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ORIGINAL RESEARCH

Hypoxic-ischemic encephalopathy (HIE) caused by 
perinatal birth asphyxia is a major cause of death and 

long-term neurologic disability among infants worldwide, 
affecting more than 3 million neonates annually (1). Re-
duced cerebral blood flow from hypoxia in the perinatal 
period can lead to neuronal cell death and permanent neu-
rologic injury. Although the initial diagnosis of neonatal 
encephalopathy is made on a clinical basis, neonatal brain 
MRI within the 1st week after injury plays an important 
role in determining the presence, location, and severity of 
injury and in counseling neurodevelopmental prognosis 
(2,3). Neonatal brain MRI can also serve as an early marker 
of outcome, allowing for early determination of the effi-
cacy of novel neuroprotective treatments, many of which 
are currently under development (4).

To quantify brain injury for clinical trials and develop-
mental prognostication, multiple semiquantitative scoring 

systems have been created to capture the injury severity 
and location. Neonatal brain imaging is challenging to in-
terpret, and these scoring systems are subject to interrater 
variability, even among expert readers. In a 2014 study, 
three trained radiologists scored MR images of infants 
with HIE using a designated scoring system; analysis of 
agreement for scoring apparent diffusion coefficient se-
quences and T1- or T2-weighted images demonstrated a 
κ range from 0.27 to 0.66 and -0.11 to 0.44, respectively 
(5). These challenges with interpretation and consistency 
highlight the need to develop additional advanced image 
analysis methods to aid with standardizing interpretation 
and prognostication.

There have been few prior reports to date on the use of 
deep learning to study neonatal brain MRI (6), with novel 
efforts on the horizon (7). In this study, we developed a 
deep learning algorithm using neonatal brain MRI and 
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Purpose:  To develop a deep learning algorithm to predict 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic en-
cephalopathy using MRI and basic clinical data.

Materials and Methods:  In this study, MRI data of term neonates with encephalopathy in the High-dose Erythropoietin for Asphyxia and 
Encephalopathy (HEAL) trial (ClinicalTrials.gov: NCT02811263), who were enrolled from 17 institutions between January 25, 2017, and 
October 9, 2019, were retrospectively analyzed. The harmonized MRI protocol included T1-weighted, T2-weighted, and diffusion tensor 
imaging. Deep learning classifiers were trained to predict the primary outcome of the HEAL trial (death or any neurodevelopmental impair-
ment at 2 years) using multisequence MRI and basic clinical variables, including sex and gestational age at birth. Model performance was 
evaluated on test sets comprising 10% of cases from 15 institutions (in-distribution test set, n = 41) and 10% of cases from two institutions 
(out-of-distribution test set, n = 41). Model performance in predicting additional secondary outcomes, including death alone, was also 
assessed.

Results:  For the 414 neonates (mean gestational age, 39 weeks ± 1.4 [SD]; 232 male, 182 female), in the study cohort, 198 (48%) died or 
had any neurodevelopmental impairment at 2 years. The deep learning model achieved an area under the receiver operating characteristic 
curve (AUC) of 0.74 (95% CI: 0.60, 0.86) and 63% accuracy in the in-distribution test set and an AUC of 0.77 (95% CI: 0.63, 0.90) and 
78% accuracy in the out-of-distribution test set. Performance was similar or better for predicting secondary outcomes.

Conclusion:  Deep learning analysis of neonatal brain MRI yielded high performance for predicting 2-year neurodevelopmental outcomes.
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Participant Outcomes
Participants in the HEAL trial were evaluated at 24 months of 
age using the Bayley Scales of Infant Development III, a stan-
dardized neurologic examination (12), and the Gross Motor 
Function Classification System score (13). NDI was defined as 
any of the following: Gross Motor Function Classification Sys-
tem level of 1 or greater, 0, or 0.5 and cerebral palsy on neuro-
logic examination, or Bayley Scales of Infant Development III 
cognitive score of less than 90 (± 0.67 [SD] below the mean) (9). 
The primary outcome in the HEAL trial was death or any NDI 
at 2 years of age (22–36 months), which we used as the primary 
end point for our current analysis. Secondary outcomes in our 
analysis included an ordinal stratification of no, mild, moderate, 
or severe NDI or death. This stratified severity of NDI was deter-
mined by the worst severity observed in either cognitive or mo-
tor outcome at 2 years (14). Cognitive outcome was measured 
by the Bayley Scales of Infant Development III, with severity 
of impairment defined as follows: normal, 90 or more; mild, 
85–89; moderate, 70–84; and severe, less than 70. Motor out-
come was defined by the presence of cerebral palsy (defined by a 
standardized neurologic examination) and by a modified Gross 
Motor Function Classification System.

Data Splits
Study participants were divided into a discovery set consist-
ing of neonates proportionally sampled from 15 of 17 institu-
tions (332 of 414 [80%] of total neonates), an in-distribution 
test set consisting of neonates proportionally sampled from 
the same 15 institutions (41 of 414 [10%] of total neonates), 
and an out-of-distribution test consisting of all neonates from 
the remaining two institutions (41 of 414 [10%] of total neo-
nates). The out-of-distribution test set was chosen manually 
based on the following criteria: (a) all cases from the selected 
site(s) represented approximately 10% of the total dataset and 
(b) the prevalence of death or NDI in these cases approximated 
that of the total dataset (approximately 48%). All possible 
combinations of one or more sites were considered, and the 
final combination of two sites most closely matched the desired 
criteria. Discovery set participants were randomly divided into 
training (80%) and validation (20%), stratified by institution. 
Both in- and out-of-distribution test set participants were ex-
cluded from training and validation and were only used for 
final model assessment.

Image Data Preprocessing
De-identified Digital Imaging and Communications in Medi-
cine data from the HEAL trial were converted to the Neuroim-
aging Informatics Technology Initiative format using dcm2niix 
(15). MRI data subsequently underwent standard image pre-
processing, including brain extraction and coregistration with 
a custom deep learning method. T1- and T2-weighted images 
were then corrected for intensity nonuniformity using N4 bias 
correction and normalized to between 0 and 1 by bounding 
the minimum and maximum 0.1 percentile intensities (16). 
Diffusion trace and apparent diffusion coefficient images were 
calculated from diffusion tensor imaging data using FSL ver-

perinatal clinical variables obtained as part of the harmonized, 
multisite High-dose Erythropoietin for Asphyxia and Encepha-
lopathy (HEAL) trial to predict the primary outcome of death or 
neurodevelopmental impairment (NDI) at 2 years.

Materials and Methods

Study Sample
This was a Duke Health Institutional Review Board–approved, 
retrospective analysis of data from the HEAL trial (ClinicalTri-
als.gov: NCT02811263) (8–10). Participants were enrolled ac-
cording to state and federal Health Insurance Portability and 
Accountability Act regulations, with written informed parental 
consent. The HEAL study prospectively enrolled 500 neonates 
(birth at 36 weeks or greater gestational age) with moderate to 
severe encephalopathy across 17 institutions within the United 
States between January 25, 2017, and October 9, 2019. Half 
of enrolled participants were randomized to receive human re-
combinant erythropoietin, a cytokine with neuroprotective and 
neuroregenerative effects in preclinical models of neonatal HIE 
(11), as an adjuvant therapy in addition to therapeutic hypother-
mia. The trial ultimately concluded no risk reduction of death or 
NDI with erythropoietin compared with placebo (9). Exclusion 
criteria for this secondary analysis of HEAL trial imaging, clini-
cal, and outcome data were missing or incomplete MRI data (n 
= 70) and missing or incomplete clinical follow-up data (n = 16) 
(Fig 1). All image data were de-identified at each respective site 
using institutional review board–approved methods.

Abbreviations
AUC = area under the receiver operating characteristic curve, 
HEAL = High-dose Erythropoietin for Asphyxia and Encephalopa-
thy, HIE = hypoxic-ischemic encephalopathy, NDI = neurodevel-
opmental impairment, OPiNE = Outcome Prediction in Neonates 
with Encephalopathy

Summary
In neonates with encephalopathy, a deep learning algorithm ef-
fectively identified patients who experienced death or neurodevelop-
mental impairment at 2 years using multisequence MRI and clinical 
data gathered 4–6 days after birth.

Key Points
	■ This was a secondary analysis of a deep learning study of 414 neo-

nates from the prospective High-dose Erythropoietin for Asphyxia 
and Encephalopathy trial with multisequence MRI brain examina-
tions and 2-year clinical follow-up.

	■ A multichannel image-based deep learning model predicted death 
or any neurodevelopmental impairment at 2 years with an area 
under the receiver operating characteristic curve (AUC) of 0.74 
(95% CI: 0.60, 0.86) in the internal test set and an AUC of 0.77 
(95% CI: 0.63, 0.90) in the external test set.

	■ Additional models were developed to predict secondary outcomes, 
including moderate and severe neurodevelopmental impairment 
and death, with AUCs ranging from 0.75 to 0.92 in the internal 
test set and 0.85 to 0.95 in the external test set.

Keywords
Convolutional Neural Network (CNN), Prognosis, Pediatrics, 
Brain, Brain Stem
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Discovery set data were used to optimize model hyperpa-
rameters via a grid search of the following parameters: num-
ber of convolutional blocks [2, 3, 4, 5], number of linear 
layers [1, 2, 3], learning rate (3e-3, 3e-4, 3e-5), batch size 
(2, 4, 8), and total epochs (50, 100, 200). The final model 
architecture consisted of four convolutional blocks followed 
by two linear layers with dropout (30%) and a final sigmoid 
transform to yield predictions. The following hyperparam-
eters were the result of the grid search in the OPiNE model: 
learning rate of 0.0003, batch size of 4, and total epochs of 
100. Convolutional layers used Kaiming initialization (18). 
Tabular data were combined with image-derived features at 
the first linear layer.

After completing the grid search, the model was trained one 
final time using the training and validation data. An overview of 
the ensemble deep learning method is shown in Figure 3B. Simi-
lar models were developed using individual MRI channels alone 
and tabular data alone. Code repository can be found at https://
github.com/chris-lew/neonatal_HIE_outcome_prediction.

Model Training
Model training was accomplished using a Linux Docker con-
tainer on a desktop workstation with two NVIDIA RTX 

A6000 graphics processing units. MRI data were augmented 
during training by mirroring the images along different axes. 
For the primary outcome analysis, both the convolutional 
neural network and linear layers were trained. For secondary 
outcome analyses, we retrained the final linear layer to predict 

sion 6.0.2 (FMRIB, https://fsl.fmrib.ox.ac.uk/fsl/docs/#/). Images 
were cropped to minimize empty voxels, yielding dimensions 
of 96 × 112 × 96 with 1.0-mm3 isotropic voxel size. Represen-
tative participant MR images are shown in Figure 2, and an 
overview of data preprocessing is shown in Figure 3A.

Tabular Clinical Data
Tabular clinical data collected as part of the HEAL trial in-
cluded sex, gestational age, and erythropoietin administration. 
Brain injury volume, defined as the number of voxels with 
apparent diffusion coefficient values of less than 800 × 10−6 
mm2/sec, was included as it has shown a correlation to poor 
outcomes in neonates with HIE (17). Using the discovery set, 
all tabular data were presented to the model in standardized 
forms, both by scaling the data between 0 and 1 and by using z 
score normalization. There were no missing tabular data.

Model Development
The Outcome Prediction in Neonates with Encephalopathy 
(OPiNE) model was developed as a convolutional neural net-
work classifier incorporating multichannel MRI and tabu-
lar data to predict neurodevelopmental outcomes at 2 years. 
Multiple three-dimensional preprocessed MRI sequences were 
combined to input into the model as a multichannel (four-
dimensional) array. Architecture was based on a standard con-
volutional neural network encoder followed by linear layers 
for classification. The binary cross-entropy loss function and 
AdamW optimizer were used.

Figure 1:  Flow diagram for participants included in each subset. Participants were enrolled as part of the High-dose Erythropoi-
etin for Asphyxia and Encephalopathy (HEAL) study from 17 different institutions within the United States. The out-of-distribution test 
set contains all participants from two institutions. Participants from the remaining 15 institutions were randomly split into a training set, 
validation set, and in-distribution test set with an equal distribution of institutions in each subset.

https://github.com/chris-lew/neonatal_HIE_outcome_prediction
https://github.com/chris-lew/neonatal_HIE_outcome_prediction
https://fsl.fmrib.ox.ac.uk/fsl/docs/#/
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played in a color overlay on the corresponding MR image 
data to highlight image regions that were potentially impor-
tant for classification (23).

Results

Characteristics of Study Sample
A total of 500 participants were enrolled in the original 
HEAL study, and 414 of these participants (mean gestational 
age, 39 weeks ± 1.4; 232 [56%] males and 182 [44%] fe-
males) met the inclusion criteria for our study. Discovery set 
data consisted of 332 (80%) participants, including 266 in 
the training set and 66 in the validation set. The testing data 
consisted of 41 (10%) participants in the in-distribution test 
set and 41 (10%) participants in the out-of-distribution test 
set. Clinical data for the study sample are shown in Table 1. 
Moderate to severe encephalopathy was an inclusion crite-
rion for the original HEAL trial, and of the 414 participants 
included in our study, 91 (22%) had severe encephalopathy 
and the remaining 323 (78%) had moderate encephalopa-
thy. A total of 198 (48%) participants experienced the pri-
mary outcome of the HEAL trial: death or any NDI. Among 
these participants, 36 (18%) died at an average age of 11 days 
(IQR, 6–56 days). Mild NDI was diagnosed in 50 (25%) 
participants, moderate NDI in 61 (31%), and severe NDI in 
51 (26%). Based on apparent diffusion coefficient threshold-
ing at less than 800 × 10−6 mm2/sec, many participants had 
some degree of acute brain injury, with an average of 12 mL 
± 54 of involved brain tissue (17). Additional demographic, 
clinical, and outcome characteristics of the study sample are 
shown in Table S1.

each of the following secondary outcomes: death or moderate 
to severe NDI, death or severe NDI, and death alone.

Model Evaluation and Statistical Analysis
Model performance was evaluated on both the in- and out-
of-distribution test sets using standard binary classification 
metrics, including sensitivity, specificity, precision, and area 
under the receiver operating characteristic curve (AUC). 
Binary classification thresholds were determined using the 
Youden index for each set of model predictions on the test 
sets (19). AUC CIs for both test sets were calculated using 
bootstrapping.

To provide additional context, we compared model perfor-
mance to the performance of a previously published multireader 
MRI scoring system that was found to be a predictor of neurode-
velopmental outcomes at 18–24 months of age (20). This scor-
ing system used the same imaging sequences to quantify signal 
abnormality in the following regions: caudate nucleus, globus 
pallidus and putamen, thalamus, posterior limb of the internal 
capsule, cerebral white matter, cerebral cortex, cerebellum, and 
brainstem. Receiver operating characteristic curves were com-
pared using the DeLong method, with P < .05 considered statis-
tically significant (21). Uncertainty metrics were calculated using 
the Monte Carlo dropout technique (22) at the same dropout 
rate used in training (30%) to examine average variability across 
predictions, each sampled 30 times.

Model Saliency Evaluation
Image saliency maps for the OPiNE model were generated 
using the gradients of the final convolutional layer of each 
single-channel MRI model. Normalized gradients were dis-

Figure 2:  Example MR images for a participant with moderate neurodevelopmental impairment (NDI) (top row) and no death or NDI (bottom 
row) at 2-year follow-up. Neither set of images reveals any definite focal areas of brain injury, which highlights the difficulty in prognostication based 
on MRI. ADC = apparent diffusion coefficient.

http://radiology-ai.rsna.org
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78% in the out-of-distribution test set. For comparison, lo-
gistic regression of tabular data alone yielded an AUC of 0.67 
(95% CI: 0.52, 0.82) in the in-distribution test set and 0.58 
(95% CI: 0.43, 0.73) in the out-of-distribution test set. The 
previously published multireader MRI scoring system yielded 
an AUC of 0.49 (95% CI: 0.32, 0.66) in the in-distribution 
test set and 0.77 (95% CI: 0.64, 0.88) in the out-of-distri-
bution test set (Fig 4). Additional graphs of receiver operat-
ing characteristic curves for all models on both test sets can be 
found in Figure S1. 

Model Performance
Performance of all models for the primary outcome of death 
or any NDI is shown in Table 2. Individual MRI sequences 
achieved AUC values ranging from 0.68 to 0.79 in the in-dis-
tribution test set and 0.71 to 0.77 in the out-of-distribution 
test set. The multisequence OPiNE model achieved an AUC 
of 0.74 (95% CI: 0.60, 0.86) in the in-distribution test set and 
0.77 (95% CI: 0.63, 0.90) in the out-of-distribution test set. 
When thresholded for binary classification, the OPiNE model 
yielded an accuracy of 63% in the in-distribution test set and 

Figure 3:   Flowchart of (A) imaging preprocessing steps and (B) model architecture overview. *Only T1- and T2-weighted images 
underwent bias correction.
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Comparing the OPiNE model and logistic regression on 
tabular data alone, there was no evidence of a difference in the 
in-distribution test set (P = .35), but the OPiNE model dem-
onstrated superior performance in the out-of-distribution test 
set (P = .04). Comparing the OPiNE model and the radiologist 
multireader scoring system, there was no evidence of a differ-
ence in performance in either the in-distribution (P = .08) or 
out-of-distribution (P = .98) test sets. Use of the Monte Carlo 
technique to estimate uncertainty of the OPiNE model demon-
strated an average uncertainty of 0.044 ± 0.059 in the in-distri-
bution test set and 0.033 ± 0.060 in the out-of-distribution test 
set. Additional model performance statistics for the training and 
validation sets can be found in Table S2.

Image Saliency Analysis
Saliency maps built from gradient-weighted class activation 
mapping of each MRI sequence are shown in Figure 5, with 
examples from participants with and without the primary out-
come. Additional saliency maps across the full volume for each 
MRI sequence and outcome can be found in Figure S2. Gradi-
ent hot spots were largely located within the brain and notably 
involved multiple bilateral cortical regions on T1-weighted 
and diffusion trace images and subcortical regions, including 
the thalamus, on T2-weighted and apparent diffusion coef-
ficient images.

Secondary Outcome Performance
Performance of the OPiNE model for secondary outcome pre-
diction is shown in Table 3. When predicting encephalopathy 
severity, the OPiNE model performed well, with an AUC of 

0.75 (95% CI: 0.58, 0.89) in the in-distribution test set and 
0.85 (95% CI: 0.72, 0.96) in the out-of-distribution test set.
The model also performed well when predicting more severe 
outcomes, including severe NDI or death, with an AUC of 
0.79 (95% CI: 0.50, >0.99) in the in-distribution test set and 
0.80 (95% CI: 0.63, 0.95) in the out-of-distribution test set. 
The strongest performance was observed when predicting 
death alone, with an AUC of 0.92 (95% CI: 0.85, 0.98) in the 
in-distribution test set and 0.95 (95% CI: 0.87, >0.99) in the 
out-of-distribution test set.

Discussion
HIE is the most common cause of neonatal encephalopathy 
and long-term neurologic disability in neonates. Although 
MRI plays an important role in the evaluation of neonates with 
encephalopathy, interpretation can be challenging with variable 
prognostic value even among experts (14,24). Until recently, 
there has been relatively little artificial intelligence research in 
this area, which is likely at least in part related to relative data 
scarcity. In this study, we leveraged the harmonized MR image 
data and neurodevelopmental outcome data from the HEAL 
trial, which enrolled 500 neonates with encephalopathy from 
17 sites and followed survivors for 24 months for standardized 
neurodevelopmental outcome. The harmonized MRI protocol 
minimizes data heterogeneity without artificially limiting data 
to a specific patient population, site, or scanner. These data 
therefore have the potential to yield predictive artificial intel-
ligence models with ideal, yet still generalizable, performance.

The OPiNE model achieved relatively strong performance 
for predicting the primary outcome of death or any NDI, with 

Table 1: Clinical Information for Participants in the Current Imaging Analysis

Characteristic Study Sample (n = 414) Death or NDI (n = 198) No Death or NDI (n = 216)

Death or NDI 198 (48) 198 (100) 0
Gestational age (w) 39 ± 1.4 39 ± 1.4 39 ± 1.3
Sex
  Male 232 (56) 122 (62) 110 (51)
  Female 182 (44) 76 (38) 106 (49)
Encephalopathy severity
  Moderate 323 (78) 133 (67) 190 (88)
  Severe 91 (22) 65 (33) 26 (12)
Outcome
  No death or NDI 216 (52) 0 216 (100)
  Mild NDI 50 (12) 50 (25) 0
  Moderate NDI 61 (15) 61 (31) 0
  Severe NDI 51 (12) 51 (26) 0
  Death 36 (9) 36 (18) 0
Brain injury volume (mL) 12 ± 54 25 ± 75 0 ± 3
EPO treatment given 215 (52) 104 (53) 111 (51)

Note.—Continuous variables are presented as means ± SDs. Categorical variables are presented as numbers with per-
centages in parentheses. Brain injury volume was calculated as the number of voxels with apparent diffusion coefficient 
values less than 800 × 10−6 mm2/sec. Erythropoietin (EPO) treatment was done as part of the High-dose Erythropoietin 
for Asphyxia and Encephalopathy study and was not found to impact outcomes. NDI = neurodevelopmental impair-
ment.

http://radiology-ai.rsna.org
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AUCs above 0.74 for both in- and out-of-distribution test sets. 
OPiNE model performance was significantly higher compared 
with logistic regression of tabular data alone in out-of-distribu-
tion data, indicating that imaging data contributes important 
prognostic information. In addition, OPiNE model perfor-
mance was slightly, but not significantly, higher when compared 
with a previously published multireader scoring system. Second-
ary outcome analysis showed similarly strong performance for 
predicting severe NDI or death and even higher performance for 
predicting death alone, with AUC values above 0.90. These more 
severe neurodevelopmental outcomes are potentially more clini-
cally relevant when providing prospective counseling to families. 
Overall, these results highlight the prognostic utility of neonatal 

brain MRI and suggest a potential role for artificial intelligence–
based outcome prediction to aid in neuroprognostication.

We observed a trend toward superior performance of the 
OPiNE model in the out-of-distribution test set compared with 
the in-distribution test set, which is somewhat atypical. There 
are at least two possible explanations for this observation. First, 
the out-of-distribution test set was not selected randomly but 
rather was chosen as a combination of all data from two sites rep-
resenting approximately 10% of the total dataset and with ap-
proximately 50% positivity for the primary outcome. This selec-
tion method could have inadvertently resulted in a test set with 
features that facilitate image-based prediction of outcomes, such 
as higher-than-average quality imaging or more conspicuous 

Table 2: Performance of Classification Models and Radiologist Scoring in Predicting Death or NDI in Neonates with 
Hypoxic-Ischemic Encephalopathy

Data AUC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

In-distribution 
test set

  T1 weighted 0.79 (0.67, 0.91) 73 (60, 87) 
(30/41)

76 (62, 88) 
(31/41)

72 (58, 86) 
(30/41)

63 (48, 78) 
(26/41)

72 (58, 86) 
(30/41)

  T2 weighted 0.70 (0.55, 0.85) 76 (62, 89) 
(31/41)

44 (29, 59) 
(18/41)

95 (90, 100) 
(39/41)

88 (77, 98) 
(36/41)

95 (90, 100) 
(39/41)

  Apparent diffu-
sion coefficient

0.74 (0.61, 0.87) 66 (51, 80) 
(27/41)

80 (69, 93) 
(33/41)

56 (41, 71) 
(23/41)

54 (39, 69) 
(22/41)

56 (41, 71) 
(23/41)

  Trace 0.68 (0.54, 0.82) 56 (41, 71) 
(23/41)

88 (77, 98) 
(36/41)

37 (21, 51) 
(15/41)

46 (31, 62) 
(19/41)

37 (21, 51) 
(15/41)

  Tabular data 0.67 (0.52, 0.82) 71 (57, 85) 
(29/41)

56 (41, 71) 
(23/41)

80 (68, 92) 
(33/41)

63 (50, 79) 
(26/41)

80 (68, 92) 
(33/41)

  OPiNE model 0.74 (0.60, 0.86) 63 (49, 78) 
(26/41)

88 (77, 98) 
(36/41)

49 (33, 63) 
(20/41)

51 (37, 67) 
(21/41)

49 (33, 63) 
(20/41)

  Radiologist 
MRI scoring*

0.49 (0.32, 0.66) 47 (31, 64) 
(17/36)

83 (73, 96) 
(30/36)

39 (12, 40) 
(14/36)

39 (23, 55) 
(14/36)

25 (12, 40) (9/36)

Out-of-distribu-
tion test set

  T1 weighted 0.71 (0.54, 0.86) 80 (68, 93) 
(33/41)

56 (40, 71) 
(23/41)

100 (100, 100) 
(41/41)

100 (100, 100) 
(41/41)

100 (100, 100) 
(41/41)

  T2 weighted 0.77 (0.64, 0.90) 76 (62, 89) 
(31/41)

56 (40, 71) 
(23/41)

90 (83, 100) 
(37/41)

83 (72, 95) 
(34/41)

90 (83, 100) 
(37/41)

  Apparent diffu-
sion coefficient

0.73 (0.58, 0.87) 73 (60, 87) 
(30/41)

66 (52, 81) 
(27/41)

78 (66, 91) 
(32/41)

71 (57, 85) 
(29/41)

78 (66, 91) 
(32/41)

  Trace 0.73 (0.59, 0.88) 76 (62, 89) 
(31/41)

56 (40, 71) 
(23/41)

91 (83, 100) 
(37/41)

83 (72, 95) 
(34/41)

90 (83, 100) 
(37/41)

  Tabular data 0.58 (0.43, 0.73) 59 (43, 74) 
(24/41)

66 (52, 81) 
(27/41)

51 (37, 67) 
(21/41)

51 (37, 67) 
(21/41)

51 (37, 67) 
(21/41)

  OPiNE model 0.77 (0.63, 0.90) 78 (65, 91) 
(32/41)

56 (40, 71) 
(23/41)

95 (89, 100) 
(39/41)

90 (82, 100) 
(37/41)

95 (89, 100) 
(39/41)

  Radiologist 
MRI scoring*

0.77 (0.64, 0.88) 60 (45, 75) 
(24/40)

100 (100, 100) 
(40/40)

28 (13, 41) 
(11/40)

52 (37, 68) 
(21/40)

28 (13, 41) 
(11/40)

Note.—Numbers in parentheses are 95% CIs or numbers of participants. Accuracy, sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) were calculated at a threshold that optimized the difference between true-positive rate and false-posi-
tive rate and are presented as percentages. Logistic regression was used to form predictions using tabular data, which included brain injury 
volume, sex, gestational age, and erythropoietin administration. The Outcome Prediction in Neonates with Encephalopathy (OPiNE) 
model used T1-weighted, T2-weighted, apparent diffusion coefficient, and trace images combined with tabular data. AUC = area under the 
receiver operating characteristic curve, NDI = neurodevelopmental impairment.
* The prior study that used reader scoring (Trivedi et al [20]) did not contain five participants in the in-distribution test set and one partici-
pant in the out-of-distribution test set.
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Figure 4:  Graph of receiver operating characteristic curves for predictions in the in-distribution and out-of-distribution test sets. The Outcome Prediction in Neonates with 
Encephalopathy (OPiNE) model used T1-weighted, T2-weighted, apparent diffusion coefficient, trace, and readily available clinical tabular data to perform predictions. 
The tabular data–only model used logistic regression on the tabular data only. Radiologist scoring used the same imaging sequences as the OPiNE model. All methods 
were compared using the DeLong method, and there was a difference between the OPiNE and tabular data–only model in the out-of-distribution test set. All other compari-
sons demonstrated no difference. AUC = area under the receiver operating characteristic curve.

Figure 5:  Gradient-weighted class activation mapping overlaid on T1-weighted, T2-weighted, apparent diffusion coefficient (ADC), and trace 
images at the level of the basal ganglia and thalami for cases of death or neurodevelopmental impairment (NDI, top row) and no death or NDI 
(bottom row). Gradients of the final convolutional layer were scaled between 0 and 1 and demonstrate salient areas of the image used in classifica-
tion. Gestational age and sex for each neonate included in the figure, from left to right, are: upper row, 39-week male, 36-week male, 36-week 
male, and 39-week male; lower row, 40-week male, 39-week female, 41-week male, and 40-week female.

http://radiology-ai.rsna.org
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imaging findings in participants with death or any NDI. Sec-
ond, it is possible that the OPiNE model has a relatively high 
variability, either due to the difficult nature of the task or the 
design of the model itself. This potential variability could explain 
the trend toward higher performance in the out-of-distribution 
test set, which would typically be similar or lower compared with 
an in-distribution test set for a low variability model. To address 
this, the OPiNE model should be evaluated on larger and more 
diverse cohorts, and we have made the model publicly available 
to facilitate this process. Overall, the out-of-distribution test set 
results are encouraging for generalizability of the OPiNE model, 
but further validation using site-specific data should be consid-
ered a prerequisite before any potential clinical implementation.

We performed a gradient-weighted class activation map-
ping analysis to provide basic insight into the OPiNE model, 
and although gradient analysis has known limitations, it pro-
vides a general sense of salient regional image features. Many 
gradient hot spots were identified within brain regions that are 
commonly affected in hypoxic ischemic injury. For example, 
the basal ganglia and thalamic pattern of hypoxic-ischemic 
injury primarily affects the perirolandic cortex, corticospinal 
tract, and deep gray nuclei, whereas the peripheral and water-
shed pattern tends to affect the cortex and subcortical white 
matter (25–27). In our saliency maps, gradient activation was 
commonly observed in the white matter on T2-weighted im-
ages, which became increasingly T2 hyperintense with increas-
ing injury severity. Additionally, gradient activation was com-
monly observed centrally within the basal ganglia, especially 
the thalami, on diffusion-weighted images in those who died 
or had NDI, which is consistent with prior observations that 
thalamic injury is associated with poor outcomes (17). By con-
trast, gradient activation was more common in the peripheral 
subcortical white matter on diffusion-weighted trace images 
among those with no death or NDI, supporting the hypothesis 

that these watershed pattern injuries less commonly lead to 
substantial NDI by 24-month follow-up (28,29).

It is important to note that the HEAL trial enrolled partici-
pants who were born at 36 weeks of gestation or older and who 
had moderate or severe encephalopathy by Sarnat criteria at be-
tween 1 and 6 hours of age. This is the population of infants who 
currently qualify for therapeutic hypothermia. As the imaging 
and outcomes in the trial are derived from this population, the 
results of our model are not generalizable beyond this popula-
tion. Thus, infants with neonatal encephalopathy outside these 
criteria, such as those who have mild encephalopathy by Sarnat 
criteria or those who develop encephalopathy beyond 6 hours of 
life, fall outside the realm of prediction from our model. Several 
previous studies have examined the effectiveness of MRI out-
come prognostication for neonates with HIE using radiologist 
interpretation and scoring systems. One study demonstrated 
that radiologists perform similarly to our models (AUC of 0.77), 
though with a smaller study sample of 128 participants (20.3% 
with poor outcome) (30). Another related study with a more 
comparable sample size of 486 participants achieved a high AUC 
for predicting death or NDI (0.85) but included a combination 
of MRI, electroencephalography, and several clinical and treat-
ment variables (31). Several other studies have demonstrated 
notable neuroprognostic performance but with additional in-
clusion criteria, such as requiring certain MRI findings (32) 
or predicting death alone (33,34). Compared with prior work, 
our study is notable for the relatively large multi-institutional 
sample, harmonized imaging protocol that included real-world 
variation in vendors and platforms, and well-defined 24-month 
neurodevelopmental outcomes. In addition, the OPiNE model 
uses only T1-, T2-, and diffusion-weighted images, which are 
commonly acquired in clinical practice.

This study had several limitations. First, the sample size of 
414 participants, while large in the context of neonatal HIE, 

Table 3: OPiNE Performance on Predicting Secondary Outcomes

Target AUC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

In-distribution test set
  Moderate NDI, severe NDI, 

or death
0.75 (0.58, 0.89) 73 (60, 87) 

(30/41)
59 (43, 73) 

(24/41)
80 (67, 92) 

(33/41)
54 (39, 69) 

(22/41)
80 (67, 92) 

(33/41)
  Severe NDI or death 0.79 (0.50, >0.99) 83 (71, 94) 

(34/41)
61 (45, 75) 

(25/41)
85 (76, 97) 

(35/41)
37 (23, 52) 

(15/41)
85 (76, 97) 

(35/41)
  Death 0.92 (0.85, 0.98) 90 (81, 99) 

(37/41)
49 (35, 65) 

(20/41)
93 (84, 100) 

(38/41)
24 (12, 38) 

(10/41)
93 (84, 100) 

(38/41)
Out-of-distribution test set
  Moderate NDI, severe NDI, 

or death
0.85 (0.72, 0.96) 85 (75, 96) 

(35/41)
61 (47, 76) 

(25/41)
98 (91, 100) 

(40/41)
88 (79, 99) 

(36/41)
98 (91, 100) 

(40/41)
  Severe NDI or death 0.80 (0.63, 0.95) 76 (62, 89) 

(31/41)
66 (52, 81) 

(27/41)
78 (65, 91) 

(32/41)
46 (31, 61) 

(19/41)
78 (65, 91) 

(32/41)
  Death 0.95 (0.87, >0.99) 90 (81, 99) 

(37/41)
66 (52, 81) 

(27/41)
93 (84, 100) 

(38/41)
39 (25, 55) 

(16/41)
93 (84, 100) 

(38/41)

Note.—The final linear layer of the model was fine-tuned using training and validation set data. Numbers in parentheses are 95% CIs or 
numbers of participants. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) are presented 
as percentages. AUC = area under the receiver operating characteristic curve, NDI = neurodevelopmental impairment, OpiNE = Outcome 
Prediction in Neonates with Encephalopathy.
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is relatively small compared with other medical imaging deep 
learning cohorts. We used data augmentation and multiple eval-
uation methods with an in-distribution and out-of-distribution 
test set to provide robust results despite the limited dataset. Sec-
ond, only a relatively small set of clinical variables was included 
in the model. Although this may limit the performance of the 
model, removing additional clinical variables simplifies model 
deployment as all data needed for model use are included in 
most picture archiving and communication systems. Third, the 
data used in this study originated from a clinical trial in which 
half of all participants received erythropoietin as an adjunct to 
therapeutic hypothermia in the setting of neonatal encephalopa-
thy. The HEAL trial ultimately concluded no therapeutic benefit 
compared with placebo, and thus we believe that erythropoietin 
administration is not a confounder in this study. Nonetheless, 
we have adjusted for erythropoietin administration as part of 
the tabular data of this study. Fourth, although the fine-tuned 
OPiNE model performed strongly at predicting death, these 
results should be viewed in the context of a small sample size 
with death as an outcome. Finally, it is important to note that 
many model statistics, including sensitivity, specificity, negative 
predictive value, and positive predictive value, can be altered by 
changing the model’s threshold. We used the Youden index to 
determine an optimal threshold in our study, but clinical prac-
tice may require higher sensitivity at the cost of specificity. An 
appropriate model threshold may also require a larger, more ro-
bust dataset to allow for generalizability. However, regardless of 
threshold choice, image-based predictive models are inherently 
uncertain, and OPiNE should be considered a prognostic tool 
rather than a method to determine patient outcomes.

In conclusion, our results indicate that artificial intelligence 
may be able to use neonatal brain MRI to effectively predict 
2-year neurodevelopmental outcomes. Further work with a 
larger dataset or combining additional readily available clinical 
information may further confirm and expand on our study.
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