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Abstract

Vegetation indices (VIs) derived from satellite reflectance measurements are
often used as proxies of canopy activity to evaluate the impacts of drought 
and heat wave on gross primary production (GPP) through production 
efficiency models. However, GPP is also regulated by physiological processes
that cannot be directly detected using reflectance measurements. This study
analyzes the co‐limitation of canopy and plant physiology (represented by 
VIs and climate anomalies, respectively) on GPP during the 2003 European 
summer drought and heat wave for 15 Euroflux sites. During the entire 
drought period, spatial pattern of GPP anomalies can be quantified by 
relative changes in VIs. We also find that GPP sensitivity to relative canopy 
changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced 
vegetation index), while GPP sensitivity to physiological changes is higher for
forest ecosystems (−0.18 ± 0.05 g C m−2 d−1/hPa). A conceptual model is 
further built to better illustrate the canopy and physiological controls on GPP 
during drought periods.

1 Introduction

Both drought frequency and intensity are predicted to increase along with 
global warming [Dai, 2012; Easterling et al., 2000], which can alter the 
carbon cycle through inhibiting photosynthesis [Flexas and Medrano, 2002], 
increasing mortality rate [Allen et al., 2010; Peng et al., 2011], and affecting 
ecosystem structure [Saatchi et al., 2013]. The decrease of net primary 
production caused by drought was estimated to be 0.55 Pg C globally for the 
first decade in the 21st century [Zhao and Running, 2010]. The most direct 
effect of drought came from the declined gross primary production (GPP) 
[Ciais et al., 2005]. Many approaches have been proposed to estimate GPP at
regional or global scale: (1) process‐based dynamic global vegetation models
[Arora et al., 2013; Sitch et al., 2008], (2) remote sensing‐based production 



efficiency models (PEMs) [Zhao and Running, 2010], and (3) eddy flux‐based 
data‐driven models [Beer et al., 2010; Jung et al., 2011]. Vetter et al. [2008] 
compared the predictions of these models for GPP and net ecosystem CO2 
exchange anomalies during the 2003 European drought and heat wave. But 
the results from seven models were divergent, with estimates of drought‐
induced GPP decline ranging from −0.02 to −0.27 Pg C. A clear difference has
also been found between the eddy flux‐based data‐driven models which 
show little interannual variability (IAV) and the process‐based models which 
exhibit larger IAV [Anav et al., 2015]. Since drought is one of the most 
important factors which causes the IAV of GPP [Zscheischler et al., 2014], it 
is crucial to improve the accuracy of GPP estimation during drought and heat
wave to better understand the ecosystem responses under future climate.

Drought and heat wave have two direct impacts on plant photosynthesis 
[der Molen et al., 2011]. The first impact is the physiological response to 
water deficit and high temperature, including the reduction in enzyme 
activity, and stomatal conductance to prevent water loss [Flexas and 
Medrano, 2002; Hetherington and Woodward, 2003; Reichstein et al., 2002]. 
These effects have been often related to temperature, vapor pressure deficit 
[Farquhar et al., 1980], and soil moisture deficit [Baldocchi et al., 2004]. The 
second impact is the changes of vegetation canopy in response to drought, 
which includes leaf withering and senescence. The canopy changes can be 
represented by the decrease of leaf area index (LAI) and observed by 
satellites [Zhang et al., 2013]. These two processes also take effects at 
different time scales: the physiological processes respond at the scale of 
minutes to days, while the vegetation canopy changes occur at a scale of 
days to weeks.

Satellite‐based PEMs differ in their approaches to quantify physiological and 
canopy responses to drought and heat. Some PEMs use vapor pressure 
deficit (VPD)‐related scalars, e.g., MODIS PSN (Moderate Resolution Imaging 
Spectroradiometer Photosynthesis) [Running et al., 2004] and carbon flux 
model [Turner et al., 2006]. However, GPP responses to VPD and 
temperature are different among ecosystems, even species [Blackman and 
Brodribb, 2009]. For example, both the stomata characteristics (size and 
density) and intrinsic water use efficiency (A/gs, carbon assimilation rate 
divided by stomatal conductance) differ among individual vegetation types 
[Hetherington and Woodward, 2003]. Therefore, using universal parameters 
to qualify these limitations will introduce biases. Some PEMs use transformed
vegetation indices (VIs) to account for water stress, including VPM 
(vegetation photosynthesis model) [Xiao et al., 2004b], vegetation 
photosynthesis and respiration model [Mahadevan et al., 2008], and 
modified temperature and greeness model [Sims et al., 2014]. However, 
when the vegetation canopy responds to prolonged drought and heat, 
different ecosystems have different spectral sensitivities to water stress 
(SSWS), i.e., the changes in canopy characteristics which can be captured by
satellite under water stress [Sims et al., 2014]. Trees with deeper roots are 



more resistant to decreased soil water and have low SWSS. By contrast, 
SWSS are generally higher for grassland and shrubland. In addition, there 
may be a time lag between leaf senescence and GPP decline for most plants,
which makes simulating GPP under drought even more difficult [Frank et al., 
2015]. Dong et al. [2015] suggested that remote sensing data‐driven models
that do not include water limitation factors performed much worse during 
drought periods. However, even for the models discussed above which 
consider water stress, their performances are not satisfied [Liu et al., 2015; 
Schaefer et al., 2012]. The major problem is the oversensitivity of VPD‐
related water stress and undersensitivity of VIs‐related water stress. Recent 
studies also highlight the complexity of water stress limitation on GPP and 
light use efficiency [Yuan et al., 2014; Zhang et al., 2015b]. Improving PEMs 
performance is critical to better diagnose the effects of droughts and heat 
waves on GPP.

The 2003 summer climate anomaly in Europe is suitable to investigate 
physiological and canopy controls on regional GPP, because of the relatively 
high density of flux tower sites, different ecosystems affected, and the large 
spatial extent of the drought [Schar et al., 2004]. In this paper, we address 
two specific questions: (1) Are satellite‐retrieved VIs sufficient to quantify the
spatial differences in GPP anomalies across different ecosystems? (2) Are 
satellite‐retrieved VIs able to track the temporal GPP anomalies at each flux 
tower site?

2 Materials and Methods

2.1 Data

The data used in this study include remotely sensed vegetation indices (VIs) 
and land surface temperature (LST), as well as vapor pressure deficit (VPD) 
and GPP measurements from the in situ flux tower records. VIs and LST for 
each site are derived from MODIS (MOD09A1 and MOD11A2). Even during 
drought period, there exists atmospheric contamination on data quality 
[Zhang et al., 2015a]. In order to eliminate these corrupted observations, a 
data quality check and gap‐filling algorithm was applied to these variables 
(Figure S1 in the supporting information). The eddy flux data are from 15 flux
tower sites in Europe, all of which experienced a decline of GPP during the 
2003 drought and heat wave period (Figures 1a–1c and Table S1). For more 
information about the data usage and processing, please refer to the 
supporting information.



2.2 Method

GPP can be calculated based on a function of a maximum potential value, 
GPPmax, reduced by both canopy control (CC) and physiological control (PC)

(1)

For each specific stable ecosystem, the GPPmax for a specific period can be 
regarded as a constant. The canopy control is related to three different 
characteristics of vegetation canopy: (1) leaf area or canopy coverage, (2) 
canopy pigments such as chlorophyll content, and (3) canopy water content 
[Xiao et al., 2005]. The physiological control is the environmental stress on 
carbon fixation process through stomatal conductance, enzyme activity, etc. 
We hypothesize that canopy control and physiological control are 
independent because they respond at different time scales. Therefore, the 
differential form of GPP with respect to these two controls is as follows:

(2)

The relative change in GPP can be calculated as

(3)



If we change the form of equations 2 and 3 and replace  and

 with ΦCC and ΦPC and  and  with φCC and 
φPC, equations 2 and 3 are rewritten as

(4)

(5)

ΦCC and ΦPC indicate the sensitivity of GPP to the absolute change (Δ) of 
canopy and physiological controls, respectively. φCC and φPC represent the 
sensitivity of GPP to the relative change (δ) of canopy and physiological 
controls, respectively. The absolute anomaly (Δ) and relative anomaly (δ) 
can be calculated as below:

(6)

(7)

where γ stands for different variables (e.g., VIs, GPP, and VPD). γi and  
represent the ith observation for each 8 day period (hereafter referred to as 
week) in 2003 and the average value of the variable γ for the corresponding 
week for normal years, respectively. For each site, the normal years are 
defined as the years with flux observations, excluding 2003.  and  denote 
the anomalies calculated from the entire drought period in 2003 compared 
to normal years. The drought period is defined as weeks 20 to 39 (2 June to 8
November) in 2003, when the average δGPP of the 15 flux sites drops below 0 
(Figures 1b and 1c).

The two limitations are represented by indicators that can be directly 
observed. The canopy control (CC) is represented by three VIs, namely, the 
normalized difference vegetation index (NDVI), the enhanced vegetation 
index (EVI), and the land surface water index (LSWI). These three VIs are 
selected because they are related to different properties of the canopy. NDVI
is related to the leaf area [Carlson and Ripley, 1997], EVI is related to the 
green leaf [Zhang et al., 2005], and LSWI is related to the water content in 
the canopy [Xiao et al., 2004a]. The physiological control (PC) is represented 
by satellite‐retrieved LST and VPD from flux tower measurements, both of 
which are frequently used in PEMs.

Based on absolute and relative anomalies (equations 6 and 7), we 
investigate the relationship between GPP anomalies and anomalies of VIs, 
LST, and VPD for the entire drought period across all flux sites (  and  
were used). To explore the respective effects of the physiological and canopy
controls during the drought period for each site, we first use VPD as the 
physiological control and analyze the partial correlation between dependent 
variable ΔGPP or δGPP and two corresponding independent variables (ΔVIs or δVIs 
and ΔVPD or δVPD), represented by  or  (γ represents VIs or VPD, with 
the other controlled), respectively. We also consider a lagged response of VIs



to GPP change with lags of 0 to 5 weeks. Previous studies suggested that 
lags from weeks to months exist for satellite‐retrieved canopy signals and 
precipitation decline [Ji and Peters, 2003; Wan et al., 2004]. LST and VPD, 
which directly affect enzyme activity and stomatal conductance, 
respectively, are not analyzed with lags (confirmed by Figures S3 and S4). 
Based on the partial correlation analysis, we use multivariate regression to fit
the GPP data into equations 4 and 5 to get the GPP sensitivity to absolute 
change (Φ) and relative change (φ) of canopy and physiological controls, 
respectively. We also take the lag effect on canopy control into 
consideration; regressions are conducted only for the lags with highest 
partial correlation in the previous analysis. All these procedures are also 
conducted using LST instead of VPD as the physiological control.

3 Results

3.1 Sensitivity of GPP Anomalies to Changes in Vegetation Indices and 
Climate Over the Entire Drought Period

All the 15 sites have negative  and  during the drought period (Table 
S1). In terms of absolute anomalies,  is the largest for grassland (GRA, 
−377.8 to −207.3 g C m−2) and deciduous broadleaf forest (DBF, −321.0 to 
−175.0 g C m−2), followed by evergreen needleleaf forest (ENF, −272.3 to 
−93.5 g C m−2), while three other vegetation types (evergreen broad leaf 
forest (EBF), mixed forest (MF), and open shrubland (OSH)) have a smaller

. In terms of relative anomalies, nonforest sites (GRA and OSH) show a 
much larger  decline (−57.2% to −17.8%) compared to the forest sites 
(−28.6% to −2.8%) (Figure 1i and Table S1).

Figures 1d–1h show the relationship between the averaged anomalies of GPP
and anomalies of VIs, LST, and VPD during the entire drought period. The 
canopy responses during the drought period are divergent among sites and 
show only slight differences when different VIs are used.  for nonforest are
mostly negative, suggesting that the canopy properties are significantly 
affected during the drought. In contrast,  for all the forest sites are close 
to zero, indicating that the canopy optical characteristics merely change. The
coefficients of determination between δGPP and δVIs are high (R2 > 0.73). The 
slopes of the regressions are the lowest for LSWI (0.79), suggesting that a 
small change in GPP corresponds to a larger change in LSWI. The intercepts 
for the three VIs are similar (~20%). When using absolute anomalies, the 
correlations between GPP and VIs are much lower (Figure S2).

We also investigated the relationship between the anomalies of GPP and 
physiological indicators (LST and VPD). During the drought period compared 
to normal years, LST and VPD increase by 0.49 to 3.71°C and 0.50 to 6.83 
hPa, respectively (Table S1). Correlation between  and  is stronger (R2 
= 0.25) than that between  and  (R2 = 0.01) or air temperature ( , 
R2 = 0.01) measured at flux tower sites (Figures 1g, 1h, and S5). Even though
all VIs and climate variables respond to drought, only  show significant 
correlation with . This indicates that the spatial difference, i.e., from site 



to site, of the GPP decline due to drought and heat wave can be partially 
explained by the averaged relative changes in VIs. However, for the drought‐
affected regions, even when the average VIs did not change, GPP can still 
decline ~20% (intercept in Figures 1d–1f).

3.2 Sensitivity of GPP Anomalies to Changes in Vegetation Indices and 
Climate at 8 Day Intervals During the Drought Period

We calculated the partial correlations between GPP and VIs (with climate 
variables in control) or climate variables (with VIs in control) in both absolute
and relative anomalies and investigated GPP responses to canopy and 
physiological controls. We chose EVI with different time lags to represent the 
canopy control and VPD with no lag for the physiological control because the 
anomalies of these predictors have higher correlations with GPP anomalies. 
There are clear differences between forest and nonforest ecosystems with 
respect to vegetation canopy versus physiological controls (Figure 2). All 
nonforest sites, while only about half of the forest sites, show strong partial 
correlation (ρ > 0.5) in relative anomalies ( , Figure 2c). The lags where 
the highest correlation is reached are also shorter for nonforest than forest 
sites. Strong partial correlation (ρ > 0.5) between GPP and VPD in absolute 
anomalies ( ) is found for most (seven out of nine) forest sites (Figure 
2b). In contrast,  is positive for most nonforest sites. The correlations 
calculated using relative anomalies ( ) are weaker than that using 
absolute anomalies ( , Figure 2d). These analyses were also conducted 
for the two other VIs (NDVI and LSWI) with VPD and all three VIs with LST; 
the correlations become weaker when using LST instead of VPD (Figures S6–
S10).



We further use equations 4 and 5 to decompose the canopy and 
physiological controls, and the results are shown in Table 1. When using 
absolute anomalies (Δ), nonforest ecosystems usually have a higher level of 
significance for canopy sensitivity (ΦCC) in the regression model, with an 
average value of 19.85 ± 9.25 g C m−2 d−1/(EVI); forest ecosystems have a 
higher level of significance for physiological sensitivity (ΦPC), with an average
value of −0.18 ± 0.05 g C m−2 d−1/hPa. When using the relative anomalies (δ), 
canopy sensitivity (φCC) shows a higher control of GPP for nonforest sites 
(1.81 ± 0.32%GPP/%EVI), but the physiological sensitivity (φPC) has much 
lower p values for forest ecosystems. We also found that all sensitivities (ΦCC,
ΦPC, φCC, and φPC) have a large range of variation for all ecosystems. Forest 
and nonforest ecosystems show a distinct difference (p < 0.1, student's t 
test) for three sensitivity factors except for ΦCC (Figure S11). Canopy 
sensitivities (ΦCC and φCC) are lower for forest than nonforest, while 
physiological sensitivities (ΦPC and φPC) are opposite in absolute values. This 
regression analysis confirms the finding of the partial correlation analysis, 
and the results are similar when using different canopy indicators (NDVI and 
LSWI) and physiological indicator (LST) (Tables S2–S6).

4 Discussion

4.1 Differences Between Forest and Nonforest Ecosystems in Response to 
Drought and Heat Wave

Relative changes in GPP vary among biomes due to different resistance to 
drought. Forest ecosystems have deeper roots and higher regulatory 
capacity on transpiration during the early and middle phases of an extreme 
drought like 2003 [Teuling et al., 2010]; therefore, they can better utilize soil
water and are more resistant to short‐term drought. Nonforest ecosystems 
are more vulnerable to drought due to their lower capability to utilize soil 
water [Baldocchi et al., 2004]. The difference between forests and grasslands



is also supported by distinctive energy balance between forests and 
grasslands during the drought and heat wave period [Teuling et al., 2010; 
Wicke and Bernhofer, 1996; Zaitchik et al., 2006].

GPP anomaly is regulated by the combined effects of canopy and 
physiological changes. For forest ecosystems, the canopy changes are minor,
and GPP anomalies primarily come from physiological limitation on 
photosynthesis. For nonforest ecosystems (GRA and OSH), both physiological
and vegetation canopy changes contribute to the change in GPP during the 
drought and heat wave period. Canopy changes are dominant for these 
nonforest ecosystems, with previous studies showing that in situ measured 
LAI has a good correlation with GPP during the drought period [Aires et al., 
2008]. Although forest and nonforest ecosystems have different regulatory 
mechanisms, VIs can partially explain the observed relative changes in GPP 
during the drought across different biomes. By contrast, the physiological 
control (VPD or LST) on photosynthesis is a fast process and cannot be 
temporally averaged to evaluate the cross‐site GPP differences during the 
entire drought period.

4.2 A Conceptual Model for Canopy and Physiological Limitations on Forest 
and Nonforest During Drought and Heat Wave

Indicators perform differently for temporally tracking the GPP anomalies at 
each site. In general, forest sites show weaker correlation between VI 
anomalies and GPP anomalies and have longer lags (but with large 
differences across sites), which makes it difficult to predict drought impacts 
on GPP using only VIs. GRA and OSH have shorter lags and show stronger 
correlation with VIs because of the higher SSWS. For forest ecosystems, VPD 
is a superior predictor of GPP anomalies over VIs. However, GPP responses to
VPD may vary for different forest types and even for specific sites [Lin et al., 
2015]. Together with different VPD base values for the referential period, 
they contribute to the higher partial correlation when using absolute VPD 
anomalies rather than relative anomalies (Figure 2). Nonforest ecosystems 
have a lower sensitivity to VPD possibly because of less stomatal regulation 
and the relatively dominant role of vegetation canopy change in affecting 
GPP.

Based on the above findings, we built a conceptual model to describe the 
relationship among the relative anomalies in VPD, VIs, and GPP (Figure 3). 
The anomaly in GPP is the combined result of VPD and VI anomalies, with 
remarkable differences between forest and nonforest ecosystems. The 
drought can be divided into two periods: P‐I is the initial period of drought, in 
which the VPD and radiation increases, but the canopy does not start to 
change due to the available soil water and ecosystem self‐regulation. During 
this period, the primary regulation on GPP is through VPD and temperature. 
Forests have a much longer P‐I, with higher sensitivity to VPD than 
nonforests. P‐II starts when soil water is depleted and cannot sustain water 
supply to meet transpiration demand of plants, and the falling leaves result 



in the changes in vegetation canopy or VIs. During this period, the primary 
regulation on GPP is the vegetation canopy. Nonforest ecosystems have a 
longer P‐II phase than forests, and the VIs may change enormously during 
this period due to the senescence of leaves.

4.3 Implication and Limitation of the Canopy and Physiological Control 
Analyses

Different drought stages and regulation factors in forest and nonforest 
ecosystems suggest that we cannot use a single indicator to temporally track
the GPP anomaly during the drought period for all ecosystems. For nonforest 
ecosystems, canopy control, which explains much of the GPP variation, has 
been partially embedded in the fraction of photosynthetic active radiation in 
PEMs (canopy sensitivity (φCC) is greater than 1%GPP/%EVI). The 
physiological control on GPP still exists but has much smaller variation. 
Because of the decoupling of atmospheric and soil water deficit from 
photosynthesis during extreme drought condition [Beringer et al., 2011; 
Yuan et al., 2014], VPD and other climate factors may not well represent 
physiological control on GPP at daily or longer time scales. Rapid canopy 
responses in nonforest ecosystems allow transformed VIs to be used to 
represent the physiological control on GPP, such as the LSWI‐based water 
scalar used in VPM [Xiao et al., 2004b]. For forest sites, VPD can be used, but
more site‐specific parameters are required. Similar biome‐based differences 
were also reported by Zhang et al. [2015b]. Because the absolute anomaly of
VPD (ΔVPD) shows an advantage over the relative anomaly (δVPD) in both 
partial correlation analysis and the regression model (Figure 2 and Table 1), 
it also suggests a nonlinear response of VPD control on photosynthesis rather
than the piecewise function currently used in MODIS PSN model [Running et 
al., 2000].

The 2003 European drought and heat wave gives us a unique opportunity to 
study the drought impact on GPP and the feasibility of estimating the 
drought impacts on GPP using remote sensing‐based PEMs. This research 



benefits from high density of carbon flux towers; however, it also faces the 
following limitations:

The inconsistency of the flux tower footprint and MODIS pixel size; the land 
cover is relatively patchy and mixed pixels exist. The climate and GPP 
anomalies are also much larger in finer resolution images [Zaitchik et al., 
2006].

1. The data quality of VIs may still be unreliable even after gap filling and 
smoothing for some sites. This issue is more critical when doing 
interannual analysis at temporal scales but can be alleviated when VIs 
values are averaged over the entire drought period.

2. GPP and satellite‐retrieved data are at 8 day time scale; however, VPD/
LST affects photosynthesis at the hourly scale; the inconsistency of 
operation time scales will also reduce the model predictability.

3. Several subsequent droughts and heat waves also influenced parts of 
Europe in 2006 and 2011. However, these years were not eliminated 
when calculating the reference values because of the different spatial 
extents and severities of these drought events.

5 Conclusions

This study presents an analysis of how GPP from different ecosystems 
responds to drought through vegetation canopy change and physiological 
responses. Distinctive responses to drought are found between forest and 
nonforest ecosystems. During the entire drought period, forests do not show 
obvious changes in canopy optical characteristics, while nonforests tend to 
have a faster canopy response. Relative anomalies of VIs can still be used as 
indicators to evaluate the drought‐induced GPP decline spatially. At the 
temporal scale for each site, because of different dominant factors in two 
drought stages (P‐I/P‐II) and the different stage lengths for forest and 
nonforest, forest GPP is more responsive to changes in VPD, while nonforest 
GPP is more sensitive to changes in VIs. In the near future, soil moisture data
from Soil Moisture Active Passive (SMAP) satellite and sun‐induced 
chlorophyll fluorescence observations from Orbiting Carbon Observatory‐2 
(OCO‐2) or Sentinel‐5 Precursor satellite may be used to provide a better 
estimation of GPP decline from canopy and physiological controls during 
severe drought and heat wave period.
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