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Abstract

In learning the structure of a new domain, it ap-
pears necessary to simultaneously discover an ap-
propriate set of categories and a set of rules de-
fined over them. We show how this bootstrap-
ping problem may be solved in the case of learn-
ing syntactic categories, without making assump-
tions about the nature of linguistic rules. Each
word is described by a vector of bigram statistics,
which describe the distribution of local contexts
in which it occurs; cluster analysis with respect to
an appropriate similarity metric groups together
words with similar distributions of contexts. Us-
ing large noisy untagged corpora of English, the
resulting clusters are in good agreement with a
standard linguistic analysis. A similar method is
also applied to classify short sequences of words
into phrasal syntactic categories. This statistical
approach can be straightforwardly realised in a
neural network, which finds syntactically interest-
ing categories from real text, whereas the principal
alternative network approach is limited to finding
the categories in small artificial grammars. The
general strategy, using simple statistics to find
interesting categories without assumptions about
the nature of the irrelevant rules defined over those
categories, may be applicable to other domains.

The Bootstrapping Problem

One reason why learning the structure of a domain
without any prior knowledge is so difficult is that both
an appropriate set of categories to describe the phe-
nomena and the rules defined in terms of those cate-
gories must be learned from scratch. Thus the learner
must solve a “bootstrapping” problem: the specifica-
tion of a set of rules presupposes a set of categories,
but the validity of a set of categories can only be as-
sessed in the light of the utility of the set of rules that
they support. Prima facte, at least, this implies that
both rules and categories must somehow be derived to-
gether. However, the space of possible of rule/category
combinations is so large that it seems unlikely that
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such an approach will be feasible for learning the struc-
ture of any but the simplest domains.

Although the focus here will be natural language, the
bootstrapping problem arises in the context of learn-
ing about any new domain. For example, in learn-
ing some new subject, say elementary physics, learners
must somehow acquire both the relevant concepts and
the correct rules of inference defined over those. For
example, learners must grasp the concepts of momen-
tum, force and so on, as well as how these concepts
may be manipulated and interrelated using the formal
rules. The bootstrapping problem is acute since these
two projects are thoroughly interdependent - under-
standing the concepts presupposes some understanding
of the rules in which they figure, and the statement of
the rules presupposes the concepts that they interre-
late. In the terminology of the philosophy of science,
the development of science requires both new natural
kinds and new scientific laws relating those kinds to-
gether. Thus the bootstrapping problem is at the heart
of the problem of theory change, both in scientific en-
quiry and in individual cognitive development.

Rather than attempt to tackle the bootstrapping
problem in its full generality, we shall focus on the test
case of learning syntax as an illustration of a particular
way in which the bootstrapping problem may be over-
come. I[n syntax learning the bootstrapping problem
is to learn the set of syntactic categories and the syn-
tactic rules defined over them. Most work on formal
models of syntax acquisition does not encounter the
bootstrapping problem, since the syntactic category of
individual lexical items are taken as given, and the fo-
cus is on deriving the set of rules defined over these
items (that is, the corpus used in learning is tagged).
Even given this restriction, of course, the problem of
rule induction is very difficult, and there are a number
of formal results (Gold 1967; Pinker 1984; Osherson,
Stob & Weinstein 1986) which suggest that constraints
on possible linguistic rules must be innately specified.
We pursue a parallel approach, using an untagged cor-
pus, and tackling the bootstrapping problem directly.
We give no prior information to the learner, and at-
tempt to derive both the stock of syntactic categories
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and the syntactic category of individual words from
scratch.

The general strategy that we use is straightforward:
we collect very simple statistics from of the data set, in
the hope that a similarity measure defined in terms of
these statistics will reflect useful underlying categories.
We then derive a set of categories on the basis of their
similarity with respect to these simple statistics. De-
spite the simplicity of these statistics in relation to the
complexity of the rules of syntax of natural language,
redundancy in the data means that the categories gen-
erated are close to the categories given by standard lin-
guistic theory. Thus, the bootstrapping problem can
be solved by inferring categories directly from simply,
readily available statistics, without needing to make
assumptions about the nature of the relevant rules.

Once these categories have been found, we can tag
the previously untagged corpus, marking each word
with its syntactic category, and to attempt to find rules
defined over these categories. This can allow us to find
aset of higher level phrasal categories defined over cat-
egories for words already derived. Thus a hierarchy of
categories and rules can be derived by iterating this
process. This method also promises to allow the re-
vision of initial categorisation decisions, based on im-
poverished assumptions concerning the set of rules, in
the light of the rules derived (we shall discuss this be-
low). Below, we outline how this approach has been
applied to learning aspects of the structure of natural
language.

An Algorithm for Bootstrapping
Syntactic Categories

In order to illustrate the above suggestions concerning
how empirical measures of similarity can be exploited
to solve the bootstrapping problem, we now derive a
linguistic taxonomy which is remarkably close to the
orthodox view of the various species of syntactic cate-
gory. In order to achieve this, a measure of similarity
between words and phrases inspired by the “replace-
ment test” of theoretical linguistics was used.

Empirical Similarity and Numerical
Taxonomy

In traditional linguistics, words and phrases are cat-
egorised into several standard linguistic categories:
nouns, verbs, noun phrases, and so on. One justifi-
cation for this taxonomy is afforded by a number of
“distributional tests”, which assume that words and
phrases which are distributed similarly should receive
similar linguistic categories. Probably the best known
test is the “replacement test”(e.g. Radford 1988):

Does a word or phrase have the same distribution
(t.e. can it be replaced by) a word or phrase of a
known type? If so, then it is a word or phrase of
that type.
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In traditional linguistics, “distribution” is grounded
in linguistic intuitions as to whether a purported sen-
tence is syntactically ‘well-formed’. In the present con-
text such intuitions cannot, of course, be presupposed,
but the replacement test can be made empirically rel-
evant by operationalising it as follows:

Statistical Replacement Test

Has the word or phrase been observed to occur in
a corpus in similar contexts to another word or
phrase? If so, then these should be given similar
linguistic categories.

It remains to give formal accounts of what consti-
tutes the “context” in which a word or phrase appears,
and to define some measure of “similarity” between two
such contexts.

To avoid unnecessary presuppositions about the
structure of language, we assume an extremely sim-
ple definition of the context of a word - the context
18 simply the preceding two and following two words.
To keep the computations tractable, attention was re-
stricted to context words which were among the 150
most common words observed in the corpus. The con-
text we used can therefore be thought of as four vec-
tors of 150 dimensions, each dimension corresponding
to one of the 150 most common words. The value of the
vector is then given by the number of times the focal
word appeared in the relevant relation (i.e., preceding,
following, last but one, next but one).

There were several candidates for this which were
quite good at uncovering structure automatically. In
the spirit of the statistical replacement test described
above, we propose that any reasonable measure of simi-
larity defined to elucidate linguistic distributional simi-
larity should be insensitive to the absolute frequency of
ocurrance of any particular word, but should be depen-
dent on the position it is observed to occur at relative
to other words. That is, it should satisfy the following
criterion:

Replacement Criterion If every occurrence of a
word, w, is replaced throughout the whole corpus
independently and at random by w’ with probabil-
ity p, and w” with probability 1 — p, and neither w'
nor w” previously occurred in the corpus, then w'
and w” should have similar contextual distributions
according to the chosen similarity metric.

A metric which gives hierarchical structure in accord
with linguistic orthodoxy was found to be the Spear-
man Rank Correlation Coefficient between the vectors
of frequencies of context words. Since Rank Corre-
lation between two vectors of ranks is in the range
[-1,1], we used an appropriate rescaling of values into
the range [0, 1].

Since Sokal & Sneath (1963) first introduced tech-
niques of numerical taxonomy to the biological com-
munity, hierarchical cluster analysis has found a wide
range of applications, especially in the biological and
social sciences. We use our distributional similarity
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metric as the basis for a hierarchical cluster analysis of
words, which places words with similar distributions
nearby in the hierarchy. Nodes in the resulting tax-
onomy correspond closely to traditional syntactic cat-
egories.

The goal, in the first instance, is to induce a stan-
dard syntactic categorisation. Then we analyse short
phrases in a similar way to deduce similarities between
phrases of various length, and thereby induce facts
about the grammar describing them.

Computational Experiments

We have conducted a number of studies deriving syn-
tactic categories from artificial data generated by a
phrase structure grammar, and classifying letters and
phonemes into linguistically interesting classes using
corpora of real text (Finch & Chater 1991). Here we
concentrate on the problem of finding syntactic cate-
gories in real corpora.

Syntactic categories in natural language

A 40,000,000 word corpus of USENET newsgroup data
was stripped of headers, footers and the like. Even be-
fore cluster analysis, a list of the ten nearest neighbours
of sample words shows that the Rank Correlation met-
ric reveals at least some linguistic structure.

three, four, five, six, several, real, black, old, high,
local, white.

I: I, we, they, he, she, you, I've, doesn’t, don’t, I'm,
didn’t.

south, east, west, north, war, public, government,
tv, system, dead, school.

Clustering results

The tree structure for the entire set of words analysed,
the 1000 most common words in the corpus, is much
too large to display in a single diagram. Therefore,
an overview of the structure of the tree is given, with
labels a node corresponding to the predominant syn-
tactic category of the items dominated by that node. A
small number of items have no well defined syntactic
category (for example, single letters of the alphabet
and words connected with newsgroup administration
such as “edu” and “com”) and these were rejected from
the analysis. Of the remainder, less than 5% are mis-
classified with respect to the label that we have given
to their dominating node. Figure 1 therefore shows
that the gross taxonomy of the lexical items is very
close to a standard taxonomy of syntactic categories.
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Figure 1

Figure 2(a) shows some of the low-level structure
apparent within the whole dendrogram. The left
hand dendrogram corresponds to part of the “ad-
verbs” category of Figure 1. Note that some se-
mantic regularities are apparent (really/actually, fi-
nally /eventually, thus/therefore, and so on). The
other two dendrograms show respectively that low-
level semantic features are revealed (being a computer
term) and the dendrogram of subject-position pro-
nouns shows a (relatively) orthodox syntactic analysis
of pronoun/auxiliary contractions.

—_—

Figure 2a



Figure 2(b) shows low level structure for some ad-
jectives, object position pronouns, countries, and num-
bers. Again it is clear that there is considerable accord
between empirical and syntactic/semantic similarity.

i
this

I eg; : six
practical | ten
nginn] seven
moral half
Figure 2b

Sequences and Similarity

After a hierarchical classification of lexical items has
been derived, we can use this to classify sequences
of categories hierarchically, and the derived similar-
ity metric will again turn out to reveal interesting lin-
guistic structure. This section details the experimental
techniques and results of this analysis.

Classification The lexical hierarchy derived above
was used to classify each lexical item by cutting the
dendrogram at a particular level of dissimilarity, and
thereby obtain several disjoint classes of words. In-
dividual words were replaced with a code which cor-
responded to the class to which they belong, and the
corpus was “parsed” accordingly. For instance, the
two word sequences “the women”, “the file” and “most
data” were replaced by the sequence of labels “C30
C16”. The principle advantage of this is one of sam-
ple size. If 600 words were in C16, and 20 in C30,
for example, then the bigram “C30 C16” comprises, in
principle, 12,000 word-level bigrams. This means that
reliable statistics can be gathered on the “C30 C16”
bigram with a much smaller corpus than needed for
word-level bigrams. The situation is clearly exponen-
tially worse for trigrams. For instance, the “C30 C16
C16” (Determiner Noun Noun) trigram corresponds to
a possible 7,200,000 word-level trigrams. The size of
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the corpus is a major limitation to how far this un-
supervised statistical approach can uncover the struc-
ture of language, and classification can be seen as a
means of elucidating generalisations from (relatively)
small corpora.

Results Rather than present dendrograms as we did
for individual words, in order to show that interesting
linguistic structure has been captured we instead show
some of the “tightest” clusters. That is, the dendro-
gram is “cut” at a particular level of dissimilarity, and
some of the resulting clusters are given as an illustra-
tion.

Noun Phrase Det Noun, Det Adjective Noun,
Det Noun Noun, Det Verb/Noun, Det Adjective
Verb/Noun, Det Inf, Det Verb/Noun Noun, Det
Noun Verb/Noun, Det Inf Noun, Det ing Noun, Det
PastPpl Noun, -Det Det Noun, Det Adjective Noun,
Det Adjective Inf, Det Adjective Verb/Noun, Det
ing, Det Noun Adjective, Det Place Noun, Det Ad-
jective QuantProNP

Note that the ambiguous category “Verb/Noun”,
which contains words judged to occur roughly equally
frequently as non-finite verbs and nouns, behaves very
much like “Noun” when preceded by a determiner.
Even words which are typically non-finite verbs are
judged similar to nouns when preceded by a deter-
miner.

Verb Phrase Inf ProObj, Inf ProObj Noun, Inf
Det Noun, Inf Det Verb/Noun, Inf Det Inf,
Verb/Noun Det Noun, Verb/Noun ProObj, Inf
ProObj Prep/Adv, Inf QuantNP, Inf QuantProNP,
Inf ProObj Adjective, Inf Countries, Inf Noun,
Inf Adjective Noun, Inf Noun Noun, Inf PastPpl,
PastPpl PastPpl, PastPpl Adjective

Note that when followed by an object position pro-
noun, or a noun phrase, the ambiguous category
“Verb/Noun” now behaves as (appears in the same
contexts as) non-finite verbs.

Prepositional Phrase Prep Noun, Prep Det Noun,
Prep Adjective Noun, Prep Det Verb/Noun, Prep
Inf, Prep Det Inf, Prep Adjective Noun, Prep
Verb/Noun, Prep Adjective, Prep QuantProNP,
Prep ProObj Noun, Prep Conj&WH Noun, Prep
Noun Noun, Prep QuantProNP Noun

Complex Nouns Noun
Noun, Noun, Noun Verb/Noun, Noun Preposition
Noun, Noun Conj&WH Noun

Nouns are similarly distributed to compound nouns.

Auxiliaries Auxiliary Adverb, Auxiliary Adverb Ad-
verb, Adverb Auxiliary, Auxiliary, Auxliary Tem-
pAdvb, Auxiliary AdjMod, Auxiliary Adjective
As can be seen, auxiliaries can appear close to ad-

verbs of various sorts, and the resulting phrase is sim-
ilarly distributed to auxiliaries alone.



Relation to Neural Network
Approaches

Outside the statistical tradition, there has been much
interest in using neural networks to extract linguistic
categories from raw data. In particular, Elman (1990,
1991; see also Chater 1989; Cleeremans, Servans-
Schrieber & McClelland 1989) has shown how a re-
current neural network, trained to predict the next el-
ement in a sequence of inputs generated by a simple
grammar, can develop patterns of hidden units which,
when appropriately averaged and cluster analysed re-
veal underlying syntactic categories.

Elman’s approach has a number of limitations.
Firstly, it does not readily generalise to handle more
realistic grammars, with many grammatical rules and
a large lexicon. This is because the prediction tasks
rapidly becomes extremely difficult, and learning is ex-
tremely inefficient and slow, if it occurs at all. Sec-
ondly, the linguistic categories are only implicit within
the network, and can only be revealed using cluster
analysis. However, cluster analysis on simple bigram
statistics of the training corpus provide equally good
clusters (Chater & Conkey in submission), so it is not
clear how much statistical work the network is doing
in uncovering the underlying linguistic categories.

The statistical analysis presented above suggests an
alternative neural network approach, in which a net-
work learns through simple Hebbian learning to repre-
sent words by their distributional context. Since sim-
ilar words are assigned similar patterns, the network
can find the relevant syntactic categories by perform-
ing a cluster analysis of the patterns. An attractive
paradigm for unsupervised clustering is due to Koho-
nen (1982). This implements a variant of k-means clus-
tering, where the k output units (or more exactly their
welght vectors) correspond to the k-means which com-
pete to account for portions of the data, to which they
are most similar.

k- cluuers

Cluster positions learned
by a Kohonen-style

update
rule.

> re

Prevnoue word
but one

Next word
i

Ngxt wond

vi w
Previous word ut one

Current word (2000 units)

Figure 3

The network shown in Figure 3 corresponds to that
used in our simulations with large corpora of real text.
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We used a similar, scaled down, version in the letter
and phoneme level simulations reported below. The
lower set of units use a localist representation of the
current word (there are 2000 units, each correspond-
ing to a different word under study). The middle set of
units are divided into 4 banks, one bank corresponding
to each of the four contextual bigram relations consid-
ered: last word but one, previous word, next word,
next word but one. Only the most common 150 words
were considered, and appearances of all other words
in these contextual relations were ignored. The first
layer of the net was trained with the 40,000,000 word
newsgroup corpus simple Hebbian learning, with nor-
malisation. After training, when a “current word” is
presented, the middle layer represents the distribution
of contexts in which that word occurs. The pattern
representing each of the 2000 words are then clustered
into 100 groups using a Kohonen network.

Network Simulations

First, a small network was given the task of clustering
together letters, which were represented by the distri-
bution of their surrounding context as described above
for words. When the network consisted of two clus-
ter nodes, it precisely divided vowels from consonants.
The clusters resulting from a small (12,000 phoneme)
corpus of phonemically transcribed speech (Svartvik &
Quirk 1980), also approximately divided vowels from
consonants as shown below.!

Vowels: @@ @ uuuhuooongndiiieaaa

Consonants: zhzy @ wvthtshsrpnmlkijh
hihgdhdchb

In the word-level experiments, Some of the clusters
obtained are shown below. In general words in the
same cluster tend to have the same syntactic category,
although there is sometimes more than one cluster
which corresponds to the same syntactic category. Also
some clusters appear to correspond to no linguistic cat-
egory. Some of the clusters are shown below. Notice
that one of clusters corresponds not to a single linguis-
tic category, but consists of words which are ambiguous
between two linguistic categories, nouns and verbs. In
many of the categories there are one or two apparently
spurious items, and some of the smaller categories, not
shown, do not appear have any coherent linguistic ba-
sis. Although the categories are generally in accord
with an orthodox syntactic classification, more linguis-
tically perspicuous categories can be found by cutting
the dendrogram produced in a full hierarchical cluster
analysis at a particular dissimilarity level, to give dis-
joint clusters (as shown in Figure 1). Hence it may be
possible to improve network performance further.

your those this these their the our one’s my its his every each another
an a

!We use the Machine-Readable Phonetic Alphabet.



why whom whether where what though that how because

two three ten six several halfl four five few fairly very

you've you're who's what's we're wasn't they've they're there's thai's
suddenly she’s knowing it's i'm be's haven's comes being

washington v steve robert president peter mike michael math m john
jesus japan iraq india george engineering david dave bell

yoursell whatever us themselves them something someone somebody
taddam myself me kuwait himself him her forth everyone anything

without within with when via unless under toward on near in if from
for duru( by beyond between before at as among against across about

nmml II“II!‘ watching unn; lulnm‘ trying thrown taking supporting
h ding selling g putting printing playing paying
passing mhn; Innhn. keeping giving ;emn; flying finished finding doing
considering coming changing calling buying behind acting

wanted used tried treated taught taken suggested stopped stated

siarted sold shown seen saw saved responsible reporied removed released
m:enwd publuhed provided produced presenied posted played placed paid
ded moved met looked led intended included heard
lonm‘l experienced done discussed died designed caught carried assumed
associated asked applied allowed added accepted
window warning wall voice unit train track tape table stock statement
stack signal screen sample role ring results ram purpose program process
performance object months menu market map list link letter image ii frame

formas form foot flow filter film file faith eniry effect dog distribution disks
course contents chip box book article animal address addition account

walk wait use try stick sign share send save rid respond refer recognize
reach protect pick pass offer occur miss keep judge include ignore hurt
handle follow focus fix fill exist drop define count convert continue compile
cause bring bother belong beat answer

words women views versions types tools tapes stories states sites re-
iponses quesiions programs producis postings parenis papers opinions
numbers names movies laws ideas functions (riends fonts fans experiences
examples elements efecis documentation discussions compuiers children
cases canada applications advice

update transfer trade test split spell ride return report reply release
register record present post plan move log lead force fly figure feed face
escape end email die deal copy charge call break benefit attack

wonder wish win trust tell see say respect remember realize prove notice
mention know imply imagine hope hear guess forget feel explain expect
except doubt deiermine deny decide claim care blame believe assume ask
argue agree

valid tough stupid somewhat slow simple ailly separate related practical
possible nice negative neat logical less intelligent important hot greater
good faster expensive excellent easy correct closer blind better appropriate

accurate

Discussion

We have shown how it is possible derive good approx-
imations to the syntactic categories for English, with-
out having a good account of the rules of syntax, by
collecting statistics, deriving a similarity metric, and
applying hierarchical cluster analysis. Further it was
possible to use the lexical level categories derived to
find phrasal categories defined over these. The mecha-
nisms for finding lexical categories can be implemented
as a neural network, which learns to classify words into
syntactically interesting classes.

One feature of the present version of this iterative
procedure which is not attractive is that there is no
mechanism for correcting inaccuracies in early cate-
gories, based on an oversimple model of the rules of
the domain, even when a more elaborate model of these
rules has been derived. For example, the initial bigram
model does not allow for the possibility that there are
some surface forms (for example, FIRE) which corre-
spond to more than one underlying lexical represen-
tation, with a different lexical category (in this case,
NOUN and VERB). This difficulty can be overcome by
using the observed context of ocurrance of the ambigu-
ous word to disambiguate it. This can be achieved, as
we noted above, by using the analysis of the similarity
between phrases.
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We hope that the general approach to the bootstrap-
ping problem that we have outlined can be applied to
other domains, as well as learning linguistic categories,
and other problems involving the analysis of sequential
structure. For example, in learning the structure of a
visual domain, simple statistics concerning neighbour-
ing values in the image (either grey scale values, or
values which are the output of some pre-processing)
can be used as basis for constructing statistical models
of visually interesting categories. There will, of course,
be no easy general solution to the bootstrapping prob-
lem - after all, this would be tantemount to a general
theory of the processes of cognitive development or sci-
entific enquiry. However, we hope that we have shown
that in specific contexts, it is possible to bootstrap suc-
cessfully using statistical methods.
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