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On stable Khovanov homology of torus knots

E. Gorsky, A. Oblomkov, J. Rasmussen

Abstract
We conjecture that the stable Khovanov homology of torus knots can be described as

the Koszul homology of an explicit non-regular sequence of quadratic polynomials. The
corresponding Poincaré series turns out to be related to the Rogers-Ramanujan identity.

1 Introduction

In [23] Khovanov constructed a knot homology theory which categorifies the Jones polynomial
using a combinatorial construction in terms of a knot projection. Following the early com-
putations of Bar-Natan and Shumakovitch [3, 6, 37], it became evident that the torus knots
T (n,m) had “interesting” Khovanov homology, in the sense that their homology was much
larger than might have been guessed from looking at the corresponding Jones polynomial, had
torsion of high order,etc. Further advances in computation, most notably Bar-Natan’sgeo-
metric Khovanov homology [5], have enabled us to calculate Khovanov homology of torus
knots up throughT (7, n), wheren is relatively large [6, 38]. These calculations have tendedto
confirm our first impression of overall complexity.

Nevertheless, there are indications that the Khovanov homology of torus knots is not only
interesting, but may be important to our understanding of Khovanov homology as a whole.
The first result in this direction is the theorem of Stošić [40], who proved that if we fixn and
allowm to vary, then (after a suitable renormalization), the groupsKh(T (n,m)) tend to a well-
defined limit, which we denote byKh(T (n,∞)). More recently, Rozansky [36] has shown that
the Khovanov complex of the infinite torus braid provides a categorified version of the Jones-
Wenzl projector, and thus should play an important role in the theory of colored Khovanov
homology [15, 18, 45]. In this framework,Kh(T (n,∞)) appears as then-colored Khovanov
homology of the unknot.

In this paper, we consider a conjectural description ofKh(T (n,∞)) for all n:

Conjecture 1.1 The unreduced stable Khovanov homologyKh(T (n,∞)) is dual to the ho-
mology of the differential graded algebra generated by evenvariablesx0, . . . , xn−1 and odd
variablesξ0, . . . , ξn−1, equipped with the differentiald2 defined by

d2(ξk) =
k∑

i=0

xixk−i and d2(xk) = 0.

Equivalently, this is the Koszul complex determined by the (nonregular) sequenced2(ξk) for
k = 0, . . . , n− 1.
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Remark 1.2 The homology of the chain complex described in the conjecture should be the
sl(2) Khovanov-Rozansky homology [26] ofT (n,∞). This, in turn, is dual to the ordinary
Khovanov homology (in the usual sense that they are homologies of dual chain complexes.)

Khovanov homology is bigraded; it is equipped with bothpolynomial(q) andhomological
(t) gradings. With respect to the usual normalizations for these gradings, the generatorsxk and
ξk are graded as follows:

deg(xk) = q2k+2t2k, deg(ξk) = q2k+4t2k+1.

The differentiald2 preserves theq-grading and lowers thet-grading by1.

Definition 1.3 We will denote the homology ofd2 byKhalg(n,∞).

Conjecture 1.1 arose in our work with Shende [17] on the relation between the HOMFLY-
PT homology [27] of torus knots and the representation theory of the rational Cherednik alge-
bra. More specifically, it is known [9, 34] that one can pass from the HOMFLY-PT homology
of a knotK to itssl(N) Khovanov-Rozansky homology [26] by means of a spectral sequence.
The main conjecture of [17] relates the HOMFLY-PT homology of T (n,m) to the represen-
tation theory of the rational Cherednik algebra. On the right-hand side of this equivalence,
it is possible to construct certain natural differentials which we believe should correspond to
the differentials needed to pass to thesl(N) homology. We arrived at the conjecture above by
computing these representation-theoretic differentialsfor N = 2 in the limiting casem→∞.

Remark 1.4 General considerations about the HOMFLY-PT homology and the differentials
on it suggest thatKh(T (n,∞)) should be the homology ofZ[x0, . . . , xn]⊗ Λ∗[ξ0, . . . , ξn] with
respect to a differentiald′2 of the form

d′2(ξi) =

k∑

i=0

αikxixk−i

for someαik. The content of the calculation in [17] is that allαik should be equal to1.

The first goal of the paper is to summarize the computational evidence supporting Conjec-
ture 1.1. In light of the remark, it is important to check thatthe conjecture predicts properties
of the Khovanov homology which would not be predicted byd′2 with a generic choice ofαik.
In section 2 and the appendices, we give examples where this is the case using both homology
with coefficients inZ/p and homology with coefficients inQ.

Our second goal is to investigate the underlying structure of Khalg. This homology is
especially simple if we useZ/2 coefficients:

Theorem 1.5 Khalg(n,∞;Z/2) has the following Poincaré series:

Pn(q, t;Z2) =
n−1∏

i=0

(1 + q2i+4t2i+1)

(1− q2i+2t2i)

⌊n−1

2
⌋∏

i=0

(1− q4i+4t4i)

(1 + q4i+4t4i+1)
.
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With rational coefficients, the homology is more complicated. In section 3.3, we construct
some explicit elements ofKhalg(n,∞;Q), as well as some relations which they satisfy. This
leads to the following

Conjecture 1.6 As an algebra overQ, Khalg(n,∞) has a presentation withn even generators
x0, . . . , xn−1 and(n − 1) odd generatorsµ0, . . . , µn−2 (whereµi has bidegreeq2i+8t2i+3) and
relations of the form

x(z)2 = 0, x(z)µ(z) = 0, ẍ(z)µ(z)− ẋ(z)µ̇(z) = 0, µ(z)µ̇(z) = 0 (1)

wherex(z) =
∑n−1

i=0 xiz
i µ(z) =

∑n−2
i=0 µiz

i, and each equation above is to be interpreted
modulozn.

Following ideas of Feigin and Stoyanovsky ([13], see also [14, 30]), we derive a conjectural
explicit formula for the Poincaré polynomial ofKh(T (n,∞)). Feigin and Stoyanovsky studied

the structure of the coinvariants for the integrable representation ofŝl(2) at level 1 using the
vertex operator equations of Lepowsky and Primc ([29]), which turn out to be analogous to
our Koszul differential. The resulting stable homology is described by the equation (2) for the
unreduced theory, and by the equation (19) for the reduced theory. They generalize the result
of Feigin and Stoyanovsky, which is itself a generalizationof the Rogers-Ramanujan identity
([2]).

Conjecture 1.7 The Poincaŕe series ofKhalg(n,∞;Q) can be expressed as

Pn(q, t) =
1∏n

k=1(1− q2kt2k−2)

∞∑

p=0

(−1)p
p∏

k=1

(1− q2kt2k−2)× (2)

×

n−1∏

k=3p+1

(1 + q2k+6t2k+1)

2p−1∏

k=1

(1 + q2k+2t2k−1)×

[q5p
2+pt5p

2−3p(1 + χ+
p q

6p+4t6p−1)(1 + q6p+6t6p+1)

(
n− 2p+ 1

p

)

z

+

q5p
2+7p+2t5p

2+3p−1(1 + q6p+6t6p+1)(1− q2p+2t2p)

(
n− 2p

p

)

z

−

q5p
2+9p+4t5p

2+5p(1 + q2p+2t2p+1)(1 + χ+
p q

4p+2t4p−1)

(
n− 2p− 1

p

)

z

],

whereχ+
p = 0 whenp = 0, χ+

p = 1 for p > 0,

z = q2t2, and

(
a

b

)

z

=
(1− z) · · · (1− za)

(1− z) · · · (1− zb)(1− z) · · · (1− za−b)
.

The following conjecture is due to Shumakovitch and Turner:
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Conjecture 1.8 ([38]) Let Kn(q, t) denote the Poincaré polynomials of the Khovanov homol-
ogy of the(n, n+ 1) torus knot. Then

Kn(q, t) = Kn−1(q, t) +Kn−2(q, t)q
2nt2n−2 +Kn−3(q, t)q

2n+4t2n−1. (3)

We prove the following

Theorem 1.9 If Kn(q, t) is given by the recursion relation (3) with the appropriate initial
conditions andPn(q, t) is the Hilbert series of the algebra described in Conjecture1.6, then

lim
n→∞

Kn(q, t) = lim
n→∞

Pn(q, t).

Finally, we describe an intriguing connection to the physical models of coloured homology
proposed by Gukov, Walcher and Stošić [18, 19]. In these models the homology of the unknot
is constructed as the Milnor algebra of the certain potential Wphys with an isolated singularity.

Theorem 1.10 The homology ofd2 is isomorphic to the Hochschild homology of the category
of matrix factorizations of a certain potentialW . The potentialW has a non-isolated singular-
ity (for n > 1) and coincided with a bihomogeneous part ofWphys of bidegree(2n+4, 2n−2).

We are grateful to B. Feigin, S. Gukov, M. Hagencamp, M. Khovanov, A. Kirillov Jr., S.
Loktev, L. Rozansky, M. Stošić, J. Sussan, O. Viro, and V. Shende for the useful discussions.
Special thanks to A. Shumakovitch for providing us with the valuable Khovanov homology
data and explaining the Conjecture 1.8. Most of the computations of the Koszul homology were
done usingSingular, a computer algebra system ([8]). The research of E. G. was partially
supported by the grants RFBR-10-01-00678, NSh-8462.2010.1 and the Simons foundation.

2 Evidence for the Conjecture

In this section, we outline the evidence in support of Conjecture 1.1. We verify that the
conjecture holds forT (n,∞) in the casesn = 2, 3, where the Khovanov homology is well-
understood. We then discuss the computational evidence forlarger values ofn.

We define the stable Khovanov homology by

Kh(T (n,∞)) := lim
m→∞

q−(n−1)(m−1)+1 Kh(T (n,m)).

It is a theorem of Stošić [40] that this limit exists. The stable homology is normalized so that
its Poincaré polynomial is a polynomial inq andt (rather than just a Laurent polynomial), with
constant term 1.
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2.1 T (2,∞)

The Khovanov homology ofT (2,∞) is well-known. In the language of [4], it can be viewed
as dual to the homology of the following chain complex:

. . .

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

This picture has the following meaning. The Khovanov homology of the unknot is two-
dimensional; as an algebra it can be described asH0 = C[x0]/(x

2
0). This algebra carries a

comultiplicationµ defined by the equations:

µ : H0 → H0 ⊗H0, µ(1) = 1⊗ x0 + x0 ⊗ 1, µ(x0) = x0 ⊗ x0.

Recall that theq-degree ofx0 is equal to 2.
The complex is generated by an infinite number of copies ofH0 in t-degrees0, 2, 3, 4, . . ..

Theq-grading in thek-th copy is shifted by2k. The maps between the2k + 1-st copy and the
2k-th are given by the cobordism on the picture, which can be presented as a composition of
the comultiplication and multiplication:

H0 ←− 0←− H0[2]{4}
m◦µ
←− H0[3]{6}

0
←− H0[4]{8}

m◦µ
←− H0[5]{10}

0
←− · · · (4)

We remark thatm ◦ µ coincides with multiplication by2x0 and introduce two formal variables
x1 of bidegreeq4t2 and ξ1 of bidegreeq6t3, whereξ1 is odd. In other words, we identify
H0[2k]{4k} with xk

1 ·H0 andH0[2k + 3]{4k + 6} with xk
1ξ1 ·H0.

Then the complex (4) can be rewritten as an algebraH0[x1, ξ1] with the differentiald(ξ1) =
2x0x1, which is equivalent to our Koszul model.

2.2 T (3,∞)

With rational coefficients, the Khovanov homology ofT (3, n) was computed by Turner [43].
The Poincaré polynomial of the stable homology is

P3,∞ = (1 + q2 + q4t2) + q6t3
(
q2 + t + q2t+ q4t2 + q6t2 + q4t3

1− q6t4

)
.

Khalg(3,∞;Q) is computed in section 3.2. Its Poincaré polynomial is easily seen to agree with
the one given above.

2.3 Z2 coefficients

In many cases, the Khovanov homology withZ2 coefficients is simpler that the homology with
rational coefficients. It turns out that the stable answers become especially simple if we work
overZ2.
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Theorem 2.1 Khalg (n,∞;Z/2) has the following Poincaré series:

Pn(q, t;Z2) =
n−1∏

i=0

(1 + q2i+4t2i+1)

(1− q2i+2t2i)

⌊n−1

2
⌋∏

i=0

(1− q4i+4t4i)

(1 + q4i+4t4i+1)
.

Proof. In characteristic 2 the differentiald2 degenerates to the following form:

d2(ξ2k) = x2
k, d2(ξ2k+1) = 0.

Therefore for every0 ≤ k ≤ ⌊n−1
2
⌋ the odd generatorξ2i kills x2

i in the homology.�

We used JavaKh [6] to verify thatKhalg(n,∞;Z/2) agrees withKh(T (n,m)) in the stable
range (q-degree≤ 2m) for (n,m) = (3, 50), (4, 49), (5, 29).

2.4 Q coefficients

If we use rational coefficients, the structure ofKhalg is more complicated (c.f. the conjectures
in Section 3 below.) The rational Khovanov homology of torusknots has been extensively com-
puted by Shumakovitch [38]. By comparing with his results, we have verified Conjecture 1.1
in the stable range up to(n,m) = (7, 20).

In testing Conjecture 1.1, it is important to check that the predictions it makes about Kho-
vanov homology can be distinguished from the ones we would get if we replaced the differential
d2(ξk) =

∑
xixk−i with d′2(ξk) =

∑
αikxixk−i for generic values ofαik. In addition to the

information on torsion discussed in this section, we can seeevidence of this fact with rational
coefficients in the casen = 7. As discussed in Remark 3.11 below, for genericαik the homol-
ogy with respect tod′2 has smaller dimension than the homology with respect tod2, and the
latter groups agree with the actual Khovanov homology.

More precisely, Remark 3.11 shows that for our choice ofαik the homology in bidegree
q18t13 is one-dimensional, while it vanishes for a generic choice.Theorem 6 in [41] states that
Khi,∗(T (p, q)) ≃ Khi,∗(T (p, q+1)) for i < p+q−2. Since13 < 7+9−2, the coefficient att13

in Kh(T (7,∞)) coincides with the same coefficient forKh(T (7, 9)). The Poincaré polynomial
for the Khovanov homology of the latter knot is presented in the Appendix C, and the term
q18t13 is present.

2.5 Zp torsion

The odd torsion in Khovanov homology was studied in [1] and [39] (see also [33]) for some
classes of knots, and [5] shows how complicated the torsion can be on the example of(7, 8)
knot. It was suggested that Khovanov homology can have torsion of arbitrarily large order. The
following calculation provides support for this claim, as well as some additional evidence in
favor of Conjecture 1.1.

Theorem 2.2 Let p > 3 be a prime number. ThenKhalg(p,∞) has nontrivialZp-torsion at
bidegreeq2p+6t2p.
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Proof. Consider the element

m =

p−1∑

i=1

(3i− p)xiξp−i =
∑

i+j=p,1<i<p−1

(2i− j)xiξj .

Then

d2(m) =
∑

i+j+k=p,
1<i<p−1

(2i− j− k)xixjxk =
∑

i+j+k=p

(2i− j − k)xixjxk − 2pxpx
2
0− px0

∑

j+k=p

xjxk.

Since the first sum vanishes, we have

d2(m) = −2pxpx
2
0 − px0

∑

j+k=p

xjxk
∼= 0 (modp).

Sincedegm = q2p+6t2p+1, the dimension of the kernel ofd2 : C(2p+6, 2p+1)→ C(2p+6, 2p)
jumps by 1 when we reduce it modulop. Therefore its cokernel hasZp-torsion.�

We have verified the presence of this torsion in Khovanov homology for p = 5, 7.

3 Algebraic structure

We now consider the rational homology of the chain complex appearing in Conjecture 1.1. We
will work with rational coefficients for the remainder of thepaper.

3.1 Koszul model

Conjecture 1.1 tells us to consider the polynomial ring in even variablesx0, x1, . . . , xn−1 and
an equal number of odd variablesξ0, ξ1, . . . , ξn−1, bigraded as

deg(xk) = q2k+2t2k, deg(ξi) = q2i+4t2i+1.

The differentiald2 is given by the equation

d2(ξm) =

m∑

k=0

xkxm−k. (5)

One can check that this differential preserves theq-grading and decreases thet-grading by 1.

Remark 3.1 Consider the generating functions

x(z) =
n−1∑

k=0

xkz
k, ξ(z) =

n−1∑

k=0

ξkz
k.

If we work over the ringZ[z]/(zn), we can express the differential as

d2(ξ(z)) = x(z)2.

7



At the bottom level of the Koszul complex, we get the quotientof the polynomial ring
C[xi] by the idealIn generated by the coefficients of the seriesx(z)2. It was remarked by
Feigin and Stoyanovsky [13] that in the limitn → ∞, this ideal corresponds to the integrable
representation of̂sl(2) at level 1, and the equationx(t)2 is an example of the Lepowsky-Primc
equations [29]. The bigraded Hilbert series ofC[x0, x1, . . .]/I∞ was computed in [13] by two
different methods, and the equality of the answers corresponds to the following generalization
of the Rogers-Ramanujan identity (cf. [2]):

Hq,t(C[x0, x1, . . .]/I∞) =

∞∑

p=0

q2p
2

t2p(p−1)

(1− q2t2)(1− q4t4) . . . (1− q2pt2p)
= (6)

1∏∞
k=1(1− q2kt2k−2)

∞∑

n=0

(−1)n
n∏

k=1

(1− q2kt2k−2)

(1− q2kt2k)
(q5n

2+nt5n
2−3n − q(n+1)(5n+4)t5n

2+5n).

A similar problem was independently studied by Brushek, Mourtada and Schepers in [7], where
it appeared in the computation of the Hilbert-Poincaré series of the arc space of double point.

Most of the algebraic constructions below can be consideredas a straightforward general-
ization of these results to the full Koszul homology. In particular, we conjecture the identity
(17) that degenerates to (6) ata = 0.

3.2 Examples

Example 3.2 Let us computeKhalg(2,∞). We have two even generatorsx0, x1 and two odd
generatorsξ0, ξ1. Sinced2(ξ0) = x2

0, d2(ξ1) = 2x0x1, we have a non-trivial homology genera-
tor µ0 = 2x1ξ0 − x0ξ1. The homology is spanned by the elements

p(x1) + αx0 + r(x1)µ0,

wherep andr are polynomials inx1 andα ∈ Q. (Remark thatx0µ0 = d2(ξ0ξ1)). The Poincaŕe
series has the form

P2,∞(q, t) =
1 + q8t3

1− q4t2
+ q2.

Example 3.3 To computeKhalg(3,∞), we add the variablesx2 and ξ2 with the differential
d2(ξ2) = 2x0x2 + x2

1.

Lemma 3.4 Let
µ0 = 2x1ξ0 − x0ξ1, µ1 = 2x0ξ2 − x1ξ1 − 4x2ξ0.

Then
d2(µ0) = d2(µ1) = 0, x0µ0 = d2(ξ0ξ1), x0µ1 − x1µ0 = 2d2(ξ0ξ2), (7)

2x2µ0 + x1µ1 = d2(ξ1ξ2), µ1µ2 = −2d2(ξ0ξ1ξ2).

One can check that the homology is generated byµ0 andµ1 and (7) is the complete set of
relations between them (this is a special case of Conjectures 3.12 and 3.15 below).
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Lemma 3.5 The homology ofd2 is spanned by the elements of the form

p1(x2) + x0p2(x2) + x1p2(x2) + αµ0 + µ1(q1(x2) + x0q2(x2) + x1q2(x2)).

Proof. Modulo the image ofd2, we can eliminate all monomials containing

x2
0, x0x1, x

2
1, x0µ0, x1µ0, x2µ0, µ1µ2.

After this modification the remaining monomials will be linearly independent in the homology.
�

Corollary 3.6

P3,∞(q, t) =
(1 + q10t5)(1 + q2 + q4t2)

1− q6t4
+ q8t3.

3.3 Generators and relations

Let us describe the generators in the homology generalizingµ0 andµ1 constructed in the pre-
vious section.

Lemma 3.7 Consider the set of indeterminatesεa,b, wherea + b = r is fixed, anda, b ≥ 0.
The system of linear equations

εa,b+c + εb,a+c + εc,a+b = 0 (8)

has a nontrivial solution.

Remark that the equations in this system are labelled by triples of integers while the vari-
ables are labelled by pairs. Therefore the number of equations is asymptotically quadratic inr,
while the number of variables is asymptotically linear, andthe system is over-determined.

Proof. Let εa,b = 2a− b. Then

εa,b+c + εb,a+c + εc,a+b = (2a− b− c) + (2b− a− c) + (2c− a− b) = 0.

�

Example 3.8 Consider the caser = 6. The system has 7 equations in 7 variables:

2ε0,6 + ε6,0 = 0, ε0,6 + ε1,5 + ε5,1 = 0,

ε0,6 + ε2,4 + ε4,2 = 0, ε0,6 + 2ε3,3 = 0,

2ε1,5 + ε4,2 = 0, ε1,5 + ε2,4 + ε3,3 = 0, ε2,4 = 0.

Surprisingly, it is has rank 6 and its solution is

(ε0,6, ε1,5, ε2,4, ε3,3, ε4,2, ε5,1, ε6,0) = (−6,−3, 0, 3, 6, 9, 12).
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We are ready to present some non-trivial classes in stable homology.

Lemma 3.9 Let

µs =
s+1∑

k=0

εk,s+1−kxkξs+1−k,

where the coefficientsεa,b are defined by the equation (8). Thend2(µs) = 0.

Remark 3.10 Since the coefficients ofd2 are quadratic in thex-variables, the elementsµs do
not belong to the image ofd2.

Proof. We compute

d2(µs) =

s+2∑

k=1

εk,s+3−kxkd2(ξs+3−k) =

s+2∑

k=1

εk,s+3−kxk

k−1∑

j=1

xjxs+3−k−j

=
∑

i+j+k=s+3

(εi,j+k + εj,i+k + εk,i+j) = 0.

�

Remark 3.11 Example 3.8 shows that for a generic choice of the coefficients of d2 the cor-
responding7 × 7 matrix would be non-degenerate, and thed2 homology would havesmaller
dimension. In particular, for a generic choice of the coefficientsd2 would have no homology
in bidegreeq18t13. Indeed, the only monomials in this bidegree arexaξb with a + b = 6. The
differential maps the space they span to the space spanned bymonomials of the formxaxbxc

with a+ b+ c = 6 according to the matrix from Example 3.8.

Conjecture 3.12 The homology ofd2 is generated as an algebra byµs andxi.

Remark 3.13 In what follows we will use the following description of the generatorsµs. Con-
sider the generating functionµ(z) =

∑∞
s=0 z

sµs. Then

µ(z) = 2ẋ(z)ξ(z)− x(z)ξ̇(z). (9)

Let us describe the generalization of the relations (3.4).

Lemma 3.14 The following relations hold in the homology ofd2:

x(z)2 = 0, x(z)µ(z) = 0, ẍ(z)µ(z)− ẋ(z)µ̇(z) = 0, µ(z)µ̇(z) = 0. (10)

As before, these relations are to be interpreted as holding modulozn.

10



Proof.
xµ = 2xẋξ − x2ξ̇ = d2(ξξ̇)

ẍµ− ẋµ̇ = ẍ(2ẋξ − xξ̇)− ẋ(2ẍξ + 2ẋξ̇ − ẋξ̇ − xξ̈) =

−xẍξ̇ − ẋ2ξ̇ + xẋξ̈ = −
1

2
d2(ξ̇ξ̈).

µµ̇ = (2ẋξ − xξ̇)(2ẍξ + ẋξ̇ − xξ̈) =

2ẋ2ξξ̇ − 2xẋξξ̈ + 2xẍξξ̇ + x2ξ̇ξ̈ = d2(ξξ̇ξ̈).

�

Conjecture 3.15 The ideal of relations in the Koszul homology is generated bythe coefficients
of the relations (10).

UsingSingular [8], we have verified that both conjectures hold forn ≤ 7. Some further
evidence for these conjectures is provided by Theorem 4.10 in the next section.

Remark 3.16 The relations (10) are not independent, and there are lots ofsyzygies between
them. For example, first equation presentsd2(ξξ̇) in terms ofµ′s, so its derivative presents
d2(ξξ̈) in terms ofµ’s. On the other hand, the second equation presentsd2(ξ̇ξ̈) in terms ofµ’s.
This suggests a syzygy

d2(ξξ̇)d2(ξ̈)− d2(ξξ̈)d2(ξ̇) + d2(ξ̇ξ̈)d2(ξ) = d22(ξξ̇ξ̈) = 0.

Lemma 3.17 Assuming Conjecture 3.12,Khalg(n,∞) contains at most⌊n+1
3
⌋ “levels”, i. e.

the maximalξ–degree of a homology generator is at most⌊n+1
3
⌋.

Proof. Consider the equationµ(z)µ̇(z) = 0. The coefficients of odd powers ofz look
like µiµi+1 + . . . = 0, while the coefficients of even powers ofz look like µiµi+2 + . . . = 0.
(Recall thatµi is odd, so there are no termsµiµi). Therefore one can eliminate all monomials
containingµiµi+1 andµiµi+2, and the monomial of the maximalξ-degree isµ0µ3 · · ·µ⌊n−2

3 ⌋
.

Its degree is
⌊
n−2
3

⌋
+ 1 =

⌊
n+1
3

⌋
. �

Finally, we explain some corollaries of the recent work of Feigin [12] which provide further
evidence for Conjectures 3.12 and 3.15. Feigin studies properties of the idealJ insideR =
C[ξ0, ξ1, . . . , x0, x1, . . . ] generated by the coefficients of the power series:

µ(z), ξ(z)ξ̇(z), ξ(z)ξ̈(z), ξ(z)
...
ξ (z).

An easy computation shows thatJ is preserved byd2; the main object of study of [12] is
the differential graded algebraR(1) = R/J . Feigin shows thatR(1) is a representation of the
Virasoro algebra generated byLi, i ∈ Z andc:

[Li, c] = 0, [Lm, Ln] = (m− n)Lm+n + δm+n

m3 −m

3
c.

11



The central elementc acts by the constant−4/5 onR(1). The algebraR(1) has a natural grading
by the odd variables:

deg(ξi) = 1, deg(xi) = 0.

The graded componentsR(1)[j] are subrepresentations and Feigin identifies them with some
particular highest weight modules ofL.

Let us briefly recall the basics of the highest weight theory for the Virasoro algebra. The
algebraL naturally splits into three parts: the positive partL+ generated byLi, i > 0; the
negative partL− generated byLi, i < 0; and the span ofL0, c. From the relations forL we see
thatL0 is a grading operator; it is customary to call the eigenspaces ofL0 levels. A vector in an
L-module is called singular if it is anihilated byL+. The Verma moduleMλ is anL−-module
freely generated by the singular vector on the levelλ.

Theorem 3.18 [12] We have

1. The differentiald2 commutes with the action of the Virasoro algebra.

2. The graded componentR(1)[j] is isomorphic to the quotient of the Verma moduleMλi
,

λi = (5i2 − 3i)/2 by a singular vector at level2i+ 1.

3. For anyi > 0, H i(R(1), d2) = 0.

4. H0(R(1), d2) is the irreducible quotient ofM0.

Corollary 3.19 The lower level ofKhalg(∞,∞) is the irreducible representation of the Vira-
soro algebra.

Apart from theµi, all other generators of the idealJ have odd degree at least2, hence

Corollary 3.20 The first homology ofd2 is generated byµi andxi.

Remark 3.21 The theorem above is a particular case of more general resultfrom [12] that
might be relevant for studies ofsl(N) homology. Also it is very plausable that one can extend
the result of the last corollary to higher homological degrees by some bootstrapping procedure.
We hope to return to this question in our future work.

3.4 Lee’s spectral sequence

It was conjectured in [9] that Lee’s spectral sequence ([28,35]) is induced by a differentiald1
that commutes withd2. We propose a formula for this differential:

d1(ξi) = xi.

Remark that ifd1 satisfies the Leibnitz rule, it is uniquely defined by the grading restrictions.
Let us consider the spectral sequence induced byd1 onKhalg.

12



Example 3.22 ConsiderKh(T (2,∞)). As was shown in Example 3.2, the homology is gener-
ated byx0, x1 andµ0 modulo the relations

x2
0 = 2x0x1 = x0µ0 = 0.

Remark that

d1(µ0) = d1(2x1ξ0 − x0ξ1) = 2x1x0 − x0x1 = x0x1 =
1

2
d2(ξ1).

This means that the second differential in the spectral sequence (Bar-Natan’s knight move) acts
as

δ(µ0) = d1 ◦ d
−1
2 ◦ d1(µ0) = d1

(
1

2
ξ1

)
=

1

2
x1.

Thereforeµ0 kills ξ1 by the knight move, and the spectral sequence converges at theE3 page to
the two-dimensional space

E3 = E∞ = 〈1, x0〉.

Remark 3.23 One can find an apparent contradiction in this result — the homology ofd1 is
clearly one-dimensional, while the spectral sequence converges to a two-dimensional space.
This problem is caused by the fact that the homology is infinite dimensional. One can check
that for a finite(2, m) knot (i.e. for a suitable finite-dimensional quotient of this complex) the
homology ofd1 will be two-dimensional — one generator will be 1, while the degree of the
second one will grow asm increases.

Motivated by this example, we formulate the following algebraic counterpart of the conjec-
tures from [5] and [35]. The following theorem holds modulo Conjectures 3.12 and 3.15.

Theorem 3.24 Consider the spectral sequence induced byd1 acting onKhalg(n,∞). Then
E1 = E2 = H∗(d2). andE3 = E∞ = 〈1, x0〉. In particular, the spectral sequence converges at
theE3 page.

Proof. Assuming the conjectures, the stable homology is generatedby µs andxi, so the
multiplicativity of the spectral sequence allows us to focus on these generators. Remark that

d1(µs) =
s+1∑

k=0

εk,s+1−kxkxs+1−k =
s+ 1

2

s+1∑

k=0

xkxs+1−k =
s+ 1

2
d2(ξs+1). (11)

Here we used the equation

εk,s+1−k + εs+1−k,k = 2k − (s+ 1− k) + 2(s+ 1− k)− k = s+ 1.

We can compute the second differential in the spectral sequenceδ(µs) using the equation (11):

δ(µs) = d1 ◦ d
−1
2 ◦ d1(µs) = d1

(
s + 1

2
ξs+1

)
=

s+ 1

2
xs+1.

Therefore each even generatorsxi is killed byµi−1. �
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Remark 3.25 One can reformulate this proof in terms of the generating series. We have

d1(µ(z)) = d1(−x(z)ξ̇(z) + 2ẋ(z)ξ(z)) = −x(z)ẋ(z) + 2x(z)ẋ(z) = x(z)ẋ(z) =
1

2
d2(ξ̇(z)).

Therefore

δ(µ(z)) = d1 ◦ d
−1
2 ◦ d1(µ(z)) = d1

(
1

2
ξ̇(z)

)
=

1

2
ẋ(z).

One can prove a similar theorem for the reduced homology (seesection 5 below). In the reduced
case, theE∞ term will be one-dimensional and spanned by 1.

4 Poincaŕe polynomials

4.1 Bosonic formula

In this section we give a conjectural formula for the Poincare polynomial ofKhalg(n,∞) for
all n. This formula comes from computer experiments, and it can beconsidered as a potential
generalization of the “bosonic” side of the Rogers-Ramanujan identity in [13] (see also [14, 22,
30]). It is worth to note that this “bosonic formula” was obtained in [13] using localization on
the affine flag variety for̂sl(2). We plan to compare this approach with the one proposed below
in the future.

Recall that the lower level ofKhalg(n,∞) can be described by the quotient of the algebra
C[x0, . . . , xn−1] by the ideal generated by the firstn coefficients ofx(z)2.

Conjecture 4.1 Let z = q2t2. The unreduced Hilbert series for the lower level ofKhalg(n,∞)
has the form

Ln(q, t) =
1∏n

k=1(1− q2kt2k−2)

∞∑

p=0

(−1)p
p∏

k=1

(1− q2kt2k−2)× (12)

(
q5p

2+pt5p
2−3p

(
n− 2p+ 1

p

)

z

− q(p+1)(5p+4)t5p
2+5p

(
n− 2p− 1

p

)

z

)
.

Here we use the standardz-binomial notation:

[m!]z =

m∏

k=1

1− zk

1− z
,

(
m

l

)

z

=
[m!]z

[l!]z[m− l!]z
(m ≥ l).

Remark 4.2 In the limitn→∞ thez-binomial coefficients degenerate to simple products:

(
n− 2p+ 1

p

)

z

,

(
n− 2p− 1

p

)

z

n→∞
−−−→

1

(1− z)(1 − z2) . . . (1− zp)
=

p∏

k=1

1

(1− q2kt2k)
,

14



therefore the equation (12) has a limit

L∞(q, t) =
1∏n

k=1(1− q2kt2k−2)

∞∑

p=0

(−1)p
p∏

k=1

(1− q2kt2k−2)

(1− q2kt2k)
×

×
(
q5p

2+pt5p
2−3p − q(p+1)(5p+4)t5p

2+5p
)
.

This is the right hand side of the generalized Rogers-Ramanujan identity (6), and therefore in
this limit Conjecture 4.1 follows from the results of [13].

One can try to extend the equation (12) to higher levels of theKoszul homology.

Conjecture 4.3 The unreduced Hilbert series forKhalg(n,∞) has the form

Pn(q, t) =
1∏n

k=1(1− q2kt2k−2)

∞∑

p=0

(−1)p
p∏

k=1

(1− q2kt2k−2)× (13)

×
n−1∏

k=3p+1

(1 + q2k+6t2k+1)

2p−1∏

k=1

(1 + q2k+2t2k−1)×

[q5p
2+pt5p

2−3p(1 + χ+
p q

6p+4t6p−1)(1 + q6p+6t6p+1)

(
n− 2p+ 1

p

)

z

+

q5p
2+7p+2t5p

2+3p−1(1 + q6p+6t6p+1)(1− q2p+2t2p)

(
n− 2p

p

)

z

−

q5p
2+9p+4t5p

2+5p(1 + q2p+2t2p+1)(1 + χ+
p q

4p+2t4p−1)

(
n− 2p− 1

p

)

z

],

whereχ+
p = 0 whenp = 0, χ+

p = 1 for p > 0, and the second product inside the sum is1 when
3p+ 1 > n− 1.

4.2 Fermionic formula for T (∞,∞)

LetKn(q, t) denote the Poincaré polynomial ofKh(T (n, n+ 1)). Based on experimental data,
Shumakovich and Turner conjectured thatKn satisfies the following recurrence relation.

Conjecture 4.4 ([38])

Kn(q, t) = Kn−1(q, t) +Kn−2(q, t)q
2nt2n−2 +Kn−3(q, t)q

2n+4t2n−1. (14)

We construct a combinatorial model for this recursion relation. Consider lengthn sequences
of 0’s and 1’s with no blocks of the form 1111 anywhere and no blocks of the form 111 except
possibly at the beginning. Such sequences are split (outside the beginning) into 1’s and 11’s
separated by blocks of 0’s.
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Example 4.5 For n = 3 all 8 sequences are admissible. Forn = 4 we have 14 sequences:
1111 and0111 are forbidden.

We weight such sequences by a product of terms correspondingto blocks of1’s appearing
in the sequence. The weights are as follows:

1) 111 in the beginning:q12t5;
2) 1 at positionn (first digit has position 0):q2n+2t2n;
3) 11 starting at positionn: q2n+8t2n+3.
Let Kn be the weighted state sum for lengthn sequences; that is, the sum of the weights

for all such sequences.

Lemma 4.6 Kn satisfies the recursion relation(14)and agrees withKn for n = 1, 2, 3.

Proof. Let us check the recursion relation. The set of lengthn sequences ending with 0
contributeKn−1 to Kn. The sequences ending with 01 contributeKn−2(q, t)q

2nt2n−2, and the
sequences ending with 011 contributeKn−3(q, t)q

2n+4t2n−1. The values ofKn for n = 1, 2, 3
are easily checked.�

Let us write the formula for the limitK(q, t) = limn→∞Kn(q, t).

Theorem 4.7

K(q, t) =

∞∑

p=0

q2p
2

t2p(p−1)(1 + q8p+12t8p+5)
(1 + q6t3)(1 + q8t5) . . . (1 + q2p+4t2p+1)

(1− q2t2)(1− q4t4) . . . (1− q2pt2p)
. (15)

Proof. LetUp(q, t) be the state sum giving by summing over all sequences withp blocks of
units, none of which are of length3. A sequence withp+1 blocks can be one of the following:

1) Starting with 10 at positionk. This contributesq2k+2t2k · (q2t2)p(k+2)Up to Up+1. If we
sum over allk, we get

q4p+2t4p

1− q2(p+1)t2(p+1)
Up.

2) Starting with 110 at positionk. This contributesq2k+8t2k+3 · (q2t2)p(k+3)Up to Up+1. If
we sum over allk, we get

q6p+8t6p+3

1− q2(p+1)t2(p+1)
Up.

Thus

Up+1 =
q4p+2t4p(1 + q2p+6t2p+3)

1− q2(p+1)t2(p+1)
Up,

from which we deduce that

Up(q, t) = q2p
2

t2p(p−1) (1 + q6t3)(1 + q8t5) . . . (1 + q2p+4t2p+1)

(1− q2t2)(1− q4t4) . . . (1− q2pt2p)
.

Let Vp(q, t) denote the state sum where we allow sequences beginning with111. Then

Vp = Up + q12t5(q2t2)4pUp = (1 + q8p+12t8p+5)Up.
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�

We verify directly that the Euler characteristic ofK(q, t) agrees with the stable Jones poly-
nomial ofT (∞,∞):

Lemma 4.8
K(q,−1) =

1

1− q2
.

Proof. Remark that

Up(q,−1) = q2p
2 (1− q6)(1− q8) . . . (1− q2p+4)

(1− q2)(1− q4) . . . (1− q2p)
= q2p

2 (1− q2p+2)(1− q2p+4)

(1− q2)(1− q4)
,

Vp(q,−1) = (1− q8p+12)Up(q,−1).

Therefore we have to prove that

∞∑

p=0

q2p
2

(1− q2p+2)(1− q2p+4)(1− q8p+12) = 1− q4. (16)

This follows from the direct expansion of the left hand side:all terms will cancel out except1
and−q4. �

Comparing the “fermionic” formula (15)) with the “bosonic”formula (13) in the limitn→
∞ suggests the following identity. Thea-grading from the HOMFLY homology can be traced
on both sides.

Conjecture 4.9 (“Khovanov-Rogers-Ramanujan identity”) Let

A(a, q, t) =
∞∑

p=0

q2p
2

t2p(p−1)(1 + a2q8p+8t8p+5)

p∏

j=1

(1 + a2q2jt2j+1)

(1− q2jt2j)
.

and

B(a, q, t) =
1∏∞

k=1(1− q2kt2k−2)

∞∑

p=0

(−1)p
p∏

k=1

(1− q2kt2k−2)

(1− q2kt2k)
×

×

∞∏

k=3p+1

(1 + a2q2k+2t2k+1)

2p−1∏

k=1

(1 + a2q2k−2t2k−1)×

[q5p
2+pt5p

2−3p(1 + χ+
p a

2q6pt6p−1)(1 + a2q6p+2t6p+1)+

a2q5p
2+7p−2t5p

2+3p−1(1 + a2q6p+2t6p+1)(1− q2p+2t2p)−

q5p
2+9p+4t5p

2+5p(1 + a2q2p−2t2p+1)(1 + χ+
p a

2q4p−2t4p−1)].

Then
A(a, q, t) = B(a, q, t). (17)
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Using a computer, we have checked that this identity holds upthrough terms of orderq100.
The following theorem provides some evidence in support of Conjectures 3.12 and 3.15.

Theorem 4.10 The Hilbert series of the algebra generated byµn (n ≥ 0) andxi (i ≥ 0) and
satisfying the relations in equation(10) isK(q, t).

Proof. The elementsµn have grading

deg(µn) = q2n+8t2n+3.

Let us return to our combinatorial model:
1) 1 at positionn corresponds toxn.
2) 11 starting at positionn corresponds toµn.
3) 111 in the beginning corresponds tox0µ1.
We have to check that we can eliminate the following productsusing the relations:

xixi+1, xiµi+1 (i > 0), µixi+2, µiµi+2,

x2
i , xiµi, xi+1µi, µiµi+1.

We can eliminatex2
i andxixi+1 using the equationx(z)2 = 0; µiµi+1 andµiµi+2 using the

equationµ(t)µ̇(z) = 0. Finally, we can eliminatexi−1µi+1, xiµi, xi+1µi, xi+2µi using two
remaining equations

x(z)µ(z) = ẍ(z)µ(z)− ẋ(z)µ̇(z) = 0.

�

5 Reduced homology

In this section we briefly review the structure of the reducedstable homology. The computa-
tions in [17] suggest that the construction and the differential should be similar to the unreduced
case, except thatx0 andξ0 are omitted. To be specific, consider the polynomial ring in even
variablesx1, . . . , xn−1 and equal number of odd variablesξ1, . . . , ξn−1 bigraded as

deg(xk) = q2k+2t2k, deg(ξi) = q2i+4t2i+1.

The differentiald2 is given by the equation

d2(ξm) =

m−1∑

k=1

xkxm−k. (18)

Conjecture 5.1 The stable reduced Khovanov homology ofT (n,∞) is isomorphic to the ho-
mology ofC[x1 . . . , xn−1]⊗ Λ∗[ξ1, . . . , ξn−1] with respect tod2.
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Example 5.2 (cf. [16]) Let us computeKhred
alg (4,∞). We have

d2(ξ1) = 0, d2(ξ2) = x2
1, d2(ξ3) = 2x1x2.

As in Example 3.2, we can introduce a homology generatorµ0 = 2x2ξ2 − x1ξ3 and check
that the homology is spanned by the expressions of the formp(x2) + αx1 + µ0q(x2) up to
multiplication by polynomials inξ1 andx3. Therefore the Poincaré series has the form

P 4,∞(q, t) =
1 + q6t3

1− q8t6

(
q4t2 +

1 + q8t5

1− q6t4

)
.

Remark that the reduced and unreduced differentials look similar up to a shift of grading.
Modulo multiplication byξ1 andxn−1, we can replaceξi by ξi−2 andxi by xi−1 to get the
unreduced stable homology of the(n− 2,∞) knot. We get the following result.

Lemma 5.3 Khred
alg (n,∞) ≃ Khalg(n− 2,∞)⊗ C[xn−1, ξ1].

Note that this isomorphism does not respect theq andt gradings. However, it is not difficult
to reconstruct the grading shifts for this correspondence and obtain an analogue of equation (13)
for the reduced homology.

Conjecture 5.4 The Poincaŕe series ofKhred
alg (n,∞) has the form

P n(q, t) =
(1 + q6t3)∏n−1

k=1(1− q2k+2t2k)

∞∑

p=0

(−1)p
p∏

k=1

(1− q2k+2t2k)× (19)

×

n−1∏

k=3p+1

(1 + q2k+12t2k+7)

2p−1∏

k=1

(1 + q2k+6t2k+3)×

[q5p
2+5pt5p

2+p(1 + q6p+10t6p+5)(1 + q6p+12t6p+7)

(
n− 2p+ 1

p

)

z

+

q5p
2+11p+6t5p

2+7p+3(1 + q6p+12t6p+7)(1− q2p+4t2p+2)

(
n− 2p

p

)

z

−

q5p
2+13p+8t5p

2+9p+4(1 + q2p+4t2p+3)(1 + q4p+6t4p+3)

(
n− 2p− 1

p

)

z

],

where the second product under the inside sum is1 when3p+ 1 > n− 1.

Remark 5.5 It was conjectured in [9] that

P 2,∞(q, t) = (1 + q6t3)(1 + q4t2 + q8t4 + . . .),

P 3,∞(q, t) =
1 + q4t2 + q6t3 + q10t5

1− q6t4
,

P 4,∞(q, t) =
(1 + q6t3)

(1− q8t6)

(
1 + q4t2 +

q6t4(1 + q8t5)

1− q6t4

)
.

One can check that these answers coincide with the above construction. (See Appendix B for a
comparison).
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6 Matrix factorizations

In different physical models of knot homology (e.g. [18],[19]) the colored homology of the
unknot is described in terms of matrix factorizations. Following Rozansky’s observation that
the infinite torus braid is a categorified Jones-Wenzl projector [36], we focus on the unknot
coloured by thenth symmetric power of the fundamental representation ofsl(N).

Definition 6.1 ([11]) A matrix factorisation of a functionW over a ringR is a pair (M, d),
whereM = M0 +M1 is aZ2-gradedR-module of finite rank equipped with anR-linear map
d of odd degree satisfying the equationd2 = W · idM .

We will need the following basic facts about matrix factorizations:

Theorem 6.2 (a) ([20]) The Hochschild cohomology of the algebra of functions onCn is equal
to the algebra of polyvector fields onCn.

(b) ([10]) Consider a functionW : Cn → C. Then Hochschild cohomologyHH(MF(W ))
of the category of matrix factorizations ofW is equal to the Koszul homology of the complex
obtained from polyvector fields by the contraction withdW .

(c) (e.g. [10]) If W has an isolated singularity, thenHH(MF(W )) is isomorphic to the
Milnor algebra ofW at this singularity:

HH(MF(W )) = C[x1, . . . , xn]/

(
∂W

∂x1

, . . . ,
∂W

∂xn

)
.

Remark that we can dualize the Koszul complex (b) and obtain the differential

DW (dxi) =
∂W

∂xi

acting as a derivation on the algebraC[x1, . . . , xn, dx1, . . . , dxn] of differential forms onCn.
Now part (c) follows from the well known fact thatW has an isolated singularity if and only if
its partial derivatives form a regular sequence.

The following potentials (with isolated singularities) were proposed for the totally symmet-
ric representations by Gukov and Walcher:

Conjecture 6.3 ([18]) The generating function for the(sl(N), Sk) potentials has the form:

∞∑

N=0

zN+k(−1)NWsl(N),Sk(x1, . . . , xk) =

(
1 +

k∑

i=1

zixi

)
ln

(
1 +

k∑

i=1

zixi

)

The(sl(N), Sk) colored homology of the unknot coincides with the Milnor algebra of the cor-
responding potential.

We slightly change notations and write

Wphys(x0, . . . , xn−1) = Wsl(2),Sn(x0, . . . , xn−1) = Coefn+2 [(1 + zx(z)) ln(1 + zx(z))] ,
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wherex(z) =
∑n−1

i=0 zixi.
Let us assume that thexi are bigraded as above:deg(xi) = q2i+2t2i. Then the differential

DW will preserve both gradings iffW is bihomogeneous. LetW n(x0, . . . , xn−1) be the piece
of bidegree(2n+ 4, 2n− 2) in Wphys.

Lemma 6.4 The potentialW n can be written as follows:

Wn(x0, . . . , xn−1) = −
1

6
Coefn−1[x(z)

3].

Proof. Remark that the difference betweenq- andt-gradings forxi is equal to 2. Therefore
the piece of bidegree(2n+ 4, 2n− 2) should be cubic inxi. Now

(1 + zx(z)) ln(1 + zx(z)) = zx(z) +
1

2
z2x(z)2 −

1

6
z3x(z)3 + . . . ,

so the cubic part equals to−1
6
z3x(z)3. �

Example 6.5 We have

W 0 = −
1

6
x3
0, W 1 = −

1

2
x2
0x1.

Remark thatW 1 has a non-isolated singularity.

Theorem 6.6 The Hochschild homology of the category of matrix factorizations of the poten-
tial W n is isomorphic to the homology ofd2.

Proof. By Theorem 6.2, it is sufficient to study the Koszul complex associated with the
partial derivatives ofW n. We have

∂

∂xi

W n = −
1

6

∂

∂xi

Coefn−1[x(z)
3] = −

1

2
Coefn−1

[
x(z)2

∂

∂xi

x(z)

]
=

−
1

2
Coefn−1

[
zix(z)2

]
= −

1

2
Coefn−1−i[x(z)

2].

Therefore

DWn
(dxn−1−i) =

∂W n

∂xn−1−i

= −
1

2
Coef i[x(z)

2] = −
1

2

i∑

j=0

xjxj−i.

It suffices to identify
ξi = −2dxn−1−i.

�
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A Unreduced Poincaŕe series

Here we collect the answers for the Poincaré series ofKhalg(n,∞) for n ≤ 7. These series
were computed usingSingular [8]. The resulting series coincide with Shumakovitch’s com-
putations [38] up to highq-degree. For example, for(7, 20) torus knot the first difference is in
q-degree 42.

For the reader’s convenience, we multiply both parts of equation (13) by
∏n

i=1(1−q
2it2i−2).

(1− q2)(1− q4t2)P2(q, t) = (1 + q8t3)− q4(1 + q8t3)− q6t2(1− q2)(1 + q4t) =

(1− q2)(1 + q2 − q6t2 + q8t3);

3∏

i=1

(1− q2it2i−2)P3(q, t) = (1 + q8t3)(1 + q10t5)− q4(1 + q8t3)(1 + q10t5)−

q6t2(1− q2)(1 + q4t)(1 + q2t2)(1 + q10t5)− q14t7(1− q2)(1− q4t2)(1 + q4t) =

(1− q2)(1− q4t2)(1 + q2 + q4t2 + q8t3 + q10t5 + q12t5);

4∏

i=1

(1−q2it2i−2)P4(q, t) = (1+q8t3)(1+q10t5)(1+q12t7)−q4(1+q8t3)(1+q10t5)(1+q12t7)−

q6t2(1− q2)(1 + q4t)(1 + q10t5)(1 + q12t7)(1 + q2t2 + q4t4)−

q14t7(1−q2)(1−q4t2)(1+q4t)(1+q12t7)(1+q2t2)+q18t10(1−q2)(1+q4t)(1+q6t3)(1+q4t3);

5∏

i=1

(1− q2it2i−2)P5(q, t) =
4∏

i=1

(1 + q2i+6t2i+1)− q4
4∏

i=1

(1 + q2i+6t2i+1)−

q6t2(1− q2)(1 + q4t)(1 + q2t2 + q4t4 + q6t6)

4∏

i=2

(1 + q2i+6t2i+1)−

q14t7(1− q2)(1− q4t2)(1 + q4t)(1 + q12t7)(1 + q14t9)(1 + q2t2 + q4t4)+

q18t10(1− q2)(1 + q4t)(1 + q6t3)(1 + q2t2)(1 + q14t9)(1 + q4t3)+

q22t14(1− q2)(1− q4t2)(1 + q4t)(1 + q6t3)(1 + q8t5);

6∏

i=1

(1− q2it2i−2)P6(q, t) =

5∏

i=1

(1 + q2i+6t2i+1)− q4
5∏

i=1

(1 + q2i+6t2i+1)−

q6t2(1− q2)(1 + q4t)(1 + q2t2 + q4t4 + q6t6 + q8t8)
5∏

i=2

(1 + q2i+6t2i+1)−
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q14t7(1− q2)(1− q4t2)(1 + q4t)(1 + q12t7)(1 + q14t9)(1 + q16t11)(1 + q2t2 + q4t4 + q6t6)+

q18t10(1− q2)(1 + q4t)(1 + q6t3)(1 + q2t2 + q4t4)(1 + q14t9)(1 + q16t11)(1 + q4t3)+

q22t14(1− q2)(1− q4t2)(1 + q4t)(1 + q6t3)(1 + q8t5)(1 + q16t11)(1 + q2t2 + q4t4)+

q36t25(1− q2)(1− q4t2)(1− q6t4)(1 + q4t)(1 + q6t3)(1 + q8t5);

7∏

i=1

(1− q2it2i−2)P7(q, t) =

6∏

i=1

(1 + q2i+6t2i+1)− q4
6∏

i=1

(1 + q2i+6t2i+1)−

q6t2(1− q2)(1 + q4t)(1 + q2t2 + q4t4 + q6t6 + q8t8 + q10t10)

6∏

i=2

(1 + q2i+6t2i+1)−

q14t7(1− q2)(1− q4t2)(1 + q4t)(1 + q2t2 + q4t4 + q6t6 + q8t8)
6∏

i=3

(1 + q2i+6t2i+1)+

q18t10(1−q2(1+q4t)(1+q6t3)(1+q4t3)(1+q2t2+q4t4+q6t6)(1+q14t9)(1+q16t11)(1+q18t13)+

q22t14(1− q2)(1− q4t2)(1 + q4t)(1 + q6t3)(1 + q8t5)×

×(1 + q16t11)(1 + q18t13)(1 + q2t2 + 2q4t4 + q6t6 + q8t8)+

q36t25(1− q2)(1− q4t2)(1− q6t4)(1 + q4t)(1 + q6t3)(1 + q8t5)(1 + q18t13)(1 + q2t2 + q4t4)−

q42t30(1− q2)(1− q4t2)(1 + q4t)(1 + q6t3)(1 + q8t5)(1 + q10t7)(1 + q6t5);

B Reduced Poincaŕe series

Here we collect the answers for the conjectural Poincaré series of stable reduced Khovanov
homology forn ≤ 7. The resulting series coincide with the data from [38] up to high q-degree.
For example, for the(5, 49) torus knot the first difference is inq-degree 100, for(6, 25) the first
difference is inq-degree 52, and for(7, 15) the first difference is inq-degree 32.

P 3(q, t) =
1 + q6t3∏2

i=1(1− q2i+2t2i)
[1− q8t4];

P 4(q, t) =
1 + q6t3∏3

i=1(1− q2i+2t2i)
[(1 + q14t9)− q8t4(1 + q14t9)− q10t6(1− q4t2)(1 + q8t5)];

P 5(q, t) =
1 + q6t3∏4

i=1(1− q2i+2t2i)
[(1 + q14t9)(1 + q16t11)− q8t4(1 + q14t9)(1 + q16t11)−

q10t6(1− q4t2)(1 + q8t5)(1 + q2t2)(1 + q16t11)− q22t15(1− q4t2)(1− q6t4)(1 + q8t5)];

P 6(q, t) =
1 + q6t3∏5

i=1(1− q2i+2t2i)
[(1 + q14t9)(1 + q16t11)(1 + q18t13)−
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q8t4(1 + q14t9)(1 + q16t11)(1 + q18t13)−

q10t6(1− q4t2)(1 + q8t5)(1 + q16t11)(1 + q18t13)(1 + q2t2 + q4t4)−

q22t15(1− q4t2)(1− q6t4)(1 + q8t5)(1 + q18t13)(1 + q2t2)+

q26t18(1− q4t2)(1 + q8t5)(1 + q10t7)(1 + q6t5)];

P 7(q, t) =
1 + q6t3∏6

i=1(1− q2i+2t2i)
[

4∏

i=1

(1 + q2i+12t2i+7)− q8t4
4∏

i=1

(1 + q2i+12t2i+7)−

q10t6(1− q4t2)(1 + q8t5)(1 + q2t2 + q4t4 + q6t6)

4∏

i=2

(1 + q2i+12t2i+7)−

q22t15(1− q4t2)(1− q6t4)(1 + q8t5)(1 + q18t13)(1 + q20t15)(1 + q2t2 + q4t4)+

q26t18(1− q4t2)(1 + q8t5)(1 + q10t7)(1 + q2t2)(1 + q20t15)(1 + q6t5)+

q30t22(1− q4t2)(1− q6t4)(1 + q8t5)(1 + q10t7)(1 + q12t9)].

C (7, 9) torus knot

We present the exact normalized Poincaré polynomial for the unreducedQ-Khovanov homol-
ogy of the(7, 9) torus knot, obtained with JavaKh ([6]).

q−47P (T (7, 9)) = 1+q2+q4t2+q8t3+q6t4+q8t4+q10t5+q12t5+q8t6+q10t6+q12t7+q14t7+

q10t8+2q12t8+ q14t9+2q16t9+ q12t10+2q14t10+ q16t11+3q18t11+ q14t12+3q16t12+ q18t12+

q22t12 + q18t13 + 4q20t13 + q22t13 + 3q18t14 + q20t14 + q24t14 + 5q22t15 + 2q24t15 + 2q20t16+

3q22t16 + 2q26t16 + q28t16 + 4q24t17 + 4q26t17 + q22t18 + 3q24t18 + 2q28t18 + q30t18 + 2q26t19+

5q28t19 + q24t20 + 3q26t20 + q30t20 + 2q32t20 + q28t21 + 5q30t21 + 2q28t22 + q30t22 + 2q34t22+

5q32t23 + q34t23 + q30t24 + 3q32t24 + 3q36t24 + 2q34t25 + 4q36t25 + q34t26 + q36t26 + 2q38t26+

q40t26 + 3q38t27 + q40t27 + q42t27 + q38t28 + 2q42t28 + 2q42t29 + q42t30 + q46t30 + q46t31.

The total dimension of the homology is equal to 134. One can observe the multiplicative
generators of the following (bi)degrees:

deg(x0) = q2, deg(x1) = q4t2, deg(x2) = q6t4, deg(x3) = q8t6,

deg(x4) = q10t8, deg(x5) = q12t10, deg(x6) = q14t12,

deg(µ0) = q8t3, deg(µ1) = q10t5, deg(µ2) = q12t7,

deg(µ3) = q14t9, deg(µ4) = q16t11, deg(µ5) = q18t13.
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Let us considerZ2 coefficients. The Poincaré polynomial is equal to:

q−47P2(T (7, 9)) = 1+q2+q4t2+q6t2+q6t3+q8t3+q6t4+q8t4+q10t5+q12t5+q8t6+2q10t6+

q12t6+q10t7+2q12t7+q14t7+q10t8+2q12t8+q14t8+2q14t9+3q16t9+q18t9+q12t10+3q14t10+

3q16t10 + q18t10 + q14t11 + 3q16t11 + 3q18t11 + q20t11 + q14t12 + 3q16t12 + 3q18t12 + 2q20t12+

q22t12+3q18t13+6q20t13+3q22t13+3q18t14+5q20t14 +3q22t14 + q24t14+3q20t15+6q22t15+

4q24t15 + q26t15 + 2q20t16 + 4q22t16 + 4q24t16 + 3q26t16 + q28t16 + q22t17 + 7q24t17 + 7q26t17+

q28t17 + q22t18 + 5q24t18 + 6q26t18 + 3q28t18 + q30t18 + q24t19 + 5q26t19 + 7q28t19 + 3q30t19+

q24t20 + 3q26t20 + 5q28t20 + 6q30t20 + 3q32t20 + 4q28t21 + 9q30t21 + 5q32t21 + 2q28t22+

5q30t22 +5q32t22 +3q34t22+ q36t22+2q30t23+6q32t23 +6q34t23 +2q36t23 + q30t24+3q32t24+

6q34t24 +5q36t24 + q38t24+4q34t25+6q36t25+2q38t25 + q34t26 +3q36t26+4q38t26+2q40t26+

q36t27 + 4q38t27 + 4q40t27 + q42t27 + q38t28 + 3q40t28 + 2q42t28 + q40t29 + 2q42t29 + q44t29+

q42t30 + 2q44t30 + q46t30 + q44t31 + q46t31.

The total dimension of the homology is 286 (about twice as bigas forQ-coefficients), and the
bidegrees of the multiplicative generators are equal to:

deg(x0) = q2, deg(x1) = q4t2, deg(x2) = q6t4, deg(x3) = q8t6,

deg(x4) = q10t8, deg(x5) = q12t10, deg(x6) = q14t12,

deg(ξ1) = q6t3, deg(ξ3) = q10t7, deg(ξ5) = q14t11.

Finally, one can check that the Khovanov homology of this knot has nontrivialZ7-torsion
in degreeq20t14.
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