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Introduction 

Predicting the impacts of environmental variation 

on species is of primary concern in ecology, espe-

cially for examining population viability and pre-

dicting range shifts within the context of modern 

climate change and habitat modification (Porter et 

al. 2000, Pearson and Dawson 2003, Thuiller 2004, 

Guisan and Thuiller 2005, Kearney and Porter 

2004). The low spatial resolution at which envi-

ronmental variables are typically sampled in situ 

(Kearney and Porter 2004, Kearney et al. 2014b), 

relative to the microenvironment actually experi-

enced by an organism (Geiger et al. 2003), is an 

important limitation on the predictive capacity of 

a niche model (Dormann et al. 2012). Ideally, envi-

ronmental inputs have been obtained from (1) 

weather stations, which collect multiple data 

types (e.g., air temperature, humidity, wind 

speed, rainfall) long-term at a single point that is 

geographically near to a population of interest 

and (2) measurements collected instantaneously 

or over a pre-determined time period (e.g. with 

dataloggers) within the known habitat of a popu-

lation (Porter et al. 2002, Kearney and Porter 

2004, Austin 2007, Ashcroft and Gollan 2012). 
 The highest-resolution interpolated, grid-

ded climate data currently available for a global 

extent are the WorldClim climate layers, which are 

freely available at horizontal spatial resolutions of 

30" and 10' (approximately 1 km and 20 km) and 

contain mean monthly terrestrial rainfall and 

mean, minimum, and maximum monthly air tem-

peratures (Hijmans et al. 2005). The datasets most 

recently developed by the Climatic Research Unit 
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(CRU CL 2.0) include monthly precipitation, mean 

temperature, relative humidity, sunshine hours, 

ground frost and 10 m mean monthly wind speed 

data for the 1961–1990 normal period at a 10' 

spatial resolution (New et al. 2002). A global-

extent set of gridded microclimate surfaces 

('microclim') is also available at a horizontal reso-

lution of approximately 15 km (Kearney et al. 

2014a). 

 Both the WorldClim and CRU CL 2.0 data-

sets are widely employed in the development of 

species distribution models (SDMs) (Guisan and 

Zimmerman 2000, Guisan and Thuiller 2005, Elith 

et al. 2006) and predictive climate models (Jeffrey 

et al. 2001, Wood et al. 2004, Tait et al. 2006, 

Smith et al. 2007, Tait et al. 2012), which are sub-

sequently used to inform conservation-focused 

research and applications in biodiversity manage-

ment (Loiselle et al. 2003, Brooks et al. 2006, Ker-

houlas et al. 2013). However, most organisms ex-

perience their environment within a geographical 

extent much finer than that of any of the available 

surfaces (Hutchinson and MacArthur 1959, Porter 

et al. 2002, 2010, Geiger et al. 2003, Potter et al. 

2013, Hannah et al. 2014). Additionally, the spatial 

resolution of underlying terrain layers can signifi-

cantly affect the strength of modelled relation-

ships with climate variables (Leempoel et al. 

2015). If all known occurrences of a species are 

bounded within a few 1 km2 cells, then very little 

of the underlying variation that describes that 

species' realised niche (or that underlies its funda-

mental niche) may be captured by a coarse-scale 

distribution model. For some applications, predict-

ing bounded possibilities in potential microcli-

mates, such as modelling distributional limits 

based on the range of environments that are 

available to an organism at a variety of depths 

below ground, may be highly informative. How-

ever, predictions at a higher spatial and temporal 

resolution are required to answer questions about 

responses to extremes (Kearney et al. 2012) or to 

quantify habitat configuration explicitly (Sears et 

al. 2011). Increasing the resolution of a derived 

climate surface requires either (i) improvement of 

interpolation methods or (ii) collection of addi-

tional measurements of relevant covariates in the 

field, which may be constrained by practical con-

siderations (e.g., restricted site access or limited 

availability of research funding, sampling equip-

ment, or personnel). 

 In contrast to climate surfaces interpolated 

from direct measurements, mechanistic climate and 

microclimate models derive environmental variables 

as the outcomes of atmospheric and soil thermody-

namic processes (Porter et al. 1973, 2002). Soil tem-

perature profiles are predicted as a function of the 

flow and storage of energy that is conducted below 

the soil surface, after emitted solar radiation that 

reaches the outer atmosphere is reduced by atmos-

pheric scattering and absorption (e.g., by clouds and 

greenhouse gasses) and by low-altitude reflection 

(e.g., by vegetation and the soil surface) (McCullough 

and Porter 1971, Porter et al. 1973, Geiger et al. 

2003). Soil temperature is a model output, rather 

than an input, and the spatial resolution of the model 

is limited by the spatial resolution of input GIS layers, 

rather than the sampling resolution of in situ tem-

perature data.  

 We use the term 'spatial resolution' to refer 

to the area represented by a single pixel of grid-

ded climate or terrain data, as distinct from 

'spatial scale,' which we use to refer to both the 

area of a terrestrial microclimate of interest (e.g., 

the home range of an organism) and the area over 

which microclimates are aggregated (e.g., the dis-

tribution of a species or a study area). The term 

‘geographical extent' refers to the entire area rep-

resented by a gridded climate or terrain dataset 

and is independent of both spatial resolution and 

scale (Whittaker et al. 2001). Whether a microcli-

mate surface can be reasonably labeled as 'high 

resolution' is relative to the geographic extent of 

an area of interest. A horizontal spatial resolution 

of 30", or approximately 1 km, can be considered 

very high resolution for a global or continental 

model (Hijmans et al. 2005, Kearney et al. 2014a, 

b) but would be extremely low-resolution if the 

area being represented is a small island. Similarly, 

a 1 km2 gridded surface could be labeled as high-

resolution, relative to the home range of a large 

mammal, but would capture little of the heteroge-

neity within the habitat of a small, soil-dwelling 

invertebrate.  

Anna L. Carter et al. — Resolution of microclimate model inputs  
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 Few studies have developed soil tempera-

ture estimates at a spatial resolution that is bio-

logically meaningful. The accuracy of one process-

explicit model, NicheMapR, has been tested at a 5 

km spatial resolution, continent-wide for Australia 

(Kearney et al. 2014b) and for regions of North 

America (Kearney et al. 2014a). A spatially explicit 

model of soil temperatures has been tested at a 

horizontal resolution of 5 m but is currently lim-

ited to predicting temperatures for a single topsoil 

layer (Bennie et al. 2008). A model of hourly soil 

temperatures generated using Niche Mapper™ 

(Porter et al. 1973, Porter and Mitchell 2006) at a 

0.5 m horizontal resolution was used to predict 

hatchling sex ratios in a population of tuatara 

(Sphenodon punctatus), a long-lived, New Zealand

-endemic reptile (Mitchell et al. 2008). The latter 

study captured the topographic influences of 

slope and aspect on soil temperatures but did not 

explicitly test the effects of microsite-scale varia-

tion (e.g., soil properties, wind speed) on model 

accuracy. 

 From the perspective of predictive ecology, 

the selection of appropriate model parameters is 

critical for examining the potential for range shifts 

and for identifying barriers to population disper-

sal, particularly under novel environmental condi-

tions (Bean et al. 2014). However, the resolution 

of model parameters, i.e., the size and period of 

time represented by each value of an input, may 

itself affect the accuracy of predictions. We used 

NicheMapR, an R-implementation of Niche Map-

per™, to examine how the resolution of microcli-

mate parameters affects the accuracy of modelled 

Anna L. Carter et al. — Resolution of microclimate model inputs  

Figure 1. Map of the study site, with the arrow indicating the location of the island of Takapourewa relative to the 
main North and South islands of New Zealand (https://data.linz.govt.nz/). The black rectangle overlaid onto the is-
land shows the area accessible to researchers, with soil temperature sampling locations indicated by red dots; the 
white dot approximates the location of the permanent weather station and logging anemometer. The larger polygon 
shows the area (comprised of three pixels) covered by the WorldClim 30” dataset1.  

1 http://www.worldclim.org/tiles.php?Zone=411  
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soil temperatures within a small geographical ex-

tent. We tested the effects of topography, soil 

thermal properties, shade availability and wind 

speed on the accuracy of microsite soil tempera-

ture predictions to determine (1) whether micro-

climate-level parameter values improve predic-

tions of soil temperatures over those generated 

using broad-scale, mean values and/or (2) 

whether local, time-specific weather data improve 

prediction accuracy compared to predictions gen-

erated using periodic climate means.  
 

Methods 

Microclimate model structure  

We modelled soil temperatures for the year 2011 

for the island of Takapourewa (also known as 

Stephens Island), a 150 ha offshore Nature Re-

serve located in Cook Strait, New Zealand [approx. 

40°40'S 174°00’E] (Fig. 1). We used NicheMapR 

(Kearney et al. 2014a, b), a global-extent imple-

mentation of the Fortran Niche Mapper™ mecha-

nistic microclimate model (McCullough and Porter 

1971, Porter and Mitchell 2006), written to be 

called from the R-environment. To model soil tem-

peratures, NicheMapR uses a one-dimensional, 

finite-difference algorithm (Carslaw and Jaeger 

1959, McCullough and Porter 1971, Porter et al. 

1973) to solve heat-mass balance equations for 

ten specified soil depths at a given location and 

through the given period of time.  

 The input data include topographic parame-

ters (e.g., elevation, slope, aspect, horizon angle) 

for calculating clear-sky solar radiation using the 

integrated SOLRAD radiation model (McCullough 

and Porter 1971, Porter et al. 2002); daily maxi-

mum and minimum values of seasonally dynamic 

climate variables (e.g., wind speed, air tempera-

ture, humidity, rainfall, cloud cover); and values 

for relatively constant, site-specific environmental 

variables (e.g., physical properties of soils, shade 

availability). Values of soil properties can option-

ally be modified, e.g., to simulate a layer of or-

ganic topsoil. NicheMapR also incorporates scat-

tering of solar radiation due to atmospheric aero-

sols (Kearney et al. 2014a, b; Fig. 2).  

 We modified the NicheMapR global func-

tions to allow user-supplied input of local environ-

mental variables at any spatial and temporal (e.g., 

daily, hourly) resolution. Daily observations of 

rainfall (resolution 0.2 mm), relative humidity 

(resolution 1.0%), minimum and maximum air 

temperatures (resolution 0.1°C), and minimum 

and maximum wind speeds (resolution 0.1 ms-1) 

for the study period were obtained from the 

NIWA CliFlo database2 for the weather station on 

Takapourewa [Station No. 26169]. Observations of 

relative humidity recorded at 9:00 a.m. were as-

sumed to represent daily maxima. We estimated 

humidity minima by splining the lowest maximum 

daily value by month across 365 days. We esti-

mated cloud cover for the study period as the dif-

ference between maximum possible (i.e., total 

daylight hours, regardless of cloud cover) and re-

corded daily sunshine hours (resolution 0.1 hr), 

expressed as a percentage, using sunshine data 

from the Blenheim Research weather station 

[NIWA Station No. 12430] approximately 95 km 

from Takapourewa, the nearest location at which 

sunshine hours were recorded in 2011. 

 To determine whether local weather data 

improved the accuracy of soil temperature esti-

mates over that obtained using global-scale cli-

mate information, we also parameterised the mi-

croclimate model with monthly climate data inter-

polated to a 10' latitude/longitude resolution for 

the World Meteorological Organization standard 

normal period 1961–1990 (New et al. 2002) from 

the University of East Anglia Climatic Research 

Unit CL 2.0 database3 (Online supplementary 

documentation). We extracted monthly minimum 

and maximum relative humidity and air tempera-

tures and wind speed data from the global data-

base and splined them to daily resolution. We 

spread total monthly rainfall evenly across the 

number of rainy days (i.e., the number of days 

with > 0.1 mm of rainfall) per month. We assumed 

that daily maximum air temperature and wind 

speed and minimum relative humidity and cloud 

cover occurred one hour after local solar noon 

and that daily minimum air temperature and wind 

Anna L. Carter et al. — Resolution of microclimate model inputs  

2 http://www.cliflo.niwa.co.nz 
3 http://www.cru.uea.ac.uk/cru/data  
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Figure 2. Flow chart summarising the environmental inputs used by the NicheMapR microclimate model to calculate 
soil heat-energy balances and estimate hourly sub-surface temperatures (adapted with permission from Porter et al. 
1973, Porter & Tracy 1983, Porter et al. 2006). Semi-enclosed rectangles designate model inputs, enclosed rectangles 
are model algorithms, parallelograms are outputs, and the diamond is the optional ‘organic cap’ soil parameter, 
which did not improve model accuracy and was not included in the ‘best’ set of models.  

speed and maximum relative humidity and cloud 

cover occurred at local sunrise (Kearney et al. 

2014a, b). Data on atmospheric aerosols were ob-

tained from a modified version of the Global Aero-

sol Data Set (GADS) (Koepke et al. 1997).  

 

Terrain data 

We extracted topographic data in ArcMap™ Desk-

top v 10.1 software (Environmental Systems Re-

search Institute [Esri] ArcGIS: Redlands, CA, USA 

2012) from a 0.5 m resolution gridded digital ele-

vation map (DEM) of the study site (Aerial Surveys 

Ltd., Auckland, NZ 2011). We obtained values for 

latitude, longitude, and elevation directly from the 

DEM, calculated slope as the ratio of maximum 

change in elevation to horizontal distance from 

each pixel to its eight nearest neighbours and as-

pect as the maximum change in slope from each 

pixel to its eight nearest neighbours (Online sup-

plementary documentation). To correct solar ra-

diation values for complex topography, we calcu-

lated twenty-four horizon angles for each pixel of 

the DEM using the r.horizon function in GRASS v 

6.4 (GRASS Development Team 2012). 

 

Soil physical and thermal properties 

The physical and thermal properties of soils influ-

ence the amount of energy that is transferred and 

the rate of transfer from the surface to subse-

quent depths (i.e., the soil heat flux). Heat con-

duction through soils is described primarily by 

thermal conductivity and specific heat (de Vries 

1963). While soil thermal properties are relatively 

stable across temperature changes (de Vries 

1963), both physical and thermal properties of 

soils, especially moisture content, can vary 

throughout the soil matrix and can affect heat 

transfer (Campbell 1985, Ochsner et al. 2001, 

Kearney et al. 2014b). The inclusion of local soil 

bulk density and moisture content in an Australia-

wide test of NicheMapR did not significantly im-

prove model performance (Kearney et al. 2014a, 
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b); however, the effects of site-specific soil ther-

mal properties on prediction accuracy have not 

been examined. For this study, we experimentally 

determined thermal conductivity, bulk density, 

and fractional soil moisture and density of soil 

minerals (details below) for the soil types and type 

composites (n = 10) present on Takapourewa 

(Ward 1961). We estimated specific heat of soil 

minerals, soil reflectance, and clay content from 

other soil properties. Soil moisture content and 

conductivity were adjusted with depth inside the 

model subroutine (Kearney et al. 2014a, b). 

 To define locations for soil sampling, we 

manually georeferenced a hard-copy map of soil 

types (Ward 1961) to a high-resolution aerial 

photo of the study location (Aerial Surveys 2011) 

and transformed the digitisation to the 2000 New 

Zealand Transverse Mercator/NZ Geodetic Datum 

2000 coordinate system in ArcMap™ using a cubic 

spline. We defined control points for the transfor-

mation until the root mean squared error (RMSE) 

between congruent points on the soil map and 

aerial photo was < 0.0001 m. The quality of the 

original map was low relative to the aerial photo, 

so we defined locations for soil sampling at ran-

dom points at least 20 m from the edges of each 

stratified soil polygon to minimise the potential 

for confusion of soil types. Soil cores were col-

lected between 15–20 November 2012, at least 12 

hours following rainfall to avoid inflation of soil 

moisture content. After removing surface vegeta-

tion, one core sample (volume ≈ 1455 ml) was 

collected from 20 mm below the surface to a 

depth of around 200 mm at each sampling loca-

tion (n = 10) using a hand-held stainless steel soil 

corer and a striking plate (Materials Advisory Test-

ing Service, Stokes Valley, NZ). Samples were dou-

ble-bagged and stored out of direct sunlight until 

testing (Sheppard and Addison 2006).  

 Soil testing was conducted in a climate-

controlled laboratory (Geotechnics Ltd., Auckland, 

NZ) from 2–8 December 2012. Thermal conductiv-

ity was determined using a calibrated non-steady-

state thermal probe (Bristow 1998) and digital 

thermal resistivity meter (TP09/MTN01; Hukese-

flux Thermal Sensors, Delft, The Netherlands). We 

modified the protocol (ASTM 2008) in two ways to 

allow for testing of very low-density soils: (1) re-

moulded samples were wrapped with an A4-size 

sheet of transparent polyethylene terephthalate 

(PET) and supported by a circle of fine steel mesh 

to maintain sample integrity and (2) the thermal 

probe was suspended above soils that were of 

sufficiently low density to cause the needle to sink 

into the sample. To prevent excessive tempera-

ture increases during testing of relatively dry or 

low-density soils, we set the thermal probe heat-

ing voltage at 2V for samples with a calculated 

density ≤ 0.0012 Mgm-3 and at 2.5V for samples 

with a density > 0.0012 Mgm-3. The thermal con-

ductivity (WmK-1) of each sample was measured 

over 600 seconds to a standard deviation of < 

0.10. Two fractions of each soil sample, one sieved 

and one un-sieved, were also weighed, oven-dried 

for 24 hours at 108°C (Contherm Scientific Ther-

motec™ 2000 Series drying oven) and re-weighed 

to determine moisture content and confirm calcu-

lated dry densities (Sheppard and Addison 2006). 

We calculated fractional soil moisture as the ratio 

of the mass of water (g) in each sample to the 

sample dry mass. 

 We calculated the density of the mineral 

component of soils (kgm-3) as the ratio of sample 

mass to the sample volume, with sample mass 

corrected for the masses of water, carbon (Ward 

1961), and organics. Specific heat (MJm-3-K) of the 

mineral component was estimated by calculating 

the volumetric specific heat of each soil sample 

and solving for the mineral component, given the 

volume fractions of each component (de Vries 

1963, Campbell 1985, Campbell and Norman 

1998). We estimated the organic component us-

ing a ratio of carbon to organic matter of 0.5 (de 

Vries 1963, Campbell 1985) and estimated soil 

reflectance using the Munsell colour values 

(Escadafal 1989, Post et al. 2000) previously re-

ported for soils on Takapourewa (Ward 1961). 

Clay content was estimated as 20% for all soil 

types following textural classification (Shirazi and 

Boersma 1984, Hendrickx et al. 2003, FAO 2006; 

Online supplementary documentation).  

 Cliffs surrounding the island, which were 

not included in historical surveys (Ward 1961) or 

sampled for this study, were assigned mean val-
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ues of soil properties. Volumetric water content at 

saturation was specified as 0.26 m3m-3 of soil, and 

surface roughness (i.e., the size of soil particles) 

was set at 0.004 m for all simulations (Kearney et 

al. 2014a). We compared the accuracy of models 

run using spatially-explicit, experimentally-derived 

soil properties with that of models run using pa-

rameter values for the mineral fraction of a gener-

alised soil (Kearney et al. 2014a, b).  

 

Shade cover  

Shading by vegetation affects the proportion of 

total solar radiation that reaches the soil surface 

and, consequently, soil temperature (Geiger et al. 

2003). Using gap-light analysis of hemispherical 

photography (Frazer et al. 1999), we estimated 

near-ground, microsite shade availability on Taka-

pourewa at around 95% under the forest canopy 

and between 20–60% at most non-forested sam-

pling locations, regardless of vegetation type 

(Carter unpub. data). Because vegetation type did 

not predict percent-shading, microsite shade val-

ues could not be generalised to non-sampled 

points based on vegetation class, and tempera-

ture predictions were instead generated using 

shade values of 0%, 20% (the approximate mini-

mum calculated shade), 45% (the approximate 

mean non-forest shading), and 60% (the approxi-

mate upper range of shade at non-forested loca-

tions) for all sites. We also modelled soil tempera-

tures for each site using a random integer value 

for canopy shading of between 20–60%. 

 

Simulated wind speeds 

The exposed maritime environment of the 

study site increased the likelihood that wind 

would significantly impact soil temperatures. 

Single-point wind station data were not ex-

pected to reflect the effects of highly variable 

local topography on wind (Mitchell et al. 2008), 

so we used a separate turbulence velocity 

model to simulate wind speeds across the is-

land. We modelled wind speeds on Taka-

pourewa using WindStation™ v 4.0.1 software 

(Lopes 2003), which incorporates a Navier-

Stokes turbulence equation solver (CANYON) 

(Lopes et al. 1995) and a kinematic model 

(NUATMOS) (Ross et al. 1988) to simulate wind 

flow over complex terrain. The goal of this 

study was not to generate accurate, microsite-

resolution values for wind speed, which would 

have been an unrealistic expectation of the 

simulator (Ross et al. 1988, Lopes 2003), but to 

determine whether modelled temperature pre-

dictions were sensitive to the effects of wind 

speed at a microsite scale.  

 We installed a logging anemometer 

(Inspeed Vortex Wind Sensor and Madgetech 

Pulse 101A datalogger) at a height of 2 m di-

rectly below the island's permanent anemome-

ter at a mast height of 10 m (180m asl), which 

recorded wind speed at two-minute intervals 

for approximately one year (Fig. 1). Wind speed 

and direction data recorded at hourly intervals 

during the same period by the permanent 

weather station were obtained from the NIWA 

climate database2. The permanent station at 

the study site is located in a relatively open, 

exposed area, so the wind direction at a height 

of 2 m was assumed to be equal to the direc-

tion at 10 m.  

 Wind flow simulations required two ter-

rain-defining  datasets: elevation and rough-

ness, which includes both the 'bumpiness' in-

herent in local topography and the heights of 

above-ground elements such as vegetation, 

rocks, and artificial structures (Lopes 2003, 

2011). We extracted elevation data at a hori-

zontal resolution of 2 m from a re-sampled 

DEM of the study site. We recorded approxi-

mate maximum vegetation height measure-

ments in November 2011 and 2012 at random 

sites, stratified by vegetation type, and as-

signed broad roughness values between 0.5–

4.0 m to a categorical land cover classification 

map of the island (Carter unpub. data). Hourly 

wind field simulations were run inside a grid-

ded bounding box with a horizontal resolution 

of approximately 25 m and converted to daily 

maximum and minimum values (summarised in 

Online supplementary documentation). We 

interpolated modelled wind data to the spatial 

resolution of the terrain layers using a distance

-minimising algorithm in ArcMap™ software.  
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Soil temperature data  

To provide field data for comparison with pre-

dicted soil temperatures, we used 31 temperature 

dataloggers [23x Thermochron™ DS1921H iBut-

tons (resolution: 0.5/0.125°C, accuracy: ± 1°C) and 

8x Onset HOBO™ Pro v2 U23-002 (resolution: 

0.02°C, accuracy: ± 0.21°C)] to measure hourly soil 

temperature data at random points, stratified 

among previously studied sites in the eastern part 

of the island, which is the only portion accessible 

to researchers (Fig. 1). To maintain consistency 

between studies (Mitchell et al. 2008) and, be-

cause most temporal variation in soil temperature 

dissipates at around 200 mm below the soil sur-

face (Geiger et al. 2003), we measured soil tem-

peratures at depths of 100 mm and 200 mm. Each 

iButton collected approximately 1,400 observa-

tions over three months, and each Pro v2 datalog-

ger collected approximately 8,350 observations 

over one year from late November 2011. 

 
Model selection 

To determine whether the resolution of topog-

raphic variables, soil thermal properties, shade 

availability or wind speed affected the accuracy of 

predicted soil temperatures within a small geo-

graphic extent, we tested a series of unique mi-

croclimate models. We generated hourly tem-

perature predictions at 100 mm and 200 mm at 

every microsite (defined by a unique latitude/

longitude) using seven different baseline models, 

each parameterised to increasing complexity 

(Table 1). With the exception of the 'global' imple-

mentation, models were run using unique terrain 

data for all datalogger sites, and each microsite 

was defined by, at a minimum, a unique combina-

tion of topographic parameters (i.e., the ‘high_res’ 

model).  

 We ran all seven models using the five sce-

narios of percent-shading: 0, 20, 45, 60, and ran-

dom [20:60] to generate 35 baseline sub-models. 

We then modified and re-ran each of the 35 sub-

models to examine the effects of key soil proper-

ties on the accuracy of temperature predictions. 

We examined the effects of moisture on soil tem-

peratures for all models by simulating evaporative 

cooling of the soil surface on days that received at 

least 1.5 mm of rainfall (Kearney et al. 2014b). We 

also examined the effects of (1) near-surface bio-

turbation, using a 50 mm 'organic soil 

cap' (Kearney et al. 2014b) and (2) shallow soils, 

using a simulated rock substrate (Kearney et al. 

2014a). The models parameterised with experi-

mentally derived soil properties (‘soils_1,’ 

‘soils_2’, ‘micro’) were run using generalised val-

ues for thermal conductivity and density of soil 

minerals. Models parameterised with local 

weather data (‘weather_1,’ ‘weather_2,’ ‘soils_2,’ 

‘micro’) were run using both daily observations 

and splined mean monthly cloud cover data. 

 We generated predictions of hourly soil 

temperatures for one year and calculated values 

for the coefficient of determination (R2), root-

mean-squared deviation (RMSD), and normalised 

RMSD (nRMSD) for each comparison of predicted 

hourly soil temperatures with the corresponding 

observed values at each datalogger location, with 
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Table 1. Seven basic microclimate model parameterisations and corresponding sources of input data: 'global' mean 
data were downloaded from the CRU 2.0 global climate database and represent the 1961–1990 standard normal 
period; 'local daily' climate data were obtained from weather stations for the year 2011; 'gridded' wind data were 
generated using a turbulence velocity model; 'local' soil properties were determined empirically; and 'generalised' 
soil properties were based on published values.  

model # model name terrain data climate data soil data wind data 

1 global global database global mean generalised global mean 

2 high-res microsite global mean generalised global mean 

3 weather_1 microsite local daily generalised local daily 

4 weather_2 microsite local daily generalised  gridded 

5 soils_1 microsite global mean local global mean 

6 soils_2 microsite local daily local local daily 

7 micro microsite local daily local gridded 
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lower values indicating better agreement between 

observed and modelled soil temperatures. We 

calculated RMSD using the 'rmse' function in R 

package hydroGOF (Zambrano-Bigiarini 2014). We 

calculated nRMSD as the RMSD value divided by 

the range of observed hourly soil temperatures 

(i.e., maximum - minimum temperature) for each 

comparison between predicted and corresponding 

observed values as well as modelled and observed 

daily maxima and minima (Horton and Corkrey 

2011, Kearney et al. 2014b). We used the accuracy 

of lower-resolution, larger-extent implementa-

tions of NicheMapR, within around 2–3°C of ob-

served soil temperatures (Kearney et al. 2014a, b), 

as a high-quality benchmark for assessing models.  
 

Results 

Model selection 

Neither simulation of evaporative cooling nor in-

clusion of a 50 mm organic soil cap increased the 

accuracy of predicted soil temperatures from the 

baseline set of models. Simulating a rock substrate 

instead of soil had no effect on either RMSD or R2 

values. In contrast, models run using generalised 

values for soil thermal conductivity and mineral 

density and experimentally-derived values for 

other soil properties generated more accurate 

temperature predictions than those run using only 

experimentally-derived values. Substitution of 

statistically smoothed, mean monthly cloud cover 

data for daily observed values decreased RMSD 

values across all models parameterised with local 

weather data. 

 Except for the 20%, 45%, and 60% shading 

scenarios of 'high-res' and 'soils_1,' RMSD values 

were lower at 200 mm compared to 100 mm for 

the same models. Only the 0% and 20% shading 

scenarios of 'soils_2' and the 20% shading sce-

nario of 'micro' had RMSD values < 3.0°C. Of all 

models tested, the 0% shading scenario of the 

'soils_2' model had the lowest RMSD and nRMSD 

values at both 100 mm and 200 mm depths. The 

'weather_1' models had the highest R2 values at 

100 mm. The 0% and 20% shading scenarios of the 

'weather_1' and 'soils_2' models had the highest 

R2 values at 200 mm depth (Fig. 3). 

 The accuracy of site-specific, daily minimum 

soil temperature predictions was similar across 
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Figure 3. Summary statistics comparing observed and modelled hourly soil temperatures. Light gray bars show comparisons be-
tween temperatures at 100 mm; dark gray bars show comparisons at 200 mm depth. Each of the seven models was run using 
five scenarios of percent-shading: 0, 20, 45, 60, and random [20:60], denoted ‘R’. All statistics were averaged across 27 sites at 
100 mm (approx. 1,400 values per site) and 4 sites at 200 mm (approx. 8,350 values per site). Comparisons are shown for the 
'best' overall set of models only.    
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Figure 4. Hourly soil temperatures for the 0% shad-
ing scenario measured at 100 mm (red), ordered by 
time within each sampling location and overlaid 
onto modelled data (black). ‘R’ denotes random per-
cent-shading in the range [20:60]. Temperatures 
were collected for one year at sites 3, 6, 7 and 8; 
three months of data were collected at the remain-
ing sites. In-situ values appear darker where they 
overlap with predicted values. The 'soils_2' parame-
terisation was, overall, the most accurate model 
examined (RMSD=2.63°C). Model output is shown 
for the 0% shading scenarios of the 'best' set of 
models. Complete results are shown in online sup-
plementary documentation.  
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Figure 5. Hourly soil temperatures for the 0% shad-
ing scenario measured at 200 mm (red), ordered by 
time (over one year) within each sampling location 
and overlaid onto modelled data (black). ‘R’ denotes 
random percent-shading in the range [20:60]. In-situ 
data appear darker where they overlap with pre-
dicted values. The 'soils_2' parameterisation was, 
overall, the most accurate model examined 
(RMSD=1.94°C). Complete results are shown in 
online supplementary documentation.  
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models; however, the rank performance of models 

at 100 mm and 200 mm was reversed, relative to 

hourly predictions. The ability of any model to pre-

dict site-specific, daily maximum soil temperatures 

was lower. Normalised RMSD values were similar 

to the lowest nRMSD values calculated across all 

soil temperature predictions. We present com-

plete summary statistics for all shading scenarios 

of the set of models with the overall lowest values 

of RMSD: the 'soils_2' model, simplified with 

smoothed cloud cover data and generalised values 

for soil minerals density and thermal conductivity 

but parameterised with experimentally-derived 

values for other soil properties (Fig. 3). 

 Maximum daily air temperature records 

were better predictors of maximum daily soil tem-

peratures at 100 mm, but not at 200 mm, when 

compared with modelled values. The accuracy of 

predicted maxima was much lower at 100 mm, 

with a mean discrepancy just under 6.5°C, than at 

200 mm, at which the mean discrepancy was 

within 3.5°C of observed values. Predicted mini-

mum daily soil temperatures were more accurate 

than air temperature minima, within a mean of 3°

C of observations at both 100 mm and 200 mm for 

most of the models examined.  

 

Effects of parameter values and resolution  

Inclusion of high-resolution topographic parame-

ters (i.e., elevation, slope, aspect, and horizon an-

gles) in 'high-res' improved accuracy of modelled 

soil temperatures over predictions generated with 

'global' only when simulated shade at microsites 

was relatively low. RMSD values were lower for 

the 0%, 20%, and random [20:60] shading scenar-

ios at 100 mm and the 0% shading scenario at 200 

mm. RMSD values increased at both depths for 

other shading scenarios (Fig. 3). 

 Inclusion of local, daily climate data (i.e., 

maximum/minimum air temperatures, maximum 

relative humidity, maximum and minimum wind 

speeds, daily rainfall) in 'weather_1' improved the 

accuracy of predictions generated with 'high-res' 

for all shading scenarios and decreased RMSD val-

ues more at 200 mm than at 100 mm. Inclusion of 

experimentally-derived, local soil properties (i.e., 

specific heat, bulk density, fractional soil moisture, 

reflectance) in 'soils_1' decreased RMSD values 

for soil temperatures modelled using 'high-res' 

more at 100 mm than at 200 mm (Fig. 3). 

 Parameterisation of 'weather_1' with mod-

elled wind speed data decreased the accuracy of 

soil temperature predictions, increasing RMSD 

values. Overall, inclusion of both daily weather 

data and experimentally-derived soil properties in 

'soils_2' increased the accuracy of modelled soil 

temperatures generated using 'soils_1.' RMSD 

values decreased under the 0 and 20% shading 

scenarios but increased under 45%, 60%, and ran-

dom [20:60] shading scenarios at 100 mm. RMSD 

values decreased under all shading scenarios at 

200 mm. Overall, inclusion of modelled wind data 

in 'micro' decreased the accuracy of soil tempera-

ture predictions. With the exception of the 45% 

shading scenario, RMSD values increased at 100 

mm. RMSD values increased at 200 mm under all 

shading scenarios for 'micro,' compared with 

'soils_2' (Fig. 3). Comparisons between measured 

and predicted hourly soil temperatures for the 0% 

shading scenarios are shown in Figs. 4 and 5. 

Measured and predicted soil temperatures for all 

shading scenarios are provided in the online sup-

plementary documentation.  

 

Discussion 

Summary of major findings  

In this study, we generated hourly soil tempera-

tures at a sub-meter spatial resolution with accu-

racy comparable to lower-resolution implementa-

tions of NicheMapR, i.e., within 2–3°C of observed 

values. Within the small spatial extent modelled 

here, marked improvements in prediction accu-

racy were only facilitated by the inclusion of high 

resolution terrain layers and local, time-series 

weather data. Overall, the models examined were 

better predictors of soil temperatures at 200 mm 

than at 100 mm depth, reflecting the reduction in 

temperature variance that occurs with soil depth. 

Modelled temperatures were consistently lower 

than observed values, regardless of the shading 

scenario. Data collected over a full year revealed a 

seasonal pattern in accuracy at three of the four 

sites in which we installed higher-capacity data-

loggers, with soil temperatures slightly under-
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predicted in the austral winter, compared to other 

seasons. All but two of the modelled scenarios 

generated hourly soil temperatures within 5°C of 

observed values, and most were accurate to 

within 3–4°C of soil temperatures observed at 100 

mm depth. Normalised RMSD values of the two 

most accurate models (i.e., the 0% shading sce-

narios of 'weather_1' and 'soils_2') indicated that 

the minimum residual variance across all sites was 

within only about 20% of observed values at 100 

mm and within about 10% of observed values at 

200 mm. Similarly, R2 values across all models sug-

gested that the ability to explain variance in ob-

served values at 100 mm compared to 200 mm 

was reduced by almost 30% (Fig. 3). 

 The simulation of surface-level vegetation 

shading improved model accuracy only when cli-

mate inputs were sourced from the global data-

base. Only the 60% shading scenario of the 'global' 

model, however, generated soil temperatures 

within approximately 3°C of observed values. In-

clusion of experimentally derived soil properties 

did not markedly improve the accuracy of models 

parameterised with local weather data. Inclusion 

of high-resolution, modelled minimum and maxi-

mum wind speed data slightly decreased model 

accuracy relative to scenarios driven by local, daily 

maximum wind speeds. The most accurate model 

developed in this study, 'soils_2,' only improved 

upon the second-best model, 'weather_1,' by 

about 0.2°C, an increase in accuracy that is 

unlikely to impact the predictions of ecological 

niche models in a biologically relevant way. In ad-

dition, parameterisation of 'weather_1' requires 

no in situ data collection, which reduces the time 

and financial resources required for model imple-

mentation and largely eliminates any environ-

mental impacts of habitat access.  

 

Methodological limitations  

Simulation of site-specific soil properties only 

slightly improved the accuracy of predicted soil 

temperatures relative to models parameterised 

with generalised values (Figs. 3, 4), although the 

spatial resolution of experimentally determined 

values of soil properties was coarse, relative to 

the resolution of terrain data. Determination of 

soil properties in situ, using a higher-resolution, 

stratified sampling grid might reduce the amount 

of unexplained variation in soil temperatures and 

improve model predictions. The error in predicted 

soil temperatures may also be inflated due to the 

resolution of measured values. However, physical 

and thermal properties vary little within broad soil 

classifications, and the data obtained for this 

study are consistent with published values for 

their respective classes (de Vries 1963). Likewise, 

collecting empirical measurements of soil thermal 

properties is costly and time-consuming. More-

over, the accuracy of models parameterised using 

location-specific soil values in this and previous 

studies (Kearney et al. 2014a, b) was not improved 

over that of models that simulated a generalised 

sandy soil. More research is needed to determine 

if different patterns occur at sites with highly or-

ganic soils, which are less thermally conductive 

than sandy soils (de Vries 1963, O'Donnell et al. 

2009). 

 Increasing the simulated canopy shading to 

levels representative of mean shade reduced ac-

curacy of predicted soil temperatures, relative to 

that of temperatures modelled under the assump-

tion of 0% shade. The current implementation of 

NicheMapR does not incorporate the insulating 

effect (Oliver et al. 1987) of low-growing plants, so 

vegetation can only reduce modelled soil tem-

peratures via a shading mechanism. At lower spa-

tial resolutions, e.g., on the order of km2, canopy 

shading greater than 0% may accurately represent 

the mean shading over the area represented by 

each pixel. As the spatial resolution of a microcli-

mate surface increases, however, the shading of a 

single pixel is less likely to be accurately repre-

sented by a mean value. Rather than specifying 

'true' shade at ground-level, therefore, canopy 

shading for very high-resolution microclimate sur-

faces may be more accurately characterised as a 

binary variable signifying whether each site is or is 

not shaded. 

 Topography affected the wind profiles ex-

perienced at different points on the island. How-

ever, while simulated soil temperatures were sen-

sitive to their inclusion, gridded wind speed data 

did not improve the accuracy of modelled soil 
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temperatures. Strong effects of wind speed on soil 

temperatures might be more apparent on the ac-

cess-restricted, northwestern face of the study 

site, which is the least-sheltered area of the island 

and regularly exposed to gale-force winds (Ward 

1961) (see Online supplementary documentation). 

Reducing the magnitude of wind speeds below 

measured values increased accuracy of modelled 

soil temperatures on nearby North Brother Island 

(Mitchell et al. 2008), which has a steep and ex-

posed topography, relative to most of the area of 

Takapourewa. Alternatively, gridded wind data 

might improve model accuracy, if the uncertainty 

in soil properties or measured soil temperatures 

could be reduced or if gridded wind data were 

modelled using input data from multiple ane-

mometers. Mean seasonal easterly-westerly wind 

speeds are predicted to vary in New Zealand by 

between -2.5 to +3.6 ms-1 under climate change 

models for the next century (http://

ww.mfe.govt.nz). Changes in mean wind speeds 

may have a small effect on air temperatures near 

the soil surface and, thus, on soil temperatures. 

However, changes in macroclimate conditions 

should not affect accuracy of a mechanistic micro-

climate model.  

 

Implications for model applications 

We have shown that soil temperatures can be 

modelled mechanistically within a small spatial 

extent and at a very high spatial resolution (i.e., ≤ 

1 m) with accuracy comparable to models param-

eterised using lower-resolution (i.e., 5–15 km) 

continental- or global-extent terrain layers 

(Kearney et al. 2014a, b). Importantly, predicting 

soil temperatures at our study site to within 2–3°C 

of observed values required that we parameterise 

the microclimate model both with microsite-

resolution terrain data and local, daily weather 

information. Hourly soil temperatures predicted 

using the 'global' model, parameterised with to-

pographic and climate inputs at approximately the 

same spatial resolution as the global-extent 

'microclim' terrestrial climate layers (Kearney et 

al. 2014a), captured little microsite variation and 

were only accurate to within about 6°C of ob-

served values. Our findings highlight the impor-

tance of considering within-pixel variation as a 

critical source of information and, in lower-

resolution models, uncertainty.  

 Continental- and global-extent microclimate 

layers are unlikely to provide accurate estimates 

of microclimate conditions when the spatial scale 

of a study area is smaller than the resolution of 

the climate layer itself. Because the 'global' model 

in this study was parameterised using climate and 

topographic layers at a spatial resolution of 

10' (~20 km), all 27 of our sampling sites were rep-

resented by a single pixel. The highest-resolution 

interpolated climate layers currently available 

(i.e., 30" or ~1 km) represent the entire island 

within three pixels. Very high-resolution layers are 

less likely to be available for study areas that are 

relatively isolated or uninhabited, e.g., protected 

wildlife reserves, especially those with a small 

geographical extent, such as small islands. 

 We did not explicitly examine whether re-

ducing the spatial resolution of terrain data (e.g., 

from 0.5 m to 10 m or 20 m) affected the accuracy 

of soil temperature predictions. Increasing either 

the resolution or the extent of topographic layers 

increases the number of individual sites for which 

microclimate conditions are estimated and, as a 

result, markedly increases computation time. De-

termining the minimum spatial resolution of data 

required to accurately predict microclimate condi-

tions at small scales or within a small geographical 

extent would be beneficial for minimising the re-

sources necessary for developing very high-

resolution microclimate surfaces. 

 The lower the spatial resolution of a micro-

climate surface, the more likely that a biophysical 

model would over-estimate the availability of suit-

able habitat for a species of interest. Likewise, 

biologically significant sources of environmental 

variation, e.g., relatively narrow dispersal barriers, 

can be masked by low-resolution microclimate 

surfaces. Barring practical limitations, e.g., the 

availability of terrain data or high-performance 

computing capability, the spatial resolution of a 

gridded microclimate surface should be informed 

both by the extent of the study area and by the 

size of an individual microclimate of interest. If 

the goal of a study is to predict range shifts by 
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modelling changes in the geographical extent of 

suitable habitat, the pixels that comprise a micro-

climate surface should be much smaller than the 

total area of habitat currently used by the organ-

ism. A higher-resolution microclimate surface is 

also more likely to predict expansion or contrac-

tion of a home range, if climate change affects the 

ability of an organism to meet its metabolic needs 

within its current habitat extent (McNab 1963, 

Gittleman and Harvey 1982, Mace et al. 1983). As 

producing a mechanistic microclimate surface is 

computationally intensive (Kearney et al. 2014a, 

b), a lower-resolution layer could be used first to 

delineate areas for which a higher-resolution sur-

face should be generated. A management decision 

could then be informed by generating a very high-

resolution surface to provide a detailed assess-

ment of the subset of larger areas identified as 

suitable future habitat.  

 As many components of a species' funda-

mental niche depend directly on microclimate 

conditions, the sensitivity of those components to 

model error should be examined at a very high 

spatial resolution to better quantify uncertainty in 

the boundaries between suitable and unsuitable 

sites. For example, for any species that deposits 

eggs underground, modelled soil temperatures 

that are 2–3°C cooler than reality would likely un-

derestimate the total spatial area that is warm 

enough to facilitate hatching. Further, model error 

has important consequences at the organism or 

population level, where 2–3°C of model error may 

lead to under- or over-predicting of primary sex 

ratios in species with temperature-dependent sex 

determination (e.g., Stubbs et al 2014). However, 

the same magnitude of error could have no bio-

logically relevant effect if macroclimate inputs are 

modified to simulate, e.g., extreme global warm-

ing. In such instances, the use of a higher resolu-

tion DEM would allow for identification of mar-

ginal areas that are misclassified as unsuitable or 

that should be targeted for field sampling under 

changing macroclimate conditions. 

 While comparisons between empirical and 

mechanistic predictions have previously been un-

dertaken (Kearney and Porter 2004, Kearney et al. 

2014a, b), the effects of parameter resolution on 

prediction accuracy have only been extensively 

examined via comparison with in situ data at spa-

tial resolutions similar to those of large-scale, em-

pirical climate models (Porter et al. 1973, Kearney 

et al. 2014a, b). In contrast, the present study ex-

plicitly tested the accuracy of a mechanistic micro-

climate model at a very high spatial resolution and 

within a small geographical extent. Our findings 

suggest that site-specific, microsite-resolution cli-

mate and soil properties matter little to predic-

tions of soil temperatures at an extremely high 

spatial resolution. From the perspective of predic-

tive ecology, obtaining local, daily weather data 

and high resolution terrain data is more likely to 

improve model accuracy than comprehensive 

sampling of microclimate characteristics, such as 

soil properties.  
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