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and Majid Sarrafzadeh, Ph.D.1

1Department of Computer Science, University of California Los Angeles (UCLA), Los Angeles, CA 
90095, USA

2Office of Information Technology, UCLA, Los Angeles, CA 90095, USA

Abstract

Pediatric asthma is a prevalent chronic disease condition that can benefit from wireless health 

systems through constant symptom management. In this paper, we propose a smart watch based 

wireless health system that incorporates wireless sensing and ecological momentary assessment 

(EMA) to determine an individual’s asthma symptoms. Since asthma is a multifaceted disease, this 

approach provides individualized symptom assessments through various physiological and 

environmental wireless sensor based EMA triggers specific to common asthma exacerbations. 

Furthermore, the approach described here improves compliance to use of the system through 

insightful EMA scheduling related to sensor detected environmental and physiological changes, as 

well as the patient’s own schedule. After testing under several real world conditions, it was found 

that the system is sensitive to both physiological and environmental conditions that would cause 

asthma symptoms. Furthermore, the EMA questionnaires that were triggered based on these 

changes were specific to the asthma trigger itself, allowing for invaluable context behind the data 

to be collected.

Index Terms

mobile health (mHealth); wireless health systems; ecological momentary assessment; mobile 
applications

I. Introduction

According to the Asthma and Allergy Foundation of America, approximately 24 million 

Americans have asthma, and each year, approximately 2 million emergency room (ER) visits 

occur each year as a result1. Additionally, the World Health Organization has found that 

asthma is under-diagnosed and under-treated and restricts individuals’ activities across their 

lifetime2. Asthma attacks can not only be life-threatening for the patient, but also extremely 

costly through the resulting hospital or ER visits. Thus, managing asthma effectively early 

on, with minimal interruption, can potentially improve individuals’ quality of life. 
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Furthermore, since uncontrolled asthma in children aged 5–17 years account for a loss of 10 

million school days and costs caretakers over $726 million per year3, asthma self-

management is most important during these years of an individual’s life.

Clinicians have long been interested in finding an effective means for monitoring and 

controlling pediatric asthma symptoms in the real world to prevent asthma attacks. For 

instance, personalized mobile-based applications4 have been explored to communicate 

Asthma Action Plans (AAPs)5 to teens. This technology presents an opportunity for drastic 

reductions in preventative care costs; if patients are exposed to triggers that exacerbate their 

asthma, oftentimes their clinician won’t be able to provide immediate recommendations. As 

a result, novel mobile-based techniques such as Ecological Momentary Assessment (EMA) 

have been developed to determine asthma exposures within the community6. Clinical 

techniques and mediums for administering EMA have been shown to be reliable and 

accurate, as EMA has a much better correlation between the actual event and what was 

recalled by the patient7. Based on this prior research, this paper describes a solution that 

combines EMA with a wireless health system for real-time symptom management of asthma 

through mobile and smart watch based applications.

The smart watch application utilized in this study, the Biomedical REAl-Time Health 

Evaluation (BREATHE) platform8, is designed to monitor activities and behaviors of 

children who suffer from asthma. The long term goal is to reduce asthma attacks while the 

patient is in the field through continuous monitoring and appropriate AAPs. By expanding 

upon our preliminary work to determine the overall risk of an asthma attack8, this study 

investigates new strategies for obtaining a higher level of patient care through intelligent 

asthma monitoring of physiological, environmental, and psychosocial behaviors. The 

application presented here describes a new implementation of EMA using sensor and smart 

watch based triggers as well as new strategies for disseminating and visualizing collected 

information. More importantly, the larger goal of this application is to create a platform that 

can educate the patient, reduce the probability of the patient worsening their asthma 

symptoms, prevent ER visits due to asthma attacks, and provide individualized AAPs and 

recommendations.

II. Related Work

There has been significant research on real-time health monitoring applications9;10. In 

particular, wireless health systems that target asthma are becoming more prevalent11. For 

instance, Dieffender et al.12 used a combination of a wireless spirometer, chest band, and 

wrist band to combine real time physiological data with environmental data from ozone and 

volatile organics compound sensors for monitoring patients with asthma. After feasibility 

testing for sensor acquisition, the authors concluded that real-time, objective measures of 

physiologic parameters, environmental measures, medication use, and patient reported 

outcomes would greatly enhance management of chronic and acute asthma. However, the 

study did not incorporate EMA methodologies to measure patient outcomes and 

psychological behaviors such as perceived stress, a known asthma trigger.
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Other mobile applications in pediatrics that have utilized EMA methods have found that 

wearable sensing technologies, such as those described above, are necessary for a 

comprehensive asthma wireless health system. Specifically, a previous EMA study13 in 

which a mobile phone and waistworn accelerometer were used to monitor physical activity 

among children found that children do not carry mobile phones during exercise. This is 

because mobile phones are too bulky and uncomfortable to wear while running in smaller 

children. Thus, it is difficult to measure physical activity and provide appropriate EMAs at 

opportune times after exercise, which is an important asthma trigger. In order to develop a 

successful application for continuous monitoring of pediatric asthma symptoms, one must 

design a platform that meets compliance standards such as this while being able to provide 

feedback and EMA questionnaires to the individual or caregiver through mobile devices. 

This warrants the use of other technologies, such as smart watches, where wearability and 

feedback can be provided.

Wireless sensing mechanisms such as smart watches cannot feasibly detect all potential 

asthma triggers in pediatrics, such as psychosocial behaviors (e.g. perceived stress). 

Consequently, wireless health systems for pediatric asthma require context of the situation in 

order to prevent false alarms of a potential asthma attack and provide psychosocial context. 

While remote detection of psychosocial behaviors may be difficult to detect via sensors 

alone, frequent assessments offer the opportunity for understanding regular 

“microprocesses,” the interplay or cascade of cognitive, affective, and behavioral variables 

over short intervals of time14. In particular, these microprocesses are able to show how 

behavior varies over time in response to different environmental and physiological contexts. 

For example, when assessments of these behaviors are combined with relevant sensor data, 

we can better identify the individual factors and patterns that are associated with worsening 

asthma symptoms and higher risks of asthma attacks. Given these requirements, in this paper 

we propose the design of a new sensor-based EMA system for pediatric asthma, where the 

goal is to bridge the gap between existing wireless health and EMA systems to create a 

single wireless health platform that can integrate wireless physiological and environmental 

sensing data with context-sensitive self-reports for comprehensive pediatric asthma 

monitoring.

III. Methods

The BREATHE application described in Hosseini et al.8 and expanded upon here is a 

wireless sensor system for pediatric asthma. Specifically, the original system consists of a 

smart watch, spirometer, and environmental sensors for continuous monitoring of potential 

asthma triggers for a child (Fig. 1). In this study, we incorporate EMA questionnaires with 

the BREATHE system to introduce three new techniques for asthma disease monitoring: 

context-dependent health risk triggers, EMA survey trigger inter-application integration, and 

real-time data monitoring and visualization of traditionally-unavailable automated wearable 

sensor data.

Following a patient monitoring system design like the one presented in Gao et al.15, the 

BREATHE application allows for continuous monitoring of a child’s risk of an asthma 

attack. Our previous model introduced a core asthma application that continuously collected 
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physical activity, heart rate, environmental measures such as fine particle contaminants, and 

lung function data in real time, and uploaded the data to a cloud-based server via an online 

representational state transfer (REST) application programming interface (API). The sensor 

data is then combined with several online sources to provide traffic, weather, and air quality 

information. The cloud server system then utilized a trained machine learning model based 

off of a random forest classifier to evaluate incoming data and determine the overall risk of 

an asthma attack (high, medium, or low risk). These classifications are then returned every 

minute to the smart watch in the form of a real-time asthma risk level dragon animation (Fig. 

2). The focus of these continuous risk level alerts is to provide the child with real-time alerts 

under warranted (dangerous) conditions that can exacerbate the child’s asthma symptoms 

and cause asthma attacks. This form of feedback was designed for children, as they are 

engaging and can be easily interpreted as different risk levels.

To support EMA in the core application, we implemented new REST API routes to detect 

different sensor-based asthma triggers, such as increased heart rate, increased particulate 

matter and dust density due to air contamination, and high energy expenditure due to 

physical activity. These specific triggers detect specific patterns that indicate potentially 

dangerous situations related to asthma exacerbations throughout the day. At the time of the 

detected activity, the application visually alerts the patient to perform an EMA questionnaire 

specific to the above asthma trigger.

The machine learning model trained using accelerometer data that comes from the watch 

and is tuned for that particular childs modality of motion. The model will learn to observe 

high energy expenditures of the child to detect exercise. Rather than using an in-lab 

developed wearable device, the BREATHE platform was designed using an off-the-shelf 

Motorola Moto 360 Sport16. This was chosen over custom-built devices as it is widely 

available and the application can be expanded to all commercially available smart watches, 

thus increasing its acceptability among potential users. More importantly for data collection, 

this wearable allows low-power simultaneous listening of heart-rate, accelerometer, 

gyroscope, and GPS data - ultimately providing a more accurate and long term estimate of 

the individual’s current physiological behaviors.

In addition to the physiological sensors, the BREATHE platform model also relies on 

environmental sensors. The wireless environmental sensors (dust density and particulate 

matter sensors) of the BREATHE platform are designed to be either placed statically in the 

home or school environment, or carried by the individual throughout the day. The 

BREATHE application will automatically connect and begin recording data from these 

sensors when in range. To wear the devices, the sensors can be attached to the user’s belt or 

clothing. Finally, the wireless spirometer used in the BREATHE platform collects lung 

function data on demand when the individual uses it, and the BREATHE application triggers 

an EMA survey to collect information from the child that can validate the level of asthma the 

child is experiencing after an asthma risk level change.
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IV. Context-Dependent Health Triggers

The smart watch application continuously collects data from multiple physiological and 

environmental streams. However, it is unable to collect psychosocial data and provide 

contextual information of the collected sensor data. Thus, we address this issue by 

implementing four new distinct health and environmental triggers described below that 

initiate specific EMA questionnaires related to the changes in sensor data.

A. Explanations of Triggers

There are four potential triggers that can identify specific physiological and environmental 

asthma triggers. To this end, we represent these triggers via flag signals delivered via the 

BREATHE API: spirometer use, local air quality worsening, increased energy expenditure, 

and increased heart rate. The BREATHE application evaluates the incoming sensor data 

from the individual based on multiple criteria, all simultaneously and in near real-time (with 

a 1 minute average latency between sensor variation and server response). Each trigger flag 

represents a different risk category or potential asthma exacerbation. We categorize these 

risk flags in the following sections.

1) Spirometer—The spirometer trigger is perhaps the simplest; we trigger a spirometer-

specific questionnaire automatically within a few minutes after the patient uses his or her 

spirometer sensor. The spirometry device records whether the forced expiratory volume in 

one second (FEV1) and peak expiratory flow rate (PEF) measures of lung function were 

accurately collected after each use, which is recorded on the cloud-based server. This 

questionnaire can be custom-built and is tied to any spirometer use throughout the day since 

the sensor is only used when the asthma risk level changes. The exact times of the 

spirometer and corresponding EMA survey that is launched are both recorded on the server.

2) Air and Environmental Quality—To trigger an EMA survey related to air quality 

changes detected by the environmental sensors, a trailing moving average of fine (less than 

2.5 micron diameter) air particle contaminant concentration is used. Note that there does not 

exist any specific dust concentration standards related to health, as most health-based 

standards rely on ambient air pollution on an absolute level such as those defined by the 

Environmental Protection Agency17 and World Health Organization18. Furthermore, many 

health-based standards rely on regional ambient air pollution, such as those reported via 

AirNow.gov19. The concentration-response functions also greatly vary depending on the 

composition of the air pollution and size distribution of the particles. Thus, the following 

equation was empirically determined after several laboratory-based tests under various 

exposure conditions to determine whether a significant change in ambient air exposure due 

to local pollution has occurred:

(1)

Buonocore et al. Page 5

IEEE Int Conf Connect Health Appl Syst Eng Technol. Author manuscript; available in PMC 2018 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where μ is a 2 minute trailing moving average of the dust density measurements, and C is the 

current environmental contaminant concentration measured in absolute micrograms per 

cubic meter. If the dust trigger from the cloud based server returns a “true” based on the 

above equation as the air exceeds a dangerous level of dust concentration, the patient is 

alerted via the smart watch that he or she is at a potentially high risk of an asthma attack and 

triggering an environmental specific EMA questionnaire.

If poor air conditions persist, static pollutant sensing may present a risk of repeating false 

positive triggers; thus, by using a simple conditional model with a defined threshold of 10 

ug/m3 (a low dust concentration value) avoids triggering “minor” absolute dust 

concentration changes that are large percentages in low pollution environments. For 

example, a change from 1 ug/m3 to 3 ug/m3 is a large change percentage-wise, but is 

generally considered insignificant when studying causes of environmentally triggered 

asthma symptoms20. As a result, the above piece-wise monitoring function is able to avoid 

these false positive triggers given the range of dust concentration changes that can be 

observed.

3) Energy Expenditure—Using a moving average of the energy expenditure calculation 

adopted from Yamada et al.21, the cloud based server uses the energy expenditure in 

combination with heart rate and the other sensors to make a risk evaluation. The energy 

expenditure trigger follows the model used by similar remote health monitoring systems22 

that relates accelerometry to metabolic equivalents (METs)21. Specifically, for this trigger, 

the energy expenditure of patient is directly calculated from the last N accelerometer 

measurements. This “windowed” energy calculation is denoted by Kn and is calculated via 

the following equation:

(2)

where N is based on averaged 5 Hz accelerometer measurements over a 5 second window, 

and x, y, and z are the accelerations in each respective direction. The 5 second window 

offers a large enough time frame to capture slow movements in order to obtain a good 

estimate of the particular activity type21. The model has a calibrated baseline energy and 

triggers the energy expenditure flag when there is a significant change in the the most 

recently calculated energy values. The threshold is set based on the metabolic equivalents 

(MET) values at baseline for the user’s age group, and triggers an EMA survey related to 

physical activity when the user exceeds 5 METs. This threshold is based on METs related to 

moderate intensity aerobic exercise.

4) Physical Activity Trigger—The individual’s elevated heart rate levels are measured 

relative to the person’s baseline while at rest. A high heart rate will lead to a higher risk 

levels of an asthma attack, as previously observed in Hosseini et al.8. Note that an elevated 

heart rate can be triggered by behavioral factors other than exercise, such as stress. Based on 

the patient’s age and resting heart rate, we calculate the increased heart rate trigger by 

estimating the heart rate reserve23 using the following equation:
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(3)

where 0.5 corresponds to an aerobic fitness level of 5–8 METs, HRrest is the individual’s 

resting heart rate collected during baseline data collection, and HRmax is the maximum heart 

rate that is predicted based on the child’s age. In particular, HRmax for children is defined 

as23:

(4)

5) Trigger Timing—All four of the sensor based EMA triggers described previously can 

be triggered at anytime during usage; the application polls the server for both the asthma 

attack risk level and EMA triggers. If a sensor based EMA trigger is high, the relevant 

questionnaire is launched shortly after on the mobile phone. The phone collects the EMA 

surveys as it provides larger screen for more detailed and custom questions. An example of 

how the heart rate trigger fires an EMA questionnaire in the BREATHE application can be 

seen in Fig. 3.

The heart rate (among all other sensors) is collected during each “Sensor On” cycle 

described in Fig. 4 below. For the BREATHE system to be able to rely on the heart rate data 

from the smart watch for accurate measurements, it is important to know the accuracy of the 

measurement for each sample collected. The accuracy of the heart rate measurements 

depends on the performance of the smart watch and the fit of the wearable to the user’s 

wrist. It has been found in a previous study24 that the Moto360 smart watch used in this 

study has a heart rate accuracy of 92.8% when compared to an Onyx Vantage 9590 pulse 

oximeter, a clinically validated sensor for heart rate and blood oxygen saturation. Though we 

did not directly evaluate other watches in this particular study, other devices can be used as 

well for the application wearable component of the platform since the 

photoplethysmography (PPG) sensor utilized is the same across smart watches.

The watch operates on a 45 second on/off sensor cycle, in which the all sensors are online 

for 10 seconds collecting data. This provides a sufficient window for the most recent 

physiological and environmental data to be collected without compromising significant 

battery life during sustained sensor use throughout the day. The REST API requests 

including sending sensor data to the server, risk level assessments, and EMA triggers are 

collected at the end of each cycle. We will further discuss how we provided power 

optimization for the smart watch at the end of this paper.

The survey collection is managed via another on-board mobile application known as the 

PRISMS EMA application. This EMA application listens for incoming API connections 

from the wearable to determine whether a questionnaire should be launched on the mobile 

device based on the user’s sensors and history. For example, a heart rate warning trigger 

launches a heart-rate specific EMA survey on the mobile device while simultaneously 
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alerting the user on the smart watch. This engages the user and provides personalized data 

collection during asthma exacerbation conditions.

V. EMA App-To-App Integration

BREATHE and PRISMS are two tightly integrated applications. The EMA application is 

fully functional even when it is completely offline and will cache/queue survey responses 

locally until connectivity is re-established. By keeping the EMA application separate from 

the BREATHE platform, the EMA surveys can leverage local device reminders that do not 

depend on Internet connectivity and allow the user control over when to generate the 

scheduled or “non” random notifications. Furthermore, if the participant is temporarily out 

of range of the mobile phone, the sensor data is still able to accumulate and transferred to 

the server once connection is re-established. This allows for continuous sensor data 

collection when the user cannot take EMA surveys or use their phone, such as during 

exercise28.

Traditionally, EMA questionnaires are either collected at random times, or regularly 

scheduled times, from the user during the day. Having regularly scheduled data collection is 

key to understanding behavior trends, however, it can lead to less insightful or honest results 

from the individual. Although one may feel confident in his or her ability to recall memories 

accurately, research in the self-report domain has shown otherwise25;26. The goal of the 

sensor based EMA triggers is to implement a technique that optimizes time and data-

collection pertinence to a particular event. Through the use of context-dependent survey 

triggers, not only can the information collected from the individual be customized given 

particular scenarios that are related to asthma, but it can also be collected at the time of the 

event. This can lead to higher accuracies of reported information as well as more 

personalized data collection given known asthma triggers.

As of 2015, there have only been 4 of 209 asthma-related applications available that provide 

location dependent environmental information to the user27. To provide location dependent 

information, the BREATHE application incorporates the time stamp and location in every 

sensor based EMA trigger that is generated on the device. If the triggered EMA survey is not 

responded to by the user, this information is recorded and provided to the clinician on the 

cloud based server for review of compliance at a later time. Each survey is configured to 

provide contextual information given the particular sensor based trigger. For example, if a 

drastic increase in heart rate is detected using the heart rate sensor trigger, an EMA 

questionnaire similar to the one presented in Fig. 5 is launched.

A. Real-time Monitoring of Sensor Data

In addition to the smart watch user interface, the BREATHE application also allows for the 

data trend lines to be viewed on the mobile phone (Fig. 6). This is important for both the 

caregiver and user to be able to monitor their data in real time, and to help them understand 

the relationship between increased asthma attack risk levels and their current situation. To 

this end, data is securely transferred to our cloud based server and is conversely sent to the 

mobile to view the data via a REST API when requested for viewing. By default, the last 

100 measurements and corresponding time stamps are displayed to the user.

Buonocore et al. Page 8

IEEE Int Conf Connect Health Appl Syst Eng Technol. Author manuscript; available in PMC 2018 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The clinicians can also review the incoming sensor data by accessing the cloud based server 

(https://www.breatheplatform.com). Specifically, the cloud based server of the BREATHE 

application provides a secure login only accessible by clinicians and researchers to access 

the data collected by the BREATHE application in real time. The clinician can export the 

data relevant to his or her patients and view the results outside of the platform for further 

analysis.

VI. EMA Surveys and Compliance Measures

The EMA application is linked to the BREATHE application and is a customized client of 

the mobilize lab’s mobile data collection (MDC) platform that sends data to a separate 

Ohmage server. Participants in the study are able to login into the EMA application on the 

smartphone and are authenticated and authorized via Ohmage server-side APIs. In this flow, 

the EMA app retrieves the PRISMS study instruments (surveys) from the APIs, presents 

them to the user (based on a trigger, or random notification), and saves or queues the 

responses locally until connectivity is available to upload them to the server.

Since each wireless sensor and EMA measurement is timestamped and geo-located, the 

EMA application has a significantly reduced need to ask questions about where or when the 

patient was doing something using the EMA surveys. Through selective location history 

around device usage, survey completion can be reviewed by the clinician as part of the 

patient’s overall behavioral or asthma attack risk8 to deliver a more accurate timeline of the 

events, resulting in less guess work and a better ability to deliver highly personalized care. 

When each survey request on the smartphone is logged and sent to the Ohmage server, the 

clinician can retrieve a patient’s history to observe patterns of non-compliance for both 

missed surveys and missed medication dispensation. The clinician can then use this 

information to determine why such a pattern of non-compliance is occurring.

A. EMA Timing

EMA questionnaire notifications come in two varieties: scheduled and random. The 

scheduled notifications are setup during an “app initialization” process. During this process, 

participants are directed to schedule or select a ‘morning’ time that is convenient for them to 

complete a set of questions about how they slept. Different scheduled times can be selected 

for a weekday versus a weekend. In addition, there is a user scheduled ‘after-school’ time set 

for a reminder to complete a survey about how school went. During a weekday, there are 

also two random periods in which notifications are randomly delivered before the end of the 

day.

Notification or reminder messages are timed to engage the participant so that they become 

more compliant with taking EMA surveys. The timing of data collection via surveys is done 

after a short delay from the actual activity (determined by the sensor measurements 

returning from escalated to normal levels). This reduces the amount of disturbance from the 

actual application, while still retaining the higher level of temporal accuracy in the user’s 

responses. To this end, when a reminder is ignored, another notification is triggered 4 

minutes later. If the participant fails to complete the survey within another 4 minutes, a final 

notification reminder is triggered 2 minutes later. A window of 10 minutes is provided for 
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the participant to begin a survey. Once the EMA timing window is closed, the reminders for 

the particular survey are cleared, or wiped off the device. If the participant fails to answer all 

the questions on the survey, a partial response is accepted and submitted to the Ohmage 

server automatically. Though this scheme can lead to a high number of notifications, but this 

pilot test is also meant to assess the participant’s ability to comply with the planned 

protocol, so the notification times are iteratively reduced given the level of compliance 

achievable. Finally, an example of a question in the after school survey is shown below in 

Fig. 7.

The triggered questionnaires from the wireless sensors are not bound by the EMA timed 

response protocol described above. Specifically, a triggered questionnaire will remain active 

until the user is engaged with the EMA application, at which point the appropriate survey is 

presented to the user.

B. Mobile EMA Data Analysis

The EMA data is sent and stored on the separate Ohmage server, which can be readily 

viewed or exported for analysis by the clinician. In the Ohmage platform, a research study is 

referred to as a campaign, which represents a set of surveys or data streams collected for 

analysis together. There are four generic tools for analyzing the EMA data. The first analysis 

tool that Ohmage provides is called “Campaign Manager”, which enables an authorized user 

such as a clinician to view raw survey responses and export patient survey data similar to the 

BREATHE platform (Fig. 8). The second analysis tool is a monitoring tool that allows a 

clinician to view how the data is coming in. The third is an R-based tool called “Plot Tool”, 

which the clinicians can use to explore the data in more fine grained detail. Finally, the 

fourth tool is an “Interactive Dashboard” visualization portal that allows clinicians to see 

data through the following mediums (Fig. 9): 1) a geographical map, 2) two types of bar 

graphs, 3) pie charts, 4) view images that may have been collected by the mobile device, and 

5) a word map. The clinician is able to filter these graphs by data type through interactive 

dials.

To achieve higher rates of compliance, the EMA application also provides several strategies 

via a custom “Personalized EMA Compliance” dashboard on the smartphone’s user 

interface (Fig. 10). This dashboard allows clinicians to see if sharing application analytics 

data with the user can promote study compliance and adherence through social engagement. 

The application provides participants with a “compliance view” so that the user can see how 

many surveys have been successfully completed. A compliance percentage value is then 

determined using the number of questionnaires answered – which varies by participant due 

to the number of sensor-based triggered surveys. To encourage compliance, a compliance 

level of 80% is deemed good, a moderate compliance is between 50% and 80%, and a low 

compliance is considered as answering less than 50% of the questions provided. A daily and 

weekly view of compliance is presented to the user. When a low compliance is detected, the 

participant is allowed to share a reason to the clinician.
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VII. Power Optimization of Combined System

Since the smart watch has the least amount of battery life compared to the smart phone even 

with the above EMA and BREATHE applications running simultaneously, power-saving 

mechanisms and variable-rate sensor sampling that enables repeated device sleep cycles are 

implemented to allow for full day use of the system. The extended battery life using these 

mechanisms enables unobtrusive and virtually-continuous sensing throughout the day, 

without requiring the patient to frequently recharge his or her smart watch. Furthermore, the 

continuous sensing enables the patient to receive appropriately triggered EMA 

questionnaires and alerts on the smart phone when exposed to high risk asthma attack 

conditions.

With a small battery capacity of 300 mAh on the smart watch, the following steps are taken 

to conserve battery life of the wearable and offload tasks to the mobile device when 

appropriate (which typically has a battery size greater than 2000 mAh). First, we offload the 

encryption and HTTP request processing to the smart phone since it has a much larger 

battery. In addition, when the wearable is in low-power mode, with the application running 

in the background and the user interface screen off, we reduce the sampling cycle to once 

every minute and tie it to an automatically-invoked clock update Android system call. While 

the application silently runs in the background in this state, we are able to obtain a battery 

life of ∼16 hours, as we allow the smart watch to sleep as much as possible when not 

collecting data. This is shown in Fig. 11 below; we obtain an average battery power loss of 

roughly 1% every 9.1 minutes.

The information extractable from the battery profiling in the above diagram can be directly 

related to the BREATHE sensor timing figure illustrated in Fig. 4. This profiling doesn’t 

describe causal analysis of battery decay (in that we can’t conclude that sensor A caused an 

X% decrease in battery life), but we can do causal analysis. To relate these images, the gray 

bars are matched to the time when the sensors are active, the red bar indicates that the 

application is open, and the purple segments indicates that the application is active (and not 

sleeping). Note that the purple bars in the above diagram extend slightly beyond the gray. 

This difference is manifested in the time required to fulfill the sensor post requests to the 

server. The ‘GCM’ in the figure indicates an active message exchange between the wearable 

and mobile device. By allowing the wearable to extensively rely upon the mobile device for 

web requests, we are able to obtain a significantly extended battery life of the overall system 

itself. When tested, the biggest detriment to the battery life comes from frequent user 

disruption of the watch’s ability to sleep.

VIII. Discussion

This study illustrates how context-dependent sensor triggers can be integrated into the sensor 

based BREATHE application to deliver a more personalized level of care to patients. 

Additionally, enabling external access to sensor data can enable data mining for a more 

accurate and contextual prediction of when patients are at risk of having an asthma attack. 

By using a linked wearable device, the application can notify the user (and clinician if 
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needed) in the case of a potentially threatening situation given various potential 

physiological, environmental, and psychosocial asthma exacerbations.

If a patient fills out an EMA survey immediately after a period of strenuous activity such as 

exercise that resulted in an asthma attack, both the patients’ responses and data collected can 

be used for future classification of events that precede the attack. If these events can be 

better identified, we can be able to identify and alert users prior to potential asthma 

exacerbations. These improvements can enable applications that use this technology to 

provide scalable and cost-saving interventions for asthma attack prevention.

Rather than relying on the very limited questions that could be given the small screen size of 

the smart watch, the EMA surveys are developed on the smart phone so that the user can 

answer a variety of questions, such as: “What have you been doing in the last 30 minutes?”, 

or if the user’s heart rate is high, we can deliver a variety of context-sensitive questions that 

ask the user about shortness of breath or rapid breathing symptoms. This allows our system 

to take advantage of both the smartwatch’s wearability and convenience for sensor collection 

during asthma exacerbations such as exercise, as well as the larger screen of the smart 

phone.

One challenge mentioned in previous work was needing the mobile phone to be on the user 

for data collection to work correctly13. These are noisy systems, and there are conditions 

where there is noise in the data and the data stream may be disconnected at any time in a real 

world system. Noise management and data continuity were studied in detail in our some of 

our other work8;29. However, the native Android wearable and mobile phone used in this 

system enables native queuing of data transmissions with only minor configurations so that 

even if the patient is temporarily out of range of the mobile phone, the sensor data is saved 

on the smart watch and accumulates until the connection is re-established. This is important 

for ensuring completeness and continuity of sensor data, another advantage of using a 

combined smart watch and smart phone based application.

Another advantage of this system is that whenever a survey trigger is recorded, the 

application makes a note of the time that it occurred. This prevents duplicate or high-

proximity events from triggering a response to the user. Each trigger time is recorded and 

can be made visible to the clinician. This allows for easy synchronization between the EMA 

and BREATHE applications.

While applied specifically to symptom management in pediatrics who suffer from asthma, 

the sensor based EMA trigger models demonstrated in this paper can be generalized and 

applied to other diseases conditions and self-management mobile applications. Wearable 

devices offer significant advantages for low-cost and continuous monitoring of diseases and 

health risk in patients, enabling a level of care previously not possible by clinicians. With 

these applications, clinicians can have a virtual “fly on the wall” view of how diseases affect 

individuals within the community, and how to better prevent hospital readmissions or 

worsening symptoms. In addition, the data from EMA and wireless sensors can provide an 

objective diary of the user’s behavior and environmental exposure, which can potentially 

allow clinicians to diagnose risky situations before they become dangerous to the patient.
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IX. Future Work

Compliance in EMA and wireless health studies is often a concern. For example, when non-

random collection schemes such as the one in this paper are used, missing assessments have 

a greater potential to bias the survey result set14. Furthermore, much of the responsibility for 

data collection by EMA surveys relies on the user to complete assessments in response to 

different activities and asthma exacerbations. Thus, future work on this platform will focus 

on ways to improve patient compliance and adherence to the EMA application through 

methods such as gamification.

One of the key components of the application is through the environmental data collection. 

The particulate matter and dust density sensors in the system provide low-cost mechanisms 

for monitoring environmental air conditions in real time; however, while these devices are 

portable, they need to be exposed to the patient’s environment (and not stored in a backpack 

or pocket). Thus, to improve feasibility and adoption of environmental sensor use, we plan 

to develop more portable devices that can be more easily worn on the user and collect 

environmental data with similar levels of battery life and concentration accuracies.

Future work will also include more extensive testing and data collection with children who 

suffer from asthma. This will be performed as part of a planned pilot clinical trial funded by 

the National Institute of Biomedical Imaging and Bioengineering (NIBIB) Los Angeles 

(LA) Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS) Center. In 

addition, future developments of the application will be to include AAPs to the smart watch 

and smart phone based on the EMA and sensor data, as well as improving compliance and 

adherence through user engagement and iterative feedback from users.

X. Conclusion

In this paper, we presented three new approaches to asthma care and tracking: personalized 

and context-dependent health risk triggers, EMA cross-application integration, and real-time 

data monitoring and reporting of traditionally unavailable sensor data by clinicians. By 

delivering a higher level of real-time asthma monitoring, we are able to not only improve the 

level of context in the data collected for a multi-faceted disease condition, but also improve 

patient engagement through condition-dependent alerts and EMA questionnaires. 

Furthermore, the data resulting from the EMA surveys is more informative than if they were 

scheduled at regular intervals, as they occur during relevant events related to potential 

asthma exacerbations. This can improve the level of personalization, user engagement, and 

potentially the compliance of system use for asthma self-management. It can also improve 

the clinician’s ability to monitor their patient’s asthma disease conditions and provide better 

preventative care. If this system is deemed effective in our planned future clinical trial, it 

will become a low-cost and scalable self-management tool for pediatrics who suffer from 

asthma.
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Fig. 1. 
The BREATHE platform consists of a mobile phone, smart watch, wireless spirometer 

sensor, and two environmental sensors for particulate matter and dust density monitoring.
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Fig. 2. 
Wearable user interface screen on the smart watch that provides animated asthma risk levels 

in real-time.
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Fig. 3. 
Mobile view of the heart rate changes that would cause an sensor based EMA trigger to 

return a “true” from the server.
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Fig. 4. 
The BREATHE timing diagram, showing that the 45 second period shifts to 1 minute when 

the device screen is off, though sensor data are still collected in the background.
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Fig. 5. 
PRISMS survey application for activity-specific questionnaires, showing the EMA survey 

for the heart rate sensor based trigger.
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Fig. 6. 
Examples of data trend lines viewable by the user or caregiver on the BREATHE mobile 

application.
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Fig. 7. 
Regularly-scheduled after school survey screen shots show patient workflow through the 

PRISMS application.
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Fig. 8. 
Clinicians can tweak the campaigns in the Campaign Manager so that they see the most 

patient responses.
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Fig. 9. 
Clinicians can visualize the incoming EMA data through several different graph views on 

the Interactive Dashboard: geographical maps, bar graphs, pie charts, images collected by 

the smartphone, or a word map.
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Fig. 10. 
Compliance screen showing completed survey percentages with BREATHE dragon user 

interface.
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Fig. 11. 
Android battery profiler showing a section of live operating-system level activity on the 

Android smart watch.
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