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Abstract

We describe Bayesian models that learn semantic rep-
resentations from either extra-linguistic data or intra-
linguistic data, or from both in combination. We evalu-
ate the validity of these models using three human-based
measures of semantic similarity. The results provide
strong evidence for the hypothesis that human semantic
representations are the product of the statistical combi-
nation of extra- and intra-linguistic sources of data.

Introduction

For the purposes of this paper, we use the term seman-
tic representation to refer to a language user’s mental or
cognitive representation of the meaning of words. We in-
formally define this as the knowledge that allows the lan-
guage user to infer, amongst other things, which words
are similar or identical in meaning, what are the semantic
or ontological categories to which a word belongs, what
(if anything) are the referents of a word. Our general
aim is to consider how both extra-linguistic and intra-
linguistic data can be used to acquire this knowledge.
Extra-linguistic, or attributional data, is data that is de-
rived from our perception and interaction with the phys-
ical world, and in particular, from the perceived physi-
cal attributes or properties associated with the referents
of words!. In contrast, intra-linguistic, or distributional
data, is derived from the statistical characteristics within
a language itself, or how a given word is distributed
across different spoken or written texts?

In previous literature, it has been repeatedly demon-
strated that semantic representations can be learned
from either attributional data alone, e.g. McRae, Sa,
and Seidenberg (1997); Vigliocco, Vinson, Lewis, and
Garrett (2004); McClelland and Rogers (2003), or dis-
tributional data alone, e.g. Lund and Burgess (1996);
Landauer and Dumais (1997); Griffiths and Steyvers
(2002). However, in previous work of our own (Andrews,
Vigliocco, & Vinson, 2005), we described how, for the
most part throughout this literature, the contribution of

1For example, the word apple refers to objects in the world
whose perceived attributes or properties include being red or
green, round, shiny, smooth, crunchy, juicy, sweet, tasty, etc

2We use the term text here in a very general sense to refer
to any coherent and self-contained piece of written or spo-
ken language. This could include, for example, a newspaper
article, a spoken conversation, a letter or email message, an
essay, a speech, etc.
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any one of these data types had been considered inde-
pendently and to the exclusion of the other. To address
this concern, we considered the combined effects of both
sources of data and introduced a probabilistic model that
learns semantic representations on the basis of both at-
tributional and distributional data simultaneously. We
then compared this model with probabilistic models that
learn semantic representations from each data source in-
dependently.

In our above mentioned work, we did not provide an
analysis of how well the semantic representations learned
by our model predict human data. The primary aim of
this paper is to address this issue. For this purpose,
we have also found it necessary to elaborate and extend
upon the models that we previously used. As such, in
what follows, we provide Bayesian models of semantic
representations that are learned from either attributional
data or distributional data, or from both in combina-
tion. We then evaluate the validity of these models us-
ing three human-based measures of semantic similarity:
word-association norms, semantic-priming results from
a lexical decision task, and interference patterns from a
picture-word interference task.

Model Description

We provide Bayesian models that learn semantic repre-
sentations from examples of attributional data, or from
distributional data, or from both combined. The proba-
bilistic models we employ for each of the various data
types are described graphically in Figure 1. The at-
tributional model (leftmost) describes any given word
wy as a probability distribution over a set of binary
attributes, such that {y,,s1: 1 < m < M[f]} is a set
of bit vectors, each being an instance of the referent
of the word wy. These probability distributions are
compositions of a basic repertoire of latent distributions
¥ = {1 ... Yk, } that intuitively correspond to clus-
ters of interrelated attributes each describing basic char-
acteristics of the attributional data. The distributional
model (second left) describes texts as multinomial dis-
tribution over words, such that {w,y:1<n < N[t]} is
a sample of words from text t. These distributions are
compositions of latent distributions ¢ = {¢;...¢ KDist}
that intuitively correspond to discourse-topics in a cor-
pus of text. The combined model (second right) de-
scribes texts as probability distributions over words, and
words as distributions over attributes. These distribu-
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Figure 1: Bayesian Networks for the (from left) attributional model, distributional model, combined model, inde-
pendent model. Each node corresponds to a variable, parameter or hyper-parameter, with observed variables being
shaded. Note that in the rightmost diagram, the variable &; is an indicator variable denoting the identity of the text
at time ¢. All other variables are described in the main text.

tions are compositions of coupled latent distributions
Yoo ={Y1,01.. g, Pk, > cach intuitively cor-
responding to an attribute cluster coupled to a discourse-
topic. Finally, our so-called independent model (right-
most) acts as a experimental control model to our com-
bined model. Like the combined model, the indepen-
dent model describes texts as probability distributions
over words, and words as distributions over attributes.
However, these distributions are de-coupled and inde-
pendent.

Each of the four models can be seen as a hierarchi-
cal mixture model. Each observed data point is sampled
from a single latent distribution that is indicated by an
unobserved indicator variable (this is denoted by the in-
dexed x variables in each diagram in Figure 1). These
indicator variables are themselves sampled from multi-
nomial distributions (denoted by the indexed 7 variables
in the diagrams). We treat the latent distributions, as
well as the multinomial distributions over the indicator
variables, as the parameters of the model. The objective
of learning is to infer the posterior distribution of these
parameters. This was accomplished using the Markov
Chain Monte Carlo method of Gibbs sampling. For this,
conjugate prior distributions in the form of Dirichlet dis-
tributions for @ and 7r, and Beta distributions for 1 were
used. Each of these distributions had controlling hyper-
parameters (the «, 8 and v variables in the diagrams).
Model selection by marginal likelihood optimization was
used to find optimal values for these hyper-parameters,
as well as for the total number of latent distributions in
each model.

The data used for model training were as follows: Fol-
lowing common practice, we obtained the attributional
data for 456 words by way of speaker-generated attribute
norms collected in Vigliocco et al. (2004). The distri-
butional data was 2245 texts® taken from the British
National Corpus (BNC).

3Each text was approximately 200-250 words in length.
In total there were 7818 unique word types.

768

Semantic Representations

The latent distributions in each model intuitively cor-
respond to that model’s semantic knowledge. We can
provide examples of this knowledge by drawing samples
from the mean of the posterior distribution over the la-
tent distributions. Examples for the cases of the attri-
butional, distributional and combined models are shown
in Table 1(a). From these examples, it can be seen
that the latent-distributions are clusters of inter-related
attributes (in the case of the attributional model), or
words (in the distributional model), or both (in the com-
bined model)*. Importantly, in the case of the combined
model, attribute clusters align with discourse-topics that
are consistent with the same general meaning.

Within each model, each word can be expressed as a
distribution over that model’s latent distributions. From
this we can measure the correspondence between any
pair of words in each model. In general, in a model
whose unobserved indicator variable is denoted by x the
correspondence between words w; and w; is given by
P(wj|wi) = 32,3 P(wjlz)P(z|w;). In Table 1(b), using
this formula, and averaging over samples from the pos-
terior over the parameters, we provide examples of the
near-neighbors of a set of example words according to
each of our four models.

Model Evaluation

We evaluate each model by comparing its set of inter-
word similarities with human-based measures of seman-
tic similarity. There is, of course, no flawless means by
which to measure human semantic representations or the
inter-word similarities implied by them. In light of this,
we have used a collection of methods that will hope-
fully lead to converging evidence. These are the Nel-
son word-association norms®, and semantic-priming re-

4We do not display examples from the independent model
as these will, by design, be identical to the independent prod-
uct of the attributional and distributional models’ latent dis-
tributions.

Shttp://w3.usf.edu/FreeAssociation/



Table 1: Semantic Knowledge and Inter-word Similarities in the Models

(a) Examples of latent distributions learned by the attributional model (upper left), distributional model (lower
left) and combined model (right). The latent distributions in the combined model are coupled distributions
over both attributes and words.

mouth transport foot food read fast make explode
tongue vehicle leg oven 0 write leg construct danger
taste wheel ball heat g story move tool destroy
food fly force cook 5 pencil exercise building action
eat drive arm eat ‘D communicate walk build war
throat passenger pain prepare pe question destination wood kill
taste-bud seat game consume < pen foot house fire
sense motor win mouth knowledge speed fix demolish
hospital party market rate book run build killed
death election price cut film team house fire
died political prices interest %) draw race repair attack
operation national sales rates 2 page next fix war
treatment opposition stock figures § star winner building security
injuries elections sold economic written grand equipment women
medical held sale trade series field construction shot
cancer seats buy industry television running steel bomb

(b) Examples of the near neighbors of a set of five words (boldface) according to the attributional, distributional, combined and

independent models. The five words were chosen so as to highlight the differences between the four models.

ankle exchange punch knife threat ankle exchange punch knife threat
elbow pay punch knife threat knee buy hit knife threat
= ankle buy chin axe warn ankle pay punch kill attack
g knee exchange slap saw threaten 3 elbow sell down blood threaten
= toe sell hit scissors argue g toe exchange slap assault attacks
5 cut trade pound hatchet bark 2 cut sales knock axe killed
= ache acquire bark chisel growl % leg selling chin dead armed
£  shoulder donate shoulder razor hit O injury trade injury dagger murder
< thumb loan knock chop challenge ran money pound arrest military
leg borrow face dagger fear broken billion hitting charges kill
twist accept neck drill kill walked markets fell murder killings
walk donation break sword murder injured loan blood illegal violence
injury market fight court threat injury market fight court northern
fit stock world blood terrorist fit stock world saw threat
= squad price title case violence - squad price title case violence
S ; : = ; . ; )
3 coach prices punch knife northern 5] side prices punch knife community
e knee sales heavyweight murder  community E cup sales chin man fear
5 fitness financial boxing alleged province g ankle exchange slap then violence
q ankle customer knock prison loyalist [9) knee sold knock heard warn
= side exchange manager trial army 'g elbow sale hit axe threaten
@) cup business battle appeal forces = draw sell manager door argue
season markets lost judge fear break business boxing razor clash

sults from lexical decision tasks and interference patterns
from picture-word interference task, both obtained from
Vigliocco et al. (2004). These three methods were cho-
sen so as to provide complementary measures of human
semantic representations. In particular, it is arguable
that word-association norms are primarily a measure of
syntagmatic relationships. While, by contrast, behav-
ioral measures like semantic priming and picture-word
interference data are arguably based more upon paradig-
matic rather than syntagmatic relationships. Syntag-
matic relations are said to hold between two words that
commonly co-occur within a sentence, often when both
are of different parts of speech. Examples are easy to
come by: sit-chair, drink-wine rain-wet. On the other
hand, paradigmatic relations hold between words that
have similar roles with respect to the other words, or syn-
tactic structures, within sentences. Examples of paradig-
matically related pairs would include eat-drink, sit-stand,
wet-dry. By using multiple human based measures of
semantic relationships that are either more influenced
by syntagmatic over paradigmatic relationships, or vice
versa, we can hopefully provide a more general or unbi-
ased picture of human semantic representation against
which to compare our models.

For the purposes of comparison we also include in our
analysis what we refer to as a unigram model. The un-
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igram probability of a word from the vocabulary in the
corpus is simply the relative frequency of occurrence of
that word. We can use this probability distribution as
a null model of the extent to which word v; predicts v;
as it specifies that Vi, P(v;|v;) £ P(v;). In effect, this
means that the highest probability words predicted by
any words will be simply the highest frequency words.

Note that the attributional model contains only a sub-
set of the words (i.e. concrete words for which attributes
exist) that also occur in the distributional, combined, in-
dependent and unigram models. Accordingly, we divided
our analysis in such a way that we compare all the mod-
els with one another using the subset of words that they
all share, and we compare the larger vocabulary models
with one another using all available words.

Bayes Factors Based Hypothesis Testing

In keeping with the Bayesian nature of the models, we
explore the use of Bayesian hypothesis tests rather than
the more commonly used classical, or sampling-theory,
approaches. The relative merits of these two approaches
is subject to (sometimes intemperate) debate, but it is
beyond the scope of this paper to either review or con-
tribute to this debate. Suffice it to say that the Bayesian
approaches are ideally suited to the analysis we wish to
pursue.



log A Evidence for M,
logA <0 Negative
0<logA<1 Weak
1<logh <25 Positive
25 <logA <5 Strong
logA >5 Very strong

Table 2: Interpretation of A\ in the Bayes Factor Test.

The analysis we will pursue is often referred to as the
Bayes factor test. Given any test data-set Diest and any
two alternative models Mg and M; (parameterized by
0o and 6, respectively) the Bayes factor for M; relative
to My is given by

_ P(Dtest|M1) _ fdgl P(Dtest|91)P(91|M1)
P(Diest| Mo)  [dBy P(Drest|00)P (60| M)’

A (1)

The term A is a measure of evidence for the superiority
of My over My. Jeffreys (1961) provides a scale of in-
terpretation for A as shown in Table 2. Clearly, this test
is easily applied to our model comparisons, whereby we
integrate over the posterior probabilities of the param-
eters for each model, evaluating the probability of data
set for each parameter value. In our case, however, we
must replace the integral with a sum over samples from
the posteriors.

Word Association Norms The Nelson word associ-
ation norm data-set is a collection of the close word-
associates of 5019 English words. These have been col-
lected from human participants under controlled circum-
stances, and each word associate is assigned a probability
indicating the relative frequency of its being paired with
the target word. Of the 5019 words, a subset of 2824
also occurred in our text-corpus vocabulary.

The word association norms data-set can be re-
described as a (sparse) V x V matrix W, where V is the
number of unique words in our text-corpus (i.e. 7818),
and W;; is the probability that word w; is associated
with target word w;. If either w; or w; do not occur in
the association norms set, then W;; is set to 0. From W
we can define W' as the V' x V' matrix with W/, =1 if
Wi; > 0 and zero otherwise.

The likelihood of the Nelson norms for any one of our
models, with specific parameter values denoted by 6, is
given by

P(W/|0) = [] P(vilv;,0)",
{i,5}

(2)

By sampling from each model’s posterior distributions
over its parameters, and averaging over these samples,
we can thus calculate how how probable the norms’
word-pairs are according to each model. In other words,
given the set of word-associate pairs in the Nelson norms,
how likely are these data according to each of four mod-
els’ predictions of word relationships.

The log of these predictive likelihoods for each model
are shown in the left column of Figure 2. The upper left
shows the results for all available words. The lower left
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shows the results for the subset of words that all mod-
els share (see above note). Note that the differences in
the log of these probabilities is equivalent to the log of
the ratio of the probabilities. Hence to evaluate log A for
any pair of models, simply subtract the log probability
of one from the other. Upon inspection of the graphs, it
is evident that there is very strong evidence (according
to the Jeffreys definition of the term) for the superior-
ity of the combined model’s predictiveness of the word
association norms. In particular, the order of perfor-
mance of the models (proceeding from best to worst) is
the combined model, independent model, distributional
model, unigram model (when all words are used) and
the combined model, attributional model, independent
model, distributional model and unigram model (when
the subset of words is used). In both cases, there is very
strong evidence for these orderings®.

Lexical Decision Based Priming Semantic prim-
ing using a lexical decision task is one of the most com-
monly used behavioral measures of the semantic rela-
tionship between pairs of words. In the study carried
out by Vigliocco et al. (2004), priming data for a set of
prime-target word-pairs, all of which occur in our data-
sets, were collected. The speed of response to the target
word, given the presence of the prime, is compared to
the speed of response of the target word in the presence
of an obviously unrelated baseline word (matched to the
prime word on salient characteristics such as length, fre-
quency, etc.). This allows each prime-target pair to be
represented in terms of the relative speed up of response
to the target in the presence of the prime.

In order to assess how well each model predicts this
data, we used a separate Bayesian linear regression
model for each model. In each case, we regressed rel-
ative speed-up (msec) for target-word v; given prime-
word v; on the log of P(v;|v;) derived from each model.
The quantity P(v;|v;) was obtained by averaging over the
posterior of the parameters in each model. The outcome
of the Bayesian regression is a posterior distribution over
the parameters of the linear-Gaussian regression model.
From this, we can calculate the marginal likelihood of
the priming-data for the case of each model, and com-
pare these in a Bayes factor test as in Equation 1. We
have plotted the log of these marginal likelihoods in the
upper right sub-figure of Figure 2. Note that, as be-
fore, the differences between any pair of log probabilities
will be equal to the log of the ratio of these probabili-
ties. As can be seen in this figure, there is very strong
evidence (using the Jeffreys’ definition) in favor of the
superiority of the combined model as a model of P. The
exact ordering of the models’ performance is (from best
to worse): combined model, distributional model, inde-
pendent model, attributional model and unigram model.
This ordering is also strongly supported by the results
of the Bayes factor test.

SFor the purposes of comparison, we performed an analy-
sis of these data using non-parametric statistics and sampling
based null hypothesis tests and the relative ordering of the
models’ performances was identical.
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Figure 2: Log Likelihoods for three human-based data-sets for each of the models under investigation. The left-most
column provides results for the word-association norm data. The right-most column provides the results for priming

and picture-word interference data. See text for details.

For the purpose of comparison, it is also useful to con-
sider the results from a standard, or non-Bayesian, linear
regression test. Commonly used measures from this type
of analysis include a measure of the strength of the lin-
ear relationship between the variables R, the amount of
variance in the dependent variable accounted for by the
independent variable R?, and the p-value significance of
these statistics p. These are as follows:

Model R R? | p-value
Attributional | .31 .09 .006
Distributional | .29 | .086 .008

Combined .39 .16 .0002
Independent .22 .05 .04
Unigram .078 | .006 .49

Picture Word Interference In a picture-word inter-
ference task, naming latencies of drawings of objects (or
actions/events) are recorded. When these pictures are
presented simultaneously with a word, and if that word
is semantically related to the picture, naming latencies
increase. This increase resembles the Stoop phenomenon
whereby the semantically related word interferes with
the activation of the picture’s name. In Vigliocco et al.
(2004), picture-word interference data was collected for
a set of word pairs (all of which occur in all our models).
If the picture depicts word v; and the distractor word is
vj, the slow-up for naming the picture as v; (relative to
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a baseline distractor) can be used as a measure of the
semantic similarity between v; and v;.

As in the case of the priming data, we used separate
Bayesian linear regression models, regressing naming la-
tency against the log of P(v;|v;) in each model (aver-
aging over parameters). From this, we can calculate the
marginal likelihood of the picture-word interference data
according to each model. The marginal likelihoods can
be compared in a Bayes factor test, as before. We have
plotted the log of these marginal likelihoods in the lower
right sub-figure of Figure 2. The relative pattern of re-
sults is almost identical to that seen in the priming data
case. The combined model shows the strongest predic-
tive power with the ordering from strongest to weakest
model is combined model, distributional model, indepen-
dent model, attributional and unigram models. These
results are strongly supported by the Bayes factor test.
As with the case of the priming data, for the purposes
of comparison, we can mention standard measures from
non-Bayesian regression analysis, i.e. R, R? and p:

Model R R? | p-value
Attributional | —.24 | .06 .09
Distributional | —.35 | .12 .01

Combined —-.38 | .14 .009
Independent | —.26 | .06 .08
Unigram —.19 | .03 .19




Discussion

The general aim in this paper has been to consider how
semantic representations are acquired. To answer this
we have identified two major types of data from which
semantic information can be attained. We have referred
to these as attributional and distributional data types.
These represent data types that are, respectively, extra-
linguistic and intra-linguistic in their origin. Of particu-
lar concern to us has been the question of how these two
distinct data types can be combined to learn coherent
semantic representations. We have provided a model of
the semantic representations that are learned from attri-
butional and distributional data taken in combination,
and compared this to the representations learned from
either source taken independently. Our specific aim has
then been to evaluate these models against human-based
measures of semantic representations.

Although the relative performance of each model to
predict the human data is not identical across the three
different data-sets there are obvious and compelling gen-
eral trends. For example, and unsurprisingly, all four of
the attributional, distributional, combined and indepen-
dent models outperform the null model on all data-sets.
While superior performance against a null-model is not
surprising, it does serve as a worthwhile sanity check, ef-
fectively corroborating the impression given by Table 1
that each of these models is providing (at the very least)
a modest description of the meaning of words.

If the unigram model represents a lower-bound on the
models’ predictive performances, then it appears as if the
combined model represents an upper-bound. The com-
bined model outperforms all other models consistently
across all three sets of human-based measures. This
corroborates the impression given by Table 1(b) that
the combined model provides a more comprehensive and
valid account of the meanings of words than do either
the attributional, distributional or independent models.
As such, we can take this as direct evidence in favor of
our primary hypothesis that human semantic represen-
tations are the product of the statistical combination,
and not simply the sum or average, of attributional and
distributional data-types.

Conclusion

The results imply a certain picture of how word-
meanings are learned. This can be described by reference
to following scenario: A child learning his or her native
language will regularly experience words referring to, for
example, everyday objects in the context of one or more
of their referents. On the other hand, the words that the
child is learning are not necessarily heard in isolation,
but rather will regularly occur in the context of mean-
ingful sentences. From this, the data from which the
child can learn word-meanings occur in two forms simul-
taneously: There is the set of attributes associated with
a given word, and the set of textual contexts in which
that word occurs. While it has been repeatedly shown in
previous literature that either one of these sources can
provide information from which word-meanings can be
learned, learning from both data-types in combination
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would allow the correspondences between the two data-
types to be apparent, and to be exploited. For example,
if the child learned that the word cat refers to creatures
with claws and whiskers and tails, etc. and that it also
co-occurs with terms like dog, pet, owner, etc., it may
also infer that creatures with claws and whiskers and
tails, etc., are conceptually related to the words dog, pet,
owner, etc. From this, we can see that while using either
extra-linguistic or intra-linguistic data can allow seman-
tic representations to be learned by discovering the cor-
relations within that specific data-type, using the combi-
nation of both allows the discovery of correlations both
within and between these data-types.
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