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ABSTRACT OF THE DISSERTATION

Contextual Bandits in Imperfect Environments: Analysis and Applications

by

Luting Yang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2021

Dr. Shaolei Ren, Chairperson

The data explosion and development of artificial intelligence (AI) has fueled the

demand for recommendation systems, information retrieval, personalization, among others.

Consequently, the need of a solution to optimize these systems “on-the-fly” has also grown

rapidly. Contextual bandit is a machine learning framework designed to tackle complex

situations in an online manner, where the agent can select actions (i.e., arms) based on

available context information. Based the feedback, the agent can learn the relations between

context information and rewards for each arm, which further improves arm selection in the

future. In practice, however, the learning environment may be far from being perfect. For

example, the available context information may not be accurate, the reward feedback may

be delayed or even missing, and data may not be centrally available due to user privacy

concerns.

In this dissertation, we consider the practical scenario of contextual bandits in

an imperfect environment. First, we focus on imperfect context and study learning with

probabilistic contexts, where a bundle of contexts are revealed to the agent along with their

vii



corresponding probabilities instead of true context. Second, we study reward imperfect-

ness by considering delayed or missing reward feedback. Third, we turn to an adversarial

environment and study a novel combinatorial setting with arm removal and submodular

utility where some selected arms can be removed adversarially. Finally, we consider a

privacy-preserving federated bandit where a group of agents cooperate to solve the bandit

problem, while ensuring that their communication remains private. For each of the settings,

we propose new learning algorithms, analyze the cumulative regret, and conduct empirical

evaluations based on real-world applications.

viii



Contents

List of Figures xii

List of Tables xiii

1 Introduction 1
1.0.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.0.2 Research Objectives and Contributions . . . . . . . . . . . . . . . . 2
1.0.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Contextual Bandit with Probabilistic Contexts 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Feedback Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Multi-Feedback Probabilistic Contextual UCB . . . . . . . . . . . . 17

2.5 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Cumulative Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Proof Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Regret of Arm Selection by Most Probable Context . . . . . . . . . 22

2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Application to DNN Model Selection . . . . . . . . . . . . . . . . . . 23
2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Contextual Bandit with Delayed Feedback 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Delayed Contextual UCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Reward Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Delayed Contextual UCB for Arm Selection . . . . . . . . . . . . . . 35

3.5 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



3.5.1 Finite Maximum Delay . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Missing Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 UCB With Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . 41
3.6.1 Minimizing Estimation Error by Similar Context . . . . . . . . . . . 41
3.6.2 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.1 Yahoo! Today Module . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7.3 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Contextual Combinatorial Bandits with Arm Removal and Submodular
Utility 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Robust Contextual Combinatorial Bandit with Arm Removal . . . . . . . . 59

4.4.1 Problem Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.1 Regret Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Application to Sniffer Channel Assignment . . . . . . . . . . . . . . . . . . 72
4.6.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.2 Applicability of R2C2-MAB . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7.2 Stochastic Sniffer Removal . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.3 Adversarial Sniffer Removal . . . . . . . . . . . . . . . . . . . . . . . 80

5 Federated Contextual Bandit with Differential Privacy 82
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Federated Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 Non-parametric Contextual Bandits . . . . . . . . . . . . . . . . . . 89
5.5.2 Federated Bandits with Differential Privacy . . . . . . . . . . . . . . 91

5.6 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7.1 Contextual COVID-19 Admission Decision . . . . . . . . . . . . . . 103
5.7.2 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.7.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



6 Conclusions 108

Bibliography 111

A Supplemental Proof 120
A.0.1 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.0.2 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.0.3 Proof of Lemma 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.0.4 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.0.5 Proof of Theorem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.0.6 Proof of Lemma 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.0.7 Proof of Proposition 20 . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



List of Figures

2.1 Performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Cumulative regrets for different algorithms. . . . . . . . . . . . . . . . . . . 47

4.1 Cumulative reward comparison among different algorithms. . . . . . . . . . 77

5.1 Average reward for different privacy budget . . . . . . . . . . . . . . . . . . 107

xii



List of Tables

2.1 Average Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Average Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Reward Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



Chapter 1

Introduction

1.0.1 Background and Motivation

From whom to meet with, to what to have for breakfast in the morning, to the deci-

sion to study in college or find a job, human nature is all about choices. From conversational

agents to online recommendation to search and advertising, we are already interacting with

increasingly sophisticated sequential decision making systems in daily life. Traditionally,

sequential decision making has focused on balancing the exploration-exploitation trade-off,

or casting the interaction paradigm under reinforcement / bandit learning dichotomy.

This dissertation focuses on the online learning and sequential decision-making

problem under unknown environments. The objective in this class of problems is to learn,

”on-the-fly”, the most profitable actions (arms) among a number of selections. The problem

is formulated and studied under the classic framework of multiarmed bandits (MAB) in

this dissertation. MAB is a crucial online learning problem to discover optimal decisions

(a.k.a. arms) based on received feedback signals over time [60]. Meanwhile, several efficient
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algorithms, such as Lin-UCB [65], contextual Thompson sampling (CTS) [5], EXP3 [9] and

their variants, have been developed for different problem settings. Importantly, contextual

bandit learning extends the standard MAB setting by allowing the learner/agent to access

some side information (i.e., context) about the environment prior to arm selection [68]. For

contextual bandit, the context and selected arm jointly determine the distribution of reward

received by the agent, and the goal of the agent is to maximize its cumulative reward by

gradually identifying the optimal mapping of context information into actions based on the

history of context-action-feedback. Applications of contextual bandit have been increasingly

expanding, including advertisement [45], personalization [65], adaptive rate and modulation

based on channel condition in wireless networks [89] and service placement based on traffic

demand in edge computing systems [31]. LinUCB [65] and Thompson sampling [4, 5] are

two landmark algorithms for contextual bandits, which have subsequently been extended

by many studies for various settings and applications [44, 93, 102, 33, 36, 19, 46, 8].

In this work, we point out several emerging challenges in applications under com-

plex imperfect environment that call for new models and new learning strategies, and de-

velop corresponding solutions with performance guarantees both theoretically and practi-

cally.

1.0.2 Research Objectives and Contributions

Despite the abundant theories and algorithms developed in the previous bandit

literature, it is still challenging to utilize bandit solution in the real world due to imperfect

environment. In this dissertation work, we consider four practical scenario of contextual

bandits in an imperfect environment and develop algorithms which has the potential to be

2



implemented in the real world, with performance guarantee, and numerical evaluation.

Probabilistic Contexts

A standard assumption in the literature is that exact contexts are perfectly known

prior to arm selection. In the first part, we deviate from this assumption and focus on

bandit learning with probabilistic contexts, where a bundle of contexts, instead of only the

true one, are revealed to the agent along with their corresponding probabilities at each

round (e.g. the agent needs to act upon the probabilistic output of a deep neural network

classifier).

In order to design an efficient learning algorithm for probabilistic setting, the agent

leverages the available probabilistic context information to learn multiple feedback functions

that jointly determine its utility. To balance the exploration and exploitation, we consider

the joint upper confidence bound for multiple functions when choose arm. Moreover, we

consider a general setting where each individual feedback function can be nonlinear with

respect to the selected arm and contexts, and apply the kernel method to transfer feedback

function in the Reproducing kernel Hilbert Space (RKHS).

We propose a kernelized probabilistic contextual bandit learning algorithm, based

on the principle of the maximum likelihood estimator, to learn the optimal arm in repro-

ducing kernel Hilbert space for each context bundle. Moreover, we theoretically establish

an upper bound on the cumulative regret, which shows that the regret growth of our algo-

rithm is sublinear with time. Our result from contextual DNN model selection experiment

validates the sub-linearity of regret bound and superiority of our algorithm compared to

state of the art when probabilistic contexts are provided.
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Delayed or Missing Reward

Contextual bandits model a wide range of applications such as online recommen-

dation systems, where the agent can select actions (i.e., arms) based on available context

information. In practice, however, the reward feedback provided to the agent for learning

is often delayed or even missing. For example, in the customer rating system. it is com-

mon that customer only provides rating feedback several hours/days later or even leaves no

feedback.

In this part, we consider this practical setting and propose an algorithm based

on delayed contextual upper confidence bound (UCB) to balance exploitation and explo-

ration. Our algorithm updates its reward function learning whenever new reward feedback

is received, and selects arms based on UCB. Importantly, we derive an upper bound of the

cumulative regret for our algorithm that grows sub-linearly with time.

Further, with the concept that similar context yields similar reward by the same

action, we advance delayed UCB by using semi-supervised learning to produce fictitious

estimates for rewards that are delayed or missed and have not been revealed to the agent.

Therefore, by combining semi-supervised learning with online contextual bandit learning,

we propose a novel extension and design another algorithm to minimize the estimation

error. Finally, we apply our algorithms to the problem of online context-aware articles

recommendation to viewers. Our result validates the regret analysis and demonstrates that

the fictitious estimates for delayed or missing rewards can be useful for decreasing the regret.
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Combinatorial Arm with Removal

Contextual combinatorial bandit is an important online learning problem, with

applications to many networked systems, such as dynamic channel assignment in wireless

networks and influence maximization in social networks. In practice (especially in tactical

or adversarial environments), the selected arms may be deliberately or accidentally nullified,

contributing zero to the learning agent’s total utility and warranting robust arm selection

strategies to account for the worst case.

In the third part, we study a novel contextual combinatorial bandit setting with

arm removal and submodular utility: the agent can select multiple arms (subject to a cardi-

nality constraint), but some selected arms can be removed and the overall utility is jointly

determined through a monotone submodular utility function in terms of the remaining

selected arms. Even with perfect knowledge regarding the feedback signals for each arm

and context, robust submodular maximization with arm removal is a challenging NP-hard

problem, let alone in our online learning setting.

We propose a novel online bandit algorithm, called R2C2-MAB, to robustly se-

lect arms to maximize the worst-case submodular utility while balancing exploration and

exploitation. Importantly, we prove that R2C2-MAB achieves a sublinear regret in time

compared to an efficient baseline algorithm that has a provable constant approximation ra-

tio. To empirically evaluate R2C2-MAB, we consider the wireless sniffer channel assignment

problem as a concrete example and run simulations. Under both stochastic and adversarial

arm removals, our results show that R2C2-MAB achieves a total reward close to that of the

baseline, while outperforming other existing bandit algorithms that either do not exploit
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the submodularity structure of the utility function or neglect the presence of arm removal.

Federated Bandits

Standard bandit learning approaches require centralized platform that the con-

textual information and reward feedback on one machine or server. However, the rapid

proliferation of decentralized learning systems mandates the need for cooperative bandit

learning. However, cooperative setting brings new challenge in the data privacy, security,

heterogeneity. Federated learning enables multiple agents to collaboratively learn the envi-

ronment without sharing data, thus allowing to address critical privacy issues.

In this last part, we study the problem, which combines contextual bandits and

federated learning with differential privacy: we consider a collection of agents cooperating

to solve a common contextual bandit, while ensuring that their communication remains

private. For this problem, we devise centralized federated bandit algorithm, a multiagent

private algorithm for both centralized federated setting. We provide a rigorous technical

analysis of its utility in terms of regret, improving several results in cooperative bandit

learning, and provide rigorous privacy guarantees as well. Our algorithms provide com-

petitive performance in terms of empirical benchmark performance in various multi-agent

settings.

1.0.3 Thesis Organization

The remainder of the dissertation is organized as follows: we give the detailed pre-

sentations and analysis of contextual bandit with imperfect environment from Chapter 2-5.

In Chapter 2, we present the probabilistic framework and the proposed kernelized proba-

6



bilistic contextual bandit learning algorithm to learn the optimal arm in reproducing kernel

Hilbert space for each context bundle. In Chapter 3, we detail the problem formulation and

the technical methods for reward feedback provided to the agent is often delayed or even

missing. In Chapter 4. we discuss the novel contextual combinatorial bandit setting with

arm removal and submodular utility In Chapter 5, we develop federated contextual ban-

dit with differential privacy, given heterogeneous reward information from multiple agents.

Finally, Chapter 6 concludes this dissertation and points out future research directions.
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Chapter 2

Contextual Bandit with

Probabilistic Contexts

2.1 Introduction

Contextual bandits have found success in many applications, including online rec-

ommendation [76], commercial advertising [98] and medical experiment design [105]. Sub-

sequently, efficient learning algorithms like Lin-UCB [65], EXP4 [10] and their variations

have drawn great attention. Nonetheless, most of the prior studies assume that the context

information acquired by the agent before arm selection is perfect. While this assumption

facilitates performance analysis of the proposed algorithms, it may fail in certain practical

scenarios, where there is randomness and uncertainty about the context information.

To alleviate the uncertainty and randomness from environment, one can apply

classification techniques, such as support vector machine (SVM) [85] and deep neural net-
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works (DNN) [106], which yield a probability distribution over possible candidate category

of contexts. For example, a recommendation system commonly recommends personalized

items given user features (i.e., contexts) predicted by a neural network classifier. Thus, all

the possible candidate contexts together form a context bundle with a probability distri-

bution of different contexts, and the exact context is included in the bundle (possibly not

having the greatest probability) but unknown to the agent. In this chapter, we also use

“context” and “context candidate” exchangeably.

In addition to the lack of exact context information, another practical consideration

for contextual bandit learning is that the agent can receive multiple feedbacks instead of

a single one. In this case, the goal of the agent is to maximize a (possibly time-varying)

utility function jointly determined by multiple feedbacks rather than any of the individual

feedback. For example, when selecting an app for a mobile device, both energy and latency

can be measured and reported to the learner/agent, and these metrics jointly affect the

performance of the selected app.

Motivated by the aforementioned practical considerations, the focus of this work is

to study a novel contextual bandit setting where the agent can only access to a probabilistic

context bundle for arm selection and its goal is to maximize a time-varying utility function

jointly determined by the multiple feedback signals received at the end of each round.

In order to design an efficient learning algorithm, the key is how the agent leverages the

available probabilistic context information to learn multiple feedback functions that jointly

determine its utility. To study this problem, we consider a general setting where each

individual feedback function can be nonlinear with respect to the selected arm and contexts,
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and apply the kernel method to transfer feedback function in the Reproducing kernel Hilbert

Space (RKHS). We design a new algorithm by extending upper confidence bound (UCB)

techniques to account for the probabilistic context information, using the expectation of

reward over the probabilistic context distribution. For each feedback, we learn its relation

with the selected arm given a probabilistic context bundle. Then, an arm is selected based

on an estimated reward function in terms of all the estimated feedback values. Importantly,

we prove that our algorithm achieves a sub-linear regret upper bound O(
√
T log(T )) when

compared to an oracle that knows the optimal arm given any probabilistic context bundle.

We also consider an alternative algorithm that simply uses the most probable context from

the given probabilistic context bundle, and show its linear regret bound.

We apply our learning algorithm to the problem of deep neural network (DNN)

model recommendation for edge inference on mobile devices. Our experiments show that

our proposed algorithm outperforms the alternative solution that selects arms based on the

most probable context. More importantly, our algorithm yields a sub-linear regret with

respect to the oracle, demonstrating the effectiveness of our algorithm and validating the

regret analysis.

2.2 Related Work

Contextual bandits have been studied in various settings due to their wide appli-

cations [62]. The study [65] proposes Lin-UCB algorithm, assuming a linear relationship

between its context and expected reward, which applies ridge regression for estimated feed-

back. As for the nonlinear contextual bandits, [103, 36] both propose kernelized contextual

10



bandit as a nonlinear version of Lin-UCB by finding linear members in RHKS. [7] uti-

lizes neural networks to predict the rewards given the context and proposed a multi-expert

approach to decide the parameters of networks. [120] provides a formal proof for neu-

ral network-based contextual UCB. [13] introduces the concept of contextual bandits with

budget constraints, and proposes a resourceful contextual bandits algorithm that provably

achieves O(
√
T ) regret bound. Another variant of contextual bandit considers that not all

contextual information is accessible [20]. Similarly, [108] assumes the existence of hidden

features and arm vectors from context together and proposes hLin-UCB algorithm.

Among the studies on probabilistic contextual bandits, a relevant one [57] considers

that the agent only knows the probability distribution of context. The major difference is

that we consider multiple feedbacks and a time-varying utility function. Another one is

[118], which studies contextual bandit with perturbation noise on observed context. The

authors assume a linear reward function with a single feedback, and propose an algorithm

called NLin-Rel that achieves O(T
7
8 ) regret bound under the assumption of identical noise.

Different from this work, we consider non-linear reward function with probabilistic contexts.

As for multiple feedbacks, [72] proposes an algorithm based on Pareto optimality

to solve a multi-objective problem under contextual settings, resulting in a regret bound

that increases sub-linearly under the assumption of a linear feedback function. Another

relevant work is [110], which considers a multi-objective online contextual ranking system

with the assumption that some parameters in both feedback and reward are unknown. By

setting linear feedback and logistic utility, the proposed UCB-based algorithm is shown to

significantly increase the click-through rate. In contrast, we use a more general time-varying
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utility function to combine multiple feedback signals and consider probabilistic contexts.

2.3 Problem Formulation

We consider the problem of contextual bandit learning with probabilistic contexts

and multiple feedbacks, and provide the mathematical formulation of this problem in this

section.

In a standard bandit setting, deterministic context xt ∈ RM is available to the

agent at each round. In many real cases, however, the agent only has the knowledge of a

bundle of context candidates X =
{
x1, · · · , xN

}
and the true context xt is in the context

bundle. At each round t, with some prior knowledge, the agent can get a collection of

probabilities for context candidates, i.e. Prt(X ) =
{
Pt(x

1), · · · , Pt(xN )
}

and
∑N

i=1 Pt(x
i) =

1. This can be done by using, for example, a well-trained DNN classifier and extracting the

softmax layer output of the classifier. The extracted probabilities define a probability space

over the context bundle X . Now, the context at round t is a random variable Xt in the

probability space with the probability measure Pr
(
Xt = xit

)
= Pt

(
xit
)
. Note that, with a

notational change, our model can also be extended to continuous context with a probability

density function.

Additionally, we consider a more practical case where the agent receives multiple

feedbacks. The jth feedback (j = 1, · · · , J) with respect to action a and

the random context Xt can be expressed as

f ja,t = gja(Xt) + εj (2.1)

where gja(·) is a deterministic feedback function which can be linear or nonlinear,
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and εj is zero-mean Gaussian noise and εi and εj are mutually independent for

i 6= j. Assume that for j = 1, · · · , J , a kernel function kj : RM × RM → R can be

found to represent gja(·) in a Reproducing Kernel Hilbert space (RHKS) F j . In other

words, the kernel function kj corresponds to a feature map φj : Rn → F j which satisfies

kj(x, x′) = φj(x)>φj(x′),∀x, x′ ∈ RM , and gja(x) = φj(x)>θja.

The agent’s reward is evaluated by a utility function Ut : RJ → R, which may

change over time and is known to the agent. Assuming that the Lipschitz constant of the

utility function Ut is Lt and L = maxt Lt, we have

|Ut (f1 − f2)| ≤ L ‖f1 − f2‖ . (2.2)

If an action a is selected, then a reward Ut(fa,t) is obtained by the agent where fa,t =[
f1
a,t, · · · , fJa,t

]
is the feedback vector. We seek to maximize the expected reward over both

the probabilistic context space and the noise space, which is denoted as E[Ut(fa,t)], by

selecting actions. For the convenience of analysis, we further assume that Eε[Ut(fa,t)] =

Ut(Eε[fa,t]) where the expectation Eε [·] is taken over the noise space. Example utility

functions include a linear form (Ut (f) = u>t f) or a multiplication form (Ut (f) =
∏J
j=1 f

j),

which are also common functions used in multi-objective bandits [87, 113].

The best action at round t is defined as the action with highest expected reward,

i.e.

a∗t = arg max
a

E[Ut(fa,t)] (2.3)

where the expectation E [·] is taken over both noise space and context space. This best

action oracle is reasonable and common for the cases with context uncertainty, and also
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considered as a benchmark in [57, 118]. With this oracle, the expected instant regret regt

at every round can be expressed as

regt = E
[
Ut(fa∗t ,t)− Ut(fat,t)

]
(2.4)

where the expectation E [·] is taken over both noise space and context space. The algorithm

needs to be designed to find an arm selection policy based on the history to minimize the

cumulative regret RT =
∑T

t=1 regt.

2.4 Algorithm

In this section, we first introduce the feedback prediction algorithm and then,

given the predicted feedbacks and confidence widths, design a UCB-based algorithm with

probabilistic contextual information.

2.4.1 Feedback Prediction

In order to select an action, the algorithm should be able to predict the feed-

backs corresponding to each action, which then determines the resulting reward. Note

that we cannot simply treat the overall utility function as a single feedback signal and

directly predict it given incoming contextual information as in prior studies [36, 57], be-

cause the utility function in terms of multiple feedbacks is changing over time in our

setting. To accomplish feedback prediction, we can estimate the parameter θja in feed-

back functions by kernel-based empirical risk minimization based on the history Hja,t ={(
X , P rτ (X ), f ja,τ

)
, τ = 1, · · · , t

}
, j = 1, · · · , J . Denote the set of rounds when arm a

is selected before round t as Ta,t =
{
τ1
a , τ

2
a , · · · , τ

na,t
a

}
. The kernel based empirical risk
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minimization is to solve the following problem

θ̂ja = arg min
θja

1

na,t

∑
τ∈Ta,t

(E[φj(Xt)]
>θja − f ja,τ )2 + λ‖θja‖2 (2.5)

where λ ≥ 0 is a hyper-parameter.

Denote Φj
a=
[
E
[
φj(Xτ1a

)
]
,· · ·,E

[
φj(X

τ
na,t
a

)
]]

and yja =
[
f j
a,τ1a

, f j
a,τ2a

, · · · , f j
a,τ

na,t
a

]>
.

By solving the optimization problem (2.5), the parameter θja is estimated as

θ̂ja = Cj
a
−1

Φj
ay

j
a (2.6)

where Cj
a = Φj

aΦ
j
a
>

+ λI. Then, the estimated feedback with respect to candidate xit can

be calculated as

f̂ i,ja,t = φj(xit)
>θ̂ja,t (2.7)

whose confidence width [36, 57] is

wi,ja,t =
√
φj(xit)

>(Cj
a,t)
−1φj(xit).

(2.8)

As the algorithm may not have access to the mapping function φj(x), we need to

represent Eqn. (2.7) and Eqn. (2.8) by kernel function. By the Woodbury matrix identity,

we have

f̂ i,ja,t = φj(xit)
>(Φj

a,tΦ
j
a,t

>
+ λI)−1Φj

a,ty
j
a,t

= φj(xit)
>Φj

a,t(Φ
j
a,t

>
Φj
a,t + λI)−1yja,t

(2.9)

and

λwi,ja,t
2

= φj(xit)
>φj(xit)−

φj(xit)
>Φj

a,t(Φ
j
a,t

>
Φj
a,t + λI)−1Φj

a,t

>
φj(xit).

(2.10)
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Algorithm 1 Multi-Feedback Probabilistic Contextual UCB

1: Inputs :

Arm set A, a horizon T , kernel function k and parameter α and λ.

2: for t = 1, · · · , T do

3: Receive a set of probabilities Prt(X ) for the candidates in the context bundle X

4: for a ∈ A do

5: Calculate E[Ut(f̂a,t)] and E[wa,t] according to Eqn. (2.13) and Eqn. (2.14).

6: end for

7: at = arg maxa∈A(E[Ut(f̂a,t)] + LβE[wa,t])

8: Receive feedback fa,t =
[
f1
a,t, · · · , fJa,t

]
.

9: Update yja,t+1, Kj
a,t+1 and Dj

a,t+1

10: end for

Denote ki,ja,t = Φj
a,t

>
φj(xit) and Kj

a,t = Φj
a,t

>
Φj
a,t. The pth entry in kja,t is

E
[
φj(Xτpa

)
]>
φj(xit) =

∑N
n=1 P (xi

τpa
)kj(xn

τpa
, xit). Similarly, the entry of Kj

a,t in the pth row

and qth column is E
[
φj(Xτpa

)
]>E[φj(Xτqa

)] =
∑N

n,m=1P (xn
τpa

)P (xm
τqa

)kj(xn
τpa
, xm

τqa
). Now, the

estimated feedback can be represented as

f̂ i,ja,t = ki,ja,t
>

(Dj
a,t)
−1yja,t (2.11)

and the confidence width is

wi,ja,t =

√
1

λ
kj(xit, x

i
t)−

1

λ
ki,ja,t

>
(Dj

a,t)
−1ki,ja,t (2.12)

where Dj
a,t = Kj

a,t + λI.
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2.4.2 Multi-Feedback Probabilistic Contextual UCB

Based on the results of empirical risk minimization, the proposed Multi-Feedback

Probabilistic Contextual UCB is given in Algorithm 1.

At each round, the algorithm needs to get the estimated expected reward and the

corresponding expected confidence width. To do so, the algorithm first calculates estimated

feedbacks and corresponding confidence widths according to Eqn. (2.11) and Eqn. (2.12), re-

spectively. Then, given the utility function Ut : RJ → R, the estimated reward with respect

to the ith context candidate is predicted as Ut(f̂
i
a,t) where f̂ ia,t = [f̂ i,1a,t , f̂

i,2
a,t , · · · f̂

i,j
a,t, · · · ]>. If

the exact context is not given, the estimated feedback f̂a,t is a random vector over the

probabilistic context space, so the estimated expected reward over the probabilistic context

space is written as

E[Ut(f̂a,t)] =
∑
i

Pt(x
i
t)Ut(f̂

i
a,t). (2.13)

The confidence width is important for arm exploration, but it is not trivial to

get the expected confidence width. Here, we calculate the upper bound of the expected

confidence width over the probabilistic context space by exploiting Lipschitz continuity of

the utility function. Concretely, if L is the Lipschitz constant of the utility function, the

upper bound of expected confidence width over the probabilistic context space is calculated

as

E[wa,t] =
N∑
i=1

Pt(x
i
t)

J∑
j=1

wi,ja,t. (2.14)

The detailed derivation of Eqn. (2.14) will be given in Lemma 4.

With the estimated expected reward and the corresponding expected confidence
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width, the selected arm is at = arg maxa∈A(E[Ut(f̂a,t)] + LβE[wa,t]), where β is a hyper-

parameter to balance the exploration and exploitation.

Another arm selection policy is to select an arm based on the reward UCB with

respect to the most probable context. Formally, in this way, the selected arm is

at = arg max
a∈A

(
Ut

(
f̂a,t (x̄t)

)
+ Lβwa,t (x̄t)

)
(2.15)

where x̄t = arg maxx∈X Pt (x) is the most probable context and the jth entry of f̂a,t is

f̂ ja,t(x̄t) = φj(x̄t)
>(Φj

a,tΦ
j
a,t

>
+ λI)−1Φj

a,ty
j
a,t. In the next section, we will show that this

arm selection policy has a linear regret under our regret definition in Eqn. (2.4).

2.5 Regret Analysis

In this section, we analyze the regret with respect to an oracle that also has the

probabilistic context information and establish an upper bound on cumulative regret of

Algorithm 1 which shows the cumulative regret sub-linearly increases with O(
√
T log T ),

followed by the proof sketch.

2.5.1 Cumulative Regret Bound

The following theorem provides an upper bound on the cumulative regret of Al-

gorithm 1.

Theorem 1 Assume at round t, the utility function Ut(fa,t) ∈ [0, 1] satisfies Eε[Ut(fa,t)] =

Ut(Eε[fa,t]) with Lipschitz constant L, kernel function is kj(x, x′) ≤ ck such that φj (x) �

0. At each round, the agent receives a probabilistic context set X and the corresponding
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probability set Prt (X ), selects arm from A by Algorithm 1 and get J different feedbacks.

With probability 1− δ, the cumulative expected regret RT of Algorithm 1 is bounded by

RT ≤ 2LβJ |A||X |

√
2qγmT log(

(T + 1)ck + λ

d
1
γm λ

)

= O(
√
T log T )

(2.16)

where γm is the maximum rank of Kj
a,t, q = max(1, ckλ ) and

β = (

√
log(2TJ |A|/δ)

2 + c
√
λ).

Remark 2 Theorem 1 shows that, for the bandit setting with probabilistic contexts and

multiple feedbacks, our proposed algorithm can achieve a sub-linear cumulative expected

regret bound O(
√
T log T ). This demonstrates the effectiveness of our proposed algorithm.

Remark 3 Compared with the cumulative regret bound of kernel-UCB in the standard ban-

dit setting [34, 36], the cumulative regret bound of the proposed algorithm is scaled by Lips-

chitz constant L, number of feedbacks J and size of context bundle |X |. As a result, the regret

in our setting is more difficult to be reduced than that in the standard setting. Nonetheless,

by the proposed algorithm, the cumulative regret can still be guaranteed to be sub-linear.

2.5.2 Proof Sketch

The proof sketch of Theorem 1 is given below. Compared with other UCB algo-

rithms [1, 36, 57], the consideration of probabilistic context, multiple noisy feedbacks and

Lipschitz utility function adds new challenges to the regret bound proof. First, since the

algorithm predicts feedbacks instead of the reward, the predicted feedbacks can be guar-

anteed to converge to the expected feedbacks by Lemma 1 in [36], but we still need to
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bound the gap between the estimated reward and the true expected reward. Second, since

the proposed algorithm only has probabilistic contexts, we can bound the expected reward

estimation error by the expected confidence width, but it is still challenging to get the sum

of the confidence width over time. Next, we show several important lemmas to address the

aforementioned challenges.

First, by exploiting the Lipschitz continuity of utility function, the confidence

width of estimated reward is bounded in Lemma 4, which also explains the setting of

confidence width in Algorithm 1.

Lemma 4 (Concentration of Empirical Risk Minimization) Assume the utility func-

tion U(·) is in a linear form or multiplication form with Lipschitz constant L. With proba-

bility at least 1− δ
T , for ∀a ∈ A, we have

∣∣∣E [Ut(f̂a,t)]− E [Ut(fa,t)]
∣∣∣ ≤ LβE[wa,t] (2.17)

where β = (

√
log(2TJ |A|/δ)

2 + c
√
λ).

Proof. Let gi,ja,t = gja
(
xit
)

and gia,t =
[
gi,1a , · · · , gi,ja

]>
.By the assumption Eε[Ut(fa,t)] =

Ut(Eε[fa,t]), we have

∣∣∣E[Ut(f̂a,t)]−E [Ut(fa,t)]
∣∣∣=∣∣∣∣∣

N∑
i=1

Pt
(
xit
)(
Ut

(̂
f ia,t

)
−Ut

(
gia,t
))∣∣∣∣∣

≤
N∑
i=1

Pt
(
xit
)
L
∥∥∥f̂ ia,t − gia,t

∥∥∥≤L N∑
i=1

Pt
(
xit
) J∑
j=1

∣∣∣f̂ i,ja,t − gi,ja,t∣∣∣ .
(2.18)

By Lemma 1 in [36], we have
∣∣∣f̂ i,ja,t − gi,ja,t∣∣∣ ≤ βwi,ja,t with probability at least 1 − δ

JT . Thus,

with probability at least 1− δ
T , we have

∣∣∣E[Ut(f̂a,t)−Ut(fa,t)]∣∣∣≤Lβ∑N
i=1 Pt(x

i
t)
∑J

j=1w
i,j
a,t=

LβE[wa,t].
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Then, by using Lemma 4, we will bound the regret by the expected confidence

width in the next lemma.

Lemma 5 (Regret Bound by Confidence Width) Assume that the utility function Ut(·)

satisfies Eε[Ut(fa,t)] = Ut(Eε[fa,t]) with Lipschitz constant L. With probability at least 1− δ
T ,

the cumulative regret satisfies

RT =
T∑
t=1

regt ≤ 2Lβ
T∑
t=1

E[wat,t] (2.19)

where β = (

√
log(2TJ |A|/δ)

2 + c
√
λ).

Proof. By similar proof techniques for standard UCB [1, 57], with probability at

least 1− δ
T , the instant regret is bounded as

regt = E
[
Ut(fa∗t ,t)− Ut(f̂a∗t ,t) + Ut(f̂a∗t ,t)− Ut(fat,t)

]
≤ LβE[wa∗t ,t] + E

[
Ut(f̂a∗t ,t)

]
− E [Ut(fat,t)]

≤ LβE[wat,t] + E
[
Ut(f̂at,t)

]
− E [Ut(fat,t)]

≤ 2LβE[wat,t]

(2.20)

where the first and third inequalities hold by Lemma 4 and the second inequality holds

by arm selection policy in Algorithm 1. In this way, the cumulative regret is bounded as

Eqn. (2.19)

The next challenge is to bound the sum of confidence width, which is expressed as

T∑
t=1

E[wat,t] =
T∑
t=1

N∑
i=1

Pt(x
i
t)

J∑
j=1

√
φj(xit)

>(Cj
a,t)
−1φj(xit). (2.21)

We cannot directly use Sylvester’s determinant theorem or Schur’s determinant identity like

in the proofs of Lemma 11 in [1] and Lemma 7 in [36]. Thus, we first derive Lemma 6 to

get an upper bound of E[wat,t],
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and then get the sum of the expected confidence width in Lemma 6

Lemma 6 (Sum of Confidence Width) Assume kernel function kj is chosen such that

mapping function φj(x) � 0, we have

T∑
t=1

E[wat,t] ≤ J |X |

√
2qγmT log(

(T + 1)ck + λ

d
1
γm λ

) (2.22)

where γm is the maximum rank of Kj
a,t, q = max(1, ckλ ).

Proof. First, we bound E[wja,t] by w̄ja,t where w̄ja,t =
√
E[φj(Xt)]>(Cj

a,t)
−1E[φj(Xt)]. Let

wi,jat,t =
√
φj(xit)

>(Cj
a,t)
−1φj(xit). Then, we have

(
Pt(x

i
t)w

i,j
at,t

)2
= Pt(x

i
t)φ

j(xit)
>(Cj

a,t)
−1Pt(x

i
t)φ

j(xit)

≤ E[φj(Xt)]
>(Cj

a,t)
−1E[φj(Xt)]

(2.23)

where the inequality holds because φj(x) � 0 and thus E[φj(Xt)] =
∑|X |

n=1 Pt(x
n
t )φj(xnt ) ≥

Pt(x
i
t)φ

j(xit). By taking squared root of both sides of Eqn. (2.23), we have Pt(x
i
t)w

i,j
a,t ≤ w̄

j
a,t,

and thus E[wja,t] =
∑|X |

i=1 Pt(x
i
t)w

i,j
a,t ≤ |X |w̄

j
a,t. Since

∑T
t=1 w̄

j
at,t can be bounded by Lemma

8 in [36], i.e.
∑T

t=1 w̄
j
at,t ≤

√
2qγmT log( (T+1)ck+λ

d
1
γm λ

), the inequality (2.22) can be proved.

By substituting Eqn. (2.22) into Eqn. (2.19), we can get the cumulative regret

bound in of Algorithm 1 in Theorem 1.

2.5.3 Regret of Arm Selection by Most Probable Context

The arm selection policy based on the most probable context is shown in Eqn. (2.15).

We define the error between expected reward and the most probable reward as

Ma,t = EX [Ut (ga,t)]− Ut (ga (x̄t)) (2.24)
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where the expectation is taken over context space, ga,t =
[
g1
a (Xt) , · · · , gJa (Xt)

]>
and

ga (x̄t) =
[
g1
a (x̄t) , · · · , gJa (x̄t)

]>
. Assume that |Ma,t| ≤ M for t = 1, · · · , T and x ∈ X

Then, the cumulative expected regret is given in the theorem below and includes a linear

term.

Theorem 7 Under the same assumptions as in Theorem 1 and the algorithm selects arm

from A based on Eqn. (2.15), then with probability 1 − δ, the cumulative expected regret

defined by Eqn. (2.4) is bounded by

RT ≤ 2LβJ |A||X |

√
2qγmT log(

(T + 1)ck + λ

d
1
γm λ

)+

T∑
t=1

(
Ma∗t ,t

−Mat,t

)
= O(

√
T log T + 2MT )

(2.25)

where γm is the maximum rank of Kj
a,t), q = max(1, ckλ ) and β = (

√
log(2TJ |A|/δ)

2 + c
√
λ).

2.6 Simulation Results

We now apply Algorithm 1 to the problem of DNN model selection for mobile

devices and show its performance in terms of average reward and cumulative regret.

2.6.1 Application to DNN Model Selection

The recent breakthrough in DNN model compression has made it possible to run

DNN inference on edge devices (e.g., mobile phones and tablets). While they can have

similar inference accuracies, different DNN models have different latencies and energy con-

sumption under different system conditions. Thus, it is crucial to select an optimal DNN

model for edge inference with the best user experience. This is challenged by the fact that,
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although the basic configuration of an edge device (e.g., CPU, OS, RAM) requesting a

DNN model is exposed to the model provider, the device’s actual resource management and

system condition (e.g., available system resources) that decide the latency and energy of

the deployed DNN model can only be known probabilistically. Thus, the problem of DNN

model selection is suitable for our considered bandit setting with probabilistic contexts and

multiple feedbacks.

Concretely, the DNN models to deploy on edge devices constitute the set of arms,

an edge device’s actual system condition is the context, and we consider DNN inference

latency l and energy consumption e as the two feedback signals. Our goal is to select

optimal DNN models for edge devices that arrive sequentially. For evaluation purposes,

we run experiments and collect measured data of five image classification DNN models

from TensorFlow Hub running on two cellphones (Vivo V1838A and Google Pixel 3a) and

two tablets (Samsung - Galaxy Tab A7 and Vankyo MatrixPad Z4). We use these four

devices to represent four types of actual system conditions (i.e., context in our study) in

an edge device requesting a DNN model. In other words, when an edge device arrives, its

actual system condition is assumed to fall into one of the conditions as specified by the

four different devices in our evaluation. While we can further run experiments on these

devices under different usage scenarios to have more fine-grained types of contexts, our

current setup is enough to validate our theoretical analysis. Note that although an edge

device’s basic hardware configuration is accessible to the DNN model provider, its actual

system condition (i.e., context in our problem) is only known probabilistically for DNN

model selection.
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Table 2.1: Average Energy Consumption

Phone 1 Phone 2 Tablet 1 Tablet 2

InceptionV2Q 0.45 J 0.07 J 6.18 J 1.41 J

InceptionV4Q 1.88 J 0.22 J 11.66 J 6.59 J

InceptionV4F 5.04 J 1.14 J 37.29 J 10.87 J

MobileNetV1Q 0.13 J 0.03 J 2.00 J 0.69 J

MobileNetV1F 0.18 J 0.04 J 2.00 J 0.60 J

Table 2.2: Average Latency

Phone 1 Phone 2 Tablet 1 Tablet 2

InceptionV2Q 0.33s 0.11s 2.60s 0.57s

InceptionV4Q 1.40s 0.35s 4.45s 2.53s

InceptionV4F 2.01s 1.23s 18.95s 4.58s

MobileNetV1Q 0.10s 0.05s 0.83s 0.22s

MobileNetV1F 0.13s 0.07s 0.60s 0.25s

We assume that the utility function for a DNN model selection decision is a

weighted linear combination of energy consumption and latency, while noting that the

weights can change for different devices (e.g., energy consumption plays a more important

role for devices with a small battery capacity). For illustration, we assume that the utility

function can be either −0.36e − 0.54l + 1 or −0.25e − 0.65l + 0.9, which is randomly de-

termined over time. We compare our algorithm with kernel contextual bandit algorithms

that utilize the exact context and the most probable context, respectively. To simulate the

probabilistic environment, we randomly generate the Prt(X ) as input at each round. We

use the radial basis function kernel k(x, x′) = exp(−ρ‖x− x′‖22).
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2.6.2 Results

In Fig. 2.1(a), we show the average reward achieved by different algorithms. Nat-

urally, the algorithm with the exact true context achieves the highest reward. Nonetheless,

the reward of our algorithm is greater than that of the straightforward algorithm that uti-

lizes the most probable context as if it were the true context (similar to a standard UCB

algorithm). The reason for the low reward achieved by using the most probable context is

that the stored possibly erroneous contexts can be uncorrelated with the received feedback,

thus resulting in biased estimation of the feedback functions and hence inaccurate reward

prediction further.

In Fig. 2.1(b), to validate the sub-linear regret, we compare the cumulative regret

of our algorithm to the oracle that knows the optimal arm for any probabilistic context

bundle. We use entropy of context’s probability distribution H(Prt(X )) as a measure for

how random the provided context bundle is. We denote Hmax = log2 |X | as the largest

entropy and η (0 ≤ η ≤ 1) as a threshold to bound randomness for different rounds, where

H(Prt(X )) ≤ ηHmax. The smaller η, the more concentrated probabilistic distribution

Prt(X ) of a context bundle (or, less randomness). If η = 0, then the distribution only

reveals the exact context. The result shows that the regret of our algorithm is sub-linearly

increasing, regardless of randomness of probabilistic bundle.
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Figure 2.1: Performance comparison.
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Chapter 3

Contextual Bandit with Delayed

Feedback

3.1 Introduction

In a standard contextual bandit setting, given context information revealed at

the beginning of each round, the agent selects an arm for the upcoming round; then, the

resulting reward will be promptly provided to the agent at the end of each round, and uti-

lized for learning the reward function in terms of context-arm pairs and refining future arm

selections. Nonetheless, this setting may not be satisfied in practice [104]. Take the user

rating as an example. It is common that a user only provides rating feedback (i.e., reward)

several hours/days later or even declines to given ratings, whereas meanwhile many item

recommendation decisions need to be made. Additionally, in some applications, the true

reward can only be inaccurately observed with errors, which add more noises to the agent’s

28



feedback. For example, when applying contextual bandit to machine learning model selec-

tion for inference on edge devices [71], the model performance (e.g., latency performance)

on a device can only be observed based on empirical measurement, which naturally deviates

from the true model performance and hence constitutes noisy reward feedback.

In this chapter, we extend the standard contextual bandit setting to address de-

layed or missing feedback. Concretely, the reward feedback for an arm selected at the

beginning of a round may not be sent back to the agent at the end of this round; instead,

the reward feedback is either missing or only sent to the agent after some a priori unknown

delays with some observation noise.

We first propose a bandit learning algorithm that learns the reward function by

only using available reward feedbacks and selects arms based on the upper confidence bound

(UCB) to account for the balance between exploration and exploitation. Importantly, when

the maximum delay is finite, we theoretically prove that the upper bound on the cumu-

lative regret (i.e., the difference between the reward achieved by our algorithm and the

optimal oracle’s reward) grows sub-linearly in time as O(
√
T log T ), compared to the or-

acle that knows the optimal arm given any context information. When delay is infinite

or some rewards are missing, the sub-linear regret bound may fail. Instead, motivated

by semi-supervised learning that produces pseudo labels for unlabeled data to further im-

prove the model performance [28], we generate fictitious estimates of rewards that have

yet to arrive based on currently available feedbacks. Thus, by combining semi-supervised

learning with online contextual bandit learning, we propose a novel extension and design

another algorithm, which finds fictitious values for currently unavailable reward feedbacks

29



to minimize the estimation error. To our knowledge, our algorithm is the first to leverage

semi-supervised learning in contextual bandits with delayed and missing feedback.

To evaluate our algorithms, we conduct a simulation study on a classical Yahoo

Module dataset to build an online context-aware news recommend system and find suitable

articles for users. Our empirical results show that the delayed UCB algorithm yields a sub-

linear regret with respect to the oracle, validating our regret analysis in finite-delay setting.

Moreover, the incurred regret can be further effectively reduced by using our proposed

estimations for those feedback values that have yet to arrive when the feedback is delayed

or missing with a high probability.

3.2 Related Work

Adversarial bandit is another important variant of the bandit setting [10], where an

adversary at each iteration chooses the reward policy for each arm. Further, [72] considers

multi-objective optimization of generalized linear bandits under contextual settings and

defines the best arm in terms of Pareto optimality. Another variant of contextual bandit

assumes context information is not complete. For example, [108] considers the existence of

partially hidden context and proposes to learn both reward function and hidden information.

In these studies, reward feedback is still provided to the agent without delays.

For bandits with delayed feedback, [81] considers a fixed delay in bandits, and

[26] later proposes EXP3-based algorithms for non-stochastic bandits with fixed delays.

Stochastic bandits with random delays have been considered by [83]. Also, [16] considers

the adversarial setting and propose delayed-EXP3 algorithm. The study [25] considers
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a more general assumption, where delayed feedback is composite and anonymous. In [99],

author considers the bandit problem with fixed delay in non-stochastic setting and proposed

algorithm based on EXP3. In [104], DeLin-UCB is proposed for a contextual bandit setting

with delayed feedback, and [121] considers a general linear form and proposes DUCB to

achieve a sublinear regret bound. The most close work to us is perhaps [21], which utilizes

clustering to estimate the reward feedback for unlabeled contexts. In contrast, we propose

semi-supervised learning to estimate fictitious rewards for those that are delayed/missing.

3.3 Problem Formulation

We first consider the setting of contextual bandit with delayed feedback. Given

context information at each round t = 1, 2, · · · , T , the agent/learner needs to select an arm

(e.g., to serve a request or a user depending on specific applications). We denote xa,t ∈ RM

as the context, which is a representation of the environment information or feature regrading

arm a at the t-th round, for a ∈ A = {1, 2, · · · ,K} and t = 1, 2, · · · , T . For a selected arm

a at round t, we denote the resulting reward as ya,t ∈ R. Nonetheless, due to feedback

delays, the agent can only receive the reward feedback at the beginning of the (t + dt)-th

round, where dt ≥ 1 is the delay for the arm selected at round t. Note that it is possible

that the learner simultaneously receives multiple feedback signals for arms selected in prior

rounds.

We denote the expected reward function as g(xa,t), and we assume that the ex-

pected rewards are similar in similar contexts. This assumption is formalized by the follow-

ing Hölder condition for g(xa,t).
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Assumption 1 For any arm a ∈ A, there exist L > 0 and β > 0, such that for any

x, x′ ∈ RM , it holds that

|g(x)− g(x′)| ≤ L||x− x′||β

where || · || denotes the Euclidean norm in RM

We use the kernel method to model non-linear reward functions in terms of the context

and arm. Given a kernel function k(x, x′) = φ(x)>φ(x′),∀x, x′ ∈ RM , we can express

the expected reward function as g(xa,t) = φ(xa)
>θ in a reproducing kernel Hilbert space

(RKHS) H corresponding to the kernel function k(x, x′). Specifically, the actual reward

feedback ya,t received by the agent (after a delay of dt rounds) for its arm a selected at

round t is written as

ya,t = g(xa,t) + εt = φ(xa)
>θ + εt, (3.1)

where εt is the zero-mean and delay-independent noise. For the ease of analysis, we assume

that εt is independent and identically distributed.

The goal of the agent is to maximize its total expected reward, or equivalently

minimize its cumulative regret, over T rounds. We define the best arm given context xa,t

at round t as the arm that leads to the highest expected reward, i.e.,

a∗t = arg max
a∈A

E [ya,t] = arg max
a∈A

g(xa,t). (3.2)

With arm at selected at round t, the expected instant regret regt can be expressed as

regt = E
[
ya∗t ,t − yat,t

]
, (3.3)

where the expectation is taken over the noises εt. Thus, the agent needs to find an arm

selection policy based on the received feedback signals and context-arm history to minimize
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the cumulative regret:

RT =
T∑
t=1

regt. (3.4)

3.4 Delayed Contextual UCB

For the considered bandit setting with delayed feedback, we provide an algorithm

based on delayed contextual upper confidence bound (UCB). We first utilize a kernel-based

empirical risk minimization policy for reward estimation based on received feedback. Then,

given the predicted feedback and its confidence width, we design a delayed contextual UCB

arm selection policy.

3.4.1 Reward Estimation

At each round, in order to select an arm, the agent should be able to estimate

the expected reward corresponding to each arm given the provided context. Similar to

previous work [57], to achieve feedback prediction, we can estimate the parameter θ in

feedback functions by kernel-based empirical risk minimization based on the history. Due

to existence of delay in feedback, we denote the set of rounds whose rewards are fed back

to the agent prior to round t as Tt = {τ1, τ2, · · · , τnt}, where nt = |Tt|. Denote Φt =[
φ(xτ1), · · · , φ(xτnt )

]
, yt =

[
yτ1 , · · · , yτnt

]>
. Then, we formulate the kernel-based empirical

risk minimization as an optimization problem below:

θ̂t = arg min
θ

1

nt

∑
τ∈Tt

(φ(xτ )>θ − yτ )2 + λ‖θ‖2 (3.5)

where λ ≥ 0 is a hyper-parameter.
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By solving the optimization problem in (3.5), the parameter θ is estimated at

round t in a closed form as

θ̂t = Ct
−1Φtyt

where Ct = ΦtΦt
> + λI. Then the expected reward with respect to xa,t can be calculated

as

ĝa,t = φ(xa,t)
>Ct

−1Φtyt. (3.6)

By the Woodbury matrix identity, we rewrite Eqn. (3.6) as

ĝa,t = φ(xa,t)
>(ΦtΦt

> + λI)−1Φtyt

= φ(xa,t)
>Φt(Kt + λI)−1yt

= ka,t
>(Dt)

−1yt,

(3.7)

where ka,t = Φt
>φ(xa,t), Kt = Φt

>Φt and Dt = Kt + λI. Note that Kt and ka,t can be

computed by the kernel function k(·, ·) which is available to the agent.

The estimation error is bounded as follows.

Lemma 8 Suppose that the expected reward ga,t belongs to the RKHS generated by kernel

function k, i.e. ga,t = φ (xa,t)
> θ. If Eqn. (3.7) is used for reward estimation, then with

probability at least 1− δ
T , the estimation error is

|ĝa,t − ga,t| ≤ (α+ λ)wa,t (3.8)

where wa,t =
√
φ(xa,t)>(Ct)−1φ(xa,t) and α =

√
1
2 ln 2KT

δ . �

The proof of Lemma 8 is in the supplementary material. To compute the reward
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estimation error bound, we apply Woodbury matrix identity again and get

λwa,t
2 =φ(xa,t)

>φ(xa,t)−

φ(xa,t)
>Φt(Kt + λI)−1Φt

>φ(xa,t).

Therefore, the estimation error bound can be expressed as

wa,t =

√
1

λ
(k(xa,t, xa,t)− ka,t

>(Dt)−1ka,t). (3.9)

By Lemma 8, we get the upper confidence bound of the expected reward, i.e.

ga,t ≤ ĝa,t + (α+ λ)wa,t,

which is used for arm selection given context information.

3.4.2 Delayed Contextual UCB for Arm Selection

The delayed contextual UCB-based arm selection algorithm is shown in Algo-

rithm 2. Specifically, the agent chooses an arm that has the maximum UCB to balance

exploration and exploitation. Assume that at round t, the agent receives a set of reward

feedbacks for arms selected at rounds in the set St = {τ1, · · · , τI}, where τi + dτi = t for

i = 1, · · · , I. If St is not empty, then for each τi ∈ St, the algorithm augments the received

reward yaτi ,τi into yt and updates Kt. Then, by empirical risk minimization, the estimated

expected reward and its corresponding estimation error can be calculated by Eqn. (3.7) and

Eqn. (3.9), respectively. Finally, the agent selects arm at at round t based on the UCB

policy.
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Algorithm 2 Delayed Contextual UCB

1: Inputs : kernel function k(, ·, ) and parameter α and λ.

2: for t = 1, · · · , T do

3: if length(yt) = 0 then

4: Randomly choose arm at

5: else

6: if |St| 6= 0 then

7: For τi ∈ St, augment yaτi ,τi into yt and update Kt

8: end if

9: Receive context xa,t, a = 1, · · · ,K

10: for a ∈ A do

11: Calculate ĝa,t in Eqn. (3.7) and wa,t in Eqn. (3.9)

12: end for

13: Select arm at = arg maxa∈A(ĝa,t + (α+ λ)wa,t)

14: end if

15: end for

3.5 Regret Analysis

In this section, we show that if the maximum feedback delay is finite, the cumula-

tive regret sub-linearly increases with O(
√
T log T ). Later, we show that sub-linearity when

feedback is missing (infinite delay).
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3.5.1 Finite Maximum Delay

Cumulative Regret Bound

Theorem 9 Assume that the reward is normalized ya,t ∈ [0, 1], kernel function is k(x, x′) ≤

ck, ‖θ‖2 ≤ 1, d is the dimension of φ (x) and feedback delay dt ≤ τmax . At each round,

the agent has context xa,t, ∀a ∈ A and selects arm by Algorithm 2. With probability 1 − δ,

0 ≤ δ ≤ 1, the cumulative expected regret RT is bounded by

RT ≤2(α+λ) τmax

√
2 bT/τmaxcd log

(
1+
ck
dλ
bT/τmaxc

)
+4τmax

where b·cis the floor function and α =
√

1
2 ln 2KT

δ . �

Theorem 9 shows that Algorithm 2 can achieve a sub-linear cumulative regret

bound in the form of O(τmax

√
bT/τmaxc log bT/τmaxc) for τmax ≥ 1. This implies that as

T → ∞, the agent can eventually identify the optimal context-specific arms, resulting in

a vanishing average regret. When τmax = 1 (i.e., the reward feedback for one round is

received by the agent prior to the beginning of the next round without further delays), the

cumulative regret bound of Algorithm 2 reduces to that in the standard no-delay bandit

setting [34, 36].

Proof of Regret Bound

Because of delayed feedback in the considered bandit setting, the proof of our

cumulative regret bound is more challenging than that of the traditional bandit and shown

below. Since the feedback delay is less than or equal to tmax, it is possible that no feedback
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is received during the first tmax rounds. If this happens, the agent chooses arm randomly

for the first tmax rounds. In view of this, we divide the cumulative regret into two parts:

RT =

τmax∑
t=1

E
[
ya∗t ,t − yat,t

]
+

T∑
t=τmax+1

E
[
ya∗t ,t − yat,t

]
.

Define the starting regret as RsT =
∑τmax

t=1 E
[
ya∗t ,t − yat,t

]
and the continuing regret as RcT =∑T

t=τmax+1 E
[
ya∗t ,t − yat,t

]
. Clearly, the starting regret RsT ≤ 2τmax. Now the challenge is

to bound the continuing regret part.

We first bound the instantaneous regret of UCB-based arm selection in Lemma 10

(proof in appendix).

Lemma 10 If UCB is used for arm selection, then with probability at least 1− δ
T , 0 ≤ δ ≤ 1,

for ∀a ∈ A

regt ≤ 2 (α+ λ)wa,t.

Then, with probability at least 1 − δ, 0 ≤ δ ≤ 1, the continuing regret can be

bounded as

RcT =

T∑
t=τmax+1

regt ≤ 2 (α+ λ)

T∑
t=τmax+1

wat,t.

Recall that wa,t =
√

1
λ(k(xa,t, xa,t)− ka,t

>(Dt)−1ka,t) and its RKHS representation is in the

form as wa,t =
√
φ(xa,t)>(Ct)−1φ(xa,t). Since Ct only contains a part of history contexts

before round t due to varying feedback delays, we cannot directly bound
∑T

t=τmax+1wat,t

as Lemma 11 in [1] or Lemma 7 in [36]. In order to prove the bound of
∑T

t=τmax+1wat,t,

we assume the total round T is an integer multiple of τmax without loss of generalization,

i.e. T = (1 + m)τmax. If an upper bound can be proved under this assumption, it can be

generalized to general total number of bounds T . In the next lemma, we divide the T −τmax
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rounds into τmax groups, each with m elements and prove the bound of
∑T

t=τmax+1wat,t by

bounding the sum of wat,t in each group.

Lemma 11 If T = (m+ 1)τmax, we have

T∑
t=τmax+1

||φ(xa,t)||2C−1
t
≤ 2τmaxd log

(
1 +

mck
dλ

)

The proof of Lemma 11 is included in the supplementary material. We can now

prove Theorem 9. Proof. If T = (m+ 1)τmax, m ∈ Z+, by Lemma 10 and Lemma 11, we

have

RcT ≤ 2 (α+ λ)
T∑

t=τmax+1

wat,t

≤ 2 (α+ λ)

√√√√(T − τmax)
T∑

t=τmax+1

w2
at,t

≤ 2 (α+ λ)

√
T2τmaxd log

(
1 +

mck
dλ

)
Therefore, for T = (ξ + 1)τmax, the cumulative regret is bounded by

RT = RcT +RsT

≤ 2 (α+ λ)

√
2Tτmaxd log(1 +

ckξ

dλ
) + 2τmax

If T ≥ τmax and is not divisible by τmax, we define tr = T −bT/τmaxc τmax + τmax and divide

the cumulative regret

RT =

tr∑
t=1

E
[
ya∗t ,t − yat,t

]
+

T∑
t=tr+1

E
[
ya∗t ,t − yat,t

]
.

Note that T − tr ≥ τmax and is divisible by τmax. Therefore, by using Lemma 10 and
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Lemma 11 for the second term, we have

T∑
t=tr+1

E
[
ya∗t ,t − yat,t

]
≤2 (α+ λ)

T∑
t=tr+1

wat,t.

≤2 (α+ λ)

√√√√(T − tr)
T∑

t=tr+1

w2
at,t

≤2 (α+λ)

√
2 bT/τmaxc τ2

maxd log
(

1+
ck
dλ
bT/τmaxc

)
Since the first term

∑tr
t=1 E

[
ya∗t ,t − yat,t

]
≤ 2tr ≤ 4τmax, the cumulative regret is bounded

as

RT ≤2 (α+λ) τmax

√
2 bT/τmaxcd log

(
1+
ck
dλ
bT/τmaxc

)
+ 4τmax,

thus completing the proof.

3.5.2 Missing Feedback

Feedback delays may be arbitrarily long (i.e., missing). We denote SrT as context

set with received or delayed feedback and context set SmT for missing feedback up to time

T . Under this setting, the cumulative regret up to time T can be represented as

RT = R(SrT ) +R(SmT )

Although context in SrT may have delayed feedback, according to Theorem 9 the cumulative

regret caused by SrT is still bounded sub-linearly. We denote xa,ψ ∈ SmT as context with

missing feedback at time step ψ .By using Lemma 8, the estimation error bound at time ψ

is

|ĝa,ψ − ga,ψ| ≤ (α+ λ)wa,ψ
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where α =
√

1
2 ln 2KT

δ and wa,ψ =
√
φ(xa,ψ)>(Cψ)−1φ(xa,ψ). Then, according to Lemma

10 the cumulative regret by SmT is bounded by

R(SmT ) ≤ 2 (α+ λ)
∑
ψ

wa,ψ (3.10)

Clearly, contexts in SmT do not contribute to reward estimation in Eqn. (3.7) because of

lacking feedback information. Therefore, φ(xa,ψ) is not appended in to Φψ. From Lemma

11, the sub-linearity of
∑

ψ wa,ψ is not guaranteed and further, sub-linear upper bound of

regret by Algorithm 2 with missing feedback may not be attained.

3.6 UCB With Semi-supervised Learning

In this section, we exploit the available context information and leverage the idea

of semi-supervised learning [28] to improve the agent’s estimation of reward functions.

Specifically, while waiting for the delayed or possibly missing feedbacks, the agent knows

the context and selected arms for these feedbacks, and hence it can obtain fictitious estimates

of the delayed or missing feedbacks based on the feedback history observed so far. Thus,

the available context information and selected arms can potentially contribute to the overall

learning process, as shown in other contexts (e.g., image classification) using semi-supervised

learning [28]. Next, we will consider one different way to exploit the available context

information to obtain fictitious estimates of the delayed and missing rewards: minimizing

the estimation error by similar context (MINSIM).

3.6.1 Minimizing Estimation Error by Similar Context

41



Algorithm 3 Extension of Delayed Contextual UCB

1: Inputs : kernel function k and parameter α, λ and κt.

2: for t = 1, · · · , T do

3: if length(ŷt = 0) then

4: Random choose arm at

5: else

6: if |St| 6= 0 then

7: For τi ∈ St, augment yaτi ,τi into ŷt

8: Move φ(xa,τi) from Φ̃t to Φ̂t.

9: end if

10: if |Φ̃t| 6= 0 then

11: Find fictitious reward ỹt by Eqn. (3.11)

12: end if

13: Receive context xa,t, a = 1, · · · ,K

14: Augment φ(xa,t) into Φ̃t

15: for a ∈ A do

16: MINSIM: Calculate ḡa,t by Eqn. (3.14) and w̄a,t according to Eqn. (3.15).

17: end for

18: MINSIM: at = arg maxa∈A ḡa,t + (α+ λ)w̄a,t

19: end if

20: end for

Based on the context and reward history, the agent can find the similar context

with received feedbacks for those with delayed or missing feedbacks. Thus, we can view
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the reward of similar context as the “(pseudo) true” reward for the delayed and missing

rewards, and apply ridge regression learning over the perturbation.

First, we use Φ̃t to store contexts without feedback yet (i.e., the contexts whose

corresponding rewards are delayed or missing, and have yet to be provided to the agent),

Φ̂t to store contexts whose reward feedbacks have arrived and the corresponding rewards

are ŷt. Thus, we can use Φ̄t to represent all the experienced contexts up to the beginning

of round t, such that Φ̄>t = [Φ̃>t , Φ̂
>
t ]. Once a delayed reward feedback is provided, it will

be appended to ŷt and its corresponding context information will be transferred from Φ̃t to

Φ̂t. We denote ỹt as the reward feedbacks that have not arrived and need to be estimated

with a perturbation.

As we have all the experienced context information, we can find perturbed reward

of each element in ỹt based on the previous context in Φ̂t and corresponding feedback in ŷt.

Specifically, giving a time-varying perturbation threshold κt of context, we assume context

xia in Φ̃t and the context xka in Φ̂t meet the threshold condition.

||xia − xka|| ≤ κt (3.11)

By using the Hölder condition in Assumption 1, the expectation of ỹit in the vector ỹt can

be bounded by the expectation of ŷkt as follows:

∣∣∣E [ỹit]− E
[
ŷkt

]∣∣∣ ≤ L||xia − xka||β ≤ Lκtβ (3.12)

Therefore, we utilize the true reward feedback ỹit for context xia. In this way, by finding

fictitious rewards into ỹt, all contexts in Φ̂t are also “labeled” with feedbacks. However, one

challenge for finding fictitious rewards is to guarantee that there always exists a context
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in Φ̂t that satisfies the κt threshold for every context in Φ̃t. To achieve this, we set κt

as a time-decreasing parameter, which allows more coarse fictitious rewards to alleviate

the shortage of contexts at the beginning, and produce more accurate fictitious reward to

improve learning afterward.

After we find fictitious rewards in ỹt with context threshold κt, the next step is to

learn the reward function in a semi-supervised manner given the perturbed rewards shown

in Eqn. (3.12). Specifically, by using kernel-based empirical risk minimization to estimate

θ̄t, we solve the following optimization problem:

θ̄t=arg min
θ̄

{
‖ỹt − (Φ̃t)

>θ̃‖2 + ‖ŷt−(Φ̂t)
>θ̄‖2+λ‖θ̄‖2

}
(3.13)

Without the first term, the problem in Eqn. (3.13) reduces to the kernel-based ridge re-

gression in Algorithm 2, where only contexts with feedbacks are utilized. By taking ỹt as

perturbation vector for delayed and/or missing rewards with the corresponding contexts

Φ̃t and minimizing the estimation error over ỹt, we can estimate θ̃t in a semi-supervised

manner. Finding a closed-form solution θ̄t by solving the problem in Eqn. (3.13) is same as

solving Eqn. (3.5). Based on [36], we solve Eqn. (3.13) and obtain the following solution

θ̄t = C̄−1
t Φ̄tȳt

where ȳt = [ỹt, ŷt] and C̃t = Φ̄tΦ̄
>
t + λI. Accordingly, at time t, the estimated reward

ḡa,t = φ(xa,t)
>θ̄it is

ḡa,t = φ(xa,t)
>C̄−1

t Φ̄tȳt (3.14)

Like in Algorithm 2 for arm selection, we also add an exploration term of confidence
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width w̄a,t into the estimated reward:

w̄a,t =
√
φ(xa,t)>(C̄t)−1φ(xa,t) (3.15)

Thus, based on ridge regression and UCB for arm selection, our MINSIM approach for

extending the delayed contextual UCB is described in Algorithm 3.

3.6.2 Regret Analysis

To show the advantage of Algorithm 3 over Algorithm 2 given delayed and missing

feedbacks, we show that the cumulative regret bound of MINSIM is sub-linear with time.

To prove the sub-linear bound, we firstly bound the estimation error of Algorithm 3 as

follow.

Lemma 12 Suppose that the expected reward ga,t belongs to the RKHS generated by kernel

function k, i.e. ga,t = φ (xa,t)
> θ. If Eqn. (3.14) is used for reward estimation and entry

in vector φ(xa,t)
>C̄−1

t Φ̄t is bounded by |Vmax|, then with probability at least 1 − δ
T , the

estimation error is

|ḡa,t − ga,t| ≤ (α+ λ) w̄a,t + L|Vmax|tκtβ (3.16)

where w̄a,t =
√
φ(xa,t)>(C̄t)−1φ(xa,t) and α =

√
1
2 ln 2KT

δ . �

The proof of Lemma 12 is available in the supplementary material. By using the

fictitious reward vector ỹt, the term L|Vmax|tκtβ in Eqn. (3.16) is from the contexts with

missing and delayed feedbacks. From the conclusion in Lemma 10, with probability 1− δ
T ,

the instant regret is bounded as

regt ≤ 2(α+ λ)w̄a,t + 2L|Vmax|tκtβ
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When we sum up all instant regrets over time,
∑T

t=1 w̄a,t can be proven with O(
√
T log(T ))

by using Lemma 11 in the non-delay setting (τmax = 1). Therefore, the choice of κt is vital

to achieve sub-linear upper bound of cumulative regret reward.

Theorem 13 Assume that the reward is normalized as ya,t ∈ [0, 1], kernel function is

k(x, x′) ≤ ck, ‖θ‖2 ≤ 1, d is the effective dimension of φ (x), entry in vector φ(xa,t)
>C̄−1

t Φ̄t

is bounded by |Vmax| and let κt = ζt
−3
β , where ζ > 1. At each round, the agent has context

xa,t, ∀a ∈ A and selects arm by Algorithm 3. With probability 1 − δ, 0 ≤ δ ≤ 1, the

cumulative expected regret RT is bounded by

RT ≤ 2 (α+ λ)

√
2Td log

(
1 +

ck
dλ
T
)

+ 2L|Vmax|ζ
π2

3

where π2

3 = 2
∑∞

t=1 t
−2and α =

√
1
2 ln 2KT

δ . �

We set κt = ζt
−3
β to guarantee the existence of fictitious feedback when contexts with

feedback are scarce, and also the reward perturbation is decreasing with time. This method

is different from widely-used self-training techniques [28] which provides fictitious feedback

through the already learned model. The reason is that in RKHS, our reward function can

be viewed linear with gaussian noise. Thus, it is futile to estimate the reward by utilizing

the learned function to generate fictitious feedback for delayed and missing rewards.

To sum up, by using Algorithm 3, the agent takes advantage of more information

from the context to produce fictitious rewards for further updating reward estimation,

although the actual reward signals are still delayed or missing. This is expected to decrease

the regret compared to Algorithm 2 when delayed and missing feedbacks are significant.

46



0 1000 2000 3000 4000 5000
Round

0

250

500

750

1000

1250

Cu
m

ul
at

iv
e 

Re
gr

et
w/o Delay UCB
Delayed UCB
MINSIM
MLINUCB

(a) τmax = 50, Pmiss = 0
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(b) τmax = 100, Pmiss = 0
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(c) τmax = 200, Pmiss = 0
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(d) τmax = 500, Pmiss = 0
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(e) τmax = 50, Pmiss = 0.1
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(f) τmax = 100, Pmiss = 0.1
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(g) τmax = 200, Pmiss = 0.1
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(h) τmax = 500, Pmiss = 0.1
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(i) τmax = 50, Pmiss = 0.2
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(j) τmax = 100, Pmiss = 0.2
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(k) τmax = 200, Pmiss = 0.2
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Figure 3.1: Cumulative regrets for different algorithms.

3.7 Experiments and Results

In this section, to evaluate our proposed delayed algorithms, we consider the ap-

plication of contextual news recommendation to improve click through rate (CTR).
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3.7.1 Yahoo! Today Module

To test our proposed algorithms, we use the Yahoo Module dataset [65]. It includes

the browsing history from Yahoo! Front Page Module, where the featured tab recommends

one article from a large set of candidates. The dataset is a log of random traffic on the

Today Module, and ensures that the article is randomly chosen to serve the user. The

dataset records detailed user/article features for context-aware problem. The feedback

in dataset is click information (click or not click), which indicates user’s preferences for

recommended articles. Each data entry is in the form of <user, article, click feedback>.

Delayed and missed click feedback of recommended articles or news is very com-

mon because the article location may not be noticeable to users, or users decide not to react

immediately even they see the recommended item and spend additional time before provid-

ing any feedback. Additionally, since the user features (e.g. sex and age) as well as article

features (e.g. topic) are highly heterogeneous, it is challenging to build a context-aware

article recommendation in the delayed and missing feedback scenario. This problem fits

well into our bandit setting — articles are the arms to select, and the clicks are feedbacks

be provided to the learner and can be delayed or missing .

3.7.2 Experimental Setup

In pre-processing, we remove incomplete entries (user or arm context is not recorded)

in the dataset and group user contexts after selecting 20 candidate articles. Thus, the size

of our arm set is |A| = 20. Different from previous work [65], we consider user-article

context vector by concatenating vectors (both dimension of 6) instead of outer product,
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thus xa,t ∈ R12. We assume the click feedback (0 or 1) for each user-article pair follows

a Bernoulli distribution and its probability being clicked is the expected reward. Because

the expected reward is unknown, it is impossible to evaluate the expected regret. To solve

that, we utilize a deep neural network (DNN) to learn the expected reward function in an

offline manner. The built DNN has total 4 layers and uses Relu as activation function.

Specifically, given the user-article vector input, we consider the single normalized output

inferred by the well-trained network is probability of article being clicked by user (expected

reward).

During the online bandit learning, the learner is estimating reward function based

on 1 (click) or 0 (not click) feedback and meanwhile, selecting arm with highest UCB score

of probability being clicked. Some feedbacks are delayed, following a uniform distribution

in [0, τmax]. Some feedbacks are assumed to have infinite delay (missing) with probability

Pmiss. We test four different values of τmax and two different Pmiss values. We use RBF

kernel function, k(x, x′) = exp(−ρ‖x− x′‖22), for our kernel computation. To better evaluate

our proposed algorithms, we compare them with two benchmarks: non-delay UCB (i.e.,

assuming τmax = 1 and Pmiss = 0) and MLINUCB algorithm from [21].

3.7.3 Experimental Result

In Figure 3.1, we show the cumulative regrets for no-delay contextual UCB (w/o

Delay UCB), delayed UCB algorithm that learns the reward function by only using available

click feedback, MINSIM algorithms that finds fictitious values for delayed and missing

feedback, and MLINUCB which utilizes clusters to predict feedback values.

In general, as the maximum feedback delay τmax increases, the cumulative regret
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incurred by the algorithms also increase. However, when the occurrence of missing feedback

is infrequent, all the cumulative regret curves exhibit a good sub-linearity as time goes

on. Importantly, it is worth noting that the when τmax is 50, the difference between the

delayed contextual UCB and our semi-supervised algorithms is not significant, neither is the

difference between our algorithms and the non-delayed UCB algorithm. This is expected,

since a small feedback delay has a negligible role in affecting the bandit learning process.

But, the regret difference between our algorithms and the non-delayed UCB algorithm

becomes more significant as more feedbacks are likely missing. Moreover, the results show

that by using Algorithm 2, we can effectively decrease the regret when the feedback delay is

large enough and missing feedbacks are more frequent. This is because when the feedback

information is more lacking, the learning process is more affected and thus, Algorithm 2

that finds fictitious feedbacks for delayed or missing feedback is more beneficial.
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Chapter 4

Contextual Combinatorial Bandits

with Arm Removal and

Submodular Utility

4.1 Introduction

In real-world scenarios such as crowd sourcing [69], adaptive routing [12], wireless

spectrum allocation [64] and influence maximization in social networks [97], the agent are

provided with context information and can select a set of multiple arms, rather than an

individual one, subject to a budget or cardinality constraint. Such problems fit well into

contextual combinatorial bandits, which is a generalization of the contextual MAB model

[84, 32]. As a result, the agent’s overall utility is jointly determined by feedback signals of all

the selected arms. Moreover, to capture the effect of diminishing returns, the utility function
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can be monotone and submodular in terms of the feedbacks of the selected arms [49, 30,

96]. The monotonicity and submodularity apply widely in practice, such as optimal sensor

placement [59], sniffer channel assignment [29] and recommender systems [14]. Nonetheless,

in general, maximizing a monotone submodular function is a challenging NP-hard problem,

even when the feedback for each selected arm is known in advance under a non-learning

setting.

In addition, another crucial consideration in contextual combinatorial bandits is

that some selected arms may be deliberately or accidentally removed/nullified from decision

arm set (which we call arm removal or failure). This occurs in a variety of scenarios [82]:

(i) in influence maximization problems, some selected users may not continue spreading the

information as requested; (ii) in the sensor placement problem, some selected sensors may

fail due to internal malfunction or adversarial jamming attacks; and (iii) in a tactical envi-

ronment, the selected nodes can be sabotaged and disabled for functioning. Consequently,

the removed arms may not contribute anything to the overall utility. It is noteworthy that,

unlike sleeping arms [88] or volatile arms [30], the removed arms are not removed from

total arm set permanently or temporarily; instead, they are still available for selection but

they will not contribute to the agent’s actual utility. While the agent can learn the overall

feedback for each arm by explicitly accounting for the likelihood of arm removal, a robust

arm selection strategy is more suitable when the agent is uncertain a priori about which

arms will be removed. That is, to achieve robustness, the agent focuses on the worst-case

utility in the presence of arm removal. In the submodular maximization literature, robust

optimization in the presence of removed actions is very challenging, with only approxima-
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tion algorithms available to date [82]. Combined with unknown feedbacks for the selected

arms that require online learning, robustness for submodular maximization is naturally even

more challenging.

In this chapter, motivated by the above considerations, we study a novel and chal-

lenging contextual combinatorial bandit setting with arm removal and submodular utility:

the agent can select multiple arms (subject to a cardinality constraint), but some selected

arms may be removed and the overall utility is jointly determined by all the feedback signals

of non-removed arms through a monotone submodular utility function. The challenges are

two-fold. First, the agent has no knowledge a priori about the exact feedback for each se-

lected arm. Thus, the agent must carefully balance exploitation and exploration, and learn

the feedback signals for different arms and context. Second, even assuming that the agent

has perfectly learnt the feedback signals for different arms and context, robust optimization

of a monotone submodular utility in the presence of arm removal is NP-hard with only

approximation algorithms available for general settings [82].

To address the challenges, we propose a novel approximation-based robust com-

binatorial bandit algorithm, called arm Removal Robust Contextual Combinatorial MAB

(R2C2-MAB). The algorithm is designed building upon contextual combinatorial bandits,

along with a greedy approximation algorithm [79] and a robust submodular maximiza-

tion method [17]. Specifically, we consider a general non-parameterized (unknown) relation

between the feedback signal/reward received by each arm and context, while the agent’s

overall utility is a monotone submodular function of all the feedback signals of non-removed

arms. While learning the feedback signals online, the agent’s goal is robust arm selection,
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such that the worst-case utility is maximized in the presence of arm removal. We prove

that R2C2-MAB achieves a sublinear regret over time compared to the oracle that knows

the exact feedback signals for all the arms and context information. To evaluate the effi-

ciency of proposed R2C2-MAB algorithm, we consider a sniffer channel assignment problem

in a tactical environment. This is shown to be a combinatorial problem, since it chooses a

subset of sniffers to deploy on a channel to maximize the overall monitoring performance

(monotone and submodular).

The main contributions of our work are summarized as follow:

(1) We study a novel and challenging problem — contextual combinatorial bandits

with arm removal and submodular utility. This setting applies to a variety of problems in

networked systems involving combinatorial decisions, especially in tactical or adversarial

environments where some selected arms can be nullified and contribute zero to the agent’s

utility.

(2) We propose a new algorithm, called R2C2-MAB, that can robustly select arms

to maximize the worst-case utility in the presence of arm removal and provably guarantees

a sublinear cumulative regret with time.

(3) We consider the sniffer channel assignment problem and evaluate R2C2-MAB

against a number of well-established bandit algorithms. The numerical result shows that

R2C2-MAB outperforms the existing algorithms and validates our analysis.
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4.2 Related Work

In the literature of combinatorial bandit, [84] considers contextual combinatorial

bandit with semi-bandit feedback and nonlinear rewards, [66] focuses on contextual com-

binatorial bandits with cascading feedback and nonlinear reward, [64] considers fairness

and sleeping arms, and [30] considers contextual combinatorial bandit with volatile arms.

Our work differs from these studies in that we focus on worst-case robustness with arm

removal. We note the crucial difference between our considered arm removal and sleep-

ing or volatile arms: removed arms are those whose corresponding rewards are removed

or nullified, whereas volatile arms mean that they are either temporarily or permanently

unavailable.

Our work is also related to adversarial bandits or corrupted bandits [73, 80, 95,

8, 70, 10, 11, 54], many of which consider that the adversary maliciously presents rewards

observed by the agent to mislead reward estimation and arm selection. A recent study [117]

also considers that the adversarial can maliciously modify the actual reward received by the

agent. While this setting can capture arm removal (i.e., setting the rewards for removed

arms as zero), our consideration of contextual combinatorial bandits with a submodular

utility function sets our work apart.

More recently, bandit algorithms with imperfect information have been studied.

For example, some focus on robust reward estimation and exploration [8, 50], and others

train a robust policy directly [112, 95]. The studies [107, 57, 116, 114] focus on imperfect

contextual information, and subsequently [56, 115] consider robust arm selection in the

presence of context errors. Nonetheless, our work assumes a different type of imperfection
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— arm removal — than uncertain context.

Finally, our work is related to submodular function maximization [48, 63, 22].

For a monotone submodular function, (1 − 1/e)-approximation can be achieved by greedy

approaches subject to a cardinality constraint [79]. The study [43] shows that the greedy

algorithm achieves a 1/2-approximation for maximizing the same objective subject to a

general matroid constraint, and the ratio is later improved to a tighter bound [24]. Consid-

ering action removal, robust submodular maximization is studied in [82, 17], where 0.387-

approximation is proved by using greedy algorithm as subroutines. The submodular func-

tion is perfectly known in these studies, whereas we do not know the rewards associated with

each selected arm and hence need learning while balancing exploitation and exploration.

4.3 Problem Formulation

In this section, we formulate the contextual combinatorial bandit problem with

arm removal and submodular function. The decision timeline is discretized into time slots.

Consider a learning agent that interacts with the environment and makes sequen-

tial decisions for a horizon of T time slots. We let N = {1, 2, . . . , N} denote the set of arms

for selection (e.g., the set of users for scheduling in a wireless network). Due to the resource

constraint, the agent can select up to b arms from N , such that b < N (the case of b = N

is trivial as the agent will simply choose all the arms due to monotone utility). The agent

can observe side information (context) for each arm xtn ∈ X
∆
= [0, 1]D,∀n ∈ N , where X is

the context space and D is the dimension of context vector. Without loss of generality, we

normalize the context space within [0, 1]D as in the literature [30]. The agent collects the
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observed context information of all arms in xt = {xtn}n∈N .

In each time slot t, the agent selects a set of arms N t
s with |N t

s | ≤ b based on the

context information xt and the knowledge about feedback signal corresponding to each arm

learnt from the previous time slots. Due to existence of adversaries or arm failures, some

selected arm may be removed or nullified, denoted as N t
r ⊆ N t

s . We let size |N t
r | ≤ τ , where

τ is the upper bound on the number of removal arms out of the selected arm set. Generally,

we have τ < b and more details on τ will be discussed later.

At the end of the each slot, the set of selected but non-removed arms is N t
nr =

N t
s\N t

r . For each arm n ∈ N t
nr, the agent receives a feedback signal dtn based on its

context information. We also say that dtn is the feedback reward to be consistent with

the bandit literature, while noting that the agent’s overall utility is a function of all the

non-removed feedback signals/rewards. We denote dtnr = {dtn}n∈N tnr as the collections

of feedback signals/rewards obtained by selecting arms N t
s . In contextual bandits, it is

commonly assumed that the reward function is, for example, linear in the context (plus a

observation noise term) [35]. By contrast, in our work, the reward dtn(xtn) corresponding to a

non-removed arm n ∈ N t
nr is determined by the context information xtn through an unknown

and non-parameterized function subject to the Hölder condition (specified in Section 4.4.2)

[30]. We assume the that reward dtn is bounded by [0, dmax], where dmax is the maximum

reward of taking a single arm in one time slot.

To evaluate the decision for selecting arms N t
s , the agent has a known utility

function u(dtnr,N t
nr), as assumed in the literature [30, 29]. That is, the agent’s online

learning is mainly focused on the individual feedback signal/reward dtn(xtn). To make our
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analysis tractable while being applicable to practical applications, we assume that the utility

function is monotone and submodular, which includes the summation over the reward of

each arm as a special case. Formally, monotonicity and submodularity are defined as follows.

Definition 14 (Monotonicity) A set function F : 2V → R+ is defined to be monotone

if F (A) ≤ F (B) for all A ⊆ B ⊆ V .

Definition 15 (Submodularity) A set function F : 2V → R+ is submodular if it admits

the property of diminishing marginal cost:

F (A ∪ {e})− F (A) ≥ F (B ∪ {e})− F (B) (4.1)

for all A ⊆ B ⊆ V and e ∈ V \B.

The goal of the agent is to select up to b arms to maximize the utility with possible

arm removal of up to τ in a finite time horizon T . Thus, the bandit problem in the presence

of arm removal can be formally written as:

P1 : max
(N ts )t=1,...,T

T∑
t=1

E
[
u(dtnr,N t

nr)
]

s.t. |N t
s | ≤ b, b− τ ≤ |N t

nr| ≤ b,N t
nr ⊆ N t

s ⊂ N , ∀t

(4.2)

where we keep the expectation over random contexts. Note that the key challenges for

solving the problem P1 are: (i) the agent does not known the function dtn(xtn) and needs to

learnt it online; and (ii) robust submodular maximization in the presence of arbitrary arm

removal (i.e., any subset of selected arms can be removed subject to τ in total) [82].
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4.4 Robust Contextual Combinatorial Bandit with Arm Re-

moval

In this section, we first show the problem hardness and then propose an online

learning algorithm, called R2C2-MAB. Our algorithm learns the feedback reward func-

tion given context information and robustly selects arms to maximize a submodular utility

subject to arm removal.

4.4.1 Problem Hardness

Before proposing R2C2-MAB, we first show the problem hardness by assuming

that the agent already perfectly knows the feedback reward functions for different arms and

context information. That is, the online learning problem reduces to robust submodular

optimization with action/arm removal. We describe two existing algorithms, which are

instrumental for the development of R2C2-MAB.

Greedy Algorithm Without Arm Removal

We begin with a simplified case where there is no arm removal (i.e., τ = 0 and

N t
nr = N t

s) from selected arm set N t
s and the feedback rewards dt for all arms are perfectly

known. Since the problem P1 can be decoupled into T subproblems, the agent decides the

best arm set based on N t
s = arg max(N ts ) u(dts,N t

s). Even under this idealized and simplified

setting, solving P1 is NP-hard due to its combinatorial nature. Instead, we consider a greedy

approximation algorithm (described in Algorithm 4). The greedy algorithm selects arms

sequentially to achieve the largest marginal utility increment. When arm n ∈ N\N t
s , the
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Algorithm 4 Greedy Algorithm

1: Inputs : Arm set N , utility function u and budget b.

2: for t = 1, 2, . . . , T do

3: Initialization : N0 ← ∅, j ← 0

4: while j ≤ b do

5: According to knowledge dt, select arm nj by

nj = arg maxnj∈N\Nj−1
∆u(nj ,Nj−1)

6: Nj = Nj−1{∪nj}

7: end while

8: Return : N t
s = Nj .

9: end for

marginal utility increment by adding n into N t
s defined as ∆u(n,N t

s) = u(dts∪{d(xtn)},N t
s ∪

{n}) − u(dts,N t
s). Importantly, the greedy approximation algorithm guarantees to achieve

no less than β ∈ (0, 1] of the optimum, i.e., u(dts,N t
s) ≥ βu(dts∗ ,N t

s∗), where u(dts∗ ,N t
s∗) is

the utility of optimal arm set N t
s∗ by solving P1. The value of β depends on the structure

of the combinatiorial optimization problem and varies with different settings. Notably,

β = 1− 1
e can be achieved for our monotone submodular maximization [42, 30].

Partitioned Robust With Arm Removal

In our setting, the agent has no prior knowledge about which arms will be removed

from N t
s , and instead only knows the maximum number of removed arms τ . Therefore, in

every time slot t, the agent has to select arms in a robust manner by considering τ arm

removals from utility. From P1, we can reformulate the problem explicitly using its robust
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Algorithm 5 Partitioned Robust Submodular optimization (PRO)

1: Inputs : Arm set N , utility u, budget b, removal budget τ , and greedy approximation

A.

2: Initialization : S0, S1 ← ∅

3: for i = 0, · · · , dlog τe do

4: for j = 1, · · · , d τ
2i
e do

5: Bj ← A(N\S0, u, 2
i)

6: S0 ← S0 ∪Bj

7: end for

8: end for

9: S1 ← A(N\S0, u, b− |S0|)

10: Return : S ← S0 ∪ S1

version as follows.

P2 :
T∑
t=1

max
N ts⊂N

min
N tr⊂N ts

u(dts\dr,N t
s\N t

r )

s.t. |N t
s | ≤ b, |N t

r | ≤ τ,∀t

(4.3)

Given unknown arm removal, the greedy approximation algorithm can perform

arbitrarily badly for P2 in the worst case. The prior study [17] provides a new Parti-

tioned Robust (PRO) submodular maximization algorithm (described in Algorithm 5) that

achieves a constant-factor (0.387) approximation guarantee for solving P2.

The key idea of Algorithm 5 is that it utilizes greedy approximation algorithm

(Algorithm 4) as a subroutine. The output of the algorithm is a set of size b that is robust

against the worst-case removal of τ actions. As we can see in Algorithm 5, the output
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set consists of two sets S0 and S1: set S0 is the robust part of the solution set S, which

consists of dlog τe + 1 partitions. For every partition i, it consists of d τ
2i
e buckets Bj , and

every bucket contains 2i elements. The intuition of designing PRO is from fact that the

objective value of the submodular function from buckets i = 0, ..., j with removals cannot

be too much smaller than the objective value in bucket j without removals, and the loss

by the removals in bucket j is at most a small fraction of the objective value from previous

buckets. Generally, the union of these buckets achieves a sufficiently high objective value,

which is hence robust to removal. The size |S0| is related with τ , which can be represented

as |S0| =
∑dlog τe

i=0 d τ
2i
e2i. However, without restrictions on τ , it is impossible to achieve a

constant approximation ratio: for example, in the trivial case τ = b the agent cannot receive

any utility at all. Thus, there is a limit on τ such that |S0| =
∑dlog τe

i=0 d τ
2i
e2i ≤ b, as shown

in [17].

4.4.2 Algorithm Design

In practice, the feedback rewards for different arms and context information are

unknown to the agent a priori. Thus, at time slot t, the agent cannot directly use Algo-

rithm 5 to get an approximation solution. Next, we propose R2C2-MAB to address this

challenge.

To keep tractability, our algorithm is based on the assumption that taking the

same arm on similar context information will result in similar reward. Mathematically, this

assumption can be represented by the Hölder condition on reward d(xtn) for arm n,

|d(x)− d(x′)| ≤ L||x− x′||α (4.4)
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where L > 0 and α > 0. R2C2-MAB uniformly partitions the context space X . By partition,

we split the entire context space into small hypercubes of similar contexts. Then, the

feedback reward in each hypercube is bounded due to Hölder condition. Similar to other

bandit algorithms, our algorithm is interspersed with exploration and exploitation.

For exploration, the agent randomly selects a set of arms. During exploration,

the agent learns the reward functions for arms which have not been explored sufficiently.

Otherwise, the agent turns to exploitation. Because of the removal of selected arms, the

agent needs to chooses arms in a robust manner, maximizing the worst-case utility based

on previous history with similar contexts. After choosing a set of arms, the agent observes

the reward of non-removal arms at the end of each time slot. In this way, the agent learns

context-specific reward functions over time.

The pseudo-code of R2C2-MAB is presented in Algorithm 6. In the beginning,

given context space X = [0, 1]D, R2C2-MAB creates a partition PT with time horizon T ,

which splits the context space evenly into (hT )D sets, where hT is an hyper-parameter

which determines the number of hypercubes in the partition. The estimated reward of each

hypercube p ∈ PT can be computed by the accumulated historical rewards that fall into

the hypercube. Letting H(p) represent the reward history of hypercube p, the estimated

reward for contexts falling in p

d̂(p) =
1

|Ht(p)|
∑

d∈Ht(p)

d (4.5)

Additionally, the counter Ct(p) = |H(p)| indicates the number of times that the arms

corresponding to contexts from hypercube p are selected and non-removed.

In each time slot t, the agent first observes the context xtn for all its arms. Then,
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R2C2-MAB determines the hypercube ptn containing the context xtn for arm n. The collection

of these hypercubes set is denote as P t = {ptn}∀n∈N . As aforementioned, due to existence

of potential arm removal, the arm selection considers maximizing the worst-case utility

function. For the agent, to solve T subproblems in P2, we use Algorithm 5 with the

estimated reward d̂(P t) of all the arms.

Another challenge is that the proposed algorithm has to balance the exploration

and exploitation in case there are hypercubes in P t that have not been explored sufficiently.

We denote N t
ue as

N t
ue = {n : ∀Ct(ptn) ≤ K(t)} (4.6)

where K(t) is a monotonically increasing in t and a hyperparameter decided by the agent (in

Section 4.5). For every time slot t, if N t
ue is not empty and |N t

ue| ≤ b, we select all the arms

in N t
ue and the other b− |N t

ue| arms by the greedy approximation algorithm (Algorithm 4).

The reason that Algorithm 5 is not preferred for the rest b− |N t
ue| arms, is to prevent the

maximal removal τ or |S0| larger than b−|N t
ue|. If N t

ue is empty, then the agent relies on its

reward functions learnt thus far and employs Algorithm 5 to maximize the utility function

in a robust manner.

4.5 Regret Analysis

In this section, we analyze R2C2-MAB described in Algorithm 6 by deriving an

upper performance bound of the cumulative regret. Our key result shows that R2C2-MAB

achieves a sublinear regret O(log(T )T
α+D
2α+D ) compared to the oracle that knows the reward

functions for all arms and context information.
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4.5.1 Regret Definition

To analyze regret of Algorithm 5, we consider an oracle, which knows the reward

functions d(x) but not which selected arms will be removed or not. In other words, the

oracle also faces a robust submodular maximization problem whereas the agent in our setting

needs online learning additionally. This type of oracle is similar to the one considered in

robust bandits [56] with imperfect contexts where the oracle also does not know the perfect

context.

For each arm n and each p ∈ Pt, we define d̄(p) = supx∈p d(p) and d(p) =

supx∈p d(p) as the highest and the lowest rewards for contexts in hypercube p. Since we

need to compare the reward in different hypercubes, we set the geometric center of each

hypercube p as the reference context, denoted as x∗(p). Therefore, after receiving context

P t, the optimal b arm set N ∗s chosen by the oracle satisfies

N ∗s = arg max
Ns∈E(N ,b)

min
Nr∈E(Ns,τ)

u(ds(x
∗)\dr(x∗),Ns\Nr) (4.7)

where E(N , b) is the collection set of all b-arm subset fromN and ds(x
∗)

∆
= {d(x∗(ptn))}n∈Ns .

For simplicity, we let g(ds(x
∗),Ns)

∆
= minNr∈E(Ns,τ) u(ds(x

∗)\dr(x∗),Ns\Nr). Therefore,

the regret R(T ) can be represented as

E[R(T )] =0.387 ·
T∑
t=1

E [g(d∗s,N ∗s )]−
T∑
t=1

E [g(ds,Ns)] . (4.8)

The approximation ratio 0.387 comes from Algorithm 5 used by the oracle [17]. That is, due

to the lack of polynomial time optimal solutions for robust submodular optimization [82, 17],

the best approximation-guaranteed utility the oracle can achieve is 0.387·
∑T

t=1 E [g(d∗s,N ∗s )].

This scaled-down coefficient for regret analysis is also commonly used in other bandit set-
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tings with submodular utility [30].

4.5.2 Analysis

In this subsection, we show the details of the regret analysis for R2C2-MAB.

The regret R(T ) consists of two parts.

E[R(T )] = E[Rexplore(T )] + E[Rexploit(T )] (4.9)

Since there are two phases — exploration and exploitation — in Algorithm 6, E[Rexplore(T )]

is the regret due to exploration for hypercubes and E[Rexploit(T )] is the regret by exploita-

tion. Next, we bound E[Rexplore(T )] and E[Rexploit(T )] separately.

Lemma 16 Let K(t) = tz log(t) and hT = dT γe, where 0 < z < 1 and 0 < γ < 1
D , the

exploration regret E[Rexplore(T )] is bounded by

E[Rexplore(T )] ≤0.387 · bdmax2D(log(T )T z+γD + T γD). (4.10)

Proof. In the exploration phase, there exists at least one arm with context xtn, such that

Ct(p) ≤ K(t) = tz log(t),∃p ∈ P t . Since there are totally (hT )D partitioned hypercubes,

we have at most (hT )DdT z log(T )e exploration phases. Since the utility function on is mono-

tone and submodular given selected arms, the utility function of choosing b arms is upper

bounded by bdmax. Then, the maximum regret of wrong selection in one exploration phase

is bounded by 0.387bdmax, due to the submodularity of utility function. For E[Rexplore(T )],
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we have:

E[Rexplore(T )] ≤ 0.387 · bdmax(hT )DdT z log(T )e

= 0.387 · bdmaxdT γeDdT z log(T )e

≤ 0.387 · bdmax2D(log(T )T z+γD + T γD)

The last inequality is due to the fact that dT γeD ≤ (2T γ)D = 2DT γD and dT z log(T )e ≤

T z log(T ) + 1 This completes the proof.

The next step is to bound the regret E[Rexploit(T )] from Algorithm 6. Since we use

the greedy approximation as a subroutine process included in Algorithm5, the exploitation

regret is caused by suboptimal solutions from Algorithm 4. The reason that the greedy

algorithm offers suboptimal solution is using the estimated reward d̂
t

to maximize marginal

utility instead of dt. To bound the exploitation regret of Algorithm 6, we need to analyze the

performance of greedy approximation by using the estimated reward of each arm. Because

there are various greedy approximation subroutines problems with different budgets in

Algorithm 5, we need to consider a general setting.

Lemma 17 Given an arm set Ñ to select b̃ arms (b̃ ≤ |Ñ |) in the subroutine of Algorithm6,

the utility function ũ is monotone, submodular, and satisfies u(dtg, Ñ t
g)−u(d̄

t
sub, Ñ t

sub) ≥ Atθ,

where Ñ t
g is the optimal arm set by greedy approximation and Ñ t

sub is the suboptimal arm

set. In time slot t, the probability of event V t
sub, i.e., selecting Ñ t

sub over Ñ t
g , is bounded by

Pr{V t
sub} ≤ 2 · b̃t−2 (4.11)

Proof. We offer a sketch of proof, leaving the detailed proof in the appendix. In R2C2-

MAB, when V t
sub happens, it indicates that the utility of selecting arms in Ñ t

sub is higher
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than the utility of selecting arms in Ñ t
g . Thus, we have

Pr{V t
sub} = Pr{u(d̂

t

sub, Ñ t
sub) ≥ u(d̂

t

g, Ñ t
g)} (4.12)

The right side of Equation (4.12) indicates that at least one of three following events happens

when H(t) ≥ 0

E1 ={u(d̂
t

sub, Ñ t
sub) ≥ u(d̄

t
sub, Ñ t

sub) +H(t)}

E2 ={u(d̂
t

g, Ñ t
g) ≤ u(dtg, Ñ t

g)−H(t)}

E3 ={u(d̂
t

sub, Ñ t
sub) ≥ u(d̂

t

g, Ñ t
g),

u(d̂
t

sub, Ñ t
sub) < u(d̄

t
sub, Ñ t

sub) +H(t),

u(d̂
t

g, Ñ t
g) > u(dtg, Ñ t

g)−H(t)}

(4.13)

Hence, we have

{u(d̂
t

sub, Ñ t
sub) ≥ u(d̂

t

g, Ñ t
g)} ⊆ E1 ∪ E2 ∪ E3

(4.14)

The next step is to bound the probability of E1, E2 and E3 separately. For Pr{E1}, we
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have

Pr{E1} = Pr{u(d̂
t

sub, Ñ t
sub) ≥ u(d̄

t
sub, Ñ t

sub) +H(t)}

≤ Pr{d̂(ptn) ≥ d̄(ptn) +
H(t)

b̃
, ∃n ∈ Ñ t

sub}

≤ Pr{d̂(ptn) ≥ E[d̂(ptn)] +
H(t)

b̃
,∃n ∈ Ñ t

sub}

=
∑

n∈Ñ tsub

Pr{d̂(ptn) ≥ E[d̂(ptn)] +
H(t)

b̃
}

≤
∑

n∈Ñ tsub

exp

(
−2Ct(p̂tn)H(t)2

(b̃dmax)2

)

≤
∑

n∈Ñ tsub

exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

≤ b̃ exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

(4.15)

The first inequality of Equation (4.15) comes from {u(d̂
t

sub, Ñ t
sub) ≥ u(d̄

t
sub, Ñ t

sub)+H(t)} ⊆

{d̂(ptn) ≥ d̄(ptn) + H(t)

b̃
, ∃n ∈ Ñ t

sub}, which can be proved by reductio ad absurdum. The last

three steps of Equation (4.15) utilize the Chernoff-Hoeffding bound. Since this is in the

exploitation phase, there are least tz log(t) times counted in C(p), ∀p ∈ Pt. To bound

Pr{E1}, we choose H(t) = b̃dmaxt
−z
2 and then have

Pr{E1} ≤ b̃ exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

= b̃ exp

(
−2tz log(t)(b̃dmaxt

−z
2 )2

(b̃dmax)2

)

≤ b̃ exp(−2 log(t))

≤ b̃t−2

(4.16)
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Similarly, the Pr{E2} can be bounded in the same way.

Pr{E2} ≤ b̃ exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

≤ b̃t−2

(4.17)

Last, to bound Pr{E3}, we can find H(t) that satisfies:

H(t) + LD
α
2 h−αT ≤ Atθ

2
(4.18)

Under the condition in Equation (4.18), the probability Pr{E3} is zero (details in the

appendix).

Combining (4.16) and (4.17), we have

Pr{V t
sub} ≤ Pr{E1 ∪ E2 ∪ E3}

≤ Pr{E1}+ Pr{E2}+ Pr{E3}

= 2 · b̃t−2

(4.19)

The assumption of the utility difference u(dtg, Ñ t
g)− u(d̄

t
sub, Ñ t

sub) ≥ Atθ shows that the

gap between the utility of the worst reward in Ñ ∗g and the best reward for subset Ñ ′ is

shrinking as time grows, where A > 0 and θ < 0 are the parameters for analysis.

After bounding the probability of selecting suboptimal arm sets in the greedy

approximation, we can bound E[Rexploit(T )] by a constant.

Lemma 18 Let K(t) = tz log(t) and hT = dT γe, where 0 < z < 1 and 0 < γ < 1
D . We

assume u(dtg, Ñ t
g) − u(d̄

t
sub, Ñ t

sub) ≥ Atθ and condition H(t) + LD
α
2 h−αT ≤ Atθ

2 holds true,

where H(t) := b̃maxdmaxt
−z
2 . For all 1 ≤ t ≤ T , the regret due to exploitation E[Rexploit(T )]

is bounded by

E[Rexploit(T )] ≤ 0.387 · bdmaxS(b̃max, τ) (4.20)
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where S(b̃max, τ) =
∑∞

t=1 1 − (1 − 2b̃maxt
−2)m is a convergent series regarding the largest

budget bmax in greedy subroutine and number of subroutine m =
∑dlog τe

i=0 i+ 1.

Proof. We let U(t) represent the event that at least one greedy approximation A out

of m =
∑dlog τe

i=0 i + 1 subroutines produces suboptimal arms. Then, the Rm(T ) can be

represented as

Rexploit(T ) =
T∑
t=1

I{U(t)} ×
(
u(dtg, Ñ t

g)− u(dtsub, Ñ t
sub))

)
≤ 0.387 · bdmax

T∑
t=1

I{U(t)}

(4.21)

Taking expectation over contexts, we have

E[Rexploit(T )] ≤ 0.387 · bdmax
T∑
t=1

E[I{U(t)}]

= 0.387 · bdmax
T∑
t=1

Pr{U(t)}

(4.22)

The next step is to bound Pr{U(t)}. Since we have the probability bound for the event

that any greedy approximation selects suboptimal arms from Equation (4.19), it implies

Pr{U(t)} ≤ 1− (1− 2b̃maxt
−2)m (4.23)

where b̃max is the maximum budget of greedy approximation subroutines in Algorithm 5.

Combining Equations (4.22) and (4.23), we have

E[Rm(T )] ≤ 0.387 · bdmax
T∑
t=1

Pr{U(t)}

≤ 0.387 · bdmax
T∑
t=1

1− (1− 2b̃maxt
−2)m

≤ 0.387 · bdmax
∞∑
t=1

1− (1− 2b̃maxt
−2)m

≤ 0.387 · bdmaxS(b̃max, τ)

(4.24)
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where S(b̃max, τ) =
∑∞

t=1 1− (1− 2b̃maxt
−2)m, which is convergent series.

Combining Lemma 16 and Lemma 18, we have a regret upper bound for E[RT ],

Theorem 19 Let K(t) = tz log(t) and hT = dT γe, where 0 < z < 1 and 0 < γ < 1
D .

We assume u(dtg, Ñ t
g) − u(d̄

t
sub, Ñ t

sub) ≥ Atθ and condition H(t) + LD
α
2 h−αT ≤ Atθ

2 holds

true, where H(t) := b̃maxdmaxt
−z
2 . For all 1 ≤ t ≤ T the total regret E[R(T )] defined in

Equation (4.8) is upper bounded by

E[R(T )] ≤ 0.387 · (bdmax2D(log(T )T z+γD + T γD

+ (γD + bdmaxS(b̃max, τ))

(4.25)

To bound the leading order of Equation (4.25) to be sublinear with time, we can choose

parameters as follows: z = α
2α+D ∈ (0, 1) and γ = z

α ∈ (0, 1
D ). Then, the regret reduces to

E[R(T )] ≤ 0.387 ·
(
bdmax2D(log(T )T

α+D
2α+D + T

D
2α+D )

+ · bdmaxS(b̃max, τ)
) (4.26)

Thus, the leading order of our regret bound is O(log(T )T
α+D
2α+D ).

4.6 Application to Sniffer Channel Assignment

In this section, we apply R2C2-MAB to a concrete application: sniffer channel

assignment (SCA) for wireless channel monitoring.

4.6.1 Models

Consider a wireless channel passively monitored by a set of sniffers for purposes

such as security and usage compliance [29]. To deal with potential security threats in the
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wireless network, there exists a passive monitoring system, which is independent of the

wireless network, sensing channels and capturing packets. For forensics reason, the aim of

monitoring system is to capture data packets of the targeted channels as many as possible.

The problem is to decide which subset of sniffers should be allocated for channel monitoring

given different channel conditions for the sniffers.

The time span is divided into time slots t = 1, 2..., T in a slotted manner. The

monitoring system consists of N data sniffers and a central agent for assignment decision

making. We denote the set of sniffers by N ∆
= {1, 2, ..., N}. Generally, we have a assignment

budget b of sniffers, where b < N . Each sniffer is equipped with an antenna, which allows

it to sense traffic over the wireless channel after being assigned. Besides traffic monitoring,

there also exist channel inspectors that can periodically sense sniffer channel gain for dif-

ferent sniffers as context information [92]. In every time slot t, the assignment decision for

sniffers N is denoted as at = {at1, at2, . . . , atN} and atn ∈ {0, 1}, where 1 means assigned to

the channel and 0 otherwise, subject to
∑

a∈at a ≤ b.

The feedback signal/reward for each sniffer is the probability of successfully identi-

fying data packets on the assigned channel, also called capture probability denoted by Prtn,

which is defined as the probability of successfully capturing one data packet. The capture

probability depends on the sniffer’s monitoring channel condition. Specifically, according to

the theory of channel secrecy capacity, a crucial factor determining the capture probability

for a sniffer on the assigned channel is the signal-to-interference-plus-noise ratio (SINR). If

sniffer n is selected, we let SINRtn = PGtn
Itn+N0

be the context, where N0 is the white noise

power, P is the channel transmission power, Gtn is the channel gain for the assigned sniffer,
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and Itn is the inference power. Further, in the channel, the data transmitted by target users

can be precisely retrieved from by sniffer n (i.e., packet is successfully captured) only if the

SINR for sniffer n is sufficiently good (i.e., SINRtn ≥ SINRth where the threshold SINRth

is unknown). Because the sniffer channel conditions can change, the capture probability

Prtn also varies over time. Thus, we define the capture probability Prtn for sniffer n as

Prtn = Pr{SINRtn ≥ SINRth}, which is unknown a priori to the agent. Note that while

each wireless transmission frame only lasts around 100ms, each sniffer assignment are held

constant for a much longer time (e.g., tens of seconds or even a few minutes), such that

sniffers have sufficient time to calculate the capture probabilities and hence the agent can

collect feedback.

To increase the overall capture probability, the agent can assign up to b sniffers on

the target channel. We denote N t
s = {n ∈ N|∀atn = 1, atn ∈ at} as the sniffer set assigned to

the target channel at time slot t. Considering that different sniffers are located in different

positions and hence have independent capture probabilities, we let Prt indicate the overall

channel capture probability (i.e., utility), expressed as

Prt(at,Prt) = 1−
∏
n∈N ts

(1− Prtn) (4.27)

When N t
s = ∅, we have Prt = 0 because there is no sniffer assigned.

The selected sniffers can be removed due to, e.g., intentional jamming or malfunc-

tioning. Here, we assume that up to τ < b selected sniffers can be nullified and do not

contribute anything to the overall utility of the agent. While the agent can explicitly learn

the removal probability for each sniffer and account for it when selecting sniffers, this does

not address the worst-case scenario, since any sniffer can be removed with a non-zero prob-
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ability and also the removal probability may not be stationary [17, 82]. Thus, to maximize

the worst-case capture probability (i.e, utility), the agent robustly selects sniffers by solving

the following problem in the presence of sniffer removal:

P3 :
T∑
t

max
N ts

min
N tr

1−
∏

n∈N ts\N tr

(1− Prtn)


s.t. N t

s ⊂ N , |N t
s | ≤ b,N t

r ⊂ N t
s , |N t

r | ≤ τ,∀t

(4.28)

4.6.2 Applicability of R2C2-MAB

Our algorithm R2C2-MAB achieves worst-case robustness with a provable sublinear

regret for contextual combinatorial bandits with arm removal and monotone submodular

utility. Here, we confirm that R2C2-MAB is suitable the sniffer channel assignment problem

formulated in P3.

Note first that the problem P3 is clearly a contextual combinatorial bandit prob-

lem, where the channel SINR for each sniffer is the context, the sniffers are arms, and the

selection decision is combinatorial subject to a cardinality constraint. Next, we show that

the utility function is monotone and submodular.

Proposition 20 The utility function of the sniffer channel assignment problem defined in

Equation (4.27) is monotone and submodular.

Proof. The proof follows monotonicity and submolarity definitions, and is available in the

appendix.

The monotonicity of the utility function implies that the optimum of P3 will be

when b sniffers are selected. Thus, the constraint |N t
s | ≤ b in P3 will hold with equality

|N t
s | = b. The submodularity indicates that, if no sniffers are removed, the strategy that
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selects sniffers based on the maximal marginal utility is an efficient algorithm with a good

approximation ratio [42, 82, 17]. In the presence of sniffer removal, a robust algorithm is

warranted, for which PRO described in Algorithm 5 achieves an approximation ratio under

the assumption that the capture probability for each individual sniffer is perfectly known

[17].

In summary, we use sniffer channel assignment as a concrete application for our

considered bandit setting and R2C2-MAB.

4.7 Numerical Evaluation

To empirically evaluate R2C2-MAB, we consider the sniffer channel assignment

problem as formulated in Section 4.6. Our results highlight that R2C2-MAB achieves a total

reward close to that of PRO Oracle, while outperforming other existing bandit algorithms

that either do not exploit the submodularity structure or neglect arm removal.

4.7.1 Settings

We consider a single wireless channel and 8 sniffers (N = 8). In each time slot, the

sniffer selection budget is limited to 5 (b = 5) and up to 2 selected sniffers may be removed

(due to malicious attacks or malfunctioning), satisfying removal budget restriction according

to Algorithm 5 [82]. We consider two different sniffer removal scenarios: stochastic removal

and worst-case adversarial removal. Excluding removed sniffers, we will calculate the overall

utility, i.e., channel capture probability, based on the individual capture probability of the

remaining selected sniffers.
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(a) Stochastic sniffer removal
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(b) Adversarial sniffer removal

Figure 4.1: Cumulative reward comparison among different algorithms.

The context of sniffers to estimate the capture probability is their sniffer-channel

SINR. We assume that the monitored wireless channel gain Gtn for sniffer n is varying due to

dynamic wireless fading. The context is known context to the agent for sniffer assignment.

To formulate the heterogeneous monitoring performance of sniffers, we assume each sniffer

n has a unique capture probability function. The actual capture probability function is
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unknown a priori to the agent and, in our simulation, is generated based on prior studies

by considering the background traffic statistics [29].

To evaluate R2C2-MAB, we use the following baselines:

(1) PRO Oracle: The PRO oracle knows the exact capture probability of each

sniffer given different channel conditions. In each time slot, it chooses 5 sniffers using the

PRO algorithm presented in Algorithm 2 [17].

(2) Greedy Oracle: The greedy oracle knows the same information as the PRO

Oracle, but it chooses 5 sniffers using the greedy approximation algorithm presented in

Algorithm 1 by ignoring arm removal.

(3) CC-MAB: CC-MAB is the contextual combinatorial MAB algorithm pro-

posed by [30]. In our problem, it uses the SINR context information, learns the rewards of

each sniffer under different channel gains, and chooses arms by greedy approximation as in

Algorithm 1 without addressing robustness in the presence of arm removal.

(4) LinUCB: The classical contextual bandit algorithm selects 5 sniffers as one

super-arm in each round. The total number of sniffer decisions (super arms) is
(

8
5

)
= 56,

and each one has a context vector xtsa ∈ [0, 1]5, made up by the normalized SINR of 5

sniffers. Notice that LinUCB ignores submodular property and arm removal when selecting

sniffers.

(5) UCB: UCB (Upper Confidence Bound) is similar to the LinUCB setting,

which selects one decisons our of 56 super-arms, but it does not take advantage of the SINR

context information and submodular property.

(6) Random: The Random algorithm picks 5 sniffers randomly from the set of 8
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sniffers in each round.

The simulation runtime is set to T = 5000 slots, and each simulation with two

different sniffer jamming schema is repeated for 100 times to obtain an averaged value. We

evaluate the performance using the metric of cumulative reward.

4.7.2 Stochastic Sniffer Removal

In this scheme, we assume that the environment decides which selected sniffers are

removed in a random manner (without knowing each sniffer’s capture probability). That

is, the environment will stochastically pick 2 sniffers out of 5 selected ones.

The simulation result in Figure 4.1(a) shows that the PRO oracle proposed by [17]

has the higher cumulative reward, which is about 60% overall successful channel capture

probability on average. This is expected, since the PRO oracle considers sniffer removal

explicitly and knows the channel capture probability for each sniffer. Our proposed R2C2-

MAB outperforms all the other existing algorithms, including the greedy oracle that knows

the exact capture probability of each sniffer but does not consider robustness for arm re-

moval. This indicates that the stochastic sniffer removal by the environment can degrade the

performance of greedy significantly, while R2C2-MAB explicitly considers arm removal even

though it does not know the exact channel capture probability for each sniffer. Moreover,

from the noticeable performance gap between CC-MAB and LinUCB, it shows that moni-

toring performance can improve greatly if sniffers are assigned with the help of submodular

maximization (even though both CC-MAB and LinUCB ignore arm removal).
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4.7.3 Adversarial Sniffer Removal

In this case, the environment is more adversarial and removes the selected sniffers

(e.g., by intentionally jamming them or making them malfunction) to explicitly reduce the

overall utility. Thus, the sniffer performance is expected to become worse than the case of

stochastic sniffer removal.

The results in Figure 4.1(b) show that the performance of all algorithms degrade

because of the worst-case adversarial sniffer removal. Nonetheless, the two PRO-based

methods (PRO Oracle and R2C2-MAB) still have high average channel capture probabilities

and outperform the other solutions. More importantly, our R2C2-MAB is getting even closer

to the PRO oracle. This result validates that R2C2-MAB is more robust to adversarial

arm removal, since it explicitly considers the worst-case arm removal when selecting arms.

Although CC-MAB studied in [30] can eventually learn the probability function in terms

of the SINR context, its monitoring performance is not as good as R2C2-MAB as it uses

simple greedy algorithms without considering arm removal.
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Algorithm 6 R2C2-MAB

1: Inputs : T , hT and Kn(t).

2: Initialization : Partition PT ; set C0(p),∀p ∈ PT

3: for t = 1, · · · , T do

4: arm n ∈ N observe contexts xtn.

5: Find the hypercube ptn for each arm n

6: Identify under-explored arms N t
ue

7: if |N t
ue| 6= 0 then

8: if |N t
ue| ≥ b then

9: Random pick b arms from N t
ue.

10: else

11: Pick all arms from N t
ue and select b− |N t

ue| arms from Nt/N t
ue by Algorithm 4

12: end if

13: else

14: Select b arms from N by by Algorithm 5

15: end if

16: for n ∈ N t
nr do

17: Receive reward dtn

18: Find ptn, where xtn ∈ ptn

19: Update d̂(ptn) = d̂(ptn)C(ptn)+dtn
C(ptn)+1

20: Update C(ptn) = C(ptn) + 1

21: end for

22: end for
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Chapter 5

Federated Contextual Bandit with

Differential Privacy

5.1 Introduction

Practical applications of the contextual bandit are increasingly moving into the

large-scale decentralized platform, ranging from recommendation [119], finance [51] and

clinical trials [39]. The challenge of decentralization is that the real-world data are highly

heterogeneous, which are non-independent and identically distributed (non-IID) and highly

imbalanced [18] and further urges the collaboration between these heterogeneity to maximize

performance [38], which is now known as federated learning (FL)

Federated learning is an emerging distributed machine learning paradigm that has

attracted attentions from both academia and industry, because of its overall applicabil-

ity. The objective of the federated paradigm is to allow collaborative learning with larger
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amounts of decentralized data, which are exogenously generated at edge devices (from mul-

tiple clients, servers, etc.) [55]. FL focuses on many agents collaboratively training a

machine learning model under the coordination of a central server while keeping the local

data private to others [77]. In real world, privacy leakage have been increasingly reported

in recommendation system [23]. An adversary can acquire considerable amount of private

information based on the recommendation sequences. Different from the offline learning,

online methods directly interact with sensitive data, (e.g., clicks or purchasing history),

and timely update the models, which leaves a serious loophole of leaking privacy to the

adversary [101, 3]. Realizing its importance, the differential privacy, one of the most pow-

erful definitions of privacy, is utilized to prevent the algorithm’s sequential output from

revealing private information [53]. Therefore, FL with differential privacy can mitigate the

data privacy risks resulting from traditional centralized machine learning, by realizing the

principles of designated data collection and minimization.

Most previous work in federated setting, focus on proposing provably algorithms

with privacy guarantee on the distributed supervised learning [58, 47]. However, the contex-

tual bandit problem, involves contexts and rewards, which both typically contain sensitive

user information [74]. Therefore, federated contextual bandit (FCB) is a very interesting

problem for cooperatively learning the environment ”on-the fly”, while keeping local col-

lected information private. Recently, there is an increasing number of work, focusing on

single-agent bandit learning with privacy guarantee [90, 74]. Moreover, without privacy

protection, some work only consider bandit learning in distributed settings [38, 75]. How-

ever, as the connection between works aforementioned, the federated bandit learning with
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privacy guarantee is still lack of attention.

In this chapter, we introduce federated contextual bandit with differential privacy,

given heterogeneous reward information from multiple agents. Our goal is to provide an

algorithm to enable collaborative learning among decentralized sequential decision-makers

in the contextual bandit setting, but with strong sub-linear regret upper bound guarantee

even with privacy guarantees of each agent’s local information. Motivated by the above

considerations, we study a novel federated setting with multiple agents coordinating with

a center: each of agents will periodically communicate to the center in an epoch manner,

to upload their local learnt model with privacy guarantee and receives global aggregated

model to continue learning for next epoch. The challenge is that the privacy guarantee will

lead suboptimal performance of each agent [38]. To address this challenge, we propose a

novel federated contextual bandit algorithm with cut-off threshold for global updates, which

is designed building upon non-parameterized contextual bandits [30]. We prove that our

proposed algorithm achieves a sublinear cumulative regret of all agents over time compared

to the oracle that knows the exact exact reward for all the arms, by properly selecting the

cut-off threshold based on the privacy budget.

To evaluate the efficiency of proposed federated bandit algorithm, we consider a

contextual admission decision problem for the COVID-19 pandemic. This is shown to fit

our federated learning problem with privacy guarantee, since it is beneficial for hospitals col-

laboratively learning the comprehensive decision schema to maximize the overall utilization

of medical resource.
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5.2 Related Work

The problem of differentially private online learning was first introduced in [41],

ensuring the privacy of the individual entries of the loss vectors. Another tree-based aggre-

gation scheme for releasing the cumulative sums of vectors in a differentially private manner

was considered by [40], ensuring that the total amount of noise added for each cumulative

sum is only dependent on the number of vectors. [52] proposed gradient-based algorithms

that achieve (ε, δ) -differntial privacy to protect entire loss vectors. [78] proposed differ-

entially private variants of UCB and Thompson sampling algorithms. [100] proved lower

regret bound to design (ε, δ)-differentially private algorithms for the stochastic multi-armed

bandit problem. [86] prove a tighter regret low bound for multi-armed bandit problem with

local differential privacy.

Collaborative bandit algorithms or bandit learning in multi-agent distributed set-

tings has received attention from several academic communities. [111] modeled dependency

among social influence through a collaborative reward generation setting. [61] introduced

multi-agent bandit for cooperative estimation over a network with delays [27] considered the

structure of user dependency as model regularization, assuming similar model to connected

users. For the contextual case, recent work has considered collaborative estimation without

privacy in networks [38, 109].

The concept of federated bandits has been studied upon by a few works. [67] con-

siders strictly IID local models. [2] study contextual bandits as an example of the federated

residual learning framework. [122] focuses on sharing information through gossiping among

clients with privacy protection. [91] introduce federated bandits with personalization, where
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the agent incorporate both global and local models Our work has very different focuses than

previous literature. Our work builds on the remarkable work of [37], which in turn improves

the collaborative LinUCB algorithm with differential privacy by limiting the global update

with thresholds. Our work utilizes non-parameterized bandit framework introduced by [30]

and our work guarantee differential privacy, while achieve sublinear regret upper bound.

5.3 Preliminary

In this section, we introduce federated bandit learning with differential privacy.

Federated Learning allows multiple agents (e.g. mobile devices and edge server) to collab-

oratively learn a model while not sharing all the local data, lowering the burden for the

cloud to store the massive data.

5.3.1 Federated Bandits

As a combination of federated learning and contextual bandit, federated bandits

allows M(M ≥ 2) agents are each solving the same contextual bandit in parallel, with local

datasets. Each agent observes context information, receives their own arm sets, and selects

actions independently of others. In this work, similar to the distributed learning, we consider

the centralized environment where there exists a center that periodically communicate with

agents, collects their local models and aggregate into a global model back to each agent.
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5.3.2 Differential Privacy

In federated settings, each agent prefer to preserve the privacy of their local data

in communication, like contexts information. Differential privacy (DP) is the most effective

measure to quantify the privacy level of an algorithm. A DP mechanism can challenge the

adversary to distinguish two similar data streams. We first introduce the t-neighboring data

records as any two data records that differ by only one entry.

Definition 21 For agent i, two data sequence Si = {xi,t}Tt=1 and S
′
i = {x′i,t}Tt=1 is defined

as t-neighbors if for each t′ 6= t, xi,t′ = x′i,t′

Let C be the all possible output set for a randomized algorithm A. Now, we define the

notion of ε-differential privacy.

Definition 22 A randomized algorithm A is ε-differentially private if for any two t-neighboring

data streams, Si and S
′
i, and for all O ∈ C,

Pr{A(Si) ∈ O} ≤ eε · Pr{A(S′i) ∈ O} (5.1)

Intuitively, a randomized algorithmA controls the ability of adversary to distinguish whether

or not a specific data record is present in the contextual learning.

5.4 Problem Formulation

In this section, we formulate the differentially-private federated bandit problem

with M learning agent and one center. Consider a single learning agent i that interacts

with the local environment and makes sequential decisions for a horizon of T time slots.

We let N = {1, 2, . . . , N} denote the set of arms for selection. The agent can observe side
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information (context) for each arm xti,n ∈ X
∆
= [0, 1]D,∀n ∈ N , where X is the context

space and D is the dimension of context vector. Without loss of generality, we normalize

the context space within [0, 1]D. The agent i collects the observed context information of

all arms in xti = {xti,n}n∈N .

In each time slot t, the agent selects an arm nti based on the context information

xti and the knowledge about the reward corresponding to each arm learnt from the previous

time slots. At the end of the each time slot, the agent receives a reward feedback dtni based

on its context information xti,n. In most of previous works, it is widely assumed that the

reward function is in the linear relationship with the context information. By contrast,

in our work, the reward function corresponding to a selected arm is determined solely by

the context information xti,n through an unknown and non-parameterized function d(xti,n).

Without loss of generality, we assume the that reward dtni is bounded by [0, 1] for all learning

agent.

For communication between agents and the center, we assume the center will

collect the local model learned by each agent every epoch, which has a fixed time length

τ (τ ≥ 1). After very τ time slots, each agent will send their learned models θi with

additive noise ηi to guarantee ε-differentially private. The most commonly used additive

noise mechanism is Laplacian, where ηi follows a zero-mean Laplace distribution with a

scale related to ε.

The goal of the federated bandits is to minimize the cumulative group pseudore-

gret, which can be formally written as

RM (T ) =
M∑
i=1

T∑
t=1

(
dtn∗i − d

t
ni

)
(5.2)
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where dtn∗i
indicates the reward of optimal arm xti,n∗ for agent i at time slot t.

5.5 Algorithm Design

In this section, we introduce our algorithm for federated bandit learning with differ-

ential privacy. To begin with, we consider the single-agent setting to learn non-parametrized

function. Next, we will study the federated setting with multiple agents.

5.5.1 Non-parametric Contextual Bandits

For a single agent, in order to learn a non-parametrized function given the local

context information, we assume the reward function satisfies Hölder condition, which in-

dicates the agent will receive similar reward by taking the same arm toward the similar

context information. Mathematically, the Hölder condition for reward function d(x) can be

represented as

|d(x)− d(x′)| ≤ L||x− x′||α (5.3)

where L > 0 and α > 0. This is a natural assumption in practice, which can be exploited

together with the context information to learn future arm decisions.

Our bandit algorithm uniformly partition the context space, maintained by each

agent i. By partition, we split the entire context space into small hypercubes of similar

contexts. Then, an agent will learn expected reward of each hypercube independently.

Similar to other bandit algorithms, our algorithm is interspersed with exploration phases

and exploitation phases. In the exploration phases, the agent randomly select arms. During

exploration, agent learn the reward patterns of arms which have not been explored before.
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Otherwise, the algorithm is in an exploitation phase, where agent chooses arm in a greedy

manner, only considering the highest expected reward based on previous history with similar

contexts. After choosing the arm, the agent observes the reward at the end of every time

slot. In this way, the algorithm learns context-specific function over time. The algorithm

design challenge lies in how to partition the context space and how to balance exploration

and exploitation.

The pseudo-code of non-parametric contextual bandits is presented in Algorithm 7.

In the beginning, given context space X = [0, 1]D, our algorithm creates a partition PT

with time horizon T , which splits the context space evenly into (hT )D sets. hT is an hyper-

parameter which determines the number of hypercubes in the partition. The estimated

reward of each hypercube p ∈ PT can be computed by the accumulated reward falls. Let

Ht(p) represent the reward history of hypercube p up to time slot t, then the estimated

reward for contexts falls in p

d̂(p) =
1

|Ht(p)|
Σd∈Ht(p)d (5.4)

Additionally, Ct(p) = |H(p)|, which is a counter for agent recording the number of times

that selected arm context xtn is included in hypercube p.

In each time slot t, agent i first observes xti of all arm. Algorithm determines the

hypercube sets P ti contains xti, defined as

P ti = {pti,n : ∃xti,n ∈ pti,n,∀pti,n ∈ PT } (5.5)

Aforementioned, one challenge is that the proposed algorithm has to balance the

exploration and exploitation in case there exist hypercubes in P ti has not been explored
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sufficiently. Therefore, we denote under-explored hypercubes as

N ue,t = {p : ∃p ∈ P ti , Cti (p) ≤ K(t)} (5.6)

where K(t) monotonically increasing function.

For every time slot t, if N ue
t is not empty, then we just randomly pick one arm

from N ue
t . If N ue

t is empty, then we choose b arms by

arg max
n∈N

d̂(pti,n) (5.7)

5.5.2 Federated Bandits with Differential Privacy

Based on the non-parametric contextual bandits for a single agent, we introduce

our algorithm for federated bandit learning with differential privacy. We consider the cen-

tralized environment where there exists a center that collects local mode (hypercubes) of

each agent every τ time. When (t mod τ) = 0, each agent will send the information of all

hypercube θti they maintain, including hypercube counter Cti (p) and estimated reward d̂(p).

Otherwise, the agent learn the reward function from local information by Algorithm 7. Due

to all agents are learning the same non-parametrized reward function, their partition Pt

over context space is consistent.

To guarantee ε-differentially private through the communication toward the center,

each agent deliberately add zero-mean Laplacian noise ηi on estimated reward d̂(p) for every

hypercube, denoted as d̃(p). According to Laplace mechanism, ηi ∼ Lap(0, ∆d̂
ε ). ∆d̂ is

sensitivity of a estimated reward function d̂, in our case, we defined as:

∆d̂ = max |d̂(H(p))− d̂(H′(p))| (5.8)
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Algorithm 7 Non-parametric Contextual Bandits

1: Inputs : T , hT and K(t).

2: Initialization : Partition PT ; set C0
i (p) = 0, d̂(p) = 0,∀p ∈ PT

3: for t = 1, · · · , T do

4: Agent observe contexts xti.

5: Find the hypercube set P ti

6: Identify under-explored hypercubes N ue,t

7: if |N ue,t| 6= 0 then

8: Random select arm from N ue,t.

9: else

10: Select arm from N by (5.7)

11: end if

12: Receive reward dtni

13: Update d̂(pti,n) =
d̂(pti,n)Cti (p

t
i,n)+dtni

Cti (p
t
i,n)+1

14: Update Cti (p
t
i,n) = Cti (p

t
i,n) + 1

15: end for

where H(p) and H′(p) are t-neighboring reward history for hypercube p with same length.

Apparently, ∆d̂ = 1 because the reward is bounded in [0, 1]. Then, after adding noise as

ηi ∼ Lap(0, 1
ε ) to estimated reward, each agent will send θ̃

t
i to assure that communication

achieves ε-differential level privacy.

After the center received the information from all agents, it aggregate estimated
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reward of each hypercube as

d̃(p) =

∑M
i=1

(
Cti (p) · d̃

)
∑M

i=1C
t
i (p)

(5.9)

and sum up counters of each hypercube

Ct(p) =
M∑
i=1

Cti (p) (5.10)

At the end of time slot, the center return the aggregated hypercube information θtc to each

agent. For next τ -time epoch, each agent continue learning based on updated counter and

estimated reward from θtc.

However, the global update θtc is biased because of the global estimated reward

of each hypercube is the linear combination of Laplacian variables. In federated learning,

the privacy guarantee yield sub-optimal learning performance and we defer the detail to

the subsequent section. To alleviate this bias, the agent need to decide which hypercube

should be cut off from the global updates and keep local estimates. We define the cut-off

threshold ρ for each hypercube. For agent i, after receiving θtc, if Cti (p) ≥ ρ for hypercube

p, then agent will not update from global information for hypercube p. The threshold ρ is

to limit the total number of update from global θtc after each of agents fully takes advantage

of collective information θtc. Further, the design of ρ curbs the regret caused by the bias

from communication. We present the centralized algorithm in Algorithm 8 that details our

approach.
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Algorithm 8 Centralized Federated Bandit

1: Inputs : T , τ , ε, ρ and K(t).

2: Initialization : Partition PT ; set C0(p) = 0, d̃(p) = 0,∀p ∈ PT

3: for t = 1, · · · , T do

4: if t mod τ = 0 then

5: ∀ Agents generate θ̃
t
i by Lap(0, 1

ε ) and communicate to center.

6: Center aggregate hypercube information d̃(p) by Eqn. (5.9) and Ct(p) by

Eqn. (5.10)

7: Center send aggregated θtc to agents.

8: for i = 1, · · · ,M do

9: for ∀p ∈ PT do

10: if Cti (p) ≤ ρ then

11: d̂i(p) = d̃(p), Cti (p) = Ct(p).

12: end if

13: end for

14: end for

15: else

16: ∀ Agents implement Algorithm 7

17: end if

18: end for

5.6 Regret Analysis

The regret bound is derived based on the assumption that the expected reward

of arms are similar in similar contexts. To analyze regret of Algorithm 8, we define
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d̄(p) = supx∈p d(p) and d(p) = supx∈p d(p) as highest and lowest demand overall context in

hypercube p. Since we need to compare expected reward in different hypercubes, so we set

geometric center of each hypercube p as the reference context, denoted as x∗(p). Therefore,

the optimal arm for agent i at time slot t satisfies

n∗i = arg max
pti,n∈PT

d(x∗(pti,n)) (5.11)

Therefore, the regret R(T ) can be represented as

R(T ) =
M∑
i=1

T∑
t=1

(
d(x∗(pti,n∗))− d(x∗(pti,n))

)
(5.12)

To be specific, we define the sub-optimal arm (hypercube) set N sub,t as

N sub,t = {∃pti,n ∈ P ti , d(pti,n∗)− d̄(pti,n) ≥ ρt
−ε
ρ } (5.13)

Consequently, N near,t := N/N sub,t is the near-optimal arm set.

After defining different arm sets, the R(T ) can be bounded by sum of following

four parts.

R(T ) ≤ E[Re(T )] + E[Rs(T )] + E[Rn(T )] + E[Rm(T )] (5.14)

The E[Re(T )] is regret due to exploration for hypercubes in Algorithm 7. Specifically,

E[Rm(T )] is by choosing non-optimal arms because of the bias from global update through

communication to the center, E[Rs(T )] is due to choosing sub-optimal arm and E[Rn(T )] is

regret caused by near-optimal arm. The reason that the R(T ) is upper bounded by the sum

of those four parts, is the existence of the overlapping regret among E[Rm(T )], E[Rs(T )] and

E[Rn(T )]. For convenience, we consider those regrets separately, and in this way, we still

can prove cumulative regret of proposed centralized federated bandit algorithm is sublinear

with time when four regrets are bounded respectively.
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Lemma 23 Let K(t) = tz log(t) and hT = dT γe, where 0 < z < 1 and 0 < γ < 1
D , the

exploration regret E[Re(T )] is bounded by

E[Re(T )] ≤2D(log(T )T z+γD + T γD) (5.15)

Proof. In the exploration phase, there exist at least a hypercube p in P ti , that Cti (p) ≤

K(t) = tz log(t). There are total (hT )D partitioned hypercubes, and the global update of

hypercube counters is intact. Then we have at most (hT )DdT z log(T )e exploration phases.

We bound the reward function d(x) by 1. For E[Re(T )], we have

E[Re(T )] ≤ (hT )DdT z log(T )e

= dT γeDdT z log(T )e

≤ 2D(log(T )T z+γD + T γD)

The last inequality is due to the fact that dT γeD ≤ (2T γ)D = 2DT γD

This completes the proof.

Lemma 24 Let K(t) = tz log(t) and hT = dT γe, where 0 < z < 1 and 0 < γ < 1
D .

We assume the condition H(t) + LD
α
2 h−αT ≤ ρt

−ε
ρ

2 holds true, where H(t) := t
−z
2 . For all

1 ≤ t ≤ T the sub-optimal regret E[Rs(T )] is bounded by

E[Rs(T )] ≤Mπ2

3
(5.16)

Proof. For 1 ≤ t ≤ T , we let W (t) be the event that slot t is in exploitation phase

for agent i, which indicates Cti (p) ≥ K(t) = tz log(t), ∀p ∈ P ti . Let u(t) be the event

that agent picked the sub-optimal hypercube pti,n′ , other than pti,n∗ . According to designed

algorithm, when u(t) happens, it indicates estimated reward of pti,n∗ is not the highest,
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d̂(pti,n′) ≥ d̂(pti,n∗),∃pti,n′ ∈ P ti . Thus, we have

Pr{u(t)} = Pr{d̂(pti,n′) ≥ d̂(pti,n∗)} (5.17)

The right side of Eqn.(5.17) indicates at least one of three following events happen when

H(t) ≥ 0

E1 ={d̂(pti,n′) ≥ d̄(pti,n′) +H(t),W (t)}

E2 ={d̂(pti,n∗) ≤ d(pti,n∗)−H(t),W (t)}

E3 ={d̂(pti,n′) ≥ d̂(pti,n∗),

d̂(pti,n′) ≤ d̄(pti,n′) +H(t),

d̂(pti,n∗) ≥ d(pti,n∗)−H(t),W (t)}

(5.18)

Hence, we have

{d̂(pti,n′) ≥ d̂(pti,n∗)} ⊆ E1 ∪ E2 ∪ E3
(5.19)

The next step is to bound probability of E1, E2 and E3 separately. For Pr{E1}, we have

Pr{E1} = Pr{d̂(pti,n′) ≥ d̄(pti,n′) +H(t),W (t)}

≤ Pr{d̂(pti,n′) ≥ E[d̂(pti,n′)] +H(t),W (t)}

= Pr{d̂(pti,n′)− E[d̂(pti,n′)] ≥ H(t),W (t)}

≤ exp

(
−2Cti (p

t
i,n′)H(t)2

(dmax)2

)

≤ exp
(
−2tz log(t)H(t)2

)

(5.20)

The first inequality of Eqn. (5.20) comes from the fact that E[d̂(p)] ≤ d̄(p),∀p ∈ Pt. The

last two steps of Eqn. 5.20 are due to Chernoff-Hoeffding bound and W (t) implies at least
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tz log(t) times counted in Cti (p),∀p ∈ P ti and dmax = 1. Similarly, the Pr{E2} can be

bounded in the same way.

Pr{E2} ≤ exp
(
−2tz log(t)H(t)2

)
(5.21)

Last, to bound Pr{E3}, we rewrite d̂(p),∀p ∈ Pt as

d̂(p) =
1

C(p)

∑
τ :xτ∈p

d(xτ ) + ετ (5.22)

where xτ are the context falling in hypercube p and ετ is the deviation from estimated reward

of hypercube p. Moreover, we define best and worst context for p as x̄(p) := arg maxx∈p d(x)

and x(p) := arg minx∈p d(x) respectively. After, we have

d̄(p) =
1

C(p)
Στ :xτ∈pd(x̄τ (p)) + ετ

d(p) =
1

C(p)
Στ :xτ∈pd(xτ (p)) + ετ

(5.23)

From Hölder condition, we have for ∀p ∈ PT

d̄(p)− d̂(p) ≤ LD
α
2 h−αT

d̂(p)− d(p) ≤ LD
α
2 h−αT

(5.24)

We consider three components of E3 separately. For the first component, we have

{d̂(pti,n′) ≥ d̂(pti,n∗)} ⊆ {d̄(pti,n′) ≥ d(pti,n∗)} (5.25)

For second part of E3, by Eqn. (5.24) we have

{d̂(pti,n′) ≤ d̄(pti,n′) +H(t)}

⊆ {d̂(pti,n′)− LD
α
2 h−αT ≤ d̄(pti,n′) +H(t)}

= {d̂(pti,n′) ≤ d̄(pti,n′) +H(t) + LD
α
2 h−αT }

(5.26)
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For the last component of E3, using Eqn. (5.24) again, we have

{d̂(pti,n∗) ≥ d(pti,n∗)−H(t)}

⊆ {d̂(pti,n∗) + LD
α
2 h−αT ≥ d(pti,n∗)−H(t)}

= {d̂(pti,n∗) ≥ d(pti,n∗)−H(t)− LD
α
2 h−αT }

(5.27)

Combining Eqn. (5.25), (5.26) and (5.27), the probability of E3 is bounded by

Pr{E3} ≤ Pr{d̄(pti,n′) ≥ d(pti,n∗),

d̂(pti,n′) ≤ d̄(pti,n′) +H(t) + LD
α
2 h−αT ,

d̂(pti,n∗) ≥ d(pti,n∗)−H(t)− LD
α
2 h−αT }

(5.28)

We know the following condition is satisfied:

H(t) + LD
α
2 h−αT ≤ ρt

−ε
ρ

2
(5.29)

Since we know the definition of sub-optimal arm by Eqn.(5.13), together with Eqn. (5.29),

implies that

d(pti,n∗)− d̄(pti,n′) ≥ 2H(t) + 2LD
α
2 h−αT

d(pti,n∗)−H(t)− LD
α
2 h−αT ≥ d̄(pti,n′) +H(t) + LD

α
2 h−αT

(5.30)

Apparently, Eqn. (5.30) is contradict with Eqn. (5.28), which turns out Pr{E3} = 0 under

condition Eqn. (5.29). Therefore, we let H(t) = t
−z
2 , then from (5.20), we have

Pr{E1} ≤ exp
(
−2tz log(t)H(t)2

)
= exp

(
−2tz log(t)(t

−z
2 )2
)

= exp(−2 log(t))

= t−2

(5.31)
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Similarly,

Pr{E2} ≤ t−2 (5.32)

Combining conclusions (5.31) and (5.32), we have

Pr{u(t),W (t)} ≤ Pr{E1 ∪ E2 ∪ E3}

≤ Pr{E1}+ Pr{E2}+ Pr{E3}

= 2t−2

(5.33)

Since we have the probability bound for one agent sub-optimal hypercube in

Eqn. (5.33), with Eqn. (5.33), we have

E[Rm(T )] ≤M
T∑
t=1

Pr{u(t),W (t)}

≤M
T∑
t=1

2t−2 ≤M
∞∑
t=1

2t−2

≤Mπ2

3

(5.34)

Lemma 25 Let K(t) = tz log(t) and hT = dT γe, where 0 < z < 1 and 0 < γ < 1
D . We

define the near-optimal arm set as d(pti,n∗) − d̄(pti,n) ≤ ρt
−ε
ρ ,∃pti,n ∈ P ti . For all 1 ≤ t ≤ T

the near-optimal regret E[Rn(T )] is bounded by

E[Rn(T )] ≤M
(
LD

α
2 T 1−γα +

ρ2

ρ− ε
T

1− ε
ρ

)
(5.35)

Proof. Considered W (t) event for exploitation phase, the loss due to near-optimal is defined

as

Rn(T ) =

T∑
t=1

I{Q(t)} ×
(
d(x∗(pti,n∗))− d(x∗(pti,n†))

)
(5.36)
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where Q(t) indicates event that choosing near-optimal arm.

Further, by taking expectation, we have

E[Rn(T )] =
T∑
t=1

E
[
I{Q(t)} ×

(
d(x∗(pti,n∗))− d(x∗(pti,n†))

)]
=

T∑
t=1

Pr{Q(t)} ×
(
d(x∗(pti,n∗))− d(x∗(pti,n†))

)
≤

T∑
t=1

(
d(x∗(pti,n∗))− d(x∗(pti,n†))

)
(5.37)

After applying Hölder condition multiple times, we have

T∑
t=1

(
d(x∗(pti,n∗))− d(x∗(pti,n†))

)
≤

T∑
t=1

(
inf

x∈pt
i,n∗

d(x)− d(x∗(pti,n†)) + bLD
α
2 h−αT

)

≤
T∑
t=1

 inf
x∈pt

i,n∗
d(x)− sup

x∈pt
i,n†

d(x) + 2bLD
α
2 h−αT


=

T∑
t=1

(
d(pti,n∗)− d̄(pti,n†) + 2bLD

α
2 h−αT

)
=

T∑
t=1

(
ρt
−ε
ρ + 2bLD

α
2 h−αT

)

(5.38)

Then, we use the fact that h−αT = dT γe−α ≤ T−γα, we have

E(Rn(T )) ≤
T∑
t=1

M∑
i=1

(
ρt
−ε
ρ + 2LD

α
2 h−αT

)
≤M

(
2LD

α
2 T 1−γα +

ρ

1− ε
ρ

T
1− ε

ρ

)

= M

(
2LD

α
2 T 1−γα +

ρ2

ρ− ε
T

1− ε
ρ

)
(5.39)

Combining Lemma 23, 24 and 25, we have regret bound for E[RT ],

101



Theorem 26 Let K(t) = tz log(t) and hT = dT γe, where 0 < z < 1 and 0 < γ < 1
D . We

assume H(t) +LD
α
2 h−αT ≤ ρt

−ε
ρ

2 and ε ≤ ρ holds true, where H(t) = t
−z
2 . For all 1 ≤ t ≤ T

the total regret E[R(T )] is bounded by

E[R(T )] ≤ log(T )T z+γD + T γD +M

(
π2

3
+ 2LD

α
2 T 1−γα +

ρ2

ρ− ε
T

1− ε
ρ

)
(5.40)

To bound the leading order of Eqn. (5.40) be sublinear with time, we carefully choose

parameter, z = 2α
3α+D ∈ (0, 1), and γ = z

α ∈ (0, 1
D ). Then the expected regret reduces to

E[R(T )] ≤ log(T )T
2α+D
3α+D + T

D
3α+D +M

(
π2

3
+ LD

α
2 T

2α+D
3α+D +

ρ2

ρ− ε
T

1− ε
ρ

)
(5.41)

Since we know ε > 0, the leading order of regret bound is sub-linear and determined

by max(log(T )T
2α+D
3α+D , ρ2

ρ−εT
1− ε

ρ ). If ε� 1, it indicates the privacy budget is very large and

the regret performance is hard to be guaranteed under strong privacy-setting. The last

term will goes to zero if ε → ρ, which shows that our regret bound caused by differential

privacy protection is shrinking. Moreover, when each agent keep update from global model

through communication to center (ρ → ∞), the regret bound will goes to infinity because

the continual perturbation from the additive privacy noise.

5.7 Experiments and Results

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) has caused the

current pandemic of coronavirus disease-19 (COVID-19), which first emerged as an outbreak

in December 2019. The admission decision of COVID-19 infected patients remains prob-

lematic and challenging, although this is to be expected in such a recently emerged disease.

According to the guideline [15], the mild infected patients are recommended to recover at

102



home or be admitted to the hospital when condition worsen. However, an severely infected

patient can rapidly develop further more severe symptoms which can be life-threatening

and require intensive care intervention (ICU) [6]. However, ICU beds are a precious re-

source in locations where COVID-19 case numbers are high. Therefore, avoiding ICU beds

run-out require far-sighted admission decision for infected patients, according to the status

of patients.

In this section, to evaluate our proposed centeralized federated bandit algorithm,

we consider the application of contextual COVID-19 admission management for multiple

resource-constrained hospitals — thoughtful admission decision needed to be made for in-

fected patients based on their body status (context), to maximize the utility.

5.7.1 Contextual COVID-19 Admission Decision

We have collected COVID-19 patients’ datasets from the Kaggle online resource

[94], which contains the grouped information of previous diseases, blood sample results,

vital sign data and admission record of more than 2000 COVID-19 positive patients. One

consideration for utilizing this dataset for our federated bandit problem, is that the patient

information is location-dependent, which means one hospital may receives patient with

similar information (e.g. age). To have a more comprehensive decision schema for patients,

multiple hospitals can collaboratively find the optimal decision by sharing their decision

knowledge. Due to the patient information is very sensitive and personal, powerful privacy

protection is needed when sharing.

We utilize the age, respiration rate and oxygen saturation rate as the contextual

information for patients. The action (arm) is to decide the patient should be admitted
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Table 5.1: Reward Matrix

ICU Not ICU

Admission 0.8 0.2

Not Admission 0.1 0.9

to the hospital ward (0 for no admission, 1 for admission). In this way, the dimension of

observed contextual vector is four, which is in the form of <age, respiration rate, oxygen

saturation rate, admission decision>. The reward of the admission decision depends on

whether the patient is sent to ICU due to the severe conditions. For example, if the patient

is admitted to hospital and transferred to ICU later, it indicates that the admission decision

is a thoughtful move for this patient and should earn a high reward. Otherwise, denying

admission for patients who will be sent to ICU eventually, is not preferred (yielding low

reward). The challenge for this problem is that the hospital need to estimate the severity of

COVID-19 infected patient according to their contexts, then determine admission decision

for further ICU usage.

5.7.2 Simulation Settings

We consider a collaboration center and 4 hospitals (M = 4). In each time slot, the

hospital learn the local decision schema based on Algorithm 7 and conduct the federated

bandit learning in Algorithm 8. The actual non-parameterized reward function is unknown

a priori to the each hospital and, in our simulation, is generated based on the reward matrix

in Table 5.1.

To evaluate our proposed federated bandit algorithm, we use the following base-

lines:
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(1) CFB w/o privacy: Each hospital use Algorithm 8 without additive Laplacian

noise for differential privacy and update cut-off..

(2) CFB w/o cut-off: Each hospital use Algorithm 8 without update cut-off.

(3) Non-coop: The Non-coop algorithm let each hospital use Algorithm 7 to find

local decision schema without communication to the center.

(4) Random: The Random algorithm decide admissions randomly for every in-

fected patient.

The simulation runtime is set to T = 2000 slots, and we set the epoch length τ = 50

slots and cut-off threshold as 10 . We evenly partition patient context (age, respiration rate,

oxygen saturation rate) by setting hT = 4 and there are 43 × 2 = 128 hypercubes (2 for

binary arms) in total. We group the dataset by age and hospitals receive each age group

in different time order. We test our proposed algorithm with benchmarks with different

privacy budget (ε = 2.0, 2.5, 3.0). We evaluate the performance using the metric of average

reward for 4 hospitals over time.

5.7.3 Simulation Results

The results in Figure 5.1 show that the performance of our proposed algorithm

with or without cut-off threshold degrade because of privacy guarantee, compared to the

non-privacy setting. Nonetheless, they still have high average reward and outperform the

Non-coop and random solutions. More importantly, our algorithm with privacy guarantee

is getting even closer to the non-privacy setting as the privacy budget shrinks. This result

validates our regret analysis since less budget leads minor noise in global update from the
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center. Moreover, the performance gap between with and without cut-off decreases as ε

increases, which indicates that the cut-off threshold is very significant to lower impact of

noisy perturbation when strong privacy needed.
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Figure 5.1: Average reward for different privacy budget
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Chapter 6

Conclusions

This dissertation focused on the contextual bandit learning problem within the

framework of imperfect environment. Four emerging issues in terms of the uncertain prob-

abilistic context, missing or delayed reward feedback, adversarial arm removal and collab-

orative learning with privacy protection were studied under various bandit models.

In the first part of dissertation, we consider a new setting of bandit learning with

multiple feedback signals, time-varying utility functions and probabilistic context informa-

tion. For this setting, we propose a multi-feedback probabilistic kernelized UCB algorithm

to choose the optimal arm in order to minimize the expected cumulative regret. We derive

an upper bound of the expected cumulative regret incurred by our proposed algorithm, with

respect to the best action that maximize the expected reward, and show that the bound

grows sub-linearly with time. We apply the proposed algorithm to DNN model selection.

The simulation results further validate the sub-linearity of the cumulative regret.

In the second part, we propose an algorithm based on delayed contextual UCB for

108



arm selection, which updates its reward function learning whenever new reward feedback is

received, and also establish an upper bound on the cumulative regret. Then, we propose a

novel extension by using semi-supervised learning to produce fictitious estimates for delayed

or missing rewards. Finally, we apply our algorithms to the problem of an online context-

aware news recommendation to find the most preferred articles to users. Our empirical result

validates our regret analysis and demonstrates that advantage of the fictitious estimates for

decreasing the regret.

In the third part of the dissertation, considering the practical scenario that some

selected arms may be deliberately or accidentally nullified, we study a novel and challenging

contextual combinatorial bandit setting with arm removal and submodular utility. We

propose a novel online bandit algorithm, called R2C2-MAB, to robustly select arms to

maximize the worst-case submodular utility while balancing exploration and exploitation.

Importantly, we prove that R2C2-MAB achieves a sublinear regret in time compared to an

efficient baseline algorithm. To empirically evaluate R2C2-MAB, we consider the wireless

sniffer channel assignment problem as a concrete example. Under both stochastic and

adversarial arm removals, our simulation results show that R2C2-MAB achieves a total

reward close to that of the baseline, while outperforming other existing bandit algorithms

that either do not exploit the submodularity structure of the utility function or neglect the

presence of arm removal.

In the last part, we consider the federated setting of bandit learning with dif-

ferential privacy and non-parameterized reward function. For this setting, we propose a

centralized federated bandit algorithm to learn the environment collaboratively with pri-
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vate communication, in order to minimize the total cumulative regret. We derive an upper

bound of the expected cumulative regret incurred by our proposed algorithm, and show that

the bound grows sub-linearly with respect to privacy budget. We apply the proposed algo-

rithm to contextual COVID-19 admission decision problem. The simulation results further

validate superiority of proposed federated bandit algorithms.
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[7] Robin Allesiardo, Raphaël Féraud, and Djallel Bouneffouf. A neural networks com-
mittee for the contextual bandit problem. In ICONIP, pages 374–381. Springer, 2014.

[8] Jason Altschuler, Victor-Emmanuel Brunel, and Alan Malek. Best arm identification
for contaminated bandits. Journal of Machine Learning Research, 20(91):1–39, 2019.

[9] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the mul-
tiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[10] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The non-
stochastic multiarmed bandit problem. SIAM journal on computing, 32(1):48–77,
2002.

[11] Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret
for both stochastic and adversarial bandits. In COLT, 2016.

111



[12] Baruch Awerbuch and Robert D Kleinberg. Adaptive routing with end-to-end feed-
back: Distributed learning and geometric approaches. In STOC, pages 45–53, 2004.

[13] Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. Resourceful
contextual bandits. In COLT, pages 1109–1134, 2014.

[14] Sandilya Bhamidipati, Branislav Kveton, and S Muthukrishnan. Minimal interaction
search: Multi-way search with item categories. In AAAI Workshop, pages 9–15. AI
Access Foundation, 2013.

[15] Adarsh Bhimraj, Rebecca L Morgan, Amy Hirsch Shumaker, Valery Lavergne,
Lindsey Baden, Vincent Chi-Chung Cheng, Kathryn M Edwards, Rajesh Gandhi,
William J Muller, John C O’Horo, et al. Infectious diseases society of america guide-
lines on the treatment and management of patients with covid-19. Clinical Infectious
Diseases, 2020.

[16] Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, and Jose Blanchet. Online
exp3 learning in adversarial bandits with delayed feedback. In NeurIPS, pages 11345–
11354, 2019.
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[103] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini.
Finite-time analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869,
2013.

[104] Claire Vernade, Alexandra Carpentier, Giovanni Zappella, Beyza Ermis, and
Michael Brueckner. Contextual bandits under delayed feedback. arXiv preprint
arXiv:1807.02089, 2018.

[105] Sof́ıa S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the
optimal design of clinical trials: benefits and challenges. Statistical science: a review
journal of the Institute of Mathematical Statistics, 30(2):199, 2015.

[106] Eric A Wan. Neural network classification: A bayesian interpretation. IEEE Trans-
actions on Neural Networks, 1(4):303–305, 1990.

[107] H. Wang, Q. Wu, and H. Wang. Learning hidden features for contextual bandits.
CIKM, 2016.

[108] Huazheng Wang, Qingyun Wu, and Hongning Wang. Learning hidden features for
contextual bandits. In CIKM, pages 1633–1642. ACM, 2016.

[109] Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit
learning: How much communication is needed to achieve (near) optimal regret. arXiv
preprint arXiv:1904.06309, 2019.

[110] Nirandika Wanigasekara, Yuxuan Liang, Siong Thye Goh, Ye Liu, Joseph Jay
Williams, and David S Rosenblum. Learning multi-objective rewards and user utility
function in contextual bandits for personalized ranking. In IJCAI, pages 3835–3841.
AAAI Press, 2019.

118



[111] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual
bandits in a collaborative environment. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval, pages 529–
538, 2016.

[112] Yifan Wu, Roshan Shariff, Tor Lattimore, and Csaba Szepesvári. Conservative ban-
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Appendix A

Supplemental Proof

A.0.1 Proof of Lemma 8

Proof. Since Eqn. (3.8) has another expression by Eqn. (3.6), we have

|ĝa,t − ga,t| = |φ (xa,t)
> θ − φ(xa,t)

>Ct
−1Φtyt|

= |λφ (xa,t)
>C−1

t θ|+ |φ (xa,t)
>C−1

t Φt

(
yt − Φ>t θ

)
|

≤ λ‖C−1
t φ (xa,t) ‖+ |φ (xa,t)

>C−1
t Φt

(
yt − Φ>t θ

)
|

(A.1)

where the last inequality comes from Cauchy-Schwartz inequality.

For the first term in Eqn. (A.1), since Ct is a positive definite matrix, we have

‖C−1
t φ (xa,t) ‖ =

√
φ (xa,t)

>C−2
t φ (xa,t)

≤
√
φ (xa,t)

>C−1
t φ (xa,t) = wa,t.

For the second term in Eqn. (A.1), since E
[(

yt−Φ>t θ
)]

=0, by Azuma’s inequality,

Pr
(
|φ (xa,t)

>C−1
t Φt

(
yt − Φ>t θ

)
| ≥ αwa,t

)
≤ 2 exp

(
−

2α2w2
a,t

‖Φ>t C−1
t φ (xa,t) ‖2

)
≤ 2 exp

(
−2α2

)
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where the last inequality is because

w2
a,t = φ (xa,t)

>C−1
t φ (xa,t)

= φ (xa,t)
>C−1

t

(
ΦtΦt

> + λI
)

C−1
t φ (xa,t)

≥ φ (xa,t)
>C−1

t ΦtΦt
>C−1

t φ (xa,t)

= ‖Φ>t C−1
t φ (xa,t) ‖2

Letting δ
TK = 2 exp

(
−2α2

)
, with probability at least 1− δ

T , we have |φ (xa,t)
>C−1

t Φt

(
yt − Φ>t θ

)
| ≤

αwa,t. This completes the proof.

A.0.2 Proof of Lemma 10

Proof. By the definition of instant regret in Eqn. (3.3), we have

regt = E
[
ya∗t ,t − yat,t

]
= ga∗t ,t − ĝa∗t ,t + ĝa∗t ,t − gat,t

≤ (α+ λ)wa∗t ,t + ĝa∗t ,t − gat,t

≤ (α+ λ)wat,t + ĝat,t − gat,t

≤ 2 (α+ λ)wat,t

where the first inequality and the third inequality hold based on Lemma 8 which bounds the

reward estimation error for all arms, and the second inequality comes from the UCB-based

arm selection in Algorithm 2.

A.0.3 Proof of Lemma 11

Proof. Divide the T−τmax rounds into τmax groups, each with m elements. In this

way, the p-th round set, p ∈ Z+, p ∈ [1, τmax], is Ωp = {τmax + p, 2τmax + p, · · · ,mτmax + p}.
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Correspondingly, the contexts with respect to the selected arms are also divided into

τmax groups, each group with m elements. For example, in the pth context group ,

p ∈ Z+, p ∈ [1, τmax], the contexts are {φ(x̄τmax+p), φ(x̄2τmax+p), · · · , φ(x̄mτmax+p)} where

x̄sτmax+p = xsτmax+p,asτmax+p .

Recall that Ct in Eqn. (3.4.1) can also be written as Ct =
∑t−1

s=1 φ(x̄s)φ(x̄s)
>+λI.

For each group, we construct m matrices with the similar form as Ct, which are

W p
i = λI +

i−1∑
s=1

φ(x̄sτmax+p)φ(x̄sτmax+p)
>,

i, p ∈ Z+, p ∈ [1, τmax], i ∈ [1,m].

By using Lemma 11 in [1], we have

m∑
s=1

‖φ(x̄sτmax+p)‖2(W p
s )
−1 ≤ 2 log

det (W p
m)

det (λI)
(A.2)

and
m∑
s=1

‖φ(x̄sτmax+p)‖2(W p
s )
−1 ≤ 2 log

det (W p
m)

det (λI)
.

Since the feedback delay dt is no larger than τmax, the reward for arm selected

at round t must be fed back at round t + τmax. Thus, we have ∀t > τmax, Tt−τmax ⊆ Tt.

To help analyze, we let Ωp
i = {τmax + p, 2τmax + p, · · · , iτmax + p} for i, p ∈ Z+, i ≤ m.

If t = iτmax + p, then Ωp
i−1 ⊂ Tt−τmax ⊆ Tt. Since Ct and W p

i are both positive-definite
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matrices, for any t = iτmax + p, we have

φ(x̄t)
>C−1

t φ(x̄t)

=φ(x̄t)
>

(
λI +

∑
s∈Tt

φ(xs,as)φ(xs,as)
>

)−1

φ(x̄t)

≤φ(x̄t)
>

λI +
∑

s∈Ωpi−1

φ(xs,as)φ(xs,as)
>

−1

φ(x̄t)

=φ(x̄t)
> (W p

i−1

)−1
φ(x̄t).

Therefore, the sum of w2
at,t can be expressed as

T∑
t=τmax+1

||φ(xa,t)||2C−1
t

=

τmax∑
p=1

m∑
s=1

‖φ(x̄sτmax+p)‖(W p
s−1)

−1

≤ 2

τmax∑
p=1

log
det (W p

m)

det (λI)
.

Let Kp
m be the m×m kernel matrix with respect to the pth context group. By Sylvester’s

determinant theorem, we have

log
det (W p

m)

det (λI)
= log

det (I +Kp
m)

det (λI)

≤ dp log(1 +
mck
dpλ

),

where dp is the rank ofKp
m. Define the effective dimension as d = arg maxdp=d1,··· ,dτmax

(dp log(1+

mck
dpλ

)). Then sum of w2
at,t can be bounded as

T∑
t=τmax+1

||φ(xa,t)||2C−1
t
≤ 2

τmax∑
p=1

dp log(1 +
mck
dpλ

)

≤ 2τmaxd log(1 +
mck
dλ

).
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A.0.4 Proof of Lemma 12

Proof. It is same as proof of Lemma 8, we have

|ḡa,t − ga,t| = |φ (xa,t)
> θ − φ(xa,t)

>C̄−1
t Φ̄tȳt|

≤ λ‖C̄−1
t φ (xa,t) ‖+ |φ (xa,t)

> C̄−1
t Φ̄t

(
ȳt − Φ̄>t θ

)
|

(A.3)

where the last inequality comes from Cauchy-Schwartz inequality.

For the first term in Eqn. (A.3), since Ct is a positive definite matrix and λ ≥ 1,

we have

‖C̄−1
t φ (xa,t) ‖ ≤

√
φ (xa,t)

> C̄−1
t φ (xa,t) = w̄a,t.

For the second term in Eqn. (A.3), different from Lemma 1, since E
[(

ȳt−Φ̄>t θ
)]
6= 0, by

Azuma’s inequality,

Pr
(
|φ (xa,t)

> C̄−1
t Φ̄t

(
ȳt − Φ̄>t θ

)
| − |φ (xa,t)

> C̄−1
t Φ̄tE

[(
ȳt−Φ̄>t θ

)]
| ≥ αw̄a,t

)
≤ 2 exp

(
−

2α2w̄2
a,t

‖Φ̄>t C̄−1
t φ (xa,t) ‖2

)
≤ 2 exp

(
−2α2

)
where the last inequality is because

w̄2
a,t ≥ ‖Φ̄>t C̄−1

t φ (xa,t) ‖2.

As for |φ (xa,t)
> C̄−1

t Φ̄tE
[(

ȳt−Φ̄>t θ
)]
|, we assume entry in vector φ(xa,t)

>C̄−1
t Φ̄t is bounded
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by |Vmax| and we have

|φ (xa,t)
> C̄−1

t Φ̄tE
[(

ȳt−Φ̄>t θ
)]
| ≤ |Vmax

∑
ȳk∈ȳt

E
[
ȳk − φ(xk)>θ

]
|

= |Vmax
∑
ŷk∈ŷt

E
[
ŷk − φ(xk)>θ

]
|

≤ |Vmax
∑
ŷk∈ŷt

(
E
[
ỹi − φ(xk)>θ

]
+ Lκβt

)
|

≤ |Vmax||ŷt|Lκβt

≤ L|Vmax|tκβt .

(A.4)

The second inequality in Eqn. (A.4) is from the fictitious feedback criteria in Eqn. (3.12)

and further we have,

Pr
(
|φ (xa,t)

> C̄−1
t Φ̄t

(
ȳt − Φ̄>t θ

)
| − L|Vmax|tκβt ≥ αw̄a,t

)
≤ Pr

(
|φ (xa,t)

> C̄−1
t Φ̄t

(
ȳt − Φ̄>t θ

)
| − |φ (xa,t)

> C̄−1
t Φ̄tE

[(
ȳt−Φ̄>t θ

)]
| ≥ αw̄a,t

)
.

Letting δ
TK = 2 exp

(
−2α2

)
, with probability at least 1− δ

T , we have |φ (xa,t)
> C̄−1

t Φ̄t

(
ȳt − Φ̄>t θ

)
| ≤

αw̄a,t + L|Vmax|tκtβ. This completes the proof.

A.0.5 Proof of Theorem 13

Proof. Since the instant regret from Lemma 12 is bounded with probability 1− δ
T

regt ≤ 2(α+ λ)w̄a,t + 2L|Vmax|tκtβ,

then the total cumulative regret by Algorithm 3 is bounded up to time T , with probability

1− δ

RT ≤ 2(α+ λ)

T∑
t=1

w̄a,t + 2L|Vmax|
T∑
t=1

tκt
β.
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For the first part
∑T

t=1(α+ λ)w̄a,t, based on [36], we have

T∑
t=1

w̄a,t ≤
√

2Td log
(

1 +
ck
dλ
T
)
.

For the rest, by letting κt
β = ζt

−3
β ,
∑T

t=1 tκt
β is bounded by

T∑
t=1

tκt
β =

T∑
t=1

t · ζ(t
−3
β )β = ζ

T∑
t=1

t−2 ≤ ζ
∞∑
t=1

t−2 = ζ
π2

6
.

This completes the proof.

A.0.6 Proof of Lemma 17

Proof. In R2C2-MAB, when V t
sub occurs, it indicates that the utility of selecting

arms in Ñ t
sub is higher than the utility of selecting arms in Ñ t

g . Thus, we have

Pr{V t
sub} = Pr{u(d̂

t

sub, Ñ t
sub) ≥ u(d̂

t

g, Ñ t
g)}. (A.5)

The right side of Equation (A.5) indicates that at least one of three following events happens

when H(t) ≥ 0:

E1 ={u(d̂
t

sub, Ñ t
sub) ≥ u(d̄

t
sub, Ñ t

sub) +H(t)}

E2 ={u(d̂
t

g, Ñ t
g) ≤ u(dtg, Ñ t

g)−H(t)}

E3 ={u(d̂
t

sub, Ñ t
sub) ≥ u(d̂

t

g, Ñ t
g),

u(d̂
t

sub, Ñ t
sub) < u(d̄

t
sub, Ñ t

sub) +H(t),

u(d̂
t

g, Ñ t
g) > u(dtg, Ñ t

g)−H(t)}.

(A.6)

Hence, we have

{u(d̂
t

sub, Ñ t
sub) ≥ u(d̂

t

g, Ñ t
g)} ⊆ E1 ∪ E2 ∪ E3. (A.7)
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The next step is to bound the probability of E1, E2 and E3 separately. For Pr{E1}, we

have

Pr{E1} = Pr{u(d̂
t

sub, Ñ t
sub) ≥ u(d̄

t
sub, Ñ t

sub) +H(t)}

≤ Pr{d̂(ptn) ≥ d̄(ptn) +
H(t)

b̃
, ∃n ∈ Ñ t

sub}

≤ Pr{d̂(ptn) ≥ E[d̂(ptn)] +
H(t)

b̃
,∃n ∈ Ñ t

sub}

=
∑

n∈Ñ tsub

Pr{d̂(ptn) ≥ E[d̂(ptn)] +
H(t)

b̃
}

≤
∑

n∈Ñ tsub

exp

(
−2Ct(p̂tn)H(t)2

(b̃dmax)2

)

≤
∑

n∈Ñ tsub

exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

≤ b̃ exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

(A.8)

The first inequality of Equation (A.8) comes from {u(d̂
t

sub, Ñ t
sub) ≥ u(d̄

t
sub, Ñ t

sub) +H(t)} ⊆

{d̂(ptn) ≥ d̄(ptn) + H(t)

b̃
, ∃n ∈ Ñ t

sub}, which can be proved by reductio ad absurdum. The

last three steps of Equation (A.8) utilize the Chernoff-Hoeffding bound. Since this is in

the exploitation phase, there are least tz log(t) times counted in C(p), ∀p ∈ Pt. To bound

Pr{E1}, we choose H(t) = b̃dmaxt
−z
2 and then have

Pr{E1} ≤ b̃ exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

= b̃ exp

(
−2tz log(t)(b̃dmaxt

−z
2 )2

(b̃dmax)2

)

≤ b̃ exp(−2 log(t))

≤ b̃t−2.

(A.9)
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Similarly, the Pr{E2} can be bounded in the same way.

Pr{E2} ≤ b̃ exp

(
−2tz log(t)H(t)2

(b̃dmax)2

)

≤ b̃t−2.

(A.10)

Finally, to bound Pr{E3}, we define the best and worst context for hypercube

p as x̄(p) := arg maxx∈p d(x) and x(p) := arg minx∈p d(x), respectively. Thus, we redefine

d̄(p) and d(p) as:

d̄(p) =
1

Ct(p)

∑
τ :xτ∈p

d(x̄τ (p))

d(p) =
1

Ct(p)

∑
τ :xτ∈p

d(xτ (p))

(A.11)

where xτ are the contexts falling into the hypercube p before time slot t. Further, we have

∀p ∈ P t:

d̄(p)− d̂(p) ≤ 1

Ct(p)

∑
τ :xτ∈p

d(x̄τ (p))− d(xτ (p))

≤ 1

Ct(p)

∑
τ :xτ∈p

LD
α
2 h−αT

≤ LD
α
2 h−αT

(A.12)

where LD
α
2 h−αT comes from the Hölder condition defined in Equation (4.4) and the fact

||x− x′|| ≤ D
1
2h−1

T due to uniform hypercube partition. Likewise, we have

d̂(p)− d(p) ≤ LD
α
2 h−αT . (A.13)

Considering the arms in Ñ t
sub, by the greedy algorithm, we have:

u(d̄
t
sub, Ñ t

sub)− u(d̂
t

subÑ t
sub) ≤

∑
n∈Ñ tsub

d̂(ptn)− d(ptn)

≤ b̃LD
α
2 h−αT

(A.14)

128



Similarly, for Ñ t
g , we have

u(d̂
t

g, Ñ t
g)− u(dtg, Ñ t

g) ≤ b̃LD
α
2 h−αT . (A.15)

Next, we analyze the three components of E3 separately. For the first component,

according to the definition in Equation (A.11), we have

{u(d̂
t

sub, Ñ t
sub) ≥ u(d̂

t

g, Ñ t
g)} ⊆ {u(d̄

t
sub, Ñ t

sub) ≥ u(dtg, Ñ t
g)} (A.16)

For the second part of E3, by Equation (A.12), we have

{u(d̂
t

sub, Ñ t
sub) < u(d̄

t
sub, Ñ t

sub) +H(t)}

⊆ {u(d̄
t
sub, Ñ t

sub)− b̃LD
α
2 h−αT < u(d̄

t
sub, Ñ t

sub) +H(t)}

= {H(t) + b̃LD
α
2 h−αT > 0}.

(A.17)

For the last component of E3, using Equation (A.12) again, we have

{u(d̂
t

g, Ñ t
g) > u(dtg, Ñ t

g)−H(t)}

⊆ {u(dtg, Ñ t
g) + b̃LD

α
2 h−αT > u(dtg, Ñ t

g)−H(t)}

= {H(t) + b̃LD
α
2 h−αT > 0}.

(A.18)

Combining Equations (A.16), (A.17) and (A.18), the probability of E3 is bounded by

Pr{E3} ≤ Pr{u(d̄
t
sub, Ñ t

sub) ≥ u(dtg, Ñ t
g), H(t) + b̃LD

α
2 h−αT > 0}. (A.19)

Since the utility function satisfies

u(dtg, Ñ t
g)− u(d̄

t
sub, Ñ t

sub) ≥ Atθ (A.20)

where A > 0 and θ < 0, it follows that the right side of Inequality (A.19) contradicts with

(A.20), which means that Pr{E3} = 0 under the condition specified by (A.20).

129



Therefore, combining (A.9) and (A.10), we have

Pr{V t
sub} ≤ Pr{E1 ∪ E2 ∪ E3}

≤ Pr{E1}+ Pr{E2}+ Pr{E3}

= 2 · b̃t−2.

(A.21)

This completes the proof.

A.0.7 Proof of Proposition 20

Proof. To demonstrate the applicability of R2C2-MAB for the sniffer assignment

problem formulated in Equation (4.28), it suffices to show that the utility function defined

in Equation (4.27) is monotone and submodular.

First, we let N1 ⊆ N ,N2 ⊆ N and N1 ⊆ N2. Thus, for N2, we have

∏
n∈N2

(1− Prtn) =
∏
n′∈N1

(1− Prtn′)
∏

n†∈N2\N1

(1− Prtn†)

≤
∏
n′∈N1

(1− Prtn′)

(A.22)

Then, it follows that 1−
∏
n∈N2

(1− Prtn) ≥ 1−
∏
n′∈N1

(1− Prtn′), proving monotonicity.

Next, for submodularity, we let ñ ∈ N\N2 and the marginal utility ∆(N2, ñ) is

∆(N2, ñ) =

1−
∏

n∈N2∪{ñ}

(1− Prtn)

−
1−

∏
n∈N2

(1− Prtn)


=
∏
n∈N2

(1− Prtn)−
∏

n∈N2∪{ñ}

(1− Prtn)

= (1− Prtñ)
∏
n∈N2

(1− Prtn)

(A.23)
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Next, we show

∆(N1, ñ)−∆(N2, ñ)

=(1− Prtñ)
∏
n′∈N1

(1− Prtn′)− (1− Prtñ)
∏
n∈N2

(1− Prtn)

=(1− Prtñ)

 ∏
n′∈N1

(1− Prtn′)−
∏
n∈N2

(1− Prtn)

 ≥ 0

(A.24)

where the last inequality is from Equation (A.22). Thus, this complete the submodularity

proof.
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