
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark 
matter detector

Permalink
https://escholarship.org/uc/item/9sx049qk

Journal
Physical Review D, 97(11)

ISSN
2470-0010

Authors
Akerib, DS
Alsum, S
Araújo, HM
et al.

Publication Date
2018-06-01

DOI
10.1103/physrevd.97.112002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sx049qk
https://escholarship.org/uc/item/9sx049qk#author
https://escholarship.org
http://www.cdlib.org/


Liquid xenon scintillation measurements and pulse shape discrimination in the LUX
dark matter detector
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Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are
expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We
present a measurement of liquid xenon scintillation characteristics in the LUX dark matter detector
and develop a pulse shaped based discrimination parameter to be used for particle identification.
To accurately measure the scintillation characteristics, we develop a template-fitting method to
reconstruct the detection time of photons. Analyzing calibration data collected during the 2013-16
LUX WIMP search, we measure a singlet-to-triplet scintillation ratio for electron recoils (ER) that
is consistent with existing literature, and we make a first-ever measurement of the NR singlet-to-
triplet ratio at recoil energies below 74 keV. A prompt fraction discrimination parameter exploits
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the difference of the photon time spectra for NR and ER events and is optimized to have the least
number of ER events that occur in the 50% NR acceptance region. When this discriminator is used
in conjunction with charge-to-light discrimination on the calibration data, the signal-to-noise ratio
in the NR dark matter acceptance region increases by up to a factor of two.

I. INTRODUCTION

Liquid xenon time projection chamber (TPC) experi-
ments are leaders in sensitivity to detect the interactions
of Weakly Interacting Massive Particles (WIMPs), a class
of as-yet-unobserved particles that have been proposed as
a solution to the dark matter problem [1–3]. In such ex-
periments, the WIMP is predicted to scatter elastically
from a xenon nucleus, resulting in a nuclear recoil (NR).
The primary backgrounds are electron recoils (ER) from
gamma and beta radiation released by residual radioac-
tivity in the detector materials, with a small contribution
from neutrino-electron scattering. Interactions in liquid
xenon produce scintillation photons and ionization elec-
trons which can be measured to reconstruct information
about the interaction. TPC experiments measure both
the ionization and scintillation signals and use this in-
formation to reconstruct the energy deposition, particle
type, and the position of the interaction.

Background rejection is paramount to the success of
liquid xenon dark matter searches. Material screening
and shielding are the primary methods to mitigate back-
grounds; detectors are constructed from highly radiop-
ure materials and are operated in well-shielded under-
ground environments to reduce backgrounds from cos-
mic rays and environmental sources. Position reconstruc-
tion allows fiducialization and the rejection of multiple-
scattering events. The former eliminates ER back-
grounds from detector materials stopping close the edges
of the sensitive volume, while the latter removes event
topologies inconsistent with WIMP scattering. Back-
ground events which remain in the active volume can
be rejected through particle-type discrimination between
ER and NR [1]. In liquid xenon TPC experiments, this
last step is typically done using the ratio of ionization
charge to scintillation light in the event, which is higher
for ER events than NR events. The present work explores
enhancing the ER background rejection using pulse shape
discrimination (PSD) applied to the scintillation signal
alone.

Scintillation light is produced by the self-trapping of
excited xenon atoms (Xe∗), created when a particle de-
posits energy in the liquid. Direct excitation and re-
combination of electron–ion pairs create excited atoms,
which combine with a neutral ground-state Xe atom to
form the molecular dimer Xe∗2. The dimer decays to the
monatomic ground state via emission of a VUV photon
(λ = 175 nm) [4, 5]. These two processes are shown

∗ dkhaitan@u.rochester.edu
† bglenardo@ucdavis.edu

schematically in Eq. 1.1 (direct excitation) and Eq. 1.2
(recombination of electron–ion pair).

Xe∗ + Xe → Xe∗2
→ Xe + Xe + γ ,

(1.1)

Xe+ + Xe → Xe+2

Xe+2 + e− → Xe∗∗ + Xe

Xe∗ + Xe → Xe∗2
→ Xe + Xe + γ .

(1.2)

The decay of the dimer is observed to have both a fast and
a slow component, which are interpreted as de-excitation
of the singlet 1Σ+

u and the triplet 3Σ+
u states, respec-

tively [6, 7]. There are conflicting measurements of the
lifetimes of these states in the literature; measurements
of the singlet time constant τ1 range from 2 to 4 ns,
while measurements of the triplet time constant τ3 range
from 21 to 28 ns [7, 8]. Both components have been
observed for electron recoils, alpha recoils, and recoiling
fission fragments.

For electron recoils, some experiments operating with-
out an applied electric field have observed a time profile
that is best fit with a single exponential with τ = 30–
45 ns [7, 9, 10]. This is attributed to an additional time
delay due to electron–ion recombination. This interpre-
tation is supported by measurements that show that the
scintillation time structure reduces to the characteris-
tic singlet/triplet shape under an applied electric field
(which suppresses recombination) [6]. In addition, re-
cent measurements, without an applied field, show an
energy-dependence of the long component, correlated
with the energy-dependence of recombination [11]. No
field-dependence is observed for alpha particle or fission
fragment recoils, suggesting that recombination-related
timing effects are only significant at low ionization densi-
ties. At the energies (0-50 keV) and electric fields (100–
1000 V/cm) relevant for modern liquid xenon TPC exper-
iments, there are no direct measurements of the effects
of recombination on ER scintillation timing. However,
extrapolating to this regime using the empirical model
given in Ref. [12] suggests that recombination does not
play a significant role in scintillation emission timing in
these experiments, and that pulse shapes can be well-
described purely in terms of the singlet and triplet emis-
sion.

The ratio of singlet emission to triplet emission varies
with particle type, opening up the possibility for ER/NR
discrimination using PSD. Multiple groups have studied
liquid xenon PSD in small R&D detectors [10, 13, 14],
and it was successfully used to reduce backgrounds in
early liquid-xenon-based dark matter searches [15–18].

mailto:dkhaitan@u.rochester.edu
mailto:bglenardo@ucdavis.edu


3

However, these studies are restricted to small detectors
or detectors with spherical photosensor coverage of the
xenon volume. Current and future TPC experiments
have meter-scale dimensions and make extensive use of
reflectors to maximize light collection [19, 20]. In such
detectors, scintillation pulse shapes are subject to signif-
icant distortion from scattering, reflection, and absorp-
tion of photons by detector materials. In addition, pre-
vious studies have not attempted to reconstruct the sin-
glet/triplet ratio for both ER and NR pulses at the low
energies relevant to dark matter searches. Attempts to
simulate scintillation pulses must therefore rely on mea-
surements at higher energies, which may not accurately
reflect xenon microphysics in the region of interest.

In this work, we present a measurement of scintillation
characteristics and PSD in the LUX detector, a meter-
scale liquid xenon TPC [21]. We study both ER and
NR calibration data taken throughout the LUX WIMP-
search campaign. First, a template-based photon recon-
struction algorithm is used to deconvolve the response
of the electronics in order to reconstruct the time when
a photon strikes a photomultiplier tube. The spectra
of photon detection times are added across many pulses
to construct average pulse shapes for both ER and NR
events. Second, we develop an analytical model to de-
couple detector effects from xenon scintillation emission.
This model is fit to data to extract physical parameters
that can inform simulation packages such as NEST [22].
Finally, we construct a pulse shape discriminant using
the prompt-fraction technique, and compute the power
of PSD background rejection in LUX. Using the best-
fit parameters from the analytical model, we construct
a simulation that accurately reproduces PSD measure-
ments from data. The discrimination power improves
with recoil energy, and we demonstrate how PSD can be
used in conjunction with the charge-to-light ratio to fur-
ther improve background rejection. These features make
it attractive for exotic dark matter searches in which
low-energy recoils are suppressed, such as searches for
momentum-dependent and inelastic dark matter scatter-
ing from nuclei [23, 24]. These measurements allow es-
timation the of the PSD capabilities of the current and
next generation of liquid xenon dark matter experiments,
and can be applied to future dark matter searches using
the LUX dataset.

II. THE LUX EXPERIMENT

The LUX detector is a dual-phase xenon TPC, de-
signed to detect WIMP scattering with xenon nuclei. It
was operated from April 2013 through June 2016 in the
Davis Cavern at the Sanford Underground Research Fa-
cility (SURF) in Lead, South Dakota [25]. Dark matter
search data were acquired in two exposure periods, de-
noted WS2013 and WS2014-16 [1]. To meet the strin-
gent low-background requirements required for the dark
matter search, the detector is located deep underground

(4,300 meters water equivalent), is surrounded by a 7.6 m
tall by 6.1 m diameter water shield, and is constructed
from materials that have been carefully screened for ra-
diopurity. The sensitive volume is approximately 48 cm
in height and 24 cm in radius, and contains ∼250 kg of
liquid xenon. Each end of the TPC is instrumented with
an array of 61 Hamamatsu R8778 photomultipler tubes
(PMTs) to detect light signals generated in the TPC.
Twelve PTFE panels, >95% reflective at 175 nm [26],
line the walls to increase the light collection efficiency.
The scintillation signal, denoted S1, is detected directly
by the PMTs. Ionization electrons are drifted under an
applied electric field and extracted into a gas region at
the top of the detector, producing an electroluminescence
signal, denoted S2. The (x, y) position of the events is re-
constructed using the pattern of S2 light on the top PMT
array [27], while the depth is reconstructed from the time
delay between the S1 and S2 signals. The energy deposi-
tion of the event is reconstructed from the magnitude of
the two signals.

The PMT signals are routed to an external electron-
ics breakout box for processing, before digitization. Sig-
nals are amplified in two stages at the pre- and post-
amplifiers, which provide a total effective gain of 7.5.
The signals are shaped by a 30 MHz low-pass filter. The
resulting single photoelectron (SPE) pulses have a full
width at half maximum (FWHM) of >20 ns [28]. Signals
are digitized using a 100 MHz Struck SIS3301 8-channel
fast analog to digital converter (ADC). The average digi-
tized area of an SPE is ∼100 mV·ns [21]. Recently, it has
been shown that VUV photons have a ∼20% probability
of generating two photoelectrons at the photocathode of
the R8778 PMT [29]. Pulse areas are therefore measured
in units of detected photons (phd) rather than photoelec-
trons. In addition, a “spike count” has been employed in
the LUX dark matter analyses to improve resolution for
very low-energy S1 pulses [1, 30]. This method is not
used in the present work, as we are focused on higher
energy events.

Calibration campaigns were conducted throughout the
exposure period to monitor detector stability and re-
sponse. Detector stability, electron lifetime, and signal
corrections were measured using a 83mKr source, dis-
solved in xenon [31]. The corrected signals for the S1
and S2 pulses are denoted S1 and S2. These calibra-
tions occurred weekly throughout both exposure periods.
The low-energy NR and ER responses were periodically
calibrated in–situ using fast neutrons from deuterium-
deuterium fusion (DD) [32] and electrons from the beta
decays of tritium [33]. Neutrons from the DD generator
traveled through an air-filled collimating pipe suspended
in the water tank, and were approximately normally in-
cident on the detector at a level ∼7.5 cm below the LXe
surface in the TPC. The tritium source was deployed
in the form of tritiated methane CH3T and mixed into
the detector through the xenon circulation system. Both
DD and CH3T calibrations were performed at the end
of each WIMP search run, as well as three times during
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WS2014-16. To calibrate the depth-dependent response
to NR events, DD calibrations were conducted at dif-
ferent heights at the start and end of WS2014-16. Ad-
ditional calibration campaigns were carried out at the
end of WS2014-16, including an injection of 14C into the
xenon circulation system. The higher energy beta spec-
trum provided by 14C (endpoint at 156 keV) provides
a source of ER events beyond the 18 keV endpoint of
tritium.

We use all of the DD, CH3T, and 14C calibration data
in the analysis presented here. Due to limited statis-
tics in the lower portion of the detector, we developed
our analysis and fit our analytical model using the data
in the top drift bin from the WS2014-16 WIMP analy-
sis (tdrift =40–105 µs) and demonstrate consistency be-
tween data and simulations in the lower drift bins.

III. PHOTON TIMING

In past studies, the time structure of detected scin-
tillation photons was typically obtained by measuring
the shape of pulses summed over all channels in a de-
tector. However, the ∼20 ns shaping time constant and
10 ns sampling period of the LUX DAQ are similar to
the timescale to the de-excitation process of liquid xenon,
and may therefore mask underlying scintillation charac-
teristics. For this analysis, we developed a photon timing
algorithm and a channel-to-channel time calibration tech-
nique that accurately reconstructs a photon’s detection
time by deconvolving it from the electronic pulse.

A. Photon timing algorithm

Precise timing is achieved with an analysis technique
that separates pulses into individual detected photons,
similar to the approaches in Refs. [11, 34]. After baseline
subtraction and normalization by PMT gains, the wave-
forms in individual PMT channels were analyzed in three
steps: 1) template model fitting, 2) template model se-
lection, and 3) re-weighting of the reconstructed photons.

In the template fitting stage, the waveform in a sin-
gle channel is fit with five separate n-photon models,
composed of the sum of up to five single-photon tem-
plate functions (the restriction to n ≤ 5 is expected to
be more than 99% efficient for scintillation pulses up to
300 detected photons). The single-photon template is an
empirical model, constructed from an average of 1,000
waveforms with areas between 0.5–1.5 phd. The fit is
performed using the Migrad routine built into the TMi-
nuit class in ROOT [35], with the amplitude and the
arrival time of each template as free parameters. Initial
values for times and amplitudes are given by the time and
height of the peaks in the waveform, defined as maxima
above a threshold of 0.1 phd/sample (∼5σ above base-
line fluctuations). When there are fewer than five peaks,
the photon fit is repeated with all possible permutations,

allowing multiple detected photons piling up to form a
single spike. The resulting fits must meet two criteria:
none of the reconstructed photons may have an area less
than 0.15 phd, and the time separation between all pairs
of photons must be greater than one sample. The first
criterion removes fits in which we reconstruct fluctua-
tions in baseline noise. Roughly 2% of real photons fall
below this threshold. The second criterion removes fits
with multiple photons reconstructed within a single sam-
ple, where our algorithm is unable to accurately separate
photons (a correction is applied later to account for unre-
solved pileup). If a particular fit fails one or both of these
cuts. The best-fit times, areas, and likelihood values for
each of the remaining n-photon models are passed to the
next stage of the algorithm for comparison and selection.

The model comparison stage uses Bayes’ Theorem to
assign a likelihood score to each n-photon model, and the
model with the highest likelihood score is selected. The
likelihood score is the product of the maximum likelihood
from the fit and a prior probability calculated using the
measured area. For a given waveform (denoted D) and
n-photon model (denoted Mn), Bayes’ Theorem can be
used to calculate the probability of Mn given D, with,

P (Mn|D) =
P (D|Mn)P (Mn)

P (D)
. (3.1)

Here, P (D|Mn) is the maximum likelihood given by the
fit, P (D) is a flat normalization constant which we ig-
nore, and P (Mn) is the prior. The prior P (Mn), is
the probability of measuring the observed area if there
were actually n detected photons in the channel. This
is calculated using a single-photon area response PDF,
averaged over all PMT channels, which incorporates the
∼ 20% probability of xenon scintillation light produc-
ing two photoelectrons in the R8778 PMTs [29]. The
P (Mn) prior prevents overfitting by applying a penalty
to models composed of many reconstructed photons with
improbably small areas. The model with the largest over-
all likelihood score P (Mn|D) is selected and we return
the best-fit arrival times and amplitudes.

To correct for unresolved pile-up, we assign a weight
to each reconstructed photon that is equal to the area
of the fitted template. Pile-up occurs when the fitting
algorithm fails to split a single peak, usually when two
photons arrive in a single channel within 1 sample. The
total number of photons counted in the pulse is given by,

Corrected photon count = C

N∑
i=1

wi , (3.2)

where wi is the weight of the i-th photon, N is the un-
corrected number of photons returned by the fits in all
channels, and C is an overall correction factor. The lat-
ter accounts for inefficiencies that may arise due to the fit
threshold or inexact area matching of the template func-
tion with true pulses. To find C, we fit a linear model of
the form y = mx to the DD neutron data, where x is the
pulse area (in phd) and y =

∑
wi. Then C = 1/m. We
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FIG. 1: Comparison of corrected photon count vs. the
raw S1 pulse area in detected photons (phd) for both
tritium (blue) and DD neutron (red) calibration data.
The corrected photon count is computed using Eq. 3.2
with C = 1.04. The black dashed line has a slope
m = 1, and is shown for comparison.

find that C = 1.04 ± 0.01 reproduces the total number
of photons obtained from the pulse area. A comparison
between our corrected photon count and the pulse area
using these values is shown in Fig. 1. The pulse area
and the corrected photon count agree throughout the 0–
200 phd pulse area range used in this work.

The times of the photons returned by the fits corre-
spond to the photon detection times, deconvolved from
the shaping of the detector electronics. The performance
of our algorithm is demonstrated in Figs. 2 and 3. Fig-
ure 2 shows an example best-fit model with a simulated
pulse. Although there are only two peaks in the pulse, the
model selection algorithm correctly prefers the 3-photon
model and reconstructs the times to within 0.1 samples
(1 ns) for each photon. Fig. 3 shows the algorithm ap-
plied to a real S1 pulse from the tritium calibration data.
We estimate the 1σ uncertainty of the photon detection
time from the fit to be 1.6 ns, calculated from the aver-
age uncertainty returned by the Migrad fitter when our
algorithm is applied to the CH3T calibration data.

B. Channel-to-Channel Time Calibration

There are several factors that affect the relative time
between PMT channels. The R8778 PMTs are specified
to have an electron transit time of 41 ± 1.7 (σ) ns at
1500 V; this transit time varies inversely with the square
root of the bias voltage [36]. Gain-matching of the PMTs
requires operational voltages to vary between 1000 and
1500 V, which causes the electron transit time to vary be-
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FIG. 2: Example simulated waveform (black). Three
photons arriving at t = −0.75, 1.60, and 6.50 samples
(1 sample = 10 ns) are used to generate the simulated
signal. The photon timing algorithm described in
Section III reconstructs 3 photons arriving at t =
−0.76, 1.51, and 6.45 samples (grey).

tween 41 and 50 ns. Differences in cable lengths can cause
further differences in signal arrival times. The shaping fil-
ters on the pre- and post-amplifiers further degrade tim-
ing accuracy and can add relative delays between chan-
nels. Finally, a 100 MHz clock pulse is propagated to
each digitizer that can cause synchronization delays be-
tween digitizers [21]. All of these relative offsets must
be measured and corrected for in this analysis so that
coincident photons are correctly aligned in time.

We measure the combined effect of these time offsets
using LEDs mounted on the top and bottom PMT arrays.
The LED system includes twelve 440 nm diodes, capped
with PTFE diffusers, that are used for gain and after-
pulsing calibrations of the PMTs. To measure relative
time offsets, pulses with a FWHM of 20 ns, a rise/fall-
time of 5 ns, and a peak amplitude in the range 3.36–
3.80 V are propagated to individual LEDs within the
chamber. The resulting single photoelectron pulses in
each channel are fit with the single-photon template to
determine their arrival time relative to the LED strobe.
The direct-path travel time for a photon from an LED
to a PMT is subtracted to remove photon path length
differences from this calibration. If the PMT is located on
the same array as the LED, there is no direct optical path
from the LED to the PMT; we therefore assume that the
shortest path is via reflection off the liquid-gas interface.
For each channel, a distribution of the path-corrected
photon detection time, relative to the LED trigger, is
obtained. A typical distribution is shown in Fig. 4.

A common reference time needs to be selected for each
channel to serve as the correction to be applied to that
channel. Tails longer than the strobe time of the LED are
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(b) Reconstructed Photon Times

FIG. 3: (a) A scintillation pulse from a CH3T
calibration event, separated by PMT channel. (b) The
reconstructed peak times for the photons in the pulse is
shown.

observed in these time distributions and are attributed to
photons scattering within the detector volume. To avoid
these effects from biasing our measurement, 10% of the
peak amplitude on the rising edge of each distribution
is used to define the correction time for each channel.
These corrections vary by up to 20 ns (2 samples) from
channel to channel. Measurements are repeated with two
LEDs in the top array and two LEDs in the bottom array
to test for systematic effects from PMT coverage. The
corrections between different LED measurements agree
to within 2 ns, which represents the resolution of the
measurement; we take this as our 1σ uncertainty. The
corrections are subtracted from the reconstructed photon

FIG. 4: An example of a photon detection time
distribution for a PMT located on the bottom array,
facing the strobed LED on the top array. The photon
detection times shown are relative to the LED trigger
and are histogramed in 2 ns bins. The points between
the data are interpolated with a linear spline, which is
shown with the dotted red trace. The dashed blue line
shows 10% of the peak height and is compared to the
spline fit to obtain the offset for that channel, shown by
the solid green trace.

times in the analysis presented in Section V.

IV. LIQUID XENON SCINTILLATION IN THE
LUX DETECTOR

A. Analytical model of photon detection times

The analytical model of photon detection time in LUX
is built from three components: scintillation emission,
optical transport, and a model of instrument response.

The scintillation emission distribution is assumed to
be of the form

Ps(t) = C1 e
−t/τ1 + C3 e

−t/τ3 , (4.1)

where τ1 and τ3 are the time constants governing the
decay of the singlet and triplet states. In this parame-
terization, the ratio of singlet photons to triplet photons,
referred to as the intensity ratio or the singlet/triplet
ratio in the literature, is given by (C1 τ1) / (C3 τ3). Ad-
ditional timing effects in electron recoils due to electron–
ion recombination are neglected in our model as they are
expected to be suppressed by the applied electric field
and the high linear energy transfer (LET) at low en-
ergies. For the calibration data used to constrain the
model (∼300 V/cm and ∼10 keV), an empirical for-
mula in Ref. [12] predicts a recombination time scale of
τrec < 0.7 ns. As this is significantly smaller than the
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TABLE I: Optical transport parameters at different
locations inside the LUX detector (see Eq. 4.2). The
first four rows correspond to the drift bins used in the
WS2014-16 dark matter analysis [1], while the D-D
beam location is used to constrain our pulse shape
model in Sec. V B.

Position A Ba τa (ns) τb (ns)

Top 0.0544 1.059 11.2 2.80

Top center 0.0489 1.017 11.2 5.21

Bottom center 0.0586 0.906 11.2 1.56

Bottom 0.120 0.798 11.1 1.68

D-D beam 0.0574 1.062 11.1 2.70
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FIG. 5: Simulated time distribution of photons
detected in the LUX detector, calculated using the
ray-tracing capabilities in the LUXSim Geant4
simulation package. The photon sources are 10 cm
thick, 20 cm diameter cylinders, centered at different
depths below the liquid surface: 42 cm (grey), 32 cm
(green), 22 cm (orange), and 12 cm (blue). These slices
in depth correspond to the drift time bins used in the
WS2014-16 dark matter search [1]. Solid lines show the
second term in Eq. 4.2, fitted to these simulations. The
excess in the first bin from direct-path photon arrivals
is parameterized by a constant A and is not reflected in
the curves shown. Values of the parameters for each
position are given in Table I

other timescales in this analysis, we neglect a full treat-
ment and simply use two different triplet time constant
for ER and NR, τ3er and τ3nr . Any recombination effects
will be absorbed by τ3er and will result in τ3er slightly
larger than τ3nr .

The optical transport distribution is constructed us-
ing photon-tracking simulations which take into account
physical and geometrical effects on xenon scintillation

light inside the LUX detector [37]. Photon transport
times depend on several physical properties of the detec-
tor internals: reflection and absorption at internal sur-
faces, reflection and transmission at the liquid/gas inter-
face, and absorption and scattering in the liquid. The
values for these parameters are constrained in-situ using
83mKr calibration data [38]. Photon transport is sim-
ulated using the LUXSim package [39], a Monte Carlo
code built on Geant4 [40, 41]. Figure 5 shows the optical
transport distributions in each of four height bins used
in the LUX WIMP search analysis with the WS2014-16
exposure [1]. The differences between the simulations re-
flect the depth-dependent probability, due to the combi-
nation of geometric efficiency and reflection at the liquid-
gas interface, for photons to travel directly to PMTs. To
include optical transport in the analytical model, we in-
troduce the empirical distribution

Po(t) = Aδ(t) + (1−A)

[
Ba
τa

e−t/τa +
Bb
τb
e−t/τb

]
,

(4.2)
where A, Ba, τa, and τb are fitted to the simulated dis-
tributions. The first term is a Dirac delta function which
parameterizes the light which travels directly to a PMT,
while the second term parameterizes the time distribu-
tion from light that reflects and scatters from the detector
internals. Normalization requires Bb = 1−Ba. The un-
certainties in the optical parameters, given in Ref. [38],
are a source of systematic error in our analysis. We dis-
cuss this further in Section V B.

Finally, we treat instrumental effects as normally dis-
tributed variables, parameterized by an overall width σ.
There are two leading sources of random timing fluctua-
tions in our data: the transit time spread of the R8778
PMTs σtts = 1.9 ns (at the operating bias of ∼1300 V)
[42], and the uncertainty in the reconstructed detection
time from the photon timing algorithm, σfit = 1.6 ns.
There is also the 2 ns uncertainty in the channel-to-
channel time corrections, σtc. While this is a fixed time
offset for each channel rather than a random pulse-by-
pulse fluctuation, the result is a net smearing of the pulse
shape when averaging pulses together across all of the
channels. Using simulations, the net effect of the time
correction uncertainties on average pulse shapes was de-
termined to be equivalent to normally-distributed ran-
dom fluctuations. Therefore, the overall width added to
photon time spectra by the effects in the electronics and
the data reduction pipeline can be described by adding
these three effects in quadrature:

σ =
√
σ2
tts + σ2

tc + σ2
fit . (4.3)

The total analytical model for photon detection time
is given by the convolution of Eq. 4.1, Eq. 4.2, and a
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Gaussian distribution of width σ, given by Eq. 4.3:

P (t) =∑
i=1,3

∑
j=a,b

CiA

2
e
σ2

2τ2
i

− t
τi

[
1 + erf

(
t− σ2

τi

σ
√

2

)]
+

Ci (1−A)Bj
2(
τj
τi
− 1)

e
σ2

2τ2
j

− t
τj

1 + erf

 t− σ2

τj

σ
√

2

 −
Ci (1−A)Bj

2(
τj
τi
− 1)

e
σ2

2τ2
i

− t
τi

[
1 + erf

(
t− σ2

τi

σ
√

2

)]
.

(4.4)

B. Scintillation Pulse Monte Carlo

We developed a Monte Carlo (MC) that uses the an-
alytical pulse shape model as an input and generates
channel-level simulated signals. For a given scintillation
pulse size, the number of photons that arrive at the top
and bottom arrays are drawn randomly from a binomial
distribution, using the top/bottom light collection asym-
metry measured with the CH3T calibration data. The
number of photons in a single PMT channel is drawn
from a binomial distribution with p = 1/61. This is
a good approximation for S1 light detection by the 61
PMTs in each array for events in the fiducial volume. The
areas of each photon are independently drawn from the
single-photon pulse area distribution, averaged across all
PMTs. Each photon is then randomly assigned a detec-
tion time, drawn from the distribution in Eq. 4.4. Pho-
ton template functions with the appropriate amplitudes
and arrival times are added together to construct a simu-
lated signal. Noise is added to this signal by adding sine
waves with frequencies and amplitudes given by the mea-
sured noise power spectrum and random phases drawn
uniformly on the interval [0, 2π]. The bandwidth of the
DAQ is therefore included in both the noise and the sig-
nal by using data-driven signal and noise distributions.
The simulated waveform is then sampled at 100 MHz,
with the starting point given by a uniform random num-
ber between 0 and 10 ns to simulate timing jitter due to
the digitizer’s sampling. This MC is used in the following
sections to simulate scintillation pulses for error analyses
and discrimination calculations.

V. ER/NR DATA ANALYSIS AND RESULTS

A. Photon Time Spectrum

We study scintillation characteristics in ER/NR cali-
bration data by constructing photon time spectra that
are averaged over many events. Event selection is based
on the dark matter search analyses: we study only single-
scatter events. These are defined as events with a single
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FIG. 6: Average photon detection time spectra for
events with pulse area between 40–50 phd
(∼ 11–13 keVee). The probability distribution of NR
events, from DD neutron data, is shown by the red
diamonds and the MC simulated NR time spectrum is
shown in red. The measured distributions for ER events
from tritium and 14C are shown in green and blue,
respectively. The ER time spectrum generated from
MC simulations is shown in blue. The time at which
the pulse area reaches 5% of the total, denoted T05 in
the text, is used as t = 0. The vertical uncertainties in
each bin are calculated from Poisson statistics, while
the horizontal error bars represent bin width.

S2, preceded by a single S1 within the maximum drift
time (330 µs). To reduce the position dependence of opti-
cal transport, indicated by Fig. 5, we select only events in
a rectangular prism around the beam path of the neutron
calibration source, at a median depth of ∼7.5 cm below
the liquid surface. The average electric field in this re-
gion, calculated using COMSOL electrostatics simulation
software [43], is 410 V/cm. The times of detected photons
in these events are corrected using the channel-to-channel
time calibration and the direct-path travel time from the
event site to the PMT is subtracted, and weighted by
the wi’s. To align time spectra from different events,
we define a common reference of the sample at which
the summed waveform crosses 5% of the total pulse area
(hereafter denoted T05). The photon time distribution
for many events are used to produce average time spec-
tra. As our analysis is focused on the true number of
photons arriving in a given pulse, we use S1 pulse areas
that are not corrected for position dependent effects in
the LUX detector unless otherwise noted.

Average time spectra for the three calibration sources
with pulse area between 40–50 phd are shown by the
data points in Fig. 6. The two electron recoil sources
(14C and tritium) show identical spectra, while the nu-
clear recoil source (DD neutrons) has a spectrum skewed
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to earlier times. This difference is explored in the con-
text of our analytical model in Section V B, and is used
for ER/NR discrimination as discussed in more detail in
Section VI A.

The field- and position-dependence of the pulse shapes
were studied using the ER calibration data. The electric
fields within the detector volume changed significantly
between WS2013 and WS2014-16: in the former, the
drift field was ∼180 V/cm throughout the detector, while
in the latter, the drift field is highly non-uniform, vary-
ing from an average of ∼50 V/cm near the bottom to
∼400 V/cm near the top of the detector. For a fixed
volume and fixed pulse area, we do not observe a sig-
nificant difference in the average time spectra for any
of the tritium calibrations from WS2013 or WS2014-16.
We therefore conclude that there is no significant field-
dependence within the limits of our sensitivity. We ob-
serve a depth-dependence in the average time spectra,
consistent with the expectations from the optical trans-
port model. Since photons from S1 pulses are prefer-
entially detected in the bottom PMT array due to re-
flections at the liquid-gas interface, we attribute depth-
dependence of the pulse shapes to the depth-dependence
of the geometric efficiency of the bottom array. The ef-
fects of the depth-dependence on ER/NR discrimination
is discussed in Section VI A.

B. Fits to analytical model

The analytical model was fitted to the average time
spectra in both ER and NR data to extract scintillation
characteristics. To measure energy dependence, we fit
the average time spectra binned by the reconstructed ER-
equivalent energy (given in keVee),

Erec = W

(
S1

g1
+
S2

g2

)
. (5.1)

Here, S1 and S2 denote the S1 and S2 pulse ar-
eas corrected for all position-dependent effects using
the 83Kr calibrations. Over the period of the experi-
ment, the parameters g1 varied between 0.100 ± 0.002
and 0.097 ± 0.001 phd/photon, and g2 varied between
18.92 ± 0.82 and 19.72 ± 2.39 phd/electron. These are
the detector-specific gains for S1 signals and S2 signals
during the calibration campaigns used in this analysis
[1]. W = 13.7 eV is the average energy required to create
either a scintillation photon or an ionization electron in
liquid xenon [44]. For ER events, we use bins of 4 keVee

in Erec from 5–45 keVee. For NR events, we use bins
of 2 keVee from 5–17 keVee. To obtain the true energy
of events contributing to each Erec bin, the distribution
of recoil energies for each source is simulated using the
NEST light and charge yield models tuned to LUX data,
given in Ref. [33] (for ER) and Ref. [32] (for NR). We
report the mean and the ±1 σ of the simulated distri-
butions as the true energy and its error. This analysis

includes ERs with true energies from ∼5–46 keV and NRs
with true energies from ∼25–74 keV.

In addition to the timing effects built into the analyt-
ical model, the photon time spectra experience a spread
due to statistical fluctuations in T05. These depend
on the scintillation emission distribution and the total
number of detected photons, and produce an additional
smearing that could be mistaken for an energy depen-
dence in the underlying time spectra. We model this
effect using the MC to simulate events in each energy
bin. The distribution of T05 in the appropriate energy
bin is convolved with the analytical model before fitting
to the measured average time spectra.

Several of the fit parameters are expected to remain
constant across energies and particle types. The singlet
time constant τ1 and the Gaussian fluctuation parameter
σ are expected to be the same across all energy bins and
for both ER and NR data, as they are dependent solely on
the scintillation physics of the Xe∗2 dimer and the timing
resolution, respectively. Similarly, the optical transport
parameters (A, Ba, τa, and τb) depend solely on photon
transport in LUX, and should be constant across all spec-
tra for a fixed position inside the detector. The values
used in these fits are given in Table I for the DD beam
location, and are constant for both ER and NR spectra
across all energies.

In contrast, the ratio of C1/C3 is allowed to vary inde-
pendently for each energy bin in both ER and NR data.
This allows our model to capture the difference in the
singlet/triplet ratio between ER and NR events, as well
as any possible dependence on recoil energy. We also al-
low τ3 to vary between ER and NR datasets to allow it
to capture any small recombination effects, as discussed
in Section IV.

In order to fit all of these parameters with the appro-
priate constraints and correlations, we simultaneously fit
the average time spectra at all energies using a global
log-likelihood given by

log(L) =

 ∑
ER,NR

N∑
i=1

M∑
j=1

− (Yj − Ycalc)2√
2 Yj

 , (5.2)

where N is the number of bins in energy, M is the number
of bins in the average pulse timing distribution for each
energy bin, Yj is the number of photons in bin j of the
timing distribution, and Ycalc is the height of bin j, cal-
culated by the model. The singlet and triplet times are
constrained to vary within [0 ns, 10 ns] and [18 ns, 35 ns],
respectively, to avoid degeneracy. We maximize log (L)
using the Minuit optimizer class provided by the ROOT
framework [45].

The results of the global fit are summarized in Table
II. The statistical errors are those returned by the fit
routine. In addition, there are two main sources of sys-
tematic error: errors introduced in the analysis and fit
procedure, and errors from uncertainties in the optical
model used to produce A, Ba, τa, and τb. We quantify
the first by performing the analysis on simulated events
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TABLE II: Summary of parameters used in fitting our photon time spectra. Expected values in column 2 come
from the literature where appropriate: the predictions for the triplet and singlet times come from the average values
in Ref. [12], while the prediction for C1τ1/C3τ3 comes from the measurement in Ref. [11]. The expected value of σ is
calculated from Eq. 4.3. The best-fit parameters are shown with ±1 σ statistical uncertainties, calculated from the
fit. The analysis systematic is computed by performing the same fit procedure on simulated data with known input
parameters. The optical transport systematic uncertainty comes from varying the optical model used in the fit, i.e.
fitting A, Ba, τa, and τb to optical simulations with the ±1 σ extremes on optical parameters from Ref. [38].

Parameter Expected Fit constraint Best fit ± stat.
Analysis

sys.
Optical transport

sys.

(C1τ1)/(C3τ3) ∼0.1 (ER) none 0.042 ± 0.006 ±3.1% +75%
−66%

none (NR) none 0.269 ± 0.034 ±3.1% +20%
−10%

τ1 3.1 ± 0.7 ns 0-10 ns 3.27 ± 0.66 ns ±1.0% +11%
−70%

τ3 24 ± 1 ns (ER) 18-35 ns 25.89 ± 0.06 ns ±1.9% +0.5%
−0.6%

24 ± 1 ns (NR) 18-35 ns 23.97 ± 0.17 ns ±1.9% +0.1%
−1.1%

A 0.0574 fixed +34%
−9.1%

B 1.062 fixed +1.9%
−1.0%

τa 11.1 ns fixed +17%
−21%

τb 2.70 ns fixed +0%
−8%

σ 3.2 ns none 3.84± 0.09 ns ±1.1% +1.2%
−1.2%

with known input parameters. Shifts between the input
parameters and the reconstructed parameters are quoted
as the systematic errors shown in the fifth column in Ta-
ble II, and are O(2%). The errors due to uncertainties in
the optical model is quantified using the χ2 distribution
of the optical model fit given in Ref. [38]. Of the seven
free parameters in the optical model, we find that only
two affect the photon transport times: the liquid xenon
absorption length and the teflon reflectivity. We run new
optical transport simulations allowing these parameters
to vary along the ∆χ2 = 8.18 (1σ) contour of the optical
model parameter space. We then propagate these new
simulated distributions into our pulse shape model and
redo the analysis to extract new pulse shape parameters.
We report the variations from the best-fit values as the
systematic error, which is listed in the sixth column of
Table II. This is the dominant error in our analysis.

The best-fit singlet/triplet ratios as a function of en-
ergy are shown in Fig. 7. For electron recoils we find
(C1τ1)/(C3τ3) = 0.042±0.006 (stat) +0.092

−0.034 (sys), averaged
across all measured energies, which is lower than existing
results in the literature. We note this is the first measure-
ment of the singlet/triplet ratio with both a low energy
ER source and an applied electric field. The energy de-
pendence at zero field, measured by the XMASS collab-
oration (shown by cyan diamonds in Fig. 7) is correlated
with a lengthening of the long time constant from 28 ns to
32 ns, which suggests that they are observing an increase
in the recombination-related time constant with energy
which are not explicitly accounted for in their model. We
do not observe an energy dependence in neither the time
constant nor in the singlet/triplet ratio, consistent with

the hypothesis that the applied electric field in our ex-
periment suppresses recombination contributions to the
pulse shape. For nuclear recoils, we find (C1τ1)/(C3τ3)
= 0.269± 0.034 (stat) +0.182

−0.083 (sys), averaged across all en-
ergies probed in this analysis. The only analogous mea-
surement in the literature uses recoiling fission fragments
and finds (C1τ1)/(C3τ3) = 1.6± 0.02, though in a vastly
different energy regime at O(100 MeV) [7]. Our result is
therefore the first nuclear recoil singlet/triplet ratio mea-
surement that is directly relevant for dark matter TPC
experiments.

We test for energy dependence of the singlet/triplet
ratio by fitting both a constant value and a power law
dependence, the latter given by (C1τ1)/(C3τ3) = αEβ .
Such an energy dependence is well-established in liquid
argon [46], but has never been directly explored in xenon.
For electron recoils, the best-fit values of the power law
give α = 0.063 and β = −0.12. The χ2/d.o.f. for the
constant and power law models are 16.6/9 (p = 0.06)
and 13.7/8 (p = 0.09), respectively. For nuclear recoils,
the best-fit values of the power law give α = 0.15 and
β = 0.15. In this case, the χ2/d.o.f. for the constant
and power law models are 4.6/5 (p = 0.47) and 3.2/4
(p = 0.52). We conclude that our data is statistically
consistent with both models, and both are compared to
data in Fig. 7, Fig. 9, and Fig. 10 for completeness.

Our best-fits of the triplet and singlet time constants,
τ1 and τ3, agree with previously measured values. The
expected values, listed in Table II, are the error-weighted
averages computed in Ref. [12] based on a survey of mea-
surements in the literature. The only value in slight ten-
sion is the triplet time constant that we measure for elec-
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tron recoils, which is higher than both the expected value
and our best-fit for nuclear recoils. This is consistent with
small recombination effects that are not accounted for in
our model. If we assume τ3er = τ3nr = 23.97 ns and take
the recombination time distribution derived in Ref. [8]
(P (t) ∝ [1 + (t/τR)]−2), simulations reproduce our best-
fit distribution with τR ≈ 0.6 ns. This expression for
recombination time may not be directly applicable here,
as it is derived by solving a diffusion equation with no ap-
plied electric field. However, we note that the qualitative
agreement with the empirical prediction of τR = 0.7 ns
from Ref. [12] is encouraging. Regardless, our result for
τ3er is still within the range of τ3 measurements available
in the literature [6, 11], indicating that recombination
plays a minor role in the pulse shapes for electron recoils
in our experiment.

VI. PULSE SHAPE DISCRIMINATION

A. Prompt Fraction Discriminator

To discriminate between the two types of events we
adapt a Prompt Fraction Discriminator (PFD), a stan-
dard technique which has been successfully adapted for
use in other liquid xenon and liquid argon dark matter
experiments [11, 16, 17, 47, 48]. The parameter is defined
as:

PF =

∫ t1
t0

S1(t)dt∫ t3
t2

S1(t)dt
=

∑
Prompt Photons∑
Total Photons

. (6.1)

The four variables, t0, t1, t2, and t3, are allowed to vary
independently in the range of −30 to 170 ns to mini-
mize the leakage of ER events into the NR acceptance
region, where the ∼50% NR acceptance region is defined
as everything above the NR median (NR). No additional
constraints on these parameters were imposed and cases
where t0 > t2, etc. were explored. For each combination
of times, the PF is applied to the calibration data and
we create a map of the fraction of event that appear in
the NR acceptance region. We choose the combination of
times that produces the minimum leakage as our PF and
the NR as our optimal Prompt Fraction Discriminator
(PFD).

To calculate an unbiased performance of the PFD we
separate the calibration datasets into two groups and ap-
ply a weighting to mitigate the energy dependence of the
source. The calibration datasets are divided into 10 phd
bins before events in each bin are randomly assigned to
either the training or the testing group. Both groups
contain 50% of the data and there is no statistically sig-
nificant difference between their average detected pho-
ton time spectra, position, or energy distributions. The
training group of events are used to train our PFD. The
results of this PFD are applied to the events in the testing
group and are presented in this paper. Since the count
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FIG. 7: Singlet/triplet ratio (C1τ1/C3τ3) measured for
nuclear recoils (Top) and electron recoils (Bottom) using
LUX calibration data. Only statistical uncertainties are
shown. Calibration sources are DD neutrons (red),
tritium (blue), and 14C (green). Measurements in
different energy bins are shown by the square points,
while the average across all energies is shown by the
solid line. A power law is fit to the data is presented by
the dashed line. We also show measurements of the ER
singlet/triplet ratio at zero field from Ref. [11] (cyan
diamonds), and a measurement using a 207Bi internal
conversion source at 4 kV/cm from Ref. [8] (purple
diamond). In Ref. [11], the singlet fraction (denoted F1)
is given rather than the singlet/triplet ratio. For direct
comparison to this work we make the conversion
(C1τ1)/(C3τ3) = F1/(1 + F1).

rate of the calibration sources is energy dependent, each
10 phd bin is weighted equally when calculating the to-
tal leakage and is not weighted by the number of events
in that particular bin. We optimize the PFD for a ‘flat’
distribution in pulse area.

Using the six different calibration campaigns carried
out at various times during WS2013 and WS2014-16, an
optimal PFD has been found. 14C was only injected at
the end of the LUX WS, whereas tritium and DD calibra-
tions were carried out during each of the five calibrations
campaigns. Carrying out the PFD optimization using
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FIG. 8: Normalized prompt fraction distributions for
NR (red) and ER (blue) events with raw S1 pulse areas
from 40–50 phd. Solid red and blue traces are the
simulated NR and ER prompt fraction distributions for
this pulse area. The vertical error bars indicate the
Poisson uncertainty, while the horizontal error bars
represent bin width. The solid black line indicates the
median of the NR distribution, and the prompt fraction
region above the DD median is considered to be the NR
acceptance region. 26 ± 2% of the ER distribution was
found to lie within this region.

the events in the training group, which is a composite
of each of these calibration campaigns, gives an optimal
prompt window of−8 to 32 ns and total window of−14 to
134 ns. For this optimal combination of prompt and total
photons, an example of PF values in the 40–50 phd bin
applied to events the testing group is presented in Fig. 8.
This PFD is also applied to events generated using the
MC simulation and shows consistency with data. When
this PFD is trained on the individual campaigns the op-
timal windows are found to vary up to 6 ns and are con-
sidered statistical fluctuations rather than real changes
in the photon detection time spectrum.

Figure 9 shows the PF distributions calculated from
DD, CH3T and 14C calibration data and events generated
using the MC simulations. At small pulse areas, the PF
for both experimental and simulated data have a large
spread due to the low photon statistics in each event. At
larger pulse areas, more photons are reconstructed and
the photon time spectra for individual events will appear
more ER or NR-like. This results in a narrowing of the
bands for the two populations at higher energies. This
reduction of band width provides a lower leakage fraction
at higher energies.

Fig. 10 shows the fraction of ER events that leak into
the NR acceptance region. The DD calibrations were
used to compute the 50% NR acceptance region while
the 14C and CH3T calibrations were used to calculate
the leakage into this region. For the distributions shown,
the leakage in the lowest energy bin of 10–20 phd is
39.4 ± 2.7%. In the 40–50 phd bin, the highest bin

used in the WS2013 and WS2014-16 analysis, the leakage
fraction is reduced to 26.1 ± 2.0%. The leakage fraction
continues to decrease at higher energies.

Using calibrations, we study the vertical position de-
pendence on our ability to discriminate between ER and
NR events. At greater depths in the detector the PFs
move to larger values as more photons are detected at
the PMTs with less scattering. This geometric affect ap-
plies to both the ER and NR events and causes both
bands to move by a similar value in PF for a given num-
ber of detected photons. Thus, we do not observe any
depth dependence in the leakage fraction. The leakage
fractions at different depths in the detector are consis-
tent with those presented in Fig. 10. The overall leakage
fraction, for a flat distribution of events up to 200 phd,
generated from simulations, is 22.9%.

B. Two Parameter Discrimination for Dark Matter
Searches

To improve the ability of LUX to discriminate ER from
NR events, the PFD can be used in conjunction with
the charge-to-light ratio (log10(S2/S1)). This is shown in
Fig. 11 for events with pulse areas between 40–50 phd.
An elliptical region, centered at the median values of the
NR distribution, is chosen to include ∼90% of the total
distribution. In this two dimensional space, a line pass-
ing through the median of the NR population is used to
create a linear cut to discriminate between the two popu-
lations of events. The region, above this linear cut, away
from the ER population, is defined as the NR acceptance
region. In this manner, ∼50 % of the NR acceptance
region is preserved by the ellipse and the vertical cut.

For each 10 phd bin, the three free parameters of the
ellipse (inclination and two radii) and the one free pa-
rameter of the linear cut (x or y-intercept) are varied to
minimize the ER leakage into the NR acceptance region.
To test leakage, a line is drawn through the center of the
ellipse with either a x-intercept between 1.25 and 2.75 or
a y-intercept between 0 and 1. In this way, a cut that
closely resembles just the charge-to-light discrimination
is also tested. When this method is applied to 10 phd
wide bins between 10–100 phd, the ellipse’s inclination
and x-intercept with the least leakage are often very sim-
ilar. For each of these bins, the optimal inclination of
the NR population and x-intercept and are close to 30◦

counter-clockwise w.r.t. the vertical. and 1.7, respec-
tively. As the pulse area of the event gets smaller, the
distribution of possible PF and charge-to-light increase,
and thus the optimal radii for the ellipses vary to capture
this change.

For the example shown in Fig. 11 for 40–50 phd, the
overall ER leakage is reduced by 50 % compared to just
the log10(S2/S1). Using the log10(S2/S1) bands for
this population of events [1], an overall ER leakage of
0.4 ± 0.1 % is achieved. When the log10(S2/S1) and



13

0 25 50 75 100 125 150 175 200
Pulse Area 

(1 bin = 5phd)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pr

om
pt

 F
ra

ct
io

n 
(1

 b
in

 =
 0

.0
2)

0

50

100

150

200

C
ou

nt
s 

/ b
in

(a) NR data and the constant value model.
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(b) NR data and the power law model.
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(c) ER data and the constant value model.
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(d) ER data and the power law model.

FIG. 9: PF distribution for NR events (Top), and ER events (Bottom). The red and blue dots indicate the NR and ER
bands respectively (median and median ±34 percentile) calculated from data. The traces indicate the bands calculated from
simulated data using the constant value model (Left) and the power law model (Right). The solid traces indicate the medians
and the dashed lines indicate the median ±34 percentile. We define the region above the NR as the NR acceptance region.

PFD are combined to produce a new discrimination pa-
rameter, as described above, the overall ER leakage re-
duces to 0.3 ± 0.1 %. The comparison of the various
discrimination methods are presented in Table III.

VII. CONCLUSION

We have described an analysis of liquid xenon scintil-
lation pulse shapes and the discrimination power in the
LUX dark matter experiment. We have developed soft-
ware that allows for the precise reconstruction of photon
detection times within a pulse with an accuracy of 3.8 ns.
LUX calibration data from DD, CH3T, and 14C sources
are used to characterize the photon detection time spec-
tra for NR and ER events at various depths in LUX. Av-

erage time spectra are fitted with an analytical model to
extract singlet-to-triplet ratios and singlet and triplet de-
cay times. It is found that the singlet-to-triplet ratio for
ER events is consistent with the literature within errors.
We have made a first measurement of the NR singlet-to-
triplet ratio at low energies and a non-zero applied elec-
tric field. Different τ3 time constants are found for ER
and NR events. We interpret this as residual recombina-
tion timing effects, which are not included in our model,
adding a small smearing to the ER pulse shape which
gets captured by the τ3 parameter in our fits. These
measurements and the reconstructed physical properties
of xenon scintillation are relevant for liquid xenon dark
matter search experiments, and can inform simulation
packages, such as NEST, that are used by the commu-
nity to compute event distributions in current and future
experiments.
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TABLE III: Summary of ER leakage percentage into the NR acceptance region using different methods. The data
presented here are from all the DD, CH3T and 14C calibrations from the volume around the DD beam. In all cases
the leakage is defined as the number of ER events that occur within the NR acceptance region. The errors indicated
are from Poisson statistics. Column 2 presents the charge-to-light yield discriminator from WS2014-16, which is not
studied above 50 phd. Column 4 presents performance of the PFD calculated from simulations using a linear
singlet-to-triplet ratio.

S1 Pulse
Area [phd]

Log10(S2/S1) [%]
PFD

Data [%]
PFD

Simulation [%]
Two

Parameter Data [%]

10-20 0.5 ± 0.2 39.3 ± 2.7 32.7 0.4 ± 0.2

20-30 0.4 ± 0.2 31.3 ± 2.2 29.4 0.3 ± 0.1

30-40 0.4 ± 0.2 28.9 ± 2.2 26.9 0.2 ± 0.1

40-50 0.3 ± 0.2 25.6 ± 2.0 24.5 0.1 ± 0.1

50-60 22.7 ± 2.0 22.9 0.1 ± 0.1

60-70 21.7 ± 1.9 21.3 0.0 ± 0.1

70-80 19.2 ± 1.8 20.2 0.0 ± 0.1

80-90 20.1 ± 1.7 19.3 0.1 ± 0.1

90-100 17.9 ± 1.5 18.5 0.0 ± 0.1
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FIG. 10: Fraction of ER events that leak into the NR
region. The points show the leakage fraction obtained
from the data while the solid trace indicates the leakage
fraction calculated from simulation. The NR is used to
define the ∼50% NR acceptance region. The horizontal
error bars indicate the bin widths. The counting errors
from Poisson statistics and the errors in NR are added
in quadrature to calculate the error in leakage fraction.
For both data and simulations, the same PFD windows
are used.

The photon timing module is applied to calibration
data to construct photon detection time spectra. The
difference between ER and NR time spectra is exploited
to formulate a ratio of prompt to total photons to dis-
criminate ER and NR events. This discrimination pa-
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FIG. 11: Two parameter event discrimination using
PFD and log10(S2/S1). The distribution contains NR
(red) and ER (blue) events with raw S1 pulse areas
between 40–50 phd. The yellow ellipse indicates the
90% NR region and the solid black line indicates the
discriminator. The region to the left of the black line is
defined as the NR acceptance region and is chosen to
preserve 50% of the ellipse’s NR region while
minimizing the number of ER events in this region.

rameter (PF) is optimized, using a training data set, to
minimize the leakage of ER events into the ∼50% NR
acceptance region. The photon detection time and the
prompt fraction distributions are shown to agree with
those generated from the MC simulations using the best-
fit analytical model, allowing us to extrapolate to energy
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regions where no calibration data is available. The dis-
crimination power of the PFD improves with energy. For
a flat distribution of events in the WS region from 10–
50 phd, the ER leakage is found to be 31.3 %. Between
10–200 phd, the total leakage is 25.2 % .

In the two-dimensional parameter space composed of
charge-to-light ratio (log10(S2/S1)) and PF, an improved
discriminator is developed. This discriminator is required
to preserve ∼50 % NR acceptance while reducing the ER
leakage into the region. Over the WS region of 10–50 phd,
the ER leakage, measured using the charge-to-light dis-
criminator, is 0.4 ± 0.1 % and reduces to 0.3 ± 0.1 %,
measured using the two parameter discriminator. This
discrimination power increases at higher energies, mak-
ing it an attractive background reduction technique for
dark matter searches looking for nuclear recoils at higher
energies than the traditional WIMP search. Examples
of these dark matter searches include models in which
dark matter scatters inelastically, or with a momentum-
dependent cross-section. Using the parameters from the
analytical model, the pulse shape discrimination bands
can be extrapolated out to higher energies than acces-
sible by calibration sources, or can be extrapolated to
assess the pulse shape discrimination power in future liq-
uid xenon experiments.
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Calibration of the 2013 LUX dark matter search,”
arXiv:1608.02662.
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