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Abstract

A Study of High-dimensional Clustering and Statistical Inference of Networks

by

Sharmodeep Bhattacharyya

Doctor of Philosophy in Statistics

and the Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Peter J. Bickel, Chair

Clustering is an important unsupervised classification technique. In supervised classifica-
tion, we are provided with a collection of labeled (pre-classified) patterns and the problem is
to label a newly encountered, yet unlabeled, pattern. Typically, the given labeled (training)
patterns are used to learn the descriptions of classes, which in turn are used to label a new
pattern. In clustering, a set of unlabeled patterns are grouped into clusters in such a way
that patterns in the same cluster are similar in some sense and patterns in different clusters
are dissimilar in the same sense. In a sense, labels are associated with clusters also, but
these category labels are data driven; that is, they are obtained solely from the data. The
patterns which are to be classified in clustering can come from different sources, they can
be vectors in a multi- dimensional space or nodes in discrete spaces. At first, we consider
clustering in Euclidean space in large dimensions. Then, we delve into the discrete setting
of networks. We at first go into issues related to network modeling and then into a specific
method of clustering in networks.

In the first chapter, we consider the problem of estimation and deriving theoretical prop-
erties of the estimators for the elliptical distributions. The class of elliptical distributions
have distributions with varied tail behavior. So, estimation under class of elliptic distribu-
tions lead to automatic robust estimators. The goal of the chapter is to propose efficient
and adaptive regularized estimators for the nonparametric component, mean and covariance
matrix of the elliptical distributions in both high and fixed dimensional situations. Semi-
parametric estimation of elliptical distribution has also been discussed in [27]. However, we
wish to expand the model in two ways. First, study adaptive estimation methods with a
novel scheme of estimating the nonparametric component and second, we perform regularized
estimation of Euclidean parameters of the elliptical distribution such that high dimensional
inference of the Euclidean parameters under certain additional structural assumption can
be carried out. Some methods have already been developed. But we extend the work in
[25] [24] [34] [57] [56]. The estimate of elliptical densities can also be used to approximately
estimate certain sub-class of log-concave densities by using results from convex geometry.
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The problem of estimation of mixture of elliptical distributions is also important in cluster-
ing, as the level sets produce disjoint elliptical components, which can be viewed as model
of clusters of specific shape high dimensional space. A mixture of elliptical distributions is
a natural generalization of mixture of Gaussian distributions, which have been extensively
studied in the literature. So, an algorithm for regularized estimation of mixture of elliptical
distributions will also lead to an algorithm for finding elliptical clusters in high dimensional
space under highly relaxed tail conditions.

In clustering, one of the main challenges is the detection of number of clusters. Most
clustering algorithms need the number of clusters to be specified beforehand. Previously,
there has been some work related to choosing the number of clusters. We propose a new
method of selecting number of clusters, based on hypothesis testing. One way to look at
clustering is - getting hold of the most block-diagonal form of the similarity matrix. So, we
test the hypothesis, whether the resulting similarity matrix after clustering is block-diagonal
or not. The number of clusters for which we have the most block diagonal similarity matrix
is considered to be the most suitable number of clusters for the data set. So, the method
can be applied for any optimal partitioning algorithm (like k-means or spectral clustering or
EM algorithm). We show that this method works well compared to currently used methods
for both simulated and real data sets. We go into details on this work in Chapter 2.

The study of networks has received increased attention recently not only from the social
sciences and statistics but also from physicists,computer scientists and mathematicians. [98].
But a proper statistical analysis of features of different stochastic models of networks is
still underway. We give an account of different network models and then we analyze a
specific nonparametric model for networks. We follow Bickel and Chen [22] by considering
network modeling from a nonparametric point of view using a characterization of infinite
graph models due to Aldous and Hoover [89], Bickel and Chen [22] studied this model
primarily in the context of the community identification problem. Bickel, Chen and Levina
[23] further considered inference using moment methods and generalized degrees in sparse
graphs. We investigate the behavior of a histogram estimate of a canonical version of a
function characterizing the model,

h((U, V )) = P [Aij = 1|(ξi, ξj) = (U, V )]

where, ξi is the continuous latent variables corresponding to the ith node of the network.
We consider this estimate in dense social graphs in the context of network modeling and
exploratory statistics. We apply the methods to an analysis of Facebook networks , given in
[155]. We go into details on this work in Chapter 3.

We also propose bootstrap methods for finding empirical distribution of count features
or ‘moments’ (Bickel, Chen & Levina, AoS, 2011) and smooth functions of these for the
networks. Using these methods, we can not only estimate variance of count features but
also get good estimates of such feature counts, which are usually expensive to compute
numerically in large networks. In our paper, we prove theoretical properties of the bootstrap
variance estimates of the count features as well as show their efficacy through simulation.
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We also use the method on publicly available Facebook network data for estimate of variance
and expectation of some count features. We go into details on this work in Chapter 4.

Lastly, we propose a clustering or community detection scheme for networks. One of the
principal problem in networks is community detection. Many algorithms have been proposed
for community finding [116] [140] but most of them do not have have theoretical guarantee
for sparse networks and networks close to phase transition boundary proposed by physicists
[50]. There are some exceptions but all have incomplete theoretical basis [44] [41] [100]. Here
we propose an algorithm based on the graph distance of vertices in the network. We give
theoretical guarantees that our method works in identifying communities for block models,
degree-corrected block models [91] and block models with number of communities growing
with number of vertices. We illustrate on a network of political blogs, Facebook networks
and some other networks. We go into details on this work in Chapter 5.

The chapters 1, 2, 4 and 5 are written as self contained papers to be submitted, where
as, chapter 2 is more of expository nature. Also, chapters 1, 4 and 5 are more of theoretical
nature and chapters 2 and 3 are more of non-technical nature.
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Chapter 1

Regularized estimation of elliptic
distributions and high dimensional
clustering

1.1 Introduction

We consider the estimation of semi parametric family of elliptic distributions for the purpose
of data description and classification (regression and clustering). The class of elliptically
contoured or elliptical distributions provide a very natural generalization of the class of
Gaussian distribution. An elliptical density has elliptic contours like a Gaussian distribution,
but can have either heavier or lighter tails than the Gaussian density. The class of elliptical
distributions is also very attractive for statistical inference as it has the same location-scale
Euclidean parameters as in Gaussian distribution with an additional univariate function
parameter. There has been extensive work done on estimation of Euclidean parameters for
elliptical distributions. Adaptive and efficient estimation of the Euclidean parameters were
addressed by Bickel et.al. (1993) [28], Bickel (1982) [19] and Anderson et al (1986) [6]

It may be argued that semi parametric family is too restrictive and one instead should
focus on the more general family of shape-constrained densities and their mixtures. This
are has been heavily studied theoretically in different contexts since the seminal work of
Grenander [70] on nonparametric maximum likelihood estimation of monotone univariate
density. In particular the natural generalization of Gaussian and elliptical families the log-
concave densities and their generalizations have received much attention (algorithmic [158]
[142], theoretical [53] [46] and extensions [97] [8]). However, for all these problems, estima-
tion of densities in large dimensions become a computationally challenging problem. The
algorithm proposed by Cule et.al. (2010)[46] Koenker and Mizera [97] works for estimation
of multivariate log-concave densities but is too slow to work in large dimensions. So, the
application of such models to clustering and classification are very limited. That is why,
we consider a smaller class of multivariate density functions, which can be estimated with
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relative ease for large dimensions.
Semiparametric estimation of elliptic densities for fixed dimension were first addressed in

Stute and Werner (1991) [148] by using kernel density estimators for estimating the function
parameter. Cui and He (1995) [45] addressed a similar problem. Liebscher (2005) [112]
used transformed data and kernel density estimators for estimating the unknown function
parameter. Battey and Linton (2012) [12] used finite mixture sieves estimate for the function
parameter by using the scale mixture of normal representation of consistent elliptic density.
ML-Estimation of only the Euclidean parameters of the elliptical distributions were consid-
ered in the work of Tyler [156] and Kent and Tyler [94]. These works were extended to get
shrinkage estimates of covariance matrix of the elliptical distributions by Chen, Wiesel and
Hero (2011) [42] and Wiesel (2012) [163] with the shrinking being towards identity, diagonal
or given positive-semi-definite matrix. In all of these works the theoretical properties of the
estimators were also addressed. We focus on maximum likelihood estimation of the elliptic
densities using penalized likelihood functions. The estimation consists of nonparametric es-
timation of a univariate function as well as parametric estimation of the location and scale
parameters.

Recently, there has been a general focus on statistical inference in high-dimensional prob-
lems, with examples of high-dimensional data coming from biology especially genetics and
neuroscience, imaging, finance, atmospheric science, astronomy and so on. In most of these
cases, the number of dimensions of data is nearly of the same order or greater than the
number of data points. So, the appropriate asymptotic framework is as both n → ∞ and
p→∞, where n is the number of data points and p is the dimension of data points.

Little is possible without some restriction on parameters. In case of regression restrictions
are put on regression parameters such as sparsity and size and on the design matrix such as
incoherence and related conditions. A variety of regularization methods have been studied
such as [117] [119] [166] [26] [36] and effective algorithms proposed such as [55] [118]. A good
reference book on all different forms of regularization and algorithms is Bühlmann and Van
de Geer (2011) [32]. Another problem that has been considered is covariance or precision
matrix estimation where again you need regularization if you has to have consistency as
p, n → ∞. Again there has been considerable theoretical work [25] [24] [34] [67] [141] [101]
focussing on Gaussian and sub-Gaussian distributions, except some like [105], which are
distribution-free. However, there has been little focus on tail behavior, except some on sample
covariance matrix behavior [147] [49], although there has been earlier work in the robustness
literature (Chapter 5 of [73], [84]). Here we consider elliptical distributions, which can have
arbitrary tail behavior. For such distributions, we have attempted to estimate sparse mean
and covariance matrices using penalized likelihood loss function. Thus, we have generalized
the class of regularized covariance estimators, so that estimation of sparse covariance and
precision matrix becomes possible under arbitrary tail behavior of the underlying distribution
in high-dimensions. We have tried to provide a framework of semiparametric inference of
elliptical distributions for Euclidean parameters as well as mixtures.



CHAPTER 1. REGULARIZED ESTIMATION OF ELLIPTIC DISTRIBUTIONS AND
HIGH DIMENSIONAL CLUSTERING 3

Contributions and Outline of the Chapter

So, in this chapter we have done the following.

1. We develop estimation procedure for the density generator function of the elliptical
distribution in a log-linear spline form in Section 1.3 and derive respective error bounds.

2. We use the estimate of the density generator function of elliptical distribution to adap-
tively estimate Euclidean parameters of elliptical distribution in Section 1.4. We show
how using appropriate regularization we can obtain, under conditions similar to those
of [26], [141] and [101], consistent estimates of Euclidean parameters for both fixed
dimensional case and when p, n→∞ in Section 4.4.

3. Develop feasible algorithms for all these methods in Section 1.5 and illustrate our
method by simulation and one real data example in Section 4.5 and Section 1.8.

4. Extend the results to three special cases - (a) Estimation of Covariance and Precision
matrix (b) Regression with Elliptical errors and (c) Clustering via mixtures of elliptical
distribution in Section 1.6.

We give the main definitions and results in Section 1.2.

1.2 Elliptical Distributions and Main Results

The formal definition of elliptically symmetric or elliptical distributions is given in the fol-
lowing way in [60] -

Definition 1.2.1. Let X be a p-dimensional random vector. X is said to be ‘elliptically
distributed’ (or simply ‘elliptical’) if and only if there exist a vector µ ∈ Rp, a positive
semidefinite matrix Ω ≡ Σ−1 ∈ Rp×p, and a function φ : R+ → R such that the characteristic
function t 7→ φX−µ(t) of X − µ corresponds to t 7→ φ(tTΣt), t ∈ Rp.

Let X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed random variables
with density f(·;µ,Ω). Then the density function f(·;µ,Ω) is of the form

f(x;µ,Ω) = |Ω|1/2gp
(
(x− µ)TΩ(x− µ)

)
(1.1)

where θ = (µ,Ω) ∈ Rp(p+3)/2 are the Euclidean mean and covariance parameters respectively
with µ ∈ Rp and Ω ∈ Rp(p+1)/2 and gp : R+ → R+ is the infinite-dimensional parameter with
the property ∫

Rp

gp(x
Tx)dx = 1

R+ = [0,∞). gp is also called the density generator of the elliptical distribution in Rp.
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Now, we consider the high-dimensional situation under the additional structure of sparsity
imposed on the Euclidean parameters θ0. We consider that ||µ0||0= s1 and ||Ω−||0= s2, where,
||·||0 calculates the number of non-zero entries in the vector or the matrix in vectorized form.
Small values of s1 and s2 indicates sparsity. We first consider the high-dimensional case,
that is when we have the dimension of the Euclidean parameters, p, growing with number
of samples, n.

Now, if we define Y = (X − µ)TΣ−1(X − µ), then, by transformation of variables, Y has
the density

fY (y) = cpy
p/2−1gp(y) y ∈ R+ (1.2)

where, cp = πp/2

Γ(p/2)
. So, we can now use estimate of fY from the data Y1, . . . , Yn to get an

estimate of the non-parametric component gp. From here onwards we shall drop the suffix
and denote gp by g.

We divide the family of density generators into two different classes - monotone and
non-monotone. The following proposition gives the equivalence between monotone density
generator and unimodal elliptical density.

Proposition 1.2.2. The density generator gp is monotonically non-increasing if and only if
the elliptical density f with density generator gp is unimodal. Also the mode of density f is
at µ.

Proof. If: If gp is not monotonically increasing, then, there exists a mode of gp which is not
at zero. Let that mode be at ν. By symmetry of f now f has a mode at all points at in
an ellipse around µ whose points are (ν − µ)TΣ−1(ν − µ). So, f does not remain unimodal
anymore. So, if f is unimodal, then, gp has to be monotonically non-increasing.
Only If: This part is obvious.

So, we divide the class of elliptical densities into two - unimodal and multimodal. Uni-
modal elliptical densities have monotone density generator, where as, multimodal elliptical
density has non-monotone density generator. Examples of unimodal elliptical density in-
clude normal, t, logistic distributions, and examples of multimodal elliptical density include
a subclass of Kotz type and multivariate Bessel type densities. See Table 3.1 (pp. 69) of [60]
for more examples.

Another desirable property of the class of elliptical distributions is consistency.

Definition 1.2.3. An elliptical distribution with density fp(·; 0p, Ip) and density generator
gp is said to possess consistency property if and only if∫ ∞

−∞
gp+1

(
p+1∑
i=1

x2
i

)
dxp+1 = gp

(
p∑
i=1

x2
i

)
(1.3)

This consistency property of elliptical distributions is quite desirable and natural, since
it ensures that marginal distribution of the elliptical distributions also follow the elliptical
distribution with same density generator. This property becomes indispensable if we go for
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high-dimensional situation, since, in high-dimensions, we have to depend on the projection
of the random variable in low-dimensions and if in the low-dimensions, we have a different
density generator, we can not devise any adaptive estimator. Equivalent conditions for the
consistency property is given in Theorem 1 of [90]. We just mention an excerpt of that
Theorem in form of Lemma below

Lemma 1.2.4 ([90]). Let gp be the density generator for a p-variate random variable, Xp

following elliptical distribution with mean and covariance matrix parameters (0p, Ip). Then,

Xp follows consistent elliptical distribution if and only if Xp
d
= Zp/

√
ξ, where, Zp is a p-

variate normal random variable with parameters (0p, Ip) and ξ > 0 is some random variable
unrelated with p and independent of Zp.

Examples of elliptical distributions with consistency property include multivariate Gaus-
sian distributions, multivariate t-distributions, multivariate stable laws and such, where as,
examples of elliptical distribution without consistency property include multivariate logistic
distributions. For more discussion and insight on the issue see [90].

We shall first try to estimate density generator gp with monotonicity constraint in Section
1.3. Unimodal elliptical density is more commonly seen in practice and is easier to handle.
We shall only estimate Euclidean parameters for consistent elliptical distributions in high
dimensions.

Some Notations

For any vector x ∈ Rp, we define,

||x||2 =

√√√√ n∑
i=1

x2
i ,

||x||1 =
n∑
i=1

|xi|,

||x||∞ = max{x1, . . . , xn},
||x||0 =

∑
i = 1n1(xi 6= 0)

For any matrix M = [mij], we write |M | for the determinant of M , tr(M) for the trace of
M , and λmax(M) and λmin(M) for the largest and smallest eigenvalues of M , respectively. We
write M+ = diag(M) for a diagonal matrix with the same diagonal as M and M− ≡M−M+.
We will use ||M ||F to denote the Frobenius matrix norm and ||M ||≡ λmax(MMT ) to denote
the operator or spectral norm (also known as matrix 2-norm). We will also write |·|1 for
the l1 norm of a vector or matrix vectorized |M |1=

∑
i,j|mij|. ||·||0 calculates the number of

non-zero entries in the vector or the matrix in vectorized form.
For two numerical sequences an and bn, an = o(bn) means limn→∞

an
bn

= 0 and an = O(bn)
means there exists constant C such that an ≤ Cbn for n ≥ N . Also, for two random or
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numerical sequences Xn and Yn, Xn = oP (Yn) means that Xn

Yn

P→ 0 and Xn = OP (Yn) means
that Xn is stochastically bounded by Yn, that is, given ε > 0 there exists constant C and

integer N ≥ 1, such that P
[∣∣∣Xn

Yn

∣∣∣ ≤ C
]
≤ ε for n ≥ N .

Main Results

Let X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed random variables with
density f(·;µ0,Ω0), where, Ω0 ≡ Σ0. Then the density function f(·;µ0,Ω0) is of the form

f(x;µ0,Ω0) = |Ω0|1/2gp
(
(x− µ0)TΩ(x− µ0)

)
(1.4)

where θ0 = (µ0,Ω0) ∈ Rp(p+3)/2 are the Euclidean mean and inverse covariance or precision
matrix parameters (Σ0 is the covariance parameter) respectively with µ0 ∈ Rp and Ω0 ∈
Rp(p+1)/2 and gp : R+ → R+ is the infinite-dimensional parameter with the property∫

Rp

gp(x
Tx)dx = 1

R+ = [0,∞).
We start with the following assumption -

(A1) Assume that we have an initial consistent estimators µ̂ and Ω̂, such that, ||µ̂ − µ0||2
and ||Ω̂−Ω0||F concentrates to zero with tail bounds given by functions J1(t, n, p) and
J2(t, n, p) such that,

P[||µ0 − µ̂||2> t] ≤ J1(t, n, p) (1.5)

P[||Ω0 − Ω̂||F> t] ≤ J2(t, n, p). (1.6)

For fixed dimensions, we have, ||µ̂− µ0||F= OP ((ω1(n)) and ||Ω̂− Ω0||2= OP ((ω2(n)),
where, ω(n) → 0 as n → ∞ with given tail bounds. For high dimensions, we have,
||µ̂ − µ0||F= OP ((ω1(p, n)) and ||Ω̂ − Ω0||2= OP ((ω2(p, n)), where, ω(p, n) → 0 as
p, n→∞ with given tail bounds.

Now, let us consider the high-dimensional situation. So, in this case, the dimension of
Euclidean parameters grows with n. In the high-dimensional situation we assume the ad-
ditional structure of sparsity imposed on the Euclidean parameters θ0 = (µ0,Ω0). Density
generator g comes from a consistent family elliptical distributions and so by Lemma 1.2.4,

Ω
1/2
0 (X − µ0)

d
= Zp/

√
ξ. Let us consider the probability density function of Xj to be h

(j = 1, . . . , p) and

H(u) ≡
∫ ∞
u

h(v)dv (1.7)

We consider the following assumptions -
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(A2) Suppose that ||Ω−||0≤ s, where, ||·||0 calculates the number of non-zero entries in the
vector or the matrix in vectorized form. Small values of s indicates sparsity.

(A3) λmin(Σ0) ≥ k > 0, or equivalently λmax(Ω0) ≤ 1/k. λmax(Σ0) ≤ k.

(A4) The function H(t) defined in Eq. (1.7) and J1(t), J2(t) defined in Eq. (1.5), satisfies
the following conditions -

(a) there exists a function σ1(p, n) : N × N → R+ is defined such that for constants,
c, d > 0, for t = O(σ1(p, n)),

p(c exp(−dt)J1(t, n, p)J2(t, n, p))n → 0 as p, n→∞ (1.8)

(b) there exists a function σ2(p, n) : N × N → R+ is defined such that for constants,
d1, d2, d3 > 0, for t = O(σ2(p, n)),

d1p
2(H(t)J1(t, n, p)J2(t, n, p))n(exp(−nd2t))(d3 exp(−nd3t

2))→ 0 as p, n→∞
(1.9)

Let us consider that we have obtained estimators of the Euclidean parameters µ̃ and Ω̃
and the nonparametric component ĝ by following the estimation procedure of the elliptical
density in Section 1.5. Let us consider first the fixed dimensional situation. So, in this case,
the dimension of Euclidean parameters does not grow with n

Theorem 1.2.5. Define φp(y) ≡ log(gp) and assume the following regularity conditions on
density generator gp and φp(y): gp is twice continuously differentiable with bounded second
derivative and derivative φ′ and g′ bounded away from 0 (from above) and −∞ and

∫
(φ′′)2 <

∞. Then, under assumption (A1-A4),

(a) ||µ0 − µ̃||2= OP (σ1(n)).

(b) ||Ω0 − Ω̃||F= Op(σ2(n))

(c) ĝ is an uniform consistent estimator of g with rate Op

((
logn
n

)1/3
)

.

We consider the high-dimensional situation now, that means the number of dimensions
p and the number of samples n both grow. We have the estimates, µ̃ and Ω̃ as stated in
Section 1.5.

Theorem 1.2.6. Define φp(y) ≡ log(gp) and assume the following regularity conditions on
density generator gp and φp(y): gp is twice continuously differentiable with bounded second
derivative and derivative φ′ and g′ bounded away from 0 (from above) and −∞ and

∫
(φ′′)2 <

∞. Then, under assumption (A1)-(A4),

(a) ||µ0 − µ̃||2= OP

(√
pσ1(p, n)

)
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(b) ||Ω0 − Ω̃||F= OP

(√
(p+ s)σ2(p, n)

)
for ν = O (σ2(p, n)).

(c) ĝ is an uniform consistent estimator of g with rate Op

((
logn
n

)1/3
)

.

We apply the semi parametric inference technique of estimating elliptical distributions
to two parametric inference and one semi-parametric inference problems -

(a) In Section 1.6, we apply it for robust regularized covariance and precision matrix
estimation in high-dimensions.

(b) In Section 1.6, we apply it for robust regularized regression in high-dimensions.

(c) In Section 1.6, we apply the semi parametric inference technique of estimating elliptical
distributions to clustering by devising an inference scheme for mixtures of elliptical
distributions.

1.3 Inference I: Estimation of Density Generator gp

We try to find a maximum likelihood estimate for the semiparametric elliptical distribution.
The main idea is using non-parametric maximum likelihood estimate (NPMLE) to estimate
density generator gp and then use that NPMLE estimate of gp, to get a likelihood estimate
of the Euclidean parameters. Throughout this section, we shall consider that the Euclidean
parameters θ = (µ,Ω) are given and the dimension of data p is fixed.

We shall propose non-parametric maximum likelihood estimates (NPMLE) of density
generator gp under the monotonicity assumption. This is the most common situation for
elliptical distributions as monotone density generators gives rise to unimodal elliptical dis-
tributions according to Proposition 1.2.2. We shall principally focus on this case. We consider
this case in Section 1.3.

Maximum Likelihood Estimation of Monotone Density Generator

The likelihood for (θ, g) is

L(θ, g|X1, . . . , Xn) =
n∏
i=1

|Σ|−1/2g
(
(Xi − µ)TΣ−1(Xi − µ)

)
The log-likelihood is

`(θ, g|X1, . . . , Xn) = −n
2

log|Σ|+
n∑
i=1

log g
(
(Xi − µ)TΣ−1(Xi − µ)

)
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Let us start with an ideal case when the Euclidean parameters µ and Σ are known.
Then, the non-parametric likelihood of g in terms of data Yi, i = 1, . . . , n, obtained by the
transformation Yi = (Xi − µ)TΣ−1(Xi − µ) becomes

L(g|Y ) = (cp)
n

n∏
i=1

Y
p
2
−1

i g (Yi)

The log-likelihood ignoring the constants becomes

`(g|Y ) =
n∑
i=1

((p
2
− 1
)

log(Yi) + log g (Yi)
)

So, the NPMLE ĝn can be written as

ĝn = arg max
g

n∑
i=1

((p
2
− 1
)

log(Yi) + log g (Yi)
)

= arg max
g

n∑
i=1

(log g (Yi))

Now, g(y) is a monotonically non-increasing function, however, fY (y) as defined in (1.2),
which is the density of Yi’s, is not monotone. But, we can still formulate the problem as a
generalized isotonic regression problem as done in Example 1.5.7 (pp. 38-39) in Robertson
et.al. (1988) [138].

First note that the NPMLE ĝn must be constant on intervals (Y(i−1), Y(i)], i = 1, . . . , n
(Y0 = 0), where Y(i) is the ith order statistic of Yi, and ĝn must be zero on (Y(n),∞). It follows
by observing that if ĝn is not constant on (Y(i−1), Y(i)], then, we can always construct another

estimator g̃n = (Y(i) − Y(i−1))
−1
∫ Y(i)
Y(i−1)

ĝn(t)dt constant on (Y(i−1), Y(i)] which gives larger

likelihood than ĝn. So, the NPMLE ĝn has to be piecewise constant and left-continuous.
Hence the problem of finding NPMLE boils down to the optimization problem on

(g1, . . . , gn), where gi = g(Yi) for i = 1, . . . , n. The optimization problem is defined as

max
(g1,...,gn)

n∑
i=1

log gi (1.10)

such that
n∑
i=1

cp

∫ Y(i)

Y(i−1)

yp/2−1gidy =
2cp
p

n∑
i=1

gi

(
Y
p/2

(i) − Y
p/2

(i−1)

)
= 1 (1.11)

and

g1 ≥ g2 ≥ · · · ≥ gn (1.12)

The above defined optimization problem can be solved in the similar way as described in
Example 1.5.7 of [138] (pp. 38-39) and by following Theorem 1.4.4 of [138] the solution can
be written as

ĝi =
p

2cp
min
s≤i−1

max
t≥i

Fn(Y(t))− Fn(Y(s))

Y
p/2

(t) − Y
p/2

(s)

(1.13)
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where, Fn is the empirical cumulative distribution function (CDF) of the data (Y1, . . . , Yn).
The NPMLE ĝn is given by

ĝn(y) =

{
ĝi, if Y(i−1) < y ≤ Y(i)

0, otherwise
(1.14)

Note that, the NPMLE ĝn is quite related to the Grenander estimator [70] of monotoni-
cally non-increasing densities. The Grenander estimator is a piece-wise constant or histogram
type density estimate, where the constant values come from the left-derivative of the least
concave majorant of the empirical CDF function. Similarly, NPMLE ĝn is also a piece-wise
constant or histogram type density generator estimate, where the constant values come from
the left derivative of the least concave majorant of the empirical CDF plotted against the
abscissa of 2cp

p
yp/2 instead of y. Figure 1.1 gives an example of the NPMLE ĝn for a simulated

small sample case.

(a) (b)

Figure 1.1: (a) Estimated univariate normal density curve using several NPML techniques
(b) Estimated univariate t with 2 degrees of freedom density curve using several NPML
techniques.

The above description of the NPMLE ĝn also provides us with a cautionary note while
implementing this estimator. The transformation y 7→ 2cp

p
yp/2 highly stretches the abscissa

for large values of p, so for numerical implementation of the algorithm care should be taken so
that machine precision problems does not hurt the computation of the estimator. However,
in this discourse we shall not dwell on these numerical issues. Some thoughts on this issue
is given in Section 4.5.

The asymptotic properties NPMLE ĝn is provided in Lemma 1.3.1. The asymptotic prop-
erties are quite as expected of isotonic regression estimates. The proof borrows techniques
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from Groeneboom (1985) [71], Jonker and Van der Vaart (2002) [88] and Example 3.2.14 of
citeMR1385671.

Lemma 1.3.1. Let g be the monotonically decreasing density generator of the elliptical
distribution and the NPMLE of g is ĝn, whose definition is given in (1.14). Suppose that g
is continuously differentiable on the interval (0,∞) with derivative g′ bounded away from 0
(from above) and −∞. Then,

(a) For any y > 0, as n→∞,

n1/3 (ĝn(y)− g(y))
w→ |4g(y)g′(y)|1/3 arg max

h

{
W (h)−

√
cpyp/2−1h2

}
. (1.15)

where, W is the Wiener process on (0, 1).

(b) For any xn →∞, δn = O
(
n−1/3(log n)1/3

)
, U > xnδn and n→∞

P

[
sup

xnδn≤y≤U

(
n

log n

)1/3

|ĝn(y)− g(y)| ≥ x

]
≤ O

(
1√
x

)
. (1.16)

so, we have,

sup
xnδn≤y≤U

|ĝn(y)− g(y)| = OP

((
log n

n

)1/3
)
. (1.17)

(c) For any U > 0, if ||ĝn − g||1=
∫ U

0
|ĝn(y)− g(y)|dy, then, as n→∞

n1/3E||ĝn − g||1→
∫ U

0

|4E|Vy|g′(y)g(y)|dy (1.18)

where, Vy = arg maxh

{
W (h)−

√
cpyp/2−1h2

}
.

Proof. (a) Let us define a stochastic process {ŝn(a) : a > 0} by

ŝn(a) = arg max
s

{
Fn(s)− 2acp

p
sp/2
}

where the largest value is chosen when multiple maximizers exist. It is easy to see that
ĝn(t) ≤ a if and only if ŝn(a) ≤ t. It follows that,

P

(
n1/3

∣∣∣∣g(t)g′(t)

2

∣∣∣∣1/3 (ĝn(t)− g(t)) ≤ x

)
= P (ŝn (g(t) + δn) ≤ t)
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where, δn = xn−1/3
∣∣∣g(t)g′(t)2

∣∣∣1/3. By definition,

ŝn(a+ δn) = sup

{
s ≥ 0 : Fn(s)− 2cp

p
(a+ δn)s is maximal

}
Hence, we can write,

ŝn(a+δn) = sup

{
s ≥ 0 :

√
n (Fn(s)−F (s))+

√
n

(
F (s)− 2cp

p
(a+δn)s

)
is maximal

}
By Hungarian embedding theorem [99],

√
n (Fn(t)− F (t)) = Bn(F (t)) +OP

(
n−1/2 log n

)
where, (Bn, n ∈ N) is a sequence of Brownian bridges, constructed on the same space
as Fn and where, F is the CDF of Y = (X − µ)TΣ−1(X − µ). So by (1.2),

F ′(t) = f(t) = cpt
p/2−1g(t)

f ′(t) = cpt
p/2−1g′(t) +

cp(p− 2)

2
tp/2−2g(t)

So, the limiting distribution of n1/3(ŝn(a + δn) − t) will be the same as limiting dis-
tribution of n1/3(sn(a + δn) − t), where, sn(b) is the location of the maximum of the

process
{
B(F (s)) +

√
n(F (s)− 2cp

p
bsp/2), s ≥ 0

}
and B is a standard Brownian bridge

on [0, 1].

Now, location of the maximum of the process{
B(F (s)) +

√
n(F (s)− 2cp

p
(a+ δn)sp/2), s ≥ 0

}
behaves as n→∞ as the location of maximum of the process{
B(F (t)+f(t)(s−t))+

√
n(F (t)+f(t)(s−t)+

f ′(t)

2
(s−t)2− 2cp

p
(a+δn)sp/2), s≥ 0

}

Consider, a = g(t), c = −g′(t)
2

and h =
(
nc2

a

)1/3

(s − t), location of the maximum of

above mentioned process behave as location of the maximum of following process as
n→∞

{B(F (t) + f(t)(s− t)) +
√
n(F (t) + f(t)(nc2d/a)−1/3h+

f ′(t)

2
(nc2/a)−2/3h2

−2cp
p

(a+ δn)
(
t+ (nc2/a)−1/3h

)p/2
), h ∈ R}
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and as n→∞ it is equivalent to the location of the maximum of the process

{B(F (t) + f(t)(s− t)) +
√
n(F (t) + f(t)(nc2/a)−1/3h+

f ′(t)

2
(nc2/a)−2/3h2

−2cp
p

(a+ δn)

(
(p/2)tp/2−1(nc2/a)−1/3h+

(
p/2

2

)
tp/2−2(nc2/a)−2/3h2

)
), h ∈ R}

and as n→∞ it is equivalent to the location of the maximum of the process

{B(F (t) + f(t)(s− t))−
√
n((cp/2)tp/2−1g′(t)(nc2/a)−2/3h2

+(cpδnt
p/2−1(nc2/a)−1/3h), h ∈ R}

Since, a Brownian bridge behaves locally as a Brownian motion in (0, 1), the limiting
distribution of

{W (cpt
p/2−1g(t)(nc2/a)−1/3h)−

√
n(cpt

p/2−1(g′(t)/2)(nc2/a)−2/3h2

+(cpδnt
p/2−1(nc2/a)−1/3h), h ∈ R}

where, W is the Wiener process on (0, 1). Now, by writing the values of a, c and

δn = xn−1/3 (d(t)ac)1/3 and using Brownian scaling, we get that

{√cpt(p/2−1)/2a2/3(nc2)−1/6W (h)− cpt(p/2−1)a2/3(nc2)−1/6h2

−cpt(p/2−1)a2/3(nc2)−1/6xh, h ∈ R}

The location of maximum of the above process is equivalent to the location of maximum
of the process {

W (h)−
√
cptp/2−1

(
h2 + xh

)
, h ∈ R

}
Let

V (a) ≡ arg max
h

{
W (h)−

√
cptp/2−1(h− a)2, h ∈ R

}
The, {V (a) − a : a ∈ R} is a stationary process and P(V (a) ≤ t) = P(V (0) ≤ t − a).
So, in summary, as n→∞

P

(
n1/3

∣∣∣∣g(t)g′(t)

2

∣∣∣∣−1/3

(ĝn(t)− g(t)) ≤ x

)
= P (ŝn(a+ δn)− t ≤ 0)

→ P (V (−x/2) ≤ 0) = P (2V (0) ≤ x)

and we prove for each y > 0 as n→∞,

n1/3 (ĝn(y)− g(y))
w→ |4g(y)g′(y)|1/3 arg max

h

{
W (h)−

√
cptp/2−1h2

}
.
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(b) Let us use the stochastic process ŝn(a) again for this proof. Now,

ŝn(a) = arg max
s:s≥0

{
Fn(s)− 2acp

p
sp/2
}

= arg max
h:h≥−δ−1

n t

{
Fn(t+ δnh)− 2acp

p
(t+ δnh)p/2

}
= arg max

h:h≥−δ−1
n t

{
Gn(t+ δnh) +

√
n

(
F (t+ δnh)− F (t)− 2acp

p
(t+ δnh)p/2

)}
where, Gn(s) =

√
n (Fn(s)− F (s)) and Fn and F are as defined in part (a). Consider

that s ∈ (0, L). So, h ∈ (δ−1
n t, δ−1

n (L− t)). Let us take a = g(t) +xδn with x > 0 fixed.
Now, by Taylor expansion,

F (t+ δnh)− F (t)− 2acp
p

(t+ δnh)p/2

= f(t)δnh+
f ′(t+ ξδnh)

2
δ2
nh

2 − 2cp
p

(g(t) + xδn)(t+ δnh)p/2

= cpt
p/2−1δ2

n

(
g′(t)

2
h2 − xh

)
+ rn(h){

≤ −cδ2
nh

2 − γnxδ2
nh

≥ −dγnδ2
nh

2 − Cxδ2
nh

for certain c, d > 0 (since, g(t) is monotonically decreasing) independent of δn, t, h.
γn > 0 is a lower bound for t and γn → 0 and n → ∞. Now, if (ĝn(t)− g(t)) > xδn,
then, for any h0 ∈ (−tδ−1

n , 0),

sup
h>0

(
Gn(t+ δnh)−

√
nδ2

n(ch2 + γnxh)
)
≥
(
Gn(t+ δnh0)−

√
nδ2

n(dγnh
2
0 + Cxh0)

)
Choose, h0 ≡ − xC

2dγn
and note that ch2 + γnxh ≥ ch2 for h ≥ 0. So, we can write,

P

(
sup

t∈(max(δnx/(2dCγn),γn),U)

(ĝn(t)− g(t)) > xδn

)

≤ P

(
sup
t∈(0,U)

(
Gn(t+ δnh)−

√
nδ2

nch
2 −Gn(t+ δnh0)

)
≥
√
nC2δ2

n

x2

4dγn

)

≤
∞∑
j=0

P

(
sup

t∈(0,U),j≤h≤j+1

(Gn(t+ δnh)−Gn(t+ δnh0)) ≥
√
nδ2

n

(
cj2 +

x2C2

4dγn

))

We can define the class of functions

Gn,j = {1(((t+ δ′nh
′
0), (t+ δnh)]) : t ∈ (0, U), j ≤ h ≤ j + 1}



CHAPTER 1. REGULARIZED ESTIMATION OF ELLIPTIC DISTRIBUTIONS AND
HIGH DIMENSIONAL CLUSTERING 15

where, δ′n = δn/γn and h′0 = −Cx/(2d) and using Markov inequality we get that

P

(
sup

t∈(δnx/(2dCγn),L)

(ĝn(t)− g(t)) > xδn

)
≤ const

∞∑
j=0

E||Gn||Gn,j√
nδ2

n(j2 + x2/γn)

Now, using bracketing integral entropy bounds from [157] and γn = O((log n)−1/3), we
get that,

const
∞∑
j=0

E||Gn||Gn,j√
nδ2

n(j2 + x2/γn)
≤

∞∑
j=0

1
√
nδ

3/2
n (j + x)3/2

= o

(
1√
x

)
with the last equality coming by taking δn = O(n−1/3) and the RHS goes to zero
forx = xn → ∞. Thus, we can combine all the arguments to get that, for any ε > 0,
there exists a xn > 0 for sufficiently large n with δn = n−1/3 and γn = (log n)−1/3 such
that

P

(
sup

xnδn/γn≤t≤U
|ĝn(t)− g(t)| > xδn

)
≤ O

(
1√
x

)
< ε

(c) Follows from (a) and arguments of Groeneboom (1985) [71].

Spline approximation of NPMLE ĝn

In the previous section, we constructed an isotropic regression based NPMLE ĝn for density
generator g. One of the main problems with NPMLE ĝn is that it is piece-wise constant and
thus discontinuous. This is in general a problem with isotonic estimators. A number of works
has been done to address this issue and obtain isotonic continuous or smooth estimators.
Some of the approaches are - (a) kernel or spline smoothing of isotonic estimators [68], (b)
finding isotonic estimator for smoothed empirical CDF, (c) kernel and spline fitting with
additional isotonic constraints on the fitted models. For each of these approaches several
different methods have been proposed with proper theoretical justification for most of them.
But there still exist some unanswered questions in this domain. However, we shall not go
into those questions in this discourse. We present approach (a) version here only.

We have already found the NPMLE ĝn and proved some of its properties in Lemma 1.3.1.
Now, consider the density generator

g(y) ≡ exp(φ(y)) and (φ1, . . . , φn) ≡ (φ(Y1), . . . , φ(Yn)) (1.19)
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and the NPMLE in the form

exp(φ̂n(y)) ≡ ĝn(y) =

{
ĝi, if Y(i−1) < y ≤ Y(i)

0, otherwise

and

φ̂n(y) ≡
{
φ̂i ≡ log(ĝi), if Y(i−1) < y ≤ Y(i)

0, otherwise
(1.20)

Now, consider ϕ(y) to be a twice continuously differentiable monotonically non-increasing
function with bounded second derivative and

(ϕ(Y1), . . . , ϕ(Yn)) ≡ (φ̂1, . . . , φ̂n).

We consider the problem of estimating monotonically decreasing ϕ(y) with the help of
(φ1, . . . , φn). We have ((Y1, φ1), . . . , (Yn, φn)) as the data and we want to solve regression
problem

φ̂i = ϕ(Yi) + εi, i = 1, . . . , n (1.21)

where, εi are mean zero random variables with variance σ2 and exponentially decaying tails.
Now, we solve the regression problem by finding the monotone continuous function ψ(y)
which minimizes the penalized least-squares loss function

L(ψ) =
n∑
i=1

(
φ̂i − ψ(Yi)

)2

+ λ

∫ U

0

(ψ′(t))2dt (1.22)

Note that the true regression function is ϕ(y). We choose the above smoothing spline loss
function in order to get a natural linear spline estimate for the function ϕ(y) and in turn
φ(y) on design points (Y1, . . . , Yn) and thus get a log-linear spline estimate for the density
generator gp(y) on design points (Y1, . . . , Yn).

The algorithm to solve the minimization problem (1.22) was given in [150]. Let us denote
the resultant linear spline estimate by ψ̂n(y). So, our estimate of φ(y) is a linear spline
estimate ψ̂(y) of the form

ψ̂n(y) ≡
{
aiy + bi, if Y(i−1) < y ≤ Y(i)

0, otherwise
(1.23)

where, (ai, bi))
n
i=1 are estimated by solving the optimization problem in Eq (1.22).

Pal and Woodroofe (2007) [135] provided the asymptotic properties of the estimator
φ̂n(y) in the Theorem 2 of their paper [135], which we restate in following lemma

Lemma 1.3.2.

ψ̂(y) = τλ(y) +
ν

n

n∑
i=1

exp(−ν(y − Yi))εi +OP

(
n−2/3 log n

)
ν + exp(−νy(U − y))OP (ν)

(1.24)

uniformly in λ and in y ∈ (0, U) with ν = λ−1/2 and τλ(y) = ϕ(y) + λϕ′′(y) + o(λ).
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Now, we can use the above lemma and some extensions of it based on [135] to get
concentration of ψ̂n(y) for a special case.

Lemma 1.3.3. Let λ = O
((

logn
n

)2/3
)

and we minimize loss function in Eq. (1.22) with the

λ considered to get ψ̂(y). Suppose also that φ(y) defined in Eq. (1.19) is twice continuously
differentiable with bounded second derivative and φ′ bounded away from 0 (from above) and
−∞. Then as n→∞ for each Yi, for some constants, c1, c2 > 0, we have,

P
[∣∣∣ψ̂n(Yi)− φ(Yi)

∣∣∣ ≥ t
]
≤ c1 exp(−c2t). (1.25)

Proof. From Lemma 1.3.2 using λ = O
((

logn
n

)2/3
)

and substituting λ in Eq. (1.24), we have

that, for y ∈ (0, U),

ψ̂(y) = ϕ(y) + o(n−2/3) +
ν

n

n∑
i=1

exp(−n1/3(y − Yi))εi

+νOP

(
n−1/3 log n

)
+OP

(
n1/3 exp(−n2/3y(U − y))

)
ψ̂(y)− ϕ(y) =

ν

n

n∑
i=1

exp(−n1/3(y − Yi))εi

+νOP

(
n−1/3 log n

)
+OP

(
n1/3 exp(−n2/3y(U − y))

)
+ o(n−2/3)

Now, the first term of the RHS has sub-Gaussian concentration with rate OP (n−1/3) following
Hoeffding’s inequality, since εi are iid sub-Gaussian random variables. The second term is
bounded by ν||Φ̂ − Φ||∞ and o(1/n)ν, where, Φ̂(y) = 1

n

∑
i:Yi≤y φ̂(Yi) and Φ(y) =

∫ y
0
φ(y).

Now, ||Φ̂−Φ||∞ has sub-Gaussian tails by Marshall’s Lemma and Dvoretsky-Kiefer-Wolfowitz
Theorem [96], we have that, ||Φ̂−Φ||∞= OP

(
(log n/n)2/3

)
with sub-Gaussian concentration.

So, the second term has sub-Gaussian concentration with rate OP (n−1/3). The third term
is bounded by ν

n
exp(−ν(U − y))

∑n
i=1 εi + ν exp(−νy(U − y)) and thus has sub-Gaussian

concentration with rate oP (n−1/3).
Now, (Y1, . . . , Yn) ∈ (0, U). So, given (Y1, . . . , Yn) ∈ (0, U), we have, for some constants

c1, c2 > 0,

P

[(
n

log n

)1/3 ∣∣∣ψ̂n(Yi)− φ̂(Yi)
∣∣∣ ≥ t

]
≤ c1 exp(−c2t

2). (1.26)

From, Lemma 1.3.1(b), we have that,

P

[(
n

log n

)1/3 ∣∣∣exp(φ(Yi))− exp(φ̂(Yi))
∣∣∣ ≥ exp(t)

]
= O

(
1√

exp(t)

)
.
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So, we have,

P

[(
n

log n

)1/3
(

exp(φ(Yi))

exp(φ̂(Yi))
− 1

)
≥ exp(t)

]
= O

(
1√

exp(t)

)
,

which implies,

P
[
log n

∣∣∣φ(Yi)− φ̂(Yi)
∣∣∣ ≥ C log(exp(t)± 1)

]
= O (exp(−t/2)) ,

for some constant C > 0. So, for large t > 0, we have, for some constants c1 > 0 and c2 > 0,

P
[
log n

∣∣∣φ(Yi)− φ̂(Yi)
∣∣∣ ≥ t

]
= c1 exp(−c2t),

Now, combining the above equation with Eq. (1.26), we get that, for each Yi and large t,

P
[∣∣∣ψ̂(Yi)− φ(Yi)

∣∣∣ ≥ t
]
≤ c1 exp(−c2t),

and thus the Lemma follows.

1.4 Inference II: Estimation of Euclidean Parameters

The estimation of Euclidean parameters is carried in an iterative fashion. We start with a
consistent estimate of the Euclidean parameters and then by using the estimate of density
generator in Section 1.3, we try to get better estimates of the Euclidean parameters. In this
section, we shall try to devise the estimation procedure for improving the initial estimate of
the Euclidean parameters.

Initial Estimates of Euclidean Parameters

We have X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed random variables
with density f(·;µ0,Ω0), where, Ω0 ≡ Σ0. We shall try to give different initial estimates of
Euclidean parameters for fixed dimension and high-dimensional cases.

Fixed dimensional case

There is a rich literature on robust estimates of multivariate location and scale parameters.
The book by Hampel et.al. [73] is a good source. We can also use sample mean and
covariance estimates, as they are also consistent estimates of mean and covariance parameters
for the class of Euclidean distributions. We suggest using Stahel-Donoho robust estimator of
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multivariate location and scatter [114]. Stahel-Donoho estimators (µ̂, Σ̂) of (µ0,Σ0) are also
weighted mean and covariance matrix estimators, which are of the form

µ̂ =

∑n
i=1wiXi∑n
i=1 wi

(1.27)

Σ̂ =

∑n
i=1wi(Xi − µ̂)(Xi − µ̂)T∑n

i=1wi
(1.28)

where, the weight, wi is a function on “oulyingness” of a data point Xi from the center
(i = 1, . . . , n). See [73] for more details on weight function w. From Theorem 1 of [73], we
get
√
n consistency of the estimators (µ̂, Σ̂). So, we have,

√
n|µ̂i − (µ0)i| = OP (1) for all i = 1, . . . , p (1.29)

√
n|Σ̂ij − (Σ0)ij| = OP (1) for all i, j = 1, . . . , p (1.30)

Another alternative is Tyler’s M-estimate of Multivariate scatter given in [156], which also
gives a

√
n consistent estimate of Σ.

High-dimensional case

(a) Sample mean, thresholded mean or LASSO estimator can be used to estimate µ

(b) Ledoit-Wolf estimator of covariance and Precision matrix [105], which gives distribution-
free consistent estimators of covariance and precision matrix in high-dimensions as
p, n→∞ or graphical lasso estimators [67] can be used to estimate covariance, Σ and
precision matrix, Ω.

Estimation of Density Generator Using Estimates µ̂n and Σ̂n

The difference between the approach in Section 1.3 and this one is that Yi = (Xi−µ)TΣ−1(Xi−
µ) is replaced by Ŷi = (Xi− µ̂n)T Σ̂−1

n (Xi− µ̂n). But, if we use Ŷi instead of Yi in finding the
estimate of gp(y), then, we shall show that we have a new rate of convergence depending on

behavior of ||Ω− Ω̂|| and ||µ− µ̂||.

Lemma 1.4.1. Under conditions of Lemma 1.3.3 and φ′ being bounded and

P[||µ− µ̂||2> t] ≤ J1(t, n, p)

P[||Ω− Ω̂||F> t] ≤ J2(t, n, p).

Then as n→∞, for some constants c, d > 0

P
[∣∣∣φ̂n(Ŷi)− φ(Yi)

∣∣∣ > t
]
≤ c exp(−dt)J1(t, p, n)J2(t, p, n) (1.31)
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Proof. Let us consider φ̂(µ̂,Ω̂) as the estimate of log-density generator using (Ŷi)
n
i=1 as the data

and φ̂(µ,Ω) as the estimate of log-density generator using (Yi)
n
i=1 as the data. By applying

Lemma 1.3.1 and 1.3.3, we get, for some constants, k1, k2, k3, k4 > 0,

P
[∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(µ̂,Ω̂)(Ŷi)

∣∣∣ ≥ t
]
≤ k1 exp(−k2t)

P
[∣∣∣φ̂(µ,Ω)(Yi)− φ(µ,Ω)(Yi)

∣∣∣ ≥ t
]
≤ k3 exp(−c4t)

Now, φ̂n(Ŷi) ≡ φ̂(µ̂,Ω̂), we want to prove, that for some constants c, d > 0,

P
[∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(Yi)

∣∣∣ > t
]
≤ c exp(−dt)

Now, ∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)
∣∣∣ ≤ ∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(µ̂,Ω̂)(Ŷi)

∣∣∣
+
∣∣∣φ̂(µ,Ω)(Yi)− φ(µ,Ω)(Yi)

∣∣∣
+
∣∣∣φ(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)

∣∣∣
Since, we already have bounds for first and second term, we only have to bound the third
term. Now,(

φ(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)
)

= φ
(

(Xi − µ̂)T Ω̂(Xi − µ̂)
)
− φ

(
(Xi − µ)TΩ(Xi − µ)

)
≤ |φ′|

(
(Xi − µ̂)T Ω̂(Xi − µ̂)− (Xi − µ)TΩ(Xi − µ)

)

(Xi − µ)TΩ(Xi − µ) = (Xi − µ̂+ µ̂− µ)TΩ(Xi − µ̂+ µ̂− µ)

= (Xi − µ̂)TΩ(Xi − µ̂) + 2(Xi − µ̂)TΩ(Xi − µ̂) + (µ− µ̂)TΩ(µ− µ̂)

= (Xi − µ̂)T Ω̂(Xi − µ̂) + (Xi − µ̂)T (Ω− Ω̂)(Xi − µ̂)

+2(Xi − µ̂)TΩ(Xi − µ̂) + (µ− µ̂)TΩ(µ− µ̂)

So, from the assumptions on the estimators µ̂ and Ω̂ and if φ′ is bounded, we get that for
some constant k5, k6 > 0,

P
[∣∣∣φ(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)

∣∣∣ ≥ t
]
≤ k5 exp(−k6t)J1(p, n, t)J2(p, n, t)

and so the lemma follows.
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Maximum Likelihood Estimation of µ and Ω

From the Section 1.4, we have the data in the form Ŷi ≡ (Xi − µ̂)T Ω̂(Xi − µ̂), which we
use to get an estimate of the density generator function gp in a log-linear spline form like in
Eq(1.23) in Section 1.3. So, the linear spline estimate of log g takes the form

ˆlog gp(x) = −
n−1∑
i=1

(aix+ bi)1
(

(Ŷ(i), Ŷ(i+1)]
)
− (an+1x+ bn+1)1

(
(Ŷ(n), Ŷ(n+1))

)
(1.32)

where, Ŷ(i) is the ith order statistic for {Ŷi}n+1
i=0 with Ŷ0 ≡ −∞ and Ŷn+1 ≡ ∞ and (ai, bi)

n
i=1

as define in Eq. (1.23).
Now, if we define Yi = (Xi − µ)TΩ(Xi − µ), then, the likelihood function of θ = (µ,Ω)

given data (X1, . . . , Xn) and density generator gp becomes -

L(θ|Y , gp) =
n∏
i=1

|Ω|1/2gp
(
(Xi − µ)TΩ(Xi − µ)

)
=

n∏
i=1

|Ω|1/2gp(Yi) (1.33)

and the log-likelihood function of θ = (µ,Ω) given data (X1, . . . , Xn) and density generator
gp becomes -

`(θ|Y , gp) =
n

2
log|Ω|+

n∑
i=1

log gp(Yi)

Now, we can plug-in the a variant of estimate of log gp from Eq (1.32), in the form

˜log gp(x) = −
n−1∑
i=1

(aix+ bi)1
(
(Y(i), Y(i+1)]

)
− (an+1x+ bn+1)1

(
(Y(n), Y(n+1))

)
where, Y(i) is the ith order statistic for {Yi}n+1

i=0 with Y0 ≡ −∞ and Yn+1 ≡ ∞ and plug in
˜log gp in place of log gp, to get the approximated log-likelihood - Then, we can write

`(θ|X) =
n

2
log|Ω|−

n∑
i=1

ai
(
(Xi − µ)TΩ(Xi − µ)

)
+ Constant

=
n

2
log|Ω|−tr (S∗Ω) + Constant

where, S∗ =
∑n

i=1 ai(Xi−µ)(Xi−µ)T . By maximizing the approximated log-likelihood ˜̀(θ)
-

˜̀(θ|X) =
n

2
log|Ω|−tr (S∗Ω) (1.34)

we will get estimates of µ and Ω as

(µ̃, Ω̃) = arg max
µ,Ω�0

˜̀(µ,Ω) (1.35)

which we call robust regularized estimators of Euclidean parameters. See beginning of
Section 1.2 for the notation.
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Penalized ML Estimation of µ and Ω: High-dimensional Case

Now, we consider the high-dimensional situation under the additional structure of sparsity
imposed on the Euclidean parameters θ0. We consider that ||Ω−||0= s, where, ||·||0 calculates
the number of non-zero entries in the vector or the matrix in vectorized form. Small values
s indicates sparsity. In the high-dimensional case, we have the dimension of the Euclidean
parameters, p, growing with number of samples, n. We consider the penalized approximated
log-likelihood function under assumption of sparsity to be

˜̀(µ|X) = −
n∑
i=1

ai(Xi − µ)T (Xi − µ) (1.36)

˜̀(Ω|X, µ̃) =
n

2
log|Ω|−tr (S∗Ω) + ν|Ω−|1 (1.37)

where, S∗ ≡
∑n

i=1 ai(Xi − µ̃)T (Xi − µ̃) and

µ̃ = arg max
µ

˜̀(µ) (1.38)

Ω̃ = arg max
Ω�0

˜̀(Ω) (1.39)

are the robust regularized estimators of Euclidean parameters. See Section 1.2 for the
notation.

Note that, if we had known Ω or if the proper form of elliptic density was known, we could
have used penalization in the mean parameter too. So, if Ω is known, then, the penalized
likelihood for µ becomes -

˜̀(µ|X) =
n∑
i=1

−ai(Xi − µ)T (Xi − µ) + ν1||µ||1 (1.40)

(1.41)

and the penalized likelihood estimate, µ̃ is

µ̃ = arg max
µ

˜̀(µ) (1.42)

1.5 Inference III: Combined Approach and Theory

Now, we can summarize the estimation procedure based on the steps suggested in Section
1.3 and 1.4. We shall provide the estimation procedure in this section and we shall provide
the theoretical justification for the method.

Let X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed random variables
with density f(·;µ0,Ω0), where, Ω0 ≡ Σ0. Then the density function f(·;µ0,Ω0) is of the
form

f(x;µ0,Ω0) = |Ω0|1/2gp
(
(x− µ0)TΩ(x− µ0)

)
(1.43)
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where θ0 = (µ0,Ω0) ∈ Rp(p+3)/2 are the Euclidean mean and inverse covariance parameters
(Σ0 is the covariance parameter) respectively with µ0 ∈ Rp and Ω0 ∈ Rp(p+1)/2 and gp : R+ →
R+ is the infinite-dimensional parameter with the property∫

Rp

gp(x
Tx)dx = 1

R+ = [0,∞).

Fixed Dimension Case

We first consider the fixed dimensional case, that is when we do not have the dimension of
the Euclidean parameters, p, not growing with number of samples, n. The estimation steps
are as follows -

(1) Assume that we have an initial consistent estimators µ̂ and Ω̂, such that, ||µ̂ − µ0||2
and ||Ω̂−Ω0||F concentrates to zero with tail bounds given by functions J1(t, n, p) and
J2(t, n, p) such that,

P[||µ0 − µ̂||2> t] ≤ J1(t, n, p)

P[||Ω0 − Ω̂||F> t] ≤ J2(t, n, p).

So, we have, ||µ̂ − µ0||F= OP ((ω1(n)) and ||Ω̂ − Ω0||2= OP ((ω2(n)), where, ω(n) → 0
as n→∞ with given tail bounds.

There is a rich literature on robust estimates of multivariate location and scale param-
eters. The book by Hampel et.al. [73] is a good source

(2) Define Ŷi = (Xi− µ̂)T Ω̂(Xi− µ̂) and based on (Ŷ1, . . . , Ŷn), we construct the Grenander
type estimator ĝn(y) of the density generator gp from the equation (1.14). If gp is
monotone, we get an isotonic linear spline estimate of φ(y), where, exp(φ(y)) ≡ gp(y),

in the form of ψ̂(y), defined by the equation (1.23).

(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to get an approximated
log-likelihood loss function, ˜̀(θ) for the Euclidean parameters θ, given by equation
(1.34)

˜̀(θ|X) =
n

2
log|Ω|−tr (S∗Ω) .

where, S∗ =
∑n

i=1 ai(Xi−µ)(Xi−µ)T . We maximize ˜̀(θ) with respect to θ, to get the
robust estimates of θ0.

(4) (Optional) We can use the estimates to obtained in Step 4 and repeat Steps 1-3, to get
an estimate of gp. But, both in theory and practice, that does not improve the error
rates of the new estimate of gp.
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High-dimensional Case

Now, we consider the high-dimensional situation under the additional structure of sparsity
imposed on the Euclidean parameters θ0. We consider that ||Ω−||0= s, where, ||·||0 calculates
the number of non-zero entries in the vector or the matrix in vectorized form. Small value
of s indicates sparsity. We first consider the high-dimensional case, that is when we have
the dimension of the Euclidean parameters, p, growing with number of samples, n. The
estimation steps are as follows -

(1) Assume that we have an initial consistent estimators µ̂ and Ω̂, such that, ||µ̂ − µ0||2
and ||Ω̂−Ω0||F concentrates around zero with tail bounds given by functions J1(t, n, p)
and J2(t, n, p) such that,

P[||µ0 − µ̂||2> t] ≤ J1(t, n, p)

P[||Ω0 − Ω̂||F> t] ≤ J2(t, n, p).

So, we have, ||µ̂−µ0||F= OP ((ω1(p, n)) and ||Ω̂−Ω0||2= OP ((ω2(p, n)), where, ω(p, n)→
0 as p.n→∞ with given tail bounds.

There is a rich literature on robust estimates of multivariate location and scale param-
eters. The book by Hampel et.al. [73] is a good source

(2) Define Ŷi = (Xi− µ̂)T Ω̂(Xi− µ̂) and based on (Ŷ1, . . . , Ŷn), we construct the Grenander
type estimator ĝn(y) of the density generator gp from the equation (1.14). If gp is
monotone, we get an isotonic linear spline estimate of φ(y), where, exp(φ(y)) ≡ gp(y),

in the form of ψ̂(y), defined by the equation (1.23).

(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to get an approximated
penalized log-likelihood loss function, ˜̀(θ) for the Euclidean parameters θ under spar-
sity assumptions, given by equation (1.36)

˜̀(µ|X) =
n∑
i=1

ai(Xi − µ)T (Xi − µ)

˜̀(Ω|X, µ̃) =
n

2
log|Ω|−tr (S∗Ω) + ν|Ω−|1

where, S∗ ≡
∑n

i=1 ai(Xi − µ̃)T (Xi − µ̃) and

µ̃ = arg max
µ

˜̀(µ)

Ω̃ = arg max
Ω

˜̀(Ω)

are the robust regularized estimators of Euclidean parameters of θ0.
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Note that, if we had known Ω or if the proper form of elliptic density was known, we
could have used penalization in the mean parameter too. So, if Ω is known, then, the
penalized likelihood for µ becomes -

˜̀(µ|X) = −
n∑
i=1

ai(Xi − µ)T (Xi − µ) + ν1||µ||1

and the penalized likelihood estimate, µ̃ is

µ̃ = arg max
µ

˜̀(µ)

The likelihood optimization problems are convex optimization problems and have been
the focus of much study in statistical and optimization literature. One way of solving
the optimization problem for µ is by using LARS algorithm of [55]. The optimization
problem for Ω can be solved by using the graphical LASSO algorithms provided in
[67], [164] and [83].

(4) (Optional) We can use the estimates to obtained in Step 4 and repeat Steps 1-3, to get
an estimate of gp. But, both in theory and practice, that does not improve the error
rates of the new estimate of gp.

In Section 4.4, we give proof of Theorem 1.2.6, by which we show that regularized es-
timators of the Euclidean parameters θ in the high-dimensional case is also robust to tail
behavior of the underlying elliptical distribution.

Theory

We have described the estimation procedure of the Euclidean parameters and the non-
parametric component of the elliptical density in Section 1.5. We now try to show that the
estimators have nice behavior in the case of fixed and high dimension. The main theorem in
this section is Therem 1.2.5 and Theorem 1.2.6given in Section 1.2. However, to prove the
Theorems we first need to discuss the setup and the conditions.

We have X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed random
variables with density f(·;µ0,Ω0), where, Ω0 ≡ Σ0. Then the density function f(·;µ0,Ω0) is
of the form

f(x;µ0,Ω0) = |Ω0|1/2gp
(
(x− µ0)TΩ(x− µ0)

)
(1.44)

where θ0 = (µ0,Ω0) ∈ Rp(p+3)/2 are the Euclidean mean and inverse covariance parameters
(Σ0 is the covariance parameter) respectively with µ0 ∈ Rp and Ω0 ∈ Rp(p+1)/2 and gp : R+ →
R+ is the infinite-dimensional parameter. We shall also consider that gp possess consistency
property.
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Now, according to the consistency condition of Elliptical distribution mentioned in Lemma

1.2.4, for independent random variables (ξ1, . . . , ξn) with ξi
d
= ξ, ∀i,

(
√
ξ1Ω

1/2
0 (X1 − µ0), . . . ,

√
ξnΩ

1/2
0 (Xn − µ0))

d
= (Z1, . . . , Zn)

where, (Z1, . . . , Zn) are independent p-variate standard Gaussian random variables. If we

define, Wi ≡ Ω
1/2
0 (Xi − µ0), then,

(
√
ξ1W1, . . . ,

√
ξnWn)

d
= (Z1, . . . , Zn) (1.45)

Now, according to the estimation procedure we have proposed, after the estimation of
the density generator by a log-lear spline, according to log-likelihood equation Eq (1.33), the
resulting log-likelihood for θ becomes of the form

`(θ|X) =
n

2
log|Ω|−

n∑
i=1

ai
(
(Xi − µ)TΩ(Xi − µ)

)
+ Constant

which is like the log-likelihood if estimated density f̂ with parameters (µ0,Ω0) which has the
form -

f̂(X1, . . . , Xn|θ0) = C|Ω|1/2exp

(
−

n∑
i=1

ai(Xi − µ0)TΩ0(Xi − µ0)

)
.

that means that as if the data Wi ≡ Ω
1/2
0 (Xi − µ0) has the following distributional form -

(
√
a1W1, . . . ,

√
anWn)

d
= (Z1, . . . , Zn)

So, we can see that by our estimation of the non-parametric component, we have got an
estimate of the latent scale variable ξ inherent to the consistent elliptical distribution. Our
results on rate will thus depend on the tail behavior of ξ.

We wish to prove the Theorem 1.2.6 and Theorem 1.2.5 now. Recall the assumptions
(A1)-(A5) given in Section 1.2, which preceded Theorem 1.2.6 and Theorem 1.2.5.

Before proving Theorem 1.2.6, we shall state and prove two lemma on concentration
inequalities which are vital for the proof of Theorem 1.2.6. Lemma 1.5.1 is variant of the
Lemma B.1 of [26]. Lemma 1.5.2 is variant of the Lemma 3 of [25] or Lemma 1 of [141].

Concentration inequality around the mean parameter µ0 will be goal of our first Lemma.

Lemma 1.5.1. Let Xi be i.i.d elliptically distributed random variables having elliptic distri-
bution with parameters (µ0,Ω0) and ai’s are as stated in Eq. (1.45) and Ω be an estimate of
Ω0 satisfying Assumption (A2). Then,

P

[
max
j

n∑
i=1

√
ai|(Ω1/2

0 (Xi − (µ0)))j|> 2nt

]
≤ p(c exp(−dt)J1(t, n, p)J2(t, n, p))n (1.46)

where, c, d are some constants.
So, the rate of convergence is controlled by σ1(p, n), which is the function such that the

above inequality satisfies if we replace t = O(σ1(p, n))
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Proof. We have (
√
ξiΩ

1/2
0 (Xi−µ0)

d
= Zi ∼ N(0p, Ip). So, we have, by Gaussian tail inequality

P
[
ξi(Xi − (µ0))TΩ0(Xi − µ0) > t2

]
≤ c1 exp(−c2t

2)

From Lemma 1.3.3 and Lemma 1.4.1, we have that,

P
[
(ai − ξi)(Xi − (µ0))TΩ0(Xi − µ0) > t2

]
≤ (k1 exp(−k2t

2)J1(t2, n, p)J2(t2, n, p))

Combining the above two equations, we have for some constants c3, c4 > 0,

P
[
ai(Xi − (µ0))TΩ0(Xi − µ0) > t2

]
≤ c3 exp(−c4t

2)J1(t2, n, p)J2(t2, n, p)

⇒ P
[√

ai|(Ω1/2
0 (Xi − (µ0)))j|> t

]
≤ c3 exp(−c4t)J1(t, n, p)J2(t, n, p)

So, we get that,

P

[
n∑
i=1

√
ai|(Ω1/2

0 (Xi − (µ0)))j|> nt

]
≤ (c3 exp(−c4t)J1(t, n, p)J2(t, n, p))n

P

[
max
j

n∑
i=1

√
ai|(Ω1/2

0 (Xi − (µ0)))j|> 2nt

]
≤ p(c3 exp(−c4t)J1(t, n, p)J2(t, n, p))n

Let us consider that σ1(p, n) to be the function such that the above inequality satisfies if we
replace t = O(σ1(p, n)).

So, we can see that depending on the behavior of H1(t), either H1(t) or exp(−c2t
2)

controls the rate in the above Lemma.
Concentration inequality around the covariance matrix parameter Σ0 will be goal of our

next Lemma.

Lemma 1.5.2. Let Xi be i.i.d elliptically distributed random variables having elliptic distri-
bution with parameters (µ0,Σp) and ai’s are as stated in Eq. (1.45) and Ωp ≡ Σ−1

p . We also

have, λmax(σp) ≤ k <∞. Then, if (Σp)ab = σab,

P

[
max
j 6=k

n∑
i=1

|aiŴijŴik − (Σ0)jk|> nt

]
≤ d1p

2(H(t)J1(t)J2(t))n(exp(−nd2t))(exp(−nd3t
2)) for |t|≤ δ (1.47)

where, µ̂ is an of µ0, d1, d2, d3 and δ depend on k only.
So, the rate of convergence is controlled by σ2(p, n), which is the function such that the

above inequality satisfies if we replace t = O(σ2(p, n)).
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Proof. Consider Wi = Xi − µ0 and Ŵi = Xi − µ̂ for i = 1, . . . , n. We have Ω
1/2
0

√
ξiWi

d
=

Zi ∼ N(0p, Ip). So, we have, by Lemma 3 of [25], for |t|≤ δ, for some constants c1, c2 > 0,

P

[
n∑
i=1

|ξiWijWik − (Σ0)jk|> nt

]
≤ c1 exp(−nc2t

2) (1.48)

We have ai > 0 and ξi > 0. Now,

|aiWijWik − ξiWijWik|≤ |ai||Wi||22−ξi||Wi||22|.
|WijWik|∑

jW
2
ij

≤ |ai||Wi||22−ξi||Wi||22|

Since, ai from φ̂ is the slope estimate of the log density generator φ, whose slope is ξ,
conditional on ξ. So, we have from Lemma 1.3.3 and Lemma 1.4.1 for c3, c4 > 0, that,

P
[
|ai||Wi||22−ξi||Wi||22|> t

]
≤ c3 exp(c4t)J1(t, n, p)J2(t, n, p)

which implies,

P [|aiWijWik − ξiWijWik|> t] ≤ c3 exp(c4t)J1(t)J2(t) (1.49)

Now,

|aiŴijŴik − aiWijWik| ≤ ai |−Xij(µ̂k − (µ0)k)−Xik(µ̂j − (µ0)j) + (µ̂jµ̂k − (µ0)j(µ0)k)|

So, we have, for some constants, c5, c6 > 0,

P
[
|aiŴijŴik − aiWijWik|> t

]
≤ H(t)c5 exp(c6t) (1.50)

So, combining the above equations (1.48) (1.49) and (1.50), for constants d1, d2, d3 > 0, we
get that,

P

[
n∑
i=1

|aiŴijŴik − (Σ0)jk|> 3nt

]
≤ d1(H(t)J1(t)J2(t))n(exp(−nd2t))(d3 exp(−nd3t

2))

P

[
max
j 6=k

n∑
i=1

|aiŴijŴik − (Σ0)jk|> 3nt

]
≤ p(p− 1)d1(H(t)J1(t)J2(t))n(exp(−nd2t))(exp(−nd3t

2))

Let us consider that σ2(p, n) to be the function such that the above inequality satisfies if we
replace t = O(σ2(p, n)).

So, we can see that depending on the behavior of H(t), J1(t), J2(t) and these rates along
with exp(−c2t

2) controls the rate in the above Lemma.
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Proof of Theorem 1.2.6

(a) We consider

Q(µ) =
n∑
i=1

ai(Xi − µ)TΩ0(Xi − µ)−
n∑
i=1

ai(Xi − µ0)TΩ0(Xi − µ0)

Our estimate µ̃ given in Eq. (1.38) minimizes Q(µ) or equivalently δ̂ = µ̃−µ0 minimizes
G(δ) ≡ Q(µ0 + δ) given an estimate Ω of Ω0. Consider the set

Θn(M) = {δ : ||δ||2= Mrn}

where,

rn =
√
pO(σ1(p, n))→ 0

where, σ1(p, n) is taken from statement of Lemma 1.5.1. Note that G(δ) is a convex
function and

G(δ̂) ≤ G(0) = 0

Then, if we can show that

inf{G(δ) : δ ∈ Θ(M)} > 0

then the minimizer δ̂ must be inside the sphere Θn(M) and hence

||δ̂||2≤Mrn

Now,

n∑
i=1

ai(Xi − µ)TΩ0(Xi − µ)

=
n∑
i=1

ai(Xi − µ0)TΩ0(Xi − µ0) + 2
n∑
i=1

ai(Xi − µ0)TΩ0(µ0 − µ)

+
n∑
i=1

ai(µ0 − µ)TΩ0(µ0 − µ)

So,

G(δ) = 2
n∑
i=1

ai(Xi − µ0)TΩ0δ +
n∑
i=1

aiδ
TΩ0δ
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Now, by applying Cauchy-Scwartz inequality and Lemma 1.5.1, and ā1 =
∑n

i=1

√
ai

and ā2 =
∑n

i=1 ai, we get that,

G(δ) ≥ −2
n∑
i=1

√
aiσ1(p, n)||Ω1/2

0 δ||2+
n∑
i=1

aiδ
TΩ0δ

≥ −2ā1M
√
s(σ1(p, n))2 + ā2kM

2s(σ1(p, n))2

≥ ā2(1/(k + oP (1)))M2s(σ1(p, n))2 − 2ā1M
√
s(σ1(p, n))2

> 0

for large enough M > 0. So, for large enough M > 0,

G(δ) > 0

So, our proof follows.

(b) The proof closely follows proof of Theorem 1 in [141]. We do not repeat the proof as
essentially the same proof follows. The only difference are

(i) Take S∗ in stead of Σ̂ in the whole proof.

(ii) Take rn =
√
p+ sO(σ2(p, n)) → 0, where,σ2(p, n) is taken from statement of

Lemma 1.5.2

(iii) Use Lemma 1.5.2 instead of Lemma 1 after the equations (12) and (13) of the
proof.

(iv) Use regularization parameter ν2 = C1

ε
O(σ2(p, n)), where, σ2(p, n) is taken from

statement of Lemma 1.5.2

(c) Follows fro Lemma 1.3.1.

Proof of Theorem 1.2.5

Proof of Theorem 1.2.5 becomes a special case of proof of Theorem 1.2.6 as we do not have
dependence on p in rate anymore.

1.6 Application to Special Problems

Application to Covariance and Precision Matrix Estimation

The general method of estimation given in Section 1.5 can be used in robust regularized
estimation of covariance and inverse covariance matrices. Class of Elliptical densities contain
densities having tails both thicker and thinner than sub-Gaussian random variables. So,
adaptive estimation of covariance matrix from a class of elliptical densities lead to covariance
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matrix estimators, which are robust to tail-behavior of the under distribution of the random
variable.

Let X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed random variables
with density f(·; 0,Ω). Then the density function f(·;µ,Ω) is of the form

f(x; 0,Ω) = |Ω|1/2gp
(
xTΩx

)
(1.51)

where θ = (0,Ω) ∈ Rp(p+3)/2 are the Euclidean mean and covariance parameters respectively
with Ω ∈ Rp(p+1)/2 and gp : R+ → R+ is the infinite-dimensional parameter with the property∫

Rp

gp(x
Tx)dx = 1

R+ = [0,∞). Ω ≡ Σ−1 is the inverse covariance parameter and Σ is the covariance parameter.
Now, we consider the high-dimensional situation under the additional structure of sparsity

imposed on the Euclidean parameters θ0. We consider that ||Ω−||0= s, where, ||·||0 calculates
the number of non-zero entries in the vector or the matrix in vectorized form. Small values
of s indicates sparsity. We consider the high-dimensional case, that is when we have the
dimension of the Euclidean parameters, p, growing with number of samples, n.

Method

If we follow the estimation procedure suggested in Section 1.5, we shell get the robust
regularized estimate, Ω̃ of Ω with nice theoretical properties given in Theorem 1.2.6. This
procedure can be performed for any other additional structure on the parameters and for
any other form of penalization on parameters. As a special case, assume sparsity condition:
||Ω−||0= s, where, ||·||0 calculates the number of non-zero entries in the vector or the matrix
in vectorized form and `1 penalty on off-diagonal elements of Ω. The steps of estimation
procedure can be stated as -

(1) Assume that we have an initial consistent estimators Ω̂, such that, ||Ω̂−Ω0||F concen-
trates around zero with tail bounds given by functions J(t, n, p) such that,

P[||Ω− Ω̂||F> t] ≤ J2(t, n, p).

So, we have, ||Ω̂−Ω0||2= OP ((ω(p, n)), where, ω(p, n)→ 0 as p.n→∞ with given tail
bounds.

There is a rich literature on robust estimates of multivariate location and scale param-
eters. The book by Hampel et.al. [73] is a good source.

(2) Define Ŷi = XT
i Ω̂Xi and based on (Ŷ1, . . . , Ŷn), we construct the Grenander type

estimator ĝn(y) of the density generator gp from the equation (1.14). If gp is monotone,
we get an isotonic linear spline estimate of φ(y), where, exp(φ(y)) ≡ gp(y), in the form

of ψ̂(y), defined by the equation (1.23).
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(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to get an approximated
penalized log-likelihood loss function, ˜̀(θ) for the Euclidean parameters θ under spar-
sity assumptions, given by equation (1.36)

˜̀(Ω|X, µ̃) =
n

2
log|Ω|−tr (S∗Ω) + ν|Ω−|1

where, S∗ ≡
∑n

i=1 aiX
T
i Xi and

Ω̃ = arg max
Ω

˜̀(Ω)

are the robust regularized estimators of Euclidean parameter Ω.

The likelihood optimization problems are convex optimization problems and have been
the focus of much study in statistical and optimization literature. The optimization
problem for Ω can be solved by using the graphical LASSO algorithms provided in
[67], [164] and [83].

We can get robust regularized estimate of covariance matrix Σ by this method.

Theoretical Performance

We start with the following assumption -

(B1) Assume that we have an initial consistent estimators Ω̂, such that, ||Ω̂−Ω0||F concen-
trates to zero with tail bounds given by functions J(t, n, p) such that,

P[||Ω0 − Ω̂||F> t] ≤ J(t, n, p). (1.52)

We have, ||Ω̂ − Ω0||2= OP ((ω(p, n)), where, ω(p, n) → 0 as p, n → ∞ with given tail
bounds.

In the high-dimensional situation we assume the additional structure of sparsity imposed on
Ω0. Density generator g comes from a consistent family elliptical distributions and so by

Lemma 1.2.4, Ω
1/2
0 (X)

d
= Zp/

√
ξ. Let us consider the probability density function of Xj to

be h (j = 1, . . . , p) and

H(u) ≡
∫ ∞
u

h(v)dv (1.53)

We consider the following assumptions -

(B2) Suppose that ||Ω−||0≤ s, where, ||·||0 calculates the number of non-zero entries in the
vector or the matrix in vectorized form. Small values of s indicates sparsity.

(B3) λmin(Σ0) ≥ k > 0, or equivalently λmax(Ω0) ≤ 1/k. λmax(Σ0) ≤ k.
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(B4) The function H(t) defined in Eq. (1.53) and J(t, n, p) defined in Eq. (1.52), satisfies
the following conditions -
there exists a function σ(p, n) : N × N → R+ is defined such that for constants,
d1, d2, d3 > 0, for t = O(σ(p, n)),

d1p
2(J(t, n, p))n(exp(−nd2t))(d3 exp(−nd3t

2))→ 0 as p, n→∞ (1.54)

Let us consider that we have obtained estimators of the Euclidean parameters Ω̃ and the
nonparametric component ĝ by following the estimation procedure of the elliptical density
in Section 1.5. We consider the high-dimensional situation now, that means the number of
dimensions p and the number of samples n both grow.

Theorem 1.6.1. Define φp(y) ≡ log(gp) and assume the following regularity conditions on
density generator gp and φp(y): gp is twice continuously differentiable with bounded second
derivative and derivative φ′ and g′ bounded away from 0 (from above) and −∞ and

∫
(φ′′)2 <

∞. Then, under assumption (B1)-(B4),

||Ω0 − Ω̃||F= OP

(√
(p+ s)σ(p, n)

)
for ν = O (σ(p, n)) .

Proof. The proof follows from Theorem 1.2.6 with µ0 = 0.

So, we get a consistent estimator Ω̃ with computable rates of convergence, which is robust
against tail behavior. Similarly, we can also get estimates of the covariance matrix Σ and
correlation matrix by extending the methods suggested in [141] and [101] in our setup.

Application to Regression with Elliptical Errors

The general method of estimation given in Section 1.5 can be used in robust regularized
regression. Class of Elliptical densities contain densities having tails both thicker and thinner
than sub-Gaussian random variables. So, if we have linear regression with error variables
having elliptical distributions, then, adaptive estimation from a class of elliptical densities
lead to regression estimators, which are robust to tail-behavior of the error variables. Thus,
we shall be able to get robust regularized regression estimators.

Let ((Y1, X1), . . . , (Yn, Xn)) where Xi ∈ Rp and Yi ∈ R are predictor and response variable
such that

Yi = βT0 Xi + εi

where, εi are independent elliptically distributed random variables with density f(·; 0, I). So,
the density function of Yi is f(·; βT0 Xi, I), where, f is the elliptical density. So, the problem of
estimation of β boils down to the problem of estimation of mean parameter of the elliptical
density.
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Method

For high-dimensional regression, we consider the most vanilla situation and method. We
consider the high-dimensional situation under the additional structure of sparsity imposed
on the regression coefficients β0. We consider that ||β||0≤ s, where, ||·||0 calculates the
number of non-zero entries in the vector or the matrix in vectorized form. Small values
of s indicates sparsity. We consider the high-dimensional case, that is when we have the
dimension of the Euclidean parameters, p, growing with number of samples, n.

(1) Assume that we have an initial consistent estimators β̂, such that, ||β̂ − β0||2 concen-
trates around zero with tail bounds given by functions J(t, n, p) such that,

P[||β0 − β̂||2> t] ≤ J(t, n, p)

So, we have, ||β̂−β0||F= OP ((ω(p, n)), where, ω(p, n)→ 0 as p.n→∞ with given tail
bounds.

There is a rich literature on robust estimates of multivariate location and scale param-
eters. The book by Hampel et.al. [73] is a good source.

(2) Define Êi = (Yi− β̂TXi)
2 and based on (Ê1, . . . , Ên), we construct the Grenander type

estimator ĝn(y) of the density generator gp from the equation (1.14). If gp is monotone,
we get an isotonic linear spline estimate of φ(y), where, exp(φ(y)) ≡ gp(y), in the form

of ψ̂(y), defined by the equation (1.23).

(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to get an approximated
penalized log-likelihood loss function, ˜̀(θ) for the Euclidean parameters θ under spar-
sity assumptions, given by equation (1.36)

˜̀(µ|X) =
n∑
i=1

ai(Yi − βTXi)
T (Yi − βTXi) + ν||β||1

and

β̃ = arg max
β

˜̀(β)

are the robust regularized estimators of Euclidean parameters of β0.

The likelihood optimization problems are convex optimization problems and have been
the focus of much study in statistical and optimization literature. One way of solving
the optimization problem for β is by using LARS algorithm of [55].
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Theoretical Performance

Thus following the estimation procedure suggested above, we shell get the robust regular-
ized estimate, β̃ of β0 with nice theoretical properties under restrictions on design matrix
and coefficient parameters such as given in [26], [166] and [119]. Let us just give one such ex-
ample of conditions on design matrix and coefficient parameters called Restricted Eigenvalues
conditions given in [26]. The condition is stated as -

(C1) Assume

κ(s, p, c0) ≡ min
J0⊆[p],|J0|≤s

min
δ 6=0,|δJc

0
|1≤c0|δJ01 |1

||Xδ2||2√
n||δJ01||2

> 0 (1.55)

where, for integers s,m such that 1 ≤ s ≤ p/2 and m ≥ s, s+m ≤ p, a vector δ ∈ Rp

and a set of indices J0 ⊆ {1, . . . , p} with |J0|≤ s; denote by J1 the subset of {1, . . . , p}
corresponding to the m largest in absolute value coordinates of δ outside of J0, and
define J01 ≡ J0 ∪ J1.

Also,

(C2) Assume that we have an initial consistent estimators β̂, such that, ||β̂ − β0||2 concen-
trates to zero with tail bounds given by functions J(t, n, p) such that,

P[||β0 − β̂||2> t] ≤ J(t, n, p) (1.56)

We have, ||β̂ − β0||F= OP ((ω(p, n)), where, ω(p, n) → 0 as p, n → ∞ with given tail
bounds.

We consider the high-dimensional situation. So, in this case, the dimension of Euclidean
parameters grows with n. In the high-dimensional situation we assume the additional struc-
ture of sparsity imposed on the coefficient parameters β0. Density generator g comes from a

consistent family elliptical distributions and so by Lemma 1.2.4, εi
d
= Z/

√
ξ. Let us consider

the probability density function of εi to be h (j = 1, . . . , p) and

H(u) ≡
∫ ∞
u

h(v)dv (1.57)

We consider the following assumptions -

(C3) Suppose that ||β||0≤ s, where, ||·||0 calculates the number of non-zero entries in the
vector or the matrix in vectorized form. Small values of s indicates sparsity.

(C4) The function H(t) defined in Eq. (1.57) and J(t, n, p) defined in Eq. (1.52), satisfies
the following conditions -
there exists a function σ(p, n) : N×N→ R+ is defined such that for constants, c, d > 0,
for t = O(σ(p, n)),

p(c exp(−dt)J(t, n, p))n → 0 as p, n→∞ (1.58)
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Let us consider that we have obtained estimators of the coefficient parameters β̃ and
nonparametric component ĝ by following the estimation procedure of the elliptical density
in Section 1.5. We consider the high-dimensional situation now, that means the number of
dimensions p and the number of samples n both grow.

Theorem 1.6.2. Define φp(y) ≡ log(gp) and assume the following regularity conditions on
density generator gp and φp(y): gp is twice continuously differentiable with bounded second
derivative and derivative φ′ and g′ bounded away from 0 (from above) and −∞ and

∫
(φ′′)2 <

∞. Then, under assumption (C1)-(C4), with c0 = 3 in (C1),

||β0 − β̃||2= OP

(√
sσ(p, n)

)
(1.59)

Proof. The proof follows the same steps as proof of Theorem 7.2 of [26] with only the
concentration inequality portion replaced by the concentration inequality of Theorem 1.2.6
and Lemma 1.5.1.

This procedure can be performed for any other additional structure on the regression
parameters and for any other form of penalization of loss function. These gives a lot of scope
for future work.

Mixture of Elliptic Distributions

Let X1, . . . , Xn ∼
∑K

k=1 pkfk(x;µk,Ωk), where, Xi ∈ Rp and fk(·;µk,Ωk) is the density of
elliptic distribution of the form

f(x;µk,Ωk) = |Ωk|gk
(
(x− µk)TΩk(x− µk)

)
(1.60)

where, gk(·) is a density generator, that is, a non-negative function on [0,∞) such that
the spherically symmetric (around zero) function gk(x

Tx), x ∈ Rp integrates to 1 and gk is
non-increasing in [0,∞) so that the density is unimodal.

Our goal is the estimation of Euclidean parameters θ = (µk,Ωk)
K
k=1 or θ = (µk,Ωk)

K
k=1 in

the high-dimensional setting as well as the infinite-dimensional parameters G = (g1, . . . , gK)

EM Algorithm

We have data X = (X1, . . . , Xn), where, Xi
i.i.d∼ p(x;θ,G,π). The complete data vector is

given by Xc = (Z,X), where, Z = (Z1, . . . , Zn) and each Zi ∈ {0, 1}K indicates component
label. The complete data log likelihood is given by

`c(φ) =
n∑
i=1

K∑
k=1

Zik log πk +
K∑
k=1

λ1k||µk||1+
K∑
k=1

λ2k||Ω−||1

+
n∑
i=1

K∑
k=1

Zik

(
1

2
log|Ωk|+ log g

(
tr
(
(x− µk)T (x− µk)

)
Ωk

))
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The conditional log likelihood is given by

Q(φ) =
n∑
i=1

K∑
k=1

τik log πk +
K∑
k=1

λ1k||µk||1+
K∑
k=1

λ2k||Ω−||1

+
n∑
i=1

K∑
k=1

τik

(
1

2
log|Ωk|+ log g

(
tr
(
(x− µk)T (x− µk)

)
Ωk

))
where, τik = E[Zik|X,φ]

For mth iteration of the algorithm, we start with φ(m) and
E step We estimate τ

(m+1)
ik = E[Zik|X,φ(m)].

M step We maximize Q(φ) with τ (m+1) and the mth iterate estimates are

π
(m+1)
k =

∑n
i=1 τ

(m+1)
ik∑n

i=1

∑K
k=1 τ

(m+1)
ik

µ
(m+1)
k = arg min

µ

n∑
i=1

τik

(
log g

(m)
k

(
tr
(
(Xi − µ)(Xi − µ)T

)
Ω

(m)
k

))
+ λ1k||µ||1

Ω
(m+1)
k = arg min

Ω�0

n∑
i=1

τik

(
log g

(m)
k

(
tr
(
(Xi − µ)(Xi − µ)T

)
Ω
)
− 1

2
log|Ω|

)
+ λ2k||Ω−||1

g
(m+1)
k = log-linear spline estimate of gk based on

(Xi − µ(m+1)
k )TΩ

(m+1)
k (Xi − µ(m+1)

k ) for i = 1, . . . , n

Theoretical Results

The family of distributions P = {P(θ,G)} becomes identifiable under the conditions given in
[81]. The condition states that for elliptical distributions with consistency property, that is,

elliptical distributions of the form Xp
d
= Zp

ξ
given in Lemma 1.2.4, we have identifiability of

Euclidean parameters for mixtures of such elliptic distributions if density of ξ, h exists and
satisfies

lim
r→0

h(r)

h(ar)
= 0 for a > 1 (1.61)

The result is given in Theorem 4 of [81].

Theorem 1.6.3. Assume that we have a mixture of elliptical distributions P = {P(θ,G)}
with consistency property. Also, the scale parameter, ξ as defined in Lemma 1.2.4 of each
elliptical distribution component satisfies 1.61. Also, the Euclidean parameters of each ellip-
tical distribution component satisfies the conditions mentioned in Theorem 1.2.6 and they lie
within a compact set. Then, we have -
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The EM algorithm converges to a stationary point or local maxima of the penalized likelihood
function.

Proof. We are maximizing the penalized likelihood at each M Step of the EM algorithm by
following the steps of penalized maximum likelihood inference in Section 1.5. Thus, we get a
hill-climbing algorithm. Also, the penalized likelihood function is bounded from above. So,
the sequence of estimators obtained by EM iterations converges to a stationary point of the
penalized likelihood function, since we are within a compact set.

1.7 Simulation Examples

We simulate from high-dimensional Gaussian and t-distribution and try to estimate the
inverse covariance matrix.

Estimation of High-dimensional Covariance Matrix and Density
Generator

We have number of samples n = 400 and dimension of the data vectors as p = 400. We
generate the Gaussian distribution with mean 0 and banded covariance matrix. The esti-
mated covariance matrices are given in Figure 1.2. The top row of Figure 1.2 are the original
covariance matrix, empirical covariance matrix and Graphical LASSO estimate from left to
right. The bottom row of Figure 1.2 are the banded estimated covariance matrix, robust es-
timated covariance matrix and robust regularized estimated covariance matrix (our method)
from left to right.

We have number of samples n = 400 and dimension of the data vectors as p = 400. We
generate the t distribution having 2 degree of freedom and a banded covariance matrix. The
estimated covariance matrices are given in Figure 1.6. The top row of Figure 1.6 are the
original covariance matrix, empirical covariance matrix and Graphical LASSO estimate from
left to right. The bottom row of Figure 1.6 are the banded estimated covariance matrix,
robust estimated covariance matrix and robust regularized estimated covariance matrix (our
method) from left to right. We also give the estimated density generators for the Gaussian
distribution and t distribution cases.

1.8 Real Data Examples

We use our method in two different applications. One application is from biology and another
is from astronomy.
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Figure 1.2: For n = 400 and p = 400, we get different covariance estimators for a banded
covariance matrix of normal distribution.

Figure 1.3: For n = 400 and p = 400, we get different covariance estimators for a banded
covariance matrix. of t-dist



CHAPTER 1. REGULARIZED ESTIMATION OF ELLIPTIC DISTRIBUTIONS AND
HIGH DIMENSIONAL CLUSTERING 40

(a) (b)

Figure 1.4: For n = 400, we get estimator of density generator gp for normal and t.

High-dimensional Covariance Estimation in Breast Cancer Data

In the biological data set, we focus on selecting gene expression profiling as a potential tool to
predict them breast cancer patients who may achieve pathologic Complete Response (pCR),
which is defined as no evidence of viable, invasive tumor cells left in surgical specimen.
pCR after neoadjuvant chemotherapy has been described as a strong indicator of survival,
justifying its use as a surrogate marker of chemosensitivity. Consequently, considerable
interest has been developed in finding methods to predict which patients will have a pCR
to preoperative therapy. In this study, we use the normalized gene expression data of 130
patients with stage I-III breast cancers analyzed by Hess et al. (2006) [77]. Among the 130
patients, 33 of them are from class 1 (achieved pCR), while the other 97 belong to class 2
(did not achieve pCR).

To evaluate the performance of the penalized precision matrix estimation using three
different penalties, we randomly divide the data into training and testing sets of sizes 109
and 21, respectively, and repeat the whole process 100 times. To maintain similar class
proportion for the training and testing datasets, we use a stratified sampling: each time we
randomly select 5 subjects from class 1 and 16 subjects from class 2 (both are roughly 1/6
of their corresponding total class subjects) and these 21 subjects make up the testing set;
the remaining will be used as the training set. From each training data, we first perform
a two-sample t-test between the two groups and select the most significant 120 genes that
have the smallest p-values. In this case, the dimensionality p = 120 is slightly larger than
the sample size n = 109 for training datasets in our classification study. Due to the noise
accumulation demonstrated in Fan and Fan (2008), p = 120 may be larger than needed for
optimal classification, but allows us to examine the performance when p > n. Second, we
perform a gene-wise standardization by dividing the data with the corresponding standard
deviation, estimated from the training dataset. Finally, we estimate the precision matrix and
covariance matrix for both the classes for the training data using our method and standard
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graphical LASSO estimates. We find that our method gives sparser estimates of both inverse
covariance and covariance matrices. The mean number of non zeros are given in the following
table -

Graphical LASSO Our Method
Covariance Matrix 5312 4616

Inverse Covariance Matrix 486 412

Table 1.1: The number of non-zero elements in estimators of covariance and inverse covari-
ance matrix in Breast Cancer Data.

Figure 1.5: Breast Cancer Data covariance matrix estimators using Graphical Lasso (Left)
and our method (Right).

1.9 Conclusion

We have developed adaptive estimation procedure for estimation of elliptical distribution
for both low and high-dimensional cases. The method of estimation is novel and it gives us
a way to move from fixed-dimensional to high-dimensional case quite naturally. We have
developed estimation procedure for the density generator function of the elliptical distribu-
tion in a log-linear spline form in Section 1.3 and derive respective error bounds. We use
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Figure 1.6: Breast Cancer Data inverse covariance matrix estimators using Graphical Lasso
(Left) and our method (Right).

the estimate of density generator function of elliptical distribution to adaptively estimate
Euclidean parameters of elliptical distribution.

For the estimation of Euclidean parameters, we devise a weighted loss function, where,
the weights come from the slopes of estimated density generator function. As a result we
have a very natural extension of squared error loss function and with the help of this weighted
squared error loss function, we are able to estimate mean and covariance matrix parameters
coming from distributions with widely varying tail behavior. So, we get robust estimates of
the mean and covariance matrix.

Now, for the high-dimensions case too, weighted least squares loss function is a natural
generalization of the least squares loss function, but with this simple generalized loss function,
we are able to handle random variables coming from widely varying tail behaviors. As a result
we can obtain estimators which are both regularized and robust in high-dimensions. Our
approach is not the only approach in statistics literature which can produce estimators that
have this dual property of being both robust to changing tail conditions and regularized to
constrained parameter spaces in high-dimensions, but it is a quite natural one.

We have indicated three special cases, for which our method can be independently de-
veloped -(a) Estimation of Covariance and Precision matrix (b) Regression with Elliptical
errors and (c) Clustering via mixtures of elliptical distribution in Section 1.6. For all of these
cases, our method can give robust estimates, which can be regularized in high-dimensions.

Feasible algorithms are quite easily obtainable for our method, as most algorithms that
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work on least squares loss function also work for weighted least square loss functions too.
So, we give an easy approximation to a hard optimization problem and try to solve an
optimization problem, which is much easier to handle. As a result our method can borrow
strength from existing optimization literature.

So, we have provided an estimation procedure of mean and covariance matrix parameters
of elliptic distributions, which is adaptive to the tail behavior and given some theoretical
justification for the estimators. The procedure can be extended to use in several classical
statistical problems of regression, classification and clustering, thus making our method a
very important stepping stone for developing future natural robust regularized estimators.
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Chapter 2

A Naive approach to detecting
number of clusters

2.1 Introduction

Cluster analysis is an important unsupervised classification technique. In clustering, a set of
unlabeled patterns, usually vectors in a multidimensional space, are grouped into clusters in
such a way that patterns in same cluster are similar in some sense and patterns in different
clusters are dissimilar in the same sense. One of the main approaches of clustering is optimal
partitioning algorithms. The first step of optimal partitioning algorithm is choosing the
number of groups or clusters.

The method of finding number of clusters that we have proposed depends upon exploit-
ing the structure of the similarity (or distance) matrix after clustering. One way of viewing
clustering is getting hold of the most block-diagonal form of the similarity matrix, by si-
multaneously permuting the rows and columns of the similarity matrix. In figure 1(a) we
have a data set, whose distance matrix is given in figure 1(b) after permuting the row and
columns according to the assignments obtained from output of k-means algorithm with 2
clusters on the data set. We see that the matrix in figure 1(b) is block-diagonal in nature.
So, our method is based on the assumption that if the partitioning method is applied with
correct number of clusters, then the resulting similarity (or distance) matrix will have a
better block-diagonal structure.

Now, we test the ‘block-diagonal-ness’ of a matrix by hypothesis test of location shift. We
test if there is a location shift between the distances in a diagonal block with the distances
in an off-diagonal block. If there is evidence of location shift, that means that cluster is well-
separated from other clusters. So, it is also a cluster validation technique, which determines,
whether the current cluster under consideration is actually a well-separated cluster from the
remaining clusters. If there is evidence of location shift for all blocks/clusters, then, that
means that number of blocks/clusters is one possible choice for number of clusters. So, we
have several possible choices for the number of clusters and this is expected if we consider
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(a) (b)

Figure 2.1: (a) Sample data set (b)Distance matrix after 2-means clustering

Hartigan’s (1985) [76] definition of high-density clusters, where, depending on the level, the
number of disjoint components of the level set of the density (that means, number of clusters)
vary. However, if we have to specify one number as the number of clusters, we shall prefer
the one with most deviation from the null distribution. Also, note that our method works
for selecting number of clusters for any clustering/partitioning algorithms.

Several Methods have been proposed for choosing the number of clusters in the literature.
Milligan and Cooper (1985) [121] performed a simulation study comparing different statistical
heuristics for choosing number of clusters, among which the best were by Calinski and
Harabasz (1974) [35]:

CH(k) =
B(k)/(k − 1)

W (k)/(n− k)
(2.1)

where, B(k) and W (k) are the between and within cluster sums of squares with k clusters.
Rousseeuw (1987) [rousseeuw1987sihouettes] proposed the cluster silhouette coefficient

SC(k) =
1

n

n∑
i=1

s(i); s(i) =
b(i)− a(i)

max a(i), b(i)
(2.2)

where, For observation i, let a(i) be the average distance to other points in its cluster,
and b(i) the average distance to points in the nearest cluster besides its own and nearest is
defined by the cluster minimizing this average distance. The k̂ for which SC(k) is maximized
is considered the best number of clusters by this method. Tibshirani et. al. (2001) [154]
proposed gap statistic for estimating the number of clusters. Another popular tool for
selecting number of clusters is using cluster stability, as proposed by Ben-hur et. al. (2001)
[15] and Lange et. al. (2004) [103]. There are also methods for selecting number of clusters
through BIC in model-based clustering as proposed in Fraley and Raftery (1998) [64]. There
are many other methods of finding number of clusters in the literature, but for brevity, we
are not mentioning them here.
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The chapter is arranged as follows. In section 2.2, we have introduced our method.
In section 2.3, we have carried out simulation study, showing the efficacy of our method
compared to other methods. In section 2.4, we have applied our method to two real-life data
sets - an astronomical data set and a microarray data on leukemia study. In section 2.5, we
have provided the discussion of the results and the method.

2.2 Our Method

Let us consider, for data X = (X1, . . . , Xn), where, Xi ∈ Rp, we start with a distance matrix
D = ((dij))

n
i,j=1, where, dij = distance between the observations Xi and Xj. We also have a

clustering/partitioning method, which partitions the data into clusters, after the number of
clusters have been specified. Let us consider, that for number of clusters, k, the partitioning
method partitions the data into clusters (C1, . . . , Ck), where, Cj ⊂ X for j = 1, . . . , k and
∪jCj = X, Ci ∩ Cj = φ, for all i 6= j.

Now, if we consider the distance matrix with the row-column entries of the matrix being
ordered according to the clusters, that is, consider the permutation of the data entries
according to the clusters, Xπ = (Xπ(1), . . . , Xπ(n) = (C1, . . . , Ck). We form the distance
matrix Dπ = ((dπij)) from Xπ by dπij = the distance between Xπ(1) and Xπ(j).

One of the necessary conditions for the matrix Dπ is - it should be ’block-diagonal’. That
means the entries in the diagonal blocks of the matrix Dπ should have a lower values than
the value of the entries in the off-diagonal blocks. We can denote Dπ = ((Dπ

ii′)) as the
k × k block matrix, where, Dπ

ii′ is |Ci|×|Ci′ | matrix containing the distances between the
observations in clusters Ci and Ci′ , where, i, i′ = 1, . . . , n. So, in ideal case, the entries in Dπ

ii

should have lower values than entries in Dπ
ij, where, i 6= j. We judge whether a clustering is

valid by testing this statement. Also, this is a cluster-wise validation, as for each cluster (or
block), we are testing whether the corresponding diagonal block in Dπ has smaller values
than the corresponding off-diagonal blocks of Dπ.

Block Diagonal Hypothesis Testing

We want to test the hypothesis that Dπ has block diagonal structure. We proceed as follows
- for each block Ci (i = 1, . . . , k), consider the |Ci|(|Ci−1)

2
upper diagonal entries of Dπ

ii in

the vectorized form (Y1, . . . , Ym), where, m = |Ci|(|Ci−1)
2

. Now, for each i′ = (i + 1, . . . , n),
consider the |Ci||Ci′| entries of Dπ

ii′ in a vectorized form (Z1, . . . , Zm′), where, m′ = |Ci||Ci′|.
So, we have two data sets Y = (Y1, . . . , Ym) and Z = (Z1, . . . , Zm′) and we want to find

whether Y has smaller values than Z in average. So, we perform a one-sided location shift
test between Y and Z, with the null hypothesis of no location shift. Now, note that, this is
a non-standard location shift test, since, the data Y and Z are not independent. So, the null
distribution of the standard location shift tests (t-test, Wilcoxon Rank-Sum test etc.) does
not hold in this case. We have to go for a different route to get hold of a null distribution
for the test statistic we use.
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Using Permutation Test

Getting hold of a null or reference distribution for testing cluster structure is always a
challenge, as indicated in Tibshirani et. al. [154]. In this case, let us consider Tii′ is the
test statistic we are using to test for a location shift between Y and Z. Now, among among
all i′ = i + 1, . . . , n, consider Ti the test statistic Tii′ that is least favorable towards the
alternative, for example, for t-test statistic, Ti = maxi′ Tii′ . Now, the null distribution
of this statistic is difficult to find theoretically. So, we perform permutation test instead.
We permute the row-column entries of the distance matrix Dπ to generate a new distance
matrix Dπ′ and generate the corresponding test-statistic Ti for the matrix Dπ′ . We, repeat
this procedure, to get a null-distribution of the test-statistic Ti. Using the null distribution,
we test for the location shift for ith cluster.

Now, there is a problem with this approach. The objective of any clustering algorithm
is to find the permutation of the row-column entries of the distance matrix D, such that,
the permuted matrix Dπ has most block-diagonal structure. So, through permutation, we
are not actually finding the null distribution of Ti for each cluster i. So, we use the p-values
generated from the permutation test to get a coefficient called permutation coefficient as
follows - for fixed level α (usually 0.01) we find the αth quantile, Qi of the ‘null’ distribution
of Ti generated through permutations. Now, we define, for each cluster, the excess value
(evi) as

evi = Qi − Ti (2.3)

Then, we define the block-diagonal coefficient for the number of clusters k as

BDQ(k) = min
i
evi (2.4)

The estimated number of clusters k̂ is defined as

k̂ = max
k
BDQ(k) (2.5)

Now, k̂ is the most prominent number of clusters. But, there might be other possible
number of clusters for which the partition of the data set makes sense. So, we also output a
list of potential number of clusters. That is done as follows - let us consider i∗ achieves the
minimizer in (4). If the value of Ti∗ is less than Qi∗−1.5IQR, where, IQR is the inter-quartile
range of the distribution of permuted Ti∗ , we call, the corresponding k as a potential cluster
number.

Also, if the set of potential clusters is a null set. Then, it implies the lack of cluster
structure, which can mean either that there is only one cluster in the data or the clustering
algorithm is failing to properly cluster the data. So, by our method, we can also detect one
cluster, which many of methods for detecting cluster number (like silhouette, C-H) fail to
find.
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An Example

We apply our method on a very well-known data set - Fisher’s Iris data set [61]. The data
set contains 4 measurements for a sample of 150 flowers. There are 3 types of flowers in the
data set. The scatter plot based on first 2 types of measurements in given in figure 2.

Figure 2.2: Iris Data with 2 dimensions sepal length and width.

We use partitioning around medoid (PAM) as the clustering method. We use t-test
statistic as the statistic for hypothesis testing here. Then, if we use, our method to choose
the number of clusters, then the value of BDQ(k) is maximized for k = 2. Actually, the only
positive values of BDQ come to be BDQ(2) = 96.5 and BDQ(3) = 7.03. So, we see that by
our analysis, k̂ = 2. However, if we try to find the set of potential number of clusters, then,
k = 3 also becomes a potential cluster number, as Qi∗ = −6.27, Ti∗ = −13.3 and IQR = 2.6
for k = 3. So, we see that we can identify clusters for different hierarchies according to our
method and we know, where to stop. The distance matrices for k = 2 and k = 3 also gives
the proper intuitions.

2.3 Simulation Study

For simulation study, we generated data for four different scenarios -

(a) No Cluster : We have generated data uniformly over a unit square in 10 dimensions.

(b) 2, 3, 4, 5 Random Clusters in 7, 8, 9 and 10 dimensions respectively : We generated
clusters centers randomly from N(0, 2I) distribution, such that, two clusters centers
are at least one unit apart. Then, we generated clusters of size 25 or 50 (randomly
chosen) from normal distributions with mean as cluster centers and identity covariance
matrix.
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(a) (b)

Figure 2.3: (a) Distance matrix after 2-means clustering (b) Distance matrix after 3-means
clustering

(c) 2 elongated clusters in three dimensions We generated each cluster as follows: For
cluster 1, set x1 = x2 = x3 = t with t taking on 100 equally spaced values from -.5
to .5 and then Gaussian noise with standard deviation .1 is added to each feature.
Cluster 2 is generated in the same way, except that the value 2 is then added to each
feature. The result is two elongated clusters, stretching out along the main diagonal
of a three-dimensional cube.

(d) 2 close and elongated clusters in three dimensions As in the previous scenario, with
cluster 2 being generated in the same way as cluster 1, except that the value 1 is then
added to the first feature only.

The scenarios are motivated from Tibshirani and Walther (2005) [153].
We have repeated each experiment 50 times. For scenario (a), we compare our method

with gap statistic. For scenario(b)-(d), we compare our method with CH, silhouette and
stability criterion. The stability method has been adopted from Brock et. al. (2008) [31].
We use PAM as the clustering method and t-test statistic as the statistic for location shift
testing. We represent our methods by BDQ and BDQ.potential. The BDQ.potential lists
the number of times a cluster number becomes a potential candidate for the data set. So,
the sum of the elements in rows of BDQ.potential will not be 50, as each data set can have
more than one potential clusters. The results are provided in table 1 - 4.

We can see that for scenario (a) BDQ performs better. For scenario (b), for number of
clusters 3 and 4, BDQ.potential performs best. For the comparatively hard scenarios (c) and
(d), BDQ and BDQ.potential performs quite well. Especially, BDQ.potential almost always
include the correct number of clusters within its potential choices.
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Table 2.1: Number of Clusters for Scenario (a)

k = 1 k = 2 k = 3
gap 38 11 1

BDQ 50 0 0

Table 2.2: Number of Clusters for Scenario (b)

k = 2 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 48 0 0 0 0 0 2

CH 0 48 1 1 0 0 0 0
Stability 0 47 2 0 0 0 0 1

BDQ 11 39 0 0 0 0 0 0
BDQ.potential 11 39 0 0 0 0 0 0

k = 3 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 25 25 0 0 0 0 0

CH 0 27 23 0 0 0 0 0
Stability 0 27 23 0 0 0 0 0

BDQ 4 30 16 0 0 0 0 0
BDQ.potential 4 40 33 0 0 0 0 0

k = 4 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 11 16 23 0 0 0 0

CH 0 12 18 20 0 0 0 0
Stability 0 17 11 22 0 0 0 0

BDQ 4 24 7 15 0 0 0 0
BDQ.potential 4 35 30 28 0 0 0 0

k = 5 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 5 7 13 25 0 0 0

CH 0 10 10 18 12 0 0 0
Stability 0 10 7 10 23 0 0 0

BDQ 5 26 9 3 7 0 0 0
BDQ.potential 5 31 18 12 17 0 0 0
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Table 2.3: Number of Clusters for Scenario (c)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 50 0 0 0 0 0 0

CH 0 0 0 7 0 32 3 8
Stability 0 50 0 0 0 0 0 0

BDQ 0 50 0 0 0 0 0 0

Table 2.4: Number of Clusters for Scenario (d)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k ≥ 9
Silhouette 0 4 0 10 2 30 3 1 0

CH 0 0 0 0 0 10 2 26 12
Stability 0 44 1 5 0 0 0 0 0

BDQ 0 11 1 34 4 0 0 0 0
BDQ.potential 0 50 14 48 43 0 0 0 0

2.4 Study on Two Real Data Sets

We apply our method to two real data sets. We compare our method in these cases with
CH, silhouette and stability criterion.

Leukemia Data

The Leukemia data is obtained from Monti et. al. (2003) [123]. The data is composed
by instances representing diagnosed samples of bone marrow from pediatric acute leukemia
patients, corresponding to six prognostically important leukemia subtypes - 43 T-lineage
ALL; 27 E2A-PBX1; 15 BCR-ABL; 79 TEL-AML1 and 20 MLL rearrangements; and 64
hyperdiploid > 50? chromosomes. There are 248 total patients and for each patient the
number of attributes is 985.

We use hierarchical clustering method as the clustering algorithm for our method in this
case. The performance of our method on this data set compared to other methods is given
in table 5 -

We see here that BDQ identifies the correct number of clusters. Also, we see that when
we consider the BDQ.potential method, it gives the most information about the clustering
picture of the data set, since if we see the cluster membership, after the clustering, one of
the classes is spuriously broken and two classes remain merged to form the 6 clusters for the
hierarchical clustering method considered. So, when, we have seven clusters, we are actually
having all the 6 classes plus a broken part of one class. So, when, BDQ.potential says that
the data potentially also has 7 clusters, it gives insight into the data.
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Figure 2.4: The distance matrix of Leukemia data with the classes arranged TEL-AML1,
T-Lineage ALL, MLL, hyperdiploid, E2A-PBX1, BCR-ABL.

Table 2.5: Number of Clusters for Leukemia Data

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 0 0 0 0 1 0 0

CH 0 1 0 0 0 0 0 0
BDQ 0 0 0 0 0 1 0 0

BDQ.potential 0 0 0 0 0 1 1 0

Astronomy Data

The astronomy data is obtained from Richards et. al. (2011) [137]. The data is composed
by instances representing light sources from sky surveys. The light sources are composed of
5 types of stars - 191 Classical Capheid, 145 Beta Lyrae, 114 Delta Scuti, 144 Mira, 58 W
Ursae Majoris. There are 652 total light sources and for each light source the number of
features is 64.

The performance of our method on this data set compared to other methods is given in
table 6 -

Table 2.6: Number of Clusters for Astronomy Data

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 0 0 1 0 0 0 0

CH 0 0 1 0 0 0 0 0
BDQ 0 0 0 1 0 0 0 0

BDQ.potential 0 0 0 1 1 0 0 0
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Figure 2.5: The astronomy data in two of its features.

So, BDQ.potential also performs good in this case and provides a nice insight to the data.
Though number of clusters selected by BDQ is 4 in this case, we see that, k = 5 is one of
the potential cluster numbers.

2.5 Discussion

So, we can see that methods of selecting cluster number by testing for block-diagonality
of a matrix works nicely in practice. This method is highly general and can be applied in
conjunction with any clustering method and any similarity (or distance) matrix. Also, the
method can also provide a list of potential number of clusters, which is quite suggestive,
since, a data set usually can be considered to have different number of clusters depending
on the level of inspection, we are going to perform on the data set. Also, note that this a
completely non-parametric approach, so it can be applied to quite general class of models

However, note that this method of selecting number of clusters is dependent on the
performance of the clustering method itself. If the clustering method does not perform well,
then, this method might produce unstable results.

Another issue is selecting the number of permutations. We have generally considered
1000 permutations to construct the ‘null’ distribution. However, it might be better to first
sequentially test for the p-value 0.01, to see how many permutations are needed for the
sequential rule to stop. Then, we can use a number of permutations slightly greater than the
stopping number, to form the null distribution. Note that here, p-value is just an indicator,
they do not have well-defined meaning.

Lastly, we have not derived any theoretical results for this method. However, assuming
some underlying model space, we can try to prove the consistency and variance bounds of
this method. Considering, gaussian model, we can easily see that, our procedure of finding
location shift is a correct one. However, theoretically deriving the ‘null’ distribution is a
challenge and we wish to address this issue later on.
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Chapter 3

Stochastic Modeling of Networks

3.1 Introduction

Network is one of the most prominent way of representing relationships between different
entities. These entities can be human or animals, living or non-living, real or imaginary
and so on. And, due to the complex nature of the universe we live in, there are always
relationships between such entities. A network is one way of representing that relationship
and this way of representation has gained enormous acceptance among scientific community
over years. As a result, we now see networks arising in all fields of physical and social sciences
to represent relationships and interactions among entities.

Statistical study of networks is not a new field. Representing networks in form of graph
structures with the fundamental components of vertex and edge can be traced back to Euler.
However, from the later half of twentieth century, scientists have been increasingly interested
in the empirical behavior of networks. One of the most well-known such empirical observation
on networks is the six-degree of separation observation by Milgram [120] among human
networks. It suggests that any person on earth is separated from another person by at most
six people. This is also known as the ‘small world phenomenon’. Thus, study of networks
give us a window to view the complex relationships between different entities in the real and
imaginary world.

In this dissertation, we are concerned about statistical study of network data. When,
relational data between entities are represented in form of network graphs, we shall try to
infer about the different aspects of relational behavior by studying the empirical nature of
the network data. Let us first see some examples of networks to understand the diverse
situations of relational data, from which a network data can arise.

Examples of Networks

Network data arise in all fields of physical and social sciences to depict relationships between
entities. With the information boom, a huge number of network data sets have come into
prominence. In biology - gene transcription networks, protein-protein interaction network,
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in social media - Facebook, Twitter, Linkedin networks, information networks arising in
connection with text mining, technological networks such as the Internet, ecological and
epidemiological networks and many others have come to the forefront. Here, we will give
examples of a few well-known such networks.

Technological Networks

With the improvement of technology humans have created machines in a concerted and
relational way. Thus creating a number of networks which connect entities which are human
creations. Examples of such networks include Internet, Cell-phone tower and telephone
exchange networks, Airport and Transport Networks. Among all these networks, Internet is
probably the most prolific and interesting network. An example of Internet network data is
given in Figure 3.1.

Figure 3.1: Internet Network from www.opte.org.

Social Networks

Social networks arise from interactions among human or any other social animals. This is
one of highly studied form of network. Since, human relationships have always been an
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enigma for scholars, study of human social networks have been highly popular among social
scientists. With the advent of internet age, the number and complexity of human social
networks have increased manifold. Examples of social network include social media networks
such as Facebook, Twitter, LinkedIn and online gaming networks, academic networks such
as collaboration and citation networks, networks arising from text-mining, networks arising
from interaction of human or some other biological species. Figure 3.2 is a very famous
social network which depicts friendship between members of a Karate club [165]. Figure 3.3
is Facebook friendship network in a college, Figure 3.4 is a romantic and sexual network
among students in a high school, Figure 3.5 is a network of academic collaboration among
High Energy Physics scientists.

Figure 3.2: Karate Club (Newman, PNAS 2006)

Figure 3.3: Facebook Network for Caltech with 769 nodes and average degree 43.
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Figure 3.4: Network of romantic relationship between students of Jefferson High.

Figure 3.5: Collaboration Network in Arxiv for High Energy Physics with 8638 nodes and
average degree 5.743.
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Biological Network

Biological systems are one of the most complex systems known to mankind. Thus, study of
relationships between biological entities through networks is highly important and relevant.
Examples of such networks include Biochemical pathway networks, Protein-protein interac-
tion networks, Gene transcription networks, Epidemiological Networks and so on. Each of
these networks are important in their own right and gleaning knowledge about biological
systems through analysis of these networks is an extremely significant endeavor. Figure 3.6
depicts a network of relationship between gene transcription factor of E.Coli bacteria and
Figure 3.7 depicts a physical gene regulatory network.

Figure 3.6: Transcription network of E. Coli with 423 nodes and 519 edges.

3.2 Research Questions on Networks

Statistical study of networks involve several important and interesting questions. The ques-
tions may be divided into two broad classes -

I. Given vectors of measurements Xi for each vertex, for example, given gene expression
sequence nearby binding site information, physical (epigenetic information), protein
assays etc., how do we decide to form edges that means causal or dependency relation
between vertices (in the example, between genes).
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Figure 3.7: Physical Regulatory network (Science 2010; 330:1787-1797).

II. Given a network of relations (edges) identify higher level structures, clusters, like path-
ways in genomics.

The first broad class of problems is usually handled Gaussian or Markov Graphical Models
and clustering. In Chapter 2, we addressed this issue for the general Elliptical Graphical
Model case. But henceforth we shall mostly be interested in the second class of problems.

In the second class of problems, we already have a given network consisting of vertices
and edges. Now, what are some of the important questions scientists wish to infer from these
network data sets? Here, we list a subset of such questions.

(i) Network Modeling: Understanding the underlying general mechanism or model that
is generating the network [132] [11]. Research in this area often focus on global network
properties such as degree distribution, without addressing the semantics of individual
edges. We shall focus on this problem in Chapter 3.4.

(ii) Community Detection: The task of finding hidden groups or communities in net-
work based on the network topology is another common endeavor. Examples include
protein complex finding in protein interaction network [2], detecting possible latent ter-
rorist cells [13]. These applications often take the machine learning approach of graph
partitioning. We shall focus on this problem in Chapter 5.

(v) Sampling of nodes and subgraphs and descriptive statistics: Descriptive statis-
tics and their corresponding distribution help in summarizing and hypothesis testing
on networks [122]. Motif finding, or more generally the search for subgraph patterns,
also has many applications [14]. We shall focus on this problem in Chapter 4.

(iii) Link Prediction: In the machine learning community, network analysis often involves
prediction [143], which can be edge related, e.g., predicting missing links in the network
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[134], or attribute related, e.g., predicting how likely a movie is to be a box office hit
[127]. Other applications include locating the crucial missing link in a business or a
terrorist network, or calculating the probability that a customer will purchase a new
product, given the pattern of purchases of his friends [78].

(iv) Covariate or Latent Variable Estimation: The related task of discovering the
“roles” of individual nodes is useful for identity disambiguation and for business orga-
nization analysis [115].

(vi) Information exchange: The concept of information propagation also finds many
applications in the network domain, such as virus propagation in computer networks
[159], HIV infection networks [124] [87] and viral marketing [52]. Here the network
structures are assumed to be known and the challenge is to find suitable models for
disease spread. Theoretical works also give nice challenge here [126].

(vii) Dynamic Network Behavior: Studying dynamic behavior of network in terms of
both modeling [10] and inference [144].

3.3 Stochastic Models of Networks

Let us consider that we have a random graph Gn as the data. Let V (Gn) = {vi, . . . , vn}
denote the vertices of Gn and E(Gn) = {e1, . . . , em} denote the edges of Gn. So, the number
of vertices in Gn is |V (Gn)|= n and number of edges of Gn is |E(Gn)|= m. Let the adjacency
matrix of Gn be denoted by An×n. Nodes in the network which may represent individuals,
organizations, or some other kind of unit of study. Edges correspond to types of links,
relationships, or interactions between the units.

Parametric Models

We consider that the network graph is generated from an underlying probability model.
When, the parameters of the probability model belong to finite-dimensional Euclidean space,
we call them parametric models. We shall introduce here some of the well-known parametric
models network data.

Erdös-Rényi Model

The mathematical biology literature of the 1950s contains a number of papers using what we
now know as the network model G(n, p), which for a network of n nodes sets the probability
of an edge between each pair of nodes equal to p, independently of the other edges. But the
formal properties of simple random graph network models are usually traced back to Gilbert
[69], who examined G(n, p), and to Erdös and Rényi [58]. The Erdös-Rényi random graph
model, G(n,N), describes an undirected graph involving n nodes and a fixed number of edges,
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N , chosen randomly from the
(
n
2

)
possible edges in the graph; an equivalent interpretation

is that all 2(n
N) graphs are equally likely. While the G(n, p) model has a binomial likelihood

where the probability of N edges is

pN(1− p)(
n
2)−N ,

the likelihood of theG(n,N) model is a hypergeometric distribution. The G(n,p) model is the
more common one found in the modern literature on random graph theory, in part because
the independence of edges simplifies analysis. Erdös and Rényi [59] went on to describe in
detail the behavior of G(n,N) as p = N/

(
n
2

)
increased from 0 to 1. In the binomial version

the key to asymptotic behavior is the value of λ = pn. One of the important Erdös-Rényi
results is that there is a phase change associated with the value of λ = 1 and λ = log n, with
the emergence of a single giant connected component, while all the remaining components
are relatively small and most of them take the form of trees [see 59; 70] and for the second
phase the graph becomes asymptotically connected [16]. More formally,

• If λ < 1, then a graph in G(n, p) will almost surely have no connected components of
size larger than O(log n).

• If λ = 1, then a graph in G(n, p) will almost surely have a largest component whose
size is of O(n2/3).

• If λ tends to a constant c > 1, then a graph in G(n, p) will almost surely have a unique
“giant” component containing a positive fraction of the nodes. No other component
will contain more than O(log n) nodes.

• If lim infn→∞
λ

logn
= a, where, a > 1, then a graph in G(n, p) will be connected with

high probability.

Stochastic Block Model

The stochastic block model is perhaps the most commonly used and best studied model for
community detection. An SBM with K blocks states that each node belongs to a community
c = (c1, . . . , cn) ∈ {1, . . . , K} which are drawn independently from the multinomial distri-
bution with parameter π = (π1, . . . , πK), where πi > 0 for all i, and K is the number of
communities, assumed known. Conditional on the labels, the edge variables Aij for i < j are
independent Bernoulli variables with

E[Aij|c] = max{
Pcicj
n

, 1}, (3.1)

where P = [Pab] is a K × K symmetric matrix. The network is undirected, so Aji = Aij,
and Aii = 0 (no self-loops).
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Preferential Attachment Model

Barabási and Albert [10] described a dynamic preferential attachment model specifically
designed to generate scale-free networks. At time 0, the model starts out with n0 unconnected
nodes. At each sub- sequent time step, a new node is added with m ≤ n0 edges. The
probability that the new node is connected to an existing node is proportional to the degree of
the latter. In other words, the new node picks m nodes out of the existing network according
to the multinomial distribution pi = δi∑

j δj
, where δi denotes the (undirected) degree of node

i. This model is intended to describe networks that grow from a small nucleus of nodes and
follow a “rich-get-richer” scheme. A new web page, for instance, will more likely link via a
URL to a well-known web page as opposed to a little-known one.

The preferential attachment model of Barabási and Albert results in a network with
a power law degree distribution empirically determined to have as its exponent (γBA =
2.9 ± 0.1), whereas the Erdös-Rényi model has a Poisson degree distribution. Many exten-
sions of the model have been proposed that allow for flexible power-law exponents, edge
modifications, non-uniform dependence on the node degree distributions, etc. See Barabási
et al. [11] and Durrett [54] for details. The generative process here could give an insight
into the dynamics that led to the observed network. But data for the state of the network
are typically gather at a small number of points in time (sometimes only once) and thus the
network is only examined statically.

Exponential Random Graph Model

Under the assumption that two possible edges are dependent only if they share a common
node, Frank and Strauss [66] devised the following characterization for the probability dis-
tribution of undirected Markov graphs:

Pθ(Y = y) = exp

(
n−1∑
k=1

θkSk(y) + τT (y) + ψ(θ, τ)

)
y ∈ Y , (3.2)

where the statistics Sk and T count specific structures, such as edges, triangles, and k-stars:
number of edges: number of k-stars (k ≥ 2). θ ≡ {θk} and τ are the parameters, and ψ(θ, τ)
is the normalizing constant. Note that there is a hierarchical structure to the parameters
of this model, with edges being contained in 2-stars, and 2-stars being contained in both
triangles and three-stars. There are also variations of the model involving directed edges.

The statistics Si(y) count graph structures. Although they are not independent, i.e.,
they count overlapping sets of edges, they are assumed independent in the pseudo-likelihood.
Ignoring the correlations is a bad idea, and causes extreme sensitivity of the predicted number
of edges to small changes in the value of certain parameters. Snijders et al. [145] recently
proposed a variant of these models where the major problem of double-counting is mitigated,
but not overcome. Hunter and Handcock [85] proposed an alternative estimation scheme that
corrects parameter estimates for double-counting. This estimation procedure can be used
for models based on distributions in the curved exponential family.
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Robins et al. [139] describe problems associated with the estimation of parameters in
many ERGMs, involving near degeneracies of the likelihood function and thus of methods
used to estimate parameters using maximum likelihood. Bhamidi et. al. [17] point out to
similar degeneracies. Chatterjee and Diaconis [39] provide some remedial measures.

There are two carefully constructed packages of routines that are available for analyzing
network data using ERGMs: Statnet6 and SIENA7.

Nonparametric Model

Latent Space Model

The intuition at the core of latent space models is that each node i ∈ V (G) can be represented
as a point zi in a “low dimensional” space, say Rk. The existence of an edge in the adjacency
matrix, Aij = 1, is determined by the distance among the corresponding pair of nodes in the
low dimensional space, d(zi, zj), and by the values of a number of covariates measured on
each node individually. The latent space model was first introduced by Hoff and Raftery [79]
with applications to social network analysis, and has been recently extended in a number
of directions to include treatment of transitivity, homophily on node-specific attributes,
clustering, and heterogeneity of nodes [119; 109; 146].

Let A be an n × n adjacency matrix with binary entries Aij denoting a relationship
between nodes i and j. The probability model for A given in [79] is

log
P(Aij = 1)

1− P(Aij = 1)
= α + βTXij + |Zi − Zj|≡ ηij, (3.3)

where X are covariates, Θ are parameters, and Z are the positions of the nodes in the latent
space. Inference in latent space models has been carried out via Monte Carlo Markov chain.

Bickel-Chen Model

Consider any probability distribution P on an infinite undirected graph, or equivalently a
probability distribution on the set of all matrices ||Aij : i, j ≥ 1|| where Aij = 1 or 0,
Aij = Aji for all i, j pairs and Aii = 0 for all i, thus excluding self relation. If the graph is
unlabeled, it is natural to restrict attention to P such that ||Aσiσj ||∼ P for any permutation
σ of {1, 2, 3, . . .}. Hoover (see ref. 9) has shown that all such probability distributions can
be represented as,

Aij = g(α, ξi, ξj, λij)

where σ, {ξi} and {λij} are i.i.d. U(0, 1) variables and g(u, v, w, z) = g(u,w, v, z) for all
u, v, w, z. The variables ξ correspond to latent variables, λ being completely individual spe-
cific, ξ generating relations between individuals and α a mixture variable which is uniden-
tifiable even for an infinite graph. Note that g is unidentifiable and the ξ and λ could be
put on another scale, e.g. Gaussian. It is clear that the distributions representable as,
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A = g(ξi, ξj, λ) where λij = λji, are the extreme points of this set and play the same role as
sequences of i.i.d. variables play in de FinettiÕs theorem. Since given ξi and ξj, the λij are
i.i.d., these distributions are naturally parametrized by the function

h(u, v) = P[Aij = 1|ξi = u, ξj = v]. (3.4)

As Diaconis and Janson (13) point out h(·, ·) does not uniquely determine P but if h1 and
h2 define the same P, then there exists φ : [0, 1] → [0, 1] which is measure preserving, i.e.
such that φ(ξ1) has a U(0, 1) distribution and h1(u, v) = h2(φ(u), φ(v)).

Given any h corresponding to P, let

P[Xij = 1|ξi = u] = g(u) =

∫ 1

0

h(u, v)dv.

It is well known (see section 10 of ref. 14) that there exists a measure preserving φ such
that, g(φg(v)) is monotone non decreasing. Define

hCAN(u, v) = h(φg(u), φg(v)) (3.5)

gCAN(u) =

∫ 1

0

hCAN(u, v)dv = F−1(u) (3.6)

where F is the cdf of gCAN(ξi), and hCAN is unique up to sets of measure 0. To see this

note that if h corresponds to P and g(u) =
∫ 1

0
h(u, v)dv is non decreasing, then since F is

determined by P only, g(u) = F−1(u). But g(φg(u)) = gCAN(u) and φg(u) = g−1gCAN(u) =
u. There is a reparametrization of hCAN (we drop the CAN or canonical subscript in the
future) which enables us to think of our model in terms more familiar to statisticians.

Let

ρ = P(Edge) =

∫ 1

0

∫ 1

0

h(u, v)dudv

Then the conditional density of (ξi, ξj) given that there is an edge between i and j is

w(u, v) = ρ−1h(u, v). (3.7)

This parametrization also permits us to decouple ρ = E(Degree) of the graph from the
inhomogeneity structure. It is natural finally to let ρ depend on n but w(·, ·) to be fixed. If
λn = E(Degree)→∞, we have what we may call the “dense graph” limit. If λn = Ω(1), we
are in the case most studied in probability theory where, for instance, λn = 1 is the threshold
at which the so called “giant component” appears.

So, the general non-parametric model can be described by the following equation -

P(Aij = 1|ξi = u, ξj = v) = hn(u, v) = ρnw(u, v)1(w ≤ ρ−1
n ), (3.8)

where, w(u, v) ≥ 0, symmetric, 0 ≤ u, v ≤ 1, ρn → 0.
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Inhomogeneous Random Graph Model

Let S be a separable metric space equipped with a Borel probability measure µ. For most
cases S = (0, 1] with µ Lebesgue measure, that means a U(0, 1) distribution. The “kernel”
κ will be a symmetric non-negative function on S × S. For each n we have a deterministic
or random sequence x = (x1, . . . , xn) of points in S. Writing δx for the measure consisting
of a point mass of weight 1 at x, and

νn ≡
1

n

n∑
i=1

δxi

for the empirical distribution of x, it is assumed that νn converges in probability to µ as
n → ∞, with convergence in the usual space of probability measures on S. One example
where the convergence holds is the random case, where the xi are independent and uniformly
distributed on S with distribution µ convergence in probability holds by the law of large
numbers.

For formal statements, the following definitions are made.

Definition 3.3.1. A ground space is a pair (S, µ), where S is a separable metric space and
µ is a Borel probability measure on S.

Definition 3.3.2. A vertex space V is a triple (S, µ, (xn)n≥1), where (S, µ) is a ground
space and, for each n ≥ 1, x is a random sequence (x1, x2, . . . , xn) of n points of S, such

that νn
P→ µ holds.

Of course, we do not need (xn)n≥1 to be defined for every n, but only for an infinite set
of integers n.

Definition 3.3.3. A kernel κ on a ground space (S, µ) is a symmetric non-negative (Borel)
measurable function on S × S. By a kernel on a vertex space (S, µ, (xn)n≥1) we mean a
kernel on (S, µ).

Let κ be a kernel on the vertex space V . Given the (random) sequence (x1, . . . , xn), we
let GV(n, κ) be the random graph GV(n, (pij)) with

pij ≡ min{κ(xi, xj)/n, 1}. (3.9)

In other words, GV(n, κ) has n vertices {1, . . . , n} and, given x1, . . . , xn, an edge ij (with
i 6= j) exists with probability pij, independently of all other (unordered) pairs ij.

The random graph G(n, κ) = GV(n, κ) depends not only on κ but also on the choice
of x1, . . . , xn. The freedom of choice of xi in this model is more than Bickel-Chen model.
The asymptotic behavior of GV(n, κ) depend very much on S and µ. Many of these key
results such as existence of giant component, typical distance, phase transition properties
are proved in [29]. In [29], we can see that many known parametric models of network are
special cases of the inhomogeneous random graph model.
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3.4 Inference on Network Models

Simple parametric models of networks are difficult to fit. We see that even for simple para-
metric models such as block models, the efficient estimation of the parameters is not easy
[23]. But still many of the parametric models are not good enough representation of the nat-
urally occurring graphs. The empirical and theoretical vulnerability of Exponential Random
Graph Models have been pointed out by Chatterjee and Diaconis (2010) and Bhamidi et.
al. (2008). Stochastic block models also have certain disadvantages like exponential degree
distribution.

Nonparametric Inference on Bickel-Chen Model

We shall give a very simple non-parametric estimate of the kernel function w(u, v) responsible
for the link probability in Bickel-Chen model given in Section 3.3 for the dense case of
networks when λn →∞.

By Theorem 1 of Bickel, Chen and Levina (2011) [23], as λ→∞

1

n

n∑
i=1

(
τ(zi)−

Di

D̄

)2

= O

(
1

λ

)
→ 0 (3.10)

here, τ(z) = T (1)(z).
Let

Ŵn(u, v) =

∫ u

0

∫ v

0

1

nD

∑
i,j

Aij1(ξ̂i ≤ s, ξ̂j ≤ t)dsdt

where ξ̂i ≡ F̂ (Di

D
) and F̂ is the empirical df of {Di

D
: 1 ≤ i ≤ n}. Let

Wn(u, v) =

∫ u

0

∫ v

0

1

nD

∑
i,j

Aij1(ξi ≤ s, ξj ≤ t)dsdt.

Degree-based Approach for Estimating w

a) Find smoothed empirical distribution function of Di

D̄
,

F̂ (x) ≡ 1

n

n∑
i=1

1

(
Di

D̄
≤ x

)
b) Divide [0, 1] into intervals I1, . . . , IM , such that, Ij = [ j−1

M
, j
M

),

ŵ(u, v) ≡ 1

D

M∑
a,b=1

1

n∗
1(u ∈ Ia)1(v ∈ Ib)

×

[
n∑

i,j=1

1

{
Aij : F̂

(
Di

D̄

)
∈ Ia, F̂

(
Dj

D̄

)
∈ Ib

}]
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Figure 3.8: The LHS is estimate of hCAN function for network of students of year 2008 and
RHS is network of students of year 2008 residing in only 2 dorms. The proportions of classes
in 2 distant modes are (0.3, 0.7) and (0.84, 0.16).

where, n∗ = |Ia||Ib|, if, a 6= b and n∗ = (|Ia|(|Ia|−1))/2, if, a = b.

Application to Facebook Data

In this application, we try to quantitatively analyze the behavior of slink formation for
Facebook collegiate networks. The networks were presented in the paper by Traud et.al.
(2011) [155]. The network is formed by Facebook users acting as nodes and if two Facebook
users are “friends” there is an edge between the corresponding nodes. Along with the network
structure, we also have the data on covariates of the nodes. Each node has covariates: gender,
class year, and data fields that represent (using anonymous numerical identifiers) high school,
major, and dormitory residence. We try to find the probability of link formation given latent
variables, that means estimating w(·, ·) function, defined in Eq. (3.7), for a part of the
network.

However, as we have seen in discussions following Eq. (3.4), that either w(u, v) or h(u, v)
are identifiable only unto a measure preserving transformation of the variables. So, we
try to estimate hCAN(u, v) defined in Eq. (3.5) instead, which is identifiable and unique.
For Facebook network, we try to estimate the hCAN function for a part of the network.
The subnetwork consists of distinct communities based on the dormitory affiliation of the
students (vertices). However, since we are measuring hCAN , the canonical h function, not
the one associated with block model, we can not see the block structure properly for the
3-block case in Figure 3.9.
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Figure 3.9: The LHS is estimate of hCAN function for network of students of year 2008
residing in 3 dorms and RHS is sum of projections ĥCAN(i, , i, ) with two latent variables.
The proportions of classes in 4 modes are (0.5, 0.13, 0.37), (0.67, 0.11, 0.22), (0.26, 0.66,
0.08), (0.32, 0.18, 0.5)
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Chapter 4

Subsampling Bootstrap of Count
Features of Networks

4.1 Introduction

The study of networks has received increased attention recently not only from the social
sciences and statistics but also from physicists, computer scientists and mathematicians.
With the information boom, a huge number of network data sets have come into prominence.
In biology - gene transcription networks, protein-protein interaction network, in social media
- Facebook, Twitter, Linkedin networks, information networks arising in connection with text
mining, technological networks such as the Internet, ecological and epidemiological networks
and many others have come to the forefront. Although the study of networks has a long
history in physics and mathematics literature and informal methods of analysis have arisen in
many fields of application, statistical inference on network models as opposed to descriptive
statistics, empirical modeling and some Bayesian approaches [128] [98] [79] has not been
addressed extensively in literature. A mathematical and systematic study of statistical
inference on network models has only started in recent years.

Frequentist statistical inference involves proposing random models, fitting the proposed
model to the data, checking goodness of fit in nonparametric context and given a good
fit constructing tests and confidence statements about features of the model. Systematic
analysis of complex models can only be done asymptotically and validated by simulation
and network models are no exception. Much recent analysis has focussed on block models
[80] and exponential random graph models (ERGM) [66]. The block models in their first
incarnation did not fit large graphs well, for instance, their exponential degree distribution
did not fit empirically observed degree distributions which often seemed to be of power law
type [10] [132]. But they serve as shown by Bickel and Chen (2009) [22] the role of histograms.
They also have until recently (Amini et. al. (2012) [5], Daudin et. al. (2008) [47]) proved
hard to fit well. Nevertheless their analysis proceeds apace [125] [23] [140] [40]. For ERGM
also there has been some work done on likelihood inference [145] [85] for these models. But
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recently Bhamidi et al [17] has shown some issues with these models, as most of the time
these models fail to represent real-world network properties. We will not dwell on these
issues.

It follows from the work of Lovász [113] [30] and Aldous [4] and Hoover [82] that there
is a representation of all probability models on n vertices which can be embedded in an
infinite vertex model with natural invariance properties. This leads to the Bickel and Chen
(2009) [22] characterization of “nonparametric” unlabeled graph models which is closely
related to Lovász’s notion of “graphons”. It also follows from the work of Lovász [113],
Diaconis and Janson [51] and in part from Bickel and Chen [22] that there is a unique set of
statistics whose joint distribution characterize the probability distribution on graphs. These
statistics, called “empirical moments” by Bickel, Chen and Levina [23], have appeared in
various literatures earlier under the names of “motif” counts in biology [92], “subgraph”
counts in probability [113]. Examples are the number of edges, the number of ‘V’s, the
number of triangles contained in the observed graph.

The expectation and variances of the quantities can, in principle be computed (Picard
et.al. [136]) and more usefully be asymptotically approximated [23] and under appropriate
conditions these have limiting Gaussian distribution. They have many uses [161] [155] [14],
particularly in distinguishing between the mechanisms generating different graphs as well as
providing characterization, but in an outward form of the probability distribution.

A major stumbling block in their use has been the calculation of motifs that have more
than 4 or 5 members. They have been used in testing equality of two distributions of count
statistics and finding confidence intervals. Another problem that arises in dealing with
the count statistics for large numbers is actually computing the count statistics. Finding
the correct count statistics is a computationally hard problem for large networks as the
complexity of finding the count of a subgraph is polynomial in terms of number of vertices
and when number of vertices is in millions, the computation becomes infeasible.

In the statistical literature on networks, some work has been done on devising sampling
designs to select network samples. Various sampling designs has been proposed at different
points in the statistical literature to derive meaningful samples of a given network. Kolack-
zyk (2009) and [98] contains a nice summary of network sampling designs. Examples of
such sampling designs include random node selection, induced and incident sampling, star
and snowball sampling, link-tracing sampling, random walks, forest fire and several modi-
fications of the stated methods [98] [108] [151]. Many of these sampling designs have been
analyzed from design-based sampling point of view [152] [65]. There has also been work
done on analyzing some of these methods from model-based sampling point of view, where,
mostly the exponential random graph model (ERGM) was considered as the model generating
the network and a likelihood-based approach was taken for inference [74]. As a result only
parametric inference was possible in those approaches. On the other hand, our approach
is not restricted to parametric models as we try to estimate the certain functionals of the
underlying generating model, using the samples obtained from the random population net-
work. So, in our work, we consider a “nonparametric” model as the underlying model in
our analysis and try to see both theoretically and by examples how some of these sampling
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schemes perform in estimating count features and their asymptotic variances.

Contribution and Structure of the Chapter

We use subsampling based bootstrap approaches to estimate the count statistics as well as
find approximate distribution for such count statistics under the general model of Bickel and
Chen [22]. We also state certain properties under which a network sampling design becomes
adaptive to the network model for count statistics. By adaptive, we mean here that the
network sampling design produces subsamples of network, such that the count statistics
obtained from the subsampled network, becomes consistent to the original count statistics
for the whole network.

We also apply our bootstrap method in simulated networks as well as two real-life net-
works. In simulation, we use two different models, stochastic block models [80] and pref-
erential attachment models [10]. We try to compare the performance of different bootstrap
methods for each of the simulated networks as well as to compare the networks generated by
these two models using some well known descriptive statistics of networks [98]. One of the
real-life networks is the Jefferson high-school network given in Bearman et.al. (2004) [14] and
the others are the Facebook collegiate networks provided in Traud et.al. (2010) [155]. For
the high-school network, we try to answer the question whether the number of small-cycles
in the network is small. For the Facebook collegiate networks, we try to decide whether the
node covariates given for the network have any potential clustering power. We also try to
distinguish two different networks based on the partitioning properties. The test-statistics
that we use in these comparisons is network transitivity, which has been argued to indicate
network clustering capability [98].

In section 4.2 we outline our main results. In section 4.3 we describe the bootstrap
subsampling methods and the theoretical properties of each bootstrap estimators. We also
indicate a method for estimating asymptotic variances of these estimators using bootstrap.
We also give a theoretical comparison of the methods. In section 4.5 we perform simulation
under two special cases of the general “nonparametric” model: stochastic block model and
preferential attachment model respectively. Under each of these cases we try to estimate
count statistics and their variances with the the help of the bootstrap subsampling schemes
and we compare the empirical performance of the three proposed bootstrap subsampling
schemes as well as perform tests for model mis-specification. In 4.6 we apply our method to
test hypotheses about the count statistics of the real network.

4.2 Main Results

Let us consider that a random graph Gn as the data. Let V (Gn) = {vi, . . . , vn} denote the
vertices of Gn and E(Gn) = {e1, . . . , em} denote the edges of Gn. So, the number of vertices
in Gn is |V (Gn)|= n and number of edges of Gn is |E(Gn)|= m. Let the adjacency matrix
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of Gn be denoted by An×n. For sake of notational simplicity, from here onwards we shall
denote Gn by G having n vertices unless specifically mentioned.

We consider a general non-parametric model, as described in Bickel, Chen and Levina
(2011) [23], generates the random data network G. The general non-parametric model can
be described by the following equation -

P(Aij = 1|ξi = u, ξj = v) = hn(u, v) = ρnw(u, v)1(w ≤ ρ−1
n ), (4.1)

where, w(u, v) ≥ 0, symmetric, 0 ≤ u, v ≤ 1, ρn → 0. This model assumes exchangeability
The graph statistics that we are concerned with, are count statistics of subgraphs. Let

R be a subgraph of G, with V (R) ⊆ V (G) and E(R) ⊆ E(G). We have |V (R)|= p and
E(R)|= e. For notation, if two graphs R and S are equivalent, we denote them by R ∼= S
and if R is a subgraph of S, we denote them by R ⊆ S. Now, the empirical statistic of our
concern is

TG(R) =
1(

n
p

)
|Iso(R)|

∑
S⊆Kn,S∼=R

1(S ⊆ G) (4.2)

where, Iso(R) is the group of Isomorphisms of R and Kn is the complete graph on n vertices.
The population version of the sample statistic TG(R) can be defined as P (R),

P (R) = E

 ∏
(i,j)∈R

h(ξi, ξj)
∏

(i,j)∈R̄

h(ξi, ξj)


where, R̄ = {(i, j) /∈ R, i ∈ V (G), j ∈ V (G)}. Evidently, we have

E(TG(R)) = P (R)

If we define normalized versions of parameter P (R) as

P̃ (R) = ρ−eP (R)

where, e ≡ |E(R)|, then, we can define the corresponding normalized statistic to be

T̂G(R) = ρ̂−eTG(R)

where,

ρ̂ =
D̄

n− 1
. (4.3)

where, Di = degree of vi, vi ∈ V (Gn) for i = 1, . . . , n and D̄ = 1
n

∑n
i=1Di.

We wish to approximate the functionals E(TG(R)) and Var(TG(R)) by nonparametric
bootstrap. Let us consider the bootstrap estimate of T̂G(R) to be T̂b(R) and bootstrap
estimate of Var(TG(R)) to be σ̂2

b (R). We consider b as the bootstrap repetition or resampling
parameter. How, we get the bootstrap estimates will be discussed in next section. But, for
such a bootstrap estimates, we can state the general theorem that we proved -
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Theorem 4.2.1. Suppose R is fixed, acyclic with |V (R)|= p and
∫∞

0

∫∞
0
w2|R|(u, v)dudv <

∞. Then if λn →∞ and b→∞

T̂b(R)
P→ P̃ (R) (4.4)

√
n

(
T̂b(R)− P̃ (R)

σ̂b(R)

)
w→ N(0, 1) (4.5)

If for fixed, acyclic subgraphs (R1, . . . , Rk), we define, Tb(R) =
(
T̂b(R1), . . . , T̂b(Rk)

)
and

P(R) =
(
P̃ (R1), . . . , P̃ (Rk)

)
√
n
(

(Tb(R)−P(R))T Σ̂
−1/2
b (R) (Tb(R)−P(R))

)
w→ N(0, I) (4.6)

where, [Σb]st = σ̂b(Rs, Rt), s, t = 1, . . . , k and if Rs = Rt = R, σb(Rs, Rt) = σ̂2
b (R). These

results also hold for subgraphs R, which are k-cycles.

Note that the above theorem is the master theorem. The proof of this theorem depends
upon how we obtain the bootstrap estimates T̂b(R) and σ̂2

b (R). We consider two bootstrap
procedures.

(I) uniform subsampling bootstrap procedure

(II) sampling-based bootstrap procedure.

Both bootstrap procedures have different small-sample behavior. That means depending on
λn and size of R for a given network G, the efficiency of the bootstrap estimates differ.

We also considered another bootstrap procedure, which was a variant of the common
snowball sampling. However, we do not discuss that method in the main discourse, instead,
we relegate discussion on that method to the Appendix, since the method performs poorly for
all types of graphs compared to the other two methods, both theoretically and empirically.

For each of the bootstrap methods, we prove a theorem of following type -

Theorem 4.2.2. Suppose R is fixed, acyclic with |V (R)|= p, then, if b→∞,

√
n
(
T̂b(R)− T̂G(R)

)
P→ 0 (4.7)

Also, if n→∞ and λn →∞ and under certain conditions depending on the bootstrap method

σ̂2
b (R)

σ2(R)

P→ 1 (4.8)

where, σ2(R) is the asymptotic variance of T̂G(R) as defined in Theorem 1 of [23]. These
results also hold for subgraphs R, which are k-cycles.

We shall prove Theorem 4.2.2 for each of the two bootstrap cases in Section 4.3. Then,
we shall use the Theorem 4.2.2 to prove the general theorem 4.2.1 in Section 4.4.
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Bootstrap and Model-based Sampling

Our work can be viewed from two different perspectives. The first perspective is that of
bootstrap. In non-parametric bootstrap, we use resamples or subsamples of the data, where
the data comes from an unknown distribution, to find the functionals of the unknown distri-
bution. In our situation also, we have a network that has been generated from an underlying
probability model. We want to subsample networks from our given network and use those
subsampled networks to find estimates of functionals of the underlying population model gen-
erating the given network. Note that here we are interested in subsampling not resampling
a network. This is precisely because one of our goals is to reduce the burden of performing
computation on the large original network.

The second perspective is that of model-based sampling. In model-based sampling, we
consider that the population, from which the sample is selected according to some sampling
design, is a realization of a probabilistic event. So, in our case, we consider the given network
as the population and it is generated from an underlying probability model.

4.3 Bootstrap Methods

We propose three different bootstrap methods. Each of them are subsampling approaches of
bootstrap. In the following subsections, we shall define each of these subsampling bootstrap
methods. We shall also compare the theoretical performance between the three bootstrap
schemes.

Let us consider that we have a random graph Gn as the data with |V (Gn)|= n and
number of edges of Gn is |E(Gn)|= m. Let the adjacency matrix of Gn be denoted by
An×n. For sake of notational simplicity, from here onwards we shall denote Gn by G having
n vertices unless specifically mentioned. Let R be a subgraph of G, with V (R) ⊆ V (G) and
E(R) ⊆ E(G). We have |V (R)|= p and |E(R)|= e.

Uniform Subsampling Bootstrap

In the uniform subsampling bootstrap scheme at each bootstrap iteration a subset of vertices
of the full network G is selected without replacement and the graph induced by the selected
subset is the subsample we consider. This is a vertex subsampling or induced network
sampling scheme. The full bootstrap procedure given the subsample size, m and number of
bootstrap iterates, B, is as follows –

1. For bth iterate of the bootstrap, b = 1, . . . , B,

2. Choose m vertices without replacement from V (G) and form the induced subgraph of
G based on the selected vertices. Denote the graph formed by H.
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3. Calculate Tb1(R), given by formula

Tb1(R) =
1(

m
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H) (4.9)

The bootstrap estimate of TG(R) is given by

T̃b1(R) =
1

B

B∑
b=1

Tb1(R) (4.10)

The uniform subsampling bootstrap scheme is the network version of the common sub-
sampling bootstrap scheme seen in Bickel et. al. [20]. Note that, there are other ways of
forming uniformly subsampled bootstrap estimates as mentioned in [20], however, we just
mention one of them in this discourse. The properties of the bootstrap estimator T̃b1(R) is
given is Lemma 4.3.1

Lemma 4.3.1. The estimator T̃b1(R) has the following properties

(i) Given G, T̃b1(R) is an unbiased estimate of TG(R).

(ii) As B →∞, n→∞, m→∞ and m/n→ 0,

√
n(ρ−eT̃b1(R)− ρ−eTG(R))

P→ 0

Proof. (i) Now, let us try to try to find the expectation of Tb1(R) under the sampling
distribution conditional on the given data G.

Eb

[
1(

m
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H)
∣∣∣G]

=
1(

m
p

)
|Iso(R)|

E

[ ∑
S⊆Km,S∼=R

1(S ⊆ H)
∣∣∣G]

=
1(

m
p

)
|Iso(R)|

∑
H⊆G,|H|=m

1(
n
m

) ∑
S⊆Km,S∼=R

1(S ⊆ H)

=
1(

m
p

)
|Iso(R)|

∑
S⊆Kn
S∼=R

∑
H⊇S,H⊆G
|H|=m

1(
n
m

)1(S ⊆ G)

=
1(

m
p

)
|Iso(R)|

∑
S⊆Kn,S∼=R

(
n−p
m−p

)(
n
m

) 1(S ⊆ G)

=
1(

n
p

)
|Iso(R)|

∑
S⊆Kn,S∼=R

1(S ⊆ G)
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So, we have,
Eb[T̃b1(R)|G] = Eb[Tb1(R)|G] = TG(R)

(ii) Here, we use properties of the underlying model. Let us condition on ξ = {ξ1, . . . , ξn}
and the whole graph G separately. Now, conditioning on ξ, we get the main term of
TG(R) to be,

E(P̂ (R)|ξ) =
1(

n
p

)
|Iso(R)|

∑
S⊆Kn,S∼=R

 ∏
(i,j)∈E(S)

w(ξi, ξj)

+O(n−1λn). (4.11)

We shall use the same decomposition as used in [23] of (ρ−en T̃b1(R)− P̃ (R)) into

(ρ−en T̃b1(R)− P̃ (R)) = ρ−en

(
T̃b1 − Eb[Tb1(R)|G]

)
+ρ−en (TG(R)− E(TG(R)|ξ))

+E(P̂ (R)|ξ)ρ−en − P̃ (R)

Let us define,

U3 = E(P̂ (R)|ξ)ρ−en − P̃ (R)

U2 = ρ−en (TG(R)− E(TG(R)|ξ))

U1 = ρ−en

(
T̃b1 − Eb[Tb1(R)|G]

)
Now, it is easy to see that

Var(ρ−eT̃b1(R)) = E(Var(ρ−eT̃b1(R)|G) + Var(E(ρ−eT̃b1(R)|G))

= E(Var(ρ−eT̃b1(R)− TG(R)|G) + Var(TG(R))

= E(Var(U1|G)) + E(Var(TG(R)|ξ)) + Var(E(TG(R)|ξ))

= E(Var(U1|G)) + E(Var(U2|ξ)) + Var(U3)

We shall try to see the behavior of Var(U1|G) = Varb[ρ
−eT̃b1(R)|G]. Now,

Varb[ρ
−eT̃b1(R)|G] = ρ−2e 1

B2

(
B∑
b=1

Varb[Tb1(R)] +
B∑

b,b′=1,b 6=b′
Covb(Tb1(R), Tb′1(R))

)

Now, the formula for Varb[Tb1(R)] = O( 1
m

) and Covb[Tb1(R), Tb′1(R)] = O( 1
m

) for
acyclic and k-cycle R is given in Appendix A1. If we consider the uniform proba-
bility for bootstrap to be γ, then, B = O(γnp). Note that, if E(Hb) ∩ E(Hb′) = φ,
then, Covb(Tb1(R), Tb′1(R)) = 0. The number of pairs such that E(Hb) ∩ E(Hb′) 6= φ
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is O(m2γ2n2m−2). Also, the number of edges for the leading term in the covariance is
equal to or more than 2e. So,

E(Var(U1|G)) = O

(
m2γ2n2m−2

mγ2n2m

)
= O

(m
n2

)
= o(n−1)

The last equality follows since we have m/n→ 0 as n→∞.

Now, by proof of Theorem 1 in [23], we have,

Var(U2) = o(n−1)

Var(U3) = o(n−1)

So, we get, Var(ρ−eT̃b1(R)) = o(n−1). Since, we already know
√
n-consistency of(

ρ−en TG(R)− P̃ (R))
)

, this proves the
√
n-consistency of ρ−en T̃b1(R) to ρ−en TG(R).

The variance of T̃b1(R) given G can also be calculated and is given in the Appendix A1.

Sampling based bootstrap

In this bootstrap scheme we use an enumeration scheme of finding all possible subgraph R in
the graph G and convert the enumeration scheme into a sampling scheme. The enumeration
scheme was proposed by Wernicke et. al. (2006) [162]. A random version of the enumeration
scheme was also proposed in the paper [162]. We use the random version of the enumeration
scheme to form our sampling scheme.

Let us first discuss the enumeration scheme of Wernicke et al [162], which we shall hence-
forth call EnumerateSubgraph or ESU. The enumeration algorithm is a breadth-first search
algorithm. The algorithm strives to create a forest of tree structures such that each leaf of
each tree is a size-p subgraph (we have, |R|= p). Since, the counting scheme follows a
breadth-first search route, before performing the ESU algorithm, we need an ordering of the
vertices based on breadth-first search of the graph starting from any particular vertex (say
v). So, we get a particular fixed ordering of the vertices of the network with v getting lowest
order value and subsequently searched vertices getting higher order values. The ordering is
described in the algorithm AssignOrder or AO. Based on that ordering of G we perform
ESU.

When counting, ESU algorithm creates a forest of tree structures such that each tree
represents one vertex of the network and each leaf of each tree is a size-p subgraph (we have,
|R|= p). We start with an available vertex of lowest possible order, say u. We construct a
tree with the vertex u as the root node. We consider u as he “parent” node and neighbors of
u, which have a higher order than u as its “children”. In the next step, the “children” node
become the “parent” node in the tree and has its own neighbors as their “children”. The
tree is allowed to grow unto a height p, if we are counting size-p subgraphs. So, we can see
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that each leaf of the tree represents a collection of p nodes coming from the path connecting
the leaf to the root. For each vertex, we have such a tree and over counting is averted as we
maintain the order while forming the trees. So, with the help of the particular ordering of
vertices, each of the size-p subgraphs (|R|= p) is counted only once.

Algorithm 4.3.1 AssignOrder(G, p)

Require: A graph G = (V,E), where, |V (G)|= n.
Ensure: A vector σ = (σ(1), . . . , σ(n)), where, σ is some permutation of {1, . . . , n} and σ(i)

is associated with vertex vσ(i) ∈ V (G) for all i = 1, . . . , n.
1: σ1 ← 1
2: V ← {v1}
3: i← 1
4: while |V|< n do
5: Denote k ← |N(V)| and {vh1 , . . . , vhk} = N(V)
6: Define σ(i+ j)← hj for j = 1, . . . , k.
7: i← i+ k
8: V ← V ∪N(V)
9: end while

Once, we have the ordering σ for G, we define, vi � vj if œ−1(i) > œ−1(j)., where,
vi, vj ∈ V (G) and i, j = 1, . . . , n with i 6= j. This ordering is needed for success of the ESU

algorithm and its randomized counterpart 4.3.4. We shall only formally state the randomized
version of the algorithm, RAND-ESU 4.3.4 in this paper. The enumeration version can be found
in [162].

Algorithm 4.3.2 EnumerateSubgraph(G, p)

Require: A graph G = (V,E) and an integer p, where, 1 ≤ p ≤ |V |.
Ensure: Sp = All subgraphs, R of G, such that |R|= p.
1: for each vertex v ∈ V do
2: VExtension ← {u ∈ N({v}) : u � v}
3: Call ExtendSubgraph({v}, VExtension, v})
4: end for

In Theorem 2 of [162] it was proved that the output of ESU algorithm, Sp contains all
subgraphs R of G, such that |R|= p, exactly once. So, we can write the statistic (4.2) for a
specific subgraph R with |R|= p in the following way

TG(R) =
1(

n
p

)
|Iso(R)|

∑
S∈Sp

1(S ∼= R) (4.12)

Essentially we have a normalized population total in terms of sampling theory. Our goal is
to form a sampling design and devise a corresponding sampling estimator of TG(R) given G.
To meet that goal we use a sampling version of the enumeration scheme ESU.
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Algorithm 4.3.3 ExtendSubgraph(VSubgraph, VExtension, v)

Require: Graphs VSubgraph, VExtension and vertex v.
Ensure: All subgraphs, R of G, such that |R|= p and v is a vertex of R.
1: if |VSubgraph|= p then
2: return Subgraph of G induced by VSubgraph
3: else
4: while VExtension 6= φ do
5: Remove an arbitrarily chosen vertex w from VExtension
6: V ′Extension ← VExtension ∪ {u ∈ Nexcl(w, VSubgraph) : u � v}
7: Call ExtendSubgraph(VSubgraph ∪ {w}, V ′Extension, v)
8: end while
9: end ifreturn

Now, the sampling version of the ESU algorithm has an extra set of parameters (q1, . . . , qp).
We shall call the new algorithm as RandomizedEnumerateSubgraph or RAND-ESU.

Algorithm 4.3.4 RandomizedEnumerateSubgraph(G, p)

Require: A graph G = (V,E), an integer p and an vector (q1, . . . , qp), where, 1 ≤ p ≤ |V |
and qd ≤ 1 for all d = 1, . . . , p.

Ensure: SRp = A sample of subgraphs, R of G, such that |R|= p.
1: for each vertex v ∈ V do
2: VExtension ← {u ∈ N({v}) : u � v}
3: With probability q1 Call RandExtendSubgraph({v}, VExtension, v})
4: end for

From the sampling scheme RAND-ESU we have a sample SRp of size − p subgraphs of G.
Now, if we consider each item to be one size − p subgraph of G, that is, an element of Sp,
then, we can try to calculate the inclusion probability of each item in the sample SRp .

An item, S ∈ Sp is a subgraph of G induced by the set of vertices {w1, . . . , wp}, where,
we take that wi+1 � wi, i = 1, . . . , p− 1. So,

π ≡ Inclusion Probability of S = P[(w1, . . . , wp) is selected]

= P[wp|(w1, . . . , wp−1) is selected].

P[(w1, . . . , wp−1) is selected]

= qp · P[(w1, . . . , wp−1) is selected]

= qp · qp−1 · P[(w1, . . . , wp−2) is selected]

= · · · = qp · qp−1 · · · q1 =

p∏
d=1

qd
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Algorithm 4.3.5 RandExtendSubgraph(VSubgraph, VExtension, v)

Require: Graphs VSubgraph, VExtension and vertex v.
Ensure: A sample of subgraphs, R of G, such that |R|= p and v is a vertex of R.
1: if |VSubgraph|= p then
2: return Subgraph of G induced by VSubgraph
3: else
4: while VExtension 6= φ do
5: Remove an arbitrarily chosen vertex w from VExtension
6: V ′Extension ← VExtension ∪ {u ∈ Nexcl(w, VSubgraph) : u � v}
7: d← |VSubgraph|+1
8: With probability qd Call RandExtendSubgraph(VSubgraph ∪ {w}, V ′Extension, v)
9: end while
10: end if
11: return

So, each item S ∈ Sp has an inclusion probability π to be in the sample SRp . So, we can
define a Horvitz-Thompson estimator of TG(R) based on SRp as

T̃b2(R) =
1

(
∏p

d=1 qd)
(
n
p

)
|Iso(R)|

∑
S∈SRp

1(S ∼= R) (4.13)

For variance calculation, we also need the joint inclusion probability of two items, S, S ′ ∈
Sp, which are subgraphs of G induced by the set of vertices {w1, . . . , wp} and {w′1, . . . , w′p}
respectively, where, we take that wi+1 � wi and w′i+1 � w′i, i = 1, . . . , p− 1. So,

πSS′ ≡ Inclusion Probability of S and S ′

= P[(w1, . . . , wp) is selected&(w′1, . . . , w
′
p) is selected]

=

p∏
d=1

(qd)
z1d

p∏
d=1

(
q2
d

)z2d
where,

z1d =

{
1(wd = w′d), for d = 1
1((wd, wd−1) = (w′d, w

′
d−1)), for d = 2, . . . , p

z2d =

{
1(wd 6= w′d), for d = 1
1((wd, wd−1) 6= (w′d, w

′
d−1)), for d = 2, . . . , p

Now, let us try to see the properties of the bootstrap estimator T̃b2(R) -

Lemma 4.3.2. The estimator T̃b2(R) has the following properties



CHAPTER 4. SUBSAMPLING BOOTSTRAP OF COUNT FEATURES OF
NETWORKS 81

(i) Given G, T̃b2(R) is an unbiased estimate of TG(R).

(ii) As B →∞, q1 = 1 or q1 → 1 and qd → 0 and nqd →∞ for d = 2, . . . , p and n→∞,

√
n(ρ−eT̃b2(R)− ρ−eTG(R))

P→ 0

Proof. (i) according to the sampling theory [151], we have that T̃b2(R) is an unbiased
estimator of TG(R) given the network G.

(ii) The variance of T̃b2(R) coming from the bootstrap sampling only is given by

Varb

[
T̃b2(R)

]
=

1

N2

1− π
π

∑
S∈Sp

1(S ∼= R) +
∑

S,S′∈Sp,S 6=S′

πSS′ − π2

π2
1(S ∼= R, S ′ ∼= R)


(4.14)

where,

N =

(
n

p

)
|Iso(R)|

We shall use the same decomposition as used in [23] of (ρ−en T̃b2(R)− P̃ (R)) into

(ρ−en T̃b2(R)− P̃ (R)) = ρ−en

(
T̃b2 − Eb[Tb1(R)|G]

)
+ρ−en (TG(R)− E(TG(R)|ξ))

+E(P̂ (R)|ξ)ρ−en − P̃ (R)

Let us define,

U3 = E(P̂ (R)|ξ)ρ−en − P̃ (R)

U2 = ρ−en (TG(R)− E(TG(R)|ξ))

U1 = ρ−en

(
T̃b2 − Eb[Tb2(R)|G]

)
Now, it is easy to see that

Var(T̂ b(R)) = E(Var(Tb2(R)|G) + Var(E(Tb2(R)|G))

= E(Var(T̂b2(R)− TR(G)|G) + Var(TG(R))

= E(Var(U1|G)) + E(Var(TG(R)|ξ)) + Var(E(TG(R)|ξ))

= E(Var(U1|G)) + E(Var(U2|ξ)) + Var(U3)

We shall try to see the behavior of Var(U1|G) = Varb[Tb3(R)|G]. From the formula
of Varb[Tb2(R)|G], we see that, the covariance terms vanishes when πSS′ = π2. Now,
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if q1 = 1, then, πSS′ = π2 if E(S) ∩ E(S ′) = φ. The number of pairs such that
E(S) ∩ E(S ′) 6= φ is O(p2n2p−2). So,

E(Var(U1|G)) = O

(
p2n2p−2

N

)
= O(p2/n2) = o(n−1)

Now, the condition of q1 = 1 is a bit restrictive. In stead, if we have q1 → 1 as
n → ∞, then, the highest order term of covariance term comes from the case when
E(S)∩E(S ′) 6= φ but the root nodes are same that is w1 = w′1. So, for some constant
C > 0,

1

N2

∑
S,S′∈Sp,S 6=S′

πSS′ − π2

π2
1(S ∼= R, S ′ ∼= R)

≤ C

N2

∑
S,S′∈Sp,S 6=S′

q1 − q2
1

q2
1

1(S ∼= R, S ′ ∼= R)

= O

((
1

q1

− 1

)
n2p−1

n2p

)
= O

((
1

q1

− 1

)
1

n

)
= o(n−1)

Now, for the variance term to vanish we need the conditions q1 = 1 or q1 → 1 and
qd → 0 and nqd →∞ for d = 2, . . . , p as n→∞. Under these conditions, we have

1

N2

1− π
π

∑
S∈Sp

1(S ∼= R) =

(
1

π
− 1

)
O

(
np

n2p

)
= O

(
1

npπ

)
= O

(
1

n
·

p∏
d=2

1

nqd

)
= o(n−1)

So, we have,

Var(U1) = o(n−1)

Now, by proof of Theorem 1 in [23], we have,

Var(U2) = o(n−1)

Var(U3) = o(n−1)
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So, we get, Var(ρ−eT̃b2(R)) = o(n−1). Since, we already know
√
n-consistency of(

ρ−en TG(R)− P̃ (R))
)

, this proves the
√
n-consistency of ρ−en T̃b2(R) to ρ−en TG(R).

Comparison of the Bootstrap Methods

Among the two bootstrap methods, the uniform subsampling scheme works for dense graphs
only. If the subgraph pattern becomes large or if the original network is sparse, then the
subgraph size also need to be large leading to slowing of the bootstrap scheme. However for
dense graphs the uniform subsampling bootstrap scheme is fast and accurate.

The sampling-based bootstrap scheme is more accurate and stable, that means it has less
bootstrap variance than the uniform subsampling bootstrap scheme. But, for dense graphs it
becomes slower than uniform subsampling bootstrap to maintain its low bootstrap variance.

So, if speed is your concern, uniform subsampling bootstrap might be better choice,
however, if you want a more reliable estimate then, sampling based bootstrap would be a
better choice.

4.4 Theoretical Results

In this section, we try to give an estimate of asymptotic variance of ρ−eTG(R), σ2(R), which
is defined in Theorem 1 of [23]. By obtaining an estimate of the asymptotic variance of
ρ−eTG(R), we can estimate its asymptotic distribution and thus construct hypothesis tests
based on the asymptotic distribution. We combine the results obtained in Section 4.2 to
prove Theorem 4.2.1

Estimation of Variance and Covariance

We shall try to find the variance of the statistic ρ−eTG(R) and then, using it give an estimate
of the variance of the statistic T̂G(R). The source of variation here is the randomness coming
from sampling from the underlying model (5.2).

Var
[
ρ−eTG(R)

]
= Var

[ ∑
S⊆Kn,S∼=R

1(S ⊆ H)

ρe
(
n
p

)
|Iso(R)|

]

=
1(

ρe
(
n
p

)
|Iso(R)|

)2E

[ ∑
S⊆Kn,S∼=R

1(S ⊆ H)

]2

−
(
P̃ (R)

)2

=
1(

ρe
(
n
p

)
|Iso(R)|

)2E

 ∑
S,T⊆Kn

S,T∼=R,S∩T 6=φ

1(S, T ⊆ H)


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If R is a connected subgraph and W = S ∪ T and k = |W | and eW ≡ |E(W )|, then,
k = p, . . . , 2p− 1 and each term of sum in RHS

1(
ρe
(
n
p

)
|Iso(R)|

)2E

[ ∑
W⊆Kn

1(W ⊆ H)

]
=
ρeW
(
n
k

)
|Hom(W )|(

ρe
(
n
p

)
|Iso(R)|

)2 P̃ (W ) = O(nk−2pρeW−2e)

(4.15)
If |W |= |S ∪T |= 2p− 1, then, W is a connected graph, with eW = 2e. So, we have the main
leading term equals O( 1

n
) for acyclic R. For, any other W , such that, |W |= k < 2p− 1 then

the Eq (4.15) becomes

1(
ρe
(
n
p

)
|Iso(R)|

)2E

[ ∑
W⊆Kn

1(W ⊆ H)

]

=
ρeW
(
n
k

)
|Hom(W )|(

ρe
(
n
p

)
|Iso(R)|

)2 P̃ (W ) = O(nk−2pρeW−2e) = o(n−1)

under the condition that ρ decreases at a rate slower than O(n−1), that means except when
we are in the constant degree case. The condition is equivalent to stating that λn →∞.

So, for calculation of variance, we only estimate the count of the features which are
W = S ∪ T and |W |= 2p− 1, that means S and T have only one node in common. So, the
estimator of variance becomes -

σ̃2(R) =
1(

ρe
(
n
p

)
|Iso(R)|

)2

∑
W⊆Kn,W=S∪T,S,T∼=R,|S∩T |=1

1(W ⊆ G) (4.16)

and we have

Eσ̃2(R) = Var
[
ρ−eTG(R)

]
+ o(n−1)

Similarly, for calculation of covariance between two count statistics, TG(R1) and TG(R2),
we only estimate the count of the features which are W = S ∪ T and |S ∩ T |= 1, S ∼= R1,
T ∼= R2, that means S and T have only one node in common. So, the estimator of covariance
becomes -

σ̃(R1, R2)

=
1(

ρeR1

(
n
p

)
|Hom(R1)|

) 1(
ρeR2

(
n
p

)
|Hom(R2)|

) ∑
W⊆Kn,W=S∪T,S∼=R1,T∼=R2,|S∩T |=1

1(W ⊆ G)

(4.17)

where eR1 = |E(R1)| and eR2 = |E(R2)|. So, we have

Eσ̃(R1, R2) = Cov
[
ρ−eR1TG(R), ρ−eR2TG(R2)

]
+ o(n−1)
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Now, from the Theorem 1(a) in [23], we know that as λn →∞, if ρ̂n = D̄
n−1

as defined in
(4.3),

ρ̂n
ρn

P→ 1

So, using the estimate ρ̂n, we define the estimate of variance -

σ̂2(R) =
1(

ρ̂en
(
n
p

)
|Iso(R)|

)2

∑
W⊆Kn,W=S∪T,S,T∼=R,|S∩T |=1

1(W ⊆ G) (4.18)

and the estimate of covariance is -

σ̂(R1, R2)

=
1(

ρeR1

(
n
p

)
|Hom(R1)|

) 1(
ρeR2

(
n
p

)
|Hom(R2)|

) ∑
W⊆Kn,W=S∪T,S∼=R1,T∼=R2,|S∩T |=1

1(W ⊆ G)

(4.19)

So, σ̂2(R) and σ̂(R1, R2) become consistent estimates of Var [ρ−eTG(R)] and
Cov [ρ−eR1TG(R1), ρ−eR2TG(R2)] respectively and consequently a consistent estimate of

Var
[
T̂G(R)

]
and Cov

[
T̂G(R1), T̂G(R2)

]
respectively.

Lemma 4.4.1. As λn →∞ and n→∞,

σ̂2(R)

Var [ρ−eTG(R)]

P→ 1 (4.20)

σ̂(R1, R2)

Cov
[
T̂G(R1), T̂G(R2)

] P→ 1 (4.21)

Proof. The proof follows from previous discussion.

Now, we can see that σ̂2(R) and σ̂(R1, R2) are nothing but count statistics on the statistic
W = S ∪ T , where, S, T ∼= R and |S ∩ T |= 1. So, using bootstrap methods, we can get an
estimate of σ̂2(R) -

σ̂2
bi(R) =

(
ρ̂eWn
(

n
2p−1

)
|Iso(R)|

)
(
ρ̂en
(
n
p

)
|Iso(R)|

)2 T̃bi(W ) for i = 1, 2. (4.22)

and an estimate of σ̂(R1, R2) -

σ̂bi(R1, R2) =

(
ρ̂eWn
(

n
2p−1

)
|Iso(R)|

)
(
ρ̂
eR1
n

(
n
p

)
|Hom(R1)|

)(
ρ̂
eR2
n

(
n
p

)
|Hom(R2)|

) T̃bi(W ) for i = 1, 2. (4.23)
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where, W = S ∪ T with S, T ∼= R and |S ∩ T |= 1 and |V (W )|= 2p − 1 and eW = |E(W )|.
T̃bi(W ) (i = 1, 2) are bootstrap count statistics estimates, defined in Eq (4.10) and (4.13).
Also from Lemma 4.3.1 and Lemma 4.3.2, we get the

√
n-consistency of the bootstrap count

estimates T̃bi(W ) (i = 1, 2, 3). So, we can now combine the Lemma 4.3.1 and 4.3.2 and
Lemma 4.4.1, to see that σ̂2

bi(R) and σ̂bi(R1, R2) (i = 1, 2) are consistent estimators of σ2(R)
and σ(R1, R2) respectively by Slutsky’s Theorem and Convergence of Types Theorem. So,
we get an estimate of variance, σ̂2

bi(R) (i = 1, 2) with the property

Lemma 4.4.2. as λn → ∞, n → ∞ and under conditions of Lemma 4.3.1 and Lemma
4.3.2,

σ̂2
bi(R)

σ2(R)

P→ 1 for i = 1, 2 (4.24)

σ̂bi(R1, R2)

σ(R1, R2)

P→ 1 for i = 1, 2 (4.25)

Proof. The proof follows from previous discussion.

Proof of Theorem 4.2.2

The proof of the internal theorem follows from the lemmas of previous section. Since, we
have

√
n-consistent bootstrap estimators of ρ−eT̃b(R). Now, from the Theorem 1(a) in [23],

we know that as λn →∞, if ρ̂n = D̄
n−1

as defined in (4.3),

ρ̂n
ρn

P→ 1

√
n

(
ρ̂n
ρn
− 1

)
w→ N(0, σ2)

Now, we can define the bootstrap estimates as -

T̂bi(R) = ρ̂−eT̃bi(R) for i = 1, 2, 3. (4.26)

So, we get by applying Slutsky’s Theorem that

√
n
(
T̂bi(R)− T̂G(R)

)
P→ 0 for i = 1, 2, 3.

The statement about bootstrap estimate of variance follows from Lemma 4.4.2 and the
definitions of bootstrap variance in the form of equation (4.22).

Proof of Theorem 4.2.1

The proof of the main theorem follows from the lemma of Section 4.4 and Theorem 4.2.2.
We have

√
n-consistent bootstrap estimators, T̂bi(R) (for i = 1, 2, 3) of T̂G(R) and consistent
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estimators, σ̂2
bi(R) (for i = 1, 2) of σ2(R). Also from Theorem 1 of [23], we have, for subgraphs

R1, . . . , Rk of Gn,

√
n
((
T̂G(R1), . . . , T̂G(Rk)

)
−
(
P̃ (R1), . . . , P̃ (Rk)

))
w→ N(0,Σ(R))

So, we can combine the result from Theorem 4.2.2 with the above theorem, using Slutsky
and convergence of types theorem, to get the symptomatic normality behavior of T̂bi(R). As
n → ∞, λn → ∞ and under conditions of Lemma 4.3.1, Lemma 4.7.1 and Lemma 4.3.2, if

we define, Tbi(R) =
(
T̂bi(R1), . . . , T̂bi(Rk)

)
and P(R) =

(
P̃ (R1), . . . , P̃ (Rk)

)
√
n
(

(Tbi(R)−P(R)) Σ̂
−1/2
bi (R) (Tbi(R)−P(R))

)
w→ N(0, I) for i = 1, 2, 3

where, [Σbi]st = σ̂bi(Rs, Rt), s, t = 1, . . . , k and if Rs = Rt = R, σbi(Rs, Rt) = σ̂2
bi(R) for

i = 1, 2.

4.5 Simulation Results

We apply three (the two described and the snowball sampling variant given in Appendix)
representative bootstrap subsampling schemes for simulated datasets to find out their per-
formances. We generate data from two different simulation models. Both models are special
cases of the nonparametric model described in [22]. The two models that we consider are -

• Stochastic block model

• Preferential attachment model

For each of the models, we try to find estimate of the count statistics features and their
confidence intervals through bootstrap subsampling. The features that we consider are
generalized (k, l)-wheels, triangles and a smooth function of them, transitivity.

Count Statistics

The main class of acyclic features we consider are generalized (k, l)-wheels.

Definition 4.5.1 (Wheels). A (k, l)-wheel is an acyclic graph with kl+1 vertices and kl edges
isomorphic to the graph with edges {(1, 2), . . . , (k, k+1) (1, k+2), . . . , (2k, 2k+1) . . . , (1, (l−
1)k + 2), . . . , (lk, lk + 1)}.

In other words a (k, l)-wheel is a subgraph R, such that it contains

i) A “hub” vertex

ii) l spokes from hub
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iii) Each spoke has k connected vertices.

Edges, ‘V’, ‘W’ are all examples of (k, l)-wheels. An edge is a (1, 1)-wheel, a ‘V’ is a (1, 2)-
wheel and a ‘W’ is a (2, 2)-wheel.

Definition 4.5.2 (Generalized Wheels). A generalized (k, l)-wheel, where k = (k1, . . . , kt),
l = (l1, . . . , lt) are vectors and the kj’s are distinct integers, is the union R1∪ . . .∪Rt, where
Rj is a (kj, lj)-wheel, j = 1, . . . , t and the wheels R1, . . . , Rt share a common hub but all their
spokes are disjoint.

A (k, l)-wheel has a total of p =
∑

j kjlj + 1 vertices and
∑

j kjlj edges. The following
picture is an example of ((2, 1, 1), (1, 1, 1))-wheel and it is an union of two ‘V’s, where the
common vertex is the hub of one ‘V’ and leaf of the other ‘V’.

In these simulations, we consider counts of simple (k, l)-wheels such as (1, 2) and (1, 3).
We also consider the count of the cyclic pattern such as triangle and quadrilaterals or 4-cycles.
We consider a smooth function of counts of triangle and ‘V’s, known as transitivity, TTr,
defined as

TTr =
P̂ (R1)

P̂ (R2) + P̂ (R2)

where, R1 is a triangle or a 3-cycle and R2 is a ‘V’ or a (1, 2)-wheel.

Stochastic Block Model

Let w correspond to a K-block model defined by parameters θ = (π, ρn, S), where πa is the
probability of a node being assigned to block a as before, and

Fab = P(Aij = 1|i ∈ a, j ∈ b) = ρnSab, 1 ≤ a, b ≤ K.

and the probability of node i to be assigned to block a to be πa (a = 1, . . . , K).
We consider a stochastic block model with K = 2. We consider the parameter matrix

F = λ̃F (1) + (1 − λ̃)F (2), where, F
(1)
2×2 = Diag(0.0525, 0.0975) and F

(2)
2×2 = 0.015J2, where,

J2 is a 2 × 2 matrix of all 1’s. So, we get ρn = πTFπ. We now, vary λ̃ to get different
combinations of F as well as ρn.

In the following figures, we try to see the behavior of mean and variances of the count
statistics, as we vary λn and n for the model. In Figure 4.1(a), we compare the mean
and variance of the normalized count statistic, T̂G(R), where, R is (1, 2)-wheel. We find
the bootstrap estimator T̃bi(R) for all three bootstrap schemes - i = 1, 2, 3 and we also
find the corresponding estimates of variance by bootstrap, σ̂2

bi(R), for all three bootstrap
schemes - i = 1, 2, 3. We then plot the plot the estimator T̃bi(R) along with the asymptotic
95% confidence interval using the asymptotic normality result of Theorem 4.2.1 and the
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bootstrap estimates of variance σ̂2
bi(R). In Figure 4.1(b) we have a similar plot, but instead

of TG(R), we use the statistic TTr. We find the bootstrap estimate of TTr in the form,

T̂ bTr =
T̂b(R1)

T̂b(R2) + T̂b(R2)

where, T̂b is the bootstrap estimate of count statistic TG(R) and R1 is a triangle or a 3-cycle
and R2 is a ‘V’ or a (1, 2)-wheel. The bootstrap estimate of asymptotic variance of T̂ bTr
is obtained from the bootstrap estimates of σ̂2

b (R1), σ̂2
b (R2) and σ̂b(R1, R2) by using Delta

method and using the Theorem 4.2.1.

(a) (b)

Figure 4.1: For n = 500, we vary average degree (λn) and (a) Plot estimated normalized
(1, 2)-wheel count (b) Plot estimated Transitivity and their 95% Confidence Interval (CI),
where, CI is estimated using bootstrap estimates of variance of the estimators. We use
different colors to indicate different bootstrap subsampling schemes.

In Figure 4.2, we see that the variance of the bootstrap estimates, arising solely from
bootstrap iterations and not from from model-based iterations, decrease, as we increase the
number of subsamples in the Unifrom Subsampling Scheme. In Figure 4.3, we compare the
variance of the bootstrap estimates, based on bootstrap iterations for the three different
bootstrap schemes. We see that bootstrap variance is universally low for the Sampling-based
Scheme as we vary average degree, λn of the graph. However, the bootstrap variance of the
Non-uniform Snowball Sampling Scheme, decrease, as average degree λn increase. We expect
such a behavior, as, λn increase, the bootstrap subsample in Non-uniform Snowball Sampling
Scheme becomes large and stable. So, based on simulations, we recommend Sampling-based
Scheme for bootstrap.

In Figure 4.4, we try to see the behavior of mean and variances of the count statistics,
(1, 3)-wheels and 4-cycles. We use only Sampling-based Scheme for bootstrap in this case.
Like in Figure 4.1, we plot the plot the estimator T̃b2(R) along with the asymptotic 95%
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Figure 4.2: For n = 500 and λn = 19.875, we vary the subsample size of the Uniform
subsampling scheme and plot the bootstrap variance of bootstrap estimators of Uniform
subsampling scheme.

(a) (b)

Figure 4.3: For n = 500, we vary average degree (λn) and plot (a) bootstrap variance of
estimated normalized (1, 2)-wheel count (b) bootstrap variance of normalized (1,3)-wheel
count.We use different colors to indicate different bootstrap subsampling schemes.
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confidence interval using the asymptotic normality result of Theorem 4.2.1 and the bootstrap
estimates of variance σ̂2

b2(R), for R as (1, 3)-wheel in Figure 4.4(a) and or R as 4-cycle in
Figure 4.4(b).

(a) (b)

Figure 4.4: For n = 500, we vary average degree (λn) and (a) Plot estimated normalized
(1, 3)-wheel count (b) Plot estimated normalized 4-cycle count and their 95% Confidence
Interval (CI), where, CI is estimated using bootstrap estimates of variance of the estimators.
We use only Sampling-based bootstrap scheme.

Preferential Attachement Model

In Preferential Attachement Model, given k initial vertices, k + 1th vertex attach to one of
the preceding k vertices with probability proportional to degree. Now, we have degree of
vertex v defined as Dv and D̄ = 1

n

∑
v=1Dv. Also, we have,

τ(v) ' Dv

D̄

So, following Eq. (5.2), we have the probability of edge formation as

w(u, v) =
τ(u)

T (u)
1(u ≤ v) +

τ(v)

T ′(u)
1(v ≤ u)

where, T (u) =
∫ 1

u
τ(s)ds and T ′(v) = 1− T (v) and

τ(u) =

∫ 1

0

w(u, v)dv

So, the preferential attachment model can be defined by the following formula on w

w(u, v) =
τ(u)∫ 1

u
τ(s)ds

1(u ≤ v) +
τ(v)∫ 1

v
τ(s)ds

1(v ≤ u)
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Thus, for

w(u, v) = (1− u)−1/2(1− v)−1/2

we have,

τ(v) = c(1− v)−1/2

which is equivalent to power law of degree distribution F ≡ τ−1.
In the following figure, we try to see the behavior of mean and variances of the count

statistics, as we vary λn for the model. In Figure 4.5(a), we compare the mean and variance
of the normalized count statistic, T̂G(R), where, R is (1, 2)-wheel. We find the bootstrap
estimator T̃bi(R) for all three bootstrap schemes - i = 1, 2, 3 and we also find the correspond-
ing estimates of variance by bootstrap, σ̂2

bi(R), for all three bootstrap schemes - i = 1, 2, 3.
We then plot the plot the estimator T̃bi(R) along with the asymptotic 95% confidence inter-
val using the asymptotic normality result of Theorem 4.2.1 and the bootstrap estimates of
variance σ̂2

bi(R). In Figure 4.1(b) we have a similar plot, but instead of TG(R), we use the
statistic TTr. We find the bootstrap estimate of TTr and the bootstrap estimate of asymptotic
variance of T̂ bTr is obtained from the bootstrap estimates of σ̂2

b (R1), σ̂2
b (R2) and σ̂b(R1, R2)

by using Delta method and using the Theorem 4.2.1.

(a) (b)

Figure 4.5: For n = 500, we vary average degree (λn) and (a) Plot estimated normalized
(1, 2)-wheel count (b) Plot estimated Transitivity and their 95% Confidence Interval (CI),
where, CI is estimated using bootstrap estimates of variance of the estimators. We use
different colors to indicate different bootstrap subsampling schemes.

Comparison Between Stochastic Block Model and Preferential
Attachment Model

We simulate networks from both stochastic block model and preferential attachment model
and then, we try to compare the distribution of a statistic of the graph for two different
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networks. As a statistic, we use transitivity here. In Figure 4.6, compare the bootstrap
estimated mean and variance of transitivity of the networks simulated from the two different
models. We keep the average degree, λn, of the two simulated networks same and then, we

Figure 4.6: For n = 500, we vary λn and we plot estimated Transitivity and their 95%
Confidence Interval (CI), where, CI is estimated using bootstrap estimates of variance of
the estimators. We use different colors to indicate different models from which networks are
generated.

try to get the asymptotic distribution of the transitivity statistic for the two cases for each
λn. We see here that, for low average degree, we can not statistically distinguish between the
transitivity of networks generated from two different models, but, they become statistically
distinguishable as average degree, λn, increases.

4.6 Real Data Examples

Social networks recently has become quite large after the introduction of social networking
sites. We consider two different social networks as a platform for our experiments. The
first one, High School Romantic Relations data (HS) is a small social network, whereas the
second one, Facebook College Social Network (FB) has greater number of nodes and links.
The Facebook data was presented in [155]. In this dataset, the Facebook social network of
different colleges are represented. In a network, the nodes are people of the colleges and a
link represents online friendship between the nodes. The High School data was presented in
[14]. In this network, each student is a node and a link between students indicate that they
had romantic relations.

High School Network

In this application, we try to quantitatively verify some of the hypothesis mentioned by the
authors in the paper [14] when presenting the data. The network here is formed by students
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of Jefferson High school as nodes and if two students have romantic relations then there
exists a link between those two nodes. In the paper, [14], where the data was presented,
an observation was made about the dearth of short cycles in the network. Our application
here is trying to answer the question whether the absence of short cycles in this graph is
significant or not. We consider a very simple model for the data.

We consider the data has been generated from two different models -

(a) Stochastic block model with two blocks (Male and Female) and the connection proba-
bility matrix is given by

P =

(
P̂11 P̂12

P̂12 P̂22

)
where, P̂ab = Average number of edges between blocksa and b in the network, where,
a, b = 1, 2 are the two blocks with Male = 1 and Female = 2. In this network, we have
P̂11 = 0, P̂12 = 0.0058 and P̂22 = 0.000025. The probability of belonging to the two
blocks are (0.497, 0.503).

(b) Preferential attachment model with ρ = λn
n

, where, λn = Average degree of the network
= 1.66 and n is the number of nodes.

Now, for these two simple models, we can theoretically find the normalized count of small
cycles. Then, we can perform a hypothesis test to find out whether the number of small
cycles we see in this network is significantly small or not. We use the results of Theorem
1 to form the asymptotic test. The results are given in Table 4.1. We see in the results
that, according to the two simple models, it is extremely unlikely for 3-cycles and 4-cycles
to occur in the graph. In fact, the original network has too many 4-cycles short cycles not
too few. This is an interesting observation coming out of our simple exploratory analysis.
So, our simple models do not capture the probabilistic mechanism of the original network
correctly and we need to analyze the short cycles in the network more closely to understand
their formation.

Subgraph Normalized Count Standard Deviation Count (SBM) Count (PFA)
(1,2)-wheel 2.27 0.17 1.01 2.97

3-cycle 1.31 0.1 0.01 1.04
4-cycle 9.47 3.16 0.63 3.06

Table 4.1: The normalized subgraph counts, their standard deviation and the expected
counts from the stochastic block model (SBM) and preferential attachment model (PFA) for
the whole high school network.

Note that, this is a very small and sparse network. For this network, the use of Theorem
2 from [23] would have sufficed, but we give the example as an example of the use of count



CHAPTER 4. SUBSAMPLING BOOTSTRAP OF COUNT FEATURES OF
NETWORKS 95

statistics and their quantitative behavior. Here in the paper [14] permutation tests were
used. We use asymptotic Gaussian tests and we can directly answer the questions without
the possible awkwardness of permutation tests.

Facebook Network

In this application, we try to quantitatively analyze the behavior of some of the known
descriptive statistics for Facebook collegiate networks. The networks were presented in the
paper by Traud et.al. (2011) [155]. The network is formed by Facebook users acting as nodes
and if two Facebook users are “friends” there is an edge between the corresponding nodes.
Along with the network structure, we also have the data on covariates of the nodes. Each
node has covariates: gender, class year, and data fields that represent (using anonymous
numerical identifiers) high school, major, and dormitory residence. We try to answer two
very basic questions quantitatively for these networks -

1. Can the node covariates act as cluster identifiers?

2. Can two college networks be distinguishable in terms of some basic descriptive statis-
tics?

In order to address the first question, we consider the network of a specific college (Caltech).
We consider the covariates class year, major and dormitory residence as our covariates of
interest. Note that each of these covariates are district covariates. We take the induced
network created by levels of each of these covariates and try to see if those networks have
different clustering properties. For example, consider class year and major as the covariates
of interest. We consider the nodes belonging two different class years and find their induced
network from the whole collegiate network. Similarly, we consider the nodes belonging two
different majors and find their induced network from the whole collegiate network. Now, we
have two different networks, one of which has nodes coming exclusively from two different
class years and another has nodes coming exclusively from two different majors. We now
try to find which of two networks is more “clustered” by comparing transitivity of the two
networks. We can repeat the same exercise for any two covariates and choosing a subset of
their levels.

The second question can also be answered in the similar spirit as the first one. We
consider the full collegiate network of two different colleges (Caltech and Princeton). Then,
we try to compare the mean degree and transitivity of these two collegiate networks.

These comparisons could in principle be possible using the results given in Bickel et. al.
(2011) [23], but computationally intractable. Using bootstrap estimators, we can estimate
the variance of the estimators and thus perform hypothesis testing in reasonable time.

In Tables 4.6, 4.3 and 4.4, we present an excerpt of the result of our analysis and the
answer the both the questions. The results indicate that some conclusions in [155] are
questionable.
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Class Year(CY) Dormitory(DM) Major(MJ)
Estimated Transitivity 0.15 0.22 0.12

Table 4.2: Transitivity of induced networks formed by considering only two levels of a specific
covariate of a specific collegiate network.

Difference CY and DM DM and MJ
Estimated 0.07 0.1

Estimated SD 0.05 0.035

Table 4.3: The Difference between Class Year and Dorm is not significant but difference
between Dorm and Major is significant by asymptotic normal test at 5% level. The data
was presented in Traud et. al. (2011) SIAM Review.

Network 1 Network 2
Estimated Transitivity 0.29 0.16
Estimated Difference 0.13

Estimated Difference SD 0.11

Table 4.4: The Difference of transitivity between two networks is not significant by asymp-
totic normal test at 5% level. Therefore Network 1 can not be said to be more ‘clusterable’.
The data was presented in Traud et. al. (2011) SIAM Review.

Now, without finding the bootstrap estimate of count statistics and its variance, finding
the asymptotic distribution of these count statistics will not have been possible. So, now,
with the help of the bootstrap based estimates we can perform hypothesis testing on the
count statistics and provide their estimates of their asymptotic distribution.

4.7 Conclusion and Future Works

In this chapter, we have considered three known subsampling schemes of networks and tried
to show situations, where, they are applicable to find the asymptotic distribution of certain
local statistics of the network. We consider the count of fixed subgraphs of the network
as local statistics and call them count statistics. These have also been referred to as motif
counts. We showed that the bootstrap subsample estimates of the count statistics and their
smooth functions have asymptotic normal distribution. We proposed bootstrap schemes
by which we could efficiently compute the asymptotic mean and variance of these count
statistics. We also showed that the Sampling based bootstrap subsampling scheme seemed
most stable and we recommend that scheme for use as bootstrap subsampling scheme.
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We also use the estimated asymptotic mean and variances of the count statistics to
construct hypothesis tests. These hypothesis tests can serve several purposes, such as

(a) Distinguish between the count statistics of two different networks

(b) Distinguish between parts of same network

(b) Testing whether a network has been generated from a specified model, by comparing
the empirical and population version of the count statistic.

(c) Testing how close parameters of two different network models can become.

All of these different qualitative tests can be made quantitative by using hypothesis tests
using the count statistics. We showed during simulations, that transitivity of networks
from stochastic block models becomes easier to differentiate from transitivity of preferential
attachment model as average degree grows. Similarly, in real networks, such as Facebook
collegiate network, we show that certain covariate based subnetworks have more ‘cluster’
structure than others. We were also able to show that even in large networks conclusions
based on means only as opposed to confidence statements using variances could be unreliable.

Future Works

Here we used bootstrap subsampling scheme to estimate local statistics only. But, one
natural generalization can be use of bootstrap scheme to get asymptotic distribution of global
statistics - such as graph cut, conductance, functionals of graphon (non-integral fundtionals)
and such parameters. Sample and bootstrap estimates of such parameters are sometimes
obtainable, but their theoretical properties are still unknown. It would be a nice future
endeavor to extend bootstrap subsampling scheme to estimate such global characteristics of
the networks.

Appendix

A1. Variance of T̂b1(R)

The variance of T b(R) is

Varb

[
1(

m
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H)
∣∣∣G] =

(
1(

m
p

)
|Iso(R)|

)2

Varb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H)
∣∣∣G]
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Varb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H)
∣∣∣G] = Eb

( ∑
S⊆Km,S∼=R

1(S ⊆ H)

)2 ∣∣∣G


−

(
Eb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H)
∣∣∣G])2

Eb

( ∑
S⊆Km,S∼=R

1(S ⊆ H)

)2 ∣∣∣G
 = Eb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H)
∣∣∣G]

+ Eb

 ∑
S,T⊆Km

S,T∼=R,S 6=T

1(S, T ⊆ H)
∣∣∣G


= I + II (Suppose)

Thus,

I =
∑

S⊆Kn,S∼=R

(
n−p
m−p

)(
n
m

) 1(S ⊆ G)

II = Eb

 ∑
S,T⊆Km

S,T∼=R,S 6=T

1(S, T ⊆ H)
∣∣∣G


Now, a host of subgraphs can be formed by the intersection of two copies of R. The
number of intersected vertices can range from 0 to p − 1. Let us consider, that for number
of vertices in intersection as k (k = 1, . . . , (p− 1)), the number of graph structures that can
be formed is gk and we represent that graph structure by Wjk, where, j = 1, . . . , gk. Thus,

II =

p−1∑
k=0

gk∑
j=1

∑
S⊆Kn,S∼=Wjk

(
n−(2p−k)
m−(2p−k)

)(
n
m

) 1(S ⊆ G)

So,

Eb

( ∑
S⊆Km,S∼=R

1(S ⊆ H)

)2 ∣∣∣G
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∑
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(
n−p
m−p

)(
n
m

) 1(S ⊆ G)

+

p−1∑
k=0

gk∑
j=1

∑
S⊆Kn,S∼=Wjk

(
n−(2p−k)
m−(2p−k)

)(
n
m

) 1(S ⊆ G)
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Varb
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A2. Degree-based non-uniform sampling bootstrap

In the non-uniform subsampling bootstrap scheme at each bootstrap iteration a subset of
vertices of the full network G is selected by looking at the neighborhood graph of a ran-
domly selected vertex and the graph induced by the selected subset is the subsample we
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consider. This is a vertex subsampling scheme and is a variant of common snowball sam-
pling scheme. The full bootstrap procedure given the neighborhood size, d and number of
bootstrap iterates, B, is as follows – -

1. For bth iterate of the bootstrap, b = 1, . . . , B,

2. Fix d = Depth of R.

3. Choose i ∈ V (G), as the central vertex. Form the graph H as the neighborhood graph
with i as root and depth d. Let us denote |V (H)| by m.

4. Calculate Tb2(R), given by formula

Tb3(R) =
n

m
(
n
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H, i ∈ S) (4.27)

The bootstrap estimate of TG(R) is given by

T̃b3(R) =
1

B

B∑
b=1

Tb3(R) (4.28)

In this sampling, all subgraphs H do not have the same probability of being sampled.
Actually some subgraphs may have zero probability of being selected. In uniform sampling
bootstrap, we were considering all possible subgraphs with vertex count equal to m. In
degree-based bootstrap we consider all subgraph H, which are d-neighborhood graph a i ∈
V (G). But, unlike all possible subgraphs with vertex count equal to m, all d-neighborhood
graph are not distinct and so we have considered that there are nR of them, where, nR ≤ n.

Lemma 4.7.1. The estimator T̃b3(R) has the following properties

(i) Given G, T̃b3(R) is an unbiased estimate of TG(R).

(ii) As b→∞,
√
n
(
ρ−eT̃b3(R)− ρ−eT̂G(R)

)
P→ 0

Proof. (i) Now, let us try to try to find the expectation of T b(R) under the sampling
distribution conditional on the given data G.

Eb

[
n

m
(
n
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H, i ∈ S)
∣∣∣G]

=
n

m
(
n
p

)
|Iso(R)|

E

[ ∑
S⊆Km,S∼=R

1(S ⊆ H, i ∈ S)
∣∣∣G]

=
n

m
(
n
p

)
|Iso(R)|

∑
H⊆G

P(H)
∑

S⊆Km,S∼=R

1(S ⊆ H, i ∈ S)
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Then, RHS is

Eb

[
n

m
(
n
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H, i ∈ S)
∣∣∣G]

=
n

m
(
n
p

)
|Iso(R)|

∑
H⊆G

P(H)
∑

S⊆Km,S∼=R

1(S ⊆ H, i ∈ S)

=
n

m
(
n
p

)
|Iso(R)|

∑
H⊆Gd

1

n

∑
S⊆Km,S∼=R

1(S ⊆ H, i ∈ S)

=
n

m
(
n
p

)
|Iso(R)|

1

n

∑
S⊆Kn,S∼=R

∑
H⊆Gd,H⊇S

1(S ⊆ G, i ∈ S)

=
n

m
(
n
p

)
|Iso(R)|

m

n

∑
S⊆Kn,S∼=R

1(S ⊆ G)

=
1(

n
p

)
|Iso(R)|

∑
S⊆Kn,S∼=R

1(S ⊆ G)

So, we have,
Eb[Tb3(R)|G] = TG(R)

(ii) Here, we use properties of the underlying model. Let us condition on ξ = {ξ1, . . . , ξn}
and the whole graph G separately. Now, conditioning on ξ, we get the main term of
TG(R) to be,

E(P̂ (R)|ξ) =
1(

n
p

)
|Iso(R)|

∑
S⊆Kn,S∼=R

 ∏
(i,j)∈E(S)

w(ξi, ξj)

+O(n−1λn). (4.29)

We shall use the same decomposition as used in [23] of (ρ−en T̃b3(R)− P̃ (R)) into

(ρ−en T̃b3(R)− P̃ (R)) = ρ−en

(
T̃b3 − Eb[Tb3(R)|G]

)
+ρ−en (TG(R)− E(TG(R)|ξ))

+E(P̂ (R)|ξ)ρ−en − P̃ (R)

Let us define,

U3 = E(P̂ (R)|ξ)ρ−en − P̃ (R)

U2 = ρ−en (TG(R)− E(TG(R)|ξ))

U1 = ρ−en

(
T̃b3 − Eb[Tb3(R)|G]

)
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Now, it is easy to see that

Var(ρ−eT̃b3(R)) = E(Var(ρ−eT̃b3(R)|G) + Var(E(ρ−eT̃b3(R)|G))

= E(Var(ρ−eT̃b2(R)− TG(R)|G) + Var(TG(R))

= E(Var(U1|G)) + E(Var(TG(R)|ξ)) + Var(E(TG(R)|ξ))

= E(Var(U1|G)) + E(Var(U2|ξ)) + Var(U3)

We shall try to see the behavior of Var(U1|G) = Varb[ρ
−eT̃b3(R)|G]. Now,

Varb[ρ
−eT̃b3(R)|G] = ρ−2e 1

B2

(
B∑
b=1

Varb[Tb3(R)] +
B∑

b,b′=1,b 6=b′
Covb(Tb3(R), Tb′3(R))

)

Now, the formula for Varb[Tb3(R)] is given in Appendix A3. Note that, if E(Hb) ∩
E(Hb′) = φ, then, Covb(Tb3(R), Tb′3(R)) = 0. The number of pairs such that E(Hb) ∩
E(Hb′) 6= φ is depends on the density of the nodes and size of R. If we have λ|V (R)| and
if λ|V (R)| = o(n) and also, the number of edges for the leading term in the covariance
is equal to or more than 2e. So,

E(Var(U1|G)) = o(n−1)

Now, by proof of Theorem 1 in [23], we have,

Var(U2) = o(n−1)

Var(U3) = o(n−1)

So, we get, Var(ρ−2eT̃b3(R)) = o(n−1). Since, we already know
√
n-consistency of(

ρ−en TG(R)− P̃ (R))
)

, this proves the
√
n-consistency of ρ−en T̃b3(R) to ρ−en TG(R).

The variance of T̃b2(R) given G can also be calculated and is given in the Appendix.

A3. Variance of T̂b2(R)

The variance of T b(R) is

Varb

[
nR(

n
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)
∣∣∣G]

=

(
nR(

n
p

)
|Iso(R)|

)2

Varb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)
∣∣∣G]
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Varb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)
∣∣∣G]

= Eb

( ∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)

)2 ∣∣∣G


−

(
Eb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)
∣∣∣G])2

Eb

( ∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)

)2 ∣∣∣G


= Eb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)
∣∣∣G]

−Eb

 ∑
S,T⊆Km

S,T∼=R,S 6=T

1(S, T ⊆ H, i central vertex of S, T )
∣∣∣G


= I − II (Suppose)

Thus,

I =
∑

S⊆Kn,S∼=R

1

nR
1(S ⊆ G)

II = Eb

 ∑
S,T⊆Km

S,T∼=R,S 6=T

1(S, T ⊆ H, i central vertex of S, T )
∣∣∣G


Now, a host of subgraphs can be formed by the intersection of two copies of R, having
the same central vertex i. The number of intersected vertices can range from 1 to d, the
depth of the graph R. Let us consider, that for number of vertices in intersection as k
(k = 1, . . . , (p − 1)), the number of graph structures that can be formed is dk and we
represent that graph structure by Rjk, where, j = 1, . . . , dk. Thus,

II =
d∑

k=1

dk∑
j=1

∑
S⊆Kn,S∼=Rjk

1

nRjk

1(S ⊆ G)
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So,

Eb

( ∑
S⊆Km,S∼=R

1(S ⊆ H)

)2 ∣∣∣G


=
∑

S⊆Kn,S∼=R

1

nR
1(S ⊆ G) +

d∑
k=1

dk∑
j=1

∑
S⊆Kn,S∼=Rjk

1

nRjk

1(S ⊆ G)

Varb

[ ∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)
∣∣∣G] =

∑
S⊆Kn,S∼=R

1

nR
1(S ⊆ G)

+
d∑

k=1

dk∑
j=1

∑
S⊆Kn,S∼=Rjk

1

nRjk

1(S ⊆ G)

−

( ∑
S⊆Kn,S∼=R

1

nH
1(S ⊆ G)

)2

Varb

[
nR(

n
p

)
|Iso(R)|

∑
S⊆Km,S∼=R

1(S ⊆ H, i central vertex of S)
∣∣∣G]

=

(
nR(

n
p

)
|Iso(R)|

)2 [ ∑
S⊆Kn,S∼=R

1

nR
1(S ⊆ G)

]

−

(
nR(

n
p

)
|Iso(R)|

)2
( ∑

S⊆Kn,S∼=R

1

nR
1(S ⊆ G)

)2


+

(
nR(

n
p

)
|Iso(R)|

)2
 d∑
k=1

dk∑
j=1

∑
S⊆Kn,S∼=Rjk

1

nRjk

1(S ⊆ G)


So,

Varb
[
T b(R)

]
=

(
nR(

n
p

)
|Iso(R)|

)2 [ ∑
S⊆Kn,S∼=R

1

nR
1(S ⊆ G)

]

−

(
nR(

n
p

)
|Iso(R)|

)2
( ∑

S⊆Kn,S∼=R

1

nR
1(S ⊆ G)

)2


+

(
nR(

n
p

)
|Iso(R)|

)2
 d∑
k=1

dk∑
j=1

∑
S⊆Kn,S∼=Rjk

1

nRjk

1(S ⊆ G)


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Chapter 5

Community Detection in Networks
using Graph Distance

5.1 Introduction

The study of networks has received increased attention recently not only from the social
sciences and statistics but also from physicists, computer scientists and mathematicians.
With the information boom, a huge number of network data sets have come into prominence.
In biology - gene transcription networks, protein-protein interaction network, in social media
- Facebook, Twitter, Linkedin networks, information networks arising in connection with text
mining, technological networks such as the Internet, ecological and epidemiological networks
and many others have appeared. Although the study of networks has a long history in
physics, social sciences and mathematics literature and informal methods of analysis have
arisen in many fields of application, statistical inference on network models as opposed to
descriptive statistics, empirical modeling and some Bayesian approaches [128] [98] [79] has
not been addressed extensively in the literature. A mathematical and systematic study of
statistical inference on network models has only started in recent years.

One of the fundamental questions in analysis of such data is detecting and modeling
community structure within the network. A lot of algorithmic approaches to community
detection have been proposed, particularly in the physics and computer science literature
[130] [109] [63]. In terms of community detection, there are two different goals that researchers
have tried to pursue -

• Algorithmic Goal: Identify the community each vertex of the network belongs to.

• Theoretical Goal: If the network is generated by an underlying generative model,
then, what is the probability of success for the algorithm.
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Algorithms

Several popular algorithms for community detection have been proposed in physics, computer
science and statistics literature. Most of these algorithms show decent performance in com-
munity detection for selected real-world and simulated networks [102] and have polynomial
time complexity. We shall briefly mention some of these algorithms.

1. Modularity maximizing methods [131]. One of the most popular method of community
detection. The problem is NP hard but spectral relaxations of polynomial complexity
exist [129].

2. Hierarchical clustering techniques [43].

3. Spectral clustering based methods [116] [44], [140] [40]. These methods are also very
popular. Most of the time these methods have linear or polynomial running times.
Mostly shown to work for dense graphs only.

4. Profile likelihood maximization [22]. The problem is NP hard, but heuristic algorithms
have been proposed, which have good performance for dense graphs.

5. Stochastic Model based methods:

• MCMC based likelihood maximization by Gibbs Sampling, the cavity method and
belief propagation based on stochastic block model. [50]

• Variational Likelihood Maximization based on stochastic block model [37], [21].
Polynomial running time but appears to work only for dense graphs.

• Pseudo-likelihood Maximization [41]. Fast method which works well for both dense
and sparse graphs. But the method is not fully justified.

• Model-based:

(a) Mixed Membership Block Model [3]. Iterative method and works for dense
graphs. The algorithm for this model is based on variational approximation
of the maximum likelihood estimation.

(b) Degree-corrected block model [91]: Incorporates degree inhomogeneity in the
model. Algorithms based on maximum likelihood and profile likelihood esti-
mation has been developed.

(c) Overlapping stochastic block model [104]: Stochastic block model where each
vertex can lie within more than one community. The algorithm for this model
is based on variational approximation of the maximum likelihood estimation.

(d) Mixed configurations model [9]: Another extension to degree-corrected stochas-
tic block model, where, the model is a mixture of configurations model
(degree-corrected block model with one block) and each vertex can lie in
more than one community. The algorithm for this model is based on the EM
algorithm and maximum likelihood estimation.
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6. Model based clustering [75].

Theoretical Goal

The stochastic block model (SBM) is perhaps the most commonly used and best studied
model for community detection. An SBM with Q blocks states that each node belongs
to a community c = (c1, . . . , cn) ∈ {1, . . . , Q} which are drawn independently from the
multinomial distribution with parameter π = (π1, . . . , πQ), where πi > 0 for all i, and Q is
the number of communities, assumed known. Conditional on the labels, the edge variables
Aij for i < j are independent Bernoulli variables with

E[Aij|c] = Pcicj , (5.1)

where P = [Pab] and K = [Kab] are Q × Q symmetric matrix. P can be considered the
connection probability matrix, where as K is the kernel matrix for the connection. So, we
have Pab ≤ 1 for all a, b = 1, . . . , Q, P1 ≤ 1 and 1TP ≤ 1 element-wise. The network is
undirected, so Aji = Aij, and Aii = 0 (no self-loops). The problem of community detection
is then to infer the node labels c from A. Thus we are not really interested in estimation
or inference on parameters π and P , but, rather we are interested in estimating c. But, it
does not mean the two problems are mutually exclusive. In reality, the inferential problem
and the community detection problem are quite interlinked.

The theoretical results of community detection for stochastic block models can be divided
into 3 different regimes -

(a)
E(degree)

logn
→∞, equivalent to, P[there exists an isolated point]→ 0.

(b) E(degree) → ∞, which means existence of giant component, but also presence of
isolated small components from Theorem 5.2.7.

(c) If E(degree) = O(1), phase boundaries exist, below which community identification is
not possible.

Note:

(a) All of the above mentioned algorithms perform satisfactorily on regime (a).

(b) None of the above algorithms have been shown to have near perfect probability of
success under either regime (b) or (c), for the full parameter space. Some algorithms
like [44] [22] [40] [41] are shown to partially work in the sparse setting. Some very
recent algorithms include [100] [133].

In this paper, we shall only concentrate on stochastic block models. In the future, we
shall try to extend our method and results for more general models.
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Contributions and Outline of the Chapter

In real life networks, most of the time we seem to see moderately sparse networks [107] [111]
[110]. Most of the large or small complex networks we see seem to fall in the (b) regime of
Section 5.1 we describe before, that is, E(degree) → ∞. We propose a simple algorithm,
which performs well in practice in both regimes (b) and (c) and has some theoretical backing
If degree distribution can identify block parameters then classification using our method
should give reasonable result in practice.

Our algorithm is based on graph distance between vertices of the graph. We perform
spectral clustering based on the graph distance matrix of the graph. By looking at the
graph distance matrix instead of adjacency matrix for spectral clustering increases the per-
formance of the community detection, as the normalized distance between cluster centers
increases when we go from the adjacency matrix to the graph distance matrix. This helps in
community detection even for sparse matrices. We only show theoretical results for stochas-
tic block models. The theoretical proofs are quite intricate and involve careful coupling of
the stochastic block model with multi-type branching process to find asymptotic distribution
of the typical graph distances. Then, a careful analysis of the eigenvector of the asymptotic
graph distance matrix reveals the existence of separation needed for spectral clustering to
succeed. This method of analysis has been used for spectral clustering analysis using the
adjacency matrix also [149], but the analysis is simpler.

The rest of the chapter is organized as follows. We give a summary of the preliminary
results needed in Section 5.2. We present the algorithms in Section 5.3. We give an outline
of proof of theoretical guarantee of performance of the method and then the details in
Section 5.4. The numerical performance of the methods is demonstrated on a range of
simulated networks and on some real world networks in Section 5.5. Section 5.6 concludes
with discussion, and the Appendix contains some additional technical results.

5.2 Preliminaries

Let us suppose that we have a random graph Gn as the data. Let V (Gn) = {vi, . . . , vn}
denote the vertices of Gn and E(Gn) = {e1, . . . , em} denote the edges of Gn. So, the number
of vertices in Gn is |V (Gn)|= n and number of edges of Gn is |E(Gn)|= m. Let the adjacency
matrix of Gn be denoted by An×n. For the sake of notational simplicity, from here onwards
we shall denote Gn by G having n vertices unless specifically mentioned. We consider the
n vertices of G are clustered into Q different communities with each community having size
na, a = 1, . . . , Q and

∑
a na = n. In this paper, we are interested in the problem of vertex

community identification or graph partitioning. That means that we are interested in finding
which of the Q different community each vertex of G belongs to. However, the problem is an
unsupervised learning problem. So, we assume that the data is coming from an underlying
model and we try to verify how good ‘our’ community detection method works for that
model.



CHAPTER 5. COMMUNITY DETECTION IN NETWORKS USING GRAPH
DISTANCE 109

Model for Community Detection

As a model for community detection, we consider the stochastic block model. We shall
define the stochastic block model shortly, but, we first we shall introduce some more general
models, of which stochastic block model is a special case.

Bickel-Chen Model

The general non-parametric model, as described in Bickel, Chen and Levina (2011) [23], that
generates the random data network G can be defined by the following equation -

P(Aij = 1|ξi = u, ξj = v) = hn(u, v) = ρnw(u, v)1(w ≤ ρ−1
n ), (5.2)

where, w(u, v) ≥ 0, symmetric, 0 ≤ u, v ≤ 1, ρn → 0. For block models, the latent variable
for each vertex (ξ1, . . . , ξn) can be considered to be coming from a discrete and finite set.
Then, each element of that set can be considered to be inducing a partition in the vertex
set V (Gn). Thus, we get a model for vertex partitioning, where, the set of vertices can be
partitioned into finite number of disjoint classes, but however the partition to which each
vertex belongs to is the latent variable in the model and thus unknown. The main goal
becomes estimating this latent variable.

Inhomogeneous Random Graph Model

The inhomogeneous random graph model (IRGM) was introduced in Bollobás et. al. (2007)
[29]. Let S be a separable metric space equipped with a Borel probability measure µ. For most
cases S = (0, 1] with µ Lebesgue measure, that means a U(0, 1) distribution. The “kernel”
κ will be a symmetric non-negative function on S × S. For each n we have a deterministic
or random sequence x = (x1, . . . , xn) of points in S. Writing δx for the measure consisting
of a point mass of weight 1 at x, and

νn ≡
1

n

n∑
i=1

δxi

for the empirical distribution of x, it is assumed that νn converges in probability to µ as
n → ∞, with convergence in the usual space of probability measures on S. One example
where the convergence holds is the random case, where the xi are independent and identically
distributed on S with distribution µ convergence in probability holds by the law of large
numbers. Of course, we do not need (xn)n≥1 to be defined for every n, but only for an
infinite set of integers n. From here onwards, we shall only focus on this special case, where,

(x1, . . . , xn)
iid∼ µ.

Definition 5.2.1. A kernel κn on a ground space (S, µ) is a symmetric non-negative (Borel)
measurable function on S × S. κ is also continuous a.e. on S × S. By a kernel on a vertex
space (S, µ, (xn)n≥1) we mean a kernel on (S, µ).
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Given the (random) sequence (x1, . . . , xn), we let G(n, κ) be the random graph G(n, (pij))
with

pij ≡ min{κ(xi, xj)/n, 1}. (5.3)

In other words, GV(n, κ) has n vertices {1, . . . , n} and, given x1, . . . , xn, an edge ij (with
i 6= j) exists with probability pij, independently of all other (unordered) pairs ij. Based on
the graph kernel we can also define an integral operator Tκ in the following way

Definition 5.2.2. The integral operator Tκ : L2(S) → L2(S) corresponding to G(n, κ),
is defined as

Tκf(x)(·) =

∫ 1

0

κ(x, y)f(y)dµ(y),

where, x ∈ S and any measurable function f ∈ L1(S).

The random graph G(n, κ) depends not only on κ but also on the choice of x1, . . . , xn.
The freedom of choice of xi in this model gives some more flexibility than Bickel-Chen model.
The asymptotic behavior of G(n, κ) depend very much on S and µ. Many of these key results
such as existence of giant component, typical distance, phase transition properties are proved
in [29]. We shall use these results on inhomogeneous random graphs in order to prove results
on graph distance for stochastic block models.

Here is further comparison of the Inhomogeneous random graph model (IRGM) with the
Bickel-Chen model (BCM), to understand their similarities and dissimilarities -

(a) In BCM, (ξ1, . . . , ξn)
iid∼ U(0, 1) are the latent variables associated with the vertices

(v1, . . . , vn) of random graph Gn. Similarly, in IRGM, (x1, . . . , xn) ∼ µ are the latent
variables associated with the vertices (v1, . . . , vn) of random graph Gn. Now, if in

IRGM, (x1, . . . , xn)
iid∼ µ then the latent variable structure of the two models become

equivalent.

(b) In BCM, the conditional probability of connection between two vertices given the value
of their latent variables is controlled by the kernel function hn(u, v). In IRGM, the
conditional probability of connection between two vertices given the value of their
latent variables is controlled by the kernel function κ(u,v)

n
.

(c) So, if hn(u, v) = κ(u, v)/n, S[(0, 1) and the underlying measure spaces are same and
the measure µ is a uniform measure on interval S = (0, 1), then, BCM and IRGM
generates graphs from the same distribution. In fact, as noted in [22], if S = R and µ
has a positive density with respect to Lebesgue measure, then the (limiting) IRGM is
equivalent to Bickel-Chen model with suitable hn.
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(d) For IRGM, let us define

λ ≡ ||Tκ||≡ sup
f∈L2(S),||f ||L2(S)=1

∫
S

∫
S
κ(u, v)f(u)f(v)dµ(u)dµ(v),

where, Tκ is the operator define in Definition 5.2.2 and ||·|| is the operator norm. In
BCM,

ρn ≡
∫ 1

0

∫ 1

0

hn(u, v)dudv.

If BCM and IRGM have same underlying measure spaces (S = (0, 1), µ = U(0, 1)) and
hn(u, v) = κ(u, v)/n and

Case 1: 1 is the principal eigenfunction of Tκ, then

nρn → λ

where, λ is as defined above.

Case 2: 1 is not the principal eigenfunction of Tκ, then

nρn ≤ λ

In case of BCM nρn is the natural scaling parameter for the random graph, since,
E[Number of Edges in Gn] = 1

2
nρn. In case of IRGM, λ is fixed. However, we shall see

that the limiting behavior of the graph distance between two vertices of the network be-
comes dependent on the parameter λ. So, the parameter λ still remains of importance. We
shall henceforth focus on IRGM, with parameter of importance being λ

Stochastic Block Model

The stochastic block model is perhaps the most commonly used and best studied model for
community detection. We continue with IRGM framework, so the graph is sparse.

Definition 5.2.3. A graph GQ(, (P,π)) generated from stochastic block model (SBM)
with Q blocks and parameters P ∈ (0, 1)Q×Q and π ∈ (0, 1)Q can be defined in following
way - each vertex of graph Gn from an SBM belongs to a community c = (c1, . . . , cn) ∈
{1, . . . , Q} which are drawn independently from the multinomial distribution with parameter
π = (π1, . . . , πQ), where πi > 0 for all i. Conditional on the labels, the edge variables Aij for
i < j are independent Bernoulli variables with

E[Aij|c] = Pcicj = min{
Kcicj

n
, 1}, (5.4)

where P = [Pab] and K = [Kab] are Q × Q symmetric matrices. P is known as the con-
nection probability matrix and K as the kernel matrix for the connection. So, we have
Pab ≤ 1 for all a, b = 1, . . . , Q, P1 ≤ 1 and 1TP ≤ 1 element-wise.
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The network is undirected, so Aji = Aij, and Aii = 0 (no self-loops). The problem of
community detection is then to infer the node labels c from A. Thus we are not really
interested in estimation or inference on parameters π and P , but, rather we are interested
in estimating c. But, it does not mean the two problems are mutually exclusive, in reality,
the inferential problem and the community detection problem are quite interlinked.

We can see that SBM is a special case of both Bickel-Chen model and IRGM. In IRGM, if

we consider S to be a finite set, (x1, . . . , xn) ∈ [Q]n ([Q] = {1, . . . , Q}) with xi
iid∼ Mult(n,π)

and kernel κ : [Q] → [Q] as κ(a, b) = Kab (a, b = 1, . . . , Q), then the resulting IRGM graph
follows stochastic block model. So, for SBM we can define an integral operator on [Q] with
measure {π1, . . . , πQ}.

Definition 5.2.4. The integral operator TK : `1(S)→ `1(S) corresponding to
GQ(n, (P,π)), is defined as

(TK(x))a =

Q∑
b=1

Kabπbxb, for a = 1, . . . , Q

where, x ∈ RQ.

The stochastic block model has deep connections with Multi-type branching process,
just as, Erodös-Rényi random graph model (ERRGM) has connections with the branching
process. Let us introduce branching process first.

Multi-type Branching Process

We shall try to link network formed by SBM with the tree network generated by multi-type
Galton-Watson branching process. In our case, the Multi-type branching process (MTBP)
has type space S = {1, . . . , Q}, where a particle of type a ∈ S is replaced in the next genera-
tion by a set of particles distributed as a Poisson process on S with intensity (Kabπb)

Q
b=1. We

denote this branching process, started with a single particle of type a, by BK,π(a). We write
BK,π for the same process with the type of the initial particle random, distributed according
to π.

Definition 5.2.5. (a) Define ρk(K, π; a) as the probability that the branching process
BK,π(a) has a total population of exactly k particles.

(b) Define ρ≥k(K, π; a) as the probability that the total population is at least k.

(c) Define ρ(K, π; a) as the probability that the branching process survives for eternity.

(d) Define,

ρk(K, π) ≡
Q∑
a=1

ρk(K, π; a)πa, ρ ≡ ρ(K, π) ≡
Q∑
a=1

ρ(K, π; a)πa (5.5)
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and define ρ≥k(K) analogously. Thus, ρ(K, π) is the survival probability of the
branching process BK,π given that its initial distribution is π

If the probability that a particle has infinitely many children is 0, then ρ(K, π; a) is equal
to ρ∞(a), the probability that the total population is infinite. As we shall see later, the
branching process BK,π(a) arises naturally when exploring a component of Gn starting at a
vertex of type a; this is directly analogous to the use of the single-type Poisson branching
process in the analysis of the Erdös-Rényi graph G(n, c/n).

Known Results for Stochastic Block Model

The performance of community detection algorithms depends on the parameters π and P .
We refer to Definition 5.2.3 for definition of stochastic block models. An important condition
that we usually put on parameter P is irreducibility.

Definition 5.2.6. A connection matrix P on a S = {1, . . . , Q} is reducible if there exists
A ⊂ S with 0 < |A|< Q such that P = 0 a.e. on A× (S − A); otherwise P is irreducible.
Thus P is irreducible if A ⊆ S and P = 0 a.e. on A× (S −A) implies |A|= 0 or |A|= Q.

So, the results on existence of giant components in [29] also apply for SBM. The following
theorem describes the result on existence of giant components.

Theorem 5.2.7 ([29]). Let us define operator TK as in definition 5.2.4,

(i) If ||TK ||≤ 1 (||·|| refer to operator norm), then the size of largest component is oP (n),
while if ||TK ||> 1, then the size of largest component is ΘP (n) whp.

(ii) If P is irreducible, then 1
n
(Size of largest component)→ πTρ, where, ρ ∈ [0, 1]Q is the

survival probability as defined in (5.5).

The theoretical results on community detection depend on the 3 different regime on which
the generative model is based on -

(a)
E(degree)

logn
→ ∞, equivalent to, P[there exists an isolated point] → 0. In this setting,

there are several algorithms, such as those described in Section 1, can identify correct
community with high probability under quite relaxed conditions on parameters P and
π. See [40] (Theorem 2 and 3), [140] (Theorem 3.1), [44] (Theorem 1).

(b) E(degree) → ∞, which means existence of giant component, but also presence of
isolated small components from Theorem 5.2.7. In this setting, algorithms proposed in
[44], [41] is proved to identify community labels that are highly correlated with original
community labels with high probability.

(c) If E(degree) = O(1), phase boundaries exist, below which community identification is
not possible. These results and rigorous proof are given in [125]. The results can be
summarized for 2-block model with parameters P11 = a, P12 = b, P22 = a as
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Theorem 5.2.8 ([125]). (i) If (a− b)2 < 2(a+ b) then probability model of SBM and
ERRGM with p = a+b

2n
are mutually contiguous. Moreover, if (a− b)2 < 2(a+ b),

there exists no consistent estimators of a and b.

(ii) If (a − b)2 > 2(a + b) then probability model of SBM and ERRGM with p = a+b
2n

are asymptotically orthogonal.

So, in the range (a− b)2 > 2(a + b), there should exists an algorithm which identifies
highly correct clustering with high probability at least within the giant components.

5.3 Algorithm

The algorithm we propose depend on the graph distance or geodesic distance between vertices
in a graph.

Definition 5.3.1. Graph distance or Geodesic distance between two vertices i and j
of graph G is given by the length of the shortest path between the vertices i and j, if they are
connected. Otherwise, the distance is infinite.

So, for any two vertices u, v ∈ V (G), graph distance, dg is defined by

dg(u, v) =

{
|V (e)|, if e is the shortest path connecting u and v
∞, u and v are not connected

For sake of numerical convenience, we shall replace∞ by a large number for value of dg(u, v),
when, u and v are not connected. The main steps of the algorithm can be described as follows

1. Find the graph distance matrix D = [dg(vi, vj)]
n
i,j=1 for a given network but with

distance upper bounded by k log n. Assign non-connected vertices an arbitrary high
value B.

2. Perform hierarchical clustering to identify the giant component GC of graph G. Let
nC = |V (GC)|.

3. Normalize the graph distance matrix on GC , DC by

D̄C = −
(
I − 1

nC
11T

)
(DC)2

(
I − 1

nC
11T

)
4. Perform eigenvalue decomposition on D̄C .

5. Consider the top Q eigenvectors of normalized distance matrix D̄C and W̃ be the n×Q
matrix formed by arranging the Q eigenvectors as columns in W̃. Perform Q-means
clustering on the rows W̃, that means, find an n×Q matrix C, which has Q distinct
rows and minimizes ||C− W̃||F .
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6. (Alternative to 5.) Perform Gaussian mixture model based clustering on the rows of W̃,
when there is an indication of highly-varying average degree between the communities.

7. Let ξ̂ : V 7→ [Q] be the block assignment function according to the clustering of the
rows of W̃ performed in either Step 5 or 6.

Here are some important observations about the algorithm -

(a) There are standard algorithms for graph distance finding in the algorithmic graph
theory literature. In algorithmic graph theory literature the problem is known as the all
pairs shortest path problem. The two most popular algorithms are Floyd-Warshall
[62] [160] and Johnson’s algorithm [86]. The time complexity of the Floyd-Warshall
algorithm isO(n3), where as, the time complexity of Johnson’s algorithm isO(n2 log n+
ne) [106] (n = |V (Gn)| and e = |E(Gn)|). So, for sparse graphs, Johnson’s algorithm
is faster than Floyd-Warshall. Memory storage is also another issue for this algorithm,
since the algorithm involves a matrix multiplication step of complexity Ω(n2). Recently,
there also has been some progress on parallel implementation of all-pairs shortest path
problem [146] [33] [72], which addresses both memory and computation aspects of the
algorithm and lets us scale the algorithm for large graphs, both dense and sparse.

(b) The Step 3 of the algorithm is nothing but the classical multi-dimensional scaling
(MDS) of the graph distance matrix. In MDS, we try to find vectors (x1, . . . , xn),
where, xi ∈ RQ, such that,

n∑
i,j=1

(
||xi − xj||2−(DC)ij

)2

is minimized. The minimizer is attained by the rows of the matrix formed by the top
Q eigenvectors of D̄C as columns. So, performing spectral clustering on D̄C is the same
as performing Q-means clustering on the multi-dimensional scaled space.

Instead of D̄C , we could also use the matrix (DC)2, but then, the topmost eigenvector
does not carry any information about the clustering. Similarly, we can also use the
matrix DC directly for spectral clustering, but, in that case, DC is not a positive semi-
definite matrix and as a result we have to consider the eigenvectors corresponding to
largest absolute eigenvalues (since eigenvalues can be negative).

(c) In the Step 5 of the algorithm Q-means clustering if the expected degree of the blocks
are equal. However, if the expected degree of the blocks are different, it leads to multi
scale behavior in the eigenvectors of the normalized distance matrix. So, we perform
Gaussian Mixture Model (GMM) based clustering instead of Q-means to take into
account the multi scale behavior.
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5.4 Theory

Let us consider that we have a random graph Gn as the data. Let V (Gn) = {vi, . . . , vn}
denote the vertices of Gn and E(Gn) = {e1, . . . , em} denote the edges of Gn. So, the number
of vertices in Gn is |V (Gn)|= n and number of edges of Gn is |E(Gn)|= m. Let the adjacency
matrix of Gn be denoted by An×n. For sake of notational simplicity, from here onwards we
shall denote Gn by G having n vertices unless specifically mentioned. There are Q commu-
nities for the vertices and each community has (na)

Q
a=1 number of vertices. In this paper,

we are interested in the problem of vertex community identification or graph partitioning.
However, the problem is an unsupervised learning problem. So, we assume that the data is
coming from an underlying model and we try to verify how good ‘our’ community detection
method works for that model.

The theoretical analysis of the algorithm has two main parts -

I. Finding the limiting distribution of graph distance between two typical vertices of type
a and type b (where, a, b = 1, . . . , Q). This part of the analysis is highly dependent
on results from multi-type branching processes and their relation with stochastic block
models. The proof techniques and results are borrowed from [29], [18] and [7].

II. Finding the behavior of top Q eigenvectors of the graph distance matrix D using
the limiting distribution of the typical graph distances. This part of analysis is highly
dependent on perturbation theory of linear operators. The proof techniques and results
are borrowed from [93], [38] and [149].

Results of Part I

We shall give limiting results for typical distance between vertices in Gn. If u and v ∈ V (Gn)
are two vertices in Gn, which has been selected uniformly at random from type a and type b
respectively, where, a, b = 1, . . . , Q are the different communities. Then, the graph distance
between u and v is dG(u, v). Now, the operator that controls the process is TK as defined in
Definition 5.2.4. TK is another representation of the matrix K̃Q×Q, which is defined as

K̃ab ≡ πaKabπb, for a, b = 1, . . . , Q (5.6)

The matrix K̃ defines the quadratic form for TK : `1(S, π)→ `1(S, π). So, we have that

λ ≡ ||TK ||= λmax(K̃). (5.7)

The relation between λ and E[number of Edges in Gn] is given Section 5.2. Here, we use
λ as the scaling operator, not either average, minimum or maximum degree of vertices as
used in [149] and [140]. But, we already know that, if the graph is homogeneous, then,
E[number of Edges in Gn] = 1

2
λ and otherwise E[number of Edges in Gn] ≤ λ.

Let us also denote, ν ∈ RQ as the eigenvector of K̃ corresponding to λ. We at first, try
to find an asymptotic bound on the graph distance dG(u, v) for vertices u, v ∈ V (G).
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Theorem 5.4.1. Let λ > 1 (defined in Eq. (5.7)), then, the graph distance dG(u, v) between
two uniformly chosen vertices of type a and b respectively, conditioned on being connected,
satisfies the following asymptotic relation -

(i)

P
[
dG(u, v) < (1− ε) log n

log|λ|/log(νaνb)

]
= o(1) (5.8)

(ii)

P
[
dG(u, v) > (1 + ε)

log n

log|λ|/log(νaνb)

]
= o(1) (5.9)

Now, let us consider the limiting operator D defined as

Definition 5.4.2. The normalized limiting matrix is an n × n matrix, D, which in
limit as n → ∞ becomes an operator on l2 (space of convergent sequences), is defined as
D = [Dij]

n
i,j=1, where,

Dij =

{
log(νaνb)

log|λ| , if type of vi = a 6= b = type of vj
2 log(νa)

log|λ| , if type of vi = type of vj = a

and Dii = 0 for all i = 1, . . . , n.
The graph distance matrix D can be defined as

D = [d(vi, vj)]
n
i,j=1.

In Theorem 5.4.1 we had a point-wise result, so, we combine these point-wise results to
give a matrix result -

Theorem 5.4.3. Let λ = ||TK ||> 1, then, within the big connected component,

P
[∣∣∣∣∣∣∣∣ D

log n
− D

∣∣∣∣∣∣∣∣
F

≤ O(n1−ε)

]
= 1− o(1)

Thus, the above theorem gives us an idea about the limiting behavior of the normalized
version of geodesic matrix D.

Sketch of Analysis of Part I

A rough idea of the proof of part I is as follows. Fix two vertices, say 1 and 2, in the giant
component. Think of a branching process starting from vertices of type 1 and 2, so that
at time t, BPπ(a)(t) is the branching process tree from vertex of type a and includes the
shortest paths to all vertices in the tree at or before time t from vertex a, a = 1, 2. When
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these two trees meet via the formation of an edge (v1, v2) between two vertices v1 ∈ BPπ(1)(·)
and v2 ∈ BPπ(2)(·), then the shortest-length path between the two vertices 1 and 2 has been
found. If Dn(va), a = 1, 2, denotes the number of edges between the source a and the vertex
va along the tree BPπ(a), then the graph distance dn(1, 2) is given by

dn(1, 2) = Dn(v1) +Dn(v2) + 1 (5.10)

The above idea is indeed a very rough sketch of our proof and it follows from the graph
distance finding idea developed in [29]. In the paper, we embed the SBM in a multi-type
branching process (MTMBP) or a single-type marked branching process (MBP), depending
on whether the types of two vertices are same or not. The offspring distribution is binomial
with parameters n − 1 and kernel P (see Section 5.4). With high probability, the vertex
exploration process in the SBM can be coupled with two multi-type branching processes,
bounding the vertex exploration process on SBM on both sides. Now, using the property of
the two multi-type branching processes, we can bound the number of vertices explored in
the vertex exploration process of a SBM graph and infer about the asymptotic limit of the
graph distance.

With the above sketch of proof can be organized as follows.

1. We analyze various properties of a Galton-watson process conditioned on non-extinction,
including times to grow to a particular size. In this branching process, the offspring
will have a Poisson distribution.

2. We introduce multi-type branching process trees with binomially distributed offspring
and make the connection between these trees and the SBM. We bound the vertices
explored for an SBM graph, starting from a fixed vertex, by considering a muti-type
branching process coupled with it.

3. We bound the geodesic distance using the number of vertices explored in the coupled
multi-type branching processes within a certain generation. The limiting behavior of
the generation give us the limiting behavior of graph distance.

4. The whole analysis is true for IRGM. So, the results are true for SBM with increasing
block numbers and degree-corrected block models also.

The idea of the argument is quite simple, but making these ideas rigorous takes some technical
work, particularly because we need to condition on our vertices being in the giant component.

Results of Part II

So, from Part I of the analysis, we get an idea about the point-wise asymptotic convergence
of the matrix D = [d(vi, vj)]

n
i,j=1 to the normalized limiting operator D, defined in Definition

5.4.2.
The limiting matrix D can also be written in terms of limiting low-dimensional matrix,

D, which is defined as follows -
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Definition 5.4.4. The limiting kernel matrix, DQ×Q is defined as

Dab =

{
log(νaνb)

log|λ| , if a 6= b
2 log(νa)

log|λ| , if a = b

So, we can see that if Jn×n = 11T is an n × n matrix of all ones, then, there exists a
permutation of rows of D, which is obtained by multiplying D with permutation matrix R,
such that,

DR = D ? J−Diag(d̃) ≡ [DabJab]Qa,b=1 −Diag(d̃) (5.11)

where, [Jab]
Q
a,b=1 is a Q × Q partition of J in the following way - the rows and columns are

partitioned in similar fashion according to (n1, . . . , nQ). Note that, (na)
Q
a=1 are the number

of vertices of type a in the graph Gn. So, Jab is an na×nb matrix of all ones. d̃ is a vector of
length containing na elements of value 2 log(νa)

log|λ| , a = 1, . . . , Q. Note that product ? can also

be seen as a Khatri-Rao product of two partitioned matrices [95].
Now, we assume some conditions on the limiting low-dimensional matrix D.

(C1) The operator TK or the matrix K̃ can not have 1 as the principal eigenvector. If the
principal eigenvector ν = 1, then, D becomes a matrix with no difference between diag-
onal and off-diagonal elements and thus have no discriminatory power to do community
detection.

(C2) The eigenvalues of D, λ1(D) ≥ · · · ≥ λQ(D), satisfy the condition that there exists an
constant α, such that, 0 < α ≤ λQ(D).

(C3) The eigenvectors of D, (v1(D), . . . , vQ(D)) corresponding to λ1, . . . , λQ, satisfy the
condition that there exists a constant β, such that, rows of the Q × Q matrix V =
[v1 · · · vQ], represented as (u1, . . . , uQ) (ua ∈ RQ), satisfies the condition 0 < β ≤
||ua − ub||2 for all pairs of rows of V.

(C4) The number of vertices in each type (n1, . . . , nQ), satisfy the condition that there exists
a constant θ such that 0 < θ < na

n
for all a = 1, . . . , Q and all n.

Theorem 5.4.5. Under the conditions (C1)-(C4), suppose that the number of blocks Q is
known. Let ξ̂ : V 7→ [Q] be the block assignment function according to a clustering of the
rows of W̃(n) satisfying algorithm in Section 5.3 and ξ : V 7→ [Q] be the actual assignment.
Let PQ be the set of permutations on [Q]. With high probability and for large n it holds that

min
π∈PQ

|{u ∈ V : ξ(u) 6= π(ξ̂(u))}|= O(n1/2−ε) (5.12)
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Sketch of Proof of Part II

We can consider the limiting distribution of the graph distance matrix as D which was
proposed in Theorem 5.4.3, with (Dij) = dG(vi, vj), where, vi, vj ∈ V (G). Our goal is to
show that the eigenvectors of D or normalized version of it, converge to eigenvectors of D or
D. For that reason, we use the perturbation theory of operators, as given in Kato [93] and
Davis-Kahan [48]. The steps are as follows

• We use Davis-Kahan to show convergence of eigenspace W̃, formed by top Q eigenvec-
tors of D/log n to WR, where, W is the eigenspace formed by the top Q eigenvectors
of D and R is some orthogonal permutation matrix, which permutes the rows of W.

• We show by contradiction that if the clustering assignment makes too many mistakes
then the rate of convergence of W̃ to WR would be violated.

Branching Process Results

The branching process BK(a) is a multi-type Galton-Watson branching processes with type
space S ≡ {1, . . . , Q}, a particle of type a ∈ S is replaced in the next generation by its
“children”, a set of particles whose types are distributed as a Poisson process on S with
intensity {Kabπb}Qb=1. Recall the parameters K ∈ RQ×Q and π ∈ [0, 1]Q with

∑Q
a=1 πa = 1,

from the definition of Stochastic block model in equation (5.4). The zeroth generation of
BK(a) consists of a single particle of type a. Also, the branching process BK is just the
process BK(a) started with a single particle whose (random) type is distributed according
to the probability measure (π1, . . . , πQ).

Let us recall our notation for the survival probabilities of particles in BK(a). We write
ρk(K; a) for the probability that the total population consists of exactly k particles, and
ρ≥k(K; a) for the probability that the total population contains at least k particles. Fur-
thermore, ρ(K; a) is the probability that the branching process survives for eternity. We
write ρk(K), ρ≥k(K) and ρ(K) for the corresponding probabilities for BK , so that, e.g.,
ρk(K) =

∑Q
a=1 ρk(K; a)πa.

Now, we try to find a coupling relation between neighborhood exploration process of a
vertex of type a in stochastic block model and multi-type Galton-Watson process, B(a)
starting from a vertex of type a.

We assume all vertices of graph Gn generated from a stochastic block model has been
assigned a community or type ξi (say) for vertex vi ∈ V (Gn). By neighborhood exploration
process of a vertex of type a in stochastic block model, we mean that we start from a random
vertex vi of type a in the random graph Gn generated from stochastic block model. Then,
we count the number of vertices of the random graph Gn are neighbors of vi, N(vi). We
repeat the neighborhood exploration process by looking at the neighbors of the vertices in
N(vi). We continue until we have covered all the vertices in Gn. Since, we either consider
Gn connected or only the giant component of Gn, the neighborhood exploration process will
end in finite steps but the number of steps may depend on n.
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Lemma 5.4.6. Within the giant component, the neighborhood exploration process for a
stochastic block model graph with parameters (P, π) = (K/n, π), can be bounded with high
probability by two multi-type branching processes with kernels (1 − 2ε)K and (1 + ε)K for
some ε > 0.

Proof. We have na vertices of type a ,a = 1, . . . , Q, and that na/n
a.s.→ πa. From now on

we condition on n1, . . . , nQ; we may thus assume that n1, . . . , nQ are deterministic with
na/n → πa. Let ω(n) be any function such that ω(n) → ∞ and ω(n)/n → 0. We call a
component of Gn ≡ G(n, P ) = G(n,K/n) big if it has at least ω(n) vertices. Let B be the
union of the big components, so |B|= N≥ω(n)(Gn). Fix ε > 0.We may assume that n is so
large that ω(n)/n < ε πi and |na/n−πa|< ε πa for every a; thus (1−ε)πan < na < (1+ε)πan.
We may also assume that n > maxK, as K is a function on the finite set S ×S. Since, na/n
is a
√
n-consistent estimator of πa, we get that

ε = O(n−1/2). (5.13)

Select a vertex and explore its component in the usual way, that means looking at its
neighbors, one vertex at a time. We first reveal all edges from the initial vertex, and put
all neighbors that we find in a list of unexplored vertices; we then choose one of these and
reveal its entire neighborhood, and so on. Stop when we have found at least ω(n) vertices (so
x ∈ B), or when there are no unexplored vertices left (so we have found the entire component
and x /∈ B).

Consider one step in this exploration, and assume that we are about to reveal the neigh-
borhood of a vertex x of type a. Let us write n′b for the number of unused vertices of type b
remaining. Note that nb ≥ n′b ≥ nb − ω(n), so

(1− 2ε)πb < n′b/n < (1 + ε)πb (5.14)

The number of new neighbors of x of type b has a binomial Bin(n′b, Kab/n) distribution,
and the numbers for different b are independent. The total variation distance between a
binomial Bin(n, p) distribution and the Poisson distribution with the same mean is at most
p. Hence the total variation distance between the binomial distribution above and the
Poisson distribution Poi(Kabn

′
b/n) is at most Kab/n = O(1/n). Also, by (5.14),

(1− 2ε)Kabπb ≤ Kabn
′
b/n ≤ (1 + ε)Kabπb. (5.15)

Since we perform at most ω(n) steps in the exploration, we may, with an error probability of
O(ω(n)/n) = o(1), couple the exploration with two multi-type branching processes B((1 −
2ε)K) and B((1 + ε)K) such that the first process always finds at most as many new vertices
of each type as the exploration, and the second process finds at least as many. Consequently,
for a vertex x of type a,

ρ≥ω(n)((1− 2ε)K; a) + o(1) ≤ P(x ∈ B) ≤ ρ≥ω(n)((1 + ε)K; a) + o(1). (5.16)
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Since ω(n)→∞, by Lemma 9.5 of [29], we have ρ≥ω(n)(K; a)→ ρ(K; a) for every matrix
or finitary kernel K, which parametrizes the offspring distribution of the branching process
in the sense that the number of offsprings of type b coming from a parent of type a follows
Poi(Kabπb) distribution. So we can rewrite (5.16) as

ρ((1− 2ε)K; a) + o(1) ≤ P (x ∈ B) ≤ ρ((1 + ε)K; a) + o(1). (5.17)

Now, we restrict ourselves to the giant component only. So, if we condition that the
exploration process does not leave the giant component, it is same as conditioning that the
branching process does not die out. Under this additional condition, the branching process
can be coupled with another branching process with a different kernel. The kernel of that
branching process is given in following lemma.

Lemma 5.4.7. If we condition a branching process, BKπ on survival, the new branching
process has kernel (Kab (ρ(K; a) + ρ(K; b)− ρ(K; a)ρ(K; b)))Qa,b=1.

Proof. We need to consider certain branching process expectations σ(K) and σ≥k(K) in place
of ρ(K) and ρ≥k(K). In preparation for the proof, we shall relate ζ(K) to the branching
process BK via σ(K). As before, we assume that K is a kernel on (S, π) with K ∈ L1.

Let A be a Poisson process on S, with intensity given by a finite measure λ, so that A
is a random multi-set on S. If g is a bounded measurable function on multi-sets on S, it is
easy to see that

E(|A|g(A)) =
∑
i∈S

Eg(A ∪ {i})λi (5.18)

For details see Proposition 10.4 of [29].
Let B(x) denote the first generation of the branching process BK(x). Thus B(x) is given

by a Poisson process on S with intensity K(x, y)πx. Suppose that
∑

bKabπb <∞ for every
a = 1, . . . , Q, so B(x) is finite. Let σ(K;x) denote the expectation of |B(x)|1[|BK(x)|=∞],
recalling that under the assumption

∑
bKabπb <∞ for every a, the branching process BK(x)

dies out if and only if |BK(x)|<∞. Then

Q∑
b=1

Kxbπb − σ(K;x) = E [|B(x)|1(BK(x) <∞)]

= E

|B(x)|
∏

z∈B(x)

ρ(K; z)


=

Q∑
b=1

Kxb(1− ρ(K; b))E

 ∏
z∈B(x)

ρ(K; z)

 πb

=

Q∑
b=1

Kxb(1− ρ(K; b))(1− ρ(K;x))πb
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Here the penultimate step is from (5.18); the last step uses the fact that the branching
process dies out if and only if none of the children of the initial particle survives. Writing B
for the first generation of BK conditioned on survival becomes

σ(K) ≡ E|B|1[|BK |=∞] =

Q∑
x=1

σ(K;x)πx

Then, integrating over x and subtracting from
∑

a,bKabπaπb, we get,

σ(K) =
∑
a,b

Kab (1− (1− ρ(K; a))(1− ρ(K; b)))πaπb (5.19)

So, the kernel for the conditioned branching process becomes

Kab (ρ(K; a) + ρ(K; b)− ρ(K; a)ρ(K; b)) (5.20)

Now, we shall try to prove the limiting behavior of typical distance between vertices v
and w of Gn, where, v, w ∈ V (Gn).

Lemma 5.4.8. Let us have λ ≡ ||TK ||> 1 and let ν = (ν1, . . . , νQ) be the eigenvector of TK
with eigenvalue λ, then,

E |{{v, w} : dG(v, w) ≤ (1− ε) log n/log|λ|}| = O(n2−ε)

and so∣∣∣∣{{v, w} : dG(v, w) ≤ (1− ε) log n

log λ/log(νaνb)

}∣∣∣∣ ≤ O(n2−ε/2) with high probability

Proof. We have S is finite, say S = {1, 2, . . . , Q}. Let Γd(v) ≡ Γd(v,Gn) denote the d-
distance set of v in Gn, i.e., the set of vertices of Gn at graph distance exactly d from v, and
let Γ≤d(v) ≡ Γ≤d(v,Gn) denote the d-neighborhood ∪d′≤dΓd′(v) of v.

Let 0 < ε < 1/10 be arbitrary. The proof of (5.17) involved first showing that, for n large
enough, the neighborhood exploration process starting at a given vertex v of Gn with type
a (chosen without inspecting Gn) could be coupled with the branching process B(1+ε)K′(i),
where the K ′ is defined by equation (5.20), so that the branching process is conditioned to
survive. However, henceforth we shall abuse notation and denote K ′ as K.

The neighborhood exploration process and multi-type branching process can be coupled
so that for every d, |Γd(v)| is at most the number Nd of particles in generation d of B(1+2ε)K(i).
The number of vertices at generation d of type c of branching process B(1+2ε)K(a), denoted
by Na

d,c and the number of vertices of type c at distance d from v for the neighborhood
exploration process of Gn is denoted by |Γad,c(v)|f, where, c = 1, . . . , Q.
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Elementary properties of the branching process imply that ENd = O
(
||T(1+2ε)K ||d

)
=

O(((1 + 2ε)λ)d), where λ = ||TK ||> 1.
Let Na

t (c) be the number of particles of type c in the t-th generation of BK(a), then, Na
t

is the vector (Na
t (1), . . . , Na

t (Q)). Also, let ν = (ν1, . . . , νQ) be the eigenvector of TK with
eigenvalue λ (unique, up to normalization, as P is irreducible). From standard branching
process results, we have

Na
t /λ

t a.s.→ Xν, (5.21)

where X ≥ 0 is a real-valued random variable, X is continuous except that it has some mass
at 0, and X = 0 if and only if the branching process eventually dies out and lastly,

EX = νa.

under the conditions given in Theorem V.6.1 and Theorem V.6.2 of [7].
Set D = (1− 10ε) log(n/νaνb)/log λ. Then D < (1− ε) log(n/νaνb)/log((1 + 2ε)λ) if ε is

small enough, which we shall assume. Thus,

E|Γ≤D(v)|≤ E
D∑
d=0

Nd = O(((1 + 2ε)λ)D) = O(n1−ε)

So, summing over v, we have∑
v∈V (Gn)

|Γ≤D(v)|= |{{v, w} : dG(v, w) ≤ (1− ε) log(n/νaνb)/log λ}|

and its expected value to be

E |{{v, w} : dG(v, w) ≤ (1− ε) log(n/νaνb)/log λ}| = E
∑

v∈V (Gn)

|Γ≤D(v)|= O(n2−ε)

The above statement is equivalent to

E
∣∣∣∣{{v, w} : dG(v, w) ≤ (1− ε) log n

log λ/log(νaνb)

}∣∣∣∣ = E
∑

v∈V (Gn)

|Γ≤D(v)|= O(n2−ε)

So, by Markov’s Theorem, we have,

P
[∣∣∣∣{{v, w} : dG(v, w) ≤ (1− ε) log n

log λ/log(νaνb)

}∣∣∣∣ ≤ O(n2−ε/2)

]
= o(1)

for any fixed ε > 0.

Now, let us try to bound the typical distance between two vertices of the any type. We
shall only give an upper bound for typical distance between two vertices of any type.
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Lemma 5.4.9. Let us have λ ≡ ||TK ||= λmax(K̃) > 1 from Eq (5.7) and let ν = (ν1, . . . , νQ)
be the eigenvector of TK with eigenvalue λ. For uniformly selected vertices v, w ∈ V (G),

P
(
dG(v, w) < (1 + ε)

log n

log λ/log(νaνb)

)
= 1− exp(−Ω(n2η))

conditioned on the event that the branching process BK survives.

Proof. We consider the multi-type branching process with probability kernel Pab = Kab

n

∀a, b = 1, . . . , Q and the corresponding random graph Gn generated from stochastic block
model has in total n nodes. We condition that branching process BK survives.

Note that an upper bound 1 is obvious, since we are bounding a probability, so it suffices
to prove a corresponding lower bound. We may and shall assume that Kab > 0 for some a, b.

Fix 0 < η < 1/10. We shall assume that η is small enough that (1 − 2η)λ > 1. In
the argument leading to (5.17) in proof of Lemma 5.4.6, we showed that, given ω(n) with
ω(n) = o(n) and a vertex v of type a, the neighborhood exploration process of v in Gn could
be coupled with the branching process B(1−2η)K(a) so that whp the former dominates until
it reaches size ω(n). More precisely, writing Nd,c for the number of particles of type c in
generation d of B(1−2η)K(a), and Γd,c(v) for the set of type c vertices at graph distance d from
v, whp

|Γd,c(v)|≥ Nd,c, c = 1, . . . , Q, for all d s.t. |Γ≤d(v)|< ω(n). (5.22)

This relation between the number of vertices at generation d of type c of branching process
B(1−2η)K(a), denoted by Nd,c and the number of vertices of type c at distance d from v for the
neighborhood exploration process of Gn, denoted by |Γd,c(v)| becomes highly important later
on in this proof, where, c = 1, . . . , Q. Note that the relation only holds when |Γ≤d(v)|< ω(n)
for some ω(n) such that ω(n)/n→ 0 as n→∞.

Let Na
t (c) be the number of particles of type c in the t-th generation of BK(a), then, Na

t

is the vector (Na
t (1), . . . , Na

t (Q)). Also, let ν = (ν1, . . . , νQ) be the eigenvector of TK with
eigenvalue λ (unique, up to normalization, as P is irreducible). From standard branching
process results, we have

Na
t /λ

t a.s.→ Xν, (5.23)

where X ≥ 0 is a real-valued random variable, X is continuous except that it has some mass
at 0, and X = 0 if and only if the branching process eventually dies out and lastly,

EX = νa

under the conditions given in Theorem V.6.1 and Theorem V.6.2 of [7].
Let D be the integer part of log((n/νaνb)

1/2+2η)/log((1−2η)λ). From (5.23), conditioned
on survival of branching process BK(a), whp either Na

D = 0, or Na
D,c ≥ n1/2+η for each c

(note that Na
D,c comes from branching process B(1−2η)K(a) not branching process BK(a)).
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Furthermore, as limd→∞ P(Na
d 6= 0) = ρ((1 − 2η)K) and D → ∞, we have P(Na

D 6= 0) →
ρ((1− 2η)K). Thus, if n is large enough,

P
(
∀c : Na

D,c ≥ n1/2+η
)
≥ ρ((1− 2η)K)− η.

Now, we have conditioned that the branching process with kernel K is conditioned to survive.
The right-hand side tends to ρ(K) = 1 as η → 0. Hence, given any fixed γ > 0, if we choose
η > 0 small enough we have

P
(
∀c : Na

D,c ≥ n1/2+η
)
≥ 1− γ

for n large enough.
Now, the neighborhood exploration process and branching process can be coupled so that

for every d, |Γd(v)| is at most the number Md of particles in generation d of B(1+2ε)K(a) from
Lemma 5.4.6 and Eq (5.15). So, we have,

E|Γ≤D(v)|≤ E
D∑
d=0

Md = O(((1 + 2ε)λ)D) = o(n2/3)

if η is small enough, since D be the integer part of log(n1/2+2η)/log((1 − 2η)λ). Note that
the power 2/3 here is arbitrary, we could have any power in the range (1/2, 1). Hence,

|Γ≤D(v)|≤ n2/3 whp,

and whp the coupling described in (5.22) extends at least to the D-neighborhood. So, now,

we are in a position to apply Eq (5.22), as we have |Γ≤D(v)|≤ n
2/3
a < ω(n), with ω(n)/n→ 0.

Now let v and w be two fixed vertices of G(n, P ), of types a and b respectively. We
explore both their neighborhoods at the same time, stopping either when we reach distance
D in both neighborhoods, or we find an edge from one to the other, in which case v and
w are within graph distance 2D + 1. We consider two independent branching processes
B(1−2η)K(a), B′(1−2η)K(b), with Na

d,c and N b
d,c vertices of type c in generation d respectively.

By previous equation, whp we encounter o(n) vertices in the explorations so, by the argument
leading to (5.22), whp either the explorations meet, or |ΓaD,c(v)|≥ Na

D,c and |ΓbD,c(w)|≥ N b
D,c,

c = 1, . . . , Q, with the explorations not meeting. Using bound on Na
d,c and the independence

of the branching processes, it follows that

P
(
d(v, w) ≤ 2D + 1 or ∀c : |ΓaD,c(v)|, |ΓbD,c(w)|≥ n1/2+η

)
≥ (ρ(K)− γ)2 − o(1).

Note that the two events in the above probability statement are not disjoint. We shall try to
find the probability that the second event in the above equation holds but not the first. We
have not examined any edges from ΓD(v) to ΓD(w), so these edges are present independently
with their original unconditioned probabilities. For any c1, c2, the expected number of
these edges is at least |ΓaD,c1(v)||ΓbD,c2(w)|Kc1c2/n. Choosing c1, c2 such that Kc1c2 > 0, this
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expectation is Ω((n1/2+η)2/n) = Ω(n2η). It follows that at least one edge is present with
probability 1− exp(−Ω(n2η)) = 1− o(1). If such an edge is present, then d(v, w) ≤ 2D + 1.
So, the probability that the second event in the above equation holds but not the first is
o(1). Thus, the last equation implies that

P(d(v, w) ≤ 2D + 1) ≥ (1− γ)2 − o(1) ≥ 1− 2γ − o(1).

Choosing η small enough, we have 2D + 1 ≤ (1 + ε) log(n/νaνb)/log λ. As γ is arbitrary, we
have

P(d(v, w) ≤ (1 + ε) log(n/νaνb)/log λ) ≥ 1− exp(−Ω(n2η)).

The above statement is equivalent to

P
(
d(v, w) ≤ (1 + ε)

log n

log λ/log(νaνb)

)
≥ 1− exp(−Ω(n2η)).

and the lemma follows.

Proof of Theorem 5.4.1 and Theorem 5.4.3

Proof of Theorem 5.4.1

We shall try to prove the limiting behavior of typical graph distance in the giant component
as n → ∞. The Theorem essentially follows from Lemma 5.4.8 and Lemma 5.4.9. Under
the conditions mentioned in the Theorem, part (a) follows from Lemma 5.4.8 and part (b)
follows from Lemma 5.4.9.

Proof of Theorem 5.4.3

From the definition 5.4.2, we have that Dij = graph distance between vertices vi and vj,
where, vi, vj ∈ V (Gn).

From Lemma 5.4.8, we get for any vertices v and w with high probability,∣∣∣∣{{v, w} : dG(v, w) ≤ (1− ε) log n

log λ/log(νaνb)

}∣∣∣∣ ≤ O(n2−ε).

Also, from Lemma 5.4.9, we get

P
(
dG(v, w) < (1 + ε)

log n

log λ/log(νaνb)

)
= 1− exp(−Ω(n2η))

So, putting the two statements together, we get that with high probability,

n∑
i,j=1:type(vi)6=type(vj)

(
Dij

log n
− Dij

)2

= O(n2−ε) +O(n2).ε2 = O(n2−ε)
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since, by Eq. (5.13) ε = O(1/
√
n) and and (1−exp(−Ω(n2η)))n

2 → 1 as n→∞. So, putting
the two cases together, we get that with high probability,

n∑
i,j=1

(
Dij

log n
− Dij

)2

= O(n2−ε) +O(n2).ε2 = O(n2−ε).

Hence, ∣∣∣∣∣∣∣∣ D

log n
− D

∣∣∣∣∣∣∣∣
F

≤ O(n1−ε/2).

Perturbation Theory of Linear Operators

Once, we have the limiting behavior of the matrix D established in Theorem 5.4.3, we shall
now try to see the behavior of the eigenvectors of the matrix D. Now, matrix D can be
considered as a perturbation of the operator D.

The Davis-Kahan Theorem states a bound on perturbation of eigenspace instead of eigen-
vector, as discussed previously. The sin θ Theorem of Davis-Kahan [48]

Theorem 5.4.10 (Davis-Kahan (1970)[48]). Let H,H′ ∈ Rn×n be symmetric, suppose V ⊂
R is an interval, and suppose for some positive integer d that W,W′ ∈ Rn×d are such that
the columns of W form an orthonormal basis for the sum of the eigenspaces of H associated
with the eigenvalues of H in V and that the columns of W′ form an orthonormal basis for
the sum of the eigenspaces of H′ associated with the eigenvalues of H′ in V. Let δ be the
minimum distance between any eigenvalue of H in V and any eigenvalue of H not in V .
Then there exists an orthogonal matrix R ∈ Rd×d such that ||WR−W′||F≤

√
2 ||H−H

′||F
δ

.

Proof of Theorem 5.4.5

Now, we can try to approximate limiting operator by the graph distance matrix D in Frobe-
nius norm based on Theorem 5.4.3 of Part I. The behavior of the eigenvalues of the limiting
operator D can be stated as follows -

Lemma 5.4.11. The eigenvalues of D - |λ1(D)|≥ |λ2(D)|≥ · · · ≥ |λn(D)|, can be bounded
as follows -

λ1(D) < n, |λK(D)|> Cn, λQ+1(D) = −min{d̃1, . . . , d̃Q}, . . . , λn = −max{d̃1, . . . , d̃Q}
(5.24)

where, d̃, a vector of length Q, is defined in Eq. (5.11) and the smallest (n − Q) absolute
eigenvalues of D are −d̃ where −d̃a has multiplicity (na − 1) for a = 1, . . . , Q.
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Proof. The matrix D can be considered as a Khatri-Rao product of the matrices D and J
according to equation (5.11). Now, there exists a constant τ such that log||TK ||> τ > 0,
since ||TK ||> 1. So, we have λ1(D) < τ . So, we have λ1(D) < 1 and since na ≤ n for all a
and

∑
a na = n. So, we have λ1(D) ≤ n. Now, By Assumption (C2) and (C4), λQ(D) ≥ α

and na ≥ γn, so, λQ(D) ≥ αγn. Now, it is easy to see that the remaining eigenvalues of D is
-1, since, B ?J is a rank Q matrix and its remaining eigenvalues are zero and the eigenvalues
of diagonal matrix are d̃ with d̃a having multiplicity (na) for a = 1, . . . , Q.

Corollary 5.4.12. With high probability it holds that |λQ(D/log n)|≥ O(n) and
λQ+1(D/log n) ≤ O(n1−ε).

Proof. By Weyl’s Inequality, for all i = 1, . . . , n,

||λi(D/log n)|−|λi(D)|| ≤
∣∣∣∣∣∣∣∣ D

log n
− D

∣∣∣∣∣∣∣∣
F

≤ O(n1−ε/2)

≤ O(n1−ε)

So, |λQ(D/log n)|≥ O(n)−O(n1−ε) = O(n) for large n and |λQ+1(D/log n)|≤ −1+O(n1−ε) =
O(n1−ε).

Now, if we consider W is the eigenspace corresponding to top Q absolute eigenvalues
of D and W̃ is the eigenspace corresponding to top Q absolute eigenvalues of D. Using
Davis-Kahan

Lemma 5.4.13. With high probability, there exists an orthogonal matrix R ∈ RQ×Q such
that ||WR− W̃||F≤ O(n−ε)

Proof. The top Q eigenvalues of both D and D/log n lies in (Cn,∞) for some C > 0. Also,
the gap δ = O(n) between top Q and Q + 1th eigenvalues of matrix D. So, now, we can
apply Davis-Kahan Theorem 5.4.10 and Theorem 5.4.3, to get that,

||WR− W̃||F≤
√

2

∣∣∣∣∣∣ D
logn
− D

∣∣∣∣∣∣
F

δ
≤ O(n1−ε)

O(n)
= O(n−ε)

Now, the relationship between the rows of W can be specified based on Assumption (C3)
as follows -

Lemma 5.4.14. For any two rows i, j of Wn×Q matrix, ||ui − uj||2≥ O(1/
√
n), if type of

vi 6= type of vj.

Proof. The matrix D can be considered as a Khatri-Rao product of the matrices D and
J according to equation (5.11). Now, by Assumption (C3), we have a constant difference
between the rows of matrix D. So, rows of D as well as the projection of D into into its top
Q eigenspace has difference of order O(n−1/2) between rows of matrix.
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Now, if we consider Q-means criterion as the clustering criterion on W̃, then, for the Q-
means minimizer centroid matrix C is an n×Q matrix with Q distinct rows corresponding
to the Q centroids of Q-means algorithm. By property of Q-means objective function and
Lemma 5.4.13, with high probability,

||C− W̃||F ≤ ||WR− W̃||F
||C−WR||F ≤ ||C− W̃||F+||WR− W̃||F

≤ 2||WR− W̃||F
≤ O(n−ε)

By Lemma 5.4.14, for large n, we can get constant C, such that, Q balls, B1, . . . , BQ, of
radius r = Cn−1/2 around Q distinct rows of W are disjoint.

Now note that with high probability the number of rows i such that ||Ci − (WR)i||> r
is at most O(n1/2−ε). If the statement does not hold then,

||C−WR||F > r.O(n1/2−ε)

≥ Cn−1/2.O(n1/2−ε) = O(n−ε)

So, we get a contradiction, since ||C −WR||F≤ O(n−ε). Thus, the number of mistakes
should be at most of order O(n1/2−ε).

So, for each vi ∈ V (Gn), if ξi is the type of vi and ξ̂i is the type of vi as estimated
from applying Q-means on top Q eigenspace of geodesic matrix D, we get that with high
probability, for some small 0 < ε,

min
π∈PQ

|{u ∈ V : ξ(u) 6= π(ξ̂(u))}|= O(n1/2−ε)

5.5 Application

We investigate the empirical performance of the algorithm in several different setup. At first,
we use simulated networks from stochastic block model to find the empirical performance
of the algorithm. Then, we apply our method to find communities in several real world
networks.

Simulation

We simulate networks from stochastic block models with Q = 3 blocks. Let w correspond to
a Q-block model defined by parameters θ = (π, ρn, S), where πa is the probability of a node
being assigned to block a as before, and

Fab = P(Aij = 1|i ∈ a, j ∈ b) = ρnSab, 1 ≤ a, b ≤ K.

and the probability of node i to be assigned to block a to be πa (a = 1, . . . , K).
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Figure 5.1: The LHS is the performance of graph distance based method and RHS is the
performance of Pseudolikelihood method on same generative SBM.

Equal Density Clusters

We consider a stochastic block model with Q = 3. We consider the parameter matrix
F = 0.012(1+0.1ν)(λ̃F (1) +(1− λ̃)F (2)), where, F

(1)
3×3 = Diag(0.9, 0.9, 0.9) and F

(2)
3×3 = 0.1J2,

where, J2 is a 2× 2 matrix of all 1’s and ν varies from 1 to 15 to give networks of different
density. So, we get ρn = πTFπ. We now, vary λ̃ to get different combinations of F as well
as ρn.

In the following figures, we try to see the behavior of mean and variances of the count
statistics, as we vary λn as we vary ν.

Unequal Density Clusters

We consider a stochastic block model with Q = 3. We consider the parameter matrix
F = 0.012(1+0.1ν)(λ̃F (1) +(1− λ̃)F (2)), where, F

(1)
3×3 = Diag(0.1, 0.5, 0.9) and F

(2)
3×3 = 0.1J2,

where, J2 is a 2× 2 matrix of all 1’s and ν varies from 1 to 15 to give networks of different
density. So, we get ρn = πTFπ. We now, vary λ̃ to get different combinations of F as well
as ρn.

In the following figures, we try to see the behavior of mean and variances of the count
statistics, as we vary λn as we vary ν.

Application to Real Network Data

Facebook Collegiate Network

In this application, we try to find communities for Facebook collegiate networks. The net-
works were presented in the paper by Traud et.al. (2011) [155]. The network is formed by
Facebook users acting as nodes and if two Facebook users are “friends” there is an edge
between the corresponding nodes. Along with the network structure, we also have the data
on covariates of the nodes. Each node has covariates: gender, class year, and data fields that
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Figure 5.2: The LHS is the performance of graph distance based method and RHS is the
performance of Pseudolikelihood method on same generative SBM.

Figure 5.3: The LHS is community allocation and RHS is the one estimated by graph distance
for Facebook Caltech network with 3 dorms.

represent (using anonymous numerical identifiers) high school, major, and dormitory resi-
dence. We consider the network of a specific college (Caltech). We compare the communities
found with the dormitory affiliation of the nodes.

Political Web Blogs Network

This dataset on political blogs was compiled by [1] soon after the 2004 U.S. presidential
election. The nodes are blogs focused on US politics and the edges are hyperlinks between
these blogs. Each blog was manually labeled as liberal or conservative by [1], and we treat
these as true community labels. We ignore directions of the hyperlinks and analyze the
largest connected component of this network, which has 1222 nodes and the average degree
of 27. The distribution of degrees is highly skewed to the right (the median degree is 13,
and the maximum is 351). This is a network where the degree distribution is heavy-tailed
and the graph is inhomogeneous.
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Figure 5.4: The LHS is community allocation and RHS is the one estimated by graph distance
for Political Web blogs Network.

5.6 Conclusion

The proposed graph distance based community detection algorithm gives a very general way
for community detection for graphs over a large range of densities - from very sparse graphs
to very dense graphs. We theoretically prove the efficacy of the method under the model
that the graph is generated from stochastic block model with fixed number of blocks. We
prove that the proportion of mislabeled communities goes to zero as the number of vertices
n → ∞. This result is true for graphs coming from stochastic block model under certain
conditions on the stochastic block model parameters. These conditions are satisfied above
the threshold of block identification for two blocks as given in [125]. The condition (C1) of
1 not being the eigenvector of K̃ for our community identification result to hold, seems to
be an artificial one, as simulation suggests that our method is able to identify communities,
even when 1 is an eigenvector of K̃.

We demonstrate the empirical performance of the method by using both simulated and
real world networks. We compare with the pseudo-likelihood method and show that they
have similar empirical performances. We demonstrate the empirical performance by applying
the method for community detection in several real world networks too.

The method also works when number of blocks in the stochastic block model brows
with n (number of vertices) and for degree-corrected block model [91]. We conjecture that
under these models too the method will have the theoretical guarantee of correct community
detection. The proof can be obtained by using similar techniques that we have used in this
chapter.



134

Bibliography

[1] Lada A Adamic and Natalie Glance. “The political blogosphere and the 2004 US
election: divided they blog”. In: Proceedings of the 3rd international workshop on
Link discovery. ACM. 2005, pp. 36–43.

[2] Edoardo M Airoldi et al. “Mixed membership stochastic block models for relational
data with application to protein-protein interactions”. In: Proceedings of the interna-
tional biometrics society annual meeting. 2006.

[3] Edoardo M Airoldi et al. “Mixed membership stochastic blockmodels”. In: The Jour-
nal of Machine Learning Research 9 (2008), pp. 1981–2014.

[4] David J Aldous. “Representations for partially exchangeable arrays of random vari-
ables”. In: Journal of Multivariate Analysis 11.4 (1981), pp. 581–598.

[5] Arash A Amini et al. “Pseudo-likelihood methods for community detection in large
sparse networks”. In: (2012).

[6] TW Anderson, Huang Hsu, and Kai-Tai Fang. “Maximum-likelihood estimates and
likelihood-ratio criteria for multivariate elliptically contoured distributions”. In: Cana-
dian Journal of Statistics 14.1 (1986), pp. 55–59.

[7] Krishna B Athreya and Peter E Ney. Branching processes. Vol. 28. Springer-Verlag
Berlin, 1972.

[8] Fadoua Balabdaoui and Jon A. Wellner. “Estimation of a k-monotone density: limit
distribution theory and the spline connection”. In: Ann. Statist. 35.6 (2007), pp. 2536–
2564. issn: 0090-5364. doi: 10.1214/009053607000000262. url: http://dx.doi.
org/10.1214/009053607000000262.

[9] Brian Ball, Brian Karrer, and MEJ Newman. “Efficient and principled method for
detecting communities in networks”. In: Physical Review E 84.3 (2011), p. 036103.
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[58] Paul Erdős and Alfréd Rényi. “On random graphs”. In: Publicationes Mathematicae
Debrecen 6 (1959), pp. 290–297.
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Indian Journal of Statistics, Series A (1968), pp. 167–180.

[96] J. Kiefer and J. Wolfowitz. “Asymptotically minimax estimation of concave and con-
vex distribution functions”. In: Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34.1
(1976), pp. 73–85.



BIBLIOGRAPHY 141

[97] Roger Koenker and Ivan Mizera. “Quasi-concave density estimation”. In: Ann. Statist.
38.5 (2010), pp. 2998–3027. issn: 0090-5364. doi: 10.1214/10-AOS814. url: http:
//dx.doi.org/10.1214/10-AOS814.

[98] E.D. Kolaczyk. Statistical analysis of network data: methods and models. Springer
Verlag, 2009. isbn: 038788145X.
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