP Model B NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:09 1:47 2:10 1:45 2:23 1:16 2:41 0:95log potency � � � � � � � �Rats:log dose 1:79 1:47 1:75 1:49 1:80 1:16 2:01 0:89log potency �2:15 1:49 �2:15 1:58 � � � �Table 15: Means and SD's for Model BModel B NCI/NTPXm Xr Ŷm Ŷr Xm Xr Ŷm ŶrXm 1.00 Xm 1.00Xr .93 1.00 Xr .93 1.00Ŷm {.98 {.91 1.00 Ŷm {.92 {.85 1.00Ŷr {.91 {.98 .90 1.00 Ŷr {.85 {.88 .86 1.00Table 16: Average Correlations for \++" Chemicals (ĉm = ĉr = 1) from Model B35



Model C: \True" Model C: Observed NCI/NTPRats Rats Rats+ � + � + �Mice + 58.9 14.7 Mice + 52.0 15.8 Mice + 53 48� 14.7 208.6 � 6.9 222.3 � 22 174Table 17: Simulation Results for Model C: Concordance
\++" Chemicals \+�" ChemicalsModel C NCI/NTP Model C NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:00 1:00 1:99 1:02 2:22 0:94 2:28 0:86log potency �1:81 1:04 �1:80 1:09 �2:29 1:03 �2:30 1:05Rats:log dose 1:60 0:99 1:60 1:02 1:76 0:93 1:80 0:90log potency �1:46 1:04 �1:46 1:16 � � � �\�+" Chemicals \��" ChemicalsModel C NCI/NTP Model C NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:11 1:16 2:10 1:45 2:38 1:03 2:41 0:95log potency � � � � � � � �Rats:log dose 1:76 1:16 1:75 1:49 1:98 0:94 2:01 0:89log potency �1:85 1:04 �2:15 1:58 � � � �Table 18: Means and SD's for Model C36



Model C NCI/NTPXm Xr Ŷm Ŷr Xm Xr Ŷm ŶrXm 1.00 Xm 1.00Xr .93 1.00 Xr .93 1.00Ŷm {.96 {.89 1.00 Ŷm {.92 {.85 1.00Ŷr {.89 {.96 .86 1.00 Ŷr {.85 {.88 .86 1.00Table 19: Average Correlations for \++" Chemicals (ĉm = ĉr = 1) from Model CModel D: \True" Model D: Observed NCI/NTPRats Rats Rats+ � + � + �Mice + 139.6 0.0 Mice + 53.1 47.4 Mice + 53 48� 0.0 157.4 � 22.0 174.5 � 22 174Table 20: Simulation Results for Model D: Concordance
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\++" Chemicals \+�" ChemicalsModel D NCI/NTP Model D NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:00 1:00 1:99 1:02 2:02 1:00 2:28 0:86log potency �2:10 1:04 �1:80 1:09 �2:13 1:05 �2:30 1:05Rats:log dose 1:60 1:00 1:60 1:02 1:62 1:00 1:80 0:90log potency �1:81 1:03 �1:46 1:16 � � � �\�+" Chemicals \��" ChemicalsModel D NCI/NTP Model D NCI/NTPAvg. of Avg. Avg. of Avg.Means of SD's Means SD Means of SD's Means SDMice:log dose 2:02 0:99 2:10 1:45 2:44 1:01 2:41 0:95log potency � � � � � � � �Rats:log dose 1:61 0:99 1:75 1:49 2:04 1:01 2:01 0:89log potency �1:85 1:04 �2:15 1:58 � � � �Table 21: Means and SD's for Model DModel D NCI/NTPXm Xr Ŷm Ŷr Xm Xr Ŷm ŶrXm 1.00 Xm 1.00Xr .93 1.00 Xr .93 1.00Ŷm {.96 {.89 1.00 Ŷm {.92 {.85 1.00Ŷr {.89 {.96 .86 1.00 Ŷr {.85 {.88 .86 1.00Table 22: Average Correlations for \++" Chemicals (ĉm = ĉr = 1) from Model D38
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