
UC Irvine
ICS Technical Reports

Title
Reclocking controllers for minimum execution time

Permalink
https://escholarship.org/uc/item/9sm1w78m

Authors
Jha, Pradip K.
Parameswaran, Sri
Dutt, Nikil D.

Publication Date
1994-09-20
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sm1w78m
https://escholarship.org
http://www.cdlib.org/


Reclocking Controllers for
Minimum Execution Time

Pradip K, Jha, Sri Parameswaran^, and Nikil D. Dutt

Technical Report #94-40
September 20, 1994

Dept. of Information and Computer Science
University of California at Irvine

Irvine, CA 92717-3425
Phone: (714) 856-8059

Fax: (714) 856-4056
Email: pradip@ics.uci.edu

z.

r)Q.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

^Department of Electrical and Computer Engineering, University of Queensland, Australia





Abstract

In this report we describe a method for resynthesizing the controller of a design for a
fixed datapath with the objective of increasing the design's throughput by minimizing its total
execution time. This work has tremendous potential in two important areas: one, design
reuse for retargetting datapaths to new libraries, new technologies and different bit-widths;
and two, back-annotation of physical design information during High-level Synthesis (HIS),
and subsequent adjustment of the design s schedule to account for realistic physical design
information with minimal changes to the datapath. We present our approach using various
formulations, prove optimality of our algorithm and demonstrate the effectiveness of our
technique on several HIS benchmarks. We have observed improvements of up to 36% in
execution time after straightforward application ofour controller resynthesis technique to the
outputs of HIS.
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1 Introduction

High-Level Synthesis is composed of many NP-Complete problems, hence many decisions

such as scheduling, allocation and binding, are made at an early stage of the design process

without good estimates of layout-level information (e.g., wire-lengths and exact area/delay

information). Since HLS techniques traditionally do not take into account physical design ef

fects, the performance predicted by HLS tools needs to be recalculated after back-annotation

of physical design information into the RT design. One could attempt complete resynthe-

sis of the datapath and control by running HLS again with the back-annotated physical

design information; however, redoing the scheduling and allocation steps with the new phys

ical design information may generate a completely new datapath for which the previously

back-annotated physical design information is useless.

To overcome this dilemma of design, we suggest the resynthesis of the controller alone

without changing the overall circuit connectivity. That is, to keep all datapath connectivity

and all controller — datapath connectivity the same, and change the controller design itself

through a technique called reclocking. The controller design can have a different number

of states from the initial design, and the controller logic will be different from the initial

design. Since resynthesis of the controller does not change the delays very much, we feel

that changing the controller design will not adversely affect the wire delays.

Another important motivation for this work is design reuse. The design of datapath is

a complex process and completed datapaths are often candidates for design reuse in new

projects. Furthermore, with changes in technology libraries (or the requirements for faster

designs), system designers would often like to retarget existing datapath designs to new li

braries, migrate designs to larger bit-widths, or simply speed up the design to create newer

versions with different cost/performance attributes. These design scenarios motivate the

need for techniques that allow rescheduling of controllers for a fixed datapath under varying

technology library or component attribute conditions. Note that controllers typically have

automatic standard-cell implementation and can be easily reimplemented through logic syn

thesis tools.



In this work, we describe reclocking, an approach that modifies the controller without

changing the datapath to improve the performance by reducing the total execution time.

Given an initial schedule for the design behavior and the updated delays (back-annotated

or with a new library) for various paths in the design, our approach first finds a clock-width

{reclocking) that leads to minimal execution time. It then reschedules and resynthesizes the

controller based on this new clock-width.

The rest of this report is organized as follows. Section 2 describes related work. Section

3 defines the problem of reclocking, given an initial schedule and datapath delays. Section

4 describes a few results to find the optimal clock-width for different types of codes and

presents an algorithm for reclocking. Section 5 demonstrates the efficacy of our approach by

applying reclocking on few examples for different design scenarios. Section 6 concludes with

a summary.

2 Related work

Various techniques have been proposed to improve the performance of a given design. At the

logic level, Leiserson and Sax introduced the concept of retiming[LeSa88]. The technique

moves registers across combinational logic to improve performance. Retiming allows the

minimization of cycle time or the reduction of the total number of registers. However, as

we approach submicron feature sizes, wires contribute significantly to delays. Since wire

delays can only be known after layout, the original retiming techniques cannot be applied,

- the introduction of registers will change the layout, and thus the timing. Malik et. al

[MSBS91] and De Mecheli [DeM91] described methods to improve upon the original approach

by changing the circuit topology and using a non-constant delay model. Our work is dual to

retiming in the sense that instead of modifying the datapath by moving registers and latches,

we reschedule the controller by selecting the best clock-width to improve the performance.

Work has been done to improve the circuit performance at the high-level design phase.

Camposano and Ploger [CaP192] describe the application of retiming to high-level synthesis.

Kanehara and Gajski [KaGa91] apply pipelining techniques to improve the performanceof a



design. This technique inserts latches or registers on critical paths, thus shortening the clock
period. [BDBr94], on the other hand, tries to reduce the clock-width at the resource sharing
and assignment phases of synthesis. [ZaGa88] maps the RT-level components of the design
in such a way so as to meet a required performance bound. They apply a combination of

microarchitectural and logic optimization techniques tosynthesize RT-level components. The

above mentioned works either modify the datapath or incorporate performance improvement
techniques during the high-level design phase. Ours is a post-synthesis technique that can

incorporate detailed physical-design information and therefore more accurately model the
final design.

Narayan and Gajski [NaGa92] use a simple method to estimate clock-widths in high-
level synthesis. This method exhaustively searches through the possible clock cycles in 1 ns

increments to estimate a clock-width for high-level synthesis. They have not taken wiring
or placement into account, nor have they taken the critical paths into account. Since they
consider all possible latch to latch timing including false paths to estimate the clock-width,
their clock-estimation may be pessimistic. No results are available as to the differences

between estimation and final results. There is also no suggestion as to how to find the best

clock-width which does not lie on an integer nanosecond clock-width.

In this work, we show that the optimal clock-width lies on an integer division of the largest
delays of each state, and that it can be found by searching fewer points in the delay space
than the method proposed in [NaGa92]. Using this optimal clock-width we then proceed to
reschedule the controller to improve performance.

3 Problem Definition

The output of high-level design is typically specified by a datapath and a controller in a Finite

State Machine with Datapath (FSMD) model [GDWL92]. The datapath consists of a netlist
of RT level components such as ALUs, registers, muliplexers, etc. The controller generates
control signals for each component in the datapath based on the status signals generated
by the datapath components. The controller is represented by a finite state machine that



specifies what operations are to be performed in each state. Figure 1(a) shows an example
design that consists of a3-state controller and adatapath with an adder and amultiplier.
Note that all the functions in this design are single-state operations, whereas the
function is a two-state operation. In other words, the data transfer for the unicycle "-f"
function is completed in asingle clock, whereas the data transfer for the multicycle
function requires two clock cycles.

Controller

w

Controller

Clock-width = 15

Control

Status

Clock-width = 10

Control

Status

Datapath

Datapath

Figure 1: Reclocking of controller (a) Initial design (b) Final design

Given adatapath and an initial schedule (FSM of the controller), reclocking finds a
new clock-width that minimizes the execution time. This could mean that some of the data
transfers that were scheduled to execute in one clock cycle may now take multiple clock cycles



to execute. Alternatively, in another design, some functional units which took multiple clock

cycles can now take just one clock cycle. Figure 1(b) shows the design after reclocking. The

function now takes 3 clock cycles. The clock-width has been reduced from 15ns to 10ns,

which in turn leads to the reduction of the execution time (45ns to 40ns). Note that only the

structure of the controller has changed. Neither the datapath nor the connectivity between

the datapath and the controller (control and status lines) have changed. Since the datapath

and the connectivity remain unaltered in reclocking, we will consider only the controller in

our problem formulation and examples.

Given a scheduled behavior, the problem of reclocking is defined in terms of the set of

states, the delays associated with each state, and the delays of multicycle operations. Let S

be the set of states in the controller:

• S = is a state in a controller.}

Each state Si activates a set of data transfers. Each data transfer incurs a delay, given by the

maximum delay value for various paths that are activated for this data transfer. We define

state-delay, di, as the maximum delay for all the data transfers activated in s,-. Note that

for reclocking purposes, we need to consider only the maximum delay in each state, that is,

state-delay. For example, the controller in Figure 1(a) has three state-delays do,di and ^2,

one for each state. The state-delay do (for ^o) is the sum of the delays involved in moving

data from registers to adder inputs, performing "+" operation and storing the result back

into the register.

We also define, MD, the set of delays associated with multicycle operations:

• MD = {mdi\mdi is the delay of a multicycle operation.}

Note that mdi is not associated with a specific state of the controller. For the controller shown

in Figure 1(a), we have only one multicycle delay mdo associated with the operation.

The Execution time (ET) for a design is given by the product of the number of clock

cycles(A^C) required to perform the intended behavior of the design and the clock-width(CVF):

ET = CW* NC



Given a controller with setofstates S and a set ofstate-delays, along with a setofmulticycle

delays, reclocking first finds the optimum clock-width with minimum execution time for the

design. It then reschedules the controller in order to fit the new clock-width.

3.1 Determination of tmin

An optimal clock-width is the one that leads to minimum execution time by reducing the

slack in clock-utilization. It would seem that the greatest common denominator (GCD) of

state-delays should provide an optimal clock-width, as it reduces the slack to zero. However,

GCD of state-delays could result in very small clock-width. In a realistic problem domain,

we can not use an infinitely small clock-width. Let tmin be the minimum value of clock-width

that can be used. Thus, the optimal clock-width, topUmah is a clock-width that is greater

than or equal to tmin and leads to minimum execution time.

There are two factors that determine the value of tmin- The first factor is the mini

mum clocking frequency of component libraries. Each component library gives a maximum

operating frequency below which the synchronous components must be switched.

The second factor is illustrated in figure 2. The straight lines indicate the initial clock,

the initial availability of data at the output of register A, and the control line B.load which

loads the value ofregister Ainto B. The dotted lines indicate the new clock, and two possible

loadings of the data via the control line B.load, given as B.load{l) and B.load{2).

In B.load{l), the control signal is active during all the clock cycles into which the initial

state was partitioned. In B.load(2), the control signal is only active during the last cycle of

the clocks into which the initialdescription was partitioned. If B.load{l) is to be considered.

tmin > {Cpd-V Ist{B))ln (1)

tmin > Dst{B)/n (2)

where Cpd is the controller propagational delay, IstiB) is the load (control) setup time of the

register B, Dst{B) is the data setuptime of register B, and n is the number of states into
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Figure 2: Old and new clocks and controller timing

which the state in the initial description has been partitioned. If B.load{2) is considered,
then

imin > (Cpd + (^3)

^min ^ Dst{B)/n

The control signal B.load{l) will almost always yield a smaller tmin, which is desirable,
in order to find a good solution. However, if there are storage units which change value with
each clock cycle (when control signal is enabled), then the control signal B.load{2) has to
be used in order to maintain correct values in storage units such as counters, shift-registers,
and registers within pipelined components.

3.2 Assumptions

In this work, we make the following assumptions:



The rescheduling of the controller does not alter the size and therefore the delay ofthe

controller appreciably;

Thedatapth - controller connectivity lengthremains the same after controller reschedul-

• If the behavior contains non-straight line code, an execution trace (or branch proba

bilities) are given.

In the next section, we present some results for reclocking. We use these results to develop

an algorithm to find the optimal clock-width and reschedule a given design. For the rest of

the report, we use the term "code" and "controller" interchangeably.

4 Reclocking

We first present results for simple straight-line code without multicycle operations. Then we

extend this result to capture more realistic controllers that encompass multicycle operations

as well as non-straight-line code.

4.1 Straight-line code with no multicycling

In straight line code, we don't have branches; the control flows sequentially through all the

states of the code. Thus the execution time {ET) for straight line code is given by:

ET = CW* NS

where NS is the number of states in the controller.

Also, without multicycle operations, only delays that are to be considered are state-

delays. The following theorem sets the basis of the reclocking for simple code. In this

theorem, integer divisions of a state-delay d, are given by: {d,/j|j=l,2,3,...}.



Theorem 1 In a straight-line controller with single-state operations the optimal clock-width,

with minimum execution time, will lie on one ofthe integer divisions ofone ofthe state-delays

or on the minimum clock-width, tmin-

Proof Let us assume that the optimal clock-width, topUmaU is not equal to tmin or integer

divisions of one of the state-delays. Let us consider another clock-width, tbetter, which

is smaller than toptimai by an infinitesimally small value 6t.

Ibetter —^optimal -St

Since toptimal is not equal to tmin, tbetter is a valid clock-width. Also, since toptimal does

not lie on one of the integer divisions of any of the state-delays, there is a slack in

clock utilization for each state s^. Thus, with tbetter which is smaller than toptimal by an

infinitely small value, each of the critical operations will require same number of states

as is required with toptimai- Note that if tbetter is equal to an integer division of a state-

delay di, then the above statement is not true. This is because in the schedule with

tbetter, the Critical operation in state 5,- would require one extra state as compared to the

schedule with toptimai- Thus, the schedule with tbetter requires the samenumber of states

as is required by the schedule with toptimai- Hence, tbetter reduces the execution time

as compared to toptimai- This contradicts our assumption that toptimai is the optimal

clock-width. Hence, the optimal clock-width will lie on the integer divisions of one of

the state-delays or on tmin-

4.2 Straight-line code with multicycle operations

As previously mentioned, a multicycle operation requires more than one state for its com

pletion. With the introduction of the multicycle operations, we need to consider both the

state-delays and the set ofmulticycle delays, MD. Given a straight-line code with multicycle

and unicycle operations, we have to reschedule the controller, given a minimal clock-width

tmin such that the execution time is minimized.



Corollary 2 In a straight-line code with single-state and multi-cycle operations the optimal

clock-width with minimal execution time will lie on an integer division of one of the state-

delays, on a multicycle delay, or on tmin-

Proof: A simple extension of the proof for Theorem 1 will suffice. Let us assume that

the optimal clock-width, toptimai-. is not equal to an integer division of a state-delay, a

multicycle delay or tmin- As before, let tteuer be given by:

IbetteT —topiimal ht

Since toptimai does not he on one of the integer divisions of any of the multicycle

delays, there is a slack in clock utilization for each multicycle operation. Thus, with

tbetter which is Smaller than topHmai by an infinitely small value, each of the critical

operations including the multicycle operations will require the same number of states

as is required with topHmal- Thus, the schedule with tbetter requires the same number of

states as is required by the schedule with toptimai- Hence, tbetter reduces the execution

time as compared to toptimai- This contradicts our assumption that topHmai is the optimal

clock-width. Hence, the optimal clock-width will lie on the integer divisions of one of

the state-delays, multicycle delays or on tmin-

The above proof establishes sufficient conditions for the optimal clock-width. The fol

lowing example shows that the multicycle delays are a necessary requirement for getting the

optimal solution.

fn Figure 3, if the multicycle delay of 110ns is ignored, the best schedule will have a clock-

width of 19.67ns (59/3). The execution time would then be 157.36ns. If on the other hand,

the multicycle operation is taken into account, the best schedule will have a clock-width of

10ns, with an execution time of 150ns^.

^We have assumed a tmin of 6ns



4" j 39ns

+ ) 59ns

+) 39ns

Figure 3: An example with a multicycle operation

4.3 General code

Finally, we consider an unrestricted controller. In general, a controller could have branches

and loops. We assume that a static trace of the schedule is given. That is, we know,

in advance, how many times each of the states are executed. Given an unrestricted code

with unicycle as well as multicycle operations, a trace of the execution (states Si,S2, •••Sn

occurring times respectively), and a minimal clock width tmin, we need to find

the optimal clock-width and then reschedule the controller such that the execution time is

minimized.

Corollary 3 In an unrestricted code with static trace, unicycle and multicycle operations

the optimal clock width will lie on one of the integer divisions of state-delays or multicycle

delays or tmin•

Proof : From the static trace of the unrestricted code we know that each state occurs an

integer number of times. Since each of the states must occur an integer number of



times, the unrestricted code can be "unrolled" to make it a straight-line code. Thus,

Corollary 3 reduces to Corollary 2. This completes the proof.

4.4 Algorithm for reclocking

Algorithm 4.1 : Reclocking for straight-line code

INPUT: A controller(C6'i) and tmin

OUTPUT: Rescheduled controller(Cto) with optimal clock-width

\ D —state-delay(C't/,);

2 &tmin — OO)

3 foreach d, 6 D loop

3.1 j = 1;

3.2 while di/j > tmin loop

3.2.1 t = di/j-

3.2.2 et =EXECUTION.TIME(t, CC/,);

3.2.3 if {et < etmin) then cw = t;

3.2.4 increment j;

3.3 end loop

4 end loop

5 CUo = RESCHEDULE(CUi,cu;);

6 Return CUo;

Now we incorporate the above results into an algorithm that finds the optimal clock-

width for a controller and then reschedules it to fit the optimal clock-width. Algorithm
4.1 lists the steps for reclocking of a controller. This algorithm takes as input a controller

specification in terms of states, state-delays, multicycle delays and minimum clock-width,

tmin- The first section of the algorithm extracts the state-delays and the multicycle delays.
The second section of the algorithm finds new clock-widths by dividing each of the delays by
incremental integers until a specified low clock-width is achieved. For each of these clock-



widths, the algorithm computes the execution time. The clock-width yielding the minimum

execution time is chosen as the optimal clock-width. The final section of the algorithm

reschedules the operations with the optimal clock-width.

In Algorithm 4.1, CUi, CUo and tmin refer to the input controller, output controller

and the minimum clock-width respectively. For a given clock-width t and input controller,

function EXECUTION_TIME(t, CT',) finds the execution time. Note that in order to find

the execution time, the controller is to be rescheduled for the given clock-width t. Also, for

non straight-line code, the trace counts of CUi have to be converted to the trace counts of

CUo. Eunction RESCHEDULE(Cfi^,, cu;) reschedules the input controller CUi for the given
clock-width cw. The variables etmin and cw represent the minimum execution time and the

current best clock-width respectively.

4.4.1 Complexity analysis

The above algorithm has a complexity of 0(n -f m)^, where n is the number of states in

the input controller and m is the number of multicycle operations. The loop at statement 3

investigates each state-delay and multicycle delay. For each delay, the algorithm tries each

integer division that is greater than tmin- Since each of d,-, md,-, and tmin are finite, the

loop at statement 3.2 runs for a constant number of times. The statement at 3.2.2 requires

rescheduling, and the complexity of rescheduling is 0{n + m). Thus the complexity of the

whole algorithm is 0{n -fi m)^.

In the next section we apply this algorithm on few examples and show the effectiveness

of the reclocking scheme.

5 Experimental Results

In this section we present the results of our experiments on few designs from the literature.

First, we demonstrate reclocking on designs with realistic component delays. Then we apply
our technique on designs with physical design information such as wiring delays. Finally, we



Component
Register
Register

2-input mux

3-input mux

4-input mux

5-input mux
6-input mux

Alu

Multiplier

Delay type
set-up

propagation
propagation
propagation
propagation
propagation
propagation
propagation
propagation

Delay value
3.3ns

3.3ns

5.7ns

6.0ns

6.0ns

6.8ns

6.8ns

18.4ns

80.ons

Table 1: Delay values for 32-bit components from VDP300 library

present experimental results that demonstrate the bit-width and library migration capability

of our approach.

5.1 Designs with realistic delays

We applied our methodology on two designs from the literature and two designs generated

by high-level synthesis tool[RaGa91]. In this experiment, we demonstrate that reclocking

with realistic component delays can make substantial improvements in design performance.

We have used VTI [VTI91] as the target library for these examples. Table 1 lists the delay

values for the relevant components: a register, multiplexers, a multiplier and an ALU. For

the examples in this section, we assume that the minimal clock width (tmin) is provided

by the user and that it is 20ns. Also, since the trace of execution for the non-straight line

designs is not given, we approximate the execution-time (ET) by the product of clock-width

(CIV) and number of states (NS) in the design:

ET = CW* NS

First, we walk through a simple example design that does not have multicycle units.

Figure 5(a) shows a scheduled design for a behavior that solves a second order differential

equation[PKGr86]. This schedule has been generated by [RaGa91] based on an allocation of

two multipliers and two ALUs that can perform addition, subtraction and comparison. Note



State Worst case path Delay value
0 control,mux,reg 10.3-f5.74-3.3 = 19.3ns

1 reg, control,mux,alu ,reg 3.3+10.3+6.0+18.44-3.3 = 41.3ns

2 reg,control,mux,mult,reg 3.3+10.3+6.0+80.5+3.3 = 103.4ns

3 reg,control,mux,mult,reg 3.3+10.3+6.0+80.5+3.3 = 103.4ns

4 reg,control,mux,mult,reg 3..3+10.3+6.0+80.5+3.3 = 103.4ns

5 reg,control,mux,alu,mux,reg 3.3+10.3+6.0+18.4+5.7+3.3 = 47.0ns

6 reg,control,mux, alu, reg 3.3+10.3+6.0+18.4+3.3 = 41.3ns

Table 2: Maximum state delays for HAL example

47.0 1

47.0 2

47

23.5

1 103.4

2 51.7

3 34.5

4 25.6

103.4 I 5 20.7

Num-clocks Execution time

14 578.2

26 538.2

13

22

7 723.8

10 517.0

16 552.0

19 486.4

23 476.1

Table 3: Various clock-widths for HAL example

that there are 7 states in the initial schedule. In this design, clock-width (worst case state-

delay) is given by the sum of the register propagation delay, controller delay, multiplexer

delay, multiplier delay and register set-up delay. Using the delay values provided in Table

1, we get 3.3 + 10.3 -f- 6.0 -|- 80.5 + 3.3 = 103.4ns as clock-width. Thus the execution time is

103.4 * 7 = 723.8ns.

Now we apply our clock-width determination algorithm on this schedule. Table 2 lists

maximum delays for each state. We observe that we have only three distinct delay values

(di): 41.3ns, 47.0ns and 103.4ns. Table 3 lists each clock-width and the corresponding

execution time that is considered by the clock-width determination algorithm. For each

delay (d,), we consider various fractions till we hit tmtn- From Table 3, we observe that

the best performance is achieved with clock-width = 20.7ns. The execution time with this



Initial schedule Final schedule

Designs

CW NC ET CW NC ET
Improvement

(1mult+1a!u) 52.1 17 885.7 26.1 33 861.3

(SifJJS) 52.1 21 1094.1 21.6 50 1080.0

(2B+2add) 52.1 19 982.3 21.6 42 907.2

CW : clock-width(ns) NC : num of states ET : execution time(ns)

Figure 4: Performance improvement for designs from HLS

clock-width is 476.In^. Thus we get

723.8 - 476.1

723.8
* 100 = 34.2%

2.75%

1.29%

7.64%

improvement over the initial schedule. The final schedule is shown in Figure 5(b). Note that

the datapath has not changed at all. Some of the operations have been multicycled, but

their connectivity is untouched. Only the controller has to be modified.

Figure 4 shows initial and final schedules for few more examples. The initial schedule in

this figure refers to the schedule from literature[WuCG91] or generated by synthesis tools.

These schedules include a few multicycle operations. The table in Figure 4 shows percentage

improvement in performance for the final schedule as compared to the initial schedule for

three examples from the literature or generated by HLS tools. The first design is a different

schedule for the above mentioned HAL example [PKGr86] that uses only one multicycle

multiplier. The second example is a schedule for an elliptic filter [WuCGQl] using a single

multicycle multiplier whereas the third example is a different schedule for the elliptic filter

with two multipliers.

For each design, we report clock-width( CIT), number ofstates(A^5) andexecution time(ET)

for the initial and final schedule after retiming. Clock-width and execution time are in



.e with an allocation of 2mult+2alu (a) Initial schedule from HLS (b)
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nanoseconds. We also report the percentage improvement in execution time for the final

schedule as compared to the initial schedule. We observe that substantial improvements

in execution time can be achieved by retiming the controller. The improvements for the

three examples are 2.65%, 1.29% and 7.64%. Note that we have been able to achieve such

improvements in performance by keeping the datapath unchanged.

5.2 Back-annotation with wire delays

Designs

Elliptic filter
(1mult+1add)

Elliptic filter
(2mult+2add)

initial schedule Final schedule

CW NC ET CW NC ET

24.32 70 1702.4 56.75 29 1645.7

24.54 50 1227.0 24.54 50 1227.0

Improvement

3.88%

0.00%

CW :clock-width(ns) NC : num of states ET : execution time(ns)

Figure 6: Experimental results for designs with wiring delays

We now apply the clock-width determination algorithm to designs, taking into account

the wiring delays. Recall that since physical design information such as wiring delays are not

available during synthesis, the clock-width and the schedule generated may not be optimal.
In this experiment, we demonstrate how reclocking can improve the performance of the

designs when wiring delays are taken into account. We considered two designs for elliptic
filter and estimated the wire-length for each net in the design [WuCG91]. The estimation was
based on the 3.0 micron VTI library. Then we recalculated the state delays incorporating
these wire delays.

In order to perform a comparative study, we first calculated the clock-width with state-

delays that do not consider wire delays. Then, we find the clock-width and the schedule

for the state-delay that incorporates wire-delays. Figure 6 describes experimental results



for two designs. In this figure, the initial schedule refers to the optimized schedule without

considering wire delays; the final schedule refers to one with wire delays. We observe that
we have been able to improve the performance for at least one design with our reclocking
technique.

Note that this experiment is based on a 3.0 micron technology. In this technology, wire

delays are significantly smaller as compared to the component delays. For example, in our

experiments, wire delays are of the order of 3.0 ns as compared to 150 ns delay of multiplier.
However, as we move to sub-micron technologies, wire delays become major factors. Hence,
designs targeted to sub-micron technologies must back-annotate wire delay; our reclocking
scheme describes a technique to accomplish this and achieves considerable improvements in
performance.

5.3 Bit-width migration

Next we discuss experimental results for bit-width migration. In bit-width migration, the
design has been generated for a particular bit-width and is now being reused (with the same
schedule) for a different bit-width. An increase in the bit-width increases the delay in some
components while keeping it constant in others. If the same schedule is used as before,
we would get sub-optimal performance; reclocking can improve the performance of the new

design.

Figure 7presents experimental results that compare designs with and without reclocking
for migrating 16-bit designs to 32-bits. In this experiment, we first calculate the state delays
using delay values for 16-bit components (Table 4) from the VTl library. Using these delays,
we find an optimal schedule for the 16-bit design. Next, this design is upgraded to 32-bits
without reclocking, i.e., without changing the schedule. The initial schedule in Figure 7refers
to this design. The clock-width in this column is given by the minimum clock-width that

satisfies this schedule for 32-bit components. The final schedule is achieved by reclocking
the controller based on delays of 32-bit components from the VTl library. From the table

in Figure 7 we observe that reclocked designs are better than ones without reclocking in



Component
Register
Register

2-input mux

3-input mux

4-input mux

o-input mux
6-input mux

Alu

Multiplier

Delay type I Delay value
set-up 3.3ns

propagation 3.3ns
propagation 5.7ns
propagation 6.0ns
propagation 6.0ns
propagation 6.8ns
propagation 6.8ns
propagation 15.4ns
propagation 43.7ns

Table 4: Delay values for 16-bit components from VDP300 library

Designs

HAL
(1mult+1alu)

HAL
(2mult+2alu)

Initial schedule Final schedule

CW NC ET CW NC ET

34.7 27 936.9 26.1 33 861.3

34.5 16 552.0 20.7 23 476.1

(S+2S) 52.1 21 1094.1 21.6 50 1080.0

(23+2add) 51 19 952.3 21.6 42 907.2

Improvement

8.07%

13.75%

1.29%

7.64%

CW ; clock-width(ns) NC : num ofstates ET : execution time(ns)

Figure 7: Experimental results for migrating designs across bit-width



Component
Register
Register

2-input mux
3-input mux

4-input mux
Alu

Multiplier

Delay type Delay value
set-up 0.9ns

propagation 2.8ns
propagation 2.3ns
propagation 3.4ns
propagation 3.4ns
propagation 13.1ns
propagation 27.0ns

Table 5: Delay values for 16-bit components from Cascade library

performance by as much as 13.75%.

5.4 Library migration

Designs
Initial schedule Final schedule

CW NC ET CW NC ET

Improvement

HAL
(Imult+lalu) 16.4 27 442.8 14.7 29 426.3 3.73%

HAL
(2mult-i-2alu) 13.7 17 232.9 13.7 17 13.7 0%

Elliptic filter
(1mult+2add) 29.4 21 617.4 14.7 40 588.0 4.76%

(23+2add) 29.4 19 558.6 14.7 36 529.2 5.26%

CW : clock-width(ns) NC ; num of states ET : execution tjme(ns)

Figure 8: Experimental results for migrating designs across technology library

We also applied our technique for porting designs from one library onto another library.

We considered four designs that have been optimized for the 16-bit VTI[VTI91] library and

retargetted them onto the 16-bit Cascade[Casc92] library. Table 5 shows delays for 16-bit



components from the Cascade library.

Our approach is similar to the bit-width migration process described earlier. We first

calculate the state delays with the component delays shown in Table 5 and then run our

clock-determination/retiming algorithms to find the optimum clock-width and schedule.

Figure 8 shows the percentage improvement in performance for the four designs. Once
again, the clock-width in the initial schedule column is given by the minimum clock-width

that would satisfy the given schedule. The final schedule refers to the optimized controller
for the 16-bit Cascade components. We observe that the improvement in performance is in
the range of 0-5.26%.

Note that as we migrate designs across bit-widths or technology libraries, the component
delays do not change in same proportion. For example, register and multiplexer delays
remains invariant across bit-width, whereas ALU and Multiplier delays change significantly.
Furthermore, the interconnect delays can change based on the topology and layout style.
Thus the clock-width which suggests the minimal execution time design for a specific bit-
width and technology library may not (and in fact in most cases does not) represent the
optimal clock for performance when the design is ported to a different bit-width or/and
library. This is why we have been able to improve the performance of the design by retiming
the controller. We have been able to do so with minor or no modification to the datapath. In
summary, our technique not only makes the task of retargetting feasible, but in most cases

improves the performance of the design by reducing the execution time.

6 Summary

In this leport we have described reclocking, a powerful post—synthesis approach for perfor
mance improvement by minimizing the total execution time. We can accommodate designs
created by a high level synthesis system and back annotate the wire delays to the design.
Having extracted the delays we are able to resynthesize the controller to improve performance
without altering the datapath.



We have presented and proven some interesting results for finding the optimal clock-
width for a RT-level design. These results significantly prune the search space for finding
theoptimal clock-width. An algorithm for reclocking has been presented based on the above

results.

Our approach is versatile and can be applied not only for wire delay consideration, but

also for bit-width migration, library migration and for feature size migration supporting the
philosophy of design reuse. Experimental results show that with reclocking, the performance
of the input designs can be improved by as much as 36%.
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