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Neoplasms evolve1–3. This evolution has been recog
nized since 1976 (REF. 4), and it explains the processes 
of both carcinogenesis and acquired therapeutic resist
ance1. The evolution of neoplasms is shaped by the 
selective pressures of their microenvironmental eco
logy. But between and within cancer types, tumours 
probably display differences in the dynamics of cancer 
evolution and ecology, including the rates at which 
new clones appear and go extinct, how different those 
clones are from one another and whether they appear 
in bursts or at a more regular pace. Many of the evo
lutionary and ecological properties of a neoplasm are 
clinically relevant5–16, though this is not always true6,16,17, 
and in most cases their clinical relevance has not yet 
been tested. There is a need for a common language and 
conceptual categories for drawing clinical distinctions 
that capture the relevant genetic, environmental and 

kinetic parameters that impact tumour adaptation and 
progression, as well as response to therapy. A classifica
tion system for the evolution and ecology of neoplasms 
would provide clinicians and researchers with a foun
dation for developing better prognostic and predictive 
assessments of tumour behaviour, such as response to 
an intervention.

The ultimate purpose of a classification system for 
the evolution and ecology of neoplasms is to provide a 
descriptive tool by which to improve clinical manage
ment with respect to the overall survival and quality of 
life of the patient. It would also help to drive research and 
discovery in cancer biology and oncology.

Below, we discuss the methods by which we reached 
consensus as well as the goals and guiding principles 
we aspired to in the development of a framework for 
classifying neoplasms. We then discuss each of the 
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Clones
Sets of cells that share an 
alteration of interest due to 
descent from a common 
ancestor cell.
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Abstract | Neoplasms change over time through a process of cell-level evolution, driven by 
genetic and epigenetic alterations. However, the ecology of the microenvironment of a 
neoplastic cell determines which changes provide adaptive benefits. There is widespread 
recognition of the importance of these evolutionary and ecological processes in cancer, but to 
date, no system has been proposed for drawing clinically relevant distinctions between how 
different tumours are evolving. On the basis of a consensus conference of experts in the fields 
of cancer evolution and cancer ecology, we propose a framework for classifying tumours that is 
based on four relevant components. These are the diversity of neoplastic cells (intratumoural 
heterogeneity) and changes over time in that diversity, which make up an evolutionary index 
(Evo-index), as well as the hazards to neoplastic cell survival and the resources available to 
neoplastic cells, which make up an ecological index (Eco-index). We review evidence 
demonstrating the importance of each of these factors and describe multiple methods that can 
be used to measure them. Development of this classification system holds promise for enabling 
clinicians to personalize optimal interventions based on the evolvability of the patient’s tumour. 
The Evo- and Eco-indices provide a common lexicon for communicating about how neoplasms 
change in response to interventions, with potential implications for clinical trials, personalized 
medicine and basic cancer research.
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components of the classification system as well as 
 methods for measuring them and for dividing tumours 
into an initial set of 16 classes. We discuss how such a 
classification system could be developed, improved and 
used clinically in the future.

Methods
We convened a consensus conference of experts in 
the fields of cancer evolution and cancer ecology to 
lay the groundwork for the development of an evolu
tionary and ecological classification system. The initial 
participants (Maley, Aktipis, Graham, Sottoriva, Boddy, 
Janiszewska, Silva, Gerlinger, Anderson, Brown and 
Shibata) were among the faculty for the Evolution and 
Ecology of Cancer summer school funded by Wellcome 
and held at the Wellcome Genome Campus in Hinxton, 
UK, in July of 2016. Input from all participants was solic
ited, and after discussion, we identified areas of consen
sus. Afterwards, other leaders in the field were invited 
to join the effort by coediting and discussing the devel
oping statement. All authors reviewed and approved the 
final statement. Wellcome Genome Campus Advanced 
Courses and Scientific Conferences provided financial 
support for the consensus meeting. We have named 
the classification system, with their permission, in 

appreciation of Wellcome’s support. Please note that the 
statement reflects the opinions of the authors and not 
necessarily those of Wellcome.

Goals and guiding principles
Our development of this framework has been guided by 
several goals and principles. We agreed that an ideal clas
sification system should have the following properties. 
First, it must be able to alter a clinical decision point. 
Second, it should be simple enough to be easily remem
bered and applied. Third, it should also align with our 
current understanding of the dynamics of neoplasms. 
Fourth, the classification system should be general 
enough to be applied across different types of neoplasm, 
recognizing that the types of measurement may need to 
be individualized to a given type of cancer.

This framework is based on fundamental theoreti
cal principles underlying evolutionary and ecological 
dynamics. It is not based on any particular assay or 
parameter but rather captures the fundamental drivers 
of tumour evolution. This is a necessary first step that we 
hope will lead to many methodological and measurement 
innovations to quantify the key components of tumour 
evolution and ecology that we identify here. Because 
the evolution of cancer is still a relatively new field, there 
is still uncertainty about the best ways to measure and 
describe the evolution and ecology of a tumour.

There are also practical considerations in the con
struction of a classification system. If a tumour could 
be classified based on a single biopsy from standard 
assays such as those that can be done on formalinfixed 
paraffin embedded (FFPE) tissue or standard radio
logical images, translation to the clinic would be rela
tively easy. However, studies have not yet been done to 
test whether measures of the evolvability of a tumour 
from a single biopsy sample are sufficient or whether 
multiple samples substantially improve predictions of 
clinical outcomes15. We hypothesize that we will need to 
extensively sample neoplasms over both space and time 
in order to accurately quantify their evolvability, but this 
remains an open question. It is clear, however, that evo
lutionary analyses are limited if the clonal structure of 
the primary tumour is unknown18. The use of cellfree 
DNA (cfDNA) from liquid biopsy samples should facili
tate longitudinal studies19, although deconvoluting the 
clones within such a mixed sample remains a challenge20.

Framework for classifying tumour evolution
There are many wellestablished ways to classify tumours, 
largely based on extent of spread and morphological 
appearances (for example, stage and grade). An evolu
tionary classification system would augment current 
schemes by further capturing the evolvability of a tumour. 
How much intrinsic genetic instability does it have? How 
likely is it to respond quickly to a new selective pressure 
such as a therapeutic intervention? For example, rapid 
progression after chemotherapy is probably driven by 
preexisting resistant variants, and therefore, failure is 
more likely in tumours with more subclonal diversity 
(intratumoural heterogeneity)6. Moreover, it would be 
useful to classify evolution through time. For example, 
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Selective sweep
The spread of a mutation 
through a population due 
to natural selection.

Phenotypic diversity
The variety of different cellular 
states present in a population 
of cells.

Functional diversity
The variety of life history 
strategies present in a 
population of cells.

a second biopsy from the same patient after therapy may 
reveal minimal diversity, indicating a recurrent tumour 
derived from a single clone, or substantial diversity, sug
gesting intrinsic resistance by the majority of tumour 
cells. There was widespread agreement at the consensus 
conference that both the evolutionary dynamics of the 
neoplastic cells themselves (cancer cell intrinsic factors) 
and the microenvironment that defines the ecology of 
those cells (cancer cell extrinsic factors) are important 
in predicting the future behaviour and response of a 
tumour. To capture this, we have developed a framework 
for both an evolutionary index (Evoindex) that describes 
the intrinsic evolvability of the neoplastic cell popula
tion and an ecological index (Ecoindex) that describes 
potential selective pressures imposed by the surrounding 
microenvironment.

The Evo-index
The Evoindex (D#Δ#) is a combination of two funda
mental components: the diversity (D) or intratumoural 
heterogeneity of the neoplasm and how it changes over 
time (Δ). In other words, the Evoindex quantifies het
erogeneity in both space and time (FIG. 1a). Both diver
sity and changes in the clonal structure of a tumour over 
time are objective measures and may be assessed as part 
of preclinical studies or clinical trials.

Diversity. The heterogeneity that is currently present in 
a population defines its capacity to respond, at a popula
tion level, to selective pressures. This diversity is the fuel 

for the engine of natural selection. There are different 
forms of diversity, including genetic diversity, epi genetic 
diversity, phenotypic diversity and functional  diversity. 
Genetic diversity can predict progression to invasive 
cancers12,13 as well as recurrence and survival5–9,16. The 
relationship between diversity and clinical outcomes is 
not universally consistent across different cancer types6,16 
and can be complicated (BOX 1).

Diversity can be a proxy for the likelihood that a 
resistant clone is present in a neoplasm. We currently 
do not know all the mutations and epigenetic alterations 
that make a neoplastic cell resistant to a particular ther
apy, and even those we do know are difficult to detect 
if they are present in only a small region of the tumour. 
Compared with homogeneous neoplasms, diverse neo
plasms are more likely to harbour resistant clones and 
are also probably more likely to evolve resistance in 
the future.

Multiple forms of diversity within a neoplasm may 
be clinically important, not only as fuel for natural 
selection but also as biomarkers of clinically targetable 
dynamics. For example, if high levels of genetic diversity 
are indicative of high levels of moderately deleterious 
passenger mutations21,22, then suppressing mechanisms 
in the cell that buffer against those deleterious effects, 
such as chaperone proteins, should preferentially harm 
neoplastic cells21. Alternatively, diversity may be indic
ative of cooperation between clones, through mech
an isms such as cross feeding23–27. These mechanisms 
of cooperation are themselves potential therapeutic 

Figure 1 | The Evo-index and how it changes. a | The evolutionary index (Evo-index) is composed of two factors 
corresponding to heterogeneity over space (diversity, D) and heterogeneity over time (change over time, Δ). By ‘change’, 
we mean both change in the genetic, epigenetic and phenotypic alterations present in the population and change in the 
frequencies of those alterations in the neoplastic cell population. What measures of D and Δ are best is an open question. 
In addition, how these factors should be stratified into two, three or more classes is also an open question. Here, for 
simplicity, we provide examples of the kinds of dynamics that could be categorized into a simple 2 × 2 classification. 
b | The genetic composition of a tumour may change either slowly (Δ1) or rapidly (Δ2) in a variety of ways. On the left, 
a tumour may have low diversity (D1) at time 0 because it is a new tumour or there has been a recent homogenizing 
clonal expansion. That tumour may be quiescent and so appear substantially the same at time 1 (D1Δ1), or it may 
accumulate clones, some of which expand, to generate a diverse tumour by time 1 (D2Δ2). Alternatively, a tumour may 
be diverse (D2) at time 0 because it is old or has a high mutation rate and is evolving neutrally. At time 1, that tumour 
may have been homogenized by a selective sweep (D1Δ2) or may continue on its current trajectory with gradual turnover 
of its clones (D2Δ1).
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targets. Theory suggests that targeting  cancer cell 
 cooperation should provide weaker selection for 
 resistance than cytotoxic therapies28.

It is likely that not all forms of diversity are equal, and 
future work must test which are clinically relevant. It 
may be the case that measures of functional diversity or 
even phenotypic diversity are better predictors of clinical 
outcomes than measures of genetic diversity (as many 
genetic mutations will have no phenotypic consequence), 
and the ideal measures may vary between tumour types.

Measuring diversity. Of the four components of the clas
sification framework, the largest number of methods has 
been developed for measuring diversity (intra tumoural 

heterogeneity)13,25,29 (TABLE 1). There is a large litera
ture in ecology on the quantification of diversity30. The 
overall diversity of a large area, or landscape (gamma 
diversity), can be broken down into the diversity within 
local regions (alpha diversity) and the differences between 
regions (beta diversity)31. Inherent in this definition 
is the concept that measuring diversity requires defining 
the spatial scale that one is examining. One might define 
withinregion diversity as the diversity measured within 
a biopsy sample, while betweenregion diversity would 
account for differences between biopsy samples in multi 
region sampling studies. Alternatively, one could take a 
sample across an entire tumour, perhaps using cfDNA, 
and estimate the diversity of the entire population. Most 
of the studies to date have focused on withinregion diver
sity5,6,32,33 or the diversity of the entire tumour12–14,25. The 
use of ecological statistics for measuring between region 
diversity in tumours remains relatively  unexplored. 
Established measures of differences between microbial 
communities34 could possibly be applied to measuring 
differences between biopsy samples.

There are many ways to measure diversity30 and a 
number of challenges to measuring diversity in neo
plasms, as discussed in BOX 1. In Barrett oesophagus, 
Merlo and colleagues tested many of those measures 
of diversity and found that high levels of diversity 
were predictive of progression to cancer, regardless of 
the measure13,14. Because evolution is driven by the fit
ness outliers35, and it may take only one resistant cell at 
diagnosis to eventually cause drug resistance or relapse 
after therapy, much of the predictive value of measuring 
diversity may lie in the long tail of rare clones. Because of 
this, we recommend using either a count of the number 
of clones (‘species richness’) or Shannon index, which 
equally weights number and relative abundance of 
clones, to quantify diversity30.

The feasibility of obtaining a complete picture of the 
diversity of a neoplasm, through multiregion sampling 
or cfDNA, varies across tumour types. In Barrett oesoph
agus, bladder cancer and prostate cancer, multiregion 
sampling is part of the current standard of care36–38. In a 
wellmixed neoplasm, such as a blood cancer, a single 
sample may be sufficient, but it requires singlecell assays, 
which have their own challenges (BOX 1). In other tumours 
that are difficult to sample, such as pancreatic cancers, we 
are lucky to get more than one biopsy sample. The main 
challenge in using cfDNA is detecting it in serum for 
 cancers that have not yet metastasized, although the level 
of tumour cfDNA in serum varies across cancer types. 
A recent study was able to detect tumour cfDNA in 97% 
of earlystage lung squamous cell carcinomas but only 
19% of earlystage lung adenocarcinomas39.

The interpretation of the diversity of a neoplasm 
depends on the context of its history. A neoplasm that 
has just been homogenized by a therapy that killed most 
of the clones in that neoplasm is different from a neo
plasm that is homogeneous because it has a very low 
mutation rate and has not had enough time to accumu
late many clones. By contrast, a high level of diversity 
in a neoplasm that has just passed through a therapeu
tic bottleneck may be a sign that therapy selected for 

Box 1 | Important issues in the measurement of diversity in neoplasms

There are a number of important issues and open questions in the measurement of 
diversity in neoplasms: How are clones defined? What is the best measure of diversity? 
How do the measures scale up to genomic assays? Are there nonlinear associations 
between diversity and clinical outcomes? Is genetic or functional diversity more 
predictive? Is it sufficient to measure diversity in the primary tumour, or do we need to 
measure diversity in the metastases? Is it adequate to estimate diversity from bulk 
biopsy assays, or do we need to measure diversity at the single-cell level?

In order to measure diversity, one must first define the unit that is being measured. 
We typically cluster cells into clones, but there is currently no general definition of a 
clone. Typically, for expediency, clones are defined as the set of cells that share an 
alteration of interest, due to descent from a common ancestor cell. A more stringent 
definition of a clone is a set of cells that have the same genotype based on some 
assay12,13. However, that definition does not scale well to whole-genome assays 
because every neoplastic cell probably displays a unique genome. By contrast, 
measures of divergence between samples only become more accurate as assays scale 
up to the genomic level12–14,46. Another alternative would be to reconstruct the cell 
lineage (phylogeny) of a neoplasm and then define clones based on the topology of 
the cell lineage, although this is not straightforward. A similar problem has been 
addressed by viral and bacterial phylogenetics, and methods may be borrowed from 
these fields167,168.

It is not clear which alterations should be used to measure diversity. Some forms of 
diversity, such as mutations in exons and copy number changes, may be more clinically 
relevant than other forms of diversity. However, Merlo and colleagues found that 
defining a clone based on selectively advantageous mutations and defining a clone 
based on evolutionarily neutral mutations both predicted progression to cancer13.

Instead of genetics, one could measure diversity based on RNA expression or other 
phenotypic characteristics169,170. Because selection acts on phenotypes, this may be a 
better predictor of a the evolvability of a tumour than genetic measures of diversity. 
Gatenby and colleagues have argued that because of this and the fact that there are 
many different genotypes that can produce the same phenotype, analysis at the 
phenotype level may be easier and provide a better measure of evolvability than 
analysis at the genotype level171,172. However, this hypothesis is controversial, and only 
a few studies have tested it173,174. Unfortunately, the literature on how to measure 
functional diversity remains poorly developed30.

The diversity of the primary tumour may differ from that of any metastases. Because 
the primary tumour is often removed and it is the metastases that kill patients, we may 
have to measure diversity within and between any metastases that can be sampled in 
order to best predict clinical outcomes2.

It is currently difficult to measure many loci or phenotypes at the single-cell level. 
Bulk sequencing or other assays at the biopsy level introduce significant biases. For 
example, recent mutations that are present in only a single cell or a small minority of 
cells are missed in bulk assays, biasing results to the early mutations and those 
mutations driving clonal expansion175. Preliminary analyses show that a mixture of 
clones within a biopsy sample can also mislead any analyses based on estimates 
of shared ancestry, such as phylogenetic reconstruction176. However, it is currently 
difficult to assay enough loci in enough single cells to reconstruct reliable cell lineages 
and identify rare clones177.
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Genetic drift
Change in allele frequencies 
due to sampling error of gene 
copies from one generation 
to the next. Genetic drift is 
stronger in smaller 
populations.

Muller’s ratchet
Accumulation of deleterious 
mutations in asexual 
populations. This accumulation 
is irreversible because in 
asexual populations, 
deleterious mutations cannot 
be purged through 
recombination.

a mutator phenotype40. Because of this complication, 
we agreed that we must measure how neoplasms are 
changing over time as well as diversity.

Change over time. There are a variety of ways that a 
neoplastic cell population changes over time. These 
include mutations, natural selection and genetic drift. 
One important parameter of change over time is the 
mutation rate, which describes how fast a lineage accu
mulates new mutations. Of course, there are different 
mutation rates induced by each mechanism for genetic 
and epigenetic alteration, including mutation signa
tures induced by specific agents41 as well as telomere 
erosion, nonhomologous recombination, other forms 
of chromosomal instability, CpG methylation and his
tone modifications. Which mechanisms are relevant 
will depend on individual tumours and may vary across 
the different clones within the same tumour.

When we talk about and measure mutation rates, 
we are implicitly assuming that mutations happen at a 
regular rate. Evolutionary biologists call these ‘molecu
lar clocks’ (REF. 42). However, a catastrophic mitosis can 
generate chromosomal alterations across the genome in 
a single event43,44. There is a continuum from regular, 
gradual, clocklike small alterations to sporadic, punctu
ated, large alterations. For example, a lineage may evolve 
different mutation rates across its history, as happens 
with the evolution of a mutator phenotype45,46. If a cell 

lineage can change suddenly, in what used to be called a 
‘macromutation’ generating a ‘hopeful monster’ (REF. 47), 
then that tumour may have a different capacity for evo
lution compared with a tumour that is constrained to 
evolve through the slow accumulation of mutations 
with small phenotypic effects. There is a large cancer 
literature on genetic instability that is relevant here48,49, 
and evidence has shown that tumours with extremely 
high mutation rates may have a better prognosis than 
tumours with moderate rates6,11,21,22,50. High levels of 
genomic instability may make it difficult for cell lineages 
to maintain the adaptive information encoded in their 
genomes, generating nonviable daughter cells, and may 
also produce an abundance of neoantigens that stimu
late an antitumour immune response6. Furthermore, 
high mutation rates of single nucleotide variants can 
generate deleterious mutations, leading to the fitness 
decline of neoplastic cell lineages in a form of Muller’s 
ratchet21,51. This may even cause tumour regression in 
some cases21,22.

The genetic composition of a population changes 
over time not only through the rate at which muta
tions arise and the genetic drift of those alleles but also 
through the action of natural selection. Natural selec
tion leads to adaptations, such as drug resistance52, that 
are clinically relevant. Detecting and measuring natural 
selection is likely to be an important component of our 
future clinical management of cancers.

Table 1 | Measures and assays for the factors that go into the Evo- and Eco-indices

Icon Factor Statistics Assays

High

Low

Diversity (D) • Divergence12–14,46

• Number of clones (richness)6,12–14

• Shannon index12–14

• Simpson’s index12,13

• Functional diversity115,169,170

• Phylogenetic trees20,61–63

• Whole-exome and whole-genome sequencing
• Multi-region sequencing
• SNP arrays
• Methylation arrays
• FISH
• Single-cell DNA and RNA sequencing
• Cell-free DNA sequencing19

• RNA-Seq
• Proteomics
• Radiology

High

Low

Change over time (Δ) • Mutation rates17,178

• Estimates of selection17,179

• Clonal expansion rates14

• FST (REF. 60)
• Nei’s standard genetic distance57,58

• Change in above diversity statistics

• Longitudinal sampling
• Whole-exome and whole-genome sequencing
• Cell-free DNA analysis19

High

!

Low

Hazards (H) • Abundance of infiltrating lymphocytes82,83

• Morisita–Horn index of colocalization of cancer 
cells and lymphocytes75

• Signatures of immune activation82,83,101

• Density of pathogenic microorganisms99

• Prevalence of microbial virulence genes105

• Automated image analysis
• Immunohistochemistry
• RNA-Seq
• 16S rRNA sequencing

High

Low

Resources (R) • Degree of hypoxia146,149

• Density of blood vessels147,148

• Colocalization of cancer cells with fibroblasts160

• Concentration of ATP151, glucose and other 
nutrients

• Blood flow152,154

• Automated image analysis
• Immunohistochemistry
• MRI or PET–CT scans
• Intravenous induction of EF5
• Luciferase luminescence
• Mass spectrometry

Eco-index, ecological index; EF5, 2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide; Evo-index, evolutionary index; FISH, fluorescence in situ 
hybridization; FST, fixation index; MRI, magnetic resonance imaging; RNA-Seq, RNA sequencing; rRNA, ribosomal RNA; PET–CT, positron emission tomography and 
computed tomography; SNP, singe nucleotide polymorphism.
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Nei’s standard genetic 
distance
(DS). A measure of the genetic 
divergence between species or 
populations given their 
respective allele frequencies. 
When the mutation rate is 
constant, DS increases linearly 
with time, from zero to infinity. 
In a multiregional or 
longitudinal sequencing study, 
it would quantify the amount of 
genetic divergence between 
two regional or temporal 
biopsy samples.

Jaccard similarity coefficient
The proportion of species or 
clones that are present in both 
regions compared with the 
number of species or clones 
observed in the union of 
both regions.

UniFrac
A measure of the difference 
between biological 
communities that takes into 
account the phylogenetic 
distances (relatedness) 
between community members 
as well as their relative 
abundances.

Fixation index
(FST). A population genetic 
measure that estimates the 
proportion of global genetic 
variability that can be 
explained by population 
structure. In a multiregional 
sequencing study, it would 
quantify how much of the 
intratumoural heterogeneity is 
due to differences between 
regional biopsy samples.

The classification of a neoplasm’s change over time 
(Δ) will probably need to take into account both the 
speed at which a tumour acquires genetic or epi genetic 
alterations, or changes phenotypically, including how 
fast clones spread by natural selection, as well as the 
tempo of that change (from gradual to punctuated). 
The appropriate intervals for longitudinal sampling 
will depend on the rate of change over time53. Note that 
neutral, or ‘passenger’, mutations should not be ignored 
in these calculations because selective pressures change 
over time, particularly with the onset of therapy. Thus, 
resistance mutations, which may be deleterious or neu
tral in the absence of therapy, can become selectively 
advantageous for neoplastic cells exposed to therapy54.

Measuring change over time. Measuring change over time 
is complicated, whether it is genetic or phenotypic change 
(TABLE 1). FIGURE 1b illustrates a simple version of how the 
Evoindex can describe evolutionary changes in tumour 
cell populations. It is possible for there to be change over 
time but for diversity to remain stable, with a dynamic 
equilibrium of clones appearing and going extinct14. For 
single samples, past genetic changes over time can be 
indirectly inferred based on mutation frequencies17,55. 
Sottoriva and Graham have pioneered  methods to infer 
the mutation rate and to distinguish between tumours that 
are dominated by genetic drift versus those with evidence 
of natural selection after transformation. In the absence of 
selection, mutations that occur in the first cell division 
after transformation should appear in approximately one
half of all cancer cells, mutations that occur in the second 
round of cell division should appear in onequarter of all 
cancer cells, and so on17,56.

There are a number of measures of genetic change 
over time from population genetics that might be used 
on neoplasms, including Nei’s standard genetic distance57,58 
and the Jaccard similarity coefficient59, as well as measures 
of beta diversity that can also quantify changes in a 
community over time, such as UniFrac34 or the fixation 
index60. The degree of genetic divergence between sam
ples (called ‘nucleotide diversity’ in molecular popu
lation genetics) provides indirect information on the 
degree of change over time. Genetic divergence is often 
defined as the percentage of the genome that is differ
ent between pairs of samples12–14. This statistic provides 
predictive power independent of the number of clones 
for predicting progression12,13, supporting the framework 
of including both diversity and change over time in the 
Evoindex. Note that the same clonal structure can have 
radically different degrees of genetic divergence (FIG. 2). 
Maley and colleagues have calculated a mean pairwise 
divergence score between all pairs of samples from a 
neoplasm12–14. As the chance that two samples come 
from the same clone (and so have minimal divergence) 
depends on the size of the clone, the mean pairwise 
divergence blends the degree of divergence with clone 
size measures (and so blends D with Δ).

One of the primary tools for measuring change over 
time in evolutionary biology is phylogenetic inference, 
which reconstructs the history of a neoplasm61,62. 
Phylogenetic methods can be used to describe and 

quantify diversity patterns as well as rates of evolution 
across both space and time. Multiple phylogenetic 
approaches have been developed in recent years to 
study tumour evolution within a patient, both for bulk 
and singlecell data and from a variety of data types20,63. 
These methods depend on evolutionary models for the 
likelihood of molecular alterations occurring in neo
plastic cell lineages, although the development of these 
models is still in its infancy.

All of the measures discussed so far can be calcu
lated from a single timepoint. Of course, the degree 
and nature of change over time can be better measured 
directly with longitudinal samples. Minimally invasive 
assays, such as sequencing cfDNA from longitudinal 
blood samples, could reveal the action of natural or 
artificial selection in patients.

Incorporation of the Evoindex into clinical  trials 
can better describe, in evolutionary terms, why inter
ventions fail. Most human tumours at the time of 
clinical presentation contain multiple large clones6,16 
and probably many more small clones64,65, and relapse 
without a reduction in diversity would probably imply 
intrinsic resistance or perhaps that an intervention 
resulted in increased mutagenesis. By contrast, relapse 
with less diversity (D1) implies a bottleneck effect 
where only a minority of tumour cells survived the 
intervention, probably indicating selection for one or 
a few resistant clones.

The Eco-index
From the perspective of an organism or a neoplastic 
cell, its ecology can be broadly described by two charac
teristics: hazards (H) and resources (R)66–69 (FIG. 3). 

Figure 2 | Clonal divergence is independent of clonal 
structure. The cell lineages from two tumours may have 
the exact same clonal structure when they are sampled 
at the far right but have radically different degrees of 
genetic divergence. If one tumour (part a) has a higher 
mutation rate or has been accumulating genetic 
alterations for a longer period of time because those cells 
had a common ancestor, it will have a higher level of 
genetic divergence than another tumour (part b).
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Life history strategies
Relative investments in and 
mechanisms of growth, 
reproduction and survival of 
specific organisms or cells.

Morisita–Horn index
A statistic for measuring the 
extent to which two species 
tend to co‑occur in the same 
locales.

Hazards, here, are the things that can kill a cell. The 
relevant resources required for cell maintenance and 
growth are many and varied; whatever may potentially 
limit the growth of the neoplastic cell population66. Note 
that hazards and resources here are understood from 
the perspective of the neoplastic cell, not the patient. 
This is an important point from ecology — we can 
understand the evolution and responses of a popula
tion best when we take the perspective of an organism 
in that population70.

From an ecological perspective, the hazard and 
resource profiles for a species select for the particu
lar life history strategies of that species. Aktipis and 
colleagues argued that the same principles are true 
for neoplastic cells71. Species that are exposed to high 
 levels of hazard tend to evolve fast life history strategies, 
reproducing quickly and investing little in maintenance 
and survival. Organisms subjected to hazards generally 
leave behind higher levels of unexploited resources. 
Ecosystems with high or fluctuating resource supplies 
favour organisms that can rapidly reproduce to exploit 

those opportunities. This selects for speed over effi
ciency and can result in very high population densities 
but also fluctuating levels of unexploited resources. By 
contrast, populations that have few hazards and a steady 
supply of resources will tend to expand to the carrying 
capacity of the habitat, at which point natural selec
tion favours organisms that can best compete for and 
efficiently utilize the limiting resources72. The hetero
geneity of resources and hazards across space also has 
important impacts on the future evolution of cancer cell 
populations and prognosis for patients73,74.

Hazards. There are multiple sources of hazards for neo
plastic cells, including immune cells, toxins, waste prod
ucts, microorganisms and anticancer therapies. There is 
good evidence that immune predation is associated with 
improved cancer prognosis73,75–83. Furthermore, there is 
emerging evidence linking high mutation loads that 
result in the formation of neoantigens with immune 
predation and better survival in patients treated with 
immune checkpoint blockade therapies84–86. In addition, 
a high subclonal neoantigenic burden is associated with 
worse outcomes in lung cancer when patients are treated 
with checkpoint inhibitors87. These data suggest that 
subclonal neoantigens might impede cytotoxic immune 
responses against neoantigens that are present in every 
tumour cell.

Other hazards faced by neoplastic cells include 
the accumulation of waste products in their micro
environments67,69,88,89. This may include lactic acid and 
lactate buildup from glycolysis88,90 as well as reactive 
oxygen species from excessive cellular proliferation91. 
Methylglyoxal92,93, nitric oxide94,95 and advanced glyca
tion end products96,97 have also been implicated as toxic 
waste products in cancer microenvironments.

The role of the microbiome in cancer is complicated 
and largely unknown. While some microorganisms may 
promote tumours98,99, others have antitumour effects98, 
enhancing the efficacy of chemotherapy100. Thus, micro
organisms may act as both resources and hazards for 
neoplastic cells.

Measuring hazards. The current best measures of haz
ards for a neoplastic cell depend on measures of immune 
predation (TABLE 1). There is a large literature on the 
associ ation between infiltrating lymphocytes and favour
able prognosis in cancer73,75–83. In addition, a pancancer 
analysis revealed T cell signatures to be broadly favour
able prognostic markers across 25 cancer types101. Galon 
and colleagues have found that a signature of activated 
T cells from bulk tumour samples is also strongly pre
dictive of favourable survival76–78,83. Yuan and colleagues 
have shown that haematoxylin and eosin images can be 
computationally analysed to identify neoplastic cells, 
fibroblasts and lymphocytes and, furthermore, that 
patients with breast cancer who show colocalization of 
neoplastic cells with lymphocytes in the tumour have a 
better prognosis than patients with tumours in which 
the lymphocytes are separated from the neoplastic 
cells75. This is based on a standard ecological statistic, 
the Morisita–Horn index102, for quantifying statistically 

Figure 3 | The Eco-index. The ecological index (Eco-index) 
is composed of two factors corresponding to the hazards 
(H) and resources (R) available to the neoplastic cells. These 
capture the broad categories of selective pressures on a 
population. We have included example phenomena in this 
figure that might be observed in the different combinations 
of the degrees of hazards and resources. For example, a 
tumour with low hazards (H1) and low resources (R1) might 
be relatively barren, with few infiltrating lymphocytes but 
also poor perfusion and few supporting cells. Such an 
environment would select for cells that can either survive 
on few resources or move to locate more resources. High 
levels of hazards (H2) should, according to life history 
theory71, select for rapid proliferation, evasion of predation, 
migration away from the hazards67 and little investment in 
cell (and DNA) maintenance. High levels of resources allow 
neoplastic cells to rapidly proliferate. Thus, an H2R2 tumour 
would probably undergo massive cell turnover as cells are 
killed by the hazards and replaced by their rapidly 
proliferating sisters.
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significant colocalization in order to detect ecological 
interactions (in this case, predation). These results sug
gest that immune predation is a major form of hazard for 
a neoplastic cell, and measures of that predation should 
be a central component of the ecological index.

While much research has investigated the potentially 
toxic effects of low pH (REFS 103,104), fewer studies have 
examined the fitness consequences to cancer cells from 
various metabolites. Future research should determine 
the effects of different concentrations of putative toxic 
metabolites on cancer cell survival and proliferation 
in both cell culture experiments and mouse models. 
Measurements of anticancer drug concentrations in the 
tumour are also likely to quantify important hazards for 
the neoplastic cells. In addition, the micro biome (includ
ing the virome) of tumours can be surveyed to reveal 
microbial hazards for the neoplastic cells105.

Resources. Resources, including oxygen, glucose, 
micronutrients, survival signals, growth signals and 
space, are also critical to the future behaviour of a 
tumour. Surprisingly little is known about the inter
actions between cell metabolism and the availability 
of key resources, which ecologists term the organism’s 
‘foraging ecology’. Almost all cancers rely on glycolytic 
as opposed to aerobic metabolism, suggesting that 
resources can select for tumour phenotypes106,107. From 
nature, we know that selection favours feeding behav
iours that balance speed, efficiency and safety108. There 
must be strong selection for cancer cells to do the same 
(for example, through upregulation of transporters 
such as glucose transporter type 1, erythrocyte/brain 
(GLUT1, also known as SLC2A1)109). Measuring which 
resources limit the population size and proliferation 
of neoplastic cells would allow researchers to identify 
some of the strongest selective pressures on the tumour 
and to predict how it will change in the future. This 
approach would also provide targets for further redu
cing the evolvability of the neoplasm by lowering the 
carrying capacity of its microenvironment. 

In the broader ecological literature, consumer– 
resource theory110 shows that resource supply, deple
tion and availability affect population growth rates, 
population sizes and competition between different 
species (that is, distinct clonal lineages). Resource sup
ply represents the rate at which new resources enter the 
system (in this case, the tumour) and the rate at which 
resources become available through nutrient cycling 
within the system. The aggregate consumption of all 
cells depletes the resources, typically to levels much 
lower than experienced by normal tissues111. In fact, glu
cose becomes depleted below levels detectable by most 
analyses112. However, in some cases, immune predation 
and fluctuations in resource supply can prevent the 
complete exploitation of resources113,114, leaving patches 
of residual resources available for future exploitation115.

The potential resources for a tumour include the 
contents of plasma and the metabolites synthesized 
and secreted by the normal cells of the tumour and its 
microenvironment. Hence, the list includes proteins 
(albumins, globulins and fibrinogens), glucose, amino 

acids, fatty acids, hormones, electrolytes, oxygen and 
trace elements. The functional response and the value of 
the resources to the consumer are dictated by nutritional 
relationships116. In some cases, lack of a resource may 
trigger stasis, but in others, it may lead to cell death or 
dispersal117. At the moment, there are many open ques
tions about the intratumoural cycle of critical nutrients 
other than carbon and nitrogen (that is, phosphate, 
iron, copper, etc.)118. These nutrient cycles may contain 
 valuable therapeutic targets.

Some resources, particularly growth and survival 
signals, may be provided by the neighbouring stro
mal cells119,120. Nutrients may also be provided by the 
stroma. Pyruvate and lactate can be supplied to cancer 
cells by activated fibroblasts121,122, and fatty acids may 
be supplied by activated adipocytes123,124. Tumour and 
stroma only come into physical contact when the base
ment membrane is breached by malignant neoplastic 
cells. At this stage, cancer cells can directly interact with 
cancer associated fibroblasts, which are known to play a 
key role in the regulation and development of tumours, 
especially solid tumours120,125. In this secretory reactive 
state, fibroblasts facilitate not only cancer growth and 
progression126,127 but also treatment resistance128. In addi
tion, their presence in a tumour has been correlated with 
poor outcomes129.

Other resources must be delivered through the vas
culature. Folkman made the crucial link between angio
genesis and tumour invasion and metastasis, realizing 
that preventing new vessels from forming could be a sim
ple way to inhibit further tumour growth130,131. The pres
ence in many tumours of necrosis and hypoxia, which 
are major drivers of angiogenesis, attests to the impor
tance of resource limitation in tumours. Furthermore, 
there is evidence that necrosis is a prognostic factor in 
many cancers132.

The effects of resources on the evolution of a tumour 
are not defined simply by their supply, depletion and 
availability. Resource diversity may also be important. 
Whether resources are uniform across space or hetero
geneous (‘patchy’ or exhibiting gradients) makes a 
difference67,133. Patchy resources (and hazards) create 
multiple habitats (for example, rich and sparse regions) 
that may select for different clones that can survive in 
those regions and may be differentially responsive to 
(and differentially exposed to) therapies. Furthermore, 
we and others have shown that if those patchy resources 
change over time, then there is selective pressure on 
cells to move to escape regions of scarce resources 
and exploit transient regions of more plentiful 
resources67,113,114,134–136. Thus, ecological theory predicts 
that heterogeneous resources should select for invasion 
and metastasis134,135, and there is evidence to support 
that prediction in cancer137–143. Verduzco and colleagues 
found that intermittent exposure of some cell lines to 
hypoxia selected for increased resistance to a variety 
of chemotherapies, including etoposide, docetaxel and 
methotrexate, compared with unselected controls144. 
In addition, resource gradients often lead to rapid evolu
tion, as organisms that are able to invade more stressful 
environments can escape competition and flourish145. 
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Table 2 | An initial classification scheme

Type Icon Evo-index Eco-index Description

1 D1Δ1 H1R1 Like a desert, these tumours have few resources and little diversity. With low 
turnover, they are evolutionarily inert.

2 D1Δ1 H1R2 Much like normal tissue, these tumours have sufficient resources but evolve very 
slowly.

3

!

D1Δ1 H2R1 These tumours may have the best prognosis, with an immune response that probably 
helps to control the tumour, restricted resources and little capacity to evolve.

4

!

D1Δ1 H2R2 These tumours have ample resources but have also stimulated an antitumour 
immune response. However, they are otherwise evolutionarily inert.

5 D1Δ2 H1R1 These tumours are genetically homogeneous but are changing over time, perhaps 
through population bottlenecks or selective sweeps that re-homogenize the tumour.

6 D1Δ2 H1R2 These tumours are changing over time, potentially through homogenizing selective 
sweeps of new clones. While they may grow rapidly, with ample resources, their 
genetic homogeneity may make them vulnerable to therapy.

7

!

D1Δ2 H2R1 Predation by the immune system in these tumours may reduce genetic 
heterogeneity through selection against neo-antigens.

8

!

D1Δ2 H2R2 Natural selection may be driving the changes in these tumours and homogenizing 
them.

9 D2Δ1 H1R1 These tumours may be the result of the slow accumulation of clones over a long 
period of time or from exposure to mutagens.

10 D2Δ1 H1R2 Like a garden, these tumours support a variety of clones, are well fed and are 
protected from hazards such as predation, but they change little over time.

11

!

D2Δ1 H2R1 Accumulation of many mutations may have led to an immune response in these 
tumours, but they appear to be otherwise restricted in their growth and evolution.

12

!

D2Δ1 H2R2 These genetically diverse tumours are changing only slowly, perhaps due to a low 
mutation rate or relatively weak selective pressures.

13 D2Δ2 H1R1 These tumours are evolving rapidly, generating and maintaining new clones at a 
high rate. They are probably under selective pressure for the ability to survive and 
proliferate with scarce resources or otherwise escape these resource constraints.

14 D2Δ2 H1R2 With potentially the worst prognosis, these genetically diverse tumours are evolving 
rapidly and have plenty of resources. They should have the highest capacity to evolve 
in response to interventions or other changes in their environment.

15

!

D2Δ2 H2R1 These rapidly evolving and diverse tumours are under the dual selective pressures of 
resource limitations and immune predation.

16

!

D2Δ2 H2R2 Like a rainforest, these genetically diverse tumours are changing rapidly, with a 
constant churn of new clones evolving and others going extinct. Resources are 
abundant, although they are probably being consumed rapidly, and predation from 
the immune system is extensive.

D, diversity; Δ, genetic, epigenetic or phenotypic change over time; Eco-index, ecological index; Evo-index, evolutionary index; H, hazards; R, resources.
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Selective coefficients
The relative differences in 
fitness between genotypes.

Much needs to be learned about resource heterogeneity, 
consumer–resource dynamics and the foraging ecology 
of neoplastic cells.

Measuring resources. Measuring resources (and haz
ards) requires the consideration of relevant spatial and 
temporal scales. It is not yet clear how to combine meas
ures of the level of resources, their spatial variance and 
their stability over time into a single statistic.

There are various resources and methods to meas
ure them that may be prognostically relevant (TABLE 1). 
The proportion of a tumour that is necrotic or poorly 
perfused may be read from standard positron emission 
tomography and computed tomography (PET–CT) 
images146 and through other measures of blood vessel 
density147,148. The degree and patchiness of hypoxia can 
also be assayed in FFPE samples with antibodies against 
carbonic anhydrase 9 (CA9) or hypoxia inducible 
factor 1α (HIF1α)115 or via intravenous introduc
tion of 2(2nitro1Himidazol1yl)N(2,2,3,3,3 
pentafluoropropyl) acetamide (EF5) and the subsequent 
measurement of its binding in the tumour tissue149. EF5 
binding and related techniques have proved useful in 
the clinic for detecting regions of hypoxia, determining 
prognosis and measuring response to therapy150. While it 
is difficult to measure glucose concentration directly, an 
indirect measure may be made via immunohistochem
istry staining for expression of GLUT1115. Measures of 
ATP may also be a good indirect measure of the amount 
of resources available to neoplastic cells151. Glutamine, 
pyruvate, lactate, fatty acids, calcium, potassium, phos
phorus and various trace metals may also be limiting and 
important to measure, but this appears to be unexplored. 
Most of these measures will be limited to biopsy sam
ples analysed ex vivo and thus will suffer the problems 
of  spatial heterogeneity and sampling error.

In some cases, the problem of spatial hetero  geneity 
and sampling error can be avoided through gross 
measures of resources from radiological images152–154 
Radiographic images such as those obtained using 
PET–CT and magnetic resonance imaging (MRI) can 
provide valuable habitat data. In natural systems, there 
is usually a tight correlation between habitat and the 
types and characteristics of species inhabiting the habi
tat. Similarly, simply knowing the different habitat types 
within a tumour may be prognostic of the community 
of cancer cells and therapeutic outcomes. For instance, 
in glioblastoma, measures of fluidattenuated inversion 
recovery (FLAIR), T1 and T2 from MRI examinations 
after gadolinium administration identified distinct 
habitats that correlated with therapeutic outcome, 
independent of tumour size153. Texture analysis of MRI 
scans has been used to identify spatial heterogeneity and 
regional variations that are associated with microenvi
ronmental conditions, including cell density, tissue 
stiffness, blood flow and nutrient dispersion152,154. These 
may also be used to measure functional diversity (D) in 
tumours. Geographic information systems (GIS)155–157 
and ecology158 provide a rich literature and a source of 
tools for analysing spatial resource information, but 
these are rarely utilized in cancer research73,74.

Standard histopathology can provide measures of 
T cell infiltration and vascular and lymphatic density77. 
Using digital pathology, Lloyd et al. investigated the spa
tial distributions of oestrogen receptor (ER) expression 
in relation to vascular density and tissue necrosis in 
breast cancer histology specimens, revealing considera
ble regional variations in cancer proliferation phenotypes 
accompanied by vascularity and immune response115,159. 
Yuan and colleagues also used digital pathology to ana
lyse the spatial relationships between fibroblasts and 
neoplastic cells160. We have summarized the statistics and 
assays for measuring diversity, change over time, hazards 
and resources in TABLE 1.

Categories of tumours
The future behaviour of a tumour depends on both its 
evolutionary potential (the Evoindex) and the selective 
pressures on the tumour (the Ecoindex). A highly evolv
able tumour may or may not evolve immune evasion 
depending on whether the immune system is imposing 
a strong selective pressure on the tumour. By contrast, 
an immune response may or may not lead to immune 
evasion depending on the evolvability of the tumour. 
Thus, both the evolution and ecology of a tumour must 
be considered in predicting cancer outcomes. We there
fore propose to combine the Evo and Ecoindices to 
classify tumours. Dichotomizing each evolutionary 
and ecological factor of the Evo and Ecoindices into 
high and low values would produce 16 possible types of 
tumour (TABLE 2).

In order to classify a tumour, investigators will first 
need to define and validate clinically relevant thresholds 
for dichotomizing diversity, change over time, hazards 
and resources (TABLE 1). For example, in Barrett oesopha
gus, Maley and colleagues found that the upper quar
tile of diversity statistics distinguished patients who are 

Box 2 | The future of the Evo-index

Our framework for quantifying the evolvability of a neoplasm is based on the diversity 
within the tumour and how that diversity changes over time. Diversity and genetic 
change over time are the easily observable results of the underlying evolutionary 
dynamics. A future evolutionary index (Evo-index) may be based on the parameters 
that determine the rates of evolution15:

• Mutation rate17,178

• Population size of the self-renewing neoplastic cells (also known as ‘cancer stem 
cells’), which are the units of evolutionary selection in cancer3

• Generation time of the self-renewing neoplastic cells

• Selective coefficients17,179 or clonal expansion rates14

• Heritability of selectively advantageous phenotypes

Most of these parameters are currently difficult to measure. However, there is already 
good evidence that the number of self-renewing cells in a tumour is associated with 
adverse outcomes180,181, that self-renewing cell frequency increases with 
progression182,183 and that self-renewal signalling pathways are actionable and effective 
targets for therapy184,185. This is probably true for all types of tumour. Assaying 
self-renewing cells functionally (by xenotransplantation) is difficult, but quantifying 
stem cell signatures is possible. However, stem cell phenotypes are not stable and can 
be modulated both by genetic changes and (epigenetically) by ecological conditions 
(for example, hypoxia)3, suggesting that the importance of any one parameter is also a 
function of its heritability.
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likely to progress to oesophageal adenocarcinoma12–14. 
Once those thresholds are validated, a tumour would 
be measured for each of the four evolutionary and eco
logical factors to determine which of the 16 types it falls 
into. For example, if a tumour was below the thresholds 
for all four factors (that is, a D1Δ1H1R1 tumour), it 
would be a type 1 tumour.

A roadmap for improvements. We are not yet in a posi
tion to specify which measures and thresholds should 
be used to determine the D#Δ# or H#R# type of a 
tumour. Initial studies should test if these classifications 

significantly predict clinical outcomes and which evo
lutionary and ecological measures provide independent 
predictive value. They should also test if there are meas
ures that can apply across cancer types or if they have 
to be uniquely defined for specific organs or tumour 
subtypes. Future studies should test alternative meas
ures of diversity, change over time (BOX 2), hazards and 
resources to help standardize useful metrics for the 
classifications. They should also quantify the improve
ments to prognosis gained by sampling multiple regions 
at multiple timepoints.

The ecology of a tumour affects its evolution, and the 
evolution of the cells in a tumour change their ecology. 
Neoplastic cells evolve genomic instability161, generat
ing neoantigens as well as adaptations, such as recruit
ment of resources, through activating fibroblasts162 and 
neoangiogenesis161. Evolution of neoantigens triggers 
immune predation, which may reduce diversity and 
select for immune evasion163. High levels of extrinsic  
mortality and resources select for rapid proliferation 
with little investment in somatic maintenance71. These 
interactions imply that not all possible combinations of 
ecological and evolutionary measurements are equally 
likely. We will probably be able to drop some of the 16 
possible tumour types in TABLE 2 and focus on the subset 
of classes that present in the clinic.

The framework for a classification system that we 
have proposed could be incorporated into clinical 
 trials, which could allow us to gather data on how the 
different types of evolving tumour respond to different 
types of intervention (FIG. 4). Clinical trials could then 
be developed to stratify treatment of patients based on 
the Evo and Ecoindices of their tumours. We could 
use the results to develop guidelines for best practice in 
managing cancers.

Vision of the future
In the future, the pathology report for a neoplasm 
could include its Evoindex and Ecoindex classifi
cations. Ideally, these classifications would provide 
‘chessboard’like scenarios where, based on the cur
rent evolutionary class of a tumour, one could antici
pate how the tumour type will change with different 
possible therapeutic moves (FIG. 4). Clinicians would 
then be able to choose appropriate interventions for 
the evolvability of those neoplasms and would also be 
able to track whether the neoplasms change substan
tially in response to interventions. A D1Δ1 tumour or 
even a D1Δ2 tumour would be a prime candidate for 
aggressive therapy with curative intent. In fact, a D1Δ1 
tumour may be so evolutionarily indolent as to not 
require any form of intervention. On the other hand, 
a D2Δ2 tumour is likely to have multiple resistant sub
clones present at diagnosis, and future clinical trials 
should test if such a tumour can be managed through 
strategies that minimize the expansion of resistant sub
clones by exploiting their disadvantage in competition 
with sensitive subclones164. A legitimate clinical strategy 
might be to downstage a tumour from a highly evolv
able one to a much more clinically manageable class 
that could be contained in a nonlethal state indefinitely 

Figure 4 | Changing the evolutionary class of a tumour through interventions. With 
the classification system outlined in TABLE 2, we could examine how different 
interventions move tumours between categories. a | In this example, chemotherapy 
can be mutagenic and can select for hypermutator clones, generating new clones and 
more diversity40,186,187. It can also kill endothelial cells and thus have an anti-angiogenic 
effect188, resulting in a tumour (type 13) with one of the worst predicted prognoses. 
This may partly explain why tumours that recur after chemotherapy are so difficult to 
control. b | Immunotherapy, if successful, may increase the predation hazards to the 
tumour and perhaps select for a subclone, reducing diversity. Targeted therapy, unlike 
chemotherapy, probably does not cause significant DNA damage and may further 
genetically homogenize the tumour. Anti-angiogenic therapy is designed to restrict 
the resources of the tumour. At the end of this example sequence, the tumour is in the 
most manageable, least evolvable category (type 3 in TABLE 2). Of course, 
chemotherapy, immunotherapy and targeted therapy may have different effects 
depending on the details of those therapies and their interaction with the clones in 
the tumour and their ecosystem.
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(FIG. 4b). If validated, the Evo and Ecoindices could 
be used as surrogate measures for overall survival or 
disease free survival.

Conclusions
The evolutionary biology of cancer is, clinically, in a 
similar state to psychiatry in the nineteenth century. 
At that time, there was no standard classification sys
tem for mental illness used by practitioners. Without 
such a classification system, it was difficult to even talk 
about the illness, let alone make progress, as a com
mon language was lacking. With the American Medical 
Association’s Standard Classified Nomenclature of 
Disease published in 1933 (REF.  165) and the first 
Diagnostic and Statistical Manual of Mental Disorders 
published in 1952 (REF. 166), no matter how flawed they 
were, diagnoses of mental disorders became stand
ardized, which facilitated studies to refine both the 
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