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Abs tract 

By invoking the formal equivalence of a finite level quantum mechanical 

system to a quantum spin in an external field, this paper shows how a classical 

model can be constructed for an arbitrary finite level quantum system. For 

the 2-state and 3-state cases this leads to the same classical Hamiltonian 

that was obtained earlier by other more heuristic methods, but it shows 

how to treat the general F-state case. The purpose of this overall 

approach is to be able to represent the electronic states in electronically 

non-adiabatic collision processes by a classical degree of freedom so that 

all degrees of freedom, electronic and heavy particle (i.e., translation, 

rotation, and vibration), can be treated on a consistent dynamical footing. 

* 
Application of this model to the quenching of F ( 

2
F112 ) by collisions with 

H2  is described, and this completely classical approach is seen to give 

excellent agreement with the quantum mechanical coupled channel calculations 

of Rebentrost and Lester. 

14 



-2- 

I. 	Introduction. 

In several recent papers 13  it has been shown how the electronic degrees 

of freedom in a molecular collision system can be modeled classically. The 

motivation for this work has been to develop an approach in which all the 

degrees of freedom, electronic and nuclear (i.e., translation, rotation, 

and vibration), are treated on the same dynamical footing. This is important 

if one is to have a unified theoretical description of electronically non-

adiabatic collision processes, for it has been noted 4  that dynamically 

inconsistent models--i.e., those which describe some degrees of freedom 

by quantum mechanics and other degrees of freedom by classical mechanics--

can sometimes miss significant features in these processes. One can, of 

course, achieve dynamical consistency by resorting to a fully quantum 

mechanical formulation--i.e., the complete rovibronic coupled-channel 

Schr3dinger equation--but this is often impractical because of the large 

number of strongly coupled rotational and vibrational states in a molecular 

collision system. To retain the facility of a classical description of 

the heavy particle degrees of freedom and to achieve dynamical consistency, 

one is thus forced to model the electronic degrees of freedom also by 

classical mechanics. 

This paper presents some additional formal developments in this 	 4 

approach and also the results of its application to a problem of considerable 

interest, the quenching of F*(2P1/2) by H 2 , 

+ H2  + F( 2P312 ) + H2  
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It was the desire to describe the prominent resonance effect 4  in this 

process that was the initial motivation for this entire line of work, 

and,it is gratifying to see in Section III that this completely classical 

model for electronic and nuclear degrees of freedom does indeed describe 

this effect correctly, in fact, giving reasonably good agreement with the 

quantum mechanical coupled-channel scattering calculations of Rebentrost 

and Lester. 5  Section II first shows an alternate methodology for deriving 

classical models for finite level quantum systems, i.e., for replacing a 

finite level quantum system by a classical degree of freedom. For the 

2-state and 3-state cases this new more solidly based derivation gives 

the same classical models that were obtained earlier 1 ' 2  on more heuristic 

grounds, and it shows a definite procedure for extending the approach to 

4-state, 5-state, etc., cases. Section III then describes the application 

of these procedures to reaction (1.1) and the results obtained. 



II. Derivation of Classical Model via Analogy with Spin. 

The goal here is to replace a finite quantum mechanical Hamiltonian 

matrix representation of a system, {Hntn}  by a classical Hamiltonian 

function H(nq), where the quantum number labels (n',n) are discrete 

integer values, i.e., n = 0,1,2, ..., and (n,q) are classical action-angle 

variables. 6  The action variable n has continuous values > - 1/2 and the 

angle variable q varies over the interval (0,2ir). For the application we 

have in mind the quantum states are electronic states and the. matrix 

elements depend parametrically on the nuclear coordinate x, {H,(x)}. 

The classical electronic Hamiltonian thus also depends parametrically on 

x, and once H(n,q;x) is obtained the classical. Hamilton function for 

the complete system, including electronic and nuclear degrees of freedom, 

is 

2 
H(p,x,n,q) = 	+ H(n,q;x) 	. 	 (2.1) 2m 	CL 

The key to this formulation is thus learning how. H(nq) is 
CL 

obtained from the matrix elements {H , } (the dependence on the nuclear 
n ,n 

coordinate x will be suppressed when it is not necessary). Although we 

have electronic states In mind, there is nothing in the results we obtain 

which restricts the treatment to this. Section ha and hlb treat the 

2-state and general F-state cases, respectively, while Section hIc shows 

a simple example. 

(a) 2-State Case 

It is well-known that a quantum mechanical 2-state system can without 

restriction be regarded as an angular momentum, or spin 1/2 system In an, 
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external field, the two state being spin up and spin down, i.e., m = + 1/2 

or - 1/2. Furthermore, the most general form of the Hamilton operator 

for a spin 1/2 system is 

H = A0  + 

=A 
0 	x 	y 	z 
+AS +AS +A S 	 (2.2) 

x 	y 	z  

where S , S , S are the usual angular momentum operators and A , A , A 
x y z 0 x y 

A z are real numbers; i.e., the operators 1, S, S, S are a complete set 

of linearly independent operators in the space of spin 1/2. 

It is then a straightforward matter to obtain the classical Hamiltonian 

corresponding to Eq. (2.2) by replacing the operators S, S, S by the 

corresponding classical functions of the canonical variables. A classical 

angular momentum consists of two degrees of freedom for which the action-

angle variables are (s,q 5 ) and (m,q): s is the magnitude of the angular 

momentum and m its projection onto a space-fixed axis (the z-axis),and 

and qm  are their conjugate angle variables. The projections of the angular 

momentum onto the three cartesian axes--i.e., Sx  Sy Se--are  given by7  

= 
x 	

coscj 	 (2.3a) 

S = vcm2  
y 	

sinq 	 (2.3b) 

S z = m 	. 	 (2.3c) 



IM 

Using Eqs. (2.3), the classical Hamiltonian corresponding to the Hamiltonian 

operator in Eq. (2.2) is thus 

2 	 1 

	

2 	
+ A 

y 
 2 2 

z 
H(m,q) = A0  + AIs -m cosq 	s 	- m sinq + A m 	. 	(2.4) 

Since HCL  is not a function of q, s is a constant of the motion and for 

the present case has the value s = - . Since q is the only interesting 

angle variable left, the index m will be dropped from it for the remainder 

of this section. 

Eq. (2.4) gives the general form of the classical Hamiltonian for the 

spin 1/2 system, but to make the construction complete one needs to express 

the parameters A , A , A , A in terms of the matrix elements {H , 

	

0 x y z 	 n,n 

Since the matrix representations of the operators S 
x y z , S , S are 

(1/2 

0 	l/2

(2.5a) S X  
	 0 

S 
/ 0 	+i/2\ 	

(2.5b) =1 
\-i/2 	0 

z 

	0=(-1/2 

0 	1/2) 	
(2.5c) 

one finds from Eq. (2.2) that 

H_112, _112  = A0  - 	A 	 (2.6a) 

H112112 	= A +A 
0 	2 z 	 (2.6b) 
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= (A+iA) 
	

(2.6c) 

= 	(A_iA) 
	

(2. 6d) 

These relations are easily inverted to give 

A0 = (Hl/2l/2 + H_l/2_l/2) 

A = l/21/2 - 

A2Re(H x 	-1/2,1/2' 

(2.7a) 

(2.7b) 

(2.7c) 

A y = 2 
	

(2.7d) 

and using Eqs. (2.7) in Eq. (2.4) then gives the classical Hamiltonian 

explicitly in terms of the matrix elements themselves: 

H(m,q) = (+m) H1/21/2  + (-m) 111/21/2 

+ 2_m2  Re(H_1/2 1/2 )cosq + 2_ m2 Im (H_1/2,1/2 ) s inq  

(2.8) 

The classical variable m varies over the interval (-1/2,1/2), but to 

make better connection with earlier work it is useful to have an action 

variable defined on the interval (0,1). The action variable n is thus 

defined by 

1 
n = m +-- 



am 

1 
m=n  --. 

and it is also useful to label the matrix elements H 112 _112 , H1112112 , 

H_12,1, 2  as H00  111 , H01 , respectively. Since - — m2  = n(l-n), the 

final expression for the classical Hamiltonian for the 2-state system is 

H(n,q) = (1-n)H00  + n H11  + 2 Re(H01 ) In(l-n) cosq 

+ 2 Im(H01) ,In(l-n)' sinq 	(2.9) 

which we note is identical to the formula obtained earlier by Miller and 

McCurdy, 1  by invoking the Heisenberg correspondence principle and heuristic 

arguments, and by Meyer and Miller 3  from their "classical analog" analysis. 

The Meyer-Miller analysis showed, in fact, that in a certain sense this 

classical Hamiltonian is exactly equivalent to the quantum 2-state system. 

As discussed in our earlier papers, 3  for actual calculations one 

should replace s by s + f  in Eq. (2.3) (- by 1 in Eq. (2.8)), i.e., make 

use of the Langer modification. With this modification Eq. (2.9) becomes 

H(n,q) = (1-n) H00  + n H11  + 2 Re(H01) I(n+-)(-n) cosq 

+ 2 Im(H01) J(n+-)(-n) sinq 	. (2.10) 

The action variable n can now vary over the interval 
(— 4, ~), and the 

integral values n = 0 and n = 1 thus occur at the centers of the "boxes" 
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(- -, -) and  (-i, 	required for the standard quasiclassical histogram 

procedure. 

(b) F-State Case 

An F-state quantum mechanical system can without restriction be 

considered to be a spin 	system in an external field. The four matrices 

1, S, S, S, however, do not form a complete set of F x F matrices for 

F > 2. To expand an F x F Hamiltonian matrix as a sum of angular momentum 

operators, one must introduce products of (F-i) operators, and these 

operator products must be symmetrized in order to be hermitian. We use 

brackets to denote the properly symmetrized products 

1 <A1 •A2 
 •.A1> = (F-i)! 	A (1) A (2) 	 (2.11) 

where the sum goes over all permutation a, and the A. are members of the 

set {i, S, S, S}. There are, however, - F (F+1)(F+2) such symmetrized 

operator products while a F x F hermitian matrix has only F2  independent 

real parameters. For F > 2 the set of symmetrized operator products is 

therefore overcompiete (linearly dependent), and the question arises which 

operators should one choose in which to expand the Hamiltonian. 

From the Heisenberg correspondence principle one can conclude that 

the form of the corresponding classical Hainiltonian function 

F-1 
H(nq) = f(n) + 	g, (n) cos(9q) + h ,(n) sinq) 	; 	(2.12) 

9=1 

the task is thus to determine the functions f(n), {g 9 }, and {h9 }. It is 
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/ 

also clear from the Heisenberg correspondence principle that' f(n) depends 

only on the diagonal elements of the Hainiltonian, while g 2,(n) and h(n) 

are determined by the real and imaginary part, respectively, of the 

matrix elements H 
k, k± 2, 

We therefore choose the independent set of matrices in which the 

Hamiltonian will be expanded to be those whose corresponding classical 

functions show a simple harmonic dependence on the angle variable q. 

These functions and their corresponding matrices are (cf. Eq. (2.3)) 

mj 
-'. Si  

z 

inJ  (-.m)" i S > cosq +-' <5 
z x 

i 221/2 	 J in (s -in ) 	sinq --- <S S > 
y 

j 2 

	

m(s-m 2 )cos2qmi 2 2 	2 	2 	i 2 (s-ln)(cosq_s inq) ~.~ <s (S - S 2 )> zx y  

j 2 2 	 i2 m (s -m )sin2q = m (s -m
2 
 )2sinq cosq -' <S 2 S S > z 	xy 

m (s i 2 
-m 

 2 
) 3/2 cos3q  = in (s i 2 

-m 
 2 

) 3/2 (cos q' -3sin2qcosq) <-- <S(S3-3 s 2s > z x 	yx 

i 2 	3/2 	 j 2 23/2 	2 	. 	 3 
m (s -m

2 
 ) 	sin3q = m (s -in ) 	(3cos q sinq - sin q) -' <S (3 S 2 S -S 3 )> 

z 	xy y 

(2.13) 

and so on. 
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The general classical function of this type has the form: 

Mi  

or 

or 

j 2 2/2 
m (s -m ) 	cos(9.q) 

j 2 22./2 
m (s -m ) 	sin(2q) 

Since P, = 0,1,2, ..., F-i and j = 0,1, ..., F-l-2, one obtains F q-independent 

terms, 
F(F-i) 

 cos-terms and (F-i) 
	 2 sin-terms, and thus F functions altogether. 

The F2  corresponding operators form a complete and linearly independent set 

of hermitian matrices. Table I shows these matrices for F = 2,3,4and the 

Appendix shows a simple way to construct them in general. 

As in the 2-state case one now expands the Hamiltonian in terms of the 

matr(ces. For the 3-state case, F=3, one obtains 

,H_1,1  H_1,0 	H 11  

= (i0, _l 	H00 	H01  

H 	H 	H 
1,-1 	1,0 	1,1 

= (l-S 2 )H00  + - 	11  (S 2+S )H + - (S 2-s )H z z -i,-1 

+ 	(S + <2S S >) Re(H01 ) + 	(S + <2S S >) Im(H 1 ) 2 x 	zx 	 2 y 	zy 

+ 	(S - <2S S >) Re(H 	+ 	(S - <2S S >) I(H 10 ) 2 x 	zx 	- 	2 y 	zy 

+ <s2 -2> Re(H 	) + <2S S > Im(R x 	y 	-1,1 xy 	-1 
(2.14) 
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or 

H -H 	 H +H 	
211 = H00 .i + 	2_i_i sz  + ( 	2_i_i  - H00)S 

+(Re(H +H 	)S + Im(H +H 	)S 

	

0,1 -1,0 x 	2 	0,1 -1,0 y 

+ 	Re(H 0,i -H-1,0 z x 	 0 1 )<S S > + ,/Im(H +H
-1,0 z y )<S S > ,  

+ Re(H -1,1 x y < s 2-s 2>  + Im(H-1,1 	x y )<2s S > 	 . 	 (2.15) 

The classical Hainiltonian function for the 3-state system is then obtained 

by simply replacing the matrices (operators) by their corresponding 

claséical functions: 

	

H(m,q) = H00  + 11
11-H_1_1 	}111-4-H_1_1 	

)m2 2 	-H00 

+ - 12 2 vs -m {Re(H0,1+H_1,0)cosq + Im(H0,1+H_1,0 )sinq} 

+ vF2 mV'ST 	{Re(H0,1-H_1,0)cosq + Im(H0,1-H_1,0)sinq} 

+ Re(H_1,1 )(s 2-m2)cos2q + Im(H11)(s2-m2)sin2q 	 (2.16) 	- 

(c) Example: Collinear Atom-Diatom Collision System 

It is illustrative to test the general formulae obtained in the 

previous section on a known example. Thus consider the collinear atom-

diatom (harmonic oscillator) collision system for which the Hamiltonlan 
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is 

	

H+ p + n1u 2r2  + V(R,r) 	. 	 (2.17) 

(For example, if the interaction V = exp[ -c(R-r)], this is the well-known •  

Secrest-Johnson 8  model.) For the test purposes of this section the vibrational 

degree of freedom will be considered to be the quantum-like degree of freedom, 

i.e., to play the role of the electronic degrees of freedom. For fixed 

translational coordinate R the vibrational Hamiltonian is thus 

2 
h=L+1 22 

	

2m - mw r + V(R,r) 	. 	 (2.18) 

If the classical variables (p,r) are replaced by the harmonic action-angle 

variables (hn,q), where ti is introduced to make n dimensionless (i.e., the 

"classical, quantum number"), then the classical vibrational Hamiltonian is 

given in terms of its action-angle variable by 

h(n,q) = hu(n+--) + V(R,Jl2 cosq) 	. 	 (2.19) mw 

The t!testtl is then as follows: choosing as basis the unperturbed 

harmonic oscillator states {In>}, the matrix of the vibrational Hamiltonian 

operator in Eq. (2.17), h,, is first constructed. Then considering this 

matrix {h, } as given, one uses the general results of Section IIB to 

determine the classical Hamiltonian function corresponding to it. If the 

methodology of Section lIb is correct, one should regain the classical 

Hamiltonian in Eq. (2.19). 

To keep the arithmetic simple the interaction potential V(R,r) is 

expanded in a Taylor's series in r through terms in r 2 . The correct 
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classical Hamiltonian, Eq.. (2.19), thus becomes 

h(n,q) = hw(n+--) + V0 (R) + V1 	
111W 	 2 2

(R)Jk23 	 (R) h(2r+i. 	2 COsq+ V 	MW 	
cosq 

V2 (R) 	 V  
%/ 2n+iy  

	

= V0 (R) + hw(n +--) [1 + 	--J + V (R) 	 cosq 

	

2ni 	1 	mw 

h (n +) 

	

+ V2(R) 	
2mw 	cos2q. 	, 	 (2.19') 

where 

V (R) =  
n 	n 	r=Oar 

The matrix representation of the vibrational Hamiltonjan operator is 

1 0 0 0... 1 0 0 0... 0 1 0 	0.... 

( {hntn} = ::: + :::'\ ''::: 
o o 7...J \01 90 / \

0 
V, 

1 0 V 0... 
/0 3 	0 v'...\ (2.20) 

2 	2 2mw (V 0 	5 0... 

If these infinite matrices are now truncated to F x F matrices and equated 
to the appropriate spin matrices as in Section lIb, one then obtains a 

family of approximate classical Hamiltonjan functions h(n,q), each of 

which has the form 
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h(nq) = V0  hw(n +4 	
V

) [1 + 22 ] 
2mu. 

+V1f(n) cosq  

+ ----- Vg(n) cos2q 

where 

[ 

F-2 m 
E W 

jk 

(2.21a) 

(2.21b) 

F-3 	F-2  

= 4 [(s +4)2_m2] 	m
.

E W 	 /k(k+1) 
j=O 	k=l jk 

(2.21c) 

and 

mfl - S 	. 

s and WM are defined in the appendix. Comparing Eq. (2.21) to the correct 
jk 

classical Hamiltonian, Eq. (2.19'), one sees that the diagonal, i.e. 

q-independent, parts are identical, as are the forms of the q-dependent 

	

terms. For the comparison to 	be exact, however, one would need 	and 

to be equal to the exact functions, 

	

exact 	=J2n+l 
	

(2.22a) 

	

g exact 	 2 
	 (2.22b) 
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and this is not the case. 	Figures 1 and 2 show fF(n) and g(n) compared 

to the correct functions [Eq. (2.22)]. One sees that fF(n)  and g(n) become 

better approximations to the correct functions as F increases and indeed 

appear to converge to the correct functions as F + . 

For this example the methodology of Section lIb is thus seen to 

reproduce the correct classical Hamiltonian, the only error seeming to 

originate from truncating the matrix representation of the quantum 

Hamiltonian. This example has no practical significance, of course, since 

one already has a classical model for vibrational degrees of freedom. The 

interesting applications of the approach are to those finite level quantum 

states for which one does not know the appropriate classical model a priori, 

e.g., to a finite number of electronic states. 



-17- 

* 
III. Application to F + H2 . 

a.. Derivation of the Hamiltonian 

The diabatic electronic potential matrix for the F-H 2  system has been 

calculated by Rebentrost and Lestei9  in the cartesian basis set Jx>,jy>,Jz>. 

It has the form: 

	

H 	0 / xx 

	

v=Io 	H 
yy 

	

'0 	H yz 

0 

H) 	. 	. 	 (3.1) 

H zz 

The four real functions H , H , H , H depend on R, the distance of the xx yy zz yz 

centers of masses of the fluorine atom and the hydrogen molecule, and on 

y, the angle between R and the internuclear distance vector r of the H2  

molecule. There is no r dependence for the present application, i.e., 

H2  is treated as a rigid rotor. 

It is useful to express the potential matrix Eq. (3.1) in terms of 

the angular momentum basis set {Jm>}, m-1,0,1, which is given in terms of 

the cartesian basis by1°  

10> = Jz> 

	

Ii> = - 	(Ix> + iy>) 

1 -1>= 	(tx> - iy>) 

Straight-forward matrix multiplication yields V in the angular momentum 

basis set 
H 

	

i 	i  YZ -A 

	

'H ñ 	H" 

	

V =( -i 	H 	-i YZ 	 (3.2) zz. 

	

'-A 	i_Y.- 
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where H and A are given by 

(H 	+11 ) 
2 xx 	yy (3.3a) 

-H ) 	. 	 (3.3b) 2xx 	yy 

Using Eq. (2.16) one then obtains the corresponding classical electronic 

Hamiltonian 

	

V(R,y,m,q fl ) = (l-m)H + m2fl - 2mLJL2_1n H 	sinqmL 	izz 

- (L2-m)A cos2q 	, 	 (3.4) 

where we have changed the symbols s,m,q to L,mL ,qmL  and also indicated 

the dependence on R and y  in order to avoid confusio.n. 	Eq. (3.4) is 

identical to a result obtained from a different approach by McCurdy, 

Meyer and Miller. 2 

The full classical Hamiltonian was also derived earlier 1 ' 2  and has 

the form 

= 

	

2 	2 
+ 	+ B 	N2  + Bj2 + V(R,Y,m,q+4) 	 (3.5) 

	

2p 	
2L1R2 	

rot. 

where 9 denotes the orbital angular momentum of relative F-H 2  motion, 

and N and inN  the rotational angular momentum of the diatom and it's 

± 
projection onto R, respectively. j is the total electronic angular 
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momentum, and S,L,mS,mL  are the electron spin and orbital angular momenta 

and their projection onto the R axis. J, finally, is the total angular 

momentum. Since J,L,S are conserved quantities they appear in the 

Hamiltonian only as parameters and not as variables. The quantities 

and 4 are given in terms of the canonical variables of the 

Hamiltonian by 

2  
2, = JJ -N -L --Sj 

= J2+N2+L2+S2_ 2m -2m_2m_2mNmL_ 2nlNmS 2mLmS 

- 2\6(mN+mL+mS)2 
422 

cosq 

- 22_ 	 cosqML  

- 267mN+mL+m 	IS 2-m '  cosq 

12 	/22' 
+ 2VN mN VL _mL cos (qq) 

+ 2 2_r4 \/S 2-m 	cos(q_q) 

+J-m 	cos(q-q) 	 (3.6) 

= 	+ 	= 	+ s2 + 2mLmS + 2IS2_m cos(q -q) (3.7) 

I 	.2 2 cosy VlmN/N  cosq 	, 	 (3.8) 

while the azimuth angle is determined by the relation 

sinysin(+q) = sinqssin(q -q )
mL mN 

+ -i- cosqcos(qq) 	 (39) 
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The Hamiltonian of Eq. (3.5) is in the uncoupled representation, 

i.e., it depends on the variables (m) and (m,q ). Using the 

17  
generating function given before, ' one can couple L and S, i.e., replace 

) and (m,q ) by the coupled variables (j,q.) and (m.,q), where 

2 	+ +2 
j = JL + S 

m.mL+mS 

The Hamiltonian in this coupled representation, 

is given still by Eq. (3.5), but with 2,2, mL, q now expressed in the
ML 

terms of the coupled variables: 

2,2 -  - 2 = 
	+ N2+j 2  - 2m - 2m - 2mNm. 

- 2J2_(mNl)2 IN2- 	cos 

- 2&2_(mN+mJ)2 'J 2-m2 	cosq 

+ 2IN2- 	J2_ 	cos (q-q)M.  

= {acosq. + m.(j 2  +L2  -s 2 )} 

-1 	 a j sinq. 
q 	

= 	
+ tan 	

a m.cosq. - 	 (j2+L2_S2 

where 

(3.10) 

(3.11) 

(3.12) 
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ci. = / 2/2(Ls)2 
I 	

(3.13) 

It was found that calculating the trajectories in the coupled representation 

takes only 1/6 of the time of doing so in the uncoupled representation. 

Also, it is the coupled variables (j,m.) which are asymptotically the "good 

quantum numbers" between which one is determining transitions. It was, 

however, a useful check to compute some trajectories in both representation 

and verify that the same results were indeed obtained. 

We also note a useful trick to simplify the calculation in the 

coupled representation; it avoids the necessity of calculating siny, , 

and q individually as functions of the canonical variables. The four 
ML 

matrix elements H, H, Hyz  and A depend on R and y in such a way that 

H 
zz 

H 

fi 	=s_ 	 (3.14a) 
yz siny 

__ 

	

2 	 (3.14b) 
siny 

depend only on .R and cosy. Using Eq. (3.4) we therefore write the 

electronic Hamiltonian as 

V(R,y,mq+) =V(R,cosy,mL,a) = (1-m)H(R,cosy) + m(R,cosy) 

-aV 	Hy (Rcos) - (L2-m)(1-cos 2y-2a2 )A(R,cosy) 	(3.15) 

where a is given by: 
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a siny•sin(+q ) 

= sinq sin(q-q . ) + 	cosq.cos(q_q) . (3.16) 

Eqs. (3.15) and (3.16) then replace Eqs. (3.4), (3.9) and (3.12). 

b. Computational Aspects 

The calculations were carried out within the framework of the 

standard quasiclassical trajectory model. The Langer modification 

was also consistently made throughout, i.e., wherever J,N,L,S or j 

appears in Eqs. (3.5)-(3.16) one makes the replacements 

N N + 

L+L+ 

s s+ 

1 

The cross section for the (j 1 ,N1 ) -s- (j 2 ,N2 ) transition, summed over 

mN m. and averaged over mN , m. , is given by 
2 3.  2 	 1 

CO 
Tr 

	

j 2 ,N2  ~ j1,N1 = k2. 	
(2J+1) 	

2 ,N2  ~ j1,N1 
(j) (3.17) 

1'
N 

 1 	2'2' 

where the wavenumber .k. N is related to the initial kinetic energy 

	

J l , l 	 - 

E. 
J N 	

in the usual way, 
l,l 
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22  h k. 
:1 ,N 

E. 	= 
2p 

The classical histogram approximation to the average transition probability 

is 

	

~ j 
,N (J) = (ZN+lY'(2j1+l) 	 - 

1 1 	 m. 

(2) fdq. fd m  f d N  fd 

x 	
1

,m. 	) - j2]

i l  l  

x [- {N2(Niq ,mN  J
,qm ,315-q.  ,in 	) - N2 }] 	 (3.18) 

where X(x) is the "histogram function" 

X(X) = 1 if lxi < 4 
= 0 if 	lxi 2: 

The functions j 2 (N1 ,...) and N2 (N1 ,...) in Eq. (3.18) are the final values 

of the variables j and N, respectively, that result from the classical 

trajectory with the indicated initial conditions. The factor 1/2 in the 

second histogram function results from the fact that, since H2  is 

homonuclear, one has AN = 2 rather than AN = 1 transitions. 
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The integrals in Eq. (3.18) are then evaluated together with the 

sum in Eq. (3.17) (which is approximated by an integral) by the usual 

Monte Carlo method. 

c. Results 

The relevant energy levels for the infinitely separated F atom and 

H2  molecule are indicated in Figure 3, where we have chosen the zero of 

energy to be the (--,0) state, as is done for the rest of the paper. Since 

the transition (--,0) -'- c-•,2) is almost resonant we expect a large cross 

section for this transitiOn, while all other tranSitions involved should 

have much smaller cross sections (at least at collision energies below 

100 meV). The quantum mechanical close-coupling calculations of Rebentrost 

and Lester5  show this expected behaviOr. 

Calculating the classical cross sections via the histogram procedure 

described above [i.e., via Eqs. (3.17) and (3.18)1, however, gives quite 

poor agreement with the (correct) quantum mechanical results of reference 

5. The (-,0) -' (-,2) transition, which is an energetically closed channel 

for energies below 43.9 meV, is especially poor since a large cross section 

is obtained for all energies between 10 and 80 meV. 

The difficulty is easily understood, though, when one looks at the 

contour plots of the distribution of the final values of N and j. Figures 

4 and 5 show these plots for E = 10 meV and E = 50 meV. There are no 

trajectories that end with final (j,N) values outside the outermost closed 

loop. The dashed line indicates the resonance line, i.e., the line for 

which the loss of electronic energy exactly cancels the gain in rotational 

energy. One sees quite clearly that the resonance effect plays an important 
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role: most of the final (j,N) values lie near the resonance line. But 

in doing so, some trajectories fall in the (,2) "box" even though almost 

all the rotational energy gained comes from de-exiting the electronic 

degrees of freedom rather than from translation. This makes the (--,O) + 

cross section much too large. The failure is therefore an artifact 

of the classical histogram approximation and not a failure of the classical 

approximation to the Hamiltonian. Exactly the same failure is to be expected 

for a nearly resonant rigid-rotor rigid-rotor classical trajectory 

calculation. 

The failure can be (partly) overcome by recognizing that the contour 

plots are almost "separable" in the new quantum numbers X and Y, 

x = (j - ) + N12 	 (3.19a) 

Y = (j - 	- N/2 	 (3.19b) 

Applying the usual histogram procedure to X and Y ie., replacing the 

X-functions of Eq. (3.18) by 

x[X2(N1,q , .,.., 
	

)-x2 ] 
x  x[.y2(N1, 

..., 	 )-Y2•. 1 
1 	l 	 Jl 

is equivalent to using the "new boxes" in (j,N)-space which are shown in 

Figure 6. 

An other important observation was that microreversibility is poorly 

obeyed, i.e., the classical cross sections 
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a. 	 (E) *- 

and 

E. N  (2j2+1)(2N2+1) A 	 2'2 
aN 	 (E) 	

E 	N (2j1+1)(2N1+1) 
Cr 

j 1 ,N1 	j2,N2 CE) 

i 

(3.20) 

where'. EIN. denotes the energy with respect to the (j,N)-state and E is 

the total energy, could differ by an order of magnitude. We therefore 

defined the average cross section 9 (which does obey microreversibili.ty) 

by 

Cr va 	 (3.21) 

Symmetrizing the cross sections via a geometric average is much to be 

preferred to the arithmetic average, 

= (Cr + 8) 	, 	 . ( 3.22) 

which also obeys microreversibility. This is because Eq. (3.21) gives a 

much better description of a threshold behavior than Eq. (3.22) does. 

Consider, for example, the troublesome non-resonant transition (-,0) - 

(-,2). Below the threshbld of 43.9 meV there will be no trajectory starting 

from the (-,2) state and hence & 0. Thus the geometric average cross 

section gives = 0, the correct result, but the arithmetic average cross 

section yields a 	a 0 0. 

Using the "new boxes" and the geometric average cross section, Eq. (3.21), 

results in a quite good agreement with the quantum mechanical results, 
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as seen in Figure .7. Shown are the quenching cross sections, 

F(2P112)* + H2 (Nf 0) 4- F( 2P312 ) + H2 (N) 	31 

for N = 0,2, and one sees how prominent the resonance effect is at these 

low collision energies (i.e., H2  emerges primarily in the N=2 state). The 

cross sections for quenching by rotationally excited H2---i.e,, the transitions 

(--,2),(,0)--have quantum cross sections 5  <A 2 in this energy 

region, and the quasiclassical results also yield this. The quasiclassical 

model is, of course, not capable of describing these very weak transitions 

quantitatively, but it is consistent in giving small values for these cross 

sections as, for example, for the non-resonant transition in Figure 7. 

The important conclusion of these calculations is that the classical 

model for the electronic degrees of freedom provides a correct description 

of their dynamics and their Interaction with the heavy particle degrees of 

freedom. Thus even at this completely classical level the resonance effect 

which dominates this quenching process at low collision energies is correctly 

described. Furthermore, the somewhat modified quasiclassical histogram model 

is capable of a reasonably quantitative description of all transitions. 

There is always the possibility, too, that alternate ways of extracting 

quantum results from classical trajectories--e.g., the classical moment 

method,
11 
 or most rigorously, classical S-matrix theory 7--may be of use. 
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IV. CONCLUDING REMARKS. 

In Section II we have presented a new method, based on the equivalence 

of a finite level quantum system to a quantum spin system in an extermal 

field, for deriving a classical Hainiltonian which corresponds to a given 

matrix representation of a finite level quantum system. For the 2- and 3-state 

cases it gives essentially thesame classical Hamiltonian obtained earlier 13  

but is somewhat better founded and also shows how to proceed in the general 

F-level case. (For the 2-level system we have now obtained the same 

classical Hamiltonian from four completely different approaches!) 

One should note that this formal procedure always models the F-level 

system with one classical degree of freedom. In some cases this may be 

unphysical. Consider, for example, the Rydberg states of an atom or 

molecule, for which the states are labeled with quantum numbers n,i and m g, . 

Although it may be possible to construct a classical Hamiltonian with one 

degree of freedom which will reproduce all these energy levels, one does 

not expect this to be useful. The reason, of course, is that the states 

correspond physically to a classical system with three degrees of freedom, 

i.e., one particle (the electron) in 3-dimensional space. 

The classical pseudo-potential analysis of reference 2 is more physically 

based than the method devisci in Section II and, for example, would clearly 

lead to the correct model for the Rydberg case mentioned above. The pseudo-

potential approach in general has the advantage that if one has identified 

underlying physical origin of the states correctly, then it will provide 

the correct form of the classical Hamiltonian. It has the disadvantage, 

though, that it cannot always uniquely give the dependence of the parameters 

in the classical Hamiltonian on the quantum matrix elements. 
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In general, therefore, there is still somewhat of an art involved in 

constructing a classical model for an arbitrary set of electronic states. 

The method of Section II of this paper give a definite, unambiquous result, 

but it could be unphysical, while the pseudopotential analysis 2  is physically 

based but does not always completely define the classical Hamiltonian. When 

attacking a new electronically non-adiabatic process it is likely that one 

may need to use some aspects of both these approaches in order to arrive at 

the "best" classical model for the electronic degrees of freedom. For 

example, the pseudopotential analysis may be used to determine the form 

of classical Hamiltonian, and some aspects of the methodology in Section II. 

of. this paper may be helpful in uniquely determining the various functions 

which appear in the classical Hamiltonian determined by the psudopotential 

approach. 

For the process that we have treated so far, however, e.g., F* + H+,Xe ± 

F + H+,Xe in reference 2, and F* + H2  + F + H2  in this paper, the origin of 

the electronic states is sufficiently simple that there is no ambiguity 

about the, correct classical model. Indeed, all roads lead to the same result 

in these cases. 

The results reported in Section III for the quenching of F*  by H2  are 

quite good, perhaps surprisingly so in light of the fact that the quantum 

numbers involved are sO small.. It is particularly gratifying to see that 

the resonance effect is described correctly since it was the'failure of the 

"surface hopping" model of Tully and Preston 12  to describe it4  which was 

largely responsible for the line of thinking that has lead to the development 

of these totally classical models for electronically non-adiabatic collision 

processes. 
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APPENDIX 

The evaluation of the symmetrized matrix products in Eq.. (2.11) by 

straightforward matrix multiplication becomes extremely cumbersome for 

F 4. This appendix shows a simple way to do this for the general case. 

First we explain the notation to be used. The spin matrix, elements 

are labeled by m = -s, -s+l, ..., s-1, s, but it is often more convenient 

to relabel them by k = 1,2, ..., F, where the relations between m and k 

and S and F are given by 

F = 2s + 1 
	

(A. 1) 

m = k - 1 - S 	 (A.2a) 

or 

(A.2b) 

Sometimes m will be used with a subscript, 
'11k' 

 to denote the dependence on 

k, and the following relation is then useful, 

mk+Vmk+v 	. 	 (A.3) 

The properly symmetrized matrix products are denoted by LI M 
 I C 19  and 

10 where the correspondence to the classical functions is 
p 

	

m ±-+ 	 (A.4a) 

j 2 2 2,/2 
m (s -m ) 	cosq +-+ 	 (A.4b) 

j 2 2 i /2 
m (s -m ) 	sinq -- 	 (A.4c) 
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Upon examining Table I, it is suggestive to write M,C and S as 

(j) - 
k',k 	k,,kmk 	

(A.5a) 

k',k 	k'-.,k Vk 	+ 6k',k-. 	
(A.5b) 

-i 	v1 -' 	+ 	k',k- v' 9 	 (A.5c) 

Eq. (A.5a) is trivial and Eq. (A.5bc) obviously hold for Z=l. It will 

become clear shortly that they hold for all I. F-i, Eq. (A.5) enables 

us to work with vectors V09  rather than with matrices. From the elementary 

treatment of angular momentum operators one knows, 

= 
k' ,k 	(Sx)k, ,k = k'-1,k 

+ k',k—1 -\/(s_mk,)(s+mk,+l) (A.6) 

and a similar equation holds for (Ol) = S. Thus, 

v 0 ' 	= )(s+l) 

= 	fk(F-k) ' 	 k = 1,2, ... F-i 	(A.7) 

To simplify notation we will consistently drop the upper index if it is 

° (0,1), i.e., c = C1 	(O l) v = 
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It is now useful to introduce the matrix E, 

(A. 8) 

E corresponds to the classical function e. E and E it's hermitian 

conjugate, are the usual lowering and raising operators. E is given 

in terms of Vby 

EkYk = 2 6 k'-1,k Vk 

C and S are given in terms Of E and E by 

C=(E+E) 

= 	( - E) 

We now evaluate 

(E + 	= - ((C + iS) + (C - iS)) 

= 	 c ) <?> (
jV + (_i)V)} 

= 	 ) (l) 
VO,2,4 

(A.9) 

(A.lOa) 

(A. lOb) 

(A.11) 

where the brackets <> denote again symmetrization via Eq. (2.11). Comparison 

with Eq. (2.13) shows that Eq. (A.11) is exactly the matrix which corresponds 

to (s2_m2)2 coslq, i.e., 	Since a similar argument applies to 	one 

obtains the following equations 
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91  = 	+ 

= -k- (E - E) = 	 = 	= 

(A.12a) 

(A. 12b) 

E' is now easy to evaluate: 

F 
E , k =  

n =1 

_l 1  

2V 	S 	2V 	.... 	 2V - ,n 	n1  n1-1,n2 	
'2 	n 1-1,k k 

= 2 dk,k 	Vk+- 
	 (A.l3) 

Using Eqs. (A.12) and (A.13) one is able to show that Eqs. (A.5) indeed 

bold for all £. They also hold for all j since multiplication of a matrix 

with a diagonal one does not change the location of zeros in that matrix. 

From Eqs. (A.5), (A.12), and (A.13) it also follows that 

=: Vk+v 	 (A.14) 

and similar to Eq. (A.9) one has 

= 2 6 k'-,k Vk 	 . 	 (A.15) 

We have thus derived all matrices which correspond to cosZq and sin2q. 

The remaining task is to find the matrices which corresponds to those 
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functions multiplied by m. Consider therefore the following syinmetrized 

matrix product: 

<>k',k = 	 (M° 	
6J,j0+j1...+j 

l= o 

. J 	j 	j 	j 
in ° (m+l) 1(m+2) 2 

j=O 

x (m+) j P, 6J,j0+j1+. . .+j 	. 	 (A.16) 

Since the matrix elements of this symmetrized product are by definition 

2 Sk,k 	we obtain 

	

(0,2) 	j!.Z! 

	

= Vk 	(+)! B(mK,j,) 	 (A.17) 

where B(m,J,2) is given by 

	

J 	j 	j 	j 

	

B(m,J,I) = 	M. 	1(f•J.) 2 
	

• + 	. 	
(A.l8) 

0 

	

=0 	 b O l 

; 

The problem is now completely solved, but it is useful to find a simpler 

expression for B. For £=l B is given by 

- 	 2 (j+ 
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J 	
J+l 

B(m,J,=1) = 	m. 
(1)J_J = 

j=O m+l 

	

- m 	
(A.19) 

This can be generalized to all 2.., yielding 

	

B(m,j,) = j - F, (_1)V+ 
 () 	 (A.20) 

where 
9.. is the binominal coefficient. Eq. (A.20) can be proved by 

induction over 2.. using the recursion formula 

'I 
B(m,J,2..+l) 	F, (m+2..+l) B(m,J-j,2.) 	 (A.21) 

1=0 

which follows directly from Eq. (A.18). By appling the binominal theorem 

to (m-I-v) 	Eq. (A.20) can be transformed to. 

B(m,j,) = - 
	

() MJ-P El) 	() 1i+ 	 (A.22) 

For large 2.. Eq. (A.22) is easier to use than Eq. (A.20). Since the second 

sum in Eq. (A.22) depends neither on in nor j, it should be--for fixed 2. 

and ii=O,l, ..., F-9.--evaluated once, stored and used to evaluate B(m,j,2..) 

for all m and j. In fact, the second sum in Eq. (A.22) can be done analytically, 

but this becomes increasingly cumbersome for large 11; for the lowest J. values 

itis 
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0, -L :~ p :~ -1 

U0 

(1)V4 	
() V

p+ 	
(A.23) 

21 
(39A-l), p=2 

2  
(2,+3)! 

£
(L+l), i-'=3 

48 

Using Eqs. (A.17), (A.22), and (A.23), one can now evaluate V' 	for 

j =  1,2,3. 

= (ni. + £12) 

v2,L)2 	L(39A-i))v0' 
= (mk + LmK + 	12  

= {(in.k 
+ L)2 + 4} v10,L) 

(32..+l)  

= (m + -- Lm + 
	

4 	ink + 

£3 L 
= + - ) + - 	+ 

(A. 24a) 

(A. 24b) 

(A.24c) 

To summarize, in this Appendix we have derived simple expressions for the 

matrices 	 To obtain the classical Hamiltonian function 

H(m,q) it is necessary to expand the given Hamiltonian matrix H in a sum of 
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these matrices, i.e., 

F-i 	. 	F-i F--1 
H = 	d. 	+ E 	E a. c' 9 + b. 	 (A.25) 

j=O 	 ,=i 	j=O 39 

	

where d., a. , b. 	are the F2  real coefficients to be determined. Recognizing 
3 	3,

, 	
3, 

that matrices of different type and matrices for different 2. do not mix and 

using Eqs. (A.5), one finds the following sets of linear equations for 

d
j  
., a. 	and b. 

	

d. 	
= 11kk 	

k = 1,2, ..., F 	 (A.26a) 

F-L-1 =  1,2, ..., F-i 
a 	 = Re(Hkk+) 	 (A.26b) 

j=O 	 k = 1,2, ..., F-9 

F-9-i. 	. = 1,2, ..., F-i 
b 	V'9 = Im(Hk k+2) 	

(A.26c) 
j=O 	3' 	 ' 	 k = 1,2, ..., F-2, 

After solving these linear equations, the classical Hamiltonian is then 

given by 

	

F-i 	. 	F-i F-9.-1 
H(m,q) = E d.m3  + 	 in3  (s2-m2 ) "2 (a. 	cos2q + b. ,  sinq) 

	

j=o 	9=1 j=O 
(A. 27) 
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It is even possible to express H(m,q) explicitly in terms of the matrix 

elements k,k '
by the following procedure. One first defines 

= m 	 (A.28) 

and this enables one to include the q independent terms in the sum over 

	

the cos 2q terms. For fixed i on then considers 	as a (F-i) x  (F-i) 

	

matrix. The inverse of this matrix is given by Ld 	i.e., W 	 is defined 
3, 

by 

F-i 	 = 	
(A.29a) 

k=1 	j',k 	k 	j t ,j 

or 

F-i-i 
010 	= 
k 	j,k' 	k,kt 	 (A.29b) 

j =0 

With the aid of the matrices W the coefficients d,1, a
j,9 

 and b
j,i 

 are 

easy to evaluate: 

d 
F 

E w° Hkk (A.30a) 
k=1 3  

a 	= 
F-i 

j,k Re(Hkk+i) (A.30b) 
k=1 

b 
F-i 

E W9, Im(Hkk~i) 	. (A.30c) 
k=l 
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Substituting Eqs. (A.30) into Eq. (A.27) finally yields 

F-i F--1. 	 F- 
j 2 2 212 

	

H(m,q) = 	 m (s -m ) 	cos9q 	 Re(Hkk+2,) 
2..=O 	j=O 	 k=l 

F-i 	F-2.-i. 	 F-P.. 

	

+ 	 mJ(s2_m2) 212 sin2.q 	w'? Im(Hkk+p.) 	(A.31) 

For all practical applications one then makes a Langer type modification, 

i.e., replaces s by (s+4) 2  in Eqs. (A.27) and (A.31). Table II lists 

the matrices WM for the cases F = 2,3,4. 
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Table I. Correspondence between Classical Functions and Symmetrized Angular 

Momentum Operator Products (and their Matrix Representations). 

Matrix Representations 

Classical Function 	Operator Product s = 1/2 s = 1 	 s = 3/2 

/i 
o 0 

1 1 

0) 

1 

(0 

0 	0 	0 
) 

1 0 
1 1 

0 0 	1 	0 0 0 iJ 

0 0 
1 E 0 

) 

1 0 	0 	10-1 0 0' 
in S z 0 1 

(0 
0 	0 

)(3 

0 . 
O Q 	1 	0 0 0 3/ 

"1 
0 0 0' 

2 2 0 	10 1 0 
E. 

-- 

(9 
00 	O 01 ol 

o O 0 	1 	0 0 0 91 

00 0 
3 

m 
3 

S -- 

(27 

10 -- 1 0 
2 8 	0 0 1 oJ 

O 0 0 27/ 

,221/2 1 0 1 'To 1 	0 	1/ 0 2 
( 	-in  ) 	cosq s x 

( ) 2(10 
1 	0 
)(ovoo\  

2 0 0 
0 	0 0 0/ 

- 

0 -( -1 0 o\ 
2 	2 1/2 m(s -m ) 	cosq <S S > -- -1 	o) v 	-1 0 0 0 

zx 
%/T(o 
4-1 0 	1 	20 0 0 iJ 

0 1 	0 	0 0 1 0/ 

0 13v'O 0\ 
2 	2 	21/2 

m (s -in ) 	cosq 
2 

<S 	> z Sx  -- 
113v10 

-- 
2 0' 

24 	0 2 O13IJ 
0 0 v' 0/ 
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Table I. continued 

Classical Function Operator Product 	s = 1/2 s = 1 s = 3/2 

/ 	\ / \ /o/1oo 
221/2 

(s -m ) 	sinq 
1(0 	11 

S 
'T(o 1 O iI-Vro 	2 0 

21 	0 
) 

2j-i 0 13 2(0 	-2 	0 / 
\o -1 0/ \o 	0 -vT 0 

m(s2-m2 ) 2sinq <'ssy> 	 -- 2 0 -1 0) 341 0 0 0) 0 

/0 	13v'0 o\ 
2 	2 	2 1/2 
(s -m ) 	sinq 

2 
<S 	S> 	 -- 1 1-l3vT 0 	2 0 

-- 24.( 0 	-2 	0 13/13 
\o 	0 -13/3 00! 

I /0 	0 	i o\ 
22 

(s -m )cos2q 2 	2 <S 	_S 	> 	
-- 

foo i\ 40 	0 	0 i 
o 0 0 3 i 	0 	0 0 

0 0/ \0 	1 	0 .0 

/0 	0-1 o\ 
22 

m(s -m )cos2q 2 	2 
<S(.S 	-S 	> 	 -- -- /1lo 	0 	0 i 

-. 	0 	0 03 
\o 	1 	0 0/ 

0 	1 
22)sin2q (s -rn <2SS> 	 -- j (g 

0 ivTQi 
) 

0) 

22)sjn2q m(s -m <28 s S > 	 -- -- 

/0 	0-1 
/ 	( 0 	0 	0 

0 
1 

x y z 2 	(1 	0 	0 0 
\o 	-10 0 

223/2 
(s -m ) 	cos3q 3 <S 	- 	s 2> 	 -- 

/0 	0 	0 
(0 	0 	0 

1 
0 x 	xy 

-- 0 	0 0 
\i 	0 	0 0 

 (s2_m2)3/2sin3q -- 0 	0 31 (L 1) 0 
-- 
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Table II. The Matrices W 	 Appearing in Eq. (A.31). 

F=2 F=3 

/-3 

F=4 

108 108 -3 
/1i\ i1 2 	0 i' 2 -216 216 -2 

2=0 0 	1 J -( 12 - 48 - 48 12 
t-2 	2/ \l -2 	1/ 4,8 

\- 8 96 96 8 

i'\ (: l3'J -1 
2=1 	2 2 2/ 36 

\ 12 -12/ 12 

A 2=2 1 6 -2 2 

2=3 
1 
3 
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Figure Captions 

The functions f F W (solid lines) of Eq. (2.21), for F = 2,3,4, 

compared to the exact function (dashed line) of Eq. (2.22). 

The functions g(n) (solid lines) of Eq. (2.21),. for F = 3,4 

0), compared to the exact function (dashed line) of 

Eq. (2.22). 

Lowest energy levels for infinitely separated collidants .F( 2P.) 

and 112 (N), where j is the total electronic angular momentum quantum 

number of F and N the rotational quantum number of 

Contour plot of the distinction of final (j,N)-values resulting 

from the classical trajectory calculation with (j 1 ,N1 ) = (-,O) 

and energy E = 10 meV. . The dashed line is the "resonance line" 

+ 6 (N) = 0, and the dotted lines correspond to 10 meV 
2 

increments off resonance. The points are the locations of the 

discrete quantum values of.j and N. No classical trajectories 

give (j ,N)-values outside the largest contour (solid line). 

Same as Figure 4 except for energy E = 50 meV. 

Solid lines show the quantum number "boxes" for the conventional 

histogram method, and the dashed lines show the "modified boxes" 

described in the text. 

Cross sections for quenching of F*(2P112) by non-rotating 

(i.e., N1  = 0) H2 , as a function of initial translational energy 

E. The solid curves are the quantum mechanical results of 

reference 5, and the points are the results of the quasiclassical 

trajectory calculation (with Monte Carlo error estimates indicated). 

Note the break in the scale. 
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