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On stable Khovanov homology of torus knots

E. Gorsky, A. Oblomkov, J. Rasmussen

Abstract
We conjecture that the stable Khovanov homology of torugsean be described as
the Koszul homology of an explicit non-regular sequenceuafdyatic polynomials. The
corresponding Poincaré series turns out to be relatecetBtigers-Ramanujan identity.

1 Introduction

In [23] Khovanov constructed a knot homology theory whictegarifies the Jones polynomial
using a combinatorial construction in terms of a knot priggc Following the early com-
putations of Bar-Natan and Shumakovitch [[3] 6, 37], it beeawident that the torus knots
T(n,m) had “interesting” Khovanov homology, in the sense thatrtheimology was much
larger than might have been guessed from looking at the gmoreling Jones polynomial, had
torsion of high ordergtc. Further advances in computation, most notably Bar-Natge&
metric Khovanov homologyi [5], have enabled us to calculat@wanov homology of torus
knots up throug'(7, n), wheren is relatively large[[6, 38]. These calculations have tended
confirm our first impression of overall complexity.

Nevertheless, there are indications that the Khovanov haggaf torus knots is not only
interesting, but may be important to our understanding obwamov homology as a whole.
The first result in this direction is the theorem of Sto#i@]f who proved that if we fix. and
allowm to vary, then (after a suitable renormalization), the gsdtip(7'(n, m)) tend to a well-
defined limit, which we denote biyh(7'(n, c0)). More recently, Rozansky [36] has shown that
the Khovanov complex of the infinite torus braid provides tegarified version of the Jones-
Wenzl projector, and thus should play an important role m ttheory of colored Khovanov
homology [15/ 18, 45]. In this frameworksh(7'(n, c0)) appears as the-colored Khovanov
homology of the unknot.

In this paper, we consider a conjectural descriptioRb{7'(n, o)) for all n:

Conjecture 1.1 The unreduced stable Khovanov homoldgy(7'(n, o)) is dual to the ho-
mology of the differential graded algebra generated by exemmblesz,, ..., z,_; and odd
variablesé, . . ., &,_1, equipped with the differential, defined by

k
d2(§k> = inﬁk,i and dQ(ZCk) =0.

=0
Equivalently, this is the Koszul complex determined by tleaiegular) sequencé,(&;.) for
k=0,...,n—1.
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Remark 1.2 The homology of the chain complex described in the conjechould be the
s[(2) Khovanov-Rozansky homology [26] Bfn, co). This, in turn, is dual to the ordinary
Khovanov homology (in the usual sense that they are homesdagidual chain complexes.)

Khovanov homology is bigraded; it is equipped with bptilynomial(¢) andhomological
(t) gradings. With respect to the usual normalizations fos¢hgradings, the generatarsand
&, are graded as follows:

deg(:ck) — q2k+2t2k, deg(ﬁk) — q2k+4t2k+l.
The differentiald, preserves the-grading and lowers thegrading by1.
Definition 1.3 We will denote the homology @f by Kh,(n, c0).

Conjecturé_1J1 arose in our work with Shende [17] on the imdietween the HOMFLY-
PT homology[[27] of torus knots and the representation thebthe rational Cherednik alge-
bra. More specifically, it is known [9, 34] that one can passifithe HOMFLY-PT homology
of a knotK to itssl(N) Khovanov-Rozansky homology [26] by means of a spectral esecgt
The main conjecture of [17] relates the HOMFLY-PT homolodyign, m) to the represen-
tation theory of the rational Cherednik algebra. On thetrlyggnd side of this equivalence,
it is possible to construct certain natural differentialsietr we believe should correspond to
the differentials needed to pass to té&V) homology. We arrived at the conjecture above by
computing these representation-theoretic differenf@lsv = 2 in the limiting casen — oc.

Remark 1.4 General considerations about the HOMFLY-PT homology amddifferentials
on it suggest thakh(7'(n, o0)) should be the homology @z, . . ., x,] ® A*[ o, . . ., &,] with
respect to a differentiaf;, of the form

! 2 :
d fz Qi LiTp—g

for somex;;,. The content of the calculation in [17] is that aill, should be equal ta.

The first goal of the paper is to summarize the computationdeace supporting Conjec-
ture[1.1. In light of the remark, it is important to check thia conjecture predicts properties
of the Khovanov homology which would not be predicteddyywith a generic choice of;.

In section[2 and the appendices, we give examples whersstthie case using both homology
with coefficients inZ/p and homology with coefficients iQ.

Our second goal is to investigate the underlying structdr&l,,,. This homology is
especially simple if we usé/2 coefficients:

Theorem 1.5 Kh,,(n, co; Z/2) has the following Poinca series:

~ =y o
22+4t21+1) 2 (1 _ q4l+4t4z)
Pulg,t;2,) = H — grit2q2i) (1 + ghitagditty’
i=0




With rational coefficients, the homology is more complichatn sectior 3.3, we construct
some explicit elements dfh,,(n, co; Q), as well as some relations which they satisfy. This
leads to the following

Conjecture 1.6 As an algebra ove®, Kh,,(n, c0) has a presentation with even generators

To, ..., ZTn_1 and(n — 1) odd generatorgu, . . ., ji,,_» (Whereu,; has bidegreg?+5¢+3) and
relations of the form
(2 =0, a()p(z) =0, #()u(z) —#(ilz) =0, piz)=0 (1)

wherez(z) = Z’;:’Ol ri2t p(z) = Z’Z:O? w;z*, and each equation above is to be interpreted
moduloz™.

Following ideas of Feigin and Stoyanovsky ([13], see &lgh 80]), we derive a conjectural
explicit formula for the Poincaré polynomial 8fh(7(n, o0)). Feigin and Stoyanovsky studied

the structure of the coinvariants for the integrable regméstion ofs((2) at level 1 using the

vertex operator equations of Lepowsky and Primc/([29]),chhurn out to be analogous to
our Koszul differential. The resulting stable homology ésdribed by the equationl (2) for the
unreduced theory, and by the equationl (19) for the reduasatyh They generalize the result
of Feigin and Stoyanovsky, which is itself a generalizattdthe Rogers-Ramanujan identity

([2D).

Conjecture 1.7 The Poincaé series oih,,(n, 0o; Q) can be expressed as

0 p
Pala,t) = = gy 2o D T = 87 @)
[T (1 =g p=0 k=1
n—1 2p—1
« H (1 + q2k+6t2k+1) H (1 + q2k+2t2k—1>x
k=3p+1 k=1

-2 1
[q5p2+pt5p2 —3p(1 + X;—q6p+4t6p—1)(1 + q6p+6t6p+1) <’I’L pp + ) +

-2
q5p2+7p+2t5p2+3p—1(1 - gOPrBEOPTLY (1 — g2y <n i p) B

n—2p—1
q5p2+9p+4t5p2+5p(1 + q2p+2t2p+1) (1+ X;r q4p+2t4p1>( pp ) ]

wherey,” = 0 whenp =0, x,7 = 1 forp > 0,

242 ay (I—2)---(1—2%
ot e (b);<1—z)---(l—zb)(l—z)---(l—zab)'

The following conjecture is due to Shumakovitch and Turner:



Conjecture 1.8 ([38]) Let K,,(¢, t) denote the Poincé@ polynomials of the Khovanov homol-
ogy of the(n, n + 1) torus knot. Then

Kn(g:t) = Kn1(q, 1) + Kna(q, )¢t + Koos(g, 1) g 11, 3)
We prove the following

Theorem 1.9 If K, (q,t) is given by the recursion relationl(3) with the appropriatetial
conditions andP, (¢, t) is the Hilbert series of the algebra described in Conjectlu@ then

lim K,(q,t) = lim P,(q,t).
n—o0 n—oo
Finally, we describe an intriguing connection to the phgbkiodels of coloured homology
proposed by Gukov, Walcher and Sto$icl|[18, 19]. In thesdetsothe homology of the unknot
is constructed as the Milnor algebra of the certain potefitig, , with an isolated singularity.

Theorem 1.10 The homology od; is isomorphic to the Hochschild homology of the category
of matrix factorizations of a certain potentill'. The potentiall” has a non-isolated singular-
ity (for n > 1) and coincided with a bihomogeneous partidf,,,, of bidegreg2n +4, 2n —2).

We are grateful to B. Feigin, S. Gukov, M. Hagencamp, M. Kimmoxa A. Kirillov Jr., S.
Loktev, L. Rozansky, M. Stosic, J. Sussan, O. Viro, andhéi@le for the useful discussions.
Special thanks to A. Shumakovitch for providing us with tteuable Khovanov homology
data and explaining the Conjectlrel1.8. Most of the comfmutsibf the Koszul homology were
done usingsingular, a computer algebra system!([8]). The research of E. G. wdmiba
supported by the grants RFBR-10-01-00678, NSh-8462.20d the Simons foundation.

2 Evidence for the Conjecture

In this section, we outline the evidence in support of Canjed1.1. We verify that the
conjecture holds foff'(n, c0) in the cases = 2,3, where the Khovanov homology is well-
understood. We then discuss the computational evidendartyer values of..

We define the stable Khovanov homology by

Kh(T'(n,00)) := lim ¢~ @ VMm=DHLKh(T(n, m)).
m—roo
It is a theorem of StoSi¢ [40] that this limit exists. Thalse homology is normalized so that
its Poincaré polynomial is a polynomial grand¢ (rather than just a Laurent polynomial), with
constant term 1.



2.1 T(2,00)

The Khovanov homology df’(2, oo) is well-known. In the language of[4], it can be viewed
as dual to the homology of the following chain complex:

t=0 t=1 t=2 t=3 t=4 t=25
This picture has the following meaning. The Khovanov horgglof the unknot is two-

dimensional; as an algebra it can be describedigs= Clz,]/(22). This algebra carries a
comultiplicationu defined by the equations:

MZH0—>H0®H0, u(l):1®x0+x0®1, /L(ZCQ)ISU(]®ZCQ.

Recall that the-degree ofr is equal to 2.

The complex is generated by an infinite number of copieHpin t-degree$), 2, 3.4, .. ..
Theg-grading in thek-th copy is shifted byk. The maps between tlx + 1-st copy and the
2k-th are given by the cobordism on the picture, which can begmed as a composition of
the comultiplication and multiplication:

Hy +— 0 «— Ho[2]{4} ¥ H[3]{6} = Ho[4[{8} & Ho[5]{10} -~ (4)
We remark thatn o i coincides with multiplication bx, and introduce two formal variables
x, of bidegreeg*t? and¢; of bidegreeq®t?, where¢; is odd. In other words, we identify
Hy[2k]{4k} with 2% - Hy and Hy[2k + 3]{4k + 6} with 2¢, - H,,.
Then the complex{4) can be rewritten as an algéhya, ] with the differentiald(¢;) =
2xox1, Which is equivalent to our Koszul model.

2.2 T(3,00)

With rational coefficients, the Khovanov homology B3, n) was computed by Turner [43].
The Poincaré polynomial of the stable homology is

2 t 2.[: 4t2 6t2 4t3
Pgm:(1+qQ+q4wt2)+qﬁzt3<q+ Sk Rl Mk )

1 — q6t4
Kh,,(3, 00; Q) is computed in sectidn 3.2. Its Poincaré polynomial islgasien to agree with
the one given above.

2.3 75 coefficients

In many cases, the Khovanov homology with coefficients is simpler that the homology with
rational coefficients. It turns out that the stable answerme especially simple if we work
overZs,.



Theorem 2.1 Kh,, (n, 00; Z/2) has the following Poincdr series:

H 1 +q21+4t22+1) LanlJ (1 _ q4i+4t4i)
2142420 4i+44+4i+1) "
a—gem) W apmme

Q7t ZQ

Proof. In characteristic 2 the differentidl, degenerates to the following form:

dy(&ax) = 2%, do(Eaps1) = 0.

Therefore for every < k < L”T‘lj the odd generata; kills z? in the homologyl

We used JavaKh [6] to verify th&th,,,(n, co; Z/2) agrees withKh(7'(n, m)) in the stable
range ¢-degree< 2m) for (n, m) = (3, 50), (4,49), (5, 29).

2.4 Q coefficients

If we use rational coefficients, the structurelQi,;, is more complicatedc(f. the conjectures
in SectioriB below.) The rational Khovanov homology of tdtosts has been extensively com-
puted by Shumakovitch [38]. By comparing with his resultg, ave verified Conjectufe 1.1
in the stable range up @, m) = (7, 20).

In testing Conjecture_1l.1, it is important to check that thedgctions it makes about Kho-
vanov homology can be distinguished from the ones we would ge replaced the differential
do(&) = > wxp—; With dy (&) = > aupzix—; for generic values ofy,. In addition to the
information on torsion discussed in this section, we caneseédence of this fact with rational
coefficients in the case = 7. As discussed in Remark 3111 below, for genericthe homol-
ogy with respect tal, has smaller dimension than the homology with respeeki@nd the
latter groups agree with the actual Khovanov homology.

More precisely, Remark 3.1 shows that for our choicergfthe homology in bidegree
¢'8t'3 is one-dimensional, while it vanishes for a generic choideeorem 6 in[[41] states that
Kh*(T(p,q)) ~ Kh*(T(p,q+1)) fori < p+g—2. Sincel3 < 7+9—2, the coefficient at'?
in Kh(T'(7, 00)) coincides with the same coefficient fidt,(7(7,9)). The Poincaré polynomial
for the Khovanov homology of the latter knot is presentednia Appendix C, and the term
q'8t'3 is present.

2.5 Z,torsion

The odd torsion in Khovanov homology was studied.in [1] an@] [3ee alsol[33]) for some
classes of knots, and|[5] shows how complicated the torshionbe on the example ¢f, 8)
knot. It was suggested that Khovanov homology can haveoiordiarbitrarily large order. The
following calculation provides support for this claim, aglivas some additional evidence in
favor of Conjecturé1]1.

Theorem 2.2 Letp > 3 be a prime number. Thekh,,(p, co) has nontrivialZ,-torsion at
bidegreeg?r+6¢%»,



Proof. Consider the element

p—1
m= Z(?ﬂ —p)Ti&pi = Z (20 — j)a:&;
i=1 i+j=p,1<i<p—1
Then
dy(m) = Z (20 —j—k)rxjoy = Z (2i — j — k)zyx 78 — 2p2,70 — P Z T T
i+j+k=p, i+j+k=p Jt+k=p

1<i<p—1

Since the first sum vanishes, we have

do(m) = —2px,x3 — pxo Z z;x, = 0 (modp).
J+k=p

Sincedeg m = ¢?P*5¢2P*1 the dimension of the kernel d@f : C(2p+6,2p+1) — C(2p+6, 2p)
jumps by 1 when we reduce it modylo Therefore its cokernel h&s,-torsion. i

We have verified the presence of this torsion in Khovanov Hogyofor p = 5, 7.

3 Algebraic structure

We now consider the rational homology of the chain complgeaping in Conjecture 1.1. We
will work with rational coefficients for the remainder of thaper.

3.1 Koszul model

Conjecturé_1]1 tells us to consider the polynomial ring iarevariables:, x4, . .., x,_; and
an equal number of odd variablgs &1, . . ., &,_1, bigraded as

deg(zy) = 2%, deg(&) = 2 HH2H,
The differentiald, is given by the equation

d2(§m) = Z LeTlm—k- (5)
k=0

One can check that this differential preservesgiggading and decreases thgrading by 1.

Remark 3.1 Consider the generating functions

n—1 n—1
w(z) =Y mat, €(2) =) &2
k=0 k=0

If we work over the ringZ[z]/(z"), we can express the differential as



At the bottom level of the Koszul complex, we get the quotiehthe polynomial ring
Clz;] by the ideall,, generated by the coefficients of the serig¢s)?. It was remarked by
Feigin and Stoyanovsky [13] that in the limit— oo, this ideal corresponds to the integrable
representation ofl(2) at level 1, and the equatiar(¢)? is an example of the Lepowsky-Primc
equations([29]. The bigraded Hilbert series@f, x1, . . .|/ I was computed in [13] by two
different methods, and the equality of the answers cormedpto the following generalization
of the Rogers-Ramanujan identity (cf! [2]):

o0 2p?42p(p—1)
qgPt
H,,(C . E = 6
a(Clzo, 71, . p:O (1 —¢q?t2)(1 — ¢*t?) ... (1 — ¢%t?p) ©)
1 o) n (1 _q2kt2k72) 52 5n?_3 D (5n44) 1502 +5
(—=1)" S Fngbnt=3n _ q(n+ )(5n+4) 45n°+ ).
Hk ( 2kt2k 2) nZ:o ]}_[1 (1 _ qthQIc)

A similar problem was independently studied by Brushek, Nemla and Schepers in [7], where
it appeared in the computation of the Hilbert-Poincargesenf the arc space of double point.

Most of the algebraic constructions below can be considaseal straightforward general-
ization of these results to the full Koszul homology. In parfar, we conjecture the identity
(@17) that degenerates {d (6)@at= 0.

3.2 Examples

Example 3.2 Let us computdh,,(2, c0). We have two even generatorg z; and two odd
generatorsty, ;. Sincedy (&) = 23, da2(&1) = 22971, We have a non-trivial homology genera-
tor g = 2x1&0 — 29&1. The homology is spanned by the elements

p(x1) + azo + r(x1) o,

wherep andr are polynomials inc; anda € Q. (Remark thatqio = d2(£0€1)). The Poincae
series has the form
1+ ¢t
q + q2.
1 — q4t2

P2,oo<Q7 t) =

Example 3.3 To computekh,,(3, 00), we add the variables, and &, with the differential
dg(fg) = 2370.772 + .T%

Lemma 3.4 Let
to = 221&0 — o1, 1 = 220&2 — 21&1 — 4228).

Then
da(po) = da(p1) = 0,  wopo = d2(&0&1),  Topr — Tipo = 2d2(062), (7)

2xop0 + 21 = da(6:162),  papre = —2da (£ &)

One can check that the homology is generated:pynd i, and [7) is the complete set of
relations between them (this is a special case of ConjesfRife? and3.15 below).

8



Lemma 3.5 The homology od, is spanned by the elements of the form

P1(x2) + op2(22) + T1pa(22) + arto + pa(qr (22) + Toga(x2) + 21¢2(22)).

Proof. Modulo the image ofl,, we can eliminate all monomials containing

2 2
Ty, ToT1, L1, Tolo, T1H0, L2, 4142

After this modification the remaining monomials will be laréy independent in the homology.
[

Corollary 3.6
(1+¢")(1+¢* +¢'t?)
P3700(q7 t) = 1 — q6t4 + q8t3'

3.3 Generators and relations

Let us describe the generators in the homology generaljzjrand; constructed in the pre-
vious section.

Lemma 3.7 Consider the set of indeterminates,, wherea + b = r is fixed, ande, b > 0.
The system of linear equations

Eab+c + €b,a+c + Ecat+b = 0 (8)
has a nontrivial solution.

Remark that the equations in this system are labelled blesipf integers while the vari-
ables are labelled by pairs. Therefore the number of equaisoasymptotically quadratic in
while the number of variables is asymptotically linear, &melsystem is over-determined.

Proof. Lete,;, = 2a — b. Then

Eapre+ Ebate + Ecarp = (2a—b—c)+ (2b—a—c)+ (2c—a—b) =0.

Example 3.8 Consider the case = 6. The system has 7 equations in 7 variables:
2606 +€60=0, eopt+e1stes1 =0,

€0,6 + €24 +€12=0, €96+ 2e33=0,
2615 +¢e42=0, e15+ega+ez3=0, e24=0.

Surprisingly, it is has rank 6 and its solution is

(50,67 €1,5,€2,4,€33,€4,2,E5 1, 56,0) = (—67 -3,0,3,6,9, 12)-

9



We are ready to present some non-trivial classes in staini®logy.

Lemma 3.9 Let
s+1

Hs = Z 5k,s+1fk:xk£s+lfk7
k=0
where the coefficients, , are defined by the equation (8). Théius) =0

Remark 3.10 Since the coefficients df are quadratic in thes-variables, the elemenjs, do
not belong to the image af.

Proof. We compute

s+2 s+2
d E €k,s4+3— kll?kdz fs+3 k E €k,54+3—kLk E Tjls43—k—j
k=1

= E (€ijak + Ejivk + €k,z'+j) = 0.
it jrh=s+3

Remark 3.11 Example€_3.B shows that for a generic choice of the coeffiiefi, the cor-
responding? x 7 matrix would be non-degenerate, and iehomology would havemaller
dimension. In particular, for a generic choice of the coeéfiitsd, would have no homology
in bidegreeq'®t!3. Indeed, the only monomials in this bidegree agg, with a + b = 6. The
differential maps the space they span to the space spannetwbgmials of the form,z,x.
with a + b + ¢ = 6 according to the matrix from Example B.8.

Conjecture 3.12 The homology of; is generated as an algebra hy andz;.

Remark 3.13 In what follows we will use the following description of trengratorsu,. Con-
sider the generating functiom(z) = >, z°,. Then

n(z) = 2i(2)€(2) — 2(2)é(2). ©)
Let us describe the generalization of the relationd (3.4).

Lemma 3.14 The following relations hold in the homology ®f

2(2)* =0, w(z)u(z) =0, @(2)u(z) —@(2)ia(2) =0, p(z)ju(z) =0.  (10)

As before, these relations are to be interpreted as holdioduto 2.

10



Proof. ) ]
rp = 2wié — %€ = do(£€)
Fp— i = B(206 — 2€) — @28 + 20 — i€ — 2) =
i — % + itk =~ (E6).
piv = (226 — 1) (2E€ + i — ) =

23766 — 2wiEE + 2wFEE + 7L = do(EEE).
[ ]

Conjecture 3.15 The ideal of relations in the Koszul homology is generatethbycoefficients
of the relations[(10).

Using Singular [8], we have verified that both conjectures hold for< 7. Some further
evidence for these conjectures is provided by Thedren 4.1tk next section.

Remark 3.16 The relations[(10) are not independent, and there are lotsyaf/gies between
them. For example, first equation presed;ﬁgf) in terms ofy’s, so its derivative presents
dy(€€) in terms of’s. On the other hand, the second equation presé(ts) in terms ofy.’s.
This suggests a syzygy

d5(6€)da (&) — da(E€)da(€) + da(E€)da(€) = d3(E€€) = 0.

Lemma 3.17 Assuming Conjectufe 31 Kh,,(n, co0) contains at most2 | “levels”, i. e.
the maximak—degree of a homology generator is at mp%}lj :

Proof. Consider the equatiop(z)i(z) = 0. The coefficients of odd powers aflook
like pu;p141 + ... = 0, while the coefficients of even powers ofook like p;p o + ... = 0.
(Recall thatu; is odd, so there are no termsu;). Therefore one can eliminate all monomials
containingu; ;1 andu;;42, and the monomial of the maximgldegree isuopus - - K| ns2]-

Its degree ig “32 | + 1= || . =

Finally, we explain some corollaries of the recent work afie[12] which provide further
evidence for Conjecturés 3]12 and 3.15. Feigin studiesepti@s of the ideal/ inside R =
Cl&o, &1, - - -, 20, 21, - - - | generated by the coefficients of the power series:

An easy computation shows thdtis preserved byl,; the main object of study of [12] is
the differential graded algebra,) = R/.J. Feigin shows thaf is a representation of the
Virasoro algebra generated lby, i € Z andc:

[Liu C] =0, [Lma Ln] = (m - n)Lern + Omin

11



The central elementacts by the constant4/5 on R(;). The algebra?(;) has a natural grading
by the odd variables:

deg(€) = 1, deg(r;) = 0.

The graded componenis[;j] are subrepresentations and Feigin identifies them with some
particular highest weight modules 6f

Let us briefly recall the basics of the highest weight theonytlie Virasoro algebra. The
algebral naturally splits into three parts: the positive part generated by.;, i > 0; the
negative parf.~ generated by.;, i < 0; and the span ok, c. From the relations fof. we see
that L, is a grading operator; it is customary to call the eigenspaté, levels. A vector in an
L-module is called singular if it is anihilated by". The Verma modulé/, is anL_-module
freely generated by the singular vector on the level

Theorem 3.18[12] We have
1. The differentiatl, commutes with the action of the Virasoro algebra.

2. The graded componefid)[;j] is isomorphic to the quotient of the Verma modufg,,
\; = (51% — 31)/2 by a singular vector at leveli + 1.

3. Foranyi > 0, H'(R1),ds) = 0.
4. H°(Ry,d,) is the irreducible quotient af/,.

Corollary 3.19 The lower level okKh,;, (0o, c0) is the irreducible representation of the Vira-
soro algebra.

Apart from they;, all other generators of the idealhave odd degree at leasthence

Corollary 3.20 The first homology af, is generated by:; andz;.

Remark 3.21 The theorem above is a particular case of more general rédsuih [12] that
might be relevant for studies ef(N') homology. Also it is very plausable that one can extend
the result of the last corollary to higher homological deggdy some bootstrapping procedure.
We hope to return to this question in our future work.

3.4 Lee’s spectral sequence

It was conjectured ir |9] that Lee’s spectral sequence 38§ is induced by a differential;
that commutes witll,. We propose a formula for this differential:

Remark that ifd; satisfies the Leibnitz rule, it is uniquely defined by the gngdestrictions.
Let us consider the spectral sequence induced, mn Kh,,,.

12



Example 3.22 ConsiderKh(7'(2,c0)). As was shown in Examgle B.2, the homology is gener-
ated byzx,, z; and iy modulo the relations

.’17(2) = 25(70371 = oo = 0.

Remark that
1
di(po) = di(221&0 — 10&1) = 22100 — TeT1 = ToTy = §d2(§1)-

This means that the second differential in the spectralesege (Bar-Natan’'s knight move) acts

as
1

1
d(no) = dyody" o di(po) = (551) =531

Thereforeu, kills &; by the knight move, and the spectral sequence converges &j fhage to
the two-dimensional space
E3 = Eoo = <1,.§C0>.

Remark 3.23 One can find an apparent contradiction in this result — the blmgy ofd; is
clearly one-dimensional, while the spectral sequence @gas to a two-dimensional space.
This problem is caused by the fact that the homology is iefiditnensional. One can check
that for a finite(2, m) knot (i.e. for a suitable finite-dimensional quotient osthbmplex) the
homology ofd; will be two-dimensional — one generator will be 1, while tregyde of the
second one will grow as: increases.

Motivated by this example, we formulate the following alggb counterpart of the conjec-
tures from[[5] and([35]. The following theorem holds modulorzcture$ 3.12 arid 3115.

Theorem 3.24 Consider the spectral sequence induceddbyacting onKh,,(n,c0). Then
E, = FEy = H*(ds). and E3 = E,, = (1, z). In particular, the spectral sequence converges at
the 5 page.

Proof. Assuming the conjectures, the stable homology is genetated andx;, so the
multiplicativity of the spectral sequence allows us to foom these generators. Remark that

s+1 s+1
s+1

s+1
di(ps) = E Chotl-hThTstl—h = —5— ) ThTstl-k = —
k=0 k=0

dy(Es41)- (11)

Here we used the equation
5k,s+1fk+€s+1fk,k:2k_ (8—|—1—]€)+2(8+1—]€) —k=s+1.
We can compute the second differential in the spectral semé.) using the equation (11):

s+1 ) s+1

5(:“3) = dl o d;l @) d1<,us) = dl <T§S+1 — ngerl_

Therefore each even generatoyss killed by ;. B

13



Remark 3.25 One can reformulate this proof in terms of the generatingeseWe have

dy (11(2)) = di (—2(2)€(2) + 2(2)&(2)) = —2(2)E(2) + 22(2)E(2) = 2(2)d(2) = %dz(é (2)).
Therefore

() = o di o () = s (569 = 3

One can prove a similar theorem for the reduced homologys@eeni b below). In the reduced
case, thev,, term will be one-dimensional and spanned by 1.

4  Poincaré polynomials

4.1 Bosonic formula

In this section we give a conjectural formula for the Poircgaolynomial ofKh,,(n, co) for
all n. This formula comes from computer experiments, and it cacdnsidered as a potential
generalization of the “bosonic” side of the Rogers-Ramamigentity in [13] (see also [14, 22,
30]). It is worth to note th/gt this “bosonic formula” was oipiead in [13] using localization on
the affine flag variety fos((2). We plan to compare this approach with the one proposed below
in the future.

Recall that the lower level dkh,;,(n, co) can be described by the quotient of the algebra
Clzo, - - ., z,_1] by the ideal generated by the firstoefficients ofr(z)?.

Conjecture 4.1 Letz = ¢*t*. The unreduced Hilbert series for the lower levekdf,, (n, co)
has the form

(&9 p
Ln(q,t) = )P g 12h2) 12
(0.0) = o 1_q2kt2k2 ; kH (12)

<q5p2+pt5p23p <” —2p+ 1) _ q(p+1)(5p+4)t5p2+5p (” —2p— 1) ) '
p z p z

Here we use the standardbinomial notation:

1 — 2k m ml|,
=125 (), w20

Remark 4.2 In the limitn — oo the z-binomial coefficients degenerate to simple products:

n—2p+1 n—2p—1 n—00 1 f[
p . P . T(1—2)(1—22)...(1—2zp) o 1_q2kt2k

14



therefore the equation (12) has a limit

i ﬁ 2l<:t2k: 2)
Loo(q,t) = )P
Hk 1(]_ _ qthQk 2 p:() Pl 2kt2k

« (q5p2+pt5p273p _ q(p+1)(5p+4)t5p2+5p> .

This is the right hand side of the generalized Rogers-Rajaandentity [6), and therefore in
this limit Conjecturé_ 4.1 follows from the results bf [13].

One can try to extend the equatidnl(12) to higher levels oKitezul homology.

Conjecture 4.3 The unreduced Hilbert series fdth,,,(n, co) has the form

00 P
Pu(g,t) = )P ) % (13)
Hk 1(1_q2kt2k 2 ; kl;[l
n—1 2p—1
> H (1 +q2k+6t2k+1) H(l _'_q2k+2t2k71)><
k=3p+1 k=1
[q5p2+pt5p2—3p(1 + X;q6p+4t6p_1)(1 + q6p+6t6p+1) (n - ip + 1) T

q5p2+7p+2t5p2+3p—1(1 + q6p+6t6p+1)(1 . q2p+2t2p) <n —pr) N

—2p—1
q5p2+9p+4t5p2+5p(1 +q2p+2t2p+1)(1 +X;rq4p+2t4pl><n pp ) .

wherex,f = 0whenp = 0, x;/ = 1for p > 0, and the second product inside the surh vghen
3p+1>n—1.

4.2 Fermionic formula for 7T'(co, 00)

Let KC,.(¢, t) denote the Poincaré polynomial &h(7’(n,n 4 1)). Based on experimental data,
Shumakovich and Turner conjectured that satisfies the following recurrence relation.

Conjecture 4.4 ([38])

Kn(q,t) = Kn-1(q, 1) + Kn2(q, )¢*"t*" > + K_s(gq, )1 (14)

We construct a combinatorial model for this recursion refatConsider length sequences
of 0’s and 1’s with no blocks of the form 1111 anywhere and razks of the form 111 except
possibly at the beginning. Such sequences are split (@uts& beginning) into 1's and 11's
separated by blocks of 0’s.

15



Example 4.5 For n = 3 all 8 sequences are admissible. For= 4 we have 14 sequences:
1111 and0111 are forbidden.

We weight such sequences by a product of terms correspotalisigcks ofl’s appearing
in the sequence. The weights are as follows:

1) 111 in the beginning;'?t?;

2) 1 at positiom (first digit has position 0)g*"+2¢%";

3) 11 starting at position: ¢?*8¢27+3,

Let K,, be the weighted state sum for lengtlsequences; that is, the sum of the weights
for all such sequences.

Lemma 4.6 K, satisfies the recursion relatigi4) and agrees withC,, forn = 1,2, 3.

Proof. Let us check the recursion relation. The set of lengtfequences ending with O
contributeK,,_; to K,,. The sequences ending with 01 contribiife »(q,t)¢**t*>" 2, and the
sequences ending with 011 contribufe_s(q, t)¢*>**4?"~1. The values ofk,, forn = 1,2,3
are easily checkedl

Let us write the formula for the limik((q, t) = lim,, . K, (q,t).
Theorem 4.7

1 + q6t3)(1 + q8t5) L (1 + q2p+4t2p+1)
(I =¢*)(1 —g*t*) ... (1 — ¢*t?P)

Klat) = 30 D1+ g
p=0

(15)

Proof. Let U, (g, t) be the state sum giving by summing over all sequencespabitbcks of
units, none of which are of length A sequence witlp + 1 blocks can be one of the following:
1) Starting with 10 at positiok. This contributeg?*+2t2% . (¢*#2)P*+2U to U, ;. If we

sum over alk, we get
q4p+2t4p

1 — 2(p+1)¢2(p+1) Up-
2) Starting with 110 at positioh. This contributeg?+5t2+3 . (%243 to U,,,. If

we sum over alk, we get

q6p+8t6p+3

1 — @2e+1)¢2(p+1)

U,.

Thus 4p+2t4p 1 2p+6t2p+3
q (1+gq )

1 — @2+ g2(p+1) P

Up+1 =
from which we deduce that

2p2t2p(p71) (1 + q6t3)(1 + q8t5) cot (]' + q2p+4t2p+1)
(1= ¢q??)(1 —g*t) ... (1 — g?t?r)

UP(Qa t) = q

LetV,(q,t) denote the state sum where we allow sequences beginnind WithThen
Vo = Uy + ¢*0(*) 70, = (L + 7).

16



We verify directly that the Euler characteristic 8f ¢, t) agrees with the stable Jones poly-
nomial of T'(co, 00):

Lemma 4.8

Proof. Remark that

(1= )1 —¢%) ... A—g?™) & (1 =g = ¢**)
(1-¢®)(1—q*)...(1—¢%) (I-¢)(1—4q")

Vo(g, =1) = (1 = ¢ )V, (g, -1).

Therefore we have to prove that

UP(Qa _1) =

D@L — )1 - (1 — V) =1 " (16)

p=0

This follows from the direct expansion of the left hand sidkterms will cancel out except
and—q¢*.

Comparing the “fermionic” formuld (15)) with the “bosonitdrmula (13) in the limitn —
oo suggests the following identity. Thegrading from the HOMFLY homology can be traced
on both sides.

Conjecture 4.9 (“Khovanov-Rogers-Ramanujan identity”) Let

= p
]:1

p=0

(1+ a?q¥2i 1)
(1 — g%t%)

and

e}

2kt2k 2)

1 p
B(aa q, t) = Hzcil(l _ q2kt2k 2 Z p H thzk

= k=1

2p—1

% H (1+a2q2k+2t2k+1) H(1+a2q2k—2t2k—1>x
k=3p+1 k=1

[q5p2+pt5p273p(1 _'_X+a2q6pt6p71)(1 +a q6p+2t6p+1)_'_
a q5p +7p— 2t5p +3p— 1(1 +a q6p+2t6p+1)(1 . q2p+2t2p>_
q5p +9p+4t5p +5p(1 +a q2p—2t2p+1)(1 4 X+a2q4p_2t4p_1)]
» .
Then
A(a,q,t) = B(a, q,1). (17)

17



Using a computer, we have checked that this identity holdsitgugh terms of ordey'.
The following theorem provides some evidence in supportmfj€cture$ 3.12 arid 3J15.

Theorem 4.10 The Hilbert series of the algebra generated/py(n > 0) andx; (i > 0) and
satisfying the relations in equatidQ) is K (q, t).

Proof. The elementg,, have grading

deg(,un> — q2n+8t2n+3.

Let us return to our combinatorial model:
1) 1 at positiom corresponds ta,,.
2) 11 starting at position corresponds ta,,.
3) 111 in the beginning correspondsatg; .
We have to check that we can eliminate the following produstsg the relations:

TiTip1,  Tifipr (0> 0),  filigo,  Miliro,
x?, Litbis  Liv1fi,  Hifbiy1-
We can eliminater? and x;z;,, using the equation(z)? = 0; w1 and u;p; o Using the
equationu(t)i(z) = 0. Finally, we can eliminater; 1611, T i, Tit1 4, Tivopt; USING tWO
remaining equations
w(2)pu(z) = #(2)u(z) — 2(2)i(z) = 0.
|

5 Reduced homology

In this section we briefly review the structure of the redustble homology. The computa-
tions in [17] suggest that the construction and the diffeatshould be similar to the unreduced
case, except that, and&, are omitted. To be specific, consider the polynomial ringvere
variableszy, ..., z,_; and equal number of odd variablgs. . ., &,_; bigraded as

deg(zy) = q2k+2t2k’ deg(&) = q2i+4t2”1,

The differentiald, is given by the equation

-1

d2(§m) = D ThTmk- (18)

1

3

T

Conjecture 5.1 The stable reduced Khovanov homology ¢f., oo) is isomorphic to the ho-
mology ofClz; ..., z,_1] ® A*[&, ..., &,—1] with respect tals,.



Example 5.2 (cf. [16]) Let us comput&h’s?(4, oo). We have

alg

da(&1) =0, do(&) =27,  do(&3) = 2210

As in Examplé_3]2, we can introduce a homology generatore 2x,& — x1&3 and check
that the homology is spanned by the expressions of the fora) + ax1 + Tigg(z2) up to
multiplication by polynomials ig; andxs. Therefore the Poincé&rseries has the form
_ L+ (4 1+
Pioo(q,t) = t
100(4, ) 1 — ¢8t6 T 1 — ¢b¢th
Remark that the reduced and unreduced differentials lcokasi up to a shift of grading.

Modulo multiplication by¢;, andz,_1, we can replace; by &_» andx; by z;_; to get the
unreduced stable homology of tfe — 2, co) knot. We get the following result.

Lemma 5.3 Kh5%(n, 0o) o~ Khg,(n — 2,00) ® Clz,_1,&1).

alg

Note that this isomorphism does not respectthad: gradings. However, it is not difficult
to reconstruct the grading shifts for this correspondendeoitain an analogue of equation](13)
for the reduced homology.

Conjecture 5.4 The Poincaé series oKhij(n, o0) has the form

p

?n(q’ t) _ n_l(l + q6t3) Z(_1>p H(l _ q2k+2t2k> % (19)

nH(1 — g2h2ek) — P

n—1 2p—1

% H (1 _'_q2k+12t2k+7) H(l +q2k+6t2k+3)x
k=3p+1 k=1

[q5p2+5pt5p2+p(1 + q6p+10t6p+5)(1 + q6p+12t6p+7) (” - 217 + 1) n

n—2
q5p2+11p+6t5p2+7p+3(1 +q6p+12t6p+7)(1 B q2p+4t2p+2)< , p) .

n—2p—1
q5p2+13p+8t5p2+9p+4(1 + q2p+4t2p+3>(1 + q4p+6t4p+3)< pp ) !

where the second product under the inside suimigen3p + 1 > n — 1.
Remark 5.5 It was conjectured in [9] that

Pooo(q,t) = 1+ ") 1+ ' + ¢t + ..,
B 1 +q4t2 +q6t3 +q10t5

F [ee] 7t - 9
3, (q ) 1— q6t4
= (14 ¢°%) a2, 1+ )
Pi(gt)=— 2 2142+ 1217

One can check that these answers coincide with the abovérgotign. (See Appendix B for a
comparison).
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6 Matrix factorizations

In different physical models of knot homology (e.g. [188]Lthe colored homology of the
unknot is described in terms of matrix factorizations. &eihg Rozansky’s observation that
the infinite torus braid is a categorified Jones-Wenzl ptojef36], we focus on the unknot
coloured by thexith symmetric power of the fundamental representatiosi(@¥).

Definition 6.1 ([11]) A matrix factorisation of a functio¥ over a ring R is a pair (M, d),
whereM = M, + M, is aZ,-graded R-module of finite rank equipped with dtlinear map
d of odd degree satisfying the equatidh= W - id,,.

We will need the following basic facts about matrix factatinns:

Theorem 6.2 (a) ([20]) The Hochschild cohomology of the algebra of fuoies onC” is equal
to the algebra of polyvector fields d@zi'.

(b) ([20]) Consider a functioriV’ : C* — C. Then Hochschild cohomolodyH(MF (1))
of the category of matrix factorizations @f is equal to the Koszul homology of the complex
obtained from polyvector fields by the contraction wiily.

(c) (e.g. [10]) If W has an isolated singularity, theHH(MF(117)) is isomorphic to the
Milnor algebra of W at this singularity:

HH(MF(W)) = Cla, ..., 2]/ (W/ a—W) |

oxy’ 7 Oz,

Remark that we can dualize the Koszul complex (b) and obiterlifferential

ow
Dy (dx;) =
acting as a derivation on the algel®téry, . . ., x,,dzy, .. ., dx,] of differential forms onC™".

Now part (c) follows from the well known fact th&t” has an isolated singularity if and only if
its partial derivatives form a regular sequence.

The following potentials (with isolated singularities) egroposed for the totally symmet-
ric representations by Gukov and Walcher:

Conjecture 6.3 ([18]) The generating function for thl(N), S*) potentials has the form:

o0

k k
Z ZNJFk(—l)NWS[(N),Sk(xl, cey ) = <1 + Z zixi> In (1 + Z zzxz>
i=1 i=1

N=0

The(sl(N), S*) colored homology of the unknot coincides with the Milnoresiig of the cor-
responding potential.

We slightly change notations and write

Wohys(Zo, - -+, @n—1) = Wa2),sn (%o, . . ., 2n—1) = Coefppa [(1 + 22(2)) In(1 + z2(2))],
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wherez(z) = S0 2.

Let us assume that the are bigraded as abovdeg(z;) = ¢**2t*'. Then the differential
Dy will preserve both gradings iffi” is bihomogeneous. LéV ,(zy, ..., z,_1) be the piece
of bidegreg2n + 4,2n — 2) in Wps.

Lemma 6.4 The potential/,, can be written as follows:

1
Wolzo, .., Tp) = 5 Coef,_1[z(2)?].

Proof. Remark that the difference betwegnandt¢-gradings forz; is equal to 2. Therefore
the piece of bidegre@n + 4, 2n — 2) should be cubic in;;. Now

1

1
(14 zz(2)) In(1 + zz(2)) = zz(z) + §z2:c(z)2 - éz?’x(z)?’ + ...,
so the cubic part equals tegz*z(z)*. B
Example 6.5 We have
_ 1 _
WQ = —61’0, W1 —SCO.Tl

Remark thal?/, has a non-isolated singularity.

Theorem 6.6 The Hochschild homology of the category of matrix factdraes of the poten-
tial W, is isomorphic to the homology d§.

Proof. By Theoren{ 6.2, it is sufficient to study the Koszul complegaasated with the
partial derivatives ofV/,,. We have

O 10

W, =——
ox; 6 Ox;

Coefy1[r(2)°] = —5 Coef,. {:c(z)Q 8133(2)] _

—% Coef,_; [z'2(2)?] = —% Coef,_1_i[z(2)?].

Therefore
oW, 1 1<
Dy (dxp_1;) = or__. 2 Coef;[z(2)%] = —5 ]Z%xjxj_i.
It suffices to identify
§i = —2dzp1-.

|
Appendix
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A Unreduced Poincalé series

Here we collect the answers for the Poincaré serigslof,(n, co) for n < 7. These series
were computed usingingular [8]. The resulting series coincide with Shumakovitch’s eom
putations[[38] up to higly-degree. For example, for, 20) torus knot the first difference is in
g-degree 42.

For the reader’s convenience, we multiply both parts of 8qogI3) by[ [}, (1 —¢*t*2).

(1= @)1= ¢' ) Palq.t) = (14 ¢*) — ¢* (1 + ¢*t%) — ¢°(1 — ) (1 + ¢*t) =

(1-¢*) (1 + ¢* — ¢°F + ¢*1%);

3
H<1 . q2it2i72)P3(q’t> _ (1 + q8t3)(1 + q10t5) - q4<1 + q8t3)<1 + q10t5)—

PP =) A+ ¢" )1+ @)1+ ¢"°) — ¢t (1= ¢*) (1 — ¢**) (1 +¢'t) =
(1 o q2)<1 _ q4t2)(1 _'_q2 +q4t2 4 q8t3 _'_q10t5 T q12t5);

[T =) Pi(q.t) = 1+¢°) (1+q"°) (1+¢*tT) —¢* (1+¢°°) (1 +¢'°1°) (1 +¢"*tT) -

i=1
1 =)+ g1+ ¢P) (1 + ¢ (1 + P8 + ¢'th) -
1= 1 ="t A +¢*) 1+ 1+ A+t (1 =) (1 +¢*) (1+ 53 (1 +¢*?);

5 4 4
H(l . q2it2i—2)P5(q’t) _ H(l + q22+6t22+1 q4 H 1 + q2i+6t2i+1)_

=1 =1 =1
4
q6t2<1 _ q2)(1 +q4t)(1 +q2t2 + q4t4 + q6t6)H(1 +q2z‘+6t2z’+1)_
=2
g1 =)A= g1+ ¢ )1+ ¢ (1 + ¢M) (1 + ¢ + ¢t +
¢t 01— )1+ ") (1 + ) (1 + ) (1 + ¢"'°) (1 + ¢'°)+
(1= @)1 = ¢") (1 + ¢ (1 + )1+ ¢°1);

6 5

H(l - q2it2i—2)P6(q’t) _ H(l + q22+6t22+1 q4

i=1 =1

1 + q22+6t21+1 )

:U‘

1

.
I

ot

=
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(=)A= g )T+ ¢ )1+ ¢+ ¢M) 1+ ¢ (1 + P+ ¢+ )+
"1 = )1+ ') (1 + )1 + P + ) (1 + ¢) (1 + ¢t (1 + ¢*t%)+
(1= @)1 = ¢" )1+ ¢ )1+ )1+ @) (1 + ¢ ) (1 + ¢ + ¢t +

(1= )1 — ¢"t*)(1 — ¢t (1 + ¢*') (1 + ¢*t*) (1 + ¢°t%);

7 6 6
H(l _ q2it2i72)P7(q’t) _ H(l + q2i+6t2i+1) _ q4 H(l + q2i+6t2i+1)_

i=1 =1 i=1

6
q6t2(1 _ q2)(1 + q4t)(1 + q2t2 + q4t4 + q6t6 + q8t8 + q10t10) H(l + q2i+6t2i+1)_
=2

q14t7(1 _ q2)(1 _ q4t2)(1 +q4t)(1 +q2t2 + q4t4 +q6t6 + q8t8) ﬁ(l + q2i+6t2i+1)+
=3
q18t10(1—q2(1+q4t)(1+q6t3)(1+q4t3)(1+q2t2+q4t4+q6t6)(1+q14t9)(1+q16t11)(1+q18t13)+
(1= @)1 = ¢" )1+ ") (1 + ) (1 + ¢*1°)
X(l +q16t11>(1 —|—q18t13)(1 +q2t2 4 2q4t4 4 q6t6 +q8t8)+
(1= @)1= g1 = ¢t (L + ") (1 + ) 1+ ) (1 + ¢"tP) (1 + ¢°1* + ¢'t*) -
g1 = )1 = " )1+ ") (1 + ) (1 + ¢*) (L + ¢ ) (1 + ¢°);

B Reduced Poincae series

Here we collect the answers for the conjectural Poincaresef stable reduced Khovanov
homology forn < 7. The resulting series coincide with the data from [38] upithly-degree.
For example, for th€5, 49) torus knot the first difference is ipdegree 100, fof6, 25) the first
difference is ing-degree 52, and fq{7, 15) the first difference is ig-degree 32.

Ps(q,t) = —; 1+q6t§ —[1 — ¢*"];
Hi:l(l _ q21+2t2z)
- 1+q6t3 14,9 844 14,9 10,6 4,2 845
Py(q,t) = = a1+ 0) =t (1L + 1) —q (1= ¢ ) (L +¢t7)];
Hz‘:1(1_q t)
Y 1+q6t3 14,9 16411 844 14,9 16411
Ps(q,t) = = [T+ ¢ ) 1 +q°t") =" t" (1 + ¢ )1+ ¢t )—

Hi:l(l _ q2i+2t2i)
A1 = g R)(1+ PN+ PR)(1+ ¢ — P g R)(1 = ) (1 + ¢

Polq.t) = —
6(¢:1) Hle(l—qz“rzt?@)

[(1 —|—q14t9)(1+q16t11)(1 —|—q18t13)—
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q8t4(1 +q14t9)(1 +q16t11)(1 +q18t13)—
qlotﬁ(l o q4t2)(1 + q8t5)(1 —|—q16t11)(1 + q18t13)(1 + q2t2 —|—q4t4>—
(1= M) = ) (14 )1+ ) (14 )+
P = g') (1L )1+ ) (1 + ¢°F))

4 4
= 1+ ¢% 2i4+12,2i+7 8,4 2i4+12,2i+7
Prla1) = mo—— o [ ]+ a7 27) — gt [ J (0 1227 -

Hz:l( q ) =1 i=1

4
q10t6(1 _ q4t2)(1 +q8t5)(1 + q2t2 + q4t4 +qfitfi) H(l + q2i+12t2i+7)_
=2

q22t15(1 _ q4t2)(1 _ q6t4)(1 + q8t5)(1 +(]187513)(1 + q20t15)(1 + q2t2 +q4t4)+
(1 — ") (14 ) (1 + ¢t (1 + #8) (1 + ¢*t"°) (1 + ¢°°)+
21— ') (1= ¢t (1 + ) (1 + ¢ (1 + ¢*1%)].

C (7,9) torus knot

We present the exact normalized Poincaré polynomial feutireduced)-Khovanov homol-
ogy of the(7,9) torus knot, obtained with JavaKh {[6]).

T P(T(7,9)) = 14+ 2+ ¢85 + ¢4 + B4+ "% + 265+ B0 + 010 + ¢ 27 + g7+
GO + 21265 4 g0+ 241040 + 12410 1 214410 1 1041 1 314 4 M2 4 3¢16412 4 18121
G212 4 I3 4213 B3 4 3¢S 1 0 - 21 4 522415 4 92415 4 9204104
3¢22416 4 220416 1 gB416 1 424417 4 4gT 4 22418 4 324418 1 9gBH18 4 P01 4 2g410 4
5623419 1+ P4 1 3¢%120 4 P20 1 23220 4 B2 4 502 1 9?2 4 P02 4 232
522 4 PB4 PO 4 37U 4 3¢5 4 23U 1 AP 1 P 4 6426 4 943826 ¢
G020 37T 2T L 122 B8P 0B L 912420 4 12430 4 (16430 4 16431

The total dimension of the homology is equal to 134. One caee the multiplicative
generators of the following (bi)degrees:

deg(xo) = ¢%, deg(x1) = ¢'t?, deg(xz) = ¢°t*, deg(xs) = ¢*1°
deg(ws) = ¢'°1%, deg(xs) = ¢'2°, deg(xs) = "2,
deg(po) = ¢°t*, deg(m) = ¢'°t", deg(pz) = ¢"*t",
deg(is) = ¢"1°, deg(ua) = ¢'°t", deg(us) = ¢"5t%.
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Let us consider, coefficients. The Poincaré polynomial is equal to:

¢ P(T(7,9) = 1+ +¢* 2+ + %8 + 1 + %t + 3t + ¢ + "7+ ®1° 4+-2¢" 10+
q12t6+q10t7+2q12t7+q14t7+q10t8+2q12t8+q14t8+2q14t9+3q16t9+q18t9+q12t10+3(]14t10+
3q16t10 + q18t10 +q14t11 +3q16t11 + 3q18t11 + q20t11 —|—q14t12 4 3q16t12 4 3q18t12 +2q20t12+
q22t12 +3q18t13 —|—6q20t13 —|—3q22t13 —|—3q18t14 +5q20t14 +3q22t14 —|—q24t14 —|—3q20t15 +6q22t15—|—
4q24t15 + q26t15 + 2q20t16 + 4q22t16 + 4q24t16 + 3q26t16 + q28t16 + q22t17 + 7q24t17 + 7q26t17+
q28t17 + q22t18 + 5q24t18 + 6q26t18 + 3q28t18 + q30t18 + q24t19 + 5q26t19 + 7q28t19 + 3q30t19+
(]24t20 + 3q26t20 + 5q28t20 + 6q30t20 + 3(]32t20 + 4q28t21 + 9q30t21 + 5q32t21 + 2q28t22+
5(]30t22 +5q32t22 +3q34t22 +q36t22 +2q30t23 +6q32t23 +6q34t23 +2q36t23 +q30t24 +3q32t24+
6q34t24 4 5q36t24 + q38t24 —|—4q34t25 —|—6q36t25 + 2q38t25 + q34t26 + 3q36t26 —|—4q38t26 + 2q40t26+
q36t27 + 4q38t27 + 4q40t27 + q42t27 + q38t28 + 3q40t28 + 2q42t28 + q40t29 + 2q42t29 + q44t29—|—
q42t30 4 2q44t30 4 q46t30 4 q44t31 4 q46t31.

The total dimension of the homology is 286 (about twice asasifporQ-coefficients), and the
bidegrees of the multiplicative generators are equal to:

deg(zg) = q2, deg(zy) = q4t2, deg(zy) = q6t4, deg(z3) = q8t6,

deg(x) 10t8 deg( ) 12t10 deg( ) q14t12,

deg(6) = ¢°F", deg(és) = ¢, deg(6s) = ¢

Finally, one can check that the Khovanov homology of thistkmas nontrivialZ--torsion
in degree;?°t14.
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