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Abstract

Characteristic impedance (Zc) is an important component in the theory of hemodynamics. It is a 

commonly used metric of proximal arterial stiffness and pulse wave velocity. Calculated using 

simultaneously measured dynamic pressure and flow data, estimates of characteristic impedance 

can be obtained using methods based on frequency or time domain analysis. Applications of these 

methods under different physiological and pathological conditions in species with different body 

sizes and heart rates show that the two approaches do not always agree. Considering the 

interpretation and role of Zc as an important hemodynamic parameter, we have investigated the 

discrepancies between frequency and time domain estimates accounting for uncertainties 

associated with experimental processes and physiological conditions. We have used published data 

measured in different species including humans, dogs, and mice to investigate: (a) the effects of 

time delay and signal noise in the pressure-flow data, (b) uncertainties about the blood flow 

conditions, (c) periodicity of the cardiac cycle versus the breathing cycle, on the frequency and 

time domain estimates of Zc, and (d) if discrepancies observed under different hemodynamic 

conditions can be eliminated. We have shown that the frequency and time domain estimates are 

not equally sensitive to certain characteristics of hemodynamic signals including phase lag 

between pressure and flow, signal to noise ratio and the end of systole retrograde flow. The 

discrepancies between two types of estimates are inherent due to their intrinsically different 

mathematical expressions and therefore it is impossible to define a criterion to resolve such 

discrepancies. We propose that the frequency and time domain estimates of Zc should be further 

assessed as two different hemodynamic parameters in a future study.

Keywords

Characteristic impedance; blood pressure and flow; pulse wave analysis; impedance analysis; time 
domain analysis; Fourier methods; large arteries

1. Introduction

Analyses of vascular impedance provides insight into arterial structure and function. It is, 

intrinsically, a frequency domain quantity that characterizes the opposition to pulsatile flow 
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by quantifying the level of dissipation and storage of hydraulic energy. Impedance can be 

separated into four components including: input, longitudinal, transverse and characteristic 

impedance (Milnor 1989).

Input impedance (Z) is defined as the ratio of pressure to flow harmonics. Assuming that the 

cardiovascular system is operating in a periodic steady state, i.e. the pulse waves start and 

end at the same point, Z can be obtained by frequency analysis of simultaneous pressure 

(p(t)) and flow (q(t)) over a single or multiple heartbeats. The resulting complex spectrum 

can be expressed as moduli and phase over a range of frequencies and provides information 

about local and downstream vascular properties and wave reflections. Longitudinal 
impedance is defined as the ratio of the longitudinal pressure gradient to the flow and the 

transverse impedance is defined as the ratio of the pressure to the longitudinal flow gradient, 

both computed in the frequency domain under the aforementioned assumptions for the input 

impedance. These two impedances quantify resistive and elastic properties of the blood 

vessels, which are determined by physical properties of the blood and vessels including 

kinematic viscosity of the blood, vascular dimensions, thickness and elasticity of the arterial 

walls. Finally, the characteristic impedance (Zc) is defined as the ratio of harmonics of the 

incident pressure to the incident flow. It can be quantified by the input impedance in the 

absence of wave reflections. Since wave reflections carry information about the distal 

vasculature, their exclusion makes Zc a local vessel parameter, which remains independent 

of the heart rate (HR) as well as properties of the downstream vascular beds.

Using linearized theory, one can show that the characteristic impedance can be computed as 

a function of the product of longitudinal and transverse impedances (Milnor 1989, Nichols 

et al 2011). The theoretical result show that Zc varies directly with the elastic modulus of the 

vessel wall and inversely with its diameter, i.e. the stiffer the vessel and smaller its diameter, 

the higher the value of Zc. This property alone makes Zc an important physiomarker. 

However, wave reflections are always present in real arterial networks due the their 

branching nature and spatially varying elastic properties. Therefore, in practice, a straight 

forward computation of Zc from measured hemodynamic data is not possible. Consequently, 

Zc has to be inferred, either from the input impedance spectrum at high frequencies where 

reflections have less impact (Nichols et al 2011, Milnor 1989) or from pressure and flow 

data measured during early ejection phase before the reflected waves have returned to the 

point of measurement (Dujardin et al 1980). Under assumptions of dominant inertial and 

weak viscous forces as well as linear elastic wall properties, the two approaches can only 

give an approximation of true characteristic impedance.

Characteristic impedance is an important parameter in the theory of hemodynamics. In fact 

most applications analyzing input impedance involve approximation of the characteristic 

impedance to assess the behavior of arterial stiffness and pulse wave velocity (Hughes & 

Parker 2009, Borlotti et al 2014, Zuckerman 1985). The results of these studies have also 

been used to quantify the effects of different interventions, drugs, and disease on pulsatile 

hemodynamics and arterial stiffness (Bak et al 2007, Mitchell 2009, Mitchell et al 2011, Li 

& Andrew 2012, Zuckerman 1985). In view of this, many investigators have introduced 

methods in the in the time and frequency domain to approximate the characteristic 

impedance using experimental data from a range of species under different hemodynamic 
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conditions, (e.g. Nichols et al 2011, Milnor et al 1969, Dujardin & Stone 1981, Lucas et al 
1988). Below we provide a brief review of frequency and time domain analysis and highlight 

the advantages and disadvantages of each approach.

1.1. Frequency Domain Analysis

In the frequency domain, Fourier analysis is the most common method for calculating the 

input impedance spectrum (Nichols et al 1977, Dujardin & Stone 1981, Mitchell et al 1994, 

Nichols et al 2011, Huez et al 2004, Zuckerman 1985). As shown in Figure 1, given normal 

pressure and flow waveforms in the aorta and main pulmonary artery (a)–(d), the impedance 

moduli (e) and (g) fall steeply from zero until a minimum is reached. At this point the 

impedance moduli increase gradually until reaching a local maximum, after which it 

continues to oscillate. The critical frequency (fc) associated with the first minimum is often 

accompanied by a phase cross-over from negative to positive. After this the phase is 

expected to stay close to zero. Data, compiled by Milnor (1989, p183), showed that in 

humans fc varies between 3.3–4.2 Hz in the aorta and 2.0–4.0 Hz in the pulmonary artery, 

for dogs fc varies between 6.0–8.0 Hz in the aorta and 2.0–3.5 Hz in the pulmonary artery, 

for rabbits the variation ranges from 4.5–9.8 Hz in the aorta to 3.0 Hz in the pulmonary 

artery, and for rats it was found to be 12.0 Hz in the aorta.

Most frequency domain methods use fc to determine the frequency band or harmonic range 

where Zc is estimated by averaging the associated moduli. The argument behind this 

approach is that after fc, near zero phase at higher frequencies indicate cancellation of in- 

and out-of-phase incident and reflected waves and that the associated impedance moduli 

oscillate around the true value Zc. Therefore averaging the impedance moduli associated 

with high frequency harmonics yields a reasonable approximation of the true Zc (Milnor 

1989). However, a strict application of this approach may yield less accurate estimates due 

to an asymmetric arrangement of the impedance moduli above and below the true value of 

Zc. Ideally, the full spectrum, above fc, should be analyzed, but as Milnor (1989) showed, 

harmonics above 25 Hz are less reliable due to a low signal to noise ratio (SNR). Therefore, 

the frequency domain methods rely on determining an appropriated frequency band or the 

harmonic range that is less susceptible to noise.

As pointed out in (Nichols et al 2011, p307), the determination of frequency band is 

somewhat arbitrary, but provides reasonably accurate estimates of Zc when applied to data 

where the first impedance minimum is reached at a low frequency. The estimates are 

inaccurate and misleading if fc is well above 2.0 Hz, as observed in small animals like rats. 

The accuracy of the fc prediction is relative to the accuracy of the fundamental frequency. 

Since all frequencies are integer multiples of the fundamental frequency, (heart rate (HR)), a 

greater HR variability leads to a less accurate fundamental frequency, and hence fc. This can 

lead to a shift in the minimum of the impedance moduli and phase cross over. In particular, a 

higher HR is associated with a less accurate fc (Milnor 1989). To improve the presumed 

accuracy of Zc, many investigators do not make the choice on the basis of frequency but on 

harmonics. This also makes the choice animal-independent (see Table 1 for a partial list of 

such methods).
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1.2. Time Domain Analysis

In 1981, Dujardin & Stone (1981) introduced a time domain method to estimate Zc. This 

method is also known as the ‘up-slope method’ (Lucas et al 1988). Referring to a parametric 

graph relating simultaneously measured pressures and flows, they hypothesized that Zc can 

be estimated from the slope of the pressure-flow loop during the early ejection phase. To test 

this hypothesis, they carried out experiments under different flow conditions in dog 

ascending aortas. They found that time domain estimates of Zc are in close agreement with 

frequency domain estimates under all flow conditions. Subsequently, variations of this 

approach have been used by several researchers to estimate Zc in the time domain (e.g. 

Bollache et al 2015, Fourie & Coetzee 1993, Lucas et al 1988).

The up-slope method assume that the initial upstroke during systole is free of reflections, 

that the pressure and flow are in phase, and that the relation between pressure and flow is 

linear. The latter can only be established if the flow and pressure waveforms are measured 

simultaneously at the same location. These assumptions are not easy to verify. In particular, 

it is difficult to determine if a measured time-lag between a pressure and flow waveform is 

due to experimental or physiological conditions. Moreover, as discussed by Lucas et al 
(1985), any portion of the pressure-flow loop may be used in this analysis as long as the 

reflection free condition is satisfied. However, as discussed earlier, an ideal reflection free 

condition does not exist in the real system and it is difficult to quantify the contribution of 

reflections from the linear or nonlinear parts of the pressure-flow relationships.

Both the frequency and time domain approaches have advantages and disadvantages, and 

both are only valid under specific assumptions. Frequency domain methods may be more 

difficult to apply, yet there are arguably far more studies carried out analyzing properties of 

the cardiovascular system in terms of the input impedance spectra (Nichols et al 2011, 

Milnor et al 1969, Taylor 1966). Not only is the theory of vascular impedance is rooted in 

the frequency domain, the test of linearity of the pressure-flow relationship is also well-

defined in the frequency domain (Milnor 1989, p188). However, without careful 

consideration of uncertainties associated with fc and the harmonic range, different values of 

Zc can be obtained using the same impedance spectrum (O’Rourke & Taylor 1967). On the 

other hand, time domain methods are fast and believed to be independent of data 

preprocessing. Therefore they are easy to integrate in clinical settings (Bollache et al 2015) 

and/or mathematical algorithms of interest, such as the method of wave separations (Hughes 

et al 2008, Parker 2009). However, to determine which portion of the pressure-flow loop 

ensures minimal wave reflection is equally challenging. Finally, it should be noted that the 

true characteristic impedance is a parameter independent of the HR (Milnor 1989), but the 

data analyzed here are obtained in-vivo (with a heart), given a specific cardiac cycle. Since 

both methods rely on the accuracy of HR, due to the determination of fc in the frequency 

domain and the length of the cardiac cycle during the ejection phase, cardiac conditions has 

an impact on both methods.

One study by Lucas et al (1985) compared the time domain method with a frequency 

domain method averaging the impedance moduli between 2–16 Hz. They used aortic and 

pulmonary arterial pressure and flow measurements, before and after surgery, recorded in 

125 patients with congenital heart disease. They observed a strong correlation between the 
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two estimates, which lead them to conclude that the time domain estimates of Zc are 

adequate if no other features of the input impedance spectrum are of interest. These results 

were contrasted in a study by Fourie & Coetzee (1993), who showed that time and frequency 

domain approaches yield different estimates of Zc.

Importantly, past comparisons of the frequency and time domain methods have been based 

on experimental observations only and lacks a rigorous mathematical analysis to support 

their equivalence. Despite this, both estimates have been used to infer vascular properties 

related to Zc (Hughes & Parker 2009, Borlotti et al 2014). Recent editions of McDonalds 

(Nichols et al 2011, p175), advocate the time domain approach as fairly accurate for 

systemic arteries when both pressure and flow are measured at the same location. However, 

Milnor (1989) does not mention the time domain methods, despite the fact that its latest 

edition was published eight years after Dujardin & Stone’s (1981) study. Since there is no 

gold standard, one must be wary of choosing a particular method. Comparisons, limitations, 

interpretations, and therefore conclusions should be explained within the context of the 

chosen approach.

This study investigates the sensitivities of the two approaches to various physiological and 

experimental conditions. To do so, we have set up a number of hypothetical scenarios and 

conducted numerical tests with the aim to investigate agreement or disagreement of the two 

methods. We have used functional waveforms from Milnor (1989) that mimic typical 

pressure and flow waves in the aorta and main pulmonary artery in an adult human subject. 

We have also used a digitized dataset from Dujardin & Stone (1981), which represents 

pressure and flow in a dog ascending aorta over multiple cardiac cycles as well as from dogs 

and mice (Dujardin et al 1980, Tabima et al 2012) under different hemodynamic conditions.

2. Methods

This section includes a description of methods, and data acquisition tools, used in this study. 

We first describe available data followed by two sections describing the frequency and time 

domain methods. The last section presents four different case studies pertinent to 

experimental and physiological uncertainties. For the sake of convenience, the term 

‘impedance’ when used alone will refer to ‘input impedance’ in the rest of this manuscript.

2.1. Digital Waveforms

Pressure and flow waveforms analyzed here were extracted from previous studies in humans, 

dogs, and mice under different physiological and pathological conditions. Below we have 

described the steps involved in reproducing each dataset.

Dataset 1—Aortic and pulmonary arterial pressure (mmHg) and flow (ml/s) waveforms 

from an adult human subject (from Milnor (1989)). This subject had a HR of 75 beats/min 

and a cardiac output of 6.6 L/min. The waveforms shown in Figure 1(a)–(d) were generated 

by constructing Fourier series of the form (1) using 10 harmonics at a sampling frequency 

(Fs) of 1.0 kHz. (see Milnor (1989, p158) and Appendix A for more detail). Even though the 

original waveforms include high-frequency oscillations (12.5 Hz being being the highest 
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frequency), it was stated that the reconstructed waveforms contain more than 95% of the 

total oscillatory hydraulic power contained in the original data (see equation (4)).

Dataset 2—Pressure and flow waveforms from a dog ascending aorta (from Dujardin et al 
(1980, figure 1) and Dujardin & Stone (1981, figure 1)). Data were obtained by digitizing 

waveforms‡ (using GraphClick§) resampled in Matlab to ensure a uniform sampling rate. 

Data were measured under four flow conditions: control (C), volume expansion (V), new 

control (NC), and hemorrhage (H). Dataset 2A (from Dujardin et al (1980)) was measured 

over two cardiac cycles under all four conditions. Dataset 2B (from Dujardin & Stone 

(1981)) includes the volume expansion case measured over five cardiac cycles. For all 

datasets, hemodynamic parameters including mean pressure, vascular resistance, HR, stroke 

volume and pulse pressure were matched with the corresponding ranges provided by 

Dujardin et al (1980) and Dujardin & Stone (1981).

Dataset 3—Flow and pressure waveforms from mice pulmonary arteries under normoxic 

and hypoxic conditions (see Tabima et al (2012) and Gen et al (2007) for details). The data, 

recorded at 5 kHz, was obtained from male C57BL6/J mice, 12-13 weeks old with an 

average body weight of 24 g. The mice were obtained from the Jackson Laboratory (Bar 

Harbor, ME) and they were divided into control (n = 7) and chronic hypoxia groups (n = 5). 

The mice in the hypoxic group were exposed to 21 days of chronic hypoxia (10% Oxygen) 

and both groups were exposed to a 12 hour light-dark cycle. All procedures associated with 

obtaining the flow and pressure waveforms were performed as described in (Tabima et al 
2012). Two representative datasets from one cardiac cycle encoding ensemble averages were 

analyzed in this study.

2.2. Frequency Domain Analysis

Under the assumptions of periodicity and linearity, pulsatile pressure and flow waveforms 

can be approximated by a Fourier series of the form

(1)

where  is the Fourier series approximation of the original waveform s(tn), tn = n/Fs is 

the time vector, T = N/Fs the period of s(tn), and N = 60×Fs/HR. ωk = 2kπ/T (k = 1, …, K) 

are the angular frequencies,  is the mean of s(tn), and Sk and φk (rad) are the moduli and 

phase spectra associated with each harmonic numbered k, and K is the smallest resolution of 

harmonics required for the impedance analysis. Both, Sk and φk, are defined in terms of ak 

and bk, the coefficients of basic trigonometric Fourier series, i.e.

‡Obtained with permission
§GraphClick version 3.0.3 for Mac OS X, http://www.arizona-software.ch/graphclick/
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(2)

Setting s(tn) as p(tn) and q(tn) in (1) and (2), the impedance spectrum, Z(ωk), can be 

computed as the ratio of the pressure and flow harmonics by

(3)

where Pk and Qk are the moduli and αk and βk the phase angles of the pressure and flow 

harmonics, respectively. Zks are the impedance moduli and ϕk = αk − βk the corresponding 

phases at a given frequency. Note if ϕk < 0 then the k’th pressure harmonic lags the k’th flow 

harmonic, and vice versa. The 0’th harmonic represents the steady or mean component 

known as the vascular resistance (Z0), whose phase angle is ‘zero’ by definition.

Generally, for a continuous periodic function s(t), K → ∞ in equation (1). It is possible to 

specify an upper integer bound on K as long as equation (1) adequately reproduces the 

actual waveforms. Most studies predict dynamics using sums of 10 or less harmonics 

(Milnor 1989, Nichols et al 2011), but for any given dataset the finite limit on K can be 

determined as follows. First, noting the similarity of Sk and ϕk with the complex polar form 

of the discrete Fourier transform, one can exploit properties of FFT algorithms for a given 

discrete signal s(tn). This implies that K is bounded by N and provided that the data satisfies 

the Nyquist frequency limit, only half of the harmonics are useful, i.e. K = N/2+1 (Briggs & 

Henson 1995). Second, for the purpose of impedance analysis, K should be set to satisfy the 

oscillatory power criterion defined as the oscillatory power (W (J/s)) generated by the 

ventricle can be computed by

(4)

According to the criterion, K can be determined such that the approximated oscillatory 

power , associated with K number of pressure and flow harmonics, is at least 95% of 

total oscillatory power. In other words, for a given K, .

The frequency domain estimates of the characteristic impedance (Zc) can be obtained by 

averaging the higher frequency impedance moduli associated with the i’th–j’th harmonics 

(Milnor 1989, O’Rourke & Taylor 1967), i.e.

(5)
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where i ≥ 2 and j ≤ K. For most practical purposes, to avoid introducing frequency 

components attributable to noise, the computation of impedances is restricted to less than 25 

Hz (Milnor 1989). A partial list of frequency domain methods is given in Table 1.

2.3. Time Domain Analysis

The original time domain method proposed by Dujardin & Stone (1981) estimates Zc by 

fitting a straight-line to manually selected points on the pressure-flow loop during the early 

ejection phase. The slope of this line defines Zc. To eliminate the effect of early reflections, 

this technique was later modified by requiring that the pressure-flow slope should be 

calculated by using no more than 95% of the peak flow rate (qmax) (Lucas et al 1988). In this 

study, this percentage is assumed constant, representing the critical flow threshold, denoted 

by qc, which we set to 95%, 75%, 50% and 25% of qmax of the early ejection phase. Based 

on the above description, one can provide a mathematical expression of the time domain Zc 

value given by

(6)

where dp/dq represents the slope of best-fit line to the pressure-flow loop over [t0 tm].

Another time domain technique is based on relating the derivatives of the pressure and flow 

signals. This method calculates Zc by dividing the peak derivative of pressure by the peak 

derivative of flow that is Zc′ = max(p′)/max(q′), where the prime in the left hand side 

(LHS) denotes time differentiation. In this study, we implement and compare the up-slope 

and peak derivative methods. A detailed review of time domain techniques and their 

comparison can be found in Lucas et al (1988).

2.4. Case Studies

Methods for estimating Zc using any approach are operator dependent, which means that the 

operator has to decide the level of signal preprocessing, the number of harmonics or points 

on a certain portion of the pressure-flow loops to be included (Lucas et al 1988). This 

decision is based on assumed experimental conditions, such as the time delay between 

pressure and flow waves due to the distance between pressure and flow probes and the 

quality of the signal in terms of the signal to noise ratio (SNR). In this context we have 

defined four hypothetical cases, which were evaluated using datasets 1–3 to calculate time 

and frequency domain estimates from Table 1.

Case 1 time-lag between the pressure and flow waveforms—The propagation of 

the pulse-wave along the arterial network induces a small time-lag between the pressure and 

flow waves (Nichols et al 2011). This can easily be exaggerated if the pressure and flow 

probes are not positioned exactly at the same location (Gary et al 1994). To minimize the 

effect on the analysis, time-lags should be removed before the data are analyzed. To study 

the effects of time-lag on the Zc estimates, we introduced an artificial time-lag between the 

pressure and flow waveforms in dataset 1. This was achieved by shifting the pressure waves 

by 10 ms forward (p+) and backward (p−), while keeping the flow wave unaltered.
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Case 2 Effects of noise—Pressure and flow measurements are typically noisy, and thus 

most studies filter the signals before analyzing them, typically using a low-pass filter (Lucas 

et al 1988). In order to study the effects of the signal quality, we contaminated the composite 

pressure and flow signals in dataset 1 with a small level of Gaussian white noise. To do so, 

we added noise to pressure and flow signals to obtain signals with a 40 dB SNR. The noise 

was generated using the built in Matlab function awgn, part of the communication toolbox.

Case 3 Periodicity of the cardiac cycle versus breathing cycle—In-vivo 
measurements of HR and blood pressure include natural beat-to-beat variation, which is 

higher in young people than in the elderly. Both methods analyzed here assume that signals 

are periodic, requiring that the natural beat-to-beat variation is removed before analysis 

(Parker 2009). Commonly used approaches include a) averaging over multiple cardiac cycles 

with selection and/or exclusion of specific cycles (Lucas et al 1988), b) analysis of 

individual cardiac cycles with subsequent averaging of the resulting information, and c) 

analysis over multiple cardiac cycles (typically over a respiratory cycle) (Dujardin et al 
1980, Dujardin & Stone 1981). In the latter case, the fundamental frequency of the resultant 

spectra reflects the breathing rate, not the HR. Depending on the length of the respiratory 

cycle, the frequency of the HR usually appears after the first few harmonics. This case uses 

dataset 2B to compare the Zc estimates from single-beat and multi-beats.

Case 4 Qualitative comparison under different hemodynamic conditions—This 

case analyzes the effects of hemodynamic variation on the Zc estimates. We used datasets 

2A, 2B and 3 to study the effects of four different flow conditions, including C, V, NC and 

H, on a frequency domain (Zc5–15) and a time domain estimate (Zc95). These two estimates 

were chosen for comparison since Dujardin & Stone (1981) claimed that their impedance 

measures were identical, under all four conditions. In addition, we modified dataset 2B to 

investigate the effects of retrograde flow at the end of systole. This analysis was motivated 

by the observation, that the up-slope method in the time domain completely ignores the late 

systole and diastole part of the signals. Dataset 3 was used to investigate the effects of 

chronic hypoxia as a model of pulmonary vascular disease (see Table 1).

3. Results

This section presents results of the frequency and time domain analyses. We analyzed three 

datasets under four cases as described in Section 2. Specifically, we calculated and 

compared multiple estimates of Zc from each dataset by applying the methods listed in Table 

1. For most cases, comparisons of the two approaches were made by computing the mean ± 

SD of Zc estimates (referred as grouped averaged Zc hereafter) across the frequency and 

time domain methods listed in Table 1. However, in some cases only selected methods from 

each domain were used to compare the Zc estimates. For the sake of reproducibility, units of 

primary (pressure and flow) and secondary (components of impedance) quantities were kept 

the same as those in the source studies.
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3.1. Dataset 1

Dataset 1 was used to compare all Zc estimates listed in Table 1 and to analyze cases 1 and 

2, focused on studying the effects of time-lags between the pressure and flow and noise on 

Zc estimates.

Figure 1 gives an overview of the frequency and time domain analysis of dataset 1. Panels 

(a)–(d) show the flow and pressure waveforms in the aorta and the MPA of a human subject 

over one cardiac cycle. Panels (e) and (g) show the impedance moduli and phase spectra, 

plotted for the first 10 harmonics after the mean component Z0. The fundamental frequency 

(HR) in this subject is 1.25 Hz and the first impedance minimum for aorta occurs at 6.25 Hz 

(5’th harmonic), which is accompanied by the phase crossover between 6.25–7.5 Hz (5’th–

6’th harmonic). For the MPA, the first impedance minimum is at 5 Hz (4’th harmonic), with 

a phase crossover between 3.75–5.0 Hz (3rd–4’th harmonic). The total resistance (Z0) in the 

aorta and the MPA was observed to be 0.77 and 0.11 mmHg s/ml, respectively. Panel (f) 

shows the pressure-flow loops in the respective arteries. These loops were used to calculate 

Zc using the up-slope method at qc = 95%, 75%, 50% and 25% of qmax during the early 

ejection phase.

Panel (h) compares the frequency and time domain estimates for the aorta and MPA. The 

group averaged Zc in the frequency domain were found to be 17% and 5% smaller than the 

time domain values for the aorta and the MPA, respectively.

Case 1—Figure 2 shows the effects of time-lags between the pressure and flow waveforms 

on the Zc estimates, calculated using dataset 1. Panel (a) shows the normalized pressure and 

flow waveforms, plotted with forward (p+) and backward shifted pressures (p−). The time 

shift (ts) was set to 10 ms in reference to original timing of the pressure wave. The timing of 

the wave refers to time coordinate associated with the foot of the wave on abscissa. A 

forward shift in pressure, while keeping the flow unaltered, causes the flow to precede 

pressure and vice versa. Panel (b) shows the effect of an induced time-lag on the so-called 

linear portion of the pressure-flow loop during the early ejection phase. A time-shift, in 

either direction, breaks the linear relationship between the pressure and flow waves, while 

the shape and magnitude of both waveforms are preserved. A distinctive effect of the time 

shift is that the area bounded by the pressure-flow loop increases when flow precedes 

pressure (magenta dashed curve) and decreases when the flow lags the pressure (blue dot-

dashed curve). Panels (c) and (d) show plots of the impedance moduli and phase 

corresponding to the original and shifted pressure waves. As anticipated, the impedance 

moduli remain insensitive to the time shift. However, the phase spectrum is shifted above or 

below the original phase by an angle ∆ϕk = ωkts (Rad). As a result, the phase crossover 

shifts from 8.75–10 Hz (7’th-8’th harmonic), when flow precedes pressure, and from 5.0–

6.25 Hz (4’th-5’th harmonic) when flow lags pressure.

The last two panels, (e) and (f), quantify the effects of the time-lag on the Zc estimates in the 

aorta and MPA. All frequency domain estimates were insensitive to the time-lag. Yet the 

time domain estimates, calculated usin g the up-slope method, were very sensitive to the 

time-lag. Interestingly, the Zc′ computed using the derivates peak method was insensitive to 

the time-lag. In the case of the aorta, when flow preceded the pressure by 10 ms, the relative 
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error between the two types of estimates was reduced to 5%, from an original value of 17%. 

However, the error jumped to 24%, when flow lagged pressure. For the MPA the relative 

error increased to 9.5% and 9.7%, respectively for the forward and backward shift in time, 

compared to the 5% relative error observed in the original signals.

Case 2 (Dataset 1)—Figure 3 shows how random noise in the data affects the Zc 

estimates. Panel (a) shows the noisy pressure and flow waveforms (normalized) whereas 

panel (b) depicts the corresponding pressure-flow loop (in dimensional form). Panels (c) and 

(d) show that the noise level affects the impedance moduli and phase above 12.5 Hz (10’th 

harmonic), the frequency cut-off used when generating dataset 1. The effect on the mean 

component (Z0) was negligible (it increased from 0.773 to 0.775 mmHg s/ml). Panels (e) 

and (f) illustrate the quantitative effects of noise on the frequency and time domain 

calculations of Zc. Analysis of noisy data over all frequency or time domain methods listed 

in Table 1 yield a high variance of the Zc predictions (bars in the center). However, the 

effects of noise can be eliminated by excluding methods requiring analysis of frequencies 

above 12.5 Hz (bars on the left). Similarly, excluding peak derivative methods also improved 

time domain estimates.

3.2. Dataset 2B

This dataset was used to analyze cases 3 and 4. Case 3 studies the effects of different 

approaches, including analysis of single or multiple cardiac cycles or the ensemble encoding 

of number of cardiac cycles. Case 4 investigates the effects of retrograde flow usually 

observed at the end on systole. For these cases, one frequency, Zc(5–15), and one time 

domain, Zc95, method were considered.

Case 3 (Dataset 2B)—Figure 4 compares Zc values obtained by analyzing the data in 

three alternative ways: (a) beat by beat analysis of one cardiac cycle, (b) analysis of an 

ensemble encoding multiple cardiac cycles, and (c) analyzing multiple cardiac cycles 

encoding a complete breathing cycle. For the cardiac cycle, shown in in panels (b), the mean 

and pulse pressures were 20.2 ± 0.3 kPa and 4.7 ± 0.1 kPa, respectively. Moreover, the cycle 

length was found to be 0.47±0.01s, i.e an approximate HR of 2.13 Hz (~128 beats/min) 

whereas the breathing frequency was 0.43±0.001 Hz (~26 breaths/min).

Panel (e) shows a clear minimum at 6.4 Hz in the moduli spectrum for all three approaches. 

These minima were accompanied by phase crossovers at the same frequency except for the 

ensemble data, which was shifted between10.7–12.8 Hz (5’th-6’th harmonic). This 

introduces an uncertainty about the occurrence of fc, which in this case is determined to be 

6.4 Hz using the full dataset. However, this frequency is associated with the 3rd harmonic 

for the single and ensemble cycles compared to 15’th harmonic for the breathing cycle. It 

should be noted that two local minima were found in the breathing cycle moduli spectrum, at 

about 0.8 Hz (2nd harmonic) and 3.4 Hz (8’th harmonic), respectively. The former minimum 

was accompanied by a phase crossover, yet neither of these frequencies can be determined 

as fc nor should they be part of the Zc calculation because they do not represent multiples of 

the fundamental frequency (HR). Therefore, when using the breathing cycle approach, all 
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harmonics whose frequency do not correspond to the HR should be excluded from the 

analysis.

It is interesting to note, panel (h), that all estimates are in agreement except the ones 

computed using the extreme bounds of the ensemble encoding, which yielded significantly 

different results for the frequency domain Zc(5–15). However, the time domain Zc95 was 

observed to be relatively insensitive even to the extreme bounds of the ensemble encoding 

and the error was found to be comparable to that in the beat-to-beat analysis in the time 

domain.

Case 4 (Modified Dataset 2B)—Figure 5 analyzes the effects of presence or absence of 

retrograde flow at the end of systole. The flow waveforms shown in panel (a) were obtained 

by modifying dataset 2B to eliminate retrograde flow at the end of systole, without 

significantly affecting the cardiac output. Removing retrograde flow leads to a 2% increase 

in the cardiac output. The pressure-flow loops, show a similar behavior during the early 

ejection phase, while they differ in the last part of the cycle. Panel (c) shows a significantly 

different oscillatory behavior for the modified flow (Qno–Retro) than for the actual flow 

(QRetro). Selected Zc estimates, Zc(5–15) and Zc95, were calculated using ensemble encoding 

of the modified flow and compared with those presented in Figure 4(h). Results, panel (d), 

show that the Zc(5–15) corresponding to the modified flow is 33% higher than the Zc(5–15) 

computed from the actual flow. On the other hand, Zc95 is found to be insensitive to any 

modification in the end of systole flow behavior, leading to a relative error of 36% between 

Zc(5–15) and Zc95 in the absence of end of systole retrograde flow compared to 3% in the 

presence of retrograde flow. This predicts a much higher discrepancy between the time and 

frequency domain method in the absence of end of systole retrograde flow and indicates a 

strong dependency of the frequency domain methods on the entire cardiac cycle.

3.3. Dataset 2A

This dataset was used in case 4 comparing frequency and time domain approaches under 

different hemodynamic conditions. Results were obtained for Zc(2–12), Zc(5–15) and Zc95, 

and for estimates of Zc95+ that analyzes the impact of delayed pressures waveforms (by 7 

ms).

Case 4—Figure 7 shows that the qualitative features of both, moduli and phase spectra, 

mimic those presented in the original study (Dujardin et al 1980). In all cases a clear 

minimum in the moduli spectra can be observed at the 3rd harmonic. Each of these are 

accompanied by a phase crossover around the same harmonic. However, the critical 

frequency (fc) associated with the first impedance minimum varies depending on the HRs 

associated with each flow condition. Specifically, fc was observed to be 6.5 and 6.4 Hz for 

the control (C), and new control (NC), and 6.3 and 7.2 Hz for the volume expansion (VE) 

and hemorrhage (H) cases, respectively. Moreover, it should be observed that during 

hemorrhage, the phase remains negative between the 4’th and 9’th harmonics. This is 

interesting given that pressure and flow look similar (see figure 6(d), 6((h)), suggesting 

minimal wave reflections. A negative phase suggests that the pressure wave lags the wave at 

these frequencies. This can be explained by the fact that hemorrhage acts as a sink in the 
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fluid channel causing a suction effect leading to acceleration of the flow and a drop in the 

pressure. The latter is likely a result of an out of phase reflected pressure wave causing the 

flow to lead pressure at higher frequencies.

Figure 8 illustrates the Zc95 computation using actual (panels (a)–(d)) and modified (panels 

(e)–(h)) pressure-flow loops. In the later cases the pressure waves were delayed by 7 ms. 

Panels (i)–(l) compare Zc95 and Zc95+ (delayed) with selected frequency domain estimates, 

Zc(2–12) and Zc(5–15). In the source study (Dujardin et al 1980), only Zc(5–15) was calculated.

Figure (i)–(l) show that for a given case there were discrepancies between the time and 

frequency domains estimates as well as between the two frequency domain estimates. We 

observed discrepancies between Zc(2–12) and Zc(5–15) for all cases, where relative errors of 

3%, 30%, 14% and 18% were observed for C, VE, NC, and H, respectively. As for the 

comparison with Zc95 and Zc95+, for case C (panel (i)) Zc95 was smaller than both Zc(2–12) 

(by 6%) and Zc(5–15) (by 9.5%). However, the error was further increased (to 16.5% and 

19%, respectively) when Zc(2–12) and Zc(5–15) were compared with time shifted estimate, 

Zc95+. For the VE case (panel (j)), Zc95 was greater than Zc(2–12) (by 15%) but smaller than 

Zc(5–15) (by 21%). However, in this case, the time shifted estimate, Zc95+, improved the 

agreement with Zc(2–12) (reducing the error to 12%) but further increased the error (to 26%) 

for Zc(5–15). As for the NC case (panel k), the trend was opposite to that of the C case. For 

this case, both of the frequency domain estimates were smaller than Zc95 (by 7% and 18%) 

respectively. However, the errors were reduced (to 2% and 10%) when these frequency 

domain estimates were compared with the time shifted Zc95+. In the final case H (panel (l)), 

Zc(2–12) agreed with Zc95, but Zc(5–15) was found to be smaller than Zc95 (by 15%). Once 

again, the introduction of a time delay increased the discrepancy (to 19%) between Zc(2–12) 

and Zc95+ but, nevertheless, it also lead to an agreement between Zc(5–15) and Zc95+.

Figure 9 shows that there is a relatively strong linear relationship between Zc(2–12) and Zc95 

(see panel (a)), in comparison to the relationship observed between Zc(5–15) and Zc95 (see 

panel (b)). For each of these comparisons, the coefficient of determination (R2) was found to 

be 0.93 and 0.41, respectively.

In summary, in all cases, Zc(2–12) was observed to be in better agreement with Zc95 than 

Zc(5–15). However, the qualitative trends of these comparisons were unpredictable. For 

instance, for the VE case (panel (j)) Zc95 was greater than Zc(2–12) but smaller than Zc(5–15), 

making it impossible to guess the nature of the discrepancy. Moreover, in some cases the 

introduction of a time shift improves the agreement while in other cases it augment the 

discrepancies.

3.4. Dataset 3

This dataset was used to analyze the performance of frequency and time domain Zc 

estimates in mice pulmonary arteries under normal and hypoxic conditions (case 4). Results 

were obtained by analyzing the representative pressure and flow waveforms. The 

representative waveforms were obtained from ensemble encoding of pressure and flow 

across two groups, a healthy control group (7 mice) and a hypoxic group (5 mice).
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Case 4—Figure 10 presents frequency and time domain analysis of dataset 3. For the 

control case, the first impedance minimum in the moduli spectra was observed at 20 Hz (2nd 

harmonic) and is accompanied by a phase crossover around the same frequency. This was 

followed by a spike at 30 Hz (3rd harmonic) with a modulus value (59 mmHg s/ml) very 

close to the mean value (Z0 = 70.6 mmHg s/ml). This feature is rather uncommon in the 

context of the data analyzed so far. As for the hypoxic case, the first impedance minimum 

occurred at 40 Hz (4’th harmonic) whereas the phase crossover takes place at 70 Hz (7’th 

harmonic). Unlike the control case, there is no spike comparable to the mean value (Z0 = 

153 mmHg s/ml) in the moduli spectrum for the hypoxic mice. Moreover, for both groups, 

the impedance moduli gradually tailed off at higher frequencies within the plotted range of 

harmonics.

The comparison of the frequency and time domain methods, illustrated in panel (f), uses all 

methods listed in Table 1. However, due to a much higher basal HR (10 Hz), the Zc 

estimates based on the frequency range were considered after multiplying the frequencies by 

10. So, for example, Zc(2–12) in Table 1 uses all frequencies between 2 and 12 Hz. But in the 

case of mice Zc(2–12) will use all frequencies between 20 and 120 Hz. Consequently, the 

grouped averaged values of Zc were compared. In general, for both the control and hypoxic 

cases, the frequency domain estimates were found to be smaller than the time domain 

estimates by 16.6% and 28.5%, respectively. It was also observed that Zc increases during 

hypoxia irrespective of the choice of method. More specifically, during hypoxia the 

frequency and time domain estimates were increased by 25% and 36%, respectively.

4. Discussion

In this study, we scrutinized frequency and time domain methods to understand the sources 

of discrepancies and the effects physiological and experimental factors on the values of Zc. 

As a result, some interesting features of both frequency and time domain approaches were 

identified. Some of these results can be useful in setting the path straight for more accurately 

estimating the characteristic impedance.

The usefulness of time and frequency domain analysis for estimating characteristic 

impedance relies on the assumptions that the pressure-flow relationships are linear and that 

the portions of the waveforms being analyzed are free of wave reflections. A linear pressure-

flow relationship is well-defined in the frequency domain i.e. a purely sinusoidal flow 

oscillation should produce a purely sinusoidal pressure oscillation of the same frequency, 

and the impedance in a linear system is independent of the shape and magnitude of the 

applied pressure pulse as long as the physical properties of the vessels, the blood density and 

viscosity remain constant (Nichols et al 2011). As for wave reflections, the frequency 

domain analysis assumes that a higher dissipation rate at higher frequencies limits the effect 

of reflections. In the time domain, the effects of reflections are usually excluded by ignoring 

a large portion of the pressure-flow loops from the analysis. It is assumed that the initial 

disturbance due to cardiac contraction does not have enough time to travel to a distal 

location, be reflected, and meet the incident wave during the early ejection phase (Parker 

2009). It is also assumed that wave reflection from the previous cardiac cycles have 

dissipated. However, it is not clear how the linearity of pressure-flow relationships should be 
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interpreted in the time domain. Is the observation of a visually linear relationship during the 

early ejection phase adequate or should one define an analytical time domain criterion that 

must be transformable to the equivalent frequency domain criterion? This leads us to the 

question of mathematical equivalence of the two approaches.

To our knowledge, only one previous study, by Lucas et al (1988) has attempted to establish 

a mathematical connection between the two approaches. This study used transmission line 

theory (Milnor 1989, Nichols et al 2011) to assert that the two approaches are equivalent. 

They postulated that under the assumptions of negligible viscous losses, purely elastic blood 

vessels, and in the absence of wave reflections Zc ≈ dp/dq. However, their particular study 

(Lucas et al 1988) lacked mathematical details and appropriate references to establish the 

reliability of their formula. Moreover, most of the aforementioned assumptions are rendered 

invalid as soon as the arterial waves meet a reflecting junction in the proximal vasculature or 

the properties of blood and arteries behave in a non-Newtonian and non-linear manner. Even 

when the assumptions remain intact, the mathematical equivalence of the two methods is 

non-trivial, as discussed below.

Ignoring the mean component, the instantaneous slope of the pressure flow relation can be 

calculated from (1),

(7)

where the right hand side (RHS) represents the Fourier representation of dp/dq whose values 

at any instant of time depend on the amplitude and phase of all the harmonics of pressure 

and flow. For a given time tm < T during early ejection, one can substitute dp/dq from (7) 

into (6) in Section 2.3, i.e. the expression for the time domain Zc. It is clear that the resultant 

expression would not be comparable with (5) in Section 2.2, i.e. the expression for the 

frequency domain Zc. Thus it is not possible to analytically prove the equivalence of the two 

approaches. For this reason the ability of each method, in both domains, to produce 

quantitatively consistent results on a case by case basis remains an open question (Fourie & 

Coetzee 1993).

In this study, numerical experiments based on case 1, (see Figure 2) through case 4 (see 

Figure 5) suggest that time domain estimates are more sensitive to experimental 

uncertainties, whereas the frequency domain approaches are more dependent on the actual 

flow conditions. Specifically, the time domain analyses are highly dependent on the time-lag 

between the pressure and flow during early ejection. This is due to the fact that the apparent 

linear behavior in the pressure-flow loops during the early ejection phase is dependent on 

this time-lag. Although, there is a natural time-lag between the pressure and flow waves 

(Nichols et al 2011), it can also be introduced due to experimental setup involving the 

positioning of pressure and flow probes in the blood stream (Gary et al 1994). Therefore, 

time-lag correction becomes vital if the time domain analysis is proposed to estimate the 
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characteristic impedance. This however requires a record of all the parameters and variables 

of the experimental setup, such as the sampling rate and frequency response of the flow 

meter and pressure transducer systems. On the contrary, the frequency domain estimates 

remain insensitive to the time-lag, assuming that the phase crossover is not the necessary 

condition for determining the critical frequency (fc). This is due to the fact that the spectrum 

of the impedance moduli, is not affected by the time-lag, given that the shape and 

magnitudes of the actual waves remain preserved. This aspect alone will always be a major 

source of uncertainty and discrepancy between the frequency and time domain estimates of 

Zc from a given dataset.

Another source of discrepancy among the two types of estimates lies in the end of systole 

flow conditions. As revealed by the analyses of case 4 (Figure 5), retrograde flow at the end 

of systole significantly impacts the frequency domain estimates of Zc. In contrast, by design, 

the up-slope methods completely ignore the hemodynamic conditions beyond the time of 

peak systole. The case is further complicated due to the fact that the presence of retrograde 

flow is not the source of discrepancy but the absence is. Had this observation been 

otherwise, one could address the discrepancies by excluding the harmonics which constitute 

the retrograde flow. But in this case, there is no possible modification that can be proposed 

to make the two types of estimates equal. This also suggests that any preprocessing of the 

data that results in modification of flow behavior may yield an erroneous value of Zc in the 

frequency domain.

Another aspect that may significantly impact the outcomes of frequency and time domain 

analyses is the presence of noise in the pressure and flow data. Although both types of 

estimates are prone to errors due to different levels of noise, the analysis presented in Figure 

3 suggests that a certain time domain Zc estimate is highly sensitive to noise. In the 

frequency domain, the high frequency noise components can easily be removed by imposing 

an upper bound on the frequency or number of harmonics. However, in the time domain, it is 

inevitable that noise is inherent to the data within the context of linear curve fitting or 

computing the derivatives of pressure and flow. Therefore the level of preprocessing as well 

as the choice of a particular approach and its specifics should be based on the overall quality 

of available data.

Analysis of case 3 (see Figure 4) suggests that there is a consistency among the outcomes 

obtained using different approaches, pertinent to signal selection. If the signals are 

reasonably periodic, then one should expect identical outputs from the beat-to-beat or the 

multi-beat analysis, and the ensemble encoding over number of beats can be used as a good 

representation of all the cardiac cycles. However, in the event of significantly non-periodic 

data, the results from each approach will be subject to higher uncertainty.

The outcomes discussed above, related to figures 2 and 5, are not surprising. The 

identification of source of discrepancies between the two approaches is strongly connected 

to the problem of mathematical equivalence. The very apparent differences between the 

definitions and applications of the frequency and time domain approaches for estimating the 

characteristic impedance assure the existence of such discrepancies. It is evident from 

equation (5) that frequency domain estimates will always be independent of the phase 
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values, which are affected by the time-lag between the pressure and flow waves. They only 

depend on the impedance moduli associated with a selected harmonic range, starting from 

the i’th harmonic. For most applications i ≥ 2. On the other hand, equation (7) shows a clear 

dependence of the time domain estimate on the moduli as well as the phase of both pressure 

and flow harmonics. The early ejection behavior of the pressure-flow loops predominantly 

depend on the first two harmonics of the pressure and flow, which are usually excluded form 

the calculation of the frequency domain estimates of Zc.

In Table 2, we compiled key values of Zc and other hemodynamics parameters computed 

using datasets 1–3, representing different physiological and pathological conditions in three 

species. For comparison across these datasets, we converted the units of pressure and flow to 

mmHg and ml/s for all datasets. The analyses suggests a qualitatively consistent behavior of 

the two types of estimates. In particular, for dataset 1 all the frequency and time domain 

estimates were observed to be much smaller in the MPA than the aorta (see Figure 9(i)). 

Similarly, in dataset 3, the Zc estimates in mice were observed to be significantly larger 

during hypoxia than in control (see Figure 10(f)). Finally, in dataset 2A, estimates of 

Zc(2–12) and Zc95 suggest that the characteristic impedance decreases with volume 

expansion (VE) and increases with hemorrhage. However, when the qualitative behavior of 

Zc(5–15) was assessed for the same dataset, the decrease in the characteristic impedance 

during VE and the increase during hemorrhage were considerably smaller compared to the 

behavior of Zc(2–12) (see Figure 8(i)-(l)). In addition, Zc(5–15) further decreased in the new 

control condition instead of retrieving the control value. This behavior was opposite to that 

observed for Zc(2–12) and Zc95. As a result, a very weak correlation between Zc(5–15) and 

Zc95 was observed with coefficient of determination R2 = 0.41 compared to R2 = 0.93 for 

Zc(2–12) and Zc95.

In summary, even if the qualitative behavior is consistent, the rate of change in the 

characteristic impedance obtained from different frequency and time domain methods can be 

highly variable under the same hemodynamic conditions. This not only makes the inter-

domain quantitive comparison impossible, but the comparison of intra-domain methods can 

also lead to contradictions in qualitative behavior. This means that, qualitative behavior and 

dimensions of parameter estimates do not warrant a comparison with other quantities with 

the same dimensions, just like Z0 and Zc cannot be compared to infer the same information 

about the vascular properties. Therefore the frequency and time domain estimates of 

characteristic impedance should also be considered as two different hemodynamic 

parameters. If desired, a certain frequency or time domain estimate should be compared with 

itself only. Although extensive literature is available, both based on experiments and 

mathematical models, which studies the effects of various vascular properties on the 

impedance spectra (see Milnor (1989, ch.7) and Nichols et al (2011, ch.12) for a detailed 

review of the subject), there are hardly any studies that investigate the effects of 

hemodynamic conditions and vascular properties on the time domain estimates of Zc, or the 

behavior of pressure-flow loops in general. In particular, a criterion for selecting the portion 

of pressure-flow loop is missing and no quantitative comparison is available that compares 

the estimates using nonlinear and diastolic portions of the pressure-flow loop with other 

available estimates. One way to improve the understanding of physical differences between 

the two estimates is to use a 1D pulse wave propagation network model with known 
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parameters and boundary conditions. Using this type of model enables us to calculate the 

true characteristic impedance, which can then be compared with the two estimates from the 

frequency and time domain methods, and to quantify the effects of the reflection free 

assumption. Alternatively, one could set up an in-vitro experiment generating pulse waves at 

different frequencies and propagate these along a network of tubes with known elastic 

modulus and reflection coefficients, e.g. the network developed by Segers et al (1998).

5. Conclusion

The goal of this study was to estimate and compare the characteristic impedance using 

frequency and time domain approaches. Based on our analysis, we conclude that there is no 

mathematical equivalence relation between the two approaches and demanding them to yield 

an identical solution for any given dataset is not a mathematically feasible problem. 

Nevertheless, the two approaches do behave in a qualitatively similar manner and it is 

possible to obtain identical solutions by multi-run trials using a combination of options. 

Given their intrinsically different mathematical expressions, frequency and time domain 

impedance estimates should be assessed as two different hemodynamic parameters. To gain 

more insight into these differences, we suggest conducting a detailed modeling study or 

setting up an in-vitro experiment that investigates the effects of system parameters and flow 

conditions on the two types of estimates.
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Appendix A

Table A1

Dataset 1: Typical harmonics of flow and pressure in the ascending aorta and pulmonary 

artery of in man. The values are taken from Chapter 6 in Hemodynamics by Milnor (1989) 

and only provided for the sake of reproducibility of Example 1 in the text.

Aorta Pulmonary Artery

Flow Presure Flow Presure

Harmonic
Number

Modulus
(ml/s)

Phase
(Rad)

Modulus
(mmHg)

Phase
(Rad)

Modulus
(ml/s)

Phase
(Rad)

Modulus
(mmHg)

Phase
(Rad)

0 110 −0.00 85.0 −0.00 110 −0.00 12.00 −0.00

1 202 −0.78 18.6 −1.67 195 −1.02 4.95 −1.54

2 157 −1.50 8.6 −2.25 132 −2.04 1.83 −2.63

3 103 −2.11 5.1 −2.61 58 −3.05 0.85 2.94

4 62 −2.46 2.9 −3.12 10 −1.34 0.04 −0.50

5 47 −2.59 1.3 −2.91 28 −2.14 0.46 −1.90

6 42 −2.91 1.4 −2.81 20 2.98 0.35 3.12

7 31 2.92 1.2 2.93 02 −2.72 0.05 −2.47

8 19 2.66 0.4 −2.54 10 −2.80 0.08 −2.80
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Aorta Pulmonary Artery

Flow Presure Flow Presure

Harmonic
Number

Modulus
(ml/s)

Phase
(Rad)

Modulus
(mmHg)

Phase
(Rad)

Modulus
(ml/s)

Phase
(Rad)

Modulus
(mmHg)

Phase
(Rad)

9 15 2.73 0.6 −2.87 06 2.48 0.04 2.38

10 15 2.42 0.6 2.87 02 −3.05 0.04 −3.10
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Figure 1. 
Dataset 1 (Section 2.1): Frequency and time domain analysis using pressure and flow wave 

forms from the human aorta and main pulmonary artery (MPA). (a)–(d): pressure (left), flow 

(right). Note the difference in scale between the aortic and MPA pressures. (e) and (g): 

corresponding impedance moduli and phase spectra, (f): pressure-flow loops, used for 

estimating Zc with the time domain up-slope methods, (h): comparison of Zc in the aorta 

and MPA across both domains. The bars show mean ± SD values of Zc, across all the 

frequency and time domain methods listed in Table 1.
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Figure 2. 
Case 1 (Dataset 1): Effects of a time-lag between pressure and flow on the Zc estimates. (a): 

Normalized pressure and flow (dimensionless) in the aorta; p+ and p− denote the forward 

and backward shifted wave by 10 ms. (b): Effect of a 10 ms time shift on the early ejection 

phase of the pressure-flow loop (in units of mmHg and ml/s), (c)–(d): impedance moduli 

(mmHg s/ml) and phase spectra (degrees), (e)–(f): effects of time-lag on the resultant Zc 

values for the aorta and MPA. Zc± correspond to the Zc estimates obtained using p±.
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Figure 3. 
Case 2 (Dataset 1): Effects of noise on the Zc estimates. (a): Normalized pressure and flow 

waveforms (dimensionless) in the aorta, contaminated with Gaussian white noise generating 

a 40 dB SNR, (b): pressure-flow loops from normal (see Figure 1 (a)) and noisy pressure 

(pwgn) and flow (qwgn) signals, (c)–(d) impedance moduli and phase for the first 19 

harmonics computed using normal (Z) and noisy (Zwgn) datasets, (e)–(f): effects of noise on 

the grouped averaged Zc for the aorta and MPA, where Zc and Zcwgn are the group averaged 

Zc accounting for all the methods listed in Table 1. ~Zcwgn excludes all frequency domain 

methods, which require harmonics above 12.5 Hz, and the peak derivative method (Zc′) in 

the time domain.
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Figure 4. 
Case 3 (Dataset 2B): Effects of single beat, breathing cycle (multi-beat) and ensemble 

encoding approach on the Zc estimates (Murgo et al 1980). (a)–(b): Pressure and flow data 

over five cardiac cycles reproduced with permission from Dujardin & Stone (1981) (c)–(d): 

ensemble encoding (blue curves)±SD (dotted red curves) of the flow and pressure 

waveforms, (e)–(f): impedance moduli and phase spectra obtained by subjecting all five 

cycles (blue curve representing breathing cycle analysis), a representative cardiac cycle 

(magenta curve representing beat by beat analysis) and ensemble encoding (cyan curve), to 

the Fourier analysis (g): the pressure-flow loop (blue curve) from the ensemble encoded 

waveform with the fitted line at qc = 0.95 (dashed balck), (h): comparison of Zc(5–15) and 

Zc95 using the three approaches: (left) the cardiac cycle approach, error bars show mean±SD 

Zc values over five cardiac cycles analyzed individually, (center) ensemble encoding 

approach, the error bars show the estimates corresponding to dotted red curves in (c) and (d), 

(right) breathing cycle approach.
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Figure 5. 
Case 4 (Modified dataset 2B): Effects of retrograde flow at the end of systole examined 

using a frequency and time domain estimate. (a): The original flow from Figure 4 (solid 

blue) with retrograde flow (QRetro), and modified flow (dashed meganta) without retrograde 

flow (Qno–Retro), (b): corresponding pressure-flow loops from ensemble encoding, (c): 

corresponding impedance moduli spectra including 0–11 harmonics, (d): comparison of 

Zc(5–15) and Zc95 in the presence and absence of the retrograde flow.
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Figure 6. 
Dataset 2A: Pressure (top row) and flow (bottom row) waveforms reproduced with 

permission from Dujardin et al (Dujardin et al 1980). The measurements were recorded in a 

dog ascending aorta under four d flow conditions, labeled in top row panels. Variations in 

the cycle lengths should be noted for each flow condition.

Qureshi et al. Page 26

Physiol Meas. Author manuscript; available in PMC 2019 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Dataset 2A: Impedance moduli (a) and phase spectra (b) corresponding to each case (C, VE, 

NC and H) presented in Figure 6. The spectra are generated using the second cardiac cycle 

in the in the sequence of pressure and flow waveforms and only show 0–10 harmonics after 

the mean component.
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Figure 8. 
Case 4 (Dataset 2A): Comparison of frequency and time domain estimates of Zc calculated 

form the dataset 2A (Figs. 7 and 6. (a)–(d): Pressure-flow loops with qc = 0.95 providing 

Zc95. (e)–(h): Pressure-flow loops with pressure delayed by 7 ms, and qc = 0.95 providing 

modified Zc95+, (i)–(l): comparison of frequency domain Zc(2–12), Zc(5–15) (see Table 1) 

with time domain Zc95 and Zc95+. The bar charts show the mean±SD of all estimates 

computed from each cardiac cycle shown in Figure 6.
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Figure 9. 
Case 4 (Dataset 2A): Following Murgo et al (1980), regression line depicting the linear 

relationship between Zc95 and Zc(2–12) (a), and Zc95 and Zc(5–15). Coefficient of correlation, 

R2, is 0.93 and 0.41, respectively.
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Figure 10. 
Dataset 3. Estimates of Zc in mice pulmonary arteries during control and hypoxia. (a)–(b): 

Representative pressure (p) and flow (q) waveforms plotted for one cardiac cycle for the 

control and hypoxic groups, (c) and (e): corresponding impedance moduli (Zk) and phases 

(ϕk) spectra for 0–10 harmonics, (d): corresponding pressure-flow loops for the control and 

hypoxic cases, and (f): comparison of frequency and time domain estimates where the bars 

show the mean ± SD values of Zc, across all the frequency and time domain methods listed 

in Table 1.
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Table 1

Frequency and time domain methods for estimating the characteristic impedance (Zc).

Frequency range Notation Reference

2.0 – 12 Hz Zc(2–12) Pepine et al (1979)

2.0 – 16 Hz Zc(2–16) Lucas et al (1988)

3.5 – 10 Hz Zc(3.5–10) Westerhof et al (1973)

5.0 – 15 Hz Zc(5–15) Dujardin et al (1980)

9.0 – 18 Hz Zc(9–18) Cox & Bagshaw (1975)

15 – 25 Hz Zc(15–25) O’Rourke & Taylor (1967)

Harmonics range

1 – 8 Zc1–8 Clarke et al (1978)

1 – 9 Zc1–9 Peluso et al (1978)

2 – 10 Zc2–10 Gary et al (1994)

3 – 10 Zc3–10 Hughes & Parker (2009)

4 – 10 Zc4–10 Tabima et al (2012)

k – 10a Zck–10 Gary et al (1994)

6 – 8 Zc6–8 Abel (1971)

4 – 8 Zc4–8 This study

Time domain techniques

Early systole up-slopeb Zcqc Dujardin & Stone (1981)

max(p′)/max(q′) Zc′ Lucas et al (1988)

a
Here k is the harmonic corresponding to the first impedance minimum provided that it appears before the 5’th harmonic.

b
qc varies between 25% and 95%. In this study, qc = 25%, 50%, 90% and 95%.
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