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Abstract—The Configuration Interaction (CI) method has
been widely used to solve the non-relativistic many-body
Schrödinger equation. One great challenge to implementing
it efficiently on manycore architectures is its immense memory
and data movement requirements. To address this issue, within
each node, we exploit a hybrid MPI+OpenMP programming
model in lieu of the traditional flat MPI programming model.
In this paper, we develop optimizations that partition the
workloads among OpenMP threads based on data locality,
which is essential in ensuring applications with complex data
access patterns scale well on manycore architectures. The new
algorithm scales to 256 threads on the 64-core Intel Knights
Landing (KNL) manycore processor and 24 threads on dual-
socket Ivy Bridge (Xeon) nodes. Compared with the original
implementation, the performance has been improved by up to
7× on the Knights Landing processor and 3× on the dual-
socket Ivy Bridge node.

I. INTRODUCTION

An important problem with applications to astrophysics,
nuclear science, and investigations into fundamental sym-
metries and detection of neutrinos and other fundamental
particles, including dark matter, is the nuclear many-body
problem. For the ground state and low-lying excited states,
the Configuration Interaction (CI) [7], [16] method has
been widely used, with protons and neutrons as the degrees
of freedom. In CI, the non-relativistic many-body nuclear
Schrödinger equation is cast as a very large sparse matrix
eigenpair problem with matrices whose dimension size can
exceed ten billion. With even a typical sparsity (between 1
and 100 nonzeros per million matrix elements) such large-
scale sparse matrix eigenpair problems place high demands
on memory capacity and memory bandwidth. In reality, a
matrix with dimension of one billion with a typical sparsity
has at least 109×109×10−6 = one trillion nonzeros and will
require several terabytes for storage. Some CI problems may
require two orders of magnitude more memory requiring
petabytes for a stored matrix representation.

To reduce the memory pressure, the BIGSTICK code [8],
written in Fortran 90/95, implements the Configuration
Interaction method by 1) factorizing both the basis and
the interaction into two subsystems (protons and neutrons),
and 2) reconstructing the nonzero matrix elements on the
fly. Compared with explicit stored matrix formats, such
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Figure 1. Time per Lanczos iteration when strong scaling OpenMP
parallelism (1 MPI process) on the Knights Landing (KNL) architecture in
quadcache for the b10nmax6 test problem. Note, the last two data points
represent running multiple threads per core. Observe performance rapidly
departs from the linear scaling trend line.

factorizations can reduce the memory requirements by one
or two orders of magnitude. Nevertheless, the memory
requirements can still exceed 1TB.

To further reduce the memory requirement, BIGSTICK
may be run in a hybrid MPI+OpenMP mode with MPI for
the inter-node parallelism and OpenMP for intra-node par-
allelism. Typically, memory requirements are independent
of OpenMP parallelization, while for MPI more memory
is needed as the number of tasks increases [14]. Thus,
using OpenMP may save a significant amount of memory
when running on emerging manycore architectures that have
O(100) cores. Specifically, in BIGSTICK, OpenMP enables
the sharing (rather than duplication) of both vector data as
well as matrix reconstruction information. Furthermore, with
only one MPI process per node, BIGSTICK can completely
avoid the intra-node reduction operation needed by the
sparse matrix vector multiplication across multiple MPI
processes.

Figure 1 shows the strong scaling OpenMP performance
of the baseline BIGSTICK implementation running on a
64-core Knights Landing processor for a small (single



node class) 10B test problem. Clearly, baseline performance
rapidly departs from the ideal (linear) scaling line. Analysis
showed performance suffers heavily from poor data locality
and load imbalance at high thread concurrency. This is
mainly related to the complex data access patterns of BIG-
STICK that exhibit random characteristics. To address these
two issues, we develop a scalable OpenMP implementation
that partitions the workloads directly based on data locality.

The rest of the paper is organized as follows. In Section II,
we will discuss some related work. Section III will describe
the overview of the BIGSTICK algorithm followed by a
discussion of both the original and optimized OpenMP im-
plementations in Section IV and V respectively. Section VI
introduces the experimental platform and two data sets,
while Section VII examines the strong scaling performance
on both conventional multicore and emerging manycore
processor architectures. Moreover it includes a discussion
of the effects of both hybrid programming models and
hierarchical memory (DDR+MCDRAM) on performance.
Finally, we will summarize our findings, insights, and future
work in Section VIII.

II. RELATED

In our previous work [15], we have developed a weighted
load balancing strategy to balance the Sparse Matrix Vec-
torization (SpMV) workload across MPI processes. In this
work, we continue to apply this approach to partition the
workload among OpenMP threads. Our goal is to develop
an efficient OpenMP implementation which can scale up to
all the threads on a manycore node.

Based on the treatment of the nonzero matrix elements,
configuration interaction codes can be divided into two
categories — those that explicitly store the nonzero matrix
elements as in OXBASH [3] and MFDn code [17], or
those that reconstruct the nonzero matrix elements on the
fly as in ANTOINE [6], NATHAN [5], NuShellX [4],
EICODE [12], and BIGSTICK [8]. BIGSTICK and MFDn
are the only two codes that have been ported to large-
scale distributed memory platforms [2], [13]. Compared with
MFDn, BIGSTICK can solve comparable problems with an
order of magnitude less memory.

Ultimately, scatter-add is the core computational challenge
faced when threading the application of the Hamiltonian
operator (matvec) in BIGSTICK. That is, random memory
locations are incremented with the corresponding contri-
bution from the Hamiltonian. In stored matrix representa-
tions, straightforward implementations of SpMV with CSR
data layouts completely sidestep this problem. However,
in MFDn, where symmetry is exploited, a sparse matrix
transpose-vector multiplication is required (effectively a
CSC computation). Previous work transformed the scatter-
add challenges of synchronization and data locality associ-
ated with CSC through the use of compressed sparse blocks
(CSB) [1].
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Figure 2. A schematic diagram of the SpMV operation. The application of
the Hamiltonian matrix to the initial basis vector to produce the final basis
vector, is organized as operations from initial fragments to final fragments.

Similar challenges manifest in the particle-in-cell method
in which particles deposit mass or charge onto a grid. As
two particles may be bounded by the same grid points,
there is a race condition in threaded environments when
particle-to-grid interpolation is threaded over the list of
particles. A number of efforts have attempted to mitigate
these challenges through particle binning, particle redis-
tribution, atomic updates, transactional memory, and brute
force replication of grids [11], [10], [9]. Unfortunately, the
fine-grained scatter-increments associated with BIGSTICK
disqualify atomic updates while the sheer size of the vectors
prohibits replication on manycore architectures.

III. BIGSTICK ALGORITHM OVERVIEW

BIGSTICK, following other CI codes, uses the itera-
tive Lanczos algorithm to solve the matrix form of the
Schrödinger equation. Its dominant computation is the sparse
matrix-vector multiplication between the Hamiltonian matrix
(H) and the basis vectors. To efficiently parallelize this
operation, one is motivated to evenly distribute both the
nonzero Hamiltonian matrix elements and the vectors across
the MPI processes. To fulfill this purpose, the basis vector
is divided into fragments based upon the proton substate
eigenvalue Mp. Once the basis state vectors are divided
into n fragments, the Hamiltonian matrix will be divided
into n × n blocks correspondingly. Figure 2 illustrates this
process. Each block (i, j) includes all the jump operations
from fragment j of the input basis state vector to fragment i
of the output vector. Because of physical constraints, mostly
quantum selection rules, the nonzero matrix elements, as
well as the data for reconstructing those nonzero matrix
elements on the fly, is not uniformly distributed with the
basis elements. To aid in distributing work and memory,
the control information for reconstructing matrix elements
is contained in data structures we call bundles.

Although generalizations to three nucleons are possible, in
our experiments, the Hamiltonian operator can affect at most
two nucleons at a time. Thus we can classify the elements of



the Hamiltonian as PP (two protons), NN (two neutrons),
or PN (one proton and one neutron); a fourth kind of
element are the single-particle energies or SPE which only
contribute elements along the diagonal. Equation 1 shows
the relationship between the Hamiltonian operator and its
subtypes.

Ĥ = Ĥspe + Ĥpp + Ĥnn + Ĥpn (1)

Correspondingly, the bundles which orchestrate the appli-
cation of the SpMV, can be classified into four types: PP ,
NN , PN , and SPE. Each type has its own unique quantum
characteristics, leading to significant differences in computa-
tional cost when computing the nonzero matrix elements on
the fly. Therefore, empirically-derived weights are assigned
to different bundle types to affect load balance [15]. Some
bundle types can be further classified into backward and
forward subtypes.

A. SpMV workload partition

We can exactly predict the number of operations in a
block of Figure 2 (by operation we mean reconstruction
and application of a matrix element) from the bundle
information. MPI processes are assigned to blocks based
on the amount of associated work required for the blocks.
All processes assigned to the same block form a team. The
operations and associated data will be evenly distributed
among the team members. Figure 2 shows the MPI processes
divided into a two dimensional array of teams. Each MPI
process now owns a set of unique bundles and stores one
copy of a fragment of the input and output vectors.

B. Organization of Basis Vectors

BIGSTICK uses an M-scheme basis, which means every
many-body basis state has the same definite value of M
(the z-component of the angular momentum, an example
of a quantum number, that is, an eigenvalue which often
represents a conserved quantity). BIGSTICK allows two
species of fermions, typically protons and neutrons for
nuclear cases. Each basis state is a simple tensor product
of a proton Slater determinant (SD) and a neutron Slater
determinant; a Slater determinant is the anti-symmetrized
product of single particle states, i.e. protons or neutrons.
All Slater determinants of a given species have the same
number of particles, but may have different M, parity, and
W (weighting, used for truncating the many-body basis).

As M quantum numbers are additive, the total M is
Mp+Mn (the sum of proton and neutron M -values). Absent
of other constraints, every proton SD with Mp not only
can, but must be combined with every neutron SD with Mn

where Mn = M −Mp. BIGSTICK applies this constraint
to construct and access the many-body basis vectors. For
a product basis state constructed from proton SD ip and

pstart 

nstart 

basis vector 

nstart nstart 

Figure 3. The relationship between basis vector, pstart, and nstart.
Pstart(ip) is the offset of proton SD ip in basis vector while nstart(in)
is the offset of neutron SD in relative to its matching conjugate proton SD.
Pstart(ip) + nstart(in) determine the position of a combined basis in
basis vector.

neutron SD in, its index ibasis in the basis vector can be
derived using two arrays, pstart and nstart:

ibasis = pstart(ip) + nstart(in) (2)

where pstart(ip) is the offset of proton SD ip in basis
vector while nstart(in) is the offset of neutron SD in
relative to its matching conjugate proton SD. The relation-
ship between many-body basis vector, pstart, and nstart
is shown in Figure 3.

IV. ORIGINAL OPENMP IMPLEMENTATION: THREADING
INSIDE BUNDLES

In the previous section, we discussed how the SpMV
workload is partitioned across MPI processes. Now, each
MPI process owns a unique set of bundles that are used
to orchestrate the SpMV operation, and a fragment of the
initial and final basis vectors. For each bundle type, the
process loops over all its assigned bundles and performs the
corresponding SpMV operations. Due to different quantum
characteristics, the method by which one computes nonzero
matrix elements and the resultant memory access patterns
to the basis vectors are different across bundle types.
Nevertheless, the partitioning of work among OpenMP
threads is similar.

Algorithm IV.1 shows in detail the OpenMP im-
plementation for bundle type PN backward opera-
tions. Every PN bundle is partitioned by all OpenMP
threads. A pre-computed partitioning is stored in the
bundle array. The workload is partitioned based on neu-
tron SDs. For thread mythread, the work from bun-
dle i is bound by bundle(i).startn(mythread) and
bundle(i).endn(mythread) (i.e. neutron start and end). The
access pattern to the basis vector vecout and vecin tends to
be effectively random.

Figure 4(top) illustrates the results of this partitioning.
There are some potential problems with this approach. First,
if the partitioned loop length (Line 9 in Algorithm IV.1) is
short, it may not be efficient to partition the loop across all
available OpenMP threads. Moreover, if the loop length is
comparable to the number of threads, there will be some



Algorithm IV.1 Original SpMV for type PN (threading inside bundle)
1: Partition all PN backward bundles among OpenMP threads based on neutron SDs and save results into bundle data

structure
2: for i = startBundle to endBundle do . Loop through all bundles assigned to this process
3: if bundle(i).type 6= ’PN’ then cycle end if . Do nothing
4: if bundle(i).dir = backward then . Backward direction
5: !$OMP Parallel
6: mythread = omp get thread num()
7: istart = bundle(i).startn(mythread)
8: iend = bundle(i).endn(mythread)
9: for njmp = istart to iend do . Mythread partition based on neutron slater determinant

10: nsdi = n1b isd(njmp) . Initial neutron slater determinant
11: nsdf = n1b fsd(njmp) . Final neutron slater determinat
12: . n1b isd, n1b fsd obtained through nstart
13: for pjmp = bundle(i).pxstart to bundle(i).pxend do . Across proton slater determinant
14: psdi = p1b isd(pjmp) . Initial proton slater determinant
15: psdf = p1b fsd(pjmp) . Final proton slater determinant
16: . p1b isd, p1b fsd obtained through pstart
17: Compute corresponding matrix element xme
18: vecout(psdf + nsdf ) += xme * vecin(psdi+ nsdi)
19: end for
20: end for
21: !$OMP End Parallel
22: end if
23: end for

Thread	0	 Thread	1	 Thread	2	

Bundle	A		 Bundle	C	Bundle	B	

Bundle	D	

Final 
Basis 
Vector 

Bundle A Bundle B Bundle C 

Bundle D 

Thread 0 Thread 1 Thread 2 

Original Implementation (inside bundles) 

Optimized Implementation (across bundles) 

Final 
Basis 
Vector 

Figure 4. Example in which three threads with four bundles (A,
B, C, D) access the basis vector. (top)Baseline code wherein threads
within each bundle and suffers load imbalance and poor cache locality.
(bottom)Optimized code has restructured the algorithm to improve data
locality and facilitate load balancing

degree of load imbalance (increasingly likely on manycore
processors). Second, the data accessed by an OpenMP thread
may range over the entire final basis vector. This can result
in cache and TLB performance issues. Finally, for the PN
backward bundles, the OpenMP partitioning is based on

neutron SDs, causing the loop in Line 12 (loop over proton
SDs) to access the basis vector with high strides (through
pstart) as shown in Figure 3.

Although one might suggest changing the OpenMP
scheduling policy (e.g. dynamic), it will have no effect
as the workload is statically partitioned inside the bun-
dles to avoid data hazards. Moreover, bundles cannot be
executed concurrently due to data hazards. Using locking
or atomic operations causes application performance slow-
down. Fundamentally, to achieve scalable performance, we
must change the algorithm so that it can balance the loads
across hundreds of threads and exploit the data locality so
that each thread can work on its own independent data sets
to avoid expensive synchronization operations.

V. LOCALITY-BASED OPENMP IMPLEMENTATION:
THREADING ACROSS BUNDLES

To address the problems with the original OpenMP imple-
mentation, our first step is to apply standard optimizations
to improve the data locality. This includes switching the
loops to avoid the high stride data access as shown in Al-
gorithm IV.1; applying the blocking technology to improve
cache reuse. Such changes have been reflected in the new
OpenMP Algorithm V.1. Lines 14-23 show that we avoid the
high stride access to both vecout and vecin by switching
the proton SD loops to the outside while Lines 13 and 17
show the blocking technology.



Algorithm V.1 Optimized SpMV Algorithm (threading across bundles)
1: Divide the dimension of final basis vector vecout into n regions
2: Go over all the bundles to compute the weighted access frequency of each region
3: Based on the frequency, divide vecout into nth regions . nth is the number of OpenMP threads
4: Adjust the region boundaries so that they fall on the boundaries of proton slater determinant (pstart)
5: Based on regions, partition all the bundles among threads and store the results into threadStart and threadStop arrays
6: !$OMP Parallel . Start OpenMP parallel
7: mythread = omp get thread num()
8: for i = startBundle to endBundle do . Loop through all bundles assigned to this process
9: switch bundle(i).type do

10: case SPE, NN, PP
11: Perform corresponding SpMV based on threadStart(i, mythread) and threadStop(i, mythread)
12: case PN . Perform SpMV for type PN
13: for njmpblock = bundle(i).nxstart to bundle(i).nxend, blocksize do . Across neutron slater determinant
14: for pjmp = threadStart(i, mythread) to threadStop(i, mythread) do
15: psdi = p1b isd(pjmp) . Initial proton slater determinant
16: psdf = p1b fsd(pjmp) . Final proton slater determinat
17: for njmp = njmpblock to min(njmpblock+blocksize, bundle(i).nxend) do
18: nsdi = n1b isd(njmp) . Initial neutron slater determinant
19: nsdf = n1b fsd(njmp) . Final neutron slater determinant
20: Compute corresponding matrix element xme
21: vecout(psdf + nsdf ) += xme * vecin(psdi+ nsdi)
22: end for
23: end for
24: end for
25: end switch
26: end for
27: !$OMP End Parallel

To address the load balancing problem and concentrate the
writes, we developed a new OpenMP algorithm to partition
the SpMV workload based on data locality as shown in
Figure 4(bottom). The final basis vector is partitioned among
the OpenMP threads so that each thread will be responsible
for all the write operations to its region. To balance the
SpMV workload, we cannot simply partition the final basis
vector based on its dimension. Instead, we must partition
based upon the number of write operations and the cost of
each operation. The cost of each update operation is the
weight associated with each bundle type.

To balance the workload, we first partition the index space
of the final basis vector into a fixed number of regions.
We then scan through all bundles to estimate the weighted
write frequencies for these regions. Based on the estimated
frequencies, we divide the basis vectors among OpenMP
threads with equal weighted update operations. In addition,
we need to adjust the region boundaries so that they fall
exactly on the pstart position, which points to the position
of proton SDs in the basis vector. Otherwise, the loop at Line
17 of Algorithm V.1 may need to be split across OpenMP
threads, increasing the complexity of the algorithm.

As long as we calculate the index space for each OpenMP

thread, we can revisit all the bundles to compute the
corresponding fragment for each OpenMP thread and store
the results into the threadStart(bundles, threads) and
threadStop(bundles, threads) data structures. This time,
the partition is based on proton SDs.

Line 6 creates the OpenMP parallel region. For each
OpenMP thread, it will scan over all the bundles and work
only on its own part as shown in Line 14 of Algorithm V.1
and Figure 4. Therefore, during the whole SpMV operation,
each OpenMP thread will write its own partition of the final
basis vector and no longer spread all over. Furthermore, short
loops may no longer need to be partitioned as long as they
update the same thread’s basis region.

VI. PLATFORMS AND DATA SETS

In this paper, we examine techniques to improve strong
scaling on a node via OpenMP. To that end, we examined
two architectures (multicore and manycore) and two data
sets (small and large).

A. Ivy Bridge

The Ivy Bridge (IVB) node contains two Xeon sockets
each with 12 out-of-order superscalar cores running at
2.4 GHz with 256b wide vector units and two hardware



threads. Each core includes private 32KB L1 and 256KB
L2 caches, and each processor includes a shared 30MB
L3 cache with over 300GB/s of bandwidth. The node has
64GB of DDR3-1866 memory. The nominal STREAM [18]
bandwidth to DRAM is roughly 103 GB/s.

B. Knights Landing
The Knights Landing (KNL) node contains a single, self-

hosted Intel Xeon Phi processor with 64 out-of-order super-
scalar (but to a lesser degree than Ivy Bridge) cores running
at speed of 1.4GHz. Each core has a 32KB L1 data cache,
two 512b vector units, and four hardware threads. Each tile
(2 cores) shares a 1MB L2 cache. The node contains 16GB
of MCDRAM and 96GB DDR4 2133 memory providing
about 80 GB/s of bandwidth. For most experiments in this
paper, we have configured the MCDRAM as a direct mapped
L3 cache and configure the directory in quadrant mode
(quadcache). This provides about 350 GB/s of STREAM
bandwidth for arrays that fit in cache. Overall, the memory
hierarchies look very similar to the IVB node with the caveat
that the KNL node’s L3 cache is 25× larger but half the
bandwidth. Nevertheless, KNL cache bandwidth is nearly
4× higher than IVB main memory bandwidth.

C. Data Sets
We select two problems, b10nmax6 (10B) and fe52 (52Fe)

that present different computational challenges. The first
problem, b10nmax6 is an ab initio calculation (also called
a no-core shell model calculation) that has 5 protons and
5 neutrons (10B); the designation Nmax = 6 describes the
model space and signifies the maximum excitation in units
of harmonic oscillator energies. There are 176,844 Slater
Determinants (SD) for both species. There are about 18,143
bundles used to reconstruct the nonzero elements for the
sparse Hamiltonian matrix. The basis vector size is around
12 million and the number of nonzero elements is about
13 billion. Nevertheless, in BIGSTICK, the total memory
footprint is less than 16GB memory and thus should fit in
the MCDRAM cache.

Fe52 has 6 valence protons and 6 neutrons, with a frozen
40Ca core. There are 38,760 Slater Determinants (SD) for
both species, but only 484 bundles are needed to reconstruct
the nonzero elements for the Hamiltonian matrix. The basis
vector size is 110 million and there are approximately
152 billion nonzeros — more than 10× the number in
b10nmax6. Nevertheless, the nonzero density is significantly
lower (10−6 for Fe52 versus 10−4 for b10nmax6). The total
memory footprint exceed 16GB memory thus resulting in
MCDRAM capacity misses. These two data sets represent
two common types of configuration interaction calculations
for nuclear structure.

VII. PERFORMANCE RESULTS AND ANALYSIS

In this section, we will study the strong scaling per-
formance on both the Ivy Bridge and Knights Landing

architectures. We show the performance improvement in two
steps. The first step focuses on the data locality which shows
the performance improvement due to avoiding the long stride
data access and cache blocking (labeled as “Locality”) and
the next step shows the cumulative improvement with the
new OpenMP workload partition (labeled as “Balanced”).

A. Strong Scaling Performance on Ivy Bridge

Figure 5(left) shows the strong scaling performance for
b10nmax6 as a function of the number of OpenMP threads
using scatter affinity (sockets, then cores, then hardware
threads). The original implementation does not scale well
beyond 16 OpenMP threads. Improving the data locality can
reduce the run time by about 25% across all concurrencies,
but does not improve scalability.

To understand why scalability was unaffected, we show
the time spent in SpMV on each OpenMP thread when
running with a total of 24 threads in Figure 5(right). If the
original SpMV implementation were perfectly load balanced
the line would be flat. However, it is clearly imbalanced with
the slowest cores requiring nearly 1.3× more time than the
average. The optimizations for locality improved SpMV time
on each thread, but did not affect load balance.

The original algorithm partitions each bundle among all
available OpenMP threads synchronizing after each bundle.
Due to certain quantum characteristics of b10nmax6, its bun-
dles are dominated by short loops and are thus a challenge to
partition among ever increasing numbers of threads. Figure 5
(right) shows that the application of the new partitioning
algorithm substantially improves load balance at 24-way
threading. As a result, overall scalability is substantially
improved at high thread concurrency (Figure 5 left).

The overall picture is somewhat different for Fe52 (see
Figure 6 left). Optimizations for data locality improved
performance by 45% — far more than on b10nmax6, but
not surprising given the larger basis vectors. However, the
improved load balancing algorithm had almost no effect. As
shown in Figure 6 (right), execution was relatively balanced
(albeit slow) to begin with. Note, compared with b10nmax6,
the Fe52 basis size and the total number of nonzero matrix
elements has increased by over 10×. However, the total
number of bundles was reduced by over 35×. As the work
within each bundle increased by over 350×, it was much
easier to load balance across large numbers of threads.

B. Strong Scaling Performance on Knights Landing

Figure 7 shows strong scaling performance on Knights
Landing as a function of the number of OpenMP threads.
We use 64 cores on this architecture and each core supports
4 hardware threads. For b10nmax6 data set (left figure),
improving the data locality reduces the wallclock running
times up to 64 threads (64 cores). Beyond 64, where
multiple threads contend for resources on a core and on
a tile (L2), performance begins to degrade. Although the
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Figure 5. The OpenMP strong scaling performance on the 24-core Ivy Bridge node for b10nmax6 (left). The dashed line segments represent the
HyperThreading results. And the load balancing across on the 24-core Ivy Bridge node for b10nmax6 (right). Note, each data point represents the time
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Figure 6. The OpenMP strong scaling performance on the 24-core Ivy Bridge node for fe52 (left). The dashed line segments represent the HyperThreading
results. And the load balancing across on the 24-core Ivy Bridge node for fe52 (right). Note, each data point represents the time spent by that particular
thread. Observe the large speedup from data locality.

locality optimizations have some benefit at small scale, as
on Ivy Bridge, algorithmic changes to affect load balancing
substantially improved performance on Knights Landing
delivering near linear scaling through 64 cores with 4
hardware threads per core further improving performance.

For fe52, even the baseline OpenMP implementation
scales well up to 64 threads and provides some continued
improvements through 256 threads. Improving the locality
can reduce the running times around 40% across all concur-
rencies except the 256 thread case. Similar to Ivy Bridge
on fe52, the new load balancing algorithm generates no
performance improvement up to 128 threads (in fact some
degradation in performance), but does provide further benefit
at 256 thread concurrencies.

Compared with the Ivy Bridge platform, the performance
effect of HyperThreading on Knights Landing is much more
pronounced. This is probably related with how many threads
are needed to saturate the memory and cache bandwidth
(hide latency). Further analysis is left for future work.

C. Hybrid Programming Models

Nominally, motivated by memory capacity, it is often
most efficient to run BIGSTICK with 1 MPI process per
node (and thus maximize OpenMP concurrency on a node).
Nevertheless, it is possible, for some configurations, to run
multiple MPI processes on a node. In this subsection, we
will study how the optimized load balanced implementation
performs as one trades OpenMP parallelism for increased
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Figure 7. The OpenMP strong scaling performance on the 64-core Knights Landing architecture for b10nmax6 (left) and fe52 (right). The dashed line
segments represent the SMT results.
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Figure 8. The benefit of a hybrid programming model on performance on the Ivy Bridge (left) and Knights Landing (right) systems. The right most data
represents a traditional flat MPI mode. Note, for data set fe52 on Knights Landing, there is insufficient memory capacity in cache mode for the 128x2 and
256x1 data points.

process parallelism.

Figure 8 shows the running times in a hybrid execution
mode normalized to pure OpenMP as one varies the number
of MPI processes and OpenMP threads while fixing total
concurrency to 24 threads on the Ivy Bridge and 256 threads
on the Knights Landing. Overall, the performance effect on
the Ivy Bridge is quite small for both data sets.

The performance effect on the Knights Landing is more
nuanced. For the fe52 data set, the best performance is
obtained when one MPI process and 256 OpenMP threads
are used. Analysis showed that although load balancing is
easily managed for this configuration, the time spent in MPI
collectives on vectors (shown in Table I and required for 2D

parallelizations of SpMV) generally correlated with overall
run time. Future work will examine techniques to mitigate
these effects in a multi-node KNL environment.

Table I
THE MPI REDUCTION TIME PER ITERATION ON KNIGHTS LANDING.

NOTE, ORDERING IS #MPI×#OPENMP.

1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1

Fe52 0 0.72 1.14 3.58 0.97 1.22 1.10 N/A N/A
B10nmax6 0 0.05 0.14 0.10 0.11 0.12 0.03 0.20 0.21

The best run time for the smaller data set, b10nmax6,
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Figure 9. The effect of memory architecture configuration (quadcache vs. quadflat) on KNL for b10nmax6 (left) and fe52 (right). Note, there is insufficient
MCDRAM memory capacity in quadflat for the 128x2 and 256x1 data points for b10nmax6 and insufficient memory for them in any mode for fe52.

is obtained with 8 processes of 32 threads — the result of
minimizing load imbalance (at 256 threads, load imbalance
was around 70%). As we described in Section III and IV,
the bundles are first partitioned among the MPI processes
and each process gets its own set of the bundles. Then,
the bundles will be partitioned among OpenMP threads. For
these two partitionings, the workload is estimated using the
same approach, the number of SpMV operations and its
associated costs. Currently, we use one cost for each bundle
type. This simple approach causes more load imbalance
when parallelism is dominated by either OpenMP or MPI.
Clearly, a more accurate cost estimation method is necessary
for high OpenMP concurrency for relatively small data sets
like b10nmax6.

D. Memory Configuration
On Knights Landing, the 16GB of MCDRAM can be

configured at boot time to operate in one of three modes.
First, one can configure MCDRAM to be a giant L3 cache
on the DDR memory (all data presented thus far used
this quadcache mode). Alternatively, one can configure
MCDRAM as a second NUMA node (“Flat” memory mode).
In such a regime some addresses (MCDRAM) are fast
and others (DDR) are slow. It is the responsibility of the
programmer to allocate data in the appropriate NUMA node,
or, as we did, rely on numactl to either bind memory
or preferably allocate memory in the desired NUMA node
(“Flat / MCDRAM”) or in DDR (“Flat / DDR”).

Figure 9 shows the run times for b10nmax6 and fe52
on Knights Landing as a function of MPI/OpenMP and
hierarchical memory configuration/usage. Note, “MCDRAM
Cache” represents the baseline data previously presented
in the paper, while “Flat / MCDRAM” and “Flat / DDR”
represents pinning data to either the MCDRAM or DDR

NUMA nodes in the flat memory mode. For b10nmax6 (left),
best performance is obtained when memory is allocated in
MCDRAM while the worst performance is obtained when
memory is allocated from DDR memory. Cache mode deliv-
ers the performance between Flat/MCDRAM and Flat/DDR.
Although the results fit well with our expectation, the
performance differences are far smaller than the differences
in bandwidths indicating we are far from the bandwidth
limit for this code. (n.b., due to smaller MCDRAM capacity
we could not run all the test cases when allocating only in
MCDRAM memory and thus use --preferred allocation
via numactl). For fe52 (right), all three cases deliver
similar performance with “Cache” being slightly better.

VIII. CONCLUSIONS

Thread parallelism is a key technology of manycore
architectures. Developing scalable algorithms that can make
effective use of all threading resources on a manycore node
is critical in harnessing the massive threading parallelism
provided by the manycore architectures. Generally speaking,
we face two contending forces in the manycore era: data
locality and load balancing in highly threaded environments.
The baseline implementation of BIGSTICK attempted to
address these challenges by organizing computations around
bundles wherein all threads would collaborate on one bundle
at a time. On architectures with large shared (and obviously
coherent) caches multiple threads could realize constructive
locality. Similarly, when loop parallelism greatly exceed
thread parallelism, load balancing was easily attained.

Unfortunately, on manycore processors like Knights Land-
ing, both of these underlying assumptions are invalid. There
are no large, low-latency, on-chip caches, but rather an
archipelago of tiles with a private cache and a few threads.



Moreover, thread parallelism can match, if not greatly ex-
ceed, loop parallelism. As a result, a major restructuring of
the computations in BIGSTICK was required.

The implementation we developed restructures compu-
tations so that threads are loosely coupled and work on
independent data sets (obviating the need for fine-grained
synchronization or atomic operations) spanning multiple
bundles in BIGSTICK. We demonstrate scalability to 256
OpenMP threads on the Knights Landing architecture and
24 threads on a dual-socket Ivy Bridge node. On two
very different configuration interaction nuclear structure
calculations, the resultant implementation outperforms the
original by up to 7× and 3× on KNL and IVB respectively.
The results indicate that improving the data locality by
restructuring the codes is critical to the viability of manycore
architectures. However, we observe that hierarchical memory
architectures had little effect on performance (cores likely
underperform due to a lack of vectorization).

In the future, we will migrate our KNL-based opti-
mization efforts to the “Cori” XC-40 supercomputer at
NERSC. There, we will continue to improve vectorization on
KNL, study the effects of different KNL clustering modes
(e.g. SNC4) on performance, improve the performance of
MPI_Allreduce vector operations on the Knights Land-
ing, and examine ways to more accurately estimate the
workload to enable effective load balancing.
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