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4.3.1 Periodic density evolution orbits . . . . . . . . . . . . . . . . . . . . . 48
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ABSTRACT OF THE DISSERTATION

Macroscopic modeling and analysis of urban vehicular traffic

By

Qi-Jian Gan

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 2014

Professor Wen-Long Jin, Chair

A macroscopic relation between the network-level average flow-rate and density, which is

known as the macroscopic fundamental diagram (MFD), has been shown to exist in ur-

ban networks in stationary states. In the literature, however, most existing studies have

considered the MFD as a phenomenon of urban networks, and few have tried to derive it

analytically from signal settings, route choice behaviors, or demand patterns. Furthermore,

it is still not clear about the definition or existence of stationary traffic states in urban

networks and their stability properties. This dissertation research aims to fill this gap.

I start to study the stationary traffic states in a signalized double-ring network. A kinematic

wave approach is used to formulate the traffic dynamics, and periodic traffic patterns are

found using simulations and defined as stationary states. Furthermore, traffic dynamics

are aggregated at the link level using the link queue model, and a Poincaré map approach

is introduced to analytically define and solve possible stationary states. Further results

show that a stationary state can be Lyapunov stable, asymptotically stable, or unstable.

Moreover, MFDs are explicitly derived such that the network flow-rate is a function of the

network density, signal settings, and route choice behaviors. Also the time for the network

to be gridlocked is analytically derived.

Even with the link queue model, traffic dynamics are still difficult to solve due to the discrete

xii



control at signalized junctions. Therefore, efforts are also devoted to deriving invariant

continuous approximate models for a signalized road link and analyzing their properties

under different capacity constraints, traffic conditions, traffic flow fundamental diagrams,

signal settings, and traffic flow models. Analytical and simulation results show that the

derived invariant continuous approximate model can fully capture the capacity constraints

at the signalized junction and is a good approximation to the discrete signal control under

different traffic conditions and traffic flow fundamental diagrams. Further analysis shows

that non-invariant continuous approximate models cannot be used in the link transmission

model since they can yield no solution to the traffic statics problem under certain traffic

conditions.

For a signalized grid network, simulations with the link queue model confirm that important

insights obtained for double-ring networks indeed apply to more general networks.
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Chapter 1

Introduction

1.1 Background

1.1.1 Urban traffic congestion

Nowadays traffic is getting more and more congested in urban road networks. Traffic con-

gestion arising during peak periods has wasted travelers a tremendous amount of money

and time and has caused various environmental and health problems. In the 2012 Urban

Mobility Report [71], congestion has caused a total loss of $121 billion in 2011 in 498 urban

areas nationwide, including 5.5 billion hours of extra time and 2.9 billion gallons of fuel.

Meanwhile, 56 billion pounds of additional carbon dioxide (CO2) greenhouse gas have been

released into the atmosphere in 2011 because of urban congestion. In addition, unreliable

travel times caused by congestion make it difficult for travelers to plan their trips. However,

this is not the worst. The bad news is that congestion is likely to grow worse in the coming

decades due to the fact that travel demand continues to rise while significant road expansion

is unlikely [72].
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In fact, traffic congestion can be either recurrent or non-recurrent. Events such as vehicle

breakdowns, crashes, severe weather, special events, temporarily lane closure for construction

or maintenance activities can cause non-recurrent traffic congestion. For recurrent traffic

congestion, it is often seen as a capacity problem that the limited physical infrastructure

can not meet the increasing travel demand, especially during peak hours. To relieve traffic

congestion, one of the primary recommendations [72] is to upgrade signal timing and control

strategies at intersections where the current technology is deficient.

In urban networks, traffic signal has been installed at numerous intersections to regulate traf-

fic movements. A number of traffic signal control strategies have been proposed since one of

the earliest attempts in [75]. According to [65], prevailing traffic signal control strategies can

be categorized by the following characteristics: fixed-time versus traffic-responsive, isolated

versus coordinated, and under-saturated versus over-saturated. However, most of them are

only applicable to under-saturated traffic conditions, and few can work under over-saturated

traffic conditions [65]. Therefore, as traffic is getting more and more congested in urban

networks, there is a need to develop effective and efficient traffic signal control strategies

that can work under various traffic conditions.

1.1.2 Importance of understanding traffic statics and dynamics in

urban networks

In Figure 1.1, the framework of traffic studies on urban networks is provided. For an urban

network, its inputs include many aspects such as weather conditions, vehicle types, driver

behaviors, route choice behaviors, and travel demands. Given certain inputs, control and

management strategies can be applied to determine the signal settings and manage the

facility for automobile parking and other transportation modes such as transit, bus, and

bike.

2



An urban 

network 
Traffic models 

Inputs 

Outputs 

Feedback 

Weather conditions 

Vehicle types 

Driver behaviors 

Route choice behaviors 

Travel demands 

… 

Control and 

management strategies 

Signal control 

Parking management 

Transit management 

Bus management 

Bike management 

… 

Components including: 

Vehicles, drivers, 

pedestrians, road links, 

intersections, ... 

Microscopic:  

Car-following models, lane-changing models, ... 

Macroscopic: 

Kinematic wave models, queuing models, ... 

Signal models: 

Discrete signals, continuous approximate models, 

... … 

Microscopic:  

Vehicle trajectory (location, speed, acceleration, ...) 

Macroscopic:  

Cell-based / link-based speed, density, flow-rate 

Network performance: 

Travel time, level of service, congestion level, ... 

… 

Figure 1.1: The framework of traffic studies on urban networks
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However, urban networks are complex systems which involve a lot of components such as

vehicles, drivers, pedestrians, road links, and intersections and the interactions among them.

In order to understand the traffic dynamics in an urban network, traffic models are needed.

At the microscopic level, car-following and lane-changing models are used to describe drivers’

driving behaviors. At the macroscopic level, traffic flow models such as kinematic wave

models and queuing models are used to describe the evolution pattern of traffic inside a road

link. Since the road links are connected with each other at intersections, signal models, either

discrete or continuous, are used to describe the evolution and route choice patterns of traffic

at intersections. For network outputs, vehicle trajectories can be obtained if traffic models at

the microscopic-level are used. For macroscopic models, information such as speed, density,

and flow-rate can be obtained. Given these outputs, network performance such as travel

time, level of service, and congestion level can be determined. Nowadays, with advanced

detection techniques, these outputs can also be detected in real-time from the field. To

improve the network performance, these outputs can serve as feedback to help engineers and

planners modify the control and management strategies accordingly.

Before developing effective and efficient network control and management strategies, a fun-

damental challenge is to understand impacts of network inputs such as signal settings, route

choice behaviors, and demand patterns on the static and dynamic characteristics of urban

traffic. Under given network inputs, what the final states will be and how the transition

process would look like are the questions needed to be answered first. But in the literature,

very limited efforts [36, 12, 35, 11, 49] have been devoted to this area. And also, while

developing traffic signal control strategies, optimization is performed with given objective

functions such as maximizing the total throughput or minimizing the total travel delay. But

such optimization problems are challenging to solve when the network gets larger due to

the fact that the discrete signal control at intersections introduces many discrete variables.

In the literature, there have been studies [26, 25, 34] proposing continuous models to ap-

proximate the junction flux at the intersections. However, some of them [26, 25] can only

4



apply to congested traffic conditions, while some others [34] were directly proposed without

a general approach. To the best of our knowledge, there is a lack of a general method to

derive continuous approximate models that can work under different traffic conditions with

different types of traffic flow models.

1.2 Motivation of the dissertation research

The motivation of this dissertation research is to provide a comprehensive study on the static

and dynamic properties of traffic flow in signalized urban networks and to provide a system-

atic method to derive invariant continuous approximate models for signalized intersections.

In Figure 1.2, the research outline of this dissertation is provided. Instead of working on

large-scale urban networks, e.g., the signalized grid network, we focus on the traffic statics

and dynamics in a signalized double-ring network, which retains the most important feature

of urban networks, the signalized intersection. In this dissertation, we try to understand

possible stationary states in the signalized double-ring network under different frameworks

of traffic flow models, e.g., the cell transmission model (CTM)[9] and the link queue model

(LQM)[43]. Due to infinite-dimensional state variables introduced by the kinematic wave

model, CTM simulations are used to find the possible stationary states. Periodic traffic

pattens are found in the signalized double-ring network and defined as stationary states. To

analyze the existence and the property of the stationary states, we use the link-queue model

to aggregate the traffic dynamics at the link level, and thus, each link only has one state

variable, its average density. Furthermore, the signalized double-ring network is formulated

as a switched affine system by using the triangular traffic flow fundamental diagram [33].

Periodic density evolution orbits are found when the system reaches stationary states, and

therefore, the Poincaré map approach in [76, 74] is used to analyze the static and dynamic

properties of these periodic orbits. With the analytical tools of the link queue model, the

5



switched affine system, and the Poincaré map, we can obtain a more complete picture of pos-

sible stationary states inside the signalized double-ring network than other existing studies.

Macroscopic fundamental diagrams (MFDs) [12, 27] and gridlock times can be analytically

derived under different combinations of signal settings, route choice behaviors, and traffic

demands.

Stationary and dynamic 

properties under different 

traffic flow models: 

Cell  transmission model 

Link queue model 

Traffic statics and 

dynamics in a 

signalized double-ring 

network 

Analysis of traffic statics 

and dynamics in large-

scale urban networks 

Invariant continuous 

approximate models for 

signalized junctions:  
a signalized road link  

Characteristics under different 

traffic flow models: 

Cell  transmission model 

Link transmission model 

Future research Current research 

Figure 1.2: The dissertation research outline

In urban networks, traffic signal is one of the most important components. Even with the link

queue model, traffic dynamics are still difficult to solve analytically due to the existence of

signals at intersections. Therefore, in this dissertation, we introduce the analytical framework

in [48, 41] to derive invariant continuous approximate models for a signalized road link. We

also evaluate the approximation performance of the invariant continuous approximate models
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under different cycle lengths, demand patterns, and traffic flow fundamental diagrams. In

addition, we show the importance of invariance continuous approximate models in the link

transmission model [78, 47].

Insights from this dissertation research can provide a deeper understanding of how the net-

work inputs such as signal settings, route choice behaviors and traffic demands can impact

the performance of urban networks. The analytical tools such as the link queue model,

the switch affine system, and the Poincaré map and the invariant continuous approximate

models can be applied to the analysis of large-scale urban networks, which definitely will

yield more interesting and practical results. The organization of this dissertation research

is provided as follows. In Chapter 2, we provide a brief literature review on signal control

strategies, continuous approximate models, traffic flow models, and traffic flow fundamental

diagrams. In Chapter 3, we provide a kinematic wave approach to formulate the traffic dy-

namics in a signalized double-ring network and use CTM simulations to find the stationary

traffic states. In Chapter 4, we provide a Poincaré map approach to analyze the static and

dynamic properties of traffic in the signalized double-ring network. In Chapter 5, we provide

a comprehensive study on deriving and analyzing invariant continuous approximate models

for a signalized road link. In Chapter 6, we use LQM simulations to study the traffic statics

and dynamics in a signalized grid network. In Chapter 7, we summarize our research findings

and provide some future research directions.
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Chapter 2

Literature review

2.1 Control strategies at signalized intersections

In the literature, a number of signal control strategies have been proposed to improve the

traffic performance since one of the earliest attempts in [75]. According to [65], signal control

strategies can be classified into two types: isolated strategies for a single intersection and

coordinated strategies that consider an urban arterial or even an urban network with many

intersections. In the following subsections, we provide some examples of control strategies

in these two types.

2.1.1 For isolated intersections

Fixed-time control strategies for a single intersection can be stage-based or phase-based

[65]. Under given stage settings, stage-based strategies try to find optimal splits and cycle

lengths by minimizing the total delay or maximizing the total throughput at the intersection.

To calculate vehicles’ average delay, the delay formulation proposed by Webster [75] has
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been widely used. In his delay formulation, average delay for a vehicle consists of three

parts: uniform delay, random delay, and empirical adjustments. Optimal cycle lengths were

obtained by minimizing the total delay at the intersection under given arrival flow-rates

[75]. Optimal settings of splits and cycle lengths were obtained in [60] by considering the

impact of various arrival patterns in the calculation of random delay. In [1, 2], SIGSET was

proposed to take into account the case that approaches have right of way in more than one

stage within a cycle. Webster’s delay formula was still used in the delay estimation. Optimal

settings of cycle length and effective green time for each stage were obtained by minimizing

the total delay with capacity, cycle length, and minimum green time constraints. Different

from SIGSET, another program, SIGCAP, was proposed in [3, 4] to maximize the practical

capacity at the signalized intersection under similar constraints as those in SIGSET. For

phase-based control strategies, they are extended to further consider optimal stage settings.

For example, the constraint of fixed staging was released in [39]. Incompatibility of traffic

streams at the intersection was considered as a constraint in the optimization problem.

Optimal settings of splits, cycle length, and stage settings were obtained by minimizing

the total delay or maximizing the intersection capacity. The optimization problem was

formulated as a binary-mixed-integer-linear-programming (BMILP) problem, and solutions

were obtained using a branch-and-bound method. However, the aforementioned studies are

only applicable to under-saturated traffic conditions, and their performance deteriorates as

traffic gets congested. In addition, they are fixed-time strategies and fail to utilize real-time

traffic information at the intersection.

Due to the installation of vehicle detectors at signalized intersections, traffic-responsive con-

trol strategies that utilize real-time flow and occupancy information have been proposed.

Examples such as the Vehicle Interval strategy, the Volume Density strategy, and Miller’s

algorithm were provided in [14]. In the Vehicle Interval strategy, minimum and maximum

green times are prespecified for each stage. A critical interval (CI) is used to extend the

green time to allow detected vehicles cross the intersection. The control logic in the Vol-
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ume Density strategy is similar to that in the Vehicle Interval strategy. But it also takes

into account queue lengths and vehicles’ waiting time during the red phase in deciding the

switching time instants. In Miller’s algorithm [59], at every time step, the computer program

determines whether to switch the signal immediately or to delay the switch for k×h seconds,

e.g., h = 2s and k = 1, 2, ..., 5. The evaluation is based on the time gain in postponing the

switch. If the time gain is negative, the signal is switched immediately. Otherwise it remains

unchanged for the next time step.

2.1.2 For coordinated intersections

When traffic signals are close enough, vehicles arrive the downstream intersections in pla-

toons. For an arterial, traffic signals can be synchronized so that a vehicle can travel from the

beginning to the end without stopping. The time difference between the first and the last ve-

hicles which satisfy such a condition is defined as bandwidth for that direction. MAXBAND

was introduced in [55] to specify the offset settings so as to maximize the total bandwidths of

a two-way arterial within given cycle and speed ranges. The optimization problem was for-

mulated as a mixed-integer-linear-programing problem, and a branch-and-bound method was

used to solve it. Later in [22], MULTI-BAND was proposed to consider new features such as

determination of left-turn phases and different bandwidths among the links in the optimiza-

tion problem. Different from MAXBAND or MULTI-BAND [55, 22], TRANSYT (TRAffic

Network StudY Tool)[69], was proposed to find multi-directional green waves by minimizing

the total delay. The model consists of two parts: a traffic flow model and an optimization

procedure. In the traffic flow model, network information such as road geometries, constant

and known turning ratios at intersections, and constant and known demands is needed. A

platoon dispersion model is used to describe vehicles’ progressions inside a link. In the opti-

mization procedure, a ‘hill-climbing’ method is used. The program generates small changes

in the decision variables such as offsets and serves them as new inputs in the traffic model.
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A so-called Performance Index is used to evaluate the improvements at each optimization

step, and the process stops when a (local) minimum is found. However, the aforementioned

studies are fixed-time control strategies and only applicable to under-saturated conditions

[65].

In reality, demands and turning movements at intersections are not constant and can vary

in different days or even within a time of day. Therefore, several traffic-responsive coordi-

nated strategies have been proposed. In [38, 37], a traffic-responsive version of TRANSYT,

SCOOT (Split, Cycle and Offset Optimization Technique) , was developed. Different from

TRANSYT, which is ‘off-line’ and predicts delay and stops based on specified average flows,

SCOOT predicts delay and stops using real-time measurements of flows and occupancies

from vehicle loop detectors. The optimization structure in SCOOT is similar to that in

TRANSYT, which also consists of a traffic model and a signal optimizer. But the SCOOT

signal optimizer works in read time, and new signal settings are implemented directly on

the street. As mentioned in [65], SCOOT cannot work properly under saturated traffic

conditions. Besides SCOOT, model-based traffic-responsive strategies such as OPAC (Op-

timization Policies for Adaptive Control) [21] have been proposed. Different from SCOOT,

splits, offsets, and cycles are not explicitly considered in OPAC. For real-time applications,

a rolling horizon approach is used in OPAC. Given observed traffic data in the time period

[t−h, t], the optimization method calculates an optimal switching scheme for the whole time

period [t − h, t + H − h], where H > h. But the optimal switching scheme is only applied

to the time period [t, t + h]. When the real-time traffic data in the time period [t, t + h]

are collected, the optimization method will generate a new optimal switching scheme for the

time period [t, t+H] and apply it to the time period [t+h, t+2h]. However, OPAC employs

complete enumeration in the optimization of switching schemes, and thus, it is not real-time

feasible for multiple intersections [65]. In [56], the cell transmission model in [9, 10] was used

to describe traffic dynamics inside a link. The optimization problem was formulated as a

mixed-integer-programing problem, and optimal signal settings were obtained by minimizing
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the total network delay of queued vehicles inside the cells. Later in [57], the signal control

framework was extended to the network level, and a genetic algorithm approach was intro-

duced to obtain the optimal signal settings. Results showed that compared with TRANSYT,

the proposed control strategy improves the network performance by as much as 33 % under

a wide range of demand patterns.

2.2 Continuous approximate models at signalized in-

tersections

At urban intersections, the operation of traffic signal follows a discrete pattern: vehicles are

allowed to move when the traffic light is green, while they have to stop when it turns red.

Such a discrete control pattern introduces difficulties in optimizing signal control parame-

ters such as green splits, especially when the network size increases. Therefore, continuous

approximate models have been proposed in some studies.

2.2.1 The store-and-forward method

For an intersection of two one-way streets, the arrival rates are denoted as a1(t) and a2(t),

respectively. During the peak period, a queue is likely to develop in one or both directions

when the following condition is satisfied:

a1(t)/s1 + a2(t)/s2 > 1− (Tl/Tc), (2.1)

where s1 and s2 are the saturation flow-rates in the downstream of the intersection, Tl the

total lost time, and Tc the cycle length. The cumulative arrival rates of the two upstream
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Figure 2.1: Arrival and discharging patterns at an intersection with two upstream approaches
under congested conditions.

approaches are given by

Ai(t) = Ai(0) +

∫ t

0

ai(τ)dτ, i = 1, 2 (2.2)

where Ai(0) is the initial queue at the onset of the rush period (t = 0). The cumulative arrival

rates are provided in Figure 2.1. Since traffic demands are high at both directions, the green

times are fully used, and thus, the discharging flow-rates are equal to the saturation flow-

rates. The saw-toothed patterns of the service curves Bi(t), i = {1, 2}, are also provided

in Figure 2.1. In [26, 25], considering large delays are caused by queueing, the addition

delay due to this pattern is neglected and the service curves are smoothed using continuous

functions. If the saturation flow-rates are the same in both directions, i.e., s1 = s2, the total

throughput at the intersection remains constant regardless of the signal settings. For a fixed
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signal setting, the service curves can be calculated as

B1(t) = bt, (2.3a)

B2(t) = (κ− b)t, (2.3b)

where b and κ are constants and the ratio of the effective green times of the two approaches

is b
κ−b . The delays in both directions are calculated as

Td1 =

∫ t1

0

[A1(t)− bt]dt, (2.4a)

Td2 =

∫ t2

0

[A2(t)− (κ− b)t]dt, (2.4b)

where t1 and t2 satisfy the following relations:

A1(t1) = bt1, (2.5a)

A2(t2) = (κ− b)t2. (2.5b)

The total delay at the intersection is given by

Ttot = Td1 + Td2. (2.6)

To minimize the total delay, the optimum split can be found when the queues in both

directions are dissolved simultaneously. It is also shown that the minimization of the total

delay doesn’t necessarily guarantee the minimization of the maximum individual delay [26,

25].
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2.2.2 A continuum model for a signalized merging junction

For a signalized merging junction, let’s consider the traffic signal is installed at x = 0. The

two upstream links are denoted as links 1 and 2, respectively, and the downstream link as

link 3. Each cycle is a combination of two phases for the two upstream links, respectively.

The cycle length is T with zero lost times. The green ratio is denoted as π1 for link 1, and

thus 1−π1 for link 2. Then the discrete signal control at the merging junction can be written

as

δ1(t;T, π1) =

 1, t ∈ [nT, nT + π1T ),

0, otherwise,
n ∈ N0 (2.7a)

δ2(t;T, π1) =

 1, t ∈ [nT + π1T, (n+ 1)T ),

0, otherwise,
n ∈ N0 (2.7b)

The junction fluxes at the merging junction can be calculated as

f1(k1(t, 0−)) = min{D1(0−, t), δ1(t)C1, δ1(t)S3(0+, t)}, (2.8a)

f2(k2(t, 0−)) = min{D2(0−, t), δ2(t)C2, δ2(t)S3(0+, t)}, (2.8b)

f2(k3(t, 0+)) = f1(k1(t, 0−)) + f2(k2(t, 0−)). (2.8c)

Here k1(t, 0−) and k2(t, 0−) are the densities of links 1 and 2 at x = 0−, respectively, and

k3(t, 0+) is the density of link 3 at x = 0+. D1(0−, t) and D2(0−, t) are the link demands at

x = 0− for links 1 and 2, respectively, while S3(0+, t) is the link supply at x = 0+ for link

3 [10, 53]. In [34], a continuum model was proposed to approximate the discrete junction

fluxes in Equation (2.8) by averaging the periodic signal control parameters δ1(t) and δ2(t)
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over time. The model can be written as

f1(k1(t, 0−)) = min{D1(0−, t), π1C1, π1S3(0+, t)}, (2.9a)

f2(k2(t, 0−)) = min{D2(0−, t), (1− π1)C2, (1− π1)S3(0+, t)}, (2.9b)

f2(k3(t, 0+)) = f1(k1(t, 0−)) + f2(k2(t, 0−)). (2.9c)

2.3 Traffic flow models

For a general road network, we denote the set of normal links as A, the set of normal junctions

as J, the set of origins as O, and the set of destinations as R. To describe traffic dynamics

inside a link, different traffic flow models have been proposed. In this section, we only review

three types of traffic flow models that will be used in the following chapters.

2.3.1 The cell transmission model

In kinematic wave models, traffic on link a ∈ A is considered as a continuous media. At

time t, traffic at point xa ∈ [0, La] can be described by the following three location-and-time

dependent parameters: flow-rate qa(xa, t), density ka(xa, t), and speed va(xa, t), where La

is the length of link a. Hereafter, we omit (xa, t) in these three variables unless necessary.

For a road section without internal entrances and exits, e.g., a freeway section without

on-/off-ramps, the following traffic conservation law holds:

∂qa
∂xa

+
∂ka
∂t

= 0. (2.10)
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In [54, 68], it was assumed there is a functional relation between speed and density, e.g.,

va = Va(ka), which is known as the traffic flow fundamental diagram. Since we have qa =

kava, Equation (2.10) can be rewritten as

∂kaVa(ka)

∂xa
+
∂ka
∂t

= 0, (2.11)

which is known as the LWR model.

For simulation studies, a discrete version of Equation (2.11) is needed. Therefore, the Go-

dunov method [30] is used to numerically solve Equation (2.11). In the Godunov method, a

link is divided into N cells, and the time is partitioned into K steps. For a cell i, we define

the the average density at time step j as kja,i, and the one at time step j+ 1 as kj+1
a,i . During

the time duration at time step j, we define f ja,i−1/2 and f ja,i+1/2 as fluxes at the upstream

and downstream boundaries of cell i, respectively. Then the Godunov-type finite difference

equation of Equation (2.11) can be written as

kj+1
a,i − k

j
a,i

∆t
−
f ja,i−1/2 − f

j
a,i+1/2

∆x
= 0, (2.12)

where ∆x is the cell length, and ∆t is the time duration at time step j. Here, the choice of

∆t
∆x

should follow the CFL condition [8], which requires vehicles can not travel across more

than one cell during ∆t. Given the initial and the boundary conditions at time step j, the

corresponding density at time step j + 1 can be updated by

kj+1
a,i = kja,i +

∆t

∆x
(f ja,i−1/2 − f

j
a,i+1/2). (2.13)

In order to uniquely determine the boundary flux between cells i− 1 and i, the supply and

demand concept in [18] was used in [9, 53]. Suppose the fundamental diagram on a link is

qa = Qa(ka) = kaVa(ka), then the demand Da,i and the supply Sa,i for cell i are calculated
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as

Da,i = Da(ka,i) = Qa(min{ka,c, ka,i}), (2.14a)

Sa,i = Sa(ka,i) = Qa(max{ka,c, ka,i}), (2.14b)

where ka,c and ka,i are the critical density and the density in cell i, respectively. In [9, 10],

the boundary flux f ja,i−1/2 entering cell i is taken as the minimum of cell i’s supply and its

upstream cell (i− 1)’s demand, which is

f ja,i−1/2 = min{Da,i−1, Sa,i}. (2.15)

Equations (2.13) to (2.15) are known as the cell transmission model (CTM) proposed in

[9, 10].

However, it is hard to obtain analytical insights from simulations with the discrete version

of CTM. Therefore, a continuous version of CTM was recently proposed in [48, 41, 46,

42]. Traditionally, density is used as a state variable, which determines the corresponding

speed and flow-rate from the fundamental diagram. However, the supply and demand are

considered as state variables in [48, 41, 46, 42]. At point (a, xa), if the demand Da and the

supply Sa are known, the corresponding flow-rate, density, and capacity can be calculated

as

qa = min{Da, Sa}, (2.16a)

Ca = max{Da, Sa}, (2.16b)

ka = Ra(Da/Sa) =

 D−1
a (CaDa/Sa), Da ≤ Sa

S−1
a (CaSa/Da), Da ≥ Sa

(2.16c)
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To calculate the traffic flux through point (a, xa), the following equation is used:

qa(xa, t) = min{Da(x
−
a , t), Sa(x

+
a , t)}, (2.17)

where x−a and x+
a are the upstream and downstream points of (a, xa), respectively.

The aforementioned discrete and continuous versions of CTM can only be applied to study

the traffic dynamics inside a link. For network traffic simulations and analysis, junctions

models are needed to determine links’ in-/out-fluxes from the demand information of the

upstream links and the supply information of the downstream links. In the literature, many

different types of junction models have been proposed, such as the merging models in [10,

53, 50, 41], the diverging models in [10, 46], and the general junction model in [42].

2.3.2 The link transmission model

At point (a, xa), the evolution of density ka, speed va, and flow-rate qa is described based on

the flow conservation equation, ∂ka
∂t

+ ∂qa
∂x

= 0, and a fundamental diagram qa = Qa(ka) in

the LWR model. However, in the link transmission model (LTM) [78], the cumulative flow

Aa(xa, t), which is known as the Moskovitz function [61], is used. Since we have ka = −∂Aa
∂x

and qa = ∂Aa
∂t

, the flow conservation equation is automatically satisfied if we have ∂2Aa
∂x∂t

= ∂2Aa
∂t∂x

.

Then with the fundamental diagram qa = Qa(ka), to solve the LWR model in Equation (2.11)

is equivalent to solve the following Hamilton-Jacobi equation:

∂Aa
∂t
−Qa(−

∂Aa
∂x

) = 0, (2.18)

with the Hamiltonian H(∂Aa
∂x

) = −Qa(−∂Aa
∂x

). In [78], a discrete version of LTM was pro-

posed to numerically solve Equation (2.18). Recently, a continuous formulation of LTM was

provided in [47].
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Here, the following triangular traffic flow fundamental diagram [33] is used:

q = Q(k) = min{vfk, w(kj − k)}, (2.19)

where vf is the free-flow speed, and w is the shock-wave speed. The initial cumulative flow at

xa ∈ [0, La] is denoted as Na(xa). At the upstream boundary, the cumulative in-flow and the

in-flux are denoted as Fa(t) and fa(t), respectively. Similarly, at the downstream boundary,

the cumulative out-flow and the out-flux are denoted as Ga(t) and ga(t), respectively. Inside

link a, the link queue size αa(t) and the link vacancy size βa(t) are calculated as

αa(t) =

 Na(La − va,f t)−Ga(t), t ≤ La
va,f

Fa(t− La
va,f

)−Ga(t), t > La
va,f

(2.20a)

βa(t) =

 Na(wat) + ka,jwat− Fa(t), t ≤ La
wa

Ga(t− La
wa

) + ka,jLa − Fa(t), t > La
wa

(2.20b)

where ka,j, va,f , and wa are the jam density, the free-flow speed, and the shock-wave speed

of link a, respectively. When t = 0, we have αa(0) = 0 and βa(0) = 0. We first define an

indicator function H(y) for y ≥ 0 as follows:

H(y) = lim
∆t→0+

y

∆t
=

 0, y = 0

+∞, y > 0
(2.21)

Then the link demand da(t) and supply sa(t) are defined as

da(t) =

 min{ka(La − va,f t, 0)va,f +H(αa(t)), Ca}, t ≤ La
va,f

min{fa(t− La
va,f

) +H(αa(t)), Ca}, t > La
va,f

(2.22a)

sa(t) =

 min{ka,jwa − ka(wat, 0)wa +H(βa(t)), Ca}, t ≤ La
wa

min{ga(t− La
wa

) +H(βa(t)), Ca}, t ≤ La
wa

(2.22b)
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At a junction j, macroscopic junction models are needed to uniquely determine the boundary

fluxes from the upstream demands, downstream supplies, and turning proportions, which can

be written as

(gj(t), fj(t)) = F(dj(t), sj(t), ξj(t)). (2.23)

Here, dj(t) is the set of demands of the upstream links, and sj(t) is the set of supplies of

the downstream links. ξj(t) is the matrix of turning proportions from the upstream links

to the downstream links. gj(t) is the set of out-fluxes from the upstream links, and fj(t)

is the set of in-fluxes to the downstream links. As proved in [47], non-invariant junction

models should not be used in LTM, and examples of invariant junction models can be found

in [48, 41, 46, 42].

In LTM, either cumulative flows or link queue and vacancy sizes can be used as state vari-

ables. If the cumulative flow, i.e., Fa(t) and Ga(t), are used, we have the following evolution

equations:

d

dt
Fa(t) = fa(t), (2.24a)

d

dt
Ga(t) = ga(t). (2.24b)

However, if the link queue and vacancy sizes, i.e., αa(t) and βa(t), are used, we have the
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following evolution equations:

dαa(t)

dt
=

 ka(La − va,f t, 0)va,f − ga(t), t ≤ La
va,f

fa(t− La
va,f

)− ga(t), t > La
va,f

(2.25a)

dβa(t)

dt
=

 −ka(wat, 0)wa + ka,jwa − fa(t), t ≤ La
wa

ga(t− La
wa

)− fa(t), t > La
wa

(2.25b)

As shown in Equation (2.22), link demands and supplies depend on historical states, and

therefore, Equations (2.24) and (2.25) are systems of ordinary differential equations with

delays. Once Fa(t) and Ga(t) are found, traffic states inside link a can be obtained [47].

2.3.3 The link queue model

In the link queue model (LQM) [43], traffic on a link is considered as a single queue, and

therefore, the average density of link a ∈ A, or the link volume of origin o ∈ O, is used as

the state variable. For a regular link a ∈ A, the demand and supply are defined as

Da(t) = Qa(min{ka(t), ka,c}) =

 Qa(ka(t)), ka(t) ∈ [0, ka,c]

Ca, ka(t) ∈ (ka,c, ka,j]
(2.26a)

Sa(t) = Qa(max{ka(t), ka,c}) =

 Ca, ka(t) ∈ [0, ka,c]

Qa(ka(t)), ka(t) ∈ (ka,c, ka,j]
(2.26b)

Here ka(t) is the average density of link a, and Qa(ka(t)) is the corresponding fundamental

diagram with the capacity Ca attained at the critical density ka,c. The flow-rate is zero when

ka(t) = 0 or ka(t) = ka,j, where ka,j is the jam density. For an origin o ∈ O, the demand is
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defined as

Do(t) = fo(t) + IKo(t)≥0 =

 +∞, Ko(t) > 0

fo(t), Ko(t) = 0
(2.27)

where fo(t) is the arrival rate and Ko(t) is the queue length at the origin o. Equation (2.27)

means that the demand is infinite when there is a queue at the origin or the same as the

arrival rate when no queue exists. For a destination r ∈ R, its supply is defined as Sr(t)

and serves as boundary conditions. But if the downstream is not blocked, we can have

Sr(t) = +∞.

At a junction j, a junction flux function is needed to calculate the in-/out-fluxes from

the upstream demands and downstream supplies, which can be formulated in the following

general form:

(Gj(t),Fj(t)) = FF(Dj(t),Sj(t), ξj(t)), (2.28)

where Gj(t) is the set of out-fluxes, Fj(t) the set of in-fluxes, Dj(t) the set of upstream

demands, Sj(t) the set of downstream supplies, and ξj(t) the matrix of turning proportions

from the upstream links to the downstream links at junction j.

With the demand and supply definitions in Equations (2.26) and (2.27) and the flux function

in Equation (2.28), the link queue model of network traffic flow can be formulated as

dka(t)

dt
=

1

La
(fa(t)− ga(t)), a ∈ A (2.29a)

dKo(t)

dt
= fo(t)− go(t), o ∈ O (2.29b)

where La is the link length, fa(t) the influx, and ga(t) the outflux of link a. fo(t) is the

arrival rate, and go(t) is outflux at origin o.
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The link queue model in Equation (2.29) cannot be solved under general initial and boundary

conditions, numerical methods should be used to obtain its approximate solutions. In [43],

an explicit Euler method is used to obtain the discrete version of Equation (2.29). The

simulation time period is equally discretized into M time steps with a duration of ∆t. At

time step i, the density of link a is denoted as kia, and the queue at origin o is denoted as

Ki
o. During the time period [i∆t, (i+ 1)∆t], the boundary fluxes for link a are denoted as f ia

and gia, respectively. To calculate the demand Di
a and the supply Sia, Equation (2.26) still

can be used. But for the demand at origin o, it is now computed as

Di
o =

Ki
o

∆t
+ f io. (2.30)

Then the density and queue length at time step i+ 1 can be updated by

ki+1
a = kia +

∆t

La
(f ia − gia), (2.31a)

Ki+1
a = Ki

a + (f io − gio)∆t. (2.31b)

2.3.4 Comparisons among these three models

In network simulations, CTM needs to calculate the demands and supplies for all cells,

determine the fluxes through the cell boundaries and junctions, and update the cell densities

at each time step. However, LQM only needs to calculate the demand and supply for a whole

link and then calculate the fluxes and cumulative vehicle numbers at the link boundaries.

Therefore, LTM is computationally more efficient than CTM. Moreover, CTM introduces

errors into the calculation due to the numerical diffusion when a shock wave occurs inside a

link. However, in LTM, numerical diffusion only occurs once when the shock wave crosses
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the link boundary. Therefore, LTM is more accurate than CTM. In addition, since there are

delays in Equations (2.24) and (2.25), LTM requires more memory storage to store historical

information of cumulative numbers of vehicles at the link boundaries. In CTM, only the

most recent cell densities are stored.

However, LQM is different from CTM and LTM. This model has two important features.

First, the fundamental diagram on each link is used to calculate its supply and demand

based on its average link density. Second, network junction models are used to determine

the in-/out-fluxes from the supply and demand information at the junction. Therefore, LQM

can be considered as an approximation to the network kinematic wave models, e.g., CTM

and LQM. However, LQM is not equivalent to CTM. In the discrete version of LQM, the

solutions are more accurate with a smaller ∆t. However, in the discrete version of CTM, the

relation between ∆x and ∆t is governed by the CFL condition [8]. There is a trade-off in

the selection of ∆t and ∆x: ∆t should be as big as possible to improve the simulation speed,

while ∆x should be as small as possible to improve the simulation accuracy. In addition,

in CTM the maximum ∆t can not exceed the minimum link traverse time under free-flow

conditions in a network. However, there is no constraint on ∆t in LQM.

2.4 Traffic flow fundamental diagrams

2.4.1 Link-based

To evaluate traffic conditions on a link, one practical approach is via the traffic flow funda-

mental diagram which describes the functional relations among flow-rate, speed, and density.

In the literature, many types of fundamental diagrams have been proposed since one of the

earliest attempts in [32]. Examples can be found in [32, 31, 63, 15, 67, 33, 7] and are also

provided in Table 2.1. Among the proposed fundamental diagrams, the triangular one in
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[33] is widely used because it is not only simple but also consistent with field observations.

In the triangular fundamental diagram, traffic states are divided into two regimes: free-flow

and congested. It assumes that drivers tend to drive at a free-flow speed when traffic is not

congested, but they need to follow their leaders’ driving patterns when traffic gets congested.

Table 2.1: Examples of speed-density relations

Models v = V (k) Parameters

Greenshields (1935) v = vf (1− k
kj

) vf , kj

Greenberg (1959) v = vm ln(kj/k) vm, kj

Newell (1961) v = vf [1− e
−λ
vf

( 1
k
− 1
kj

)
] vf , kj

Drake (1967) v = vfe
− 1

2
( k
kj

)2

vf , kj
Pipes (1967) v = vf [1− ( k

kj
)n] vf , kj

Haberman (1977) v = min{vf , vfkc
kj−kc (

kj
k
− 1)} vf , kc, kj

Del Castillo (1995) v = vf [1− e
|cj |
vf

(1−
kj
k

)
] vf , kj, cj

Here cj is the shock-wave speed at the jam density kj, and vm is the optimum speed for a
particular roadway.

Actually, under steady traffic conditions, the congested regime in the triangular fundamental

diagram can be derived from some car-following models, such as Pipes’ model [66], the

Optimal Velocity model [5], and Newell’s model [62]. Suppose the leading and the following

vehicles are labeled as n−1 and n, respectively. At time t, the location and speed are denoted

as xn(t) and vn(t) for the follower, and xn−1(t) and vn−1(t) for the leader, respectively. In

Pipes’ model [66], the follower’s speed at time t is determined by

vn(t) =
1

τ
(xn−1(t)− xn(t)− sj), (2.32)

where τ and sj are the time gap and the jam spacing, respectively. We know that the

spacing between the follower and the leader at time t is sn(t) = xn−1(t) − xn(t). Under

steady traffic conditions, vehicle’s spacing and speeds remain constant over time. Therefore,

we have sn(t) = s = 1/k, sj = 1/kj, and vn(t) = v, where k, kj, and v are the density, the

jam density, and the speed under steady traffic conditions, respectively. So Equation (2.32)
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can be written as

v =
1

τ
(
1

k
− 1

kj
), (2.33)

which is the congested part in the triangular fundamental diagram [33] with τ = 1
vf

( 1
kc
− 1

kj
).

2.4.2 Network-based

Fundamental diagrams in Section 2.4.1 are link specific and can not represent traffic char-

acteristics at the network level. In the literature, efforts have been devoted to finding a

macroscopic relation between the network-level flow-rate and density. An earlier attempt

was made in [29] by considering the town center, Ipswich, as a complex system. The collected

data showed that a monotonic decreasing relationship exists between density (concentration)

and journey speed. The decreasing trend was further observed in field observations [16, 64]

as well as simulations [58]. Recently, using more thorough data (loop detector and taxi GPS

data) in Yokohama, Japan, studies in [27] showed that such a network-level functional rela-

tion, which is known as the macroscopic or network fundamental diagram (MFD or NFD),

exists in urban networks.

In the literature, efforts have been devoted to deriving or approximating the shape of MFDs.

Earlier in [36], a two-fluid model was introduced to town traffic by splitting vehicles into

two groups: moving and stopped vehicles. Relations among flow, density, and speed were

derived by assuming the average speed in an urban network is a function of the fraction of

stopped vehicles at any given time. In [12], variational theory was used to approximate the

MFD for any multi-block, signal-controlled streets without turning movements. In [35], a

utilization-based approach was used to derive the MFD for urban traffic flow. A link-based

urban fundamental diagram was derived first and then transfered to an area-based one by

assuming all links have the same parameter settings. In [11], a two-bin model was used to
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study the possible stationary states in a double-ring network. Multivaluedness and gridlock

phenomena were observed in the network flow-density relations. In [49], stationary states

were analytically solved in an uninterrupted (i.e., unsignalized) double-ring network within

the framework of kinematic wave models. It was found that infinitely many stable states with

zero-speed shock waves (ZS) could arise for the same network density in the congested regime,

so the corresponding network flow-rates could vary a lot and MFDs would be expected to

be very scattered. The aforementioned analytical studies have their limitations. Signal

settings and turning movements at intersections are not explicitly considered in [36]. The

MFDs in [12, 35] fail to capture the multivaluedness and gridlock phenomena since turning

movements at the signalized intersections are not explicitly modeled. The ones in [11, 49]

fail to capture the capacity constraints at the signalized intersection since traffic signals are

not explicitly modeled. Furthermore, the network flow-rate in the derived or approximated

MFDs in the aforementioned studies is only a function of the network density. However,

many recent simulation and empirical studies have shown that the MFD is related to many

factors, such as spatial variability in congestion and density distributions [6, 40, 28], route

choice behaviors [51], signal settings and turning movements [77, 23, 20], and loading and

unloading processes [24].
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Chapter 3

Traffic statics and dynamics in a

signalized double-ring network, part I:

A kinematic wave approach

3.1 Introduction

In order to develop effective control and management strategies for urban networks, a fun-

damental challenge is to understand the static and dynamic properties of urban traffic under

various conditions, e.g., different combinations of demand patterns, signal settings, and route

choice behaviors. To evaluate the impact of changes (e.g., re-timing the signals) on urban

networks, one practical approach is via the macroscopic fundamental diagram (MFD)[12],

which is a network-level average flow and density relation under stationary states. How-

ever, existing analytical studies on MFDs have their limitations: (i) route choice behaviors

were not explicitly modeled in [36, 12, 35]; (ii) signal settings were not explicitly modeled in

[36, 11]; and (iii) the study network in [49] is not signalized. Furthermore, the definition of
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stationary states in signalized networks is not clear.

In this chapter, we are trying to fill this gap. Both route choice behaviors and signal settings

are considered in analyzing the signalized networks. Instead of studying general urban

networks, we focus on the signalized 2×2 junction shown in Figure 3.1(a). If exiting vehicles

in the downstream are immediately added into the corresponding upstream entrances, the

signalized 2×2 junction is further changed into a signalized double-ring network with periodic

boundary conditions, which is shown in Figure 3.1(b). In the signalized double-ring network,

traffic statics and dynamics are easier to analyze because we only need to keep track of traffic

states on the two links. The tangent point represents the signalized junction. The retaining

ratios ξ1 and ξ2 at the junction are the proportions of vehicles remaining in the same link

and closely related to vehicles’ route choice behaviors. To describe the traffic dynamics,

a continuous kinematic wave approach is used. CTM simulations are used to analyze the

existence of stationary states and the impacts of cycle lengths and retaining ratios in the

network traffic flow.

(a) A signalized 2× 2 junction

21

(b) An abstract network

Figure 3.1: A signalized double-ring network.

The rest of this chapter is organized as follows. In Section 3.2, we provide a kinematic wave

formulation of traffic dynamics in the signalized double-ring network. In Section 3.3, we

show periodic traffic patterns in the signalized double-ring network and the impacts of cycle
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lengths and retaining ratios on the average network flow-rates using CTM simulations. In

Section 3.4, we provide the MFD in asymptotically periodic states. Finally, we draw our

conclusions in Section 3.5.

3.2 A kinematic wave formulation of traffic dynamics

In Figure 3.1(b), the left and the right rings are denoted as rings 1 and 2, respectively. We

assume both links have the same length L, and the same location-and-time independent

fundamental diagram qa = Q(ka), a ∈ {1, 2}, for ka ∈ [0, kj], where kj is the jam density.

Generally speaking, Q(ka) is a concave function with its capacity C obtained at the critical

density kc, i.e., C = Q(kc). For each ring a ∈ {1, 2}, the point connecting to the upstream

branch of the intersection is denoted as L−, while the point connecting to the downstream

branch is denoted as 0+. For a point xa ∈ (0, L) on ring a ∈ {1, 2} at time t, we have the

following variables as functions of (xa, t): density ka(xa, t), speed va(xa, t), flow-rate qa(xa, t),

demand da(xa, t), and supply sa(xa, t). Hereafter, we omit (xa, t) in these variables unless

necessary. Then the local demand and supply are defined as

da = Q(min{ka, kc}) =

 Q(ka), ka ∈ [0, kc],

C, ka ∈ (kc, kj],
a = 1, 2 (3.1a)

sa = Q(max{ka, kc}) =

 C, ka ∈ [0, kc],

Q(ka), ka ∈ (kc, kj],
a = 1, 2 (3.1b)

Inside link a ∈ {1, 2}, the traffic flux function through a point xa ∈ (0, L) is given by

qa(xa, t) = min{da(x−a , t), sa(x+
a , t)}, (3.2)
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where x−a and x+
a are the upstream and downstream points of xa, respectively. At the

junction, vehicles in the two upstream approaches move alternately, and therefore, there are

two phases in each cycle. Without loss of generality, we assign phase 1 to vehicles in ring

1 and phase 2 to vehicles in ring 2. We assume the cycle length is T with zero lost times

and equally split between two rings. Therefore, the signal regulation can be described by

the following indicator function:

π(t) =

 1, t ∈ [nT, (n+ 1
2
)T ),

0, otherwise,
n ∈ N0 (3.3)

where N0 = {0, 1, 2, 3, ...}.

Due to the signal regulations, the signalized 2 × 2 junction is equivalent to two alternating

diverging junctions, and the invariant first-in-first-out (FIFO) diverging model [10] is used.

The retaining ratio is denoted as ξ1(t) ∈ (0, 1) for ring 1 and ξ2(t) ∈ (0, 1) for ring 2, which

means the turning ratio is 1 − ξ1(t) from ring 1 to ring 2 and 1 − ξ2(t) from ring 2 to ring

1. If we assume the retaining ratios at both rings are the same and time independent, i.e.,

ξ1(t) = ξ2(t) = ξ, the out-fluxes g1(t), g2(t), and the in-fluxes f1(t), f2(t) can be calculated

as

g1(t) = π(t) min{d1(L−, t),
s1(0+, t)

ξ
,
s2(0+, t)

1− ξ
}, (3.4a)

g2(t) = (1− π(t)) min{d2(L−, t),
s2(0+, t)

ξ
,
s1(0+, t)

1− ξ
}, (3.4b)

f1(t) = g1(t)ξ + g2(t)(1− ξ), (3.4c)

f2(t) = g1(t)(1− ξ) + g2(t)ξ. (3.4d)

Traffic dynamics in the double-ring network can be described by the following kinematic
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wave model, comprising two LWR models [54, 68]:

∂k1

∂t
+
∂Q(k1)

∂x1

= 0, (3.5a)

∂k2

∂t
+
∂Q(k2)

∂x2

= 0. (3.5b)

Note that Equation (3.5) is a partial differential equation with periodic forces and thus very

difficult to solve analytically. Instead, in the following sections, the cell transmission model

(CTM) [9, 10], which is the discrete version of Equation (3.5), will be used to study the

static and dynamic properties of traffic in the signalized double-ring network.

3.3 Asymptotically periodic solutions and impacts of

cycle lengths and retaining ratios

First, we consider solutions to the kinematic wave model when the retaining ratio is ξ = 0.85,

and initially two rings have the same constant density of 15 vpm. With ∆t = 0.5 s, we

apply the CTM with Equation (3.4) to simulate traffic dynamics in the network for two

hours, when traffic dynamics converge to a stable pattern. Figure 3.2 shows the traffic

patterns for the last four cycles when T = 60 s and T = 120 s. In Figures 3.2(a) and

3.2(c), the solid lines are for the normalized out-flux of ring 1, f1(t)/C, and the dashed

lines are for the normalized asymptotic network flow-rate, q/C. From the figure, we can see

that traffic patterns become periodic after a long time, and the period is the same as the

signal’s period (Note that the period may not be the same as the cycle length under other

conditions). Therefore it is reasonable to consider such asymptotically periodic solutions as

stationary states in a signalized network [29]. We also define the asymptotic average fluxes

as f̂1 = 1
T

∫ t
s=t−T f1(s)ds, and f̂2 = 1

T

∫ t
s=t−T f2(s)ds, where t is a large time. In this case, the
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Figure 3.2: Asymptotically periodic traffic patterns in the signalized double-ring network.

asymptotic (stationary) network flow-rate is given by

q =
f̂1 + f̂2

2
. (3.6)

From Figure 3.2 we can tell that different cycle lengths can lead to totally different traffic

patterns and different asymptotic network flow-rate. In Figure 3.3, we demonstrate the

relationships between the asymptotic network flow-rate, q, and the cycle length, T , for four

densities: 15, 50, 85, and 120 vpm. Here the retaining ratio is 0.85. As expected, the

maximum q equals 900 vph, half of the road capacity. However, except for 50 vpm, when

the asymptotic network flow-rate is always 900 vph, the relationship between cycle lengths

and network flow-rates is quite complicated.

34



Figure 3.3: Impacts of the cycle length on asymptotic network flow-rates.

In Figure 3.4, we demonstrate the relationships between the asymptotic network flow-rate,

q, and the retaining ratio, ξ, for four densities: 15, 50, 85, and 120 vpm. Here the cycle

length is 100 s. Except for 50 vpm, when the asymptotic network flow-rate is always 900

vph, generally network flow-rates decrease in retaining ratios. That is, with higher turning

proportions (lower retaining ratios), the network operates more efficiently (higher flow-rates).

In addition, when k = 85 and 120 vpm, the network becomes totally gridlocked with q = 0

when the retaining ratio is high. Note that, however, we can have very different patterns for

different cycle lengths, as can be expected, including patterns in which network-flow rates

increase with retaining ratios.
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Figure 3.4: Impacts of retaining ratios on asymptotic network flow-rates.

3.4 Macroscopic fundamental diagrams in asymptoti-

cally periodic states

When a signalized double-ring network reaches a stationary state, i.e., with asymptotically

periodic traffic patterns, we can define the relationship between the asymptotic network flow-

rate, q, and the traffic density, k, as the corresponding macroscopic fundamental diagram of

the signalized network.

In Figure 3.5, we present the macroscopic fundamental diagram when the retaining ratio is

ξ = 0.85 and the cycle length is T = 100 sec. For the same traffic density, we use different

combinations of initial densities, k1 and k2, on the two rings. Note that gridlock states
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can be considered as special cases of asymptotically periodic states, but in the figure we

separate gridlock states from non-gridlock, periodic states. Also plotted on Figure 3.5(a) is

the theoretical MFD expected from this system using the variational theory method from

[12] for comparison with the kinematic wave results. Note that the variational theory in

[12] was proposed for a ring road with multiple signals and cannot capture the interactions

among traffic streams at the junction. This can explain why the variational theory cannot

capture the asymmetric traffic patterns, including the gridlock states occurring at a density

smaller than the jam density.

From Figure 3.5(a) we have the following observations: (i) the MFD is well defined for a

signalized network; (ii) the q − k relation is unique for k ≤ 52.5 vpm and k ≥ 82 vpm, but

has two branches between the two values; (iii) the network can be easily gridlocked when

k ≥ kj/2. This MFD is significantly different from the MFD for uninterrupted network in

[49]: the flow-rates in the signalized network are lower and can only reach half of the capacity

in the uninterrupted cases, as would be expected. For low densities, a single stationary state

exists where average flows are non-decreasing with density. However, for higher densities

a bifurcation occurs. For densities greater than this bifurcation, two unique branches exist

on the MFD. In one branch, high flows (of 900 vph) can be maintained for a small range

of densities. In the other branch, flow declines with density until the network eventually

gridlocks. In both cases, there is a critical density for which gridlock is the only stationary

state that exists. Also note that for low densities the average flows are close to but not

exactly equal to the flows predicted by the variational theory methodology in [12], because

turning maneuvers and conflicting traffic streams were ignored. These results highlight the

importance of properly accounting for traffic dynamics at the junction, as it can influence

the functional form of the MFD.

In Figure 3.5(b), where the arrows show the convergence directions of traffic densities, we

demonstrate the convergence patterns of the stationary states under different initial con-
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Figure 3.5: The macroscopic fundamental diagram with ξ = 0.85 and T = 100 secs.

ditions: (i) when the average network density k < kj/2, all initial states will converge

to periodical states after some time; and (ii) when k ≥ kj/2, all initial states inside

the shaded region will finally converge to gridlock states while the rest of them will con-

verge to periodical states. For example, with the interactive simulator available at http:

//www.ce.berkeley.edu/~daganzo/Simulations/two_ring_sim.html, if we set N = 62,

PT = 0.15 (the turning proportion equals 1-ξ), and T = 100 s, periodic traffic patterns can

be observed after a long time (e.g., more than 1000 minutes). In addition, we can see that

the gridlock states are asymptotically stable in a signalized network. These results further

validate the kinematic wave approach developed in this study and also illustrates the an-

alytical and computational advantage of the new approach, which can provide us a more

complete picture of traffic dynamics with a higher efficiency.

As discussed in the preceding section, different retaining ratios and cycle lengths would lead

to different MFDs, but they share the same qualitative properties as those in Figure 3.5.
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3.5 Conclusions

In this chapter, we formulated the traffic dynamics in a signalized double-ring network using

the kinematic wave approach. Asymptotic periodic traffic patterns were found using CTM

simulations and thus defined as stationary states. Simulation results also revealed that cycle

lengths and retaining ratios play an important role in the signalized double-ring network:

different retaining ratios (or cycle lengths) can yield different average network flow-rates even

starting with the same initial densities and cycle lengths (or retaining ratios). The MFD

of the signalized double-ring network was obtained using simulations and compared with

the one obtained from the variational theory method. The comparison showed that more

stationary traffic states can be observed using the kinematic wave model: multivaluedness

and gridlock phenomena in the MFD can be observed.

However, due to infinite-dimensional state variables introduced by the kinematic wave model,

it is very difficult to analytically solve the static and dynamic properties of traffic flow in the

signalized double-ring network with the existence of traffic signals. Therefore, in the next

chapter, we will provide an analytical framework to aggregate the traffic dynamics at the

link level and solve possible stationary states and their stability properties under different

combinations of cycle lengths, retaining ratios, and demand patterns.
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Chapter 4

Traffic statics and dynamics in a

signalized double-ring network, part

II: A Poincaré map approach

4.1 Introduction

In this chapter, instead of using the kinematic wave model to describe detailed traffic dy-

namics inside a link, we use the link queue model in [43] to aggregate the traffic dynamics at

the link level. With the assumption of a triangular traffic flow fundamental diagram [33], the

signalized double-ring network is further formulated as a switched affine system. The switch-

ing rule is governed by three sets of parameters: initial densities, route choice behaviors, and

signal settings. Periodic density evolution orbits are found and defined as stationary states.

A Poincaré map approach [76, 74] is used to study the properties of such stationary states.

Poincaré map was originally used to study the movements of celestial bodies and is a very

important tool in analyzing periodic orbits: each periodic orbit corresponds to a fixed point
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on the Poincaré map, and its stability is directly related to the stability of the fixed point.

In [45], Poincaré map has been applied to study the stability and bifurcation of network

traffic flow in diverge-merge networks. With short cycle lengths, closed-form Poincaré maps

are derived, and stationary states and the corresponding stabilities are obtained by solving

and analyzing the fixed points on the Poincaré maps. The impacts of retaining ratios and

initial densities on the MFDs and the gridlock times are analyzed. With long cycle lengths,

closed-form Poincaré maps are hard to obtain, and thus, the corresponding fixed points are

numerically solved using the secant method [19].

The rest of this chapter is organized as follows. In Section 4.2, we aggregate the traffic

dynamics in the signalized double-ring network using the link queue model. We further

change the network as a switched affine system when the triangular traffic flow fundamental

diagram is used. In Section 4.3, we derive the Poincaré maps from the density evolution orbits

in the switched affine system. Stationary states and their stability properties are defined in

terms of the fixed points and their stability properties on the Poincaré maps. In Section 4.4,

we solve the stationary states and the corresponding stability properties with short cycle

lengths. In Section 4.5, we discuss the impacts of retaining ratios and initial densities on

the MFDs and the gridlock times. In Section 4.6, we provide numerical solutions to the

fixed points on the Poincaré maps when the cycle lengths are long. Finally, we draw our

conclusions in Section 4.7.
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4.2 A link queue formulation and a switched affine sys-

tem

4.2.1 A link queue formulation

According to the link queue model (LQM) [43], vehicles on a link is considered as a queue,

and therefore, each link has only one state variable, the average link density. The left and the

right rings in Figure 3.1 are denoted as rings 1 and 2 with average densities k1(t) and k2(t),

respectively. We assume both rings have the same length L. Since it is a closed network,

we have k1(t) + k2(t) = 2k, where k is the average network density. In addition, we assume

both rings have the same location-and-time independent fundamental diagram, qa = Q(ka),

a = 1, 2, for ka ∈ [0, kj], where kj is the jam density. Generally speaking, Qa(ka) is a concave

function with its capacity C obtained at the critical density kc, i.e., C = Q(kc). Then the

local demand and supply are defined as

Da(t) = Q(min{ka(t), kc}) =

 Q(ka(t)), ka(t) ∈ [0, kc],

C, ka(t) ∈ (kc, kj],
a = 1, 2 (4.1a)

Sa(t) = Q(max{ka(t), kc}) =

 C, ka(t) ∈ [0, kc],

Q(ka(t)), ka(t) ∈ (kc, kj],
a = 1, 2 (4.1b)

At the junction, vehicles in the two upstream approaches move alternately, and therefore,

there are two phases in each cycle. Without loss of generality, we assign phase 1 to vehicles

in ring 1 and phase 2 to vehicles in ring 2. The cycle length is T with a lost time ∆ for each

phase. The green ratio is denoted as π1 for ring 1 and π2 for ring 2. We assume the yellow

and all red period in each phase is the same as the lost time, and therefore, the effective

green time is π1T for ring 1 and π2T for ring 2, and (π1 + π2)T = T − 2∆. Then the signal
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regulation can be described by the following two indicator functions:

δ1(t;T,∆, π1) =

 1, t ∈ [nT, nT + π1T ),

0, otherwise,
n ∈ N0 (4.2a)

δ2(t;T,∆, π1) =

 1, t ∈ [nT + ∆ + π1T, (n+ 1)T −∆),

0, otherwise,
n ∈ N0 (4.2b)

where N0 = {0, 1, 2, 3, ...}. According to Equation (4.2), we have three different combinations

of (δ1(t), δ2(t)) within one cycle: (i) (1, 0) stands for the effective green time period in phase

1; (ii) (0, 1) stands for the effective green time period in phase 2; (iii) (0, 0) stands for the

lost time period in either of the phases.

Due to the signal regulations, the signalized 2 × 2 junction is equivalent to two alternating

diverging junctions, and the invariant first-in-first-out (FIFO) diverging model [10] is used.

The retaining ratio is denoted as ξ1(t) ∈ (0, 1) for ring 1 and ξ2(t) ∈ (0, 1) for ring 2, which

means the turning ratio is 1− ξ1(t) from ring 1 to ring 2 and 1− ξ2(t) from ring 2 to ring 1.

Then the out-fluxes g1(t), g2(t), and the in-fluxes f1(t), f2(t) can be calculated as

g1(t) = δ1(t) min{D1(t),
S1(t)

ξ1(t)
,

S2(t)

1− ξ1(t)
}, (4.3a)

g2(t) = δ2(t) min{D2(t),
S2(t)

ξ2(t)
,

S1(t)

1− ξ2(t)
}, (4.3b)

f1(t) = g1(t)ξ1(t) + g2(t)(1− ξ2(t)), (4.3c)

f2(t) = g1(t)(1− ξ1(t)) + g2(t)ξ2(t). (4.3d)

Since it is a closed network, we only need to focus on the traffic dynamics in one of the rings,

43



e.g., ring 1. According to the traffic conservation in ring 1, the following equation holds:

dk1(t)

dt
=

1

L
(f1(t)− g1(t)) =

−(1− ξ1(t))

L
g1(t) +

(1− ξ2(t))

L
g2(t). (4.4)

With Equations (4.1) to (4.4), the system equation can be written as

dk1(t)

dt
= F (k1(t); k, δ1(t), δ2(t), ξ1(t), ξ2(t)), (4.5)

which is closely related to the average network density k, the signal settings (δ1(t), δ2(t)), and

the route choice behaviors (ξ1(t), ξ2(t)). Note that Equation (4.5) is a nonlinear ordinary

differential equation (ODE) with periodic forces. It is simpler than the kinematic wave

model (Equation (3) in [49]), which is a partial differential equation (PDE), but still quite

challenging to solve.

4.2.2 A switched affine system

In this chapter, the following triangular traffic flow fundamental diagram [33] is used.

Q(ka) = min{vfka, w(kj − ka)}, a = 1, 2, (4.6)

where vf and w are the free-flow speed and the shock-wave speed, respectively. Then the

signalized double-ring network can be further formulated as a switched affine system [17, 73],

and the traffic dynamics in Equation (4.5) can be rewritten as

dk1(t)

dt
= Aik1(t) +Bi, i ∈ I = {1, ..., N}, (4.7)

where N is the number of possible combinations of (Ai, Bi). In Equation (4.7), the switching

rule for coefficients (Ai, Bi) is governed by three sets of parameters: the initial densities
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(k1(t), k), the signal settings (δ1(t), δ2(t)), and the route choice behaviors (ξ1(t), ξ2(t)).

1
2

3

4

(a) (δ1(t), δ2(t)) = (1, 0)

5

6

7
8

(b) (δ1(t), δ2(t)) = (0, 1)

Figure 4.1: Regions in the (k1, k) space.
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Since densities in both rings vary during the effective green times, the (k1, k) space can be

divided into different regions, in which the coefficients (Ai, Bi) remain the same. According

to Equations (4.1), (4.3), and (4.6), the (k1, k) space can be divided into four regions when

(δ1(t), δ2(t)) = (1, 0), which are provided in Figure 4.1(a). The meanings of the bold dashed

lines in Figure 4.1(a) are explained as follows:

(i) the line k =
kj
2
− [(1−ξ1)kj−(2−ξ1)kc]k1

2kc
stands for the case when D1 = S2

1−ξ1 < C < S1

ξ1
;

(ii) the line k =
ξ1kj+(1−ξ1)kc+k1

2
stands for the case when D1 = S2

1−ξ1 = C < S1

ξ1
;

(iii) the line k = 2ξ1−1
2ξ1

kj + 1
2ξ1
k1 stands for the case when S1

ξ1
= S2

1−ξ1 < D1 = C;

(iv) the line k1 = kj − ξ1(kj − kc) stands for the case when D1 = S1

ξ1
= C < S2

1−ξ1 .

Similarly, the (k1, k) space can be divided into another four regions when (δ1(t), δ2(t)) =

(0, 1), which are provided in Figure 4.1(b). The meanings of the bold dashed lines in Figure

4.1(b) are provided below:

(i) the line k =
kj+k1−ξ2(kj−kc)

2
stands for the case when D2 = S2

ξ2
= C < S1

1−ξ2 ;

(ii) the line k =
(1−2ξ2)kj+k1

2(1−ξ2)
stands for the case when S2

ξ2
= S1

1−ξ2 < D2 = C;

(iii) the line k = k1
2

+
kc(kj−k1)

2(1−ξ2)(kj−kc) stands for the case when D2 = S1

1−ξ2 < C < S2

ξ2
;

(iv) the line k1 = kj − (1− ξ2)(kj − kc) stands for the case when D2 = S1

(1−ξ2)
= C < S2

ξ2
.

In addition, for each cycle, we have two lost time periods (i.e., (δ1(t), δ2(t)) = (0, 0)), which

have the same coefficients in Equation (4.7) (i.e., (Ai, Bi) = (0, 0)). But these two periods

are physically different since one is the transition period from (1, 0) to (0, 1), while the other

is from (0, 1) to (1, 0). So we consider they belong to two different regions, in which the

densities remain unchanged. Then, we have N = 10. The possible values of Ai and Bi and

the corresponding conditions are provided in Table 4.1.
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4.3 Periodic density evolution orbits and derivation of

Poincaré maps

4.3.1 Periodic density evolution orbits

Due to the periodic signal regulations, the switched affine system periodically visits the (k1, k)

space in Figure 4.1, and therefore, density evolution orbits are formed. The circulating period

is fixed, which is the cycle length T. In Figure 4.2(a), we provide the density evolution orbit

within one cycle in the (k1, k) space. And also, since it is a closed network (i.e., k is fixed

once it is given), we can map the density evolution orbit to the k1 axis, which is shown in

Figure 4.2(b). The evolution process can be described as follows:

(1) At the beginning of the cycle at time t, the initial densities are denoted as (k1(t), k).

During [t, t+ π1T ), we have (δ1, δ2) = (1, 0). The density k1 decreases as time elapses

since vehicles in ring 1 can diverge to either of the rings while vehicles in ring 2 have

to wait. The density evolution may cross multiple regions during this time period, i.e.,

i ∈ [1, 4] in Table 4.1.

(2) At time t + π1T , the system switches to region 9. During [t + π1T, t + π1T + ∆), we

have (δ1, δ2) = (0, 0). The densities in both rings remain the same since no vehicles

can move to the downstream approaches.

(3) At time t+ π1T + ∆, the system switches to phase 2. During [t+ π1T + ∆, t+T −∆),

we have (δ1, δ2) = (0, 1). The density k1 increases as time elapses since vehicles in ring

2 are allowed to diverge to either of the rings while vehicles in ring 1 have to wait.

Similarly, the density evolution may cross multiple regions during this time period, i.e.,

i ∈ [5, 8] in Table 4.1.

(4) At time t + T − ∆, the system switches to region 10. During [t + T − ∆, t + T ),

48



(δ1, δ2) = (0, 0) and the density in ring 1 remains the same.

(5) At t + T , the system switches back to Step (1) with (δ1, δ2) = (1, 0). The densities

become (k1(t+ T ), k) and serve as new initial densities in the next cycle.

1

2

3

4

5

6

7 8

9

10

(a) In the (k1, k) space

(b) In the mapping of k1

Figure 4.2: The density evolution orbit within one cycle.

Based on the above description, it is possible for the signalized double-ring network to have

periodic density evolution orbits if k1(t+T ) = k1(t). Such periodic patterns were observed in

the simulations in [49] and defined as stationary states. To calculate the asymptotic average

49



network flow-rate, the following equation was used in [49]:

q(t) =
ĝ1(t) + ĝ2(t)

2
=

∫ t
s=t−T g1(s)ds+

∫ t
s=t−T g2(s)ds

2T
. (4.8)

When the system reaches a stationary state, q(t) becomes a constant value, which depends

on the average network density; i.e., q(t)|t→+∞ = q(k). Then the relation between q(k) and

k is the MFD for the signalized double-ring network.

4.3.2 Derivation of Poincaré maps

In the following we study the static and dynamic properties associated with the density

evolution orbits in terms of Poincaré maps. According to the discussion in Section 4.3.1,

the density evolution orbit for each cycle is combined with the following four local maps, Pi,

i = 1, 2, 3, 4:

k1(t+ π1T ) = P1k1(t), (4.9a)

k1(t+ π1T + ∆) = P2k1(t+ π1T ), (4.9b)

k1(t+ T −∆) = P3k1(t+ π1T + ∆), (4.9c)

k1(t+ T ) = P4k1(t+ T −∆). (4.9d)

If we define the Poincaré section as the time instant when the system first visits the (k1, k)

space in Figure 4.2(a) in each cycle, i.e., the beginning of each cycle, the Poincaré map can

be derived as the composition of the four local maps.

k1(t+ T ) = Pk1(t) = P4 ◦ P3 ◦ P2 ◦ P1k1(t). (4.10)
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The Poincaré map in Equation (4.10) is well defined and can be analytically derived if initial

densities, retaining ratios, and signal settings are given. Then we can have the following

definition of stationary states:

Definition 4.1 (Stationary states). The signalized double-ring network is in a stationary

state when there exists a fixed point k∗1 on the Poincaré map Pk1(t) satisfying k∗1 = Pk∗1.

Due to the existence of noise in transportation networks, it is necessary to understand the

stability properties of stationary states. Suppose at the beginning of one cycle, there exists

a perturbation that drives the density in link 1 from k∗1 to k1(t) = k∗1 + ε(t), where ε(t) is a

small error term. Then after n cycles, the density in ring 1 and the error term become

k1(t+ nT ) = P nk1(t), n ∈ N0 (4.11a)

ε(t+ nT ) = P nk1(t)− k∗1 = (∂P )nε(t), n ∈ N0 (4.11b)

According to [52, 74], we have the following definition of stability for the fixed points on

the Poincaré maps:

Definition 4.2 (Local stability). The fixed point k∗1 is: (i) Lyapunov stable if for any given

β > 0, there exists an ω ≤ β such that |ε(t + nT )| < β for any |ε(t)| < ω and n ∈ N0; (ii)

unstable otherwise. Furthermore, k∗1 is asymptotically stable if it is stable and ε(t+nT )→ 0

as n→ +∞.

4.4 Stationary states and their stability properties with

short cycle lengths

In this section, we are going to consider the case with short cycle lengths, as we will be able

to derive closed-form Poincaré maps. For simplicity, we consider the following homogeneous
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settings in the rest of the chapter: both rings have the same effective green times, i.e.,

π2 = π1 = π, and the same time-independent retaining ratios, i.e., ξ1 = ξ2 = ξ.

4.4.1 Possible stationary states

With short cycle lengths, the density evolution orbit will stay in region i ∈ {1, 2, 3, 4} when

(δ1, δ2) = (1, 0), and in region j ∈ {5, 6, 7, 8} when (δ1, δ2) = (0, 1). Under different retaining

ratios, e.g., ξ > 0.5 and ξ < 0.5, we have 11 different combinations of regions in one cycle,

which are provided in Table 4.2. Here, we define the sum of the coefficients (Ai, Bi) and

(Aj, Bj) as

λ(k1, k) = Ajk1 +Bj + Aik1 +Bi. (4.12)

When traffic is not jammed, if λ(k1, k) is always greater or smaller than zero, k1 will keep

increasing or decreasing, which means it is impossible to have stationary states with the

combination of regions (i, j). But if λ(k1, k) can take both positive and negative values or is

always zero, it is possible to have stationary states inside the combination of regions (i, j).

In Table 4.2, we provide possible values of λ(k1, k) and the corresponding conditions for

different combinations of regions under different retaining ratios. Specifically, when ξ = 0.5,

we only have the following combinations of regions (i, j): (1, 5), (1, 6), (1, 7), (2, 5), (2, 6),

(4, 7), (3, 5), and (3, 8). The values of λ(k1, k) and the corresponding conditions in regions

(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), and (3, 5) are the same as those with ξ < 0.5 in Table 4.2.

However, the values of λ(k1, k) in regions (4, 7) and (3, 8) are always zero with ξ = 0.5.

Therefore, we have the following lemma:

Lemma 4.1 (Possible regions having stationary states). When traffic is not jammed, it is

only possible for the following combinations of regions (i, j) to have stationary states:
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Table 4.2: Possible values of λ(k1, k) in the 11 combinations of regions

0.5 < ξ < 1 0 < ξ < 0.5

Regions λ(k1, k) Condition Regions λ(k1, k) Condition

> 0 k1 < k > 0 k1 < k
(1, 5) = 0 k1 = k (1, 5) = 0 k1 = k

< 0 k1 > k < 0 k1 > k

(1, 6) > 0 (1, 6) > 0

> 0 γ1 < γ5 or

γ1 > γ5 and k1 <
γ5(kj−2k)
γ1−γ5

(1, 7) = 0 γ1 > γ5 and k1 =
γ5(kj−2k)
γ1−γ5 (1, 7) > 0

< 0 γ1 > γ5 and k1 >
γ5(kj−2k)
γ1−γ5

(2, 5) < 0 (2, 5) < 0

(2, 6) = 0 (2, 6) = 0

(2, 7) < 0 (4, 6) > 0

(4, 7) < 0 (4, 7) > 0

> 0 γ2 < γ4 and k1 <
2k

ξ(kj−kc)
kc

−kj
ξ(kj−kc)

kc
−1

(3, 5) = 0 γ2 < γ4 and k1 =
2k

ξ(kj−kc)
kc

−kj
ξ(kj−kc)

kc
−1

(3, 5) < 0

< 0 γ2 < γ4 and k1 >
2k

ξ(kj−kc)
kc

−kj
ξ(kj−kc)

kc
−1

or γ2 > γ4

(3, 6) > 0 (2, 8) < 0

> 0 k1 > k > 0 k1 < k
(3, 7) = 0 k1 = k (4, 8) = 0 k1 = k

< 0 k1 < k < 0 k1 > k

(3, 8) > 0 (3, 8) < 0

(i) (1, 5), (1, 7), (2, 6), (3, 5), and (3, 7) for 0.5 < ξ < 1;

(ii) (1, 5), (2, 6), and (4, 8) for 0 < ξ < 0.5;

(iii) (1, 5), (2, 6), (4, 7), and (3, 8) for ξ = 0.5.

However, when traffic is jammed, it is only possible for the combinations of regions (4, 7)

and (3, 8) to have stationary states with any ξ ∈ (0, 1).

The proof is simple and thus omitted here. Note that when the network is gridlocked with at

least one ring jammed, the gridlock states are stationary states since they satisfy Definition
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4.1. It is easy to identify that these stationary states are inside the combinations of regions

(4, 7) and (3, 8).

After identifying the possible combinations of regions having stationary states, we can an-

alytically derive the closed-form Poincaré maps. The corresponding fixed points are the

stationary states we are interested in. Therefore, we have the following theorem:

Theorem 4.1 (Possible stationary states). According to Equation (4.7) and Table 4.1, the

Poincaré maps and the corresponding fixed points in the possible regions having stationary

states are derived and provided in Table 4.3.

Table 4.3: Poincaré maps and fixed points in the possible regions having stationary states

Regions Poincaré map Pk1(t) with 0.5 < ξ < 1 Fixed points k∗1
(1, 5) 2k(1− e−γ1πT ) + k1(t)e−2γ1πT 2k

1+e−γ1πT

(1, 7) (kj − 2k)(eγ5πT − 1) + k1(t)e(γ5−γ1)πT
(kj−2k)(eγ5πT−1)

1−e(γ5−γ1)πT

(2, 6) k1(t) k1(t)

(4, 7) (kj − 2k)(e(γ5−γ3)πT − 1) + k1(t)e(γ5−γ3)πT 2k − kj
(3, 5) kj(1− eγ2πT )e−γ4πT + 2k(1− e−γ4πT ) + k1(t)e(γ2−γ4)πT

2k(1−e−γ4πT )−kj(eγ2πT−1)e−γ4πT

1−e(γ2−γ4)πT

(3, 7) kj(2e
γ2πT − e2γ2πT − 1)− 2k(eγ2πT − 1) + k1(t)e2γ2πT

2k+kj(e
γ2πT−1)

eγ2πT+1

(3, 8) kj(1− e(γ2−γ3)πT ) + k1(t)e(γ2−γ3)πT kj

Regions Poincaré map Pk1(t) with 0 < ξ < 0.5 Fixed points k∗1
(1, 5) 2k(1− e−γ1πT ) + k1(t)e−2γ1πT 2k

1+e−γ1πT

(2, 6) k1(t) k1(t)

(4, 7) (kj − 2k)(e(γ5−γ3)πT − 1) + k1(t)e(γ5−γ3)πT 2k − kj
(4, 8) kj(e

−2γ3πT − 2e−γ3πT + 1)− 2k(e−2γ3πT − e−γ3πT )
kj(1−e−γ3πT )+2ke−γ3πT

1+e−γ3πT

+k1(t)e−2γ3πT

(3, 8) kj(1− e(γ2−γ3)πT ) + k1(t)e(γ2−γ3)πT kj

Regions Poincaré map Pk1(t) with ξ = 0.5 Fixed points k∗1
(1, 5) k1(2k(1− e−γ1πT ) + k1(t)e−2γ1πT ) 2k

1+e−γ1πT

(2, 6) k1(t) k1(t)
(4, 7) k1(t) k1(t)
(3, 8) k1(t) k1(t)

4.4.2 Stability properties

In this subsection, we are going to analyze the stability properties of the stationary states

provided in Table 4.3, especially the gridlock states. According to Equation (4.11b), the
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error term is changed to ε(t+T ) = ∂Pε(t) after one cycle. In Table 4.4, we provide the error

term ε(t+T ) in different combinations of regions under different retaining ratios. According

to Definition 4.2, we have the following theorem.

Table 4.4: Changes in the error term after one cycle

Regions ε(t+ T ) with 0.5 < ξ < 1
(1, 5) ε(t)e−2γ1πT

(1, 7) ε(t)e(γ5−γ1)πT

(2, 6) ε(t)

(4, 7) ε(t)e(γ5−γ3)πT

(3, 5) ε(t)e(γ2−γ4)πT

(3, 7) ε(t)e2γ2πT

(3, 8) ε(t)e(γ2−γ3)πT

Regions ε(t+ T ) with 0 < ξ < 0.5
(1, 5) ε(t)e−2γ1πT

(2, 6) ε(t)

(4, 7) ε(t)e(γ5−γ3)πT

(4, 8) ε(t)e−2γ3πT

(3, 8) ε(t)e(γ2−γ3)πT

Regions ε(t+ T ) with ξ = 0.5
(1, 5) ε(t)e−2γ1πT

(2, 6) ε(t)
(4, 7) ε(t)
(3, 8) ε(t)

Theorem 4.2 (Stability properties of the stationary states). When ξ > 0.5, the stationary

states are: (i) asymptotically stable in the combinations of regions (1, 5), (1, 7), (4, 7), (3, 5)

and (3, 8); (ii) Lyapunov stable in the combination of regions (2, 6); (iii) unstable in the

combination of regions (3, 7). When ξ < 0.5, the stationary states are: (i) asymptotically

stable in the combinations of regions (1, 5) and (4, 8); (ii) Lyapunov stable in the combination

of regions (2, 6); (iii) unstable in the combinations of regions (4, 7) and (3, 8). When ξ = 0.5,

the stationary states are: (i) asymptotically stable in the combination of regions (1, 5); (ii)

Lyapunov stable in the combinations of regions (2, 6), (4, 7) and (3, 8).

Proof: From Table 4.4, the error term ε(t + T ) can be written as ε(t + T ) = ε(t)ec, where

c is the coefficient. To obtain the stability properties, we only need to identify the values of
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the coefficient c. The fixed point is unstable if c > 0, while it is stable if c ≤ 0. Furthermore,

the fixed point is asymptotically stable if c < 0. Since ξ1 = ξ2 = ξ, we can have γ1 = γ4,

γ2 = γ5. Normally, we assume kj ≈ 5kc, so we have γ1 > γ5 when ξ > 0.5. In addition,

we have γ3 > γ5 when ξ > 0.5, and γ3 ≤ γ5 when ξ ≤ 0.5. Then the derivation of stability

properties for the fixed points is easy and thus omitted here. �

4.5 Analysis of macroscopic fundamental diagrams and

gridlock times

4.5.1 Macroscopic fundamental diagrams

Once the stationary states under different retaining ratios are obtained, the MFD can be

analytically derived. However, the calculation of the average network flow-rate in Equation

(4.8) involves the integral of out-fluxes g1(t) and g2(t), which is difficult to solve. Therefore,

we use the following approximation when the signalized double-ring network has reached a

stationary state, i.e., k1(nT ) = k∗1, n ∈ N0.

q(k) =
∫ (n+1)T
s=nT g1(s)ds+

∫ (n+1)T
s=nT g2(s)ds

2T
=

2
∫ (n+1)T
s=nT g1(s)ds

2T

≈ πT (g1(nT )+g1(nT+πT ))
2T

= π
g1(k∗1)+g1(k1(nT+πT ))

2
. (4.13)
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According to Equation (4.13), we have the following MFD when 0.5 < ξ < 1:

q(k; π, ξ) ≈



πvfk, k ∈ [0, kc]

πC, k ∈ (kc, kj − ξ(kj − kc)]

πC
kj−2k

ξ(kj−kc)−kc , k ∈ (
(1−ξ)kj+(1+ξ)kc

2
, kj/2]

πC
kj−k

ξ(kj−kc) , k ∈ (kj − ξ(kj − kc), kj)

0, k ∈ (kj/2, kj]

(4.14)

The proof is provided in Appendix A. The MFD in Equation (4.14) is shown in Figure 4.3(a).

From the figure, we find that: (i) multivaluedness exists in the network flow-density relation

when k ∈ (
(1−ξ)kj+(1+ξ)kc

2
, kj); (ii) for k ≥ kj

2
, the network can have stationary states with

non-zero flow-rates, but these stationary states are either Lyapunov stable or unstable; (iii)

the gridlock states exist for k ≥ kj
2

and are asymptotically stable.

Similarly, when 0 < ξ < 0.5, we have the following MFD:

q(k; π, ξ) ≈



πvfk, k ∈ [0, kc]

πC, k ∈ (kc, kj − (1− ξ)(kj − kc)]

πC
kj−k

(1−ξ)(kj−kc) , k ∈ (kj − (1− ξ)(kj − kc), kj)

0, k ∈ (kj/2, kj]

(4.15)

The proof is similar to Appendix A and thus omitted here. The MFD in Equation (4.15)

is provided in Figure 4.3(b). From the figure, we find that: (i) the signalized double-ring

network can maintain higher average network flow-rates when the retaining ratios are small;

(ii) multivaluedness also exists when k ≥ kj/2; (iii) the gridlock states are unstable with

small retaining ratios.

However, when ξ = 0.5, we find that the initial densities in the combination of regions (2, 6),

(4, 7), and (3, 8) are all stationary states. Therefore, the MFD is very different from those
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Asymptotically stable
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(b) 0 < ξ < 0.5

Asymptotically stable

Unstable

Lyapunov stable

(c) ξ = 0.5

Figure 4.3: Macroscopic fundamental diagrams for the signalized double-ring network with
different retaining ratios.
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in Equations (4.14) and (4.15) and is provided below:

q(k; k1, π, ξ) ≈



πvfk, k ∈ [0, kc]

πC, k ∈ (kc,
kj+3kc

4
]

πC
kj−2k+k1
(kj−kc)/2 , k ∈ (

kj+3kc
4

, kj] and

k1 ∈ [max{ kc(kj−2k)

kj/2−3kc/2
, 2k − kj},max{2k − kj+kc

2
, k}]

(4.16)

The proof is similar to Appendix A and thus omitted here. The MFD in Equation (4.16)

is provided in Figure 4.3(c). From the figure, we find that: (i) there are infinitely many

stationary states when k >
kj+3kc

4
, and thus, the corresponding average network flow-rate

covers the whole green region shown in the figure; (ii) the gridlock states are Lyapunov

stable; (iii) there are no unstable stationary states.

4.5.2 Gridlock times

In Theorem 4.1, we find that stationary states in the combinations of regions (4, 7) and (3, 8)

are stable gridlock states when ξ > 0.5. That means starting from any initial conditions in

these regions, traffic in the signalized double-ring network will finally converge to gridlock.

The gridlock times can be analytically calculated from the Poincaré maps. For example,

in the combination of regions (3, 8), we have the Poincaré map k1(t + T ) = Pk1(t) =

kj(1− e(γ2−γ3)πT ) + k1(t)e(γ2−γ3)πT . For an initial state (k1(0), k), we have

k1(T ) = kj(1− e(γ2−γ3)πT ) + k1(0)e(γ2−γ3)πT . (4.17)

Then after n cycles, we have

k1(nT ) = kj − (kj − k1(0))e(γ2−γ3)nπT . (4.18)
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Since γ2 < γ3, k1(nT ) will converge to kj as n → +∞. If we define the gridlock time Tg as

the time when k1(Tg) ≈ (1− σ)kj, where σ is very small, we have

Tg ≈
1

π(γ3 − γ2)
ln{kj − k1(0)

σkj
}. (4.19)

In Figure 4.4, we provide the gridlock patterns with different retaining ratios and initial

densities in the combination of regions (3, 8). In the figure, the horizontal dashed line is the

threshold with σ = 0.01 for jammed conditions. The vertical dashed lines are the calculated

gridlock times from Equation (4.19). The cycle length is 30s with a lost time of 2s for each

phase. The updating time step ∆t is 0.01s in LQM simulations. The following two trends

can be observed from the figure and verified by taking the derivatives with respect to ξ and

k1(0) in Equation (4.19): (i) given the same initial densities, the network is harder to get

gridlocked with lower retaining ratios, which is shown in Figure 4.4(a); (ii) given the same

retaining ratios, the network will get gridlocked earlier if link 1 is initially more congested,

which is shown in Figure 4.4(b). The gridlock patterns obtained from CTM simulations with

∆t = 0.25s are also provided in Figure 4.4. We find that the above two trends can also be

found in CTM simulations, which indicates that they are the characteristics of the signalized

double-ring network itself and not related to the simulation models. Interestingly, we also

find that with the same initial settings in Figure 4.4, traffic tends to get jammed earlier in

CTM simulations.

4.6 Numerical solutions to the Poincaré maps with

long cycle lengths

With long cycle lengths, derivation of closed-form Poincaré maps is difficult since it is hard to

track the time instants when the evolution orbit crosses the boundaries of different regions.
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Figure 4.4: Gridlock patterns with different retaining ratios and initial densities.

However, since the system dynamic equation (Equation (4.7)) and the coefficients of different

regions (Table 4.1) are known, it is possible to provide numerical methods to solve the

Poincaré maps.
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Figure 4.5: Relations between Φ(k1) and k1 under different average network densities when
ξ = 0.55, T = 60s, and ∆ = 4s.

Here, we denote Φ(k1) = k1 − Pk1. For given average network density k, retaining ratio ξ,

and signal settings (δ1(t), δ2(t)), finding the fixed points k∗1 is the same as finding the roots

in Φ(k1). Note that the right-hand side of Equation (4.7) is a piecewise linear function and

is continuous at the boundaries, and thus, Pk1 as well as Φ(k1) is continuous. But since the

derivative of Φ(k1) is not available, the secant method [19] is used and provided below:

kn+1
1 = kn1 − Φ(kn1 )[

kn1 − kn−1
1

Φ(kn1 )− Φ(kn−1
1 )

]. (4.20)

kn+1
1 is the updated density in step n+ 1. kn1 , kn−1

1 , Φ(kn1 ) and Φ(kn−1
1 ) are the densities and

function values in steps n and n− 1, respectively.

In Figure 4.5, we provide the relations between Φ(k1) and k1 under different average net-

work densities when ξ = 0.55, T = 60s, and ∆ = 4s. From the figure, we know that Φ(k1)

can have one root, multiple roots, or infinite roots under different average network densi-
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ties. That means starting from different k0
1, we may get different roots in the end using

numerical methods. Therefore, a brute-force search in k1 is needed to obtain a full map of

the stationary states. In addition, when Φ(k1) has infinite roots (e.g., when k = 65vpm or

78vpm), judgements on the values of Φ(kn1 ) and Φ(kn−1
1 ) are needed to avoid zero values in

the denominator in Equation (4.20). The algorithm of finding stationary states is provided

in Appendix B.

In Figure 4.6(a), we provide the MFD in the signalized double-ring network with ξ = 0.85,

T = 100s, and ∆ = 0s using Equation (4.20). As a comparison, we also provide the

MFDs obtained from the variational theory method and CTM simulations [49] with the same

settings in the same figure. From the figure, we find that the MFDs obtained from the three

methods are different. The variational theory method fails to observe the multivaluedness

and gridlock phenomena in the MFD. Even though such two phenomena are observed using

CTM simulations, the congested branch is not observable since it is unstable. Using Equation

(4.20), we can get a complete map of the MFD: the multivaluedness and gridlock phenomena

as well as the congested branch are all observed. The obtained MFD is similar to the one

in Figure 4.3(a) with small cycle lengths. Since detailed traffic dynamics inside a link are

aggregated at the link level in the link queue model, it is not surprised to find that the

flow-rates obtained from the Poincaré map method are systematically lower than or equal

to those obtained from the variational theory method and CTM simulations.

In addition, in Figures 4.6(b) and 4.6(c), we provide the MFDs obtained from the Poincaré

map methods with ξ = 0.3 and ξ = 0.5, respectively. From the two figures, we find that

the MFDs with long cycle lengths are very similar to the ones with short cycle lengths in

Figures 4.3(b) and 4.3(c).
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(a) ξ = 0.85

(b) ξ = 0.3 (c) ξ = 0.5

Figure 4.6: Macroscopic fundamental diagrams with T = 100s, ∆ = 0s, and different retain-
ing ratios.
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4.7 Conclusions

In this chapter, a signalized double-ring network was formulated as a switched affine system

under the framework of the link queue model [43] and the assumption of a triangular traffic

flow fundamental diagram [33]. Stationary states with periodic density evolution orbits

were shown to exist as the switched affine system periodically visits the (k1, k) space in

Figure 4.2(a). Poincaré map was introduced to analyze the existence and the property of

these stationary states. With short cycle lengths, closed-form Poincaré maps were obtained.

Stationary states and their corresponding stability properties were derived and analyzed by

finding and analyzing the fixed points on the Poincaré maps. It is found that under different

combinations of signal settings, retaining ratios, and initial densities, stationary states can

be Lyapunov stable, asymptotically stable, or unstable. Macroscopic fundamental diagrams

were derived based on the stationary states, in which the network flow-rate is a function of

the network density, route choice behaviors, and signal settings. In addition, the derived

MFDs are more complete since the multivaluedness and gridlock phenomena as well as

the unstable congested branch are all observed. Since the system will get gridlocked when

k ≥ kj/2 and ξ > 0.5, the gridlock time was also analyzed under different retaining ratios

and initial densities. It was found that the network is harder to get gridlocked with lower

retaining ratios. However, the network will get gridlocked earlier if one ring is initially more

congested. Since closed-form Poincaré maps are hard to obtain when the cycle lengths are

long, the secant method was used to numerically find the fixed points on the Poincaré maps.

It was found that the obtained stationary states and the MFDs are very similar to those

with short cycle lengths.

Different from the kinematic wave model in Chapter 3 and the two bin model in [11, 24], the

introduction of the link queue model and the switched affine system enables us to analytically

study the traffic statics and dynamics in the double-ring network with general signal settings.

The way of using Poincaré maps to find the stationary states is physically meaningful and
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mathematically easier to solve. The findings in this chapter, e.g., stationary states, stability,

macroscopic fundamental diagrams, and gridlock patterns, are consistent with those in earlier

studies [11, 24, 49]. But the solutions in this chapter are more complete.

Even with the link queue model, we find that traffic statics and dynamics in the signalized

double-ring network are still difficult to solve due to the discrete signal control at the junction.

Therefore, in the following chapter, we try to derive invariant continuous approximate models

to simplify the traffic dynamics at signalized junctions.
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Chapter 5

Invariant continuous approximate

models for a signalized road link

5.1 Introduction

In urban networks, traffic signal plays a vital role in regulating traffic movements. A number

of signal control strategies have been proposed since one of the earliest attempts in [75]. The

operation of traffic signals follows a discrete pattern: vehicles are allowed to move when

the traffic light is green, while they have to stop and wait when it turns red. Such a

discrete control pattern introduces binary variables in the optimization of signal settings,

which leads to solving mixed integer mathematical problems [55, 39, 56]. However, solving

such problems becomes difficult and requires a massive amount of time as the network gets

larger [34]. Therefore, continuous models are needed to approximate the traffic dynamics at

signalized intersections.

At a signalized intersection, when traffic demand is high enough for one approach, its dis-

charging pattern is simple: the outflow equals to the saturation flow during the green time
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period and zero during the red time period. Earlier in [26, 25, 13], a so-called store-and-

forward method was proposed to average the junction outflow with a time-dependent linear

function in optimizing the green splits in over-saturated road networks. However, this ap-

proach does not work when the network is not congested. In [34], a continuous approximate

model was proposed for a signalized merging junction, and the approximation accuracy was

analyzed using the variational theory under different traffic conditions, e.g., with/without

queue spillback, and different traffic flow fundamental diagrams, e.g., the triangular funda-

mental diagram [33] and Greenshields’ fundamental diagram [32]. However, this continuous

approximate model was proposed directly without analyzing its property under different

traffic flow models, e.g., the LWR model [54, 68] and the link transmission model [78, 47].

To the best of our knowledge, there is still a lack of a systematic and comprehensive study

on deriving continuous approximate models for signalized intersections and analyzing their

properties under different capacity constraints, traffic conditions, fundamental diagrams, and

traffic flow models.

In this chapter, we want to fill this gap. We first propose three discrete control forms for

a signalized road link in the LWR model [54, 68] and derive their corresponding continuous

approximate models by averaging the periodic signal control parameter over time. Then we

obtain their invariant forms by applying these continuous approximate models as entropy

conditions at the signalized junction and solving the corresponding Riemann problems in

the supply-demand framework [48]. Later we analyze the properties of these invariant con-

tinuous approximate models under different capacity constraints at the signalized junction.

We also use simulations in a signalized ring road to analyze the approximation accuracy

under different traffic conditions and fundamental diagrams. Furthermore, we analyze the

properties of invariant and non-invariant models in the link transmission model [78, 47].

The rest of this chapter is organized as follows. We formulate the traffic dynamics on a

signalized road link in the LWR model and provide three different forms of discrete signal
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Traffic direction

Figure 5.1: A signalized road link.

control at the signalized junction in Section 5.2. Next, we derive the invariant continuous

approximate models from the three forms of discrete signal control in Section 5.3 and analyze

their properties in Section 5.4. In Section 5.5, we analyze the approximation accuracy

of the invariant continuous approximate model in a signalized ring road. In Section 5.6,

we demonstrate the importance of invariant continuous approximate models in the link

transmission model. In Section 5.7, we summarize our research findings.

5.2 Discrete signal control on a road link

5.2.1 Traffic dynamics on the road link

For a signalized road link shown in Figure 5.1, let’s assume the traffic signal is installed at

x = 0. The upstream section (x < 0) is denoted as link 1, while the downstream section

(x > 0) is denoted as link 2. For link a ∈ {1, 2}, the flow-rate, density, and speed are denoted

as qa(x, t), ka(x, t), and va(x, t), respectively. The traffic flow fundamental diagram of each

link is of the same type and denoted as qa(x, t) = Q(ka(x, t)), a ∈ {1, 2}, which is concave

and attains its capacity Ca at the critical density ka,c. The jam density of link a is denoted

as ka,j, at which the flow-rate is zero. Then the local supply and demand [53] are defined as
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Da(x, t) = Q(min{ka(x, t), ka,c})

=

 Q(ka(x, t)), ka(x, t) ∈ [0, ka,c],

Ca, ka(x, t) ∈ (ka,c, ka,j],
a ∈ {1, 2} (5.1a)

Sa(x, t) = Q(max{ka(x, t), ka,c})

=

 Ca, ka(x, t) ∈ [0, ka,c],

Q(ka(x, t)), ka(x, t) ∈ (ka,c, ka,j],
a ∈ {1, 2} (5.1b)

To describe traffic dynamics on the road link (x 6= 0), the LWR model [54, 68] is used,

which can be formulated as

∂ka(x, t)

∂t
+
∂Q(ka(x, t))

∂x
= 0, a ∈ {1, 2}. (5.2)

Suppose the initial condition is given by

ka(x, t = 0) = ka, a ∈ {1, 2}. (5.3)

Under the supply-demand framework developed in [48], Equation (5.3) can be rewritten as

Ua(x, t = 0) = Ua = (Da, Sa), a ∈ {1, 2} (5.4)

where Da and Sa are link a’s demand and supply calculated from Equation (5.1) with the

initial density ka.

5.2.2 Discrete signal control

For the traffic signal at x = 0, the cycle length is T , and the effective green time is ηT with

η ∈ (0, 1). An indicator function δ(t) is introduced to describe the discrete signal control,
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which is formulated as

δ(t) =

 1, t ∈ [nT, nT + ηT );

0, t ∈ [nT + ηT, (n+ 1)T );
n = 0, 1, 2, .... (5.5)

Then the junction flux q can be calculated using the following three forms:

q = f1(D1(0−, t), S2(0+, t), δ(t)) = δ(t) min{D1(0−, t), S2(0+, t)}; (5.6a)

q = f2(D1(0−, t), S2(0+, t), δ(t)) = min{δ(t)D1(0−, t), S2(0+, t)}; (5.6b)

q = f3(D1(0−, t), S2(0+, t), δ(t)) = min{D1(0−, t), δ(t)S2(0+, t)}. (5.6c)

From the above equations, we find that the discrete control is applied to both the upstream

demand and the downstream supply in Equation (5.6a), to the upstream demand only in

Equation (5.6b), and to the downstream supply only in Equation (5.6c), respectively.

Theorem 5.1. The three forms of discrete signal control in Equation (5.6) are equivalent

in the LWR model, and thus, it doesn’t matter where to put δ(t).

Proof: During the effective green time period, i.e., t ∈ [nT, nT + ηT ) for n = 0, 1, 2, ..., we

have

f1(D1(0−, t), S2(0+, t), δ(t)) = 1×min{D1(0−, t), S2(0+, t)}

= min{D1(0−, t), S2(0+, t)}; (5.7a)

f2(D1(0−, t), S2(0+, t), δ(t)) = min{1×D1(0−, t), S2(0+, t)}

= min{D1(0−, t), S2(0+, t)}; (5.7b)

f3(D1(0−, t), S2(0+, t), δ(t)) = min{D1(0−, t), 1× S2(0+, t)}

= min{D1(0−, t), S2(0+, t)}. (5.7c)
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But during the red time period, i.e., t ∈ [nT + ηT, (n+ 1)T ) for n = 0, 1, 2, ..., we have

f1(D1(0−, t), S2(0+, t), δ(t)) = 0×min{D1(0−, t), S2(0+, t)} = 0; (5.8a)

f2(D1(0−, t), S2(0+, t), δ(t)) = min{0×D1(0−, t), S2(0+, t)} = 0; (5.8b)

f3(D1(0−, t), S2(0+, t), δ(t)) = min{D1(0−, t), 0× S2(0+, t)} = 0. (5.8c)

Therefore, the three forms fi(D1(0−, t), S2(0+, t), δ(t)), i ∈ {1, 2, 3}, are equivalent to each

other in the LWR model. �

5.3 Continuous approximate models and their invari-

ant forms

5.3.1 Continuous approximate models

According to [70], when a parameter in a system equation is a T -periodic function in t, we

can simplify the system dynamics by averaging the function over T . Since δ(t) in Equation

(5.6) is a T -periodic function, its average can be calculated as

δ̄ =
1

T

T∫
0

δ(s)ds = η. (5.9)

Therefore, the continuous approximate models for Equation (5.6) can be formulated as

q = F1(D1(0−, t), S2(0+, t), η) = ηmin{D1(0−, t), S2(0+, t)}; (5.10a)

q = F2(D1(0−, t), S2(0+, t), η) = min{ηD1(0−, t), S2(0+, t)}; (5.10b)

q = F3(D1(0−, t), S2(0+, t), η) = min{D1(0−, t), ηS2(0+, t)}. (5.10c)
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With Equation (5.10), the signalized road link is changed into a regular road link with a

different flux function q = Fi(D1(0−, t), S2(0+, t), η), i ∈ {1, 2, 3}, at x = 0. Here, functions

like q = Fi(D1(0−, t), S2(0+, t), η) are considered as local flux functions since they only use

local demand and supply information to determine the junction flux.

5.3.2 Derivation of invariant forms

If initial conditions (Equation (5.4)) and the junction flux function (Equation (5.10)) are

given, we can have three types of traffic states on the road link if it is infinitely long [48]:

• Initial states: U1 = (D1, S1) and U2 = (D2, S2);

• Stationary states: U−1 = (D−1 , S
−
1 ) and U+

2 = (D+
2 , S

+
2 );

• Interior states: U1(0−, t) = (D1(0−, t), S1(0−, t)) and U2(0+, t) = (D2(0+, t), S2(0+, t)).

The locations of these traffic states are provided in Figure 5.1. Note that the interior states

take infinitesimal space in the LWR model and only take one cell in the cell transmission

model (CTM) simulations [9]. Correspondingly, we have three types of Riemann problems

arising at the signalized road link:

• Type I: the Riemann problem between U1 and U−1 , or between U2 and U+
2 ;

• Type II: the Riemann problem between U1(0−, t) and U−1 , or between U2(0+, t) and

U+
2 ;

• Type III: the Riemann problem between U1(0−, t) and U2(0+, t).

Here, the Riemann problems are solved in the supply-demand framework in [48] with the

entropy conditions in Equation (5.10), and then, possible stationary and interior states are

obtained.
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Lemma 5.1. With the entropy condition in Equation (5.10a) applied at the signalized junc-

tion, stationary and interior states can take the following values:

(1) When min{D1, S2} > ηmin{C1, C2}, U−1 = U1(0−, t) = (C1, ηmin{C1, C2}), and U+
2 =

U2(0+, t) = (ηmin{C1, C2}, C2).

(2) When D1 < S2 and D1 ≤ ηmin{C1, C2}, U−1 = (D1, C1), U1(0−, t) = (D1/η, C1) , and

U+
2 = U2(0+, t) = (D1, C2).

(3) When D1 > S2 and S2 ≤ ηmin{C1, C2}, U−1 = U1(0−, t) = (C1, S2), U+
2 = (C2, S2),

and U2(0+, t) = (C2, S2/η) .

(4) When S2 = D1 and S2 ≤ ηmin{C1, C2}, U−1 = (D1, C1), and U+
2 = (C2, S2).

(a) If U2(0+, t) = (C2, S2/η), U1(0−, t) = (D1(0−, t), S1(0−, t)) with S1(0−, t) ≥ D1

and D1(0−, t) ≥ D1/η.

(b) If U1(0−, t) = (D1/η, C1), U2(0+, t) = (D2(0+, t), S2(0+, t)) with S2(0+, t) ≥ S2/η

and D2(0+, t) ≥ S2.

The proof is provided in Appendix C.

On the signalized road link, the junction flux can be calculated from the stationary states.

Then according to Lemma 5.1, we have the following theorem.

Theorem 5.2. With the entropy condition in Equation (5.10a) applied at the signalized

junction, the junction flux can take the following values:

(1) When min{D1, S2} > ηmin{C1, C2}, q = ηmin{C1, C2}.

(2) When D1 ≤ min{S2, ηmin{C1, C2}}, q = D1.

(3) When S2 ≤ min{D1, ηmin{C1, C2}}, q = S2.
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Therefore, the continuous approximate model can be written as

q = F̂1(D1, S2, η) = min{D1, S2, ηC1, ηC2}. (5.11)

The proof is simple and thus omitted here.

We find that in order to determine the junction flux, global information such as the initial

conditions in Equation (5.4) is used in Equation (5.11). Therefore, functions like Equation

(5.11) are considered as global flux functions.

Definition 5.1. For a global flux function F̂ (D1, S2, η), if the same global form can be derived

from its local from F (D1(0−, t), S2(0+, t), η) by solving the Riemann problems arising at the

signalized road link, F̂ (D1, S2, η) is called invariant. Otherwise, it is non-invariant.

Corollary 5.1. The continuous approximate model in Equation (5.11) is invariant.

Proof: If we apply the following entropy condition

q = F̂
′

1(D1(0−, t), S2(0+, t), η) = min{D1(0−, t), S2(0+, t), ηC1, ηC2}, (5.12)

at the signalized junction, we can derive the same continuous approximate model in Equation

(5.11). Therefore, Equation (5.11) is invariant. �

Theorem 5.3. With the entropy conditions in Equations (5.10b) and (5.10c) at the signal-

ized junction, we can derive the following invariant continuous approximate models.

For Equation (5.10b): q = F̂2(D1, S2, η) = min{D1, S2, ηC1}; (5.13a)

For Equation (5.10c): q = F̂3(D1, S2, η) = min{D1, S2, ηC2}. (5.13b)
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The proof is similar to that in Lemma 5.1 and thus omitted here.

Corollary 5.2. For the following three continuous approximate models, they are non-invariant

and their invariant forms are in Equations (5.11) and (5.13).

q = F̃1(D1, S2, η) = ηmin{D1, S2}; (5.14a)

q = F̃2(D1, S2, η) = min{ηD1, S2}; (5.14b)

q = F̃3(D1, S2, η) = min{D1, ηS2}. (5.14c)

Proof: For continuous approximate models in Equation (5.14), their local flux functions are

provided in Equation (5.10). From Theorems 5.2 and 5.3, the derived invariant forms are

different from those in Equation (5.14), and therefore, the continuous approximate models

in Equation (5.14) are non-invariant. �

5.4 Properties of the invariant continuous approximate

models

5.4.1 Under different capacity constraints

When the upstream and downstream capacities are the same, the continuous approximate

models in Equations (5.11) and (5.13) are identical. However, they have different properties

when the upstream and downstream capacities are different. At the signalized road link, we

have the following cases of capacity combinations.

• Case 1: C1 < C2.
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In this case, Equation (5.11) is the same as Equation (5.13a). In Figures 5.2(a) and

5.2(b), we provide the solutions of stationary states for the three invariant continuous

approximate models with C1 < C2 in the D1 − S2 space. Red dots stand for initial

states, while blue dots stand for stationary states. We find that when D1 ≤ ηC1 or

S2 ≤ ηC1, the solutions of stationary states (or the approximated stationary junction

flux) are the same for these three models. However, when both D1 and S2 are greater

than ηC1, the stationary states for the three models are different. It is found that the

approximated stationary junction flux is bounded by the upstream capacity constraint

ηC1 for the models in Equations (5.11) and (5.13a), while it is bounded by min{ηC2, C1}

for the model in Equation (5.13b).

In the discrete signal control, when the downstream supply is high enough to accom-

modate all upstream vehicles during the effective green time period, the maximum

junction flux is equal to the upstream capacity. But it reduces to zero when the traffic

light turns red. Therefore, the maximum average junction flux can only be ηC1. The

approximated stationary junction flux by Equation (5.13b) is higher than this value,

which means Equation (5.13b) fails to capture the upstream capacity constraint.

• Case 2: C1 > C2.

In this case, Equation (5.11) is the same as Equation (5.13b). Similarly, we provide

the solutions of stationary states for the three continuous approximate models with

C2 < C1 in Figures 5.3(a) and 5.3(b). We find that these three models are the same

when D1 ≤ ηC2 or S2 ≤ ηC2. However, they are different when both D1 and S2 are

greater than ηC2. In this case, the approximated stationary junction flux is bounded

by min{ηC1, C2} for the model in Equation (5.13a) and by the downstream capacity

constraint ηC2 for the models in Equations (5.11) and (5.13b).

In the discrete signal control, when the upstream demand is high enough to fully

use the effective green time in each cycle, the maximum junction flux is equal to the

77



(a) C1 < C2 and q = min{D1, S2, ηC1}

(b) C1 < C2 and q = min{D1, S2, ηC2}

Figure 5.2: Solutions of stationary states for the three invariant continuous approximate
models with C1 < C2
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downstream capacity. Again, due to the red light, the junction flux is zero for 1 − η

of the cycle. Therefore, the maximum average junction flux can only be ηC2. The

approximated stationary junction flux by Equation (5.13a) is higher than this value,

which means Equation (5.13a) fails to capture the downstream capacity constraint.

From the above analysis, we find that only the invariant continuous approximate model in

Equation (5.11) can fully capture the capacity constraints at the signalized junction. Other

invariant continuous approximate models fail to capture either the upstream (e.g., Equation

(5.13b)) or the downstream (e.g., Equation (5.13a)) capacity constraint, and therefore, they

should not be used when the capacities of the upstream and downstream links are different.

5.4.2 Multiple non-invariant forms

In [34], a continuous approximate model was proposed for a signalized merging junction

with the consideration of effective supplies in the downstream. If one of the upstream links

is empty and has zero demand, the signalized merging junction is changed into the signalized

road link shown in Figure 5.1. Then the model in [34] is simplified as

q = F̃4(D1, S2, η) = min{D1, ηS
′

2} = min{D1, ηS2, ηC1}. (5.15)

Here, S
′
2 is the effective supply and defined as S

′
2 = min{S2, C1}. Correspondingly, the

entropy condition applied at the signalized junction is

q = F4(D1(0−, t), S2(0+, t), η) = min{D1(0−, t), ηS2(0+, t), ηC1}. (5.16)

Then we can have the following theorem.

Theorem 5.4. The continuous approximate model in Equation (5.15) is non-invariant but
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(a) C1 > C2 and q = min{D1, S2, ηC1}

(b) C1 > C2 and q = min{D1, S2, ηC2}

Figure 5.3: Solutions of stationary states for the three invariant continuous approximate
models with C1 > C2.
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has the same invariant form in Equation (5.11). That means different non-invariant con-

tinuous approximate models can have the same invariant form.

Proof: With the entropy function in Equation (5.16) applied at the signalized junction, we

can get the following stationary and interior states:

(1) When min{D1, S2} > ηmin{C1, C2}, U−1 = U1(0−, t) = (C1, ηmin{C1, C2}), and U+
2 =

U2(0+, t) = (ηmin{C1, C2}, C2).

(2) When D1 < S2 and D1 ≤ ηmin{C1, C2}, U−1 = U1(0−, t) = (D1, C1), and U+
2 =

U2(0+, t) = (D1, C2).

(3) When D1 > S2 and S2 ≤ ηmin{C1, C2}, U−1 = U1(0−, t) = (C1, S2), U+
2 = (C2, S2),

and U2(0+, t) = (C2, S2/η) .

(4) When S2 = D1 and S2 ≤ ηmin{C1, C2}, U−1 = (D1, C1), and U+
2 = (C2, S2).

(a) If U2(0+, t) = (C2, S2/η), U1(0−, t) = (D1(0−, t), S1(0−, t)) with S1(0−, t) ≥ D1

and D1(0−, t) ≥ D1.

(b) If U1(0−, t) = (D1, C1), U2(0+, t) = (D2(0+, t), S2(0+, t)) with S2(0+, t) ≥ S2/η

and D2(0+, t) ≥ S2.

(c) If D1 = S2 = ηC1, U1(0−, t) = (D1(0−, t), S1(0−, t)) with S1(0−, t) ≥ D1 and

D1(0−, t) ≥ D1; U2(0+, t) = (D2(0+, t), S2(0+, t)) with S2(0+, t) ≥ S2/η and

D2(0+, t) ≥ S2.

Based on the stationary states, we can easily derive the invariant continuous approximate

model which is the same as Equation (5.11). Even though Equations (5.14a) and (5.15) are

two different non-invariant continuous approximate models, they have the same invariant

form (Equation (5.11)). �
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5.5 Approximation accuracy in a signalized ring road

In this section, we analyze the approximation accuracy of the invariant continuous approx-

imate model (Equation (5.11)) under different cycle lengths, initial densities, and funda-

mental diagrams. Here we consider a signalized ring road which is formed by connecting

the downstream exit with the upstream entrance in Figure 5.1. At the signalized junction,

the downstream part is labeled as 0 while the upstream part is labeled as L, where L is

the length of the ring. The ring road is a one-lane roadway with a triangular fundamental

diagram, i.e., q = Qt(k) = min{vfk, w(kj − k)}. Initially, vehicles are uniformly distributed

along the ring.

5.5.1 Impacts of initial densities and cycle lengths

With the discrete signal control at the junction, it is hard to obtain analytical solutions of

traffic stationary states. Therefore, CTM simulations [9] are used. We set the ring to be

1 mile long, i.e., L = 1 mile, and equally divide it into 150 cells. The free-flow speed vf ,

the shock-wave speed w, and the jam density kj are set to be 60 mph, 15 mph, and 150

vpm, respectively, and therefore, the capacity C is 1800 vph. The effective green time is

η = 0.5. The updating time step ∆t is 0.4s, and the total simulation time is 2 hours, which

is considered long enough to allow traffic to reach a stationary state.

In Figure 5.4, junction fluxes with the discrete signal control are provided as solid blue

lines. The cycle length is the same, which is T = 60s, but the initial densities are different.

From the figure, periodic patterns in the junction fluxes can be observed under different

initial densities, which indicates traffic in the signalized ring road is in stationary states [43].

Therefore, average junction fluxes are obtained by averaging the periodic ones over the last

four cycles and provided as dashed-dotted blue lines in the figure.
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Figure 5.4: Junction fluxes with the same cycle length but different initial densities.

However, with the invariant continuous approximate model in Equation (5.11), it is pos-

sible to analytically derive possible stationary states under different initial densities. Ac-

cording to [44], there exist three types of stationary states on a road link: strictly under

critical (SUC), over critical (OC), and zero-speed shock wave (ZS). When C1 = C2 = C,

the entropy condition (Equation 5.12) at the signalized junction is now changed to q =

min{D(L, t), S(0, t), ηC}. Then we have the following stationary states in the signalized

ring road:

(1) If q = D(L, t), only SUC stationary states can exist. That means U = (D(x, t), S(x, t)) =

(D(L, t), C) for x ∈ [0, L].

(2) If q = S(0, t), only OC stationary states can exist. That means U = (D(x, t), S(x, t)) =

(C, S(0, t)) for x ∈ [0, L].
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(3) If q = ηC, SUC, OC, and ZS stationary states can exist. When SUC stationary states

exist, we have U = (D(x, t), S(x, t)) = (ηC,C) for x ∈ [0, L]; when OC stationary

states exist, we have U = (D(x, t), S(x, t)) = (C, ηC) for x ∈ [0, L]; when ZS sta-

tionary states exist, we have U = (D(x, t), S(x, t)) = (ηC,C) for x ∈ [0, αL], and

U = (D(x, t), S(x, t)) = (C, ηC) for x ∈ (αL,L], where α ∈ (0, 1).

We provide the derived junction fluxes with the invariant continuous approximate model as

dashed red lines in Figure 5.4. From the figure, we find that under our current settings,

the derived flow-rates with the invariant continuous approximate model are the same as the

average ones with the discrete signal control.
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Figure 5.5: Junction fluxes with the same initial density but different cycle lengths.

Given the same initial density, e.g., k = 15vpm, but different cycle lengths, the junction

fluxes and their averages obtained from the discrete signal control are provided in Figure

5.5. Also, the junction fluxes derived from the invariant continuous approximate model
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under the same settings are provided in the same figure. We find that with the same initial

density, the differences between the junction fluxes obtained from the invariant continuous

approximate model and the ones from the discrete signal control gradually increase as the

cycle length increases. We further verify that similar patterns can be found with other initial

densities, which indicates the approximation accuracy is impacted by the cycle lengths: long

cycle lengths can reduce the approximation accuracy.

5.5.2 Differences in the macroscopic fundamental diagram

The macroscopic fundamental diagram [27] with the discrete signal control in Equation (5.6)

is provided as circles in Figure 5.6(a). In the simulations, the cycle length varies from 4s to

720s with η = 0.5. According to the simulation results, we have the following observations:

(i) consistent with Figure 5.5, for one average network density, the average junction flux

can take different values, which is related to the cycle lengths; (ii) the average junction

fluxes are inside the shaded region formed by Qt(k), ηQt(k), and ηC, which is also shown in

Figure 5.6(a). The derived MFD with the invariant continuous approximate model (Equation

(5.11)) is shown as the blue solid line in Figure 5.6(a). From the figure, we find that the

average junction fluxes derived from the invariant continuous approximate model are on the

upper bound of the MFD with the discrete signal control.

Furthermore, we analyze the property of the invariant continuous approximate model with a

strictly concave traffic flow fundamental diagram, e.g., Greenshields’ fundamental diagram

[32]. In Greenshields’ fundamental diagram, i.e., q = Qg(k) = vfk(1 − k/kj), the free-flow

speed is vf = 60 mph, and the jam density is kj = 150 vpm. The cycle length ranges from

4s to 360s. In Figure 5.6(b), we provide the MFDs with both the discrete signal control and

the invariant continuous approximate model. From the figure, we find that the invariant

continuous approximate model is not sensitive to the type of fundamental diagrams since
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Figure 5.6: Macroscopic fundamental diagrams of the signalized ring road.

similar patterns as those in Figures 5.6(a) can be observed.
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5.6 Importance of invariant continuous approximate

models in the link transmission model

In [47], continuous formulations of the link transmission model (LTM) [78] were provided. It

was shown that when traffic is stationary, the demand and supply of link a can be determined

by the flow-rate qa and the congested portion βa in the downstream part of the link, which

are provided below:

Da = min{qa +H(βa(1−
qa
Ca

)ka,jLa), Ca}, (5.17a)

Sa = min{qa +H((1− βa)(1−
qa
Ca

)ka,jLa), Ca}, (5.17b)

where La is the length of link a, and the indicator function H(y) for y ≥ 0 is defined as

H(y) = lim
∆t→0+

y

∆t
=

 0, y = 0;

+∞, y > 0.
(5.18)

Theorem 5.5. For the signalized road link in Figure 5.1, the non-invariant continuous

approximate model in Equation (5.14a) can not be used in LTM since the traffic statics

problem does not have a solution under certain traffic conditions.

Proof: Let’s consider the case with the origin demand D1(−L1, t) = C1 and the destination

supply S2(L2, t) < ηmin{C1, C2}. When the network reaches a stationary state, we have

U−1 = (D−1 , S
−
1 ) and U+

2 = (D+
2 , S

+
2 ) inside the two links. At the downstream end of link 2,

we have

q2 = min{D+
2 , S2(L2, t)} = min{q2 +H(β2(1− q2

C2

)k2,jL2), S2(L2, t)}. (5.19)

Since q2 < C2, we have q2 = S2(L2, t) if β2 > 0, and q2 ≤ S2(L2, t) if β2 = 0. At the upstream
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entrance of link 1, we have

q1 = min{D1(−L1, t), S
−
1 } = min{C1, q1 +H((1− β1)(1− q1

C1

)ka,jL1)}. (5.20)

Then we have (1− β1)(1− q1
C1

) = 0, which leads to q1 ≤ C1 and D−1 = C1.

At the junction, we use the non-invariant continuous approximate model in Equation (5.14a):

q1 = q2 = ηmin{D−1 , S+
2 } = ηmin{C1, S

+
2 }. (5.21)

If β2 < 1, S+
2 = C2, which leads to q2 = ηmin{C2, C1} > S2(L2, t) and contradicts q2 ≤

S2(L2, t). If β2 = 1, we have S+
2 = q2 = S2(L2, t) and q2 = ηS+

2 , which is impossible.

Therefore, with the non-invariant continuous approximate model in Equation (5.14a), the

traffic statics problem does not have a solution in the link transmission model under the

boundary condition D1(−L1, t) = C1 and S2(L2, t) < ηmin{C1, C2}. �

Theorem 5.6. With the invariant continuous approximate model in Equation (5.11) applied

at the junction, the traffic statics problem in LTM has the same solutions of stationary states

as those in Theorem 5.2.

Proof: At the downstream end of link 2, we have

q2 = min{D+
2 , S2(L2, t)} = min{q2 +H(β2(1− q2

C2

)k2,jL2), S2(L2, t)}. (5.22)

At the upstream entrance of link 1, we have

q1 = min{D1(−L1, t), S
−
1 } = min{D1(−L1, t), q1 +H((1− β1)(1− q1

C1

)ka,jL1)}. (5.23)
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At the junction, we have

q1 = q2 = min{D−1 , S+
2 , ηC1, ηC2}. (5.24)

Then we have the following possible stationary states:

(1) min{D1(−L1, t), S2(L2, t)} > ηmin{C1, C2}. It is impossible to have β1 < 1 since it

leads to q1 = D1(−L1, t) > ηmin{C1, C2} and contradicts q1 ≤ min{ηC1, ηC2}. It is

also impossible to have β2 > 0 since it leads to q2 = S2(L2, t) > ηmin{C1, C2} and

contradicts q2 ≤ min{ηC1, ηC2}. Therefore, we have β1 = 1 and β2 = 0, which leads

to D−1 = C1 and S+
2 = C2. In this case, q1 = q2 = min{ηC1, ηC2}.

(2) D1(−L1, t) < S2(L2, t) and D1(−L1, t) ≤ ηmin{C1, C2}. It is impossible to have β2 > 0

since it leads to q2 = S2(L2, t) > D1(−L1, t) and contradicts q2 = q1 ≤ D1(−L1, t).

Therefore, β2 = 0, S+
2 = C2, and q1 = q2 = min{D−1 , ηC1, ηC2}. When β1 > 0, we

have D−1 = C1 and q1 = min{ηC1, ηC2} ≥ D1(−L1, t). Since q1 ≤ D1(−L1, t), we have

q1 = q2 = min{ηC1, ηC2} = D1(−L1, t) when β1 > 0. When β1 = 0, we have S−1 = C1

and D−1 = q1, and thus q1 = q2 = D1(−L1, t).

(3) D1(−L1, t) > S2(L2, t) and S2(L2, t) ≤ ηmin{C1, C2}. It is impossible to have β1 < 1

since it leads to q1 = D1(−L1, t) > S2(L2, t) and contradicts q1 = q2 ≤ S2(L2, t).

Therefore, β1 = 1, D−1 = C1, and q1 = q2 = min{S+
2 , ηC1, ηC2}. When β2 < 1, we

have S+
2 = C2 and q2 = min{ηC1, ηC2} ≥ S2(L2, t). Since q2 ≤ S2(L2, t), we have

q1 = q2 = min{ηC1, ηC2} = S2(L2, t) when β2 < 1. When β2 = 1, we have D+
2 = C2

and S+
2 = q2, and thus q1 = q2 = S2(L2, t).

(4) D1(−L1, t) = S2(L2, t) ≤ ηmin{C1, C2}. When β1 > 0 and β2 < 1, we have D−1 =

C1, S+
2 = C2 and q1 = min{ηC1, ηC2}, which leads to q1 = q2 = min{ηC1, ηC2} =

D1(−L1, t) = S2(L2, t). When β1 > 0 and β2 = 1, we have D−1 = C1, D+
2 = C2,

S+
2 = q2, which leads to q1 = q2 = S2(L2, t) = D1(−L1, t) ≤ min{ηC1, ηC2}. When
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β1 = 0 and β2 < 1, we have D−1 = q1, S−1 = C1, and S+
2 = C2, which leads to

q1 = q2 = S2(L2, t) = D1(−L1, t) ≤ min{ηC1, ηC2}. When β1 = 0 and β2 = 1, we

have D−1 = q1, S−1 = C1, D+
2 = C2, S+

2 = q2, which leads to q1 = q2 = S2(L2, t) =

D1(−L1, t) ≤ min{ηC1, ηC2}.

From the above analysis, we find that junction fluxes at stationary states exist under various

traffic conditions and are the same as those in Theorem 5.2. �

5.7 Conclusions

In this chapter, we provided a systematic and comprehensive study on deriving invariant

continuous approximate models for a signalized road link and analyzing their properties un-

der different capacity constraints, traffic conditions, fundamental diagrams, and traffic flow

models. We first proposed three forms of discrete signal control at the signalized road link

and derived their invariant continuous approximate models by averaging the periodic control

parameter over time and solving the Riemann problems in the supply-demand framework

[48]. We analyzed the properties of these three invariant continuous approximate models and

showed that only one of them can fully capture the capacity constraints at the signalized

junction. We also showed that multiple non-invariant continuous approximate models can

have the same invariant form. Using CTM simulations in a signalized ring road, we demon-

strated the invariant continuous approximate model is a good approximation to the discrete

signal control even under different fundamental diagrams. But we also showed that long cycle

lengths will reduce the approximation accuracy. In addition, we proved that non-invariant

continuous approximate models can not be used in the link transmission model since they

can yield no solution to the traffic statics problem under certain traffic conditions. But with

the invariant continuous approximate model, the derived junction fluxes under stationary

state conditions are the same as those in the LWR model.
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Chapter 6

Simulation studies on the traffic

statics and dynamics in a signalized

grid network

6.1 Introduction

In previous chapters, traffic statics and dynamics have been comprehensively studied in a

signalized double-ring network using the kinematic wave approach in Chapter 3 and the

Poincaré map approach in Chapter 4. However, it is still unclear about the static and

dynamic properties of traffic flow in more general signalized networks, such as a signalized

grid network. Also it is unclear about whether the analytical insights obtained for double-

ring networks can apply to more general networks or not. In this chapter, we want to fill

this gap.

Different from the signalized double-ring network, traffic statics and dynamics in the sig-

nalized grid network are more complicated since it involves more signalized junctions, more
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route choices, and more complicated demand patterns. It is hard to apply the Poincaré map

approach in Chapter 4 to the signalized grid network since it is unclear how to define the

Poincaré maps and where to put the Poincaré sections. It is also not suitable to apply the

kinematic wave mode to the signalized grid network since complicated shock and rarefaction

waves can exist inside a link and it will take a long time for the network to reach a stationary

state in simulations. Therefore, the link queue model in [43] is used to study the static and

dynamic properties of traffic flow in the signalized grid network. Similar to Chapter 3, we

are going to verify the existence of periodic traffic patterns (i.e., stationary states) and study

the impacts of signal settings and route choice behaviors on the average network flow-rates

as well as the MFDs.

The rest of this chapter is organized as follows. In Section 6.2, we provide a link queue

formulation to the traffic dynamics in a signalized grid network. In Section 6.3, we demon-

strate the existence of stationary states under different retaining ratios and initial densities.

In Section 6.4, we show the impacts of retaining ratios and cycle lengths on the average

network flow-rates. We also provide the shapes of the MFDs under different retaining ratios

and cycle lengths. In Section 6.5, we provide the impacts of random retaining ratios on the

stationary states and thus the MFDs. In Section 6.6, we summarize our research findings.

6.2 Formulation of traffic dynamics in a signalized grid

network

In Figure 6.1, a signalized 6 × 6 grid network is provided. There are 72 one-way links

and 36 intersections in the network. The links are divided into two families: the ones in

the East-West direction are in one family while those in the North-South direction are in

the other family. In order to maintain the same number of vehicles inside the network,
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exiting vehicles are immediately added into the network from their corresponding upstream

entrances, and therefore, the signalized grid network is changed into a closed network with

periodic boundary conditions.

Figure 6.1: A signalized 6× 6 grid network.

Similar to Chapter 4.2.1, traffic dynamics in the signalized grid network are formulated as

follows:

• At each intersection, it contains one upstream link and one downstream link from each

of the two families. The upstream and the downstream links in the East-West direction

are denoted as hu and hd, respectively, while the ones in the North-South direction

are denoted as vu and vd, respectively. In each cycle, without loss of generality, we

assign phase 1 to vehicles on link hu and phase 2 to those on link vu. We assume all

intersections have the same cycle length T and the same lost time ∆ for each phase.

The green ratio is denoted as π1 for phase 1 and π2 for phase 2. We further assume the

yellow and all red period in each phase is the same as the lost time, and therefore, the

effective green time is π1T for phase 1 and π2T for phase 2, and (π1 + π2)T = T − 2∆.

Then the signal control at intersection j can be described using the following indicator
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functions:

δ1(t;T,∆, π1) =

 1, t ∈ [nT, nT + π1T ),

0, otherwise,
n ∈ N0 (6.1a)

δ2(t;T,∆, π1) =

 1, t ∈ [nT + ∆ + π1T, (n+ 1)T −∆),

0, otherwise,
n ∈ N0 (6.1b)

where N0 = {0, 1, 2, 3, ...}.

The retaining ratio is denoted as ξ1(t) ∈ (0, 1) for vehicles from link hu to link hd and

ξ2(t) ∈ (0, 1) for those from link vu to link vd. That is to say, the turning ratio is

1− ξ1(t) for vehicles from link hu to link vd and 1− ξ2(t) for those from link vu to link

hd. Then the out-fluxes ghu(t), gvu(t), and the in-fluxes fhd(t), fvd(t) can be calculated

as

ghu(t) = δ1(t) min{Dhu(t),
Shd(t)

ξ1(t)
,
Svd(t)

1− ξ1(t)
}, (6.2a)

gvu(t) = δ2(t) min{Dvu(t),
Svd(t)

ξ2(t)
,
Shd(t)

1− ξ2(t)
}, (6.2b)

fhd(t) = ghu(t)ξ1(t) + gvu(t)(1− ξ2(t)), (6.2c)

fvd(t) = ghu(t)(1− ξ1(t)) + gvu(t)ξ2(t), (6.2d)

where Dhu(t) and Dvu(t) are the demands of the upstream links hu and vu, respectively,

and Shd(t) and Svd(t) are the supplies of the downstream links hd and vd, respectively.

The demands and supplies can be calculated using Equation (4.1) in Chapter 4.

• For link i, the average link density ki(t) is the only stable variable. Traffic dynamics

on link i can be described using the following equation:

dki(t)

dt
=

1

L
(fi(t)− gi(t)). (6.3)

94



With Equations (6.1) to (6.3), the system dynamics of the signalized grid network are com-

plete: the in-/out-fluxes of each link can be calculated using Equations (6.1) and (6.2), and

the density of each link can be updated using Equation (6.3).

6.3 Existence of traffic stationary states

In this section, we are going to verify the existence of stationary states in the signalized

grid network. For simplicity, we have the following homogeneous settings: (i) all links

have the same lengths, e.g., L = 0.25 miles, and the same time-and-location independent

triangular traffic flow fundamental diagram with vf = 60 mph, kc = 30 vpm, and kj = 150

vpm; (ii) at all intersections, the retaining ratios are the same and time independent, i.e.,

ξ1(t) = ξ2(t) = ξ; (iii) at all intersection, the lost times and offsets are zero, and the effective

green times are the same for the two incoming approaches, i.e., π1 = π2 = π = 0.5; (iv)

initially, the densities are the same among the links belonging to the same family, e.g., k1(0)

for the East-West links and k2(0) for the North-South links. For the LQM simulations in

this section, the cycle length is T = 30s. The updating time step is ∆t = 0.05s. The total

simulation time is 10 hours, which is considered to be long enough for the signalized grid

network to reach a stationary state. To calculate the asymptotic average network flow-rate,

the following equation is used:

q(t) =

∑n
i=1 ĝi(t)

n
=

∑n
i=1

∫ t
s=t−T gi(s)ds

nT
, (6.4)

where n is the total number of regular links in the signalized grid network.
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6.3.1 With large retaining ratios

In this subsection, the retaining ratio is ξ1 = ξ2 = 0.6. With initial densities k1(0) = k2(0) =

25 vpm, the distribution of link densities at the last cycle is provided in Figure 6.2(a). From

the figure, we find that the densities of the links in the same family are the same and very

close to those in the other family. In Figure 6.2(b), we provide the evolution pattern of the

average network flow-rate in the grid network. We find that the average network flow-rate

reaches a constant value after 0.1 hour, which shows the signalized grid network has reached

a stationary state.

(a) Density distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Time (hr)

F
lo

w
−

ra
te

 (
vp

h)

(b) Average flow-rate

Figure 6.2: The distribution of link densities at the last cycle and the evolution pattern of
the average network flow-rate with k1(0) = k2(0) = 25 vpm and ξ = 0.6.

When the average network density increases to a certain value, the traffic patterns are

different. In Figure 6.3, we provide the distributions of link densities at the last cycle and

the evolution patterns of the average network flow-rate under the same average network

density but different initial densities. As shown in Figures 6.3(a) and 6.3(b), starting with

k1(0) = 20 vpm and k2(0) = 100 vpm, traffic is more congested in the North-South links

when the network reaches a stationary state. However, as shown in Figures 6.3(c) and

6.3(d), densities are more uniformly distributed among the links of the two families when

the initial densities are k1(0) = 60 vpm and k2(0) = 60 vpm. The average network flow-rate
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is the highest, which is half of the link capacity. Furthermore, as shown in Figure 6.3(e),

if the initial densities are k1(0) = 100 vpm and k2(0) = 20 vpm, the density distribution

is different: the East-West links are more congested when the network reaches a stationary

state. From Figure 6.3(f), the average network flow-rate is the same as that in Figure 6.3(b)

when the network reaches a stationary state. The simulation results show that when the

average network density reaches a certain value, multivaluedness in the flow-density relation

exists: for the same average network density, we can have different average network flow-

rates, which is consistent with the finding in the signalized double-ring network.

When the average network density is greater than half of the jam density, the traffic pattern is

also different. In Figure 6.4, we provide the distribution of link densities at the last cycle and

the evolution pattern of the average network flow-rate with initial densities k1(0) = k2(0) =

120 vpm. We find that the grid network is finally gridlocked in the North-South links and

the average network flow-rate reduces to zero. Such a gridlock pattern is also consistent with

that in the signalized double-ring network. Note that in the signalized double-ring network,

there exists an unstable stationary state with a more symmetric density distribution and

a higher average network flow-rate. But it is hard to find such a stationary state in the

signalized grid network using simulations since it is unstable.

6.3.2 With small retaining ratios

In this subsection, the retaining ratio is ξ1 = ξ2 = 0.4. We provide the distribution of

link densities at the last cycle and the evolution pattern of the average network flow-rate in

Figure 6.5 when initial densities are k1(0) = k2(0) = 25 vpm. From the figure, we find that

when the network reaches a stationary state, the links have relatively the same densities,

which is similar to Figure 6.2.

However, it is a different case when the average network density reaches a certain value, e.g.,
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(a) (k1(0), k2(0)) =(20,100) vpm
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(b) (k1(0), k2(0)) =(20,100) vpm

(c) (k1(0), k2(0)) =(60,60) vpm
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(d) (k1(0), k2(0)) =(60,60) vpm

(e) (k1(0), k2(0)) =(100,20) vpm
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(f) (k1(0), k2(0)) =(100,20) vpm

Figure 6.3: Distributions of link densities at the last cycle (left) and evolution patterns of
the average network flow-rate (right) with k = 60 vpm and ξ = 0.6.

k = 60 vpm. In Figure 6.6, we provide the distributions of link densities at the last cycle

and the evolution patterns of the average network flow-rate under the same average network

density but different initial densities. Different from Figure 6.3, when ξ = 0.4, densities are

relatively uniformly distributed among the links even starting with different initial densities.
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(a) Density distribution
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(b) Average flow-rate

Figure 6.4: The distribution of link densities at the last cycle (left) and the evolution pattern
of the average network flow-rate (right) with k1(0) = k2(0) = 120 vpm and ξ = 0.6.

(a) Density distribution
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(b) Average flow-rate

Figure 6.5: The distribution of link densities at the last cycle (left) and the evolution pattern
of the average network flow-rate (right) with k1(0) = k2(0) = 25 vpm and ξ = 0.4.

The average network flow-rates for the three cases in Figure 6.6 are the same, which is

half of the link capacity. The simulation results show that with lower retaining ratios,

the grid network can have higher average network flow-rates and more symmetric density

distributions, which is consistent with that in the signalized double-ring network.

When the average network density is greater than half of the jam density, the traffic pattern

is also different with ξ = 0.4. In Figure 6.7, we provide the distribution of link densities at

the last cycle and the evolution pattern of the average network flow-rate with initial densities

k1(0) = k2(0) = 120 vpm. We find that the signalized grid network is not gridlocked with

low retaining ratios. Compared with Figure 6.4, the density distribution is more symmetric
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(a) (k1(0), k2(0)) =(20,100) vpm
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(b) (k1(0), k2(0)) =(20,100) vpm

(c) (k1(0), k2(0)) =(60,60) vpm
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(d) (k1(0), k2(0)) =(60,60) vpm

(e) (k1(0), k2(0)) =(100,20) vpm
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(f) (k1(0), k2(0)) =(100,20) vpm

Figure 6.6: Distributions of link densities at the last cycle (left) and evolution patterns of
the average network flow-rate (right) with k = 60 vpm and ξ = 0.4.

among the links and the average network flow-rate is higher, which is also consistent with

that in the signalized double-ring network.
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(a) Density distribution
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(b) Average flow-rate

Figure 6.7: The distribution of link densities at the last cycle (left) and the evolution pattern
of the average network flow-rate (right) with k1(0) = k2(0) = 120 vpm and ξ = 0.4.

6.4 Impacts of cycle lengths and retaining ratios and

macroscopic fundamental diagrams

6.4.1 Impacts of cycle lengths and retaining ratios

In this subsection, we analyze the impacts of cycle lengths and retaining ratios on the

average network flow-rates in the signalized grid network. In Figure 6.8, we provide the

average network flow-rates with a constant retaining ratio ξ = 0.85 but different cycle lengths

and average network densities. From the figure, we find that the relation between the cycle

length and the average network flow-rate is quite complicated under different average network

densities. With a low average network density, e.g., k = 15 vpm, the average network flow-

rate decreases with the cycle length. However, with a medium average network density,

e.g., k = 50 vpm, the average network flow-rate increases with the cycle length. When the

average network density is greater than half of the jam density, the average network flow-rate

is always zero, which is shown in Figures 6.8 (c) and (d).

In Figure 6.9, we provide the average network flow-rates with a constant cycle length T =

100s but different retaining ratios and average network densities. From the figure, we find
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Figure 6.8: Impacts of the cycle length T on the average network flow-rate q with a constant
retaining ratio ξ = 0.85.

that different retaining ratios can also lead to different average network flow-rates even with

the same initial densities. When the retaining ratio is low, e.g. ξ < 0.5, the average network

flow-rate increases with the retaining ratio. However, with medium or high average network

densities, when the retaining ratio is high, i.e., ξ > 0.5, the average network flow-rate

decreases or even converges to zero as the retaining ratio increases, which can be observed

from Figures 6.9 (b) to (d).

6.4.2 Macroscopic fundamental diagrams

In Figure 6.10, we provide the MFDs under different combinations of cycle lengths and

retaining ratios. In Figures 6.10(a) and 6.10(c), MFDs are provided when ξ = 0.6 but

T = 30s and 120s, respectively. From the figures, we have the following findings: (i) with
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Figure 6.9: Impacts of the retaining ratio ξ on the average network flow-rate q with a constant
cycle length T = 100s.

large retaining ratios, multivaluedness exists in the network flow-density relation and the

network will get gridlocked when the average network density is higher than half of the jam

density; (ii) the shapes of the MFDs are similar to that in Figure 4.3(a), but the unstable

branch is not observed in the simulations; (iii) with longer cycle lengths, the average network

flow-rates are harder to sustain at the highest value, which is half of the link capacity.

In Figures 6.10(b) and 6.10(d), MFDs are provided when ξ = 0.4 but T = 30s and 120s,

respectively. From the figures, we have the following findings: (i) with low retaining ratios,

the grid network won’t get gridlocked unless it initially is; (ii) the multivaluedness disappears

for the densities lower than half of the jam density, and the average network flow-rates are

higher; (iii) with longer cycle lengths, the average network flow-rates are harder to sustain at

the highest value and systematically lower than or equal to those with shorter cycle lengths.

The MFDs are similar to those in Figure 4.3(b).
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(a) T = 30s and ξ = 0.6
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(b) T = 30s and ξ = 0.4
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(c) T = 120s and ξ = 0.6
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(d) T = 120s and ξ = 0.4

Figure 6.10: Macroscopic fundamental diagrams in the signalized grid network with different
cycle lengths and retaining ratios.

According to the MFDs in Figure 6.10, we can find that lower retaining ratios can help the

signalized grid network have higher average network flow-rates, which is consistent with that

in the signalized double-ring network.

6.5 Impact of random retaining ratios

In our previous analysis, we have a set of homogeneous settings such as the same signal

settings and the same retaining ratios at all intersections. But in reality, retaining ratios at

an intersection are changing from time to time. Therefore, in this section we relax such a
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homogeneous assumption and consider the retaining ratios at an intersection are random.

In our simulation, the retaining ratios are different from cycle to cycle but the same within

the cycle. At the beginning of each cycle, retaining ratios can pick any values within the

interval [ξ̄− 0.05, ξ̄+ 0.05], where ξ̄ is the average retaining ratio over time and the same for

all intersections.

6.5.1 On the stationary states

In Figure 6.11, we provide the distributions of link densities at the last cycle and the evolution

patterns of the average network flow-rate under different initial densities with retaining ratios

ξ ∈ [0.55, 0.65]. From Figures 6.11(a) and 6.11(b), we find that when the average network

density is low, e.g., k = 20 vpm, the signalized grid network is hard to get gridlocked.

However, with medium or high average network densities, traffic inside the signalized grid

network will finally converge to gridlock, which can be observed from Figures 6.11(c) to

6.11(f). In addition, when the retaining ratios are constant, the signalized grid network is

not gridlocked with k = 60 vpm. But as shown in Figures 6.11(c) and 6.11(d), the network

is finally gridlocked when randomness exists in the retaining ratios.

In Figure 6.12, we provide the distributions of link densities at the last cycle and the evolution

patterns of the average network flow-rate under different initial densities with retaining

ratios ξ ∈ [0.35, 0.45]. Similar to the case with ξ ∈ [0.55, 0.65], we find that the signalized

grid network is hard to get gridlocked when the average network density is low, which can

be observed from Figures 6.12(a) and 6.12(b). In our previous analysis, with small and

constant retaining ratios, the signalized grid network won’t get gridlocked unless it initially

is. However, similar to the case with ξ ∈ [0.55, 0.65], the signalized grid network will get

gridlocked with lower retaining ratios when randomness exists in the retaining ratios, which

is shown in Figures 6.12(c) to 6.12(f).
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(d) (k1(0), k2(0)) =(60,60) vpm
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Figure 6.11: Distributions of link densities at the last cycle (left) and evolution patterns of
the average network flow-rate (right) with random retaining ratios ξ ∈ [0.55, 0.65].

6.5.2 On the macroscopic fundamental diagram

In Figure 6.13, we provide the network flow-density relations in the signalized grid network

after 10-hour simulations under different combinations of cycle lengths and retaining ratios.

From the figure, we find that the network flow-density relations are similar to each other

106



(a) (k1(0), k2(0)) =(25,25) vpm

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

800

900

1000

Time (hr)

F
lo

w
−

ra
te

 (
vp

h)
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Figure 6.12: Distributions of link densities at the last cycle (left) and evolution patterns of
the average network flow-rate (right) with random retaining ratios ξ ∈ [0.35, 0.45].

even the cycle lengths or retaining ratios are different. With randomness in the retaining

ratios, the signalized grid network will get gridlocked even with small retaining ratios, which

is shown in Figures 6.13(b) and 6.13(d). Note that it is normal to observe transitional points

in the network flow-density relation in Figure 6.13(a) since the retaining ratios are random
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and the signalized grid network may not converge to near-stationary states at the end of the

simulations. Comparing 6.13(a) with 6.13(c) or 6.13(b) with 6.13(d), we find that: (i) it is

harder for the signalized grid network to maintain higher average network flow-rates with

longer cycle lengths; (ii) with shorter cycle lengths, the signalized grid network tends to get

gridlocked at lower average network densities.
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(c) T =120s
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Figure 6.13: Network flow-density relations in the signalized grid network after 10-hour
simulations with random retaining ratios ξ ∈[0.55,0.65] in (a) and (c), and ξ ∈[0.35,0.45] in
(b) and (d).
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6.6 Conclusions

In this chapter, traffic dynamics in a signalized grid network were formulated using the link

queue model [43]. Under homogeneous settings, such as the same retaining ratios, signal

settings, and link lengths, simulation results showed that stationary states with periodic

traffic patterns exist in the signalized grid network and are very consistent with those in the

signalized double-ring network. Impacts of cycle lengths and retaining ratios on the average

network flow-rates were analyzed, and it was found that different cycle lengths and retaining

ratios can lead to different average network flow-rates even under the same initial densities.

MFDs under different combinations of cycle lengths and retaining ratios were also provided

using simulations. It was found that the shapes of the MFDs are similar to those in the

signalized double-ring network. In addition, when the retaining ratios are random, it was

found that the traffic patterns in the signalized grid network are fundamentally different:

the signalized grid network will get gridlocked at lower average network densities regardless

of the retaining ratios.
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Chapter 7

Conclusions

7.1 Summary

In transportation engineering, effective and efficient control and management strategies are

needed to improve the network performance, e.g., to improve the average network flow-

rate. However, in this dissertation, we have shown that a fundamental understanding in

the static and dynamic properties of urban traffic is necessary since even with the same

average network density, different combinations of signal settings, route choice behaviors,

and demand patterns can lead to different average network flow-rates.

Instead of tackling large urban networks, we mainly focused on the signalized double-ring

network in this dissertation. In Chapter 3, we formulated the traffic dynamics in the signal-

ized double-ring network using a kinematic wave approach [54, 68]. Due to infinitely many

state variables on the two links, traffic statics and dynamics are very difficult to solve ana-

lytically, and thus, CTM simulations [9, 10] were used. In order to obtain analytical results,

in Chapter 4, the link queue model in [43] was used to aggregate the traffic dynamics at the

link level. With the triangular traffic flow fundamental diagram [33], the signalized double-
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ring network is formulated as a switched affine system. Since periodic density evolution

orbits exist in the switched affine system, the Poincaré map approach was used to study the

stationary states and their stability properties and relations to cycle lengths, route choice

behaviors, and demand patterns.

Due to the existence of periodic signal control at the junction, traffic dynamics in the signal-

ized double-ring network are still very complicated to solve. Therefore, we further extended

our studies to derive invariant continuous approximate models at signalized junctions. In

Chapter 5, we derived invariant continuous approximate models for a signalized road link

by averaging the periodic signal control parameter at the junction over time and solving the

Riemann problems in the supply-demand framework [48]. We then analyzed the properties

of the derived invariant continuous approximate models under different capacity constraints,

traffic conditions, fundamental diagrams, and traffic flow models.

Furthermore, in Chapter 6 we studied the traffic statics and dynamics in a signalized grid

network using simulations in the link queue model.

Through this dissertation research, we have the following findings:

(1) Periodic traffic patterns in junction fluxes and density distributions exist in the signal-

ized double-ring network and are defined as stationary states.

(2) There can be a single, multiple, or infinitely many stationary states with the same

average network density. Stationary states can be Lyapunov stable, asymptotically

stable, or unstable.

(3) Stationary states are closely related to cycle lengths, route choice behaviors, and initial

densities. With high retaining ratios, traffic tends to get gridlocked when the network

average density is greater than or equal to kj/2. But with low retaining ratios, traffic

tends to be more symmetrically distributed over the two rings and won’t get gridlocked
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unless it initially is.

(4) The average network flow-rate in the macroscopic fundamental diagram can be written

as a function of the average network density, the green ratio, and the retaining ratio

in the signalized double-ring network. Gridlock times can be analytically calculated

when the cycle lengths are small.

(5) Only one of the three derived invariant continuous approximate models can fully cap-

ture the capacity constraints at the signalized road link. The other two fail to capture

either the upstream or the downstream capacity constraint. Multiple non-invariant

continuous approximate models can have the same invariant form.

(6) The invariant continuous approximate model is a good approximation to the discrete

signal control at the road link. But cycle lengths can reduce the approximation accu-

racy.

(7) Non-invariant continuous approximate models can not be used in the link transmission

model [78, 47] since there is no solution to the traffic statics problem under certain

boundary conditions.

(8) Under homogeneous settings of link lengths, fundamental diagrams, signal settings,

and route choice behaviors, traffic statics and dynamics in a signalized grid network

are similar to those in the signalized double-ring network.

7.2 Future research directions

In the future, we will continue our work in the following three directions:

(1) Development of effective and efficient signal control and evacuation schemes.

We find that when the retaining ratios at the signalized junction are high, traffic in the
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signalized double-ring network will get gridlocked when the average network density is

greater than or equal to kj/2. Such a gridlock state is asymptotically stable. However,

we also find that for the same average network density, there exists an unstable sta-

tionary state with a more symmetric density distribution and a higher average junction

flux. To improve the network performance and avoid the occurrence of gridlock, we are

interested in developing new signal control strategies that can adaptively change the

effective green times and retaining ratios at the signalized junction. In addition, we

are also interested in developing new evacuation schemes to regulate traffic movements

at the intersections when accidents and disasters happen.

(2) Development of invariant continuous approximate models for more complicated signal-

ized junctions.

Our current study is limited to a signalized road link. But the supply-demand frame-

work [48] can be applied to more complicated signalized junctions, such as the signalized

merging and general junctions. However, we also expect the derivation is more com-

plicated since merging and diverging behaviors should be taken into account at these

junctions. The combinations of traffic conditions are also more than those in the sig-

nalized road link. Fortunately, a complete set of invariant models have been developed

for uninterrupted junctions in [48, 41, 46, 42]. Insights from these studies are definitely

very helpful in developing invariant continuous approximate models for more general

signalized junctions. In addition, for network simulations, different traffic flow models

such as CTM [9, 10], LQM [43], and LTM [78, 47] can be used. Therefore, we need

to thoroughly analyze the properties of the derived invariant continuous approximate

models in these traffic flow models.

(3) Analytical and simulation studies on large-scale urban networks.

In this dissertation, we have studied the static and dynamic properties of traffic flow in

the signalized grid network using LQM simulations. In the future, it is possible for us
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to study the static and dynamic properties using another link-based mode, the LTM

in [78, 47]. It is also possible for us to obtain some analytical results on large-scale

urban networks using the link-based traffic flow models and the invariant continuous

approximate models developed for the signalized junctions. When the settings in the

grid network are not homogeneous, e.g., with random retaining ratios at the signalized

junctions, traffic dynamics are fundamentally different from those with homogeneous

settings. Therefore, we are also interested in studying the traffic statics and dynamics in

the signalized grid network with inhomogeneous settings of link lengths, signal settings,

route choice behaviors, and demand patterns.
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Appendices

A Approximation of average network flow-rates

The stationary states are provided in Table 4.3 under different retaining ratios. For ξ > 0.5,

the possible combinations of regions having stationary states are: (1, 5), (1, 7), (2, 6), (4, 7),

(3, 5), (3, 7), and (3, 8). For regions (4, 7) and (3, 8), the stationary states are gridlock states,

and therefore, the average network average flow-rates are zero. For the rest of the regions,

we can approximate the average network flow-rate using Equation (4.13).

(1) For regions (1, 5), the fixed point is k∗1 = 2k
1+e−γ1πT

. Starting with k1(nT ) = k∗1, we

can get k1(nT + πT ) = k1(nT )e−γ1πT . Since ring 1 is uncongested, g1(k1) = vfk1.

Therefore, the average network flow-rate is

q(k) ≈ π
g1(k∗1) + g1(k1(nT + πT ))

2
= 1

2
πvf (k

∗
1 + k1(nT + πT ))

= 1
2
πvf2k

1+e−γ1πT

1+e−γ1πT
= πvfk. (A.1)

(2) For regions (1, 7), the fixed point is k∗1 =
(kj−2k)(eγ5πT−1)

1−e(γ5−γ1)πT . Starting with k1(nT ) = k∗1,

we can get k1(nT + πT ) = k1(nT )e−γ1πT . Since ring 1 is uncongested, g1(k1) = vfk1.

In addition, since T is small, −γ1πT , γ5πT , and (γ5−γ1)πT are also small. Therefore,
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the average network flow-rate is

q(k) ≈ 1
2
πvf (k

∗
1 + k1(nT + πT )) = 1

2
πvf (kj − 2k) (eγ5πT−1)(1+e−γ1πT )

1−e(γ5−γ1)πT

≈ 1
2
πvf (kj − 2k)γ5πT (2−γ1πT )

(γ1−γ5)πT
≈ πC

(kj−2k)

ξ(kj−kc)−kc . (A.2)

(3) For regions (2, 6), the fixed point is k∗1 = k1(t). In this combination of regions, the

out-fluxes are restricted by the capacity. Therefore, the average network flow-rate is

q(k) ≈ π
g1(k∗1) + g1(k1(nT + πT ))

2
= πC. (A.3)

(4) For regions (3, 5), the fixed point is k∗1 =
2k(1−e−γ4πT )−kj(eγ2πT−1)e−γ4πT

1−e(γ2−γ4)πT . Starting with

k1(nT ) = k∗1, we can get k1(nT+πT ) = kj(1−eγ2πT )+k1(nT )eγ2πT . In this combination

of regions, the out-flux is governed by the supply in link 1, i.e., g1(k1) = S1(k1)
ξ

=

C(kj−k1)

ξ(kj−kc) . Therefore, the average network flow-rate is

q(k) ≈ πC
2kj−(kj(1−eγ2πT )+k∗1(1+eγ2πT ))

2ξ(kj−kc) ≈ πC
2kj−2

2k∗γ4−kj∗γ2
γ4−γ2

2ξ(kj−kc)

= πC
(kj−2k)

γ4
γ4−γ2

ξ(kj−kc) = πC
(kj−2k)

ξ(kj−kc)−kc . (A.4)

(5) For regions (3, 7), the fixed point is k∗1 =
2k+kj(e

γ2πT−1)

eγ2πT+1
. Starting with k1(nT ) = k∗1, we

can get k1(nT +πT ) = kj(1− eγ2πT )+k1(nT )eγ2πT . In this combination of regions, the

out-flux is governed by the supply in link 1, i.e., g1(k1) = S1(k1)
ξ

=
C(kj−k1)

ξ(kj−kc) . Therefore,

the average network flow-rate is

q(k) ≈ πC
2kj−(kj(1−eγ2πT )+k∗1(1+eγ2πT ))

2ξ(kj−kc) = πC
2kj−(kj(1−eγ2πT )+2k+kj(e

γ2πT−1))

2ξ(kj−kc)

= πC
kj−k

ξ(kj−kc) . (A.5)
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Based on the average network flow-rates calculated above, the macroscopic fundamental

diagram for the signalized double-ring network with 0.5 < ξ < 1 can be easily derived and

thus omitted here. �

B Algorithm of finding stationary states

Inputs: k, T , ∆, ξ, and Φ(k1)

Initialization: vector of stationary states, i.e., SS=[]; minimum value of k1, i.e.,

k1,min = max{2k−kj, 0}; maximum value of k1, i.e., k1,max = min{2k, kj}; the threshold

of k1, i.e., ek; searching step, i,e., ∆k; maximum number of iterations, i.e., nmax

For k1 = k1,min : ∆k : k1,max

Set k0
1 = k1 and calculate Φ(k0

1)

If Φ(k0
1) == 0

k0
1 is a root, and add it to SS

Else

Set k1
1 = Pk0

1 and calculate Φ(k1
1)

For n=1 : nmax

If |k1
1 − k0

1| < ek or Φ(k1
1) == 0, add k1

1 to SS and break

ktmp1 = k1
1 − Φ(k1

1)[
k11−k01

Φ(k11)−Φ(k01)
], and calculate Φ(ktmp1 )

k0
1 = k1

1 and Φ(k0
1) = Φ(k1

1)

k1
1 = ktmp1 and Φ(k1

1) = Φ(ktmp1 )

End for

End if

End for
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C Proof of Lemma 5.1

We denote q(U−1 ) and q(U+
2 ) as the fluxes for the Riemann problems of Type I, q1(0−, t)

and q2(0+, t) as the fluxes for the Riemann problems of Type II, and q as the flux for the

Riemann problem of Type III. According to the traffic conservation, we have the following

equation

q = q1(0−, t) = q2(0+, t) = q(U−1 ) = q(U+
2 ) (C.6)

To determine the stationary and interior states arising at the signalized road link, we use

the admissible conditions in Section 4 in [48]. After solving the Riemann problems with the

entropy condition q = ηmin{D1(0−, t), S2(0+, t)} applied at the signalized junction, we can

have the following combinations of stationary and interior states:

(1) When D1 < S2 ≤ C2, we have U+
2 = U2(0+, t) = (D+

2 , C2) since the downstream link

is SUC, which leads to q = ηmin{D1(0−, t), C2}.

(a) If the upstream link is SOC, i.e., U−1 = U1(0−, t) = (C1, S
−
1 ), we can have q =

S−1 = D+
2 = ηmin{C1, C2}, and D1 > ηmin{C1, C2}.

(b) If the upstream link is UC, i.e., D1 ≤ S−1 = C1, we have U−1 = (D1, C1) and

U1(0−, t) = (D1(0−, t), S1(0−, t)) with S1(0−, t) ≥ D−1 = D1. Therefore, we have

q = D+
2 = D1 = ηmin{D1(0−, t), C2}, which leads to D1(0−, t) = D1/η and

S1(0−, t) = C1. Since D1(0−, t) ≤ C1, we have D1 ≤ ηmin{C1, C2}.

(2) When S2 < D1 ≤ C1, the upstream link is SOC. Thus we have U−1 = U1(0−, t) =

(C1, S
−
1 ), which leads to q = ηmin{C1, S2(0+, t)}.

(a) If the downstream link is SUC, i.e., U+
2 = U2(0+, t) = (D+

2 , C2), we have q =

D+
2 = S−1 = ηmin{C1, C2}. In this case, S2 > ηmin{C1, C2}.
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(b) If the downstream link is OC, U+
2 = (C2, S2) and U2(0+, t) = (D2(0+, t), S2(0+, t))

with D2(0+, t) ≥ S2. Thus we have q = S2 = S−1 = ηmin{C1, S2(0+, t)}, which

leads to S2(0+, t) = S2/η and D2(0+, t) = C2. Since S2(0+, t) ≤ C2, we can have

S2 ≤ ηmin{C1, C2}.

(3) When D1 = S2, we have U+
2 = U2(0+, t) = (D+

2 , C2) if the downstream link is SUC,

which leads to q = ηmin{D1(0−, t), C2} and S2 > D+
2 .

(a) If the upstream link is SOC, i.e., U−1 = U1(0−, t) = (C1, S
−
1 ), then q = S−1 =

D+
2 = ηmin{C1, C2}. In this case, we have D1 = S2 > ηmin{C1, C2}.

(b) If the upstream link is UC, i.e., D1 ≤ S−1 , we have U−1 = (D1, C1), which leads

to U1(0−, t) = (D1(0−, t), S1(0−, t)) with S1(0−, t) ≥ D−1 . Since q(U−1 ) = D1,

we have q = q(U−1 ) = D1, which leads to D+
2 = D1. But it is impossible since

S2 > D+
2 = D1, which contradicts D1 = S2.

If the downstream link is OC, U+
2 = (C2, S2), and U2(0+, t) = (D2(0+, t), S2(0+, t))

with D2(0+, t) ≥ S2. Then we have q = ηmin{D1(0−, t), S2(0+, t)}.

(c) If the upstream link is SOC, i.e., U−1 = U1(0−, t) = (C1, S
−
1 ), then q = S−1 = S2,

and D1 > S−1 . But it is impossible since we have D1 > S2, which contradicts

D1 = S2.

(d) If the upstream link is UC, i.e., D1 ≤ S−1 , we have U−1 = (D1, C1), which leads to

U1(0−, t) = (D1(0−, t), S1(0−, t)) with S1(0−, t) ≥ D−1 . Because q(U−1 ) = D1 and

q(U+
2 ) = S2, we have q = D1 = S2. If q = ηD1(0−, t), we have S1(0−, t) = C1 and

ηS2(0+, t) ≥ S2. If q = ηS2(0+, t), we have D2(0+, t) = C2 and ηD1(0−, t) ≥ D1.

Since D1(0−, t) ≤ C1 and S2(0+, t) ≤ C2, we have D1 = S2 ≤ ηmin{C1, C2}.

�
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