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Abstract: A two-term Edgeworth expansion for the standardized version of the sample total in a two-stage
sampling design is derived. In particular, for the commonly used stratified and cluster sampling schemes,
formal two-term asymptotic expansions are obtained for the Studentized versions of the sample total. These
results are applied in conjunction with the bootstrap to construct more accurate confidence intervals for the
unknown population total in such sampling schemes. The Canadian Journal of Statistics 43: 578–599; 2015
© 2015 The Authors. The Canadian Journal of Statistics published by Wiley Periodicals, Inc. on behalf of
Statistical Society of Canada

Résumé: Les auteurs présentent un développement en deux termes d’une série d’Edgeworth pour l’estimateur
du total basé sur un plan échantillonnal à deux phases. Ils obtiennent en particulier des développements
asymptotiques formels pour la version studentisée du total échantillonnal basé sur un échantillonnage stratifié
et sur un échantillonnage en grappes. Les auteurs utilisent ces résultats et des méthodes de rééchantillonnage
afin de construire des intervalles de confiance plus précis pour le total de la population dans le contexte de
ces plans d’échantillonnage. La revue canadienne de statistique 43: 578–599; 2015 © 2015 Les auteurs.
La revue canadienne de statistique, publiée par Wiley Periodicals Inc. au nom de la Société statistique du
Canada

1. INTRODUCTION

A common sampling strategy for surveying finite populations is to select the sampled units in
several stages. Multistage sampling refers to sampling plans, where the selection of units is carried
out in stages using smaller and smaller subunits at each stage. For instance, to do a national survey
on unemployment or to conduct an opinion poll on a given topic, one may select certain states,
then certain counties within those states, cities within these counties, etc. in order to draw the
final sampling units. In particular, in a two-stage sampling design, the population is divided into
several “primary” units from which a sample of primary units is selected, and then a sample of
secondary units is selected within each selected primary unit. In each stage we use simple random
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sampling without replacement (SRSWOR), where a sample is taken without replacement and any
sample of a given size has the same probability of being chosen. It should be noted that two of
the most popular sampling designs—stratified sampling and cluster sampling—can be viewed as
special cases of such two-stage sampling. A stratified random sample is a complete census of the
primary units (the strata) followed by a sample of the secondary units within each primary unit.
A cluster sample, on the other hand, is a sample of the primary units (the clusters) followed by a
complete census of the secondary units within each selected primary unit. This allows considerable
flexibility depending on the homogeneity of units at the primary or secondary level, as well as
cost considerations.

Our aim in this paper is to study the asymptotic normality and develop Edgeworth expansions
for the cumulative distribution function of the estimator of the population total (or the mean) in
two-stage sampling, and then specialize these results to the case of stratified and cluster samplings.
Such results, although very important and useful, become rather non-trivial because of the complex
probability distribution on the selected subset of units induced by the sampling design. Large
sample properties and statistical inferences for estimators in the context of finite populations
are considerably more involved than in the independently and identically distributed (i.i.d) case
because they depend not only on the characteristics of the finite population but also the sampling
design employed. For instance, choice of units in stratified simple random sampling without
replacement would correspond to a multivariate hypergeometric distribution, which can be viewed
as independent binomials (with the same probability of selection) conditional on their sum. Such
sampling schemes may be viewed as draws in “generalized urn models” and the resulting estimate
of the population total as a sum of functions of resulting frequencies in such a context. This enables
us to exploit some of the machinery developed in Mirakhmedov, Jammalamadaka, & Ibrahim
(2014), as we do in Section 2.

The main objective is to make inferences on the parameters of the finite population using a
sample selected from the finite population according to a specified probability sampling design.
Even in simple situations, the exact distribution of the relevant estimators can be too complex to be
determined analytically, and large sample theory and approximations provide a useful alternative
for making such inferences. In this paper we shall consider two-stage designs, where it is assumed
that population size as well as the sample sizes in each stage are sufficiently large.

One of the most commonly estimated finite population parameters is the “population total,”
denoted by Y or the corresponding population mean. The estimator used for this purpose, say Ŷ

(see Section 2), can be approximated by a Gaussian distribution under fairly general conditions,
which also allows us to set confidence intervals for large samples as is usually done.

One of our primary goals in this paper is to obtain better approximations for this large sample
distribution by studying the Edgeworth asymptotic expansion for this estimator. Not only are such
analytical expressions of interest in their own right, but they also allow us to provide more accurate
confidence intervals for the unknown population total (or mean), as we show. Under the single-
stage SRSWOR design, asymptotic results for this estimator, which coincide with corresponding
results on the sample mean from a finite population of a real numbers, are well studied in the
literature: see, e.g., Erdös & Rényi (1959), Hájek (1960), Scott & Wu (1981), Robinson (1978),
Bickel & van Zwet (1978), Sugden & Smith (1997), and Bloznelis (2000). For results on stratified
and cluster sampling, see Rao (1973), Cohran (1977), Sen (1988) and Schenker & Welsh (1988),
Krewski & Rao (1981), and Bickel & Freedman (1984), whereas Hájek (1964) and Prášková
(1984) discuss results for unequal probability sampling. As we show in Section 2 the estimator
under a two-stage scheme can be reduced to a weighted sample mean from a finite population of
“random” variables. Asymptotic normality and Edgeworth asymptotic expansion for this sample
mean have been considered by von Bahr (1972), Mirakhmedov (1983), Hu, Robinson, & Wang
(2007), Mirakhmedov, Jammalamadaka, & Ibrahim (2014), and Ibrahim & Mirakhmedov (2013).
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Our second aim is to focus specifically on the stratified and cluster sampling designs. We first
apply the general Edgeworth asymptotic expansion result by writing down the first two terms in
the expansion for standardized versions of the estimators. However their practical use is limited, as
the standard deviation of these statistics is not known in practice. We hence derive formally a two-
term asymptotic expansion for the Studentized version of these estimators; the result for stratified
sampling design extends corresponding results by Babu & Singh (1985) and Sugden & Smith
(1997) who considered a sample mean in the one-stage SRSWOR design. Finally, our third aim is
to apply the theoretical results obtained here to construct skewness-adjusted confidence intervals
for the unknown population total. Extensive Monte Carlo studies indicate that the additional terms
in the asymptotic expansion do indeed provide better results than the usual normal approximation
based confidence intervals, especially when combined with bootstrap methods.

A note about the notations. φ(x) and �(x) will denote the density and distribution functions of
the standard normal distribution, respectively. c and C will denote some absolute finite constants
and θ will denote a number whose absolute value does not exceed 1. It should be observed that c,
C, and θ may be different when used in different equalities and inequalities or in different parts
of the same equality or inequality. The main results are to be found in Theorems 1 and 2, as well
as in Corollary 1, given in Sections 2 and 3. The long proofs of these two theorems are given in
the Appendix. Construction of confidence intervals is discussed in Section 4, which contains two
short Monte Carlo simulation studies as well.

2. ESTIMATORS IN TWO-STAGE SAMPLING

Suppose the population consists of N primary units, with the jth primary unit consisting of Mj

secondary units. The value of the kth secondary unit within the jth primary unit is denoted by
yjk. Thus for the jth primary unit, the total and the mean are given by

Yj =
Mj∑
k=1

yjk and Ȳj = Yj

Mj

.

The quantity of interest that is to be estimated is the “population total,”

Y =
N∑

j=1

Yj,

and we denote the mean per primary unit by Ȳ = Y/N. We draw a simple random sample without
replacement at each stage: a simple random sample s of n primary units out of N, and a simple
random sample sj of mj secondary units out of Mj within each primary unit j ∈ s. Let

f1 = n/N and f2j = mj/Mj (1)

represent the sampling fractions in these two stages, with the notation

g1 = (1 − f1) and g2j = (1 − f2j). (2)

Denote the sample mean in the selected jth primary unit by ȳj , and let yj = mjȳj = ∑
k∈sj

yjk

be the corresponding sample total.
The unbiased estimator of Yj is given by

Ŷj = Mjȳj = yj

f2j

,

and the unbiased estimator of the population total Y is

Ŷts = N

n

∑
j∈s

Ŷj, (3)

the subscript “ts” denoting two-stage, to distinguish it from other estimators coming later.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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We are interested in the Edgeworth expansion for Ŷts. In order to derive the expansion, we
will use a somewhat different interpretation of the estimator Ŷts. This will be done by reversing
the two stages in the sampling plan. Now, in the first stage, a simple random sample sj of mj

secondary units is drawn within each primary unit. As before we form the estimators Ŷj , but this
time for j = 1, ..., N (rather than for j ∈ s). In the second stage, a simple random sample s′ of
size n is drawn from the “population” consisting of the “units” Ŷ1, ..., ŶN , and thereafter we form
the estimator

Ŷ ′
ts = N

n

∑
j∈s′

Ŷj.

It is clear that Ŷts and Ŷ ′
ts are equal in distribution, and that f1Ŷ

′
ts is a sample sum from a finite

population of independent random variables.
Let

αrl = 1
N

N∑
j=1

E
[
(Ŷj − Ȳ )r

]
(Yj − Ȳ )l, (4)

σ2
ts = α20 − f1α02, (5)

and

�ts(u) = �(u) + (1 − u2)φ(u)
6n1/2σ3

ts
(α30 − 3f1α21 + 2f 2

1 α03), (6)

and note that σ2
ts is the asymptotic variance of n−1/2Ŷts.

We wish to derive a suitable upper bound for

sup
u∈R

∣∣∣∣∣P
{

f1(Ŷ ′
ts − Y )

n1/2σts
< u

}
− �ts(u)

∣∣∣∣∣ ,
by utilizing Theorem 2 of Hu, Robinson, & Wang (2007). For doing this, we will need a technical
condition, which ensures that the values yjk in each secondary unit do not cluster around too few
values (cf. Robinson (1978), Bickel & van Zwet (1978), and Mirakhmedov (1983), where similar
conditions are used). This technical condition, Condition C, is given in the Appendix.

Let

νrj = M−1
j

Mj∑
k=1

(yjk − Ȳj)r, (7)

ρ = 1
N

N∑
j=1

mj

f 4
2j

g2j(ν4j + 3mjg2jν
2
2j) + α04, (8)

and


 =
(
n1/2 log n

)
exp

⎡
⎣−n

⎧⎨
⎩1 − 81/2 1

N

N∑
j=1

(mjg2j)1/2 exp(−c(ε, δ)mjg2j)

⎫⎬
⎭
⎤
⎦ , (9)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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where ε and δ are positive constants defined in Condition C, and c(ε, δ) is a positive constant
depending only on ε and δ. We then have the following main result of this section whose proof is
given in the Appendix.

Theorem 1. If Condition C is fulfilled, then there exists a positive constant c such that

sup
u∈R

∣∣∣∣∣P
{

f1(Ŷts − Y )
n1/2σts

< u

}
− �ts(u)

∣∣∣∣∣ ≤ cρ

nσ4
ts

+ 3
,

where Y is the population total, and f1, Ŷts, σ2
ts, �ts(u), ρ, and 
 are defined in (1), (3), (5), (6),

(8), and (9), respectively.

Remarks 1. The quantity 
 = 
(mj, Mj, n, N) is exponentially decreasing when mjg2j is in-
creasing; the latter being a necessary condition for Ŷj to be asymptotically normal. In addition,

 = 
(mj, Mj, n, N) is exponentially small if mjg2j < 1/8.

Remarks 2. The quantities α20, α21, and α30 appearing in the definition of �ts(u) can be com-
puted through the following formulas:

α20 = 1
N

N∑
j=1

mj

f 2
2j

g2jν2j

Mj

Mj − 1
+ α02, (10)

α21 = 1
N

N∑
j=1

mj

f 2
2j

g2jν2j

Mj

Mj − 1
(Yj − Ȳ ) + α03, (11)

and

α30 = 1
N

N∑
j=1

mj

f 3
2j

(1 − 3f2j + 2f 2
2j)ν3j

Mj

Mj − 1
Mj

Mj − 2
+ 3α21 − 2α03, (12)

where using (10), σ2
ts given in (5) can be rewritten as

σ2
ts = 1

N

N∑
j=1

mj

f 2
2j

g2jν2j

Mj

Mj − 1
+ g1α02.

Remarks 3. To limit complexity, we have restricted ourselves to a two-term expansion in The-
orem 1. However higher order terms can be obtained similar to the results in Ibrahim & Mi-
rakhmedov (2013).

3. STUDENTIZED ESTIMATORS IN STRATIFIED AND CLUSTER SAMPLINGS

We now consider two important special cases, namely: (i) stratified random sampling and (ii)
cluster sampling. We continue to use the notations of Section 2.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2015 EDGEWORTH EXPANSIONS FOR TWO-STAGE SAMPLING 583

(i) Stratified random sampling is a special case of two-stage sampling where n = N. Hence for
this case,

σ2
ts = 1

N

N∑
j=1

mj

f 2
2j

g2jν2j

Mj

Mj − 1
,

�ts(u) = �(u) + (1 − u2)φ(u)
6n1/2σ3

ts

1
N

N∑
j=1

mj

f 3
2j

(1 − f2j)(1 − 2f2j)ν3j

Mj

Mj − 1
Mj

Mj − 2
,

and ρ is defined as in (8).
(ii) Cluster sampling is a special case of two-stage sampling with mj = Mj , j = 1, ..., N. Hence

for this case,

σ2
ts = g1α02,

�ts(u) = �(u) + (1 − u2)φ(u)(1 − 2f1)α03

6(ng1)1/2α
3/2
02

,

and ρ = α04.

Although the foregoing Edgeworth expansions obtained from Theorem 1 provide better ap-
proximations than the Central Limit Theorem for the standardized statistics, they are not useful
in practice as the variances of the statistics under consideration are not known. Due to this fact
we shall now obtain formally a two-term expansion for the Studentized versions of our statistics,
both for the stratified and cluster sampling designs.

For the population total, Y , the estimator used in stratified random sampling is

Ŷstr =
N∑

j=1

Ŷj. (13)

Let m = ∑N
j=1 mj . The variance of Ŷstr is

mσ2
str =

N∑
j=1

mjg2jν2j

f 2
2j

Mj

Mj − 1
,

which is unbiasedly estimated by

mS2
str =

N∑
j=1

mjg2jS
2
j

f 2
2j

,

where

S2
j = 1

mj − 1

∑
k∈sj

(yjk − ȳj)2.

We now define the Studentized version of the estimator Ŷstr as

Tstr = Ŷstr − Y

m1/2Sstr
, (14)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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and seek a two-term Edgeworth expansion,

P {Tstr < u} = �(u) + φ(u)
m1/2 ψm(u) + O

(
1
m

)
. (15)

The statistic Ŷstr, defined in (13), can be viewed as a sum of independent but non-identically
distributed random variables Ŷj = yj/f2j , j = 1, ..., N, where yj is the sample sum in stratum
j. Hence the Studentized version Tstr of Ŷstr is a special case of Student’s t-statistic based on
independent but non-identically distributed random variables. Many authors have studied the
problem of approximating the distribution of t-statistics by a normal distribution, see Hall &
Wang (2004) and the references therein. In particular, Bentkus, Bloznelis, & Götze (1996) gave a
Berry-Esseen bound for Student’s t-statistic in the case of non-identically distributed data. From
their Theorem 1.1, together with inequality (A4) in the Appendix of the current paper, we have

|P {Tstr < u} − �(u)| ≤ c(ρN)1/2

mσ2
str

, (16)

where ρ is defined as in (8). The right-hand side of (16) is of order O(N−1/2) under some additional
restrictions, e.g., under the following condition:

Condition A: f2j and mN−1σ2
str are bounded away from zero, whereas ν4j and N−1 ∑N

j=1 mjg2j

are bounded away from infinity.

To the best of our knowledge, existing results on Edgeworth expansions for Student’s t-
statistic consider the independent and identically distributed case only; we refer to Hall (1987)
and Hall & Wang (2004), who have established Edgeworth expansion results in this case un-
der different refinements. From their result, it follows that, if Cramer’s continuity condition
lim sup|t|→∞ |E[eitX]| < 1 holds where X is the observed random variable, then, under some
moment conditions, the remainder term of the two-term Edgeworth expansion is O(N−1). Exten-
sions of such results to non-identically distributed data is a difficult probabilistic problem, which
we do not consider here. Instead we obtain the second term of the Edgeworth expansion in (15),
see Theorem 2, using a procedure somewhat similar to that outlined in Sugden & Smith (1997,
Section 2). The details are given in the Appendix.

Theorem 2. In the second term of the Edgeworth expansion in (15), we have

1
m1/2 ψm(u) =

∑N
j=1 mjf

−3
2j g2jν3j

(
(2 − f2j)(u2 − 1) + 3g2j

)
6
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2 , (17)

where f2j , g2j , and νrj are defined in (1), (2), and (7), respectively.

The above theorem is sufficient to establish (15) formally. In addition, we conjecture that
Equation (15), with respect to the remainder term, holds true under Conditions A and C, because
in this case Cramer’s continuity condition, lim sup|t|→∞ |E[eitŶj ]| < 1, follows from inequality
(A9) in the Appendix.

The case when N = 1 with just one primary unit corresponds to the simple random sampling
design considered by Sugden & Smith(1997), and their two-term expansion result follows from
our theorem above. For this case, we have

Tstr = f21(Ŷ1 − Y1)
(m1g21)1/2S1

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2015 EDGEWORTH EXPANSIONS FOR TWO-STAGE SAMPLING 585

which is the Studentized version of the estimator Ŷ1 of the population total Y1 in simple random
sampling from a population of size M1, and the two-term Edgeworth expansion for P{f21(Ŷ1 −
Y1) < u(m1g21)1/2S1} equals

�(u) + φ(u)
6m11/2

ν31

ν
3/2
21

(
2 − f21

g
1/2
21

(u2 − 1) + 3g
1/2
21

)

= �(u) + φ(u)
6(m1g21)1/2

ν31

ν
3/2
21

(
3g21u

2 + (1 − u2)(1 − 2f21)
)
. (18)

As yet another special case of two-stage sampling, we now consider the case of cluster
sampling which corresponds to taking mj = Mj for j = 1, ..., N. For the population total, Y , the
estimator used in cluster sampling is

Ŷclu = N

n

∑
j∈s

Yj.

For this case, we define the Studentized version as

Tclu = f1(Ŷclu − Y )
(ng1)1/2Sclu

,

where

S2
clu = 1

n − 1

∑
j∈s

⎛
⎝Yj − 1

n

∑
j′∈s

Yj′

⎞
⎠

2

,

and seek a two-term Edgeworth expansion,

P {Tclu < u} = �(u) + φ(u)
n1/2 ψn(u) + (remainder term). (19)

By noting that cluster sampling can be viewed as simple random sampling from a “population”
consisting of the “units,” i.e., cluster totals, Y1, . . . , YN , and by (18), we obtain the following
result.

Corollary 1. In the second term of the Edgeworth expansion in (19), we have

1
n1/2 ψn(u) = 1

6(ng1)1/2
α03

α
3/2
02

(
3g1u

2 + (1 − u2)(1 − 2f1)
)

,

where f1, g1, and αrl are defined in (1), (2), and (4), respectively.

Remarks 4. By using results from Babu & Singh (1985, p. 265) it follows, under some assump-
tions that include a limiting non-latticeness condition, that the remainder term in the two-term
Edgeworth expansion (19) is at least o(n−1/2).

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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Remarks 5. The quantities νrj and α0r, r = 2, 3, in Theorem 2 and Corollary 1 are unbiasedly
estimated by

ν̂rj = f r−1
2j

mj

∑
k∈sj

⎛
⎝yjk − 1

mj

∑
k′∈sj

yjk′

⎞
⎠

r
r−1∏
k=1

Mj − k

mj − k
(20)

and

α̂0r = f r−1
1
n

∑
j∈s

⎛
⎝Ŷj − 1

n

∑
j′∈s

Ŷj′

⎞
⎠

r
r−1∏
i=1

N − i

n − i
.

The estimators α̂0r and ν̂rj are
√

n- and √
mj-consistent, respectively, i.e., for every ε > 0 there

exists a c > 0 such that

P{√n|α̂0r − α0r| > c} ≤ ε, (21)

P{√mj|ν̂rj − νrj| > c} ≤ ε. (22)

Let μk = N−1 ∑N
j=1 |Ŷj|k. That (21) holds true is a direct consequence of Chebyshev’s inequality

together with the inequality var(α̂0r) ≤ cμ2r/n, r = 2, 3. For r = 2, the latter inequality follows
from an application of Theorem 1 in Cho, Cho, & Eltinge (2005) and the fact that μl ≤ μ

l/k
k ,

1 ≤ l ≤ k, and for r = 3, from routine computations like those in the proof of Theorem 1 in Cho,
Cho, & Eltinge (2005). The same reasoning shows that (22) holds true when r = 2, 3.

4. CONFIDENCE INTERVALS AND MONTE CARLO SIMULATIONS

Fletcher & Webster (1996) note that clumping in the spatial distribution of animal and plant
species can lead to a high degree of skewness in the population, which can then carry over to the
distribution of a stratified sample mean. For this reason, they studied several ways of calculating
skewness-adjusted confidence intervals for population means from stratified random samples
under the assumption that the sampling fraction in each stratum is negligible (i.e., that mj � Mj

for all j). The set-up of our first Monte Carlo study will be similar to that in Fletcher & Webster
(1996). By using the result of Theorem 2, we will show that Fletcher & Webster’s conclusions
can be extended to the case where the sampling fractions are not negligible. Our second Monte
Carlo study uses data from the U.S. 1992 Census of Agriculture.

As in Fletcher & Webster (1996) we will consider four different methods for computing
confidence intervals; in our case, for the population total, Y . The first one is based on the usual
normal approximation of the distribution of Tstr = m−1/2S−1

str (Ŷstr − Y ), the Studentized version
of the estimated population total, Ŷstr, in stratified random sampling. That is, this 100(1 − α)%
interval is given by

(Ŷstr − zαm1/2Sstr, Ŷstr + zαm1/2Sstr), (23)

where zα is the upper α/2 percentile of the standard normal distribution.
In order to make use of the Edgeworth expansion in Theorem 2, we will use Hall’s (1992,

p. 123) idea to find an invertible cubic transformation, Fstr = f (Tstr), whose coefficients depend
on the form of (17), such that the distribution of Fstr is closer to the standard normal distribution
than is the distribution of Tstr (cf. Fletcher & Webster, 1996). Direct application of Hall’s idea

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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gives the following cubic transformation:

Fstr = f (Tstr) = Tstr + m−1/2γ̂1T
2
str + 1

3
m−1γ̂2

1 T 3
str + m−1/2γ̂2,

where

γ̂1 = m−1∑N
j=1 mjf

−3
2j g2jν̂3j(2−f2j)

6
(
m−1

∑N
j=1 mjf

−2
2j g2jν̂2j

)3/2 and γ̂2 = m−1∑N
j=1 mjf

−3
2j g2jν̂3j

(
3g2j−(2−f2j)

)
6
(
m−1

∑N
j=1 mjf

−2
2j g2jν̂2j

)3/2 ,

and ν̂rj , r = 2, 3 is defined in (20). The inverse of the aforementioned transformation, needed for
computing the confidence interval, is

f−1(x) = m1/2

γ̂1

((
1 + 3γ̂1

m1/2

(
x − γ̂2

m1/2

))1/3

− 1

)
,

and the corresponding 100(1 − α)% interval is then given by

(Ŷstr − f−1(zα)m1/2Sstr, Ŷstr − f−1(−zα)m1/2Sstr). (24)

Remarks 6. By Theorem 2 we have P{Tstr < u} = �(u) + m−1/2(γ1u
2 + γ2)φ(u) + rm, where

rm is the remainder in (15), and γ1 and γ2 are defined as γ̂1 and γ̂2, respectively, but with ν̂2j

and ν̂3j replaced by ν2j and ν3j . Let m̃ = min1≤j≤N mj . It is easy to see that γ̂1 and γ̂2 are m̃1/2-
consistent estimators ofγ1 andγ2, respectively (cf. Remark 5). Following Hall (1992, pp. 122–123),
define g(t) = t + m−1/2γ̂1t

2 + m−1/2γ̂2. If γ̂1 > 0 and u is fixed, then g(t) < u is equivalent to
−m−1/2γ̂−1

1 + Op(1) < t < u − m−1/2(γ̂1u
2 + γ̂2) + Op(m−1). From this relation and a similar

one for the case γ̂1 < 0, we deduce as in Hall (1992, p. 123) that if γ̂1 	= 0, then

P{g(Tstr) < u} = �(u) + O((m̃m)−1/2) + rm. (25)

The disadvantage of the quadratic transformation g is that it is generally not one-to-one, and
this is why we use the aforementioned cubic transformation f instead. As the added term in
the cubic transformation f is of order m−1, formula (25) will not be affected if we replace
transformation g with f . Thus, f (Tstr) admits an Edgeworth expansion in which the second term
is O((m̃m)−1/2) + rm rather than O(m−1/2).

The next and final two confidence intervals use the bootstrap to estimate the distributions of
Tstr and Fstr, respectively. Ordinary bootstrap (applied independently within each stratum) is not
recommended, as it involves with-replacement samples of size mj in stratum j and so does not
mimic how the original data were sampled. One way to deal with this is to use the population
bootstrap, as described in, e.g., Davison & Hinkley (1997, Section 3.7). Then, in the jth stratum
and if lj = Mj/mj is an integer, a fake stratum of size Mj is constructed by replicating each
sample observation yjk, k ∈ sj , lj times, and a bootstrap replicate of {yjk; k ∈ sj} is generated
by taking a sample of size mj without replacement from the constructed fake stratum. More
generally, let lj be the integer part of Mj/mj and dj = Mj − ljmj . Then a fake stratum is obtained
by taking lj copies of each yjk, k ∈ sj , and adding to them a sample of size dj taken without
replacement from yjk, k ∈ sj . By applying the population bootstrap independently within each
stratum, a bootstrap replicate of {yjk; k ∈ sj, j = 1, ..., N} is obtained. From bootstrap replicate
b, b = 1, ..., B, Ŷstr,b and Sstr,b are constructed in the same way as Ŷstr and Sstr are constructed
from the original stratified sample. The bootstrap version of the statistic Tstr is then defined as
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Table 1: Summary statistics for the finite population in the Monte Carlo study; δ is the proportion of
zeros, and for the nonzero values μ and σ2 are the mean and variance on the log scale.

Density δ μ σ2

Low 0.46 4.13 2.26

High 0.32 5.96 1.33

Tstr,b = m−1/2S−1
str,b(Ŷstr,b − Ŷstr), and a 100(1 − α)% confidence interval for the population total

is given by

(Ŷstr − tUm1/2Sstr, Ŷstr − tLm1/2Sstr), (26)

where tL and tU are the lower and upper α/2 percentiles of the empirical distribution of {Tstr,b}Bb=1.
Likewise, the bootstrap version of Fstr is defined as

Fstr,b = m−1/2γ̂1,b + Tstr,b + m−1/2γ̂2,bT
2
str,b + 1

3
m−1γ̂2

2,bT
3
str,b,

where γ̂1,b and γ̂2,b are constructed in the same way as γ̂1 and γ̂2 are constructed from the original
stratified sample. A 100(1 − α)% confidence interval for the population total is then obtained as

(Ŷstr − f−1(fU )m1/2Sstr, Ŷstr − f−1(fL)m1/2Sstr), (27)

wherefL andfU are, respectively, the lower and upperα/2 percentiles of the empirical distribution
of {Fstr,b}Bb=1.

We henceforth will refer to the confidence intervals (23)–(27) as the NT, NF, BT, and BF
interval, respectively. In the Monte Carlo study, three basic types of survey are considered for
each total sample size m. Type I consists of as many strata as possible (for computing the ν̂3j , at
least three units are needed in each stratum), type III has only two strata, and type II is chosen as
an intermediate between type I and type III. For every type of survey and sample size considered,
half the strata are “high density,” consisting in total of 120 units, and half “low density,” consisting
in total of 1,080 units. The values of the population units were generated from the corresponding
infinite population in Fletcher & Webster (1996), and summary statistics of our finite population
are given in Table 1. Survey types and total sample sizes considered are presented in Table 2.
It should be noted that the use of equal sample sizes in the strata corresponds approximately to
Neyman allocation.

Table 2: Survey types and total sample sizes in the Monte Carlo study.

I II III

Total sample size (m) N mj N mj N mj

30 10 3 6 5 2 15

48 16 3 8 6 2 24

90 30 3 10 9 2 45

144 48 3 12 12 2 72
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Table 3: Lower error rates (%).

m = 30 m = 48 m = 90 m = 144

Method I II III I II III I II III I II III

NT 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2

NF 1.0 1.2 1.3 1.3 1.5 1.6 1.7 1.8 1.5 2.2 2.5 2.3

BT 0.0 0.1 0.6 0.0 0.5 1.0 0.1 1.0 1.8 0.1 1.6 2.1

BF 0.5 4.8 2.2 0.8 3.8 2.5 1.1 3.2 2.9 1.6 3.6 3.4

For the simulation results presented in Tables 3 and 4, the nominal error rate is set to 100α =
5%, and B = 1, 000. For each survey type and total sample size, a lower (upper) error rate is
computed as the percentage of simulation replicates for which the lower (upper) limit of the
confidence interval is above (below) the population total, Y . Ideally, these error rates should both
be 2.5%; however, due to skewness of the actual sampling distribution, the actual rates may be far
from the desired values. In Tables 3 and 4, each pair of lower and upper rates is based on 10,000
repeated stratified samples from the defined population.

For NT, NF, and BT, the lower rates are too low and the upper rates are too high, and the
upper rates are worse than the lower ones. This holds true also for the BF method, except that it
produces too high lower rates in some cases. The NT method is worse than the other methods,
except that the BT method produces even worse lower rates when the stratum sizes are small. The
best lower rates in the case of small and intermediate stratum sizes are given by the NF method,
whereas the BF method appears to give better lower rates for large stratum sizes. With respect to
the upper error rates, the BF method is uniformly better than all the other methods, and BT and
NF perform about equally well, although the latter is not as good when the total sample size is
large. The best overall error rates are provided by BT and BF, where the latter is to be preferred
if the stratum sizes are small.

The results in Table 5 show that BT, NF, and BF produce wider intervals than NT. For example,
for survey type I and total sample size m = 30, NF produces intervals 2.0 times wider than NT,
on average. The NF method results in narrower intervals than the BF method. For larger strata
and total sample sizes, BT produces narrower intervals than NF, but the opposite holds true when
stratum or total sample sizes are small.

We conclude this section by considering sampling from two real-world populations. The first
real-world example uses data from the U.S. 1992 Census of Agriculture. As our variable of study,
we use the number of farms with 1,000 acres or more. For this example, we use the four census

Table 4: Upper error rates (%).

m = 30 m = 48 m = 90 m = 144

Method I II III I II III I II III I II III

NT 22.6 22.1 21.4 18.6 17.2 18.2 15.0 14.7 14.7 13.7 13.4 13.4

NF 11.1 10.6 9.7 9.4 8.2 9.0 7.3 6.7 6.1 8.1 7.5 7.2

BT 11.9 11.2 10.4 10.1 8.8 9.2 7.4 6.7 6.0 6.9 5.5 5.6

BF 7.9 9.2 9.4 6.9 7.4 8.3 5.1 5.0 4.8 5.0 4.8 5.1
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Table 5: Average length of confidence intervals BT, NF, and BF, relative the NT interval.

m = 30 m = 48 m = 90 m = 144

Method I II III I II III I II III I II III

NF 2.0 1.9 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

BT 4.2 2.7 2.7 3.1 2.2 2.1 2.5 1.8 1.8 2.1 1.7 1.7

BF 3.9 2.6 2.5 3.2 2.4 2.3 2.9 2.3 2.2 2.8 2.3 2.3

regions of the United States – Northeast, North Central, South, and West – as strata, consisting
of M1 = 220, M2 = 1054, M3 = 1382, and M4 = 422 counties, respectively. The population
is illustrated in Figure 1, and we see that it has a high degree of skewness (but not quite as
extreme as in our previous example). We repeatedly take stratified samples from the population,
with m1 = 21, m2 = 103, m3 = 135, and m4 = 41, so each sampling fraction, f2j , is in the
interval (0.090, 0.098). Again, we use α = 0.05 and B = 1, 000. The results, based on 10,000
repeated stratified samples from the population, are given in Table 6. The NT method is worse
than the other methods. The overall winner is the NF method, with an overall error rate equal to
2.50 + 2.25 = 4.75, and with the BT and BF methods close behind. The NF, BT, and BF intervals
are slightly wider than the NT intervals (about 1.4%, 2.6%, and 2.1% wider, on average).

The second real-world population consists of the 284 municipalities of Sweden and is called
the MU284 population; it can be found in Särndal, Swensson, & Wretman (1992, pp. 652–659).
We use the variable CS82, which is the number of Conservative seats in a municipal council,
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Figure 1: Histograms of the number of farms with 1,000 acres or more in the four census regions of the
United States.
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Table 6: Lower (L) and upper (U) error rates (%).

Method L U

NT 1.69 3.66

NF 2.50 2.25

BT 2.48 2.18

BF 2.63 2.18

and the N = 50 clusters as defined in Särndal, Swensson, & Wretman (1992). As before, we use
α = 0.05 and B = 1, 000, and NT, NF, BT, and BF intervals are defined analogously to those in the
case of stratified sampling. The results, based on 10,000 repeated cluster samples of size n = 16
from the MU284 population, are given in Table 7. We see that the lower rates are too low and the
upper rates are too high, except for the NF lower rate which is slightly larger than the nominal
lower rate. The NF has the best lower rate, whereas the BT method has the best upper and overall
rates (but the worst lower rate). The NF, BT, and BF intervals are wider than the NT intervals
(about 2.0%,12.0%, and 15.2% wider, on average), but the NF interval is only slightly wider.

5. CONCLUDING REMARKS

In this paper we have derived a two-term Edgeworth expansion for the standardized sample total
in two-stage sampling. For two very important special cases, namely stratified random sampling
and cluster sampling, formal two-term Edgeworth expansions have been obtained for Studentized
sample totals. We have illustrated that such results can be very useful for calculating skewness-
adjusted confidence intervals for the population total. By itself, the second-order terms in the
expansion for the Studentized stratified sample total can improve coverage error to an extent
comparable to what is achieved by using the bootstrap, and appears to be even better than the
bootstrap on the lower limit.

Further improvements, at least on the upper limit, can be achieved by using these higher order
terms together with the bootstrap (adapted to the finite population setting).

APPENDIX
First we specify the Condition C, needed for ensuring the result of Theorem 1.

Condition C: For each j = 1, ..., N, there exists ε > 0 and δ > 0 not depending on mj and Mj

such that

#{k :
∣∣∣uf−1

2j yjk − x − 2πm

∣∣∣ > ε} ≥ δMj,

Table 7: Lower (L) and upper (U) error rates (%).

Method L U

NT 2.13 4.73

NF 2.62 3.86

BT 1.86 2.98

BF 2.17 3.34
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for any fixed x, all Mj > 1, 1 ≤ mj ≤ Mj , all integers m, and all u satisfying

8σ2
ts

5 · 105f1ρ3/4 ≤ u ≤ 16n1/2σts

f1
.

Proof of Theorem 1. Recall that f1Ŷ
′
ts can be viewed as a sample sum from the finite

population (Ŷ1, ..., ŶN ). Therefore, using Theorem 2 of Hu, Robinson, & Wang (2007), with Xj =
Ŷj − Ȳ , δ0 = 8 · 105 (which satisfy their condition for δ0), and L0 = N−1 ∑N

j=1 E[|Ŷj − Ȳ |3],
we see that

sup
u∈R

∣∣∣∣∣P
{

f1(Ŷ ′
ts − Y )

n1/2σts
< u

}
− �ts(u)

∣∣∣∣∣ ≤ Cα40

nσ4
ts

+ 3χ(δ1, δ2), (A1)

where

χ(d1, d2) = n1/2 log n exp

⎛
⎝−n

⎛
⎝1 − sup

d1≤|u|≤d2

1
N

N∑
j=1

∣∣∣E [
exp

(
iuŶj

)]∣∣∣
⎞
⎠
⎞
⎠ ,

δ1 = 8σ2
ts

105L0
and δ2 = 16n1/2σts.

Note that yj = f2jŶj is a sample sum obtained by simple random sampling from the jth primary
unit. Therefore, by Finucan, Galbraith, & Stone (1974, pp. 152–153),

E[(Ŷj − Yj)2] = mj

f 2
2j

g2jν2j

Mj

Mj − 1
,

E[(Ŷj − Yj)3] = mj

f 3
2j

g2j(1 − 2f2j)ν3j

Mj

Mj − 1
Mj

Mj − 2
,

E[(Ŷj − Yj)4] ≤ mj

f 4
2j

g2j(ν4j + 3mjg2jν
2
2j)

(
1 + O

(
1

Mj

))
. (A2)

Thus,

α0l = 1
N

N∑
j=1

(Yj − Ȳ )l, (A3)

and

α20 = 1
N

N∑
j=1

E[(Ŷj − Ȳ )2]

= 1
N

N∑
j=1

E[((Ŷj − Yj) + (Yj − Ȳ ))2]

= 1
N

N∑
j=1

mj

f 2
2j

g2jν2j

Mj

Mj − 1
+ α02,

and the formulas (11)–(12) for α21 and α30 can be derived in a similar manner.
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Next, consider the right-hand side of the inequality (A1). We want to find suitable upper bounds
for L0 and χ(d1, d2). We have

α40 = 1
N

N∑
j=1

E[((Ŷj − Yj) + (Yj − Ȳ ))4] ≤ 8

⎛
⎝ 1

N

N∑
j=1

E[(Ŷj − Yj)4] + α04

⎞
⎠ ≤ 8ρ, (A4)

where the last inequality follows from (A2) and ρ is defined as in (8). By Hölder’s inequality and
(A4), L0 ≤ α

3/4
40 < 5ρ3/4. Hence

δ1 = 8σ2
ts

105L0
≥ δ′

1 = 8σ2
ts

5 × 105ρ3/4 ,

implying

χ(δ1, δ2) ≤ χ(δ′
1, δ2). (A5)

By the Erdös & Rényi (1959) formula (see also formula (2.5) in Mirakhmedov, Jammala-
madaka, & Ibrahim (2014)), we have

E
[
exp

(
iuŶj

)]
=
(

2π

(
Mj

mj

)
f

mj

2j g
Mj−mj

2j

)−1 ∫ π

−π

Mj∏
j=1

ψjk(u, τ)dτ, (A6)

where

ψjk(u, τ) = E
[
exp

(
iuf−1

2j yjkξj + iτ(ξj − f2j)
)]

= eiτg2j

(
1 + f2j

(
e
i(τ+uf−1

2j
yjk) − 1

))

and ξ1, ..., ξN are independent Bernoulli random variables with probability of success equal to

f1. We have |E[eiuf−1
2j

yjkξj+iτξj ]|2 = 1 − 2f2jg2j(1 − cos(uf−1
2j yjk + τ)), and under Condition C

we get

Mj∏
k=1

∣∣ψjk(u, τ)
∣∣ ≤ exp

⎛
⎝−f2jg2j

Mj∑
k=1

(1 − cos(uf−1
2j yjk + τ))

⎞
⎠

≤ exp(−c(ε, δ)Mjf2jg2j)

= exp(−c(ε, δ)mjg2j). (A7)

By Lemma 1 in Höglund (1978) we have

π1/2

2
≤ (2πmjg2j)1/2

(
Mj

mj

)
f

mj

2j g
Mj−mj

2j < 1. (A8)

By combining (A6), (A7), and (A8), we see that∣∣∣E [
exp

(
iuŶj

)]∣∣∣ ≤ (8mjg2j)1/2 exp(−c(ε, δ)mjg2j) (A9)

for f−1
1 δ′

1 ≤ u ≤ f−1
1 δ2, implying that

χ(δ′
1, δ2) ≤ 
. (A10)

The proof of the theorem is concluded by combining (A1), (A4), (A5), and (A10). �
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Proof of Theorem 2. Denote the statistic in (14) by Tstr,m, to reflect its dependence on
m = ∑N

j=1 mj . We will derive formally a two-term asymptotic expansion for P
{
Tstr,m < u

}
of the form

�(u) + φ(u)
m1/2 ψm(u). (A11)

Assume for the moment that E[Tstr,m] → 0 and Var[Tstr,m] → 1 as m → ∞ (we will verify that
this assumption holds true at the end of the proof). By Hall (1992, Section 2.4), see also Sugden
& Smith (1997, Section 2), it follows that if the cumulants κj,m of Tstr,m are of order m−(j−2)/2,
j = 1, 2, 3, and can be expressed as κj,m = m−(j−2)/2 (aj,1 + m−1aj,2 + · · ·), where a1,1 = 0
and a2,1 = 1 by assumption, then only a1,2 and a3,1 contribute to the O

(
m−1/2) term in (A11),

and

ψm(u) = −
(
a1,2 + a3,1

6
(u2 − 1)

)
. (A12)

We derive asymptotic expansions for the cumulants of Tstr,m by using a procedure somewhat
similar to that outlined in Sugden & Smith (1997, Section 2).

Put Wjk = (
yjk − Ȳj

)
ν
−1/2
2j and Vjk = W2

jk − 1, and define the sample means w̄j =
mj

−1 ∑
k∈sj

Wjk and v̄j = mj
−1 ∑

k∈sj
Vjk. Then (mj − 1)S2

j = mjν2j

(
1 + v̄j − w̄2

j

)
and

E[w̄j] = E[v̄j] = 0, and both w̄j and v̄j are O(m−1/2
j ). Hence, using that Ŷstr − Y = ∑N

j=1(Ŷj −
Yj) = ∑N

j=1 Mj(ȳj − Ȳj) = ∑N
j=1 f−1

2j

∑
k∈sj

(yjk − Ȳj) = ∑N
j=1 mjf

−1
2j ν

1/2
2j w̄j , we obtain the

following stochastic expansion of Tstr,m (and its powers to an appropriate order):

Tstr,m = Ŷstr − Y(∑N
j=1 mjf

−2
2j g2jν2j

(
1 + v̄j − w̄2

j

))1/2

=
∑N

j=1 mjf
−1
2j ν

1/2
2j w̄j(∑N

j=1 mjf
−2
2j g2jν2j

)1/2

(
1−

∑N
j=1 mjf

−2
2j g2jν2j

(
v̄j−w̄2

j

)
2
∑N

j=1 mjf
−2
2j g2jν2j

+
3
(∑N

j=1 mjf
−2
2j g2jν2j

(
v̄j−w̄2

j

))2

8
(∑N

j=1 mjf
−2
2j g2jν2j

)2 + · · ·
)

=
∑N

j=1 mjf
−1
2j ν

1/2
2j w̄j(∑N

j=1 mjf
−2
2j g2jν2j

)1/2 −
∑N

j=1 mjf
−1
2j ν

1/2
2j w̄j

∑N
j=1 mjf

−2
2j g2jν2jv̄j

2
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2

+
3
∑N

j=1 mjf
−1
2j ν

1/2
2j w̄j

(∑N
j=1 mjf

−2
2j g2jν2jv̄j

)2

8
(∑N

j=1 mjf
−2
2j g2jν2j

)5/2

+
∑N

j=1 mjf
−1
2j ν

1/2
2j w̄j

∑N
j=1 mjf

−2
2j g2jν2jw̄

2
j

2
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2 + · · ·
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=
∑N

j=1 mjf
−1
2j ν

1/2
2j w̄j(∑N

j=1 mjf
−2
2j g2jν2j

)1/2

−
∑N

j=1 mjf
−1
2j ν

1/2
2j w̄j

∑N
j=1 mjf

−2
2j g2jν2jv̄j

2
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2 + OP

(
m−3/2

)
.

Note, only the terms which will contribute to a1,2 and a3,1 are given explicitly on the right-hand
side above. Also, note that v̄1, ..., v̄N and w̄1, ..., w̄N are two sequences of independent random
variables, and that v̄j and w̄j′ , j 	= j′, are independent random variables.

Below we will focus on the leading terms in the asymptotic expansions, and the notation l.t.(x)
will be used to refer to the leading term of a quantity x. Recalling that E[w̄j] = 0, we have

l.t.(E[Tstr,m]) = −
∑N

j=1 m2
jf

−3
2j g2jν

3/2
2j E[w̄jv̄j]

2
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2 , (A13)

l.t.(E[T 2
str,m]) =

E

[(∑N
j=1 mjf

−1
2j ν

1/2
2j w̄j

)2
]

∑N
j=1 mjf

−2
2j g2jν2j

=
∑N

j=1 m2
jf

−2
2j ν2jE[w̄2

j ]∑N
j=1 mjf

−2
2j g2jν2j

, (A14)

and

l.t.(E[T 3
str,m]) =

E

[(∑N
j=1 mjf

−1
2j ν

1/2
2j w̄j

)3
]

(∑N
j=1 mjf

−2
2j g2jν2j

)3/2

−
3E

[(∑N
j=1 mjf

−1
2j ν

1/2
2j w̄j

)3 ∑N
j=1 mjf

−2
2j g2jν2jv̄j

]

2
(∑N

j=1 mjf
−2
2j g2jν2j

)5/2 . (A15)

Let ηjk = 1 if yjk appears in the sample sj , and 0 otherwise. Note that P(ηjk = 1) = f2j , and that
the sample means w̄j and v̄j may be written as

w̄j = 1
mj

Mj∑
k=1

Wjkηjk and v̄j = 1
mj

Mj∑
k=1

Vjkηjk,

which is useful when deriving the expected values of w̄a
j v̄

b
j , where a and b are non-negative

integers. In particular, we obtain

E[w̄jv̄j] = 1
m2

j

Mj∑
k′=1

Mj∑
k=1

Wjk′ (W2
jk − 1)E[ηjk′ηjk]

= mj − 1
mjMj(Mj − 1)

Mj∑
k′=1,k′ 	=k

Mj∑
k=1

Wjk′ (W2
jk − 1) + 1

mjMj

Mj∑
k=1

Wjk(W2
jk − 1)

= − mj − 1
mjMj(Mj − 1)

Mj∑
k=1

Wjk(W2
jk − 1) + 1

mjMj

Mj∑
k=1

Wjk(W2
jk − 1),
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where we have used that W̄j = Mj
−1 ∑Mj

k=1 Wjk = 0 and V̄j = Mj
−1 ∑Mj

k=1 Vjk = 0, and thus

l.t.(E[w̄jv̄j]) = g2j

mj

ν3j

ν
3/2
2j

. (A16)

In the same vein, we can find the leading terms of E[w̄2
j ], E[w̄3

j ], and E[w̄3
j v̄j]. A simpler option

is to use results of Finucan, Galbraith, & Stone (1974, p. 152), from which it follows that

l.t.(E[w̄2
j ]) = g2j

mj

and l.t.(E[w̄3
j ]) = g2j

(
1 − 2f2j

)
m2

j

ν3j

ν
3/2
2j

, (A17)

and Theorem 2 of Nath (1968), from which we obtain

l.t.(E[w̄3
j v̄j]) = 3g2

2j

m2
j

ν3j

ν
3/2
2j

. (A18)

Thus, by applying (A16) and (A17) in (A13) and (A14), respectively, we see that

l.t.(E[Tstr,m]) = −
∑N

j=1 mjf
−3
2j g2

2jν3j

2
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2 = a1,2

m1/2 , (A19)

where

a1,2 = − m−1 ∑N
j=1 mjf

−3
2j g2

2jν3j

2
(
m−1

∑N
j=1 mjf

−2
2j g2jν2j

)3/2 , (A20)

and

E[T 2
str,m] = 1 + o(1). (A21)

Consider the numerator in the first term on the right-hand side of (A15). By (A17), and by noting
that w̄j , j = 1, ..., N, are independent random variables, we get

E

⎡
⎢⎣
⎛
⎝ N∑

j=1

mjν
1/2
2j

f2j

w̄j

⎞
⎠

3
⎤
⎥⎦ =

N∑
j=1

mjg2j(1 − 2f2j)ν3j

f 3
2j

. (A22)

Next, consider the numerator in the second term on the right-hand side of (A15). We have

E

⎡
⎢⎣
⎛
⎝ N∑

j=1

mjν
1/2
2j

f2j

w̄j

⎞
⎠

3
N∑

j=1

mjg2jν2j

f 2
2j

v̄j

⎤
⎥⎦

=
N∑

j=1

m4
jg2jν

5/2
2j

f 5
2j

E[w̄3
j v̄j] + 3E

⎡
⎣ N∑

j′=1,j′ 	=j

N∑
j=1

m2
j′ν2j′

f 2
2j′

mjν
1/2
2j

f2j

w̄2
j′w̄j

N∑
l=1

mlg2lν2l

f 2
2l

v̄l

⎤
⎦
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=
N∑

j=1

m4
jg2jν

5/2
2j

f 5
2j

E[w̄3
j v̄j] + 3

N∑
j′=1,j′ 	=j

N∑
j=1

m2
j′ν2j′

f 2
2j′

m2
jg2jν

3/2
2j

f 3
2j

E[w̄2
j′ ]E[v̄jw̄j]

=
N∑

j=1

m4
jν

5/2
2j

f 5
2j

g2jE[w̄3
j v̄j]

+ 3

⎛
⎝ N∑

j=1

m2
jν2j

f 2
2j

E[w̄2
j ]

N∑
j′=1

m2
j′g2j′ν

3/2
2j′

f 3
2j′

E[v̄j′w̄j′ ]−
N∑

j=1

m4
jg2jν

5/2
2j

f 5
2j

E[w̄2
j ]E[v̄jw̄j]

⎞
⎠,

and from this, together with (A16), (A17), and (A18), we obtain the leading term of the second
term on the right-hand side of (A15),

9
∑N

j=1 mjf
−3
2j g2

2jν3j

2
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2 .

This together with (A15) and (A22) yield

l.t.(E[T 3
str,m]) =

∑N
j=1 mjf

−3
2j (1 − 2f2j)g2jν3j(∑N

j=1 mjg2jf
−2
2j ν2j

)3/2 − 9
∑N

j=1 mjf
−3
2j g2

2jν3j

2
(∑N

j=1 mjf
−2
2j g2jν2j

)3/2 . (A23)

By (A19) and (A21), E[Tstr,m] → 0 and Var[Tstr,m] → 1 as m → ∞, and we have κ1,m =
E[Tstr,m] and κ2,m = E[T 2

str,m] − (E[Tstr,m])2, where a1,1 = 0 and a2,1 = 1. We have κ3,m =
E[T 3

str,m] − 3E[T 2
str,m]E[Tstr,m] + 2

(
E[Tstr,m]

)3, and by (A19) and (A21), l.t.(κ3,m) = E[T 3
str,m] −

3E[Tstr,m]. By (A19) and (A23) we obtain

a3,1 =
m−1

(∑N
j=1 mjf

−3
2j g2j(1 − 2f2j)ν3j − 3

∑N
j=1 mjf

−3
2j g2

2jν3j

)
(
m−1

∑N
j=1 mjf

−2
2j g2jν2j

)3/2

= −m−1 ∑N
j=1 mjf

−3
2j g2j(2 − f2j)ν3j(

m−1
∑N

j=1 mjf
−2
2j g2jν2j

)3/2 . (A24)

Thus, (A11), (A12), (A20), and (A24) imply the desired result. �
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