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Abstract: In many hypothesis testing applications, we have mixed priors, with well-motivated
informative priors for some parameters but not for others. The Bayesian methodology uses the Bayes
factor and is helpful for the informative priors, as it incorporates Occam’s razor via the multiplicity
or trials factor in the look-elsewhere effect. However, if the prior is not known completely, the
frequentist hypothesis test via the false-positive rate is a better approach, as it is less sensitive to the
prior choice. We argue that when only partial prior information is available, it is best to combine
the two methodologies by using the Bayes factor as a test statistic in the frequentist analysis. We
show that the standard frequentist maximum likelihood-ratio test statistic corresponds to the Bayes
factor with a non-informative Jeffrey’s prior. We also show that mixed priors increase the statistical
power in frequentist analyses over the maximum likelihood test statistic. We develop an analytic
formalism that does not require expensive simulations and generalize Wilks’ theorem beyond its
usual regime of validity. In specific limits, the formalism reproduces existing expressions, such as
the p-value of linear models and periodograms. We apply the formalism to an example of exoplanet
transits, where multiplicity can be more than 107. We show that our analytic expressions reproduce
the p-values derived from numerical simulations. We offer an interpretation of our formalism based
on the statistical mechanics. We introduce the counting of states in a continuous parameter space
using the uncertainty volume as the quantum of the state. We show that both the p-value and Bayes
factor can be expressed as an energy versus entropy competition.

Keywords: hypothesis testing; Bayesian statistics; frequentist statistics; statistical mechanics; look-
elsewhere effect; exoplanet transit search

1. Introduction

The nature of scientific discovery typically proceeds via the falsification of the null
hypothesis via a test that is guided by an alternative hypothesis we wish to compare to. In
many cases, we can write the alternative as an extension of the null hypothesis, such that,
for example, there is a parameter of the alternative hypothesis whose value is fixed under
the null hypothesis. In these situations, the null hypothesis is well-specified in terms of the
prior distributions of its parameters, while we may have little or no idea what the prior
distribution of the parameters of the alternative hypothesis is. Often, we are performing the
search over many parameters, some with a well-specified prior and some without (e.g., the
amplitude of the new effect). In this paper, we are interested in these mixed prior situations.

The Bayesian methodology of hypothesis testing compares the ratio of the marginal
likelihoods of the two hypotheses to form a Bayes factor [1]. If the prior distribution for the
alternative is known, this is a valid methodology that yields optimal results. If the prior is
only partially known, the resulting answer is sensitive to the features of the model that we
have little control over. In particular, we can always arbitrarily down-weight the alternative
hypothesis in the Bayes factor by choosing a very broad prior for its amplitude parameters.
This may lead to rejecting the alternative when using a Bayes factor. This is not justifiable
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when the prior is poorly known: the end result can be a missed discovery opportunity. The
opposite situation can also occur, where the chosen prior and the corresponding Bayes
factor are too optimistic for the alternative hypothesis.

To overcome the arbitrariness of the prior choice, one could try to learn the prior
from the data under some hyperparametrization, leading to a hierarchical or empirical
Bayesian analysis [2,3]. This approach is not possible if we have no data that can inform
the hyperparameters, as is the case when testing a new model (such as a new theory or
a new phenomenon) that has never been observed before: a test of a new model should
therefore not depend on the reported Bayes factor alone.

Various test statistics have been proposed that attempt to remove the dependence of
the hypothesis test on the prior. They fall into two categories. One is basing the test on the
posterior rather than the prior. One approach is to compare the posterior predictive data
densities under both hypotheses, which can also be related to the cross-validation [4]. Other
proposed test statistics include suspiciousness [5] (the posterior averaged log-likelihood ratio)
and the e-value [6] (the posterior probability of the parameters which have the posterior
density under the alternative higher than the posterior density under the null).

A common failure of the posterior-based hypothesis tests is that they do not account
for the look-elsewhere effect or the effective multiplicity of the test: if we perform N tests,
the probability of having one of them with an anomalous value under the null hypothesis
is increased by N.

A related class of methods are the so-called information criterion heuristics. The AIC
and WAIC are meant to be approximations to the posterior predictive densities, and as such,
they are closely related to the cross-validation [4]. Another is the Bayesian information
criterion (BIC), which is meant to approximate the Bayes factor, but the approximations do
not hold for the class of scanning parameters we are concerned about in this paper. Thus,
the look-elsewhere effect is not correctly taken into account by these ICs either, even if we
account for the “effective number” of dimensions [5]. This is because the look-elsewhere
effect does not depend only on the dimensionality difference between the null and the
alternative but also on the prior range of the additional parameters: if one searches over a
broader prior, the multiplicity increases, and the look-elsewhere effect is more severe.

One typical example is searching for a signal in a time series, such as a localized
feature (e.g., planet transit in stellar flux): the signal could be anywhere in the time series,
and we must pay the multiplicity penalty for looking at many time stamps. The larger the
scan, the more false positives our search will produce. This is completely ignored if we
only look at the posterior, which is typically very localized.

An alternative approach is that of frequentist hypothesis testing, which is defined in
terms of the false-positive rate of the null hypothesis (the p-value, or Type I error). This
is independent of the validity of the assumed prior for the alternative hypothesis: we can
rule out the null hypothesis even in the absence of a well-developed alternative hypothesis.
However, to do so, we need a test statistic, and the best test statistic is the one developed
based on the expected properties of an alternative hypothesis. In some situations, we may
have a known prior distribution for some parameters, and taking the advantage of this
information will increase the power of the test statistic.

The strength of the Bayes factor is thus that there are parameters other than the am-
plitude that have well-specified priors, for which Bayesian hypothesis testing has Occam’s
razor built-in [7], and it automatically accounts for effects, such as the look-elsewhere ef-
fect [8]. For example, if we scan for a signal with a large template bank, we must account for
the trials factor, and the corresponding p-value significance is increased [9,10]. There is no
single established frequentist procedure to do this, while the Bayes factor automatically
accounts for it. In this case, the dependence on the prior in the Bayes factor analysis is an
asset. In many realistic situations, the alternative hypothesis has several parameters, some
with well-specified priors and some without. This paper aims to address these situations
from both the Bayesian and frequentist perspectives and proposes a solution that takes
advantage of both methodologies. The main themes of this paper are:
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• The Bayes factor is the test statistic with the highest power and should be used even
in frequentist analyses, assuming some of the priors are informative (known).

• For many applications, some of the priors are known, and some are unknown. This
mixed prior information requires an analysis that combines the Bayes factor with the
frequentist p-value.

• For mixed prior problems with some unknown priors, the frequentist p-value or
Type I error (the false-positive rate) evaluated on the Bayes factor is a better way to
summarize the significance of the alternative hypothesis than the Bayes factor itself.
In many situations, this can be performed analytically without the simulations.

The Neyman–Pearson lemma guarantees that the maximum likelihood ratio (MLR) is
the highest power test statistic for a simple alternative hypothesis with no free parameters.
Similarly, the Bayes factor is the test statistic with the highest power (it minimizes the Type
II error (the false-negative rate) at a fixed Type I error) if the alternative hypothesis has
multiple parameters with some prior information [11,12]. This is because the Bayes factor
optimally summarizes the prior information we have about the alternative hypothesis. It
does not mean that the estimated Type II error is correct, as the prior we assumed could be
wrong. It does however mean that we cannot find a better test statistic on a Type II error
without knowing a better prior.

The main contributions of this paper are:

• The systematic treatment of the hypothesis testing with only partial prior information.
• Analytic methods for the evaluation of the p-value with the Bayes factor test statistic.

Our formalism enables evaluating the p-value without running expensive simulations
and generalizes the Wilks theorem to non-Gaussian posteriors and high p-values.

• The interpretation of the results in terms of the statistical mechanics, using concepts
such as the counting of states, uncertainty quantification, and entropy. These con-
nections have been explored before in the context of Bayesian statistics [13]; here, we
extend it to the frequentist statistics.

The outline of the paper is as follows: In Section 2, we define the Bayesian hypothesis
testing. In Section 3, we develop an analytic formalism for computing the false-positive
rate. In Section 4, we apply this formalism to practical examples, notably an exoplanet
transit search. In Section 5, we offer an interpretation of the developed formalism based on
statistical mechanics.

2. Bayesian Hypothesis Testing

We are given some data x and want to test them against competing hypotheses. We
will assume there is a single null hypothesis H0, which assumes there is no discovery in
the data, and a collection of the alternative hypothesesH1, all predicting some new signal.
For example, when we are looking for a planet transit in the time-series data, the null
hypothesis predicts that the stellar variability and noise alone are responsible for the flux
variations, while the alternative hypothesis also predicts that the presence of the exoplanet
transit dips. There are multiple alternative hypotheses because we do not know the planet’s
properties, such as its period, phase, or amplitude, so the alternative hypothesis is not
simple and has parameters we need to vary.

The Bayesian approach to hypothesis testing is to examine the ratio of the marginal
likelihoods, i.e., the Bayes factor

B =
p(x|H1)

p(x|H0)
, (1)

where the marginal integral is

p(x|H1) =
∫

p(x|z)p(z)dz. (2)

Here, p(z) is the prior for the alternative hypothesis parameters and p(x|z) is the data
likelihood under a general z. A typical situation is that the null hypothesis corresponds to
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some specific values of z, such as z1 = 0, where z1 is the amplitude of the signal for the
alternative hypothesis.

We are interested in the posterior odds between the competing hypotheses which
follow directly from the Bayes factor by B P(H1)/P(H0), where P(H0) and P(H1) are the
prior probabilities. We typically assume the prior probabilities of the two hypotheses to be
equal, in which case the Bayes factor is also the posterior odds, and in the following, we
will focus on the Bayes factor only.

The Bayes factor is an integral over all possible alternative hypotheses, but usually,
a relatively small range of parameters, where the data likelihood peaks, dominates the
integral. In this case it suffices to apply a local integration at the peak of the posterior
mass, which is often (but not always) at the maximum a posteriori (MAP) peak, where the
posterior density peaks. If the location of the highest posterior mass peak under H1 is ẑ,
this gives the Bayes factor as [8]

B =
p(x|ẑ)

p(x|H0)
p(ẑ)Vpost(x). (3)

The Bayes factor depends on the MLR at the peak exp(E) ≡ p(x|ẑ)/p(x|H0), alterna-
tive hypothesis prior p(ẑ), and the posterior volume Vpost(x), which is a result of the local
integration of the posterior ratio p(z|x)/p(ẑ|x) around the peak. It can be approximated
using the Laplace approximation as Vpost ≈ (2π)d/2

√
det Σ, where d is the dimension of

the parameter space and Σ is the covariance matrix, given by the inverse Hessian of the
negative log-likelihood evaluated at ẑ,

(Σ−1)ij = −∂i∂j ln[p(x|z)p(z)]z=ẑ. (4)

Here, ∂i is the derivative with respect to zi. The choice of prior is subjective, and when
the prior is known, it is informative and should be used. When the prior is not known, an
option for a non-informative prior is Jeffrey’s prior, which is given by the square root of the
determinant of the Fisher information matrix. Fisher matrix is the data-averaged Hessian:

Iij(z) = 〈−∂i∂j log p(x|z)〉, (5)

where 〈 f (x, z)〉(z) ≡
∫

f (x, z)p(x|z)dx. Note that the Jeffrey’s prior is an inverse of the
data-averaged posterior volume, computed under the Laplace approximation. Therefore,
it will on average cancel out the parameter dependence of Vpost(ẑ) in the Bayes factor,
making it dependent only on the local MLR.

We can generalize these concepts to non-Gaussian posteriors. As we will show in
Section 4.3, the Laplace approximation can be poor if the posterior is non-Gaussian, but
the local Bayes factor integration is still well-defined, in which case Equation (3) can be
viewed as the definition of Vpost (we use this in, e.g., Equations (A8) and (25)). The properly
generalized Jeffrey’s prior is then p(z|H1) ∝ 1/〈Vpost(z)〉. This is the prior, which on
average makes the Bayes factor directly proportional to the MLR. Such prior choice may be
called non-informative, as only the likelihood is used to test the two hypotheses.

3. Frequentist Hypothesis Testing

In frequentist hypothesis testing, we first define a test statistic, which should be chosen
to maximize the contrast against the alternative hypothesis. As guaranteed by the Neyman–
Pearson argument [11,12], the optimal statistic between two well-specified hypotheses are
the posterior odds. Any monotonically increasing function of the posterior odds is an
equally good test statistic in the frequentist sense, so for convenience, we will work with
F = log B.

In frequentist methodology, we quantify a test statistic using its Type I false-positive
rate (p-value) under the null hypothesis P(F > F(x)). If this number is sufficiently small,
the null hypothesis is rejected. Unlike the posterior odds, the p-value is independent of the
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correctness of the prior of the alternative hypothesis: it only depends on the null hypothesis
itself. This is a great advantage of the p-value over the posterior odds and is the main
reason why posterior odds have not been widely adopted for hypothesis testing, even in
Bayesian textbooks [4,14].

While the posterior odds can be derived entirely from the data using the likelihood (the
likelihood principle), the p-value is given by the frequency distribution of the test statistic
under the null hypothesis, which generally requires simulating the null hypothesis many
times to obtain it. Because this requires evaluating the test statistic for each simulation,
and because we argue the test statistic itself should be the posterior odds, this can be
significantly more expensive in the frequentist methodology than evaluating posterior odds
once on the data, as performed in the Bayesian methodology. For this reason, we will study
analytic techniques for evaluating the false-positive rate. The discussion here will not be
rigorous, so we rederive the results under the Gaussian likelihood assumption in Appendix A.

The log-Bayes factor F and the maximum log-likelihood ratio E are functions of a
particular data realization, but here we will approximate them solely as a function of the
local MAP parameters ẑ (for a motivating example, see Appendix A.2). Note that this is
not possible in general, for example, if multiple correlated peaks contribute to the Bayes
factor or if the data realizations are very discrete. Nevertheless, here we proceed with this
assumption and note that the p-value of the Bayes factor can then be inferred from the
distribution of the parameters ẑ under the null hypothesis p(ẑ|H0). If the prior is correct,
the Bayes factor correctly predicts the relative occurrence of the two hypotheses in a long
series of trials:

B = p(x|H1)/p(x|H0) = p(ẑ|H1)/p(ẑ|H0). (6)

The distribution p(ẑ|H1) follows the prior: each sample with local MAP parameters ẑ will
have a true value of parameters z approximately within Vpost of ẑ. Thus, as long as the
prior is sufficiently smooth relative to the posterior, we have p(ẑ|H1) ≈ p(ẑ). Therefore,
the distribution of the local MAP parameters under the null hypothesis is

p(ẑ|H0) = p(ẑ|H1)B(ẑ)−1 ≈ p(ẑ)e−F(ẑ). (7)

Note that the distribution p(ẑ|H0) is independent of the prior because the prior depen-
dence of the Bayes factor cancels p(ẑ|H1). Therefore, Equation (7) holds regardless of the
correctness of the prior. The p-value is found by integrating over the parameters which
yield at least the desired test statistic F(x):

Pasym(F > F(x)) =
∫

F(ẑ)>F(x)
p(ẑ)e−F(ẑ)dẑ =

∫ ∞

F(x)
p(F)e−FdF. (8)

Here, p(F) =
∫

δ(F− F(ẑ))p(ẑ)dẑ is the prior, marginalized over the parameters ẑ which
yield F. This result is saying that the probability density of finding some F under the null
hypothesis is given by the probability density of finding it under the alternative hypothesis
prior, but exponentially damped with F. Note that Equation (8) is equivalent to

Pasym(F > F(x)) =
∫

F(ẑ)>F(x)

e−E(ẑ)

Vpost(ẑ)
dẑ, (9)

so the region of integration depends on the prior, but the integrand does not. This means
that the prior selects the parameter range where the false positives can be generated, but
the rate at which they are generated at those parameters is prior independent.

These expressions are useful when we have an analytic expression for the posterior
volume and can perform the integral analytically (see examples in Sections 4.1 and 4.2).
Here, we will derive an approximation which directly relates the p-value to the Bayes factor,
so it is applicable even if the Bayes factor is only available numerically.

Assuming that the alternative has the amplitude parameter whose prior is separable
from the other parameters p(z) = p1(z1)p>1(z>1) and whose posterior volume can be
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approximated by the Laplace approximation
√

2πσ1, we rewrite Equation (3) and define
the reduced Bayes factor B>1(x) as

B(x) = p1(ẑ1)
√

2πσ1 B>1(x). (10)

Computing B>1 is completely analogous to computing the Bayes factor, but there is no need
to perform the z1 integral as this is performed analytically by the Laplace approximation.

Typically, the variations of Vpost(ẑ1) are much slower than the likelihood suppression
e−E(ẑ1) so we may evaluate the ẑ1 integral in (9) by considering the posterior volume to be
a constant evaluated at the observed local MAP parameters. This gives

Pasym(F > F(x)) ≈ p1(ẑ1)

B(x)| dE
dẑ1
|
=

1
B>1(x)

√
4πE(x)

, (11)

implying that the p-value can be inferred directly from the observed reduced Bayes factor
B>1 with no need to perform any additional integrals.

Non-Asymptotic p-Value

We have found an analytic expression for the false-positive rate; however, it is only
valid when the false-positive rate is low. By following [8], we will show that this result can
be easily extended to all p-values if the posterior volume is much smaller than the prior
volume, so precisely when the look-elsewhere effect is important.

Let us partition the alternative hypothesis manifold in K smaller manifolds and
consider searches over the smaller manifolds. Let us choose the partition in a way that FPR
in all the small searches is the same and call it Psmall(F > F(x)).

Suppose the posterior volume is much smaller than the prior volume. In that case,
most data realizations will have their posterior volume well within the prior range of some
smaller manifold, even when K is relatively large. Therefore, the probability of not finding
a false positive in the original search equals the probability of not finding it in any of the
small searches:

1− P(F > F(x)) =
{

1− Psmall(F > F(x))
}K. (12)

If K is large, Psmall(F > F(x)) becomes small, and we can compute it using the
asymptotic expression of Equation (8) or (11): Psmall(F > F(x)) = Pasym(F > F(x))/K.
Taking the large K limit, we find

P(F > F(x)) = 1− exp{−Pasym(F > F(x))}. (13)

This is a continuous parameters generalization of Sidák correction, which itself is a gener-
alization of Bonferroni correction, which is commonly used for discrete states where the
trials factor is a well-defined concept and referred to as multiple test comparison.

4. Results

In this section, we apply the developed formalism to three examples with increasing
complexity. We start with the linear model and periodogram and compare our results with
the literature. We then turn to the more realistic analysis of the exoplanet transit search.

In all cases, the data are a real vector x ∈ Rn. The null hypothesis assumes the data
are independently identically distributed (IID):

p(x|H0) =
n

∏
k=1

q(xk), (14)

where q is the probability density function of the noise. The alternative predicts some
feature in the data, such that the residuals x−m(z) are described by the null hypothesis.
Note that in the exoplanet case, we will need to go to the Fourier basis and normalize by
the power spectrum to make the data IID.
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4.1. Linear Model

In this first example, the noise is standard Gaussian distributed and the model is a
linear superposition of d features mi ∈ Rn:

mlinear(w) =
d

∑
i=1

wimi. (15)

Without the loss of generality, we may assume the features are orthonormal mi ·mj = δij
by applying the Gram–Schmidt algorithm if they are not.

The MAP model is a projection of the data on the model plane ŵi = x ·mi and has the
log-MLR E = 1

2 ∑d
i=1 ŵ2

i . The posterior is Gaussian, so the Laplace approximation is exact
and gives the posterior volume (2π)d/2.

Often, we do not have any prior information, and it makes sense to adopt the Jeffrey’s
prior, which is uniform for the linear parameters. For simplicity, we assume the prior
volume to be a ball with ∑d

i=1 w2
i < w2

max. The Bayes factor (3) is

B =
(2π)d/2eE

V(Bd)wd
max

, (16)

where V(Bd) is the volume of the d-dimensional unit ball. Note that the Bayes factor cannot
be taken at a face value because it is sensitive to the unknown amplitude cutoff wmax.
Furthermore, there is no advantage in using the Bayes factor over the MLR because F and
E only differ by a constant and are therefore equally good as frequentist test statistics. We
will therefore use E as a test statistic in this example. The posterior volume is a constant,
so the integral of Equation (9) just picks up the volume of the constant-likelihood surface,
which is a d− 1-dimensional sphere. We obtain

P(E > E(x)) =
∫ ∞

E(x)

Ed/2−1 e−E

Γ(d/2)
dE, (17)

where we have used that the volume of a d− 1-dimensional sphere is 2πd/2/Γ(d/2), with
Γ the Gamma function. Note that the p-value is independent of the unknown amplitude
cutoff wmax.

The resulting cumulative distribution function is a χ2-distribution with d degrees of
freedom, and we reproduce the well-known result that χ2 of a linear model with d features
is distributed as a χ2 distribution with d degrees of freedom [15]. The p-value is increasing
with d at a constant χ2 = 2E, which is a reflection of the entropy versus energy competition
discussed in Section 5: there are more states on the shell of a constant-energy E if d is higher.

4.2. Periodogram

In this example, we are given n time-series measurements xi = x(ti) with Gaussian
uncertainties σ. We are searching for harmonic periodic signals [16–18]:

mi(z) = z1σ
√

2/n sin(ωti + φ). (18)

Here, z1 is the signal’s amplitude, ω is the unknown frequency, and φ is the phase. We have
introduced an additional normalizing factor σ

√
2/n for later convenience. We assume a

uniform prior on all three parameters, so

p(z1, ω, φ) =
1

zmax ωmax 2π
, (19)

where zmax is some arbitrary large cutoff on the amplitude and ωmax is set by some physical
properties of the signal or by the experimental limitations, e.g., by the Nyquist frequency.
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Using Equations (A7) and (A15), we compute the Bayes factor

B =

√
6π eE

zmax ωmaxT E
, (20)

which again suffers from the unknown amplitude cutoff, so we turn to the frequentist
analysis to interpret the Bayes factor. We observe that the Bayes factor and the MLR are
a simple function of one another, so their null distributions are related by the change in
variable formula p(F|H0) = |dF/dE| p(E|H0) = |1− 1/E| p(E|H0).

Once again, the posterior volume is independent of the z>1 parameters, and the
integral (9) picks up the volume of the constant-likelihood surface, which is, in this case, a
cylinder, so 2πωmax:

P(E|H0) =
∫ ∞

E(x)

2πωmax

B2πωmaxzmax
dE
dẑ1

dE =
Tωmax√

12π

∫ ∞

E(x)
E1/2e−EdE, (21)

where E = 1
2 ẑ2

1 due to the convenient normalization of the template.
Note that while the amplitude cutoff cancels in the p-value, the frequency cutoff does

not. This is the look-elsewhere effect: the larger the frequency space search, the larger the
false-positive rate at a fixed MLR.

These results agree with the expressions of [19], which use the formalism of [20,21].
This mathematical formalism is based on the extremes of random processes of various
distributions, such as the gamma (χ2) distribution, and needs to be derived separately for
each distribution. In addition, this formalism formally only gives an analytic lower limit
to the corresponding extreme value distributions, while in practice, equality is assumed
without proper justification. Our formalism provides a different derivation that results in
the same expressions in the periodogram case. However, here, we do not consider the more
challenging periodogram problem with sparse data sampling and correlated noise.

4.3. Exoplanet Search

As a more complex non-trivial example of the formalism we developed, we consider
exoplanet detections in the transit data, where the planet orbiting the star dims the star
when it transits across its surface. We have a time series of a star’s flux measurements
xi = x(ti). In the absence of a transiting planet, the data are described by a stationary
correlated Gaussian noise modeling the stellar variability. Note that the long-term trends
in the Kepler data are removed by the preprocessing module [22] and outliers can be
efficiently Gaussianized without affecting the planet transits [23]. Here, we ignore other
defects in the data, such as binary stars, sudden pixel-sensitivity dropouts, etc. Such data
are, for example, collected by the Kepler Space Telescope [24] and the Transiting Exoplanet
Survey Satellite (TESS) [25].

One would like to compare the hypothesis H1 that we have a planet in the data to
the null hypothesis that there is only noise. As argued in this paper, we will use the Bayes
factor as a test statistic to incorporate informative prior information and non-Gaussian
posteriors. The significance of a discovery is then reported as the probability of a false
positive exceeding the observed value of the Bayes factor. We will first outline the procedure
for calculating the Bayes factor given the prior for the transit model parameters. Then,
using simulations of the null hypothesis, we will demonstrate that Equation (13) gives
reliable results for the p-value of the Bayes factor (Section 4.3.2). In Section 4.3.3, we will
discuss several prominent prior choices and demonstrate how a realistic prior choice can
reduce the Type II error at a constant Type I error. In Section 4.4, we will consider a noise
distribution with strong power-law tails and show that the p-value can still be computed
by an analytical formula (11).
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4.3.1. Bayes Factor

The planet transit model m(t) can be parametrized by d = 4 parameters: transit amplitude,
period, phase, and transit duration, z = (A, P, φ, τ). The transit model is of the form

mi(z) = A
M

∑
m=1

U
(

ti − (m + φ)P
τ

)
. (22)

It is a periodic train of M transits with period P, phase φ, amplitude A, and transit duration
τ. U(x) is a U-shaped transit template that is nonzero in the region (−1/2, 1/2) and
depends on the limb darkening of the stellar surface [26].

The likelihood is Gaussian, and stationarity ensures that the Fourier transformation F
diagonalizes the covariance matrix with the power spectrum on the diagonal. The power
spectrum P(ω) = 〈|F{n}|2〉 can be learned from the data [27].

To make the noise standard Gaussian IID, we introduce

x −→ F{x}P1/2 m −→ F{m}P1/2 . (23)

We also rescale the amplitude A to make the model normalized.
It will be convenient to first optimize over the linear parameter z1 and then over the

remaining nonlinear parameters. The amplitude’s MAP value at fixed z>1 is by Equation (A3)

ẑ1(z>1) =

∫
F{x}∗F{m}dω/P√∫
|F{m}|2dω/P

, (24)

where we have restored a model normalization factor. This is the matched filtering ex-
pression for the signal-to-noise ratio [23] and can be computed efficiently using Fourier
transforms [23] for all phases φ on a fine grid at once. Our strategy for finding the highest
MAP solutions is therefore to first find a maximum likelihood estimator (MLE) by scanning
over the entire parameter space (for details, see [23]) and then use it as an initial guess in a
nonlinear MAP optimization.

We calculate the posterior volume associated with the most promising peaks by
marginalizing over the planet’s parameters in the vicinity of the peak. The amplitude
has a Gaussian posterior which is not correlated with the other parameters, because the
likelihood is Gaussian, and we are properly normalizing the template (see the discussion
below Equation (A7)). The posterior volume is therefore

Vpost =
√

2π
∫ p(z>1) eẑ1(z>1)

2/2

p(ẑ) eẑ2
1/2

dz>1. (25)

One would be tempted to employ the Laplace approximation. Figures 1 and 2 show
this does not give satisfactory results: we are not in the asymptotic limit. While a frequentist
approach using Wilks’ theorem would become invalid, here we can compute the full
marginal integral of Bayesian evidence. Integral (25) is only three dimensional, so we take
the Hessian at the peak to define the Gaussian quadrature integration scheme [28] of degree
7, implemented in [29], which requires 24 integrand evaluations.

4.3.2. p-Value

To obtain the p-value, we use Equation (11) and extend it to all p-values using (13).
We test our analytical expression for the p-value of the Bayes factor by simulating the null
hypothesis and comparing the computed p-value with the empirically determined value.
We evaluate 4600 realizations of the null hypothesis. We take a realistic power spectrum
extracted from Kepler’s data for the star Kepler 90. The power spectrum and example
realizations are shown in Figures 2 and 4 of [23]. A realization is a uniformly distributed
choice of the phases of the Fourier components and normally distributed amplitudes of the
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Fourier components with a zero mean and variance, given by the power spectrum. In each
of the resulting time series, we then determine the Bayes factor of the planet hypothesis
against the null hypothesis (Section 4.3.1) and its p-value.

The analytic and empirical p-value are compared in Figure 2, achieving an excellent
agreement. This shows that our formalism enables the evaluation of the p-value beyond
the asymptotic limit, thus generalizing Wilks’ theorem.

Figure 1. We show an example of a typical noise simulation with the injected planet with a period
P = 100 days and transit duration τ = 0.4 days. We show the likelihood ratio in the neighborhood of
the local MAP parameters ẑ (upper panels). Laplace approximation expands the likelihood ratio’s
logarithm to a quadratic order and approximates the peak with a Gaussian (lower panels). Note that
the Laplace approximation is poor, corresponding to an inaccurate p-value estimation (Figure 2).
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Figure 2. We simulate 4600 noise series and search for the planetary signal. In each realization, we
find a candidate with highest Bayes factor and evaluate its p-value using Equations (11) and (13). In
the left panel, we then compare it with a fraction of noise realizations where a more significant planet
candidate was found. A good agreement between the empirical and analytical p-value is found,
regardless of the prior choice. Dotted lines are the corresponding results using the asymptotic limit
of Laplace approximation, which is inadequate in this case. The shaded regions are the bootstrap
error estimates due to the finite number of simulations. They are a symmetric region around the
mean value, which covers 68 out of 100 bootstrap draws. In the right panel, we show the MLR
test statistic distribution for the null hypothesis using the same simulations. Note a large trials
factor, which causes a noise-only simulation to produce an SNR =

√
2E > 6 in most realizations.

There is an order-of-magnitude difference in the trials factor for the circular prior versus the wide or
realistic prior.

4.3.3. The Choice of Prior

Here, we discuss a prior choice for the period, phase, and transit duration. We will see
that using an informative prior when available can significantly improve detection efficiency.

We scan over the period range from 3 to 300 days, and at each period over all phases
from 0 to 1. As we argued in this paper, when we do not know the prior, it is simplest
to adopt Jeffrey’s choice. We will assume this for the period and phase parameters. Note
that for the phase, Jeffrey’s prior is flat from 0 to 1, which we can also view as a known
(informative) prior because the phase cannot affect the exoplanet detectability. There is a
natural value for the transit duration parameter τ, given the planet’s period and assuming
the circular, non-inclined orbit. We illustrate the impact of the prior choice by considering
three scenarios:

(1) A fixed value of τ, defined by assuming a circular, perfectly aligned orbit. The transit
duration is fixed by the Kepler’s third law: τK(P) = (3P/(π2Gρ∗))1/3, where ρ∗ is
the star’s density. This choice can be too restrictive for non-circular or inclined orbits
and can penalize real planets.

(2) Jeffrey’s prior on a broad domain τ ∈ [τK(Pmin), 2 τK(Pmax)]. This choice may include
physically implausible transit times, leading to a larger multiplicity penalty.

(3) A realistic prior distribution, taking into account inclined and eccentric orbits. Orbits
are assumed to be isotropic, with eccentricities drawn from a beta function with
parameters that match the observed planets in the Kepler’s data [30]. In addition,
the star’s density is measured with an uncertainty on the order of 15%, causing
uncertainty in τK. The transit duration prior is obtained by marginalizing over the
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orbit inclination, eccentricity, and star’s parameters. The distribution is a broadened
version of the delta function at τK.

All three choices are visualized in Figure 3. In Appendix C, we derive the approximate
Jeffrey’s prior by deriving the scaling of the Fisher information matrix. In the first two
scenarios, we, respectively, obtain p ∝ P−1/3 and p ∝ τ−2. One can take the transit
template and calculate the Fisher information matrix numerically for more accurate results.
In Figure 4, we show that the peaks of the null hypothesis are distributed by Jeffrey’s prior,
in agreement with our predictions.
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Figure 3. We show the potential U = log p(z)/pJe f f (z) for different choices of the τ prior. This quan-
tity measures to what extent is the prior informative, with the Jeffrey’s prior being non-informative.
This potential directly impacts the hypothesis test’s outcome, see Section 5. Fixing τ to the Kepler
value is equivalent to a constant potential on the red line and −∞ everywhere else. A broad Jeffrey’s
prior is equivalent to a constant potential over the entire search domain. The informative prior is
shown with the color scale. It peaks close to the Kepler’s value but is broadened to account for
variation in planet eccentricity, orbit orientation, and stellar density uncertainty.

Taking τ as a completely unconstrained parameter will in general lead to detecting
planets that are not physically plausible and will therefore increase the false-positive rate
and force us to reject more real planets than necessary. In the present example, shown in
Figure 2, this effect is not very large if the prior is chosen such that it still introduces a
reasonable cutoff on the transit duration. However, choosing such a cutoff is a choice that
must be based on physical arguments: the prior plays an essential role.

A prior that is too narrow (case 1) is also suboptimal because it will reject some real
planets. Using a template with duration τK when in fact a planet has transit duration
τ 6= τK will reduce the planet’s SNR by

SNR(detected)
SNR(true)

=

∫
F{mτ}∗F{mτK}dω/P∫
F{mτK}∗F{mτK}dω/P , (26)

where this is an expected reduction over the noise realizations.
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Figure 4. We show marginal probability density distributions over the period and transit duration
of the five highest Ff candidates from each of the 300 noise-only simulations. The distributions
follow generalized Jeffrey’s prior, which is approximated reasonably well with the scaling estimates
from Equations (A18) and (A19). This confirms that regions with smaller Vpost have more false
positives. The blue plot is showing a situation where the transit duration is a free parameter in
the search, yielding p(P) ∼ const and p(τ) ∼ τ−2. A simple analytical estimate does not give an
accurate Jeffrey’s prior for the transit duration because of the non-white power spectrum. Therefore,
we complement this analysis with a numeric evaluation of the expected posterior volume (solid line)
and show that this gives a better match. The orange plot shows a situation where the transit duration
is fixed to the Kepler’s value. It is well described by the scaling estimate p(P) ∝ P−1/3.

In Figure 5, we show the ROC curves (Receiver-Operated Characteristic) for all three
prior choices, that is, a true-positive rate as a function of the false-positive rate, both
parametrized by the detection threshold. The false-positive probabilities are taken from
Figure 2. The true-positive probability is a probability that the signal with some SNR(true)
is detected above the threshold. The detected SNR can be approximated as a Gaussian-
distributed variable with unit variance. Its mean is µ = SNR(true) with the realistic and
wide priors. It is additionally reduced with the circular orbit prior because the search
template differs from the true template (Equation (26)). Using a realistic prior improves the
true detection probability at a fixed false-positive probability relative to a prior that is too
narrow (a circular orbit prior) because it improves the fit. It also improves the ROC relative
to a prior that is too broad because it does not include the templates that rarely happen in
the data and would lead to a larger multiplicity and hence a larger false-positive rate. This
figure thus demonstrates that hypothesis testing with a realistic prior Bayes factor gives an
optimal ROC (power versus p-value).
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Figure 5. ROC curve (see Section 4.3.3) defined as true-positive probability, i.e., power (1-Type II error)
versus false-positive probability, i.e., Type I error (p-value), for various prior choices. We search for a
hypothetical small planet with injected radius R = 1.45R⊕, corresponding to SNR(true) = 6.25 (solid
lines), and R = 1.8R⊕ and SNR(true) = 7 (dotted lines). Using the realistic prior results in an
improved ROC curve (higher true-positive probability at a given false-positive probability), implying
that the Bayes factor with a realistic prior is the test statistic with the highest statistical power. The
true-positive probability at a fixed p-value is decreased for the circular orbit prior because the prior
does not include all the allowed signal template forms. On the other hand, a wide prior includes
too many signal template forms that include signal templates that occur rarely or never, leading to a
larger multiplicity and a larger false-positive rate at a constant true-positive probability.

4.4. Non-Gaussian Likelihood

Our final example is a single exoplanet transit search in the Student’s t-distributed noise:

q(xi) ∝
(
1 + x2

i /ν
)−(ν+1)/2, (27)

where ν is a parameter of the distribution (degrees of freedom). ν −→ ∞ corresponds to
the Gaussian noise, while lower values of ν result in strong power-law tails. This noise
is an exaggerated version of the outlier distribution in the actual Kepler data [27]. The
alternative model is a single U-shaped transit with a fixed transit duration τ = 1.2 days.
The parameters of the model are the location of the transit φ and its amplitude A.

As in the main exoplanet example, we have a time series of flux measurements, equally
spaced every 30 min, and the total length here is 200 days. We do not consider time-domain
noise correlations here. Matched filtering is not possible due to the non-Gaussian noise, so
we scan over the phase in 30 min increments and find the MLE z1 solution at each phase
using the Newton’s method. We identify the five highest MLR peaks and compute the
Bayes factor around each peak. We find that the Laplace approximation is accurate for the
amplitude parameter, but the φ integral has to be taken numerically. We take the peak with
the highest Bayes factor, compute the associated Ff of Equation (11), and see an excellent
agreement with the p-value prediction (13), shown in Figure 6.
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Figure 6. False-positive probability of a search for a single exoplanet transit in the power-law outlier
noise. We consider Student’s t-noise distributions with ν = 2, 5, and ∞. The noise probability density
functions of the data are shown in the inset figure. In each case, we simulate 7000 null data realizations
and plot the distribution of the Ff -test statistic. We have an excellent agreement with the p-value
prediction of Equation (13) in black.

5. Statistical Mechanics Interpretation

Here, we interpret the Bayesian and the frequentist hypothesis testing as an energy
versus entropy competition, where the energy is the maximum log-likelihood which favors
the alternative model and the entropy is the influence of the look-elsewhere effect.

In a continuous parameter space, the nearby models are not independent. In fact,
we can consider the models which cannot be distinguished after seeing the posterior as
one independent unit, which we call a state. This is analogous to the shift from classical
statistical mechanics to quantum statistical mechanics, where the discrete states are counted
in units of their uncertainty volume. Similar ideas were used in [13]. In this context, the
generalized Jeffrey’s prior is non-informative in the sense that it assigns an equal probability
to each state [13], so to each effective indistinguishable model.

5.1. Bayes Factor

Using the Jeffrey’s prior, the logarithm of the Bayes factor (3)

F ≡ log B = E− log
1

p(ẑ)Vpost(ẑ)
= E− log N ≡ E− S (28)

is reminiscent of the thermodynamics relation for the free energy. We identify E with energy
and S = log N with entropy. Note that N is independent of ẑ and equals the total number
of states that fit in the prior volume [31]).

For a general prior, the thermodynamics relation has to be generalized to F = E +U− S,
where the potential energy U = log p(z)

pJe f f (z)
measures the extent to which the prior is

informative, meaning that it favors some states over the others.
Note that the entropy is always positive and therefore always favors H0, because

the posterior is narrower than the prior. The energy has to surpass the entropy for the
alternative hypothesis to prevail. This is the Occam’s razor penalty, which is built into the
Bayes factor.

Our definitions of energy and entropy should be viewed from the hypothesis testing
point of view, where the energy E + U is the only “macroscopic” parameter that influences
the outcome of the test. The other parameters are “microscopic” in the sense that we do not
care about their values in the test. Entropy is the logarithm of the number of microstates,
given the macrostate, as usual. To be precise, the entropy should only count the states
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which give rise to the same macrostate, so the states with the same energy. Such a count
corresponds to the Bayes factor, which ignores the look-elsewhere effect associated with
the amplitude parameter. This makes little sense from the Bayesian perspective as the prior
is determined only after seeing the data, such that the amplitude is fixed to its MAP value
under the original prior. However, we have seen that it is exactly the reduced Bayes factor
B>1 from Equation (10) that appears in the frequentist analysis.

5.2. p-Value

We recognize that the integral
∫ dz

Vpost(z)
in Equation (9) is the continuous version of the

sum over states. The asymptotic p-value Pasym is therefore the sum over all states which
generate false positives, each weighted with the Boltzmann factor e−E:

Pasym(F > F(x)) = ∑
F(state)>F(x)

e−E(state) = e−Ff . (29)

However, this is exactly the partition function of the canonical ensemble with kBT = 1, so Ff
is the frequentist definition of the free energy. The p-value approximation (11) implies that the
Bayesian free energy log B>1 and the frequentist free energy Ff are one and the same thing,
up to the logarithmic corrections in the energy. Note that in physics, the thermodynamic and
statistical mechanic free energies are also the same in the thermodynamic limit.

Note that in the frequentist analysis, not all the states contribute to the look-elsewhere
effect equally but according to their Boltzmann factor. In other words, trials with parameters
which are very unlikely under the null hypothesis do not increase the multiplicity. We
show an illustration of this phenomenon in Figure 7.

Figure 7. Illustration of the statistical mechanics interpretation of the p-value. We emphasize the
difference between the amplitude and the other parameters. Left panel: Parameter space of a linear
model (15) with two degrees of freedom. This is equivalent to the periodogram model (18) at a fixed
frequency ω. Constant-energy (MLR) shells are circles of radius z1 = (w2

1 + w2
2)

1/2. We assume a
uniform prior with equal uncertainty on both variables and show posterior volume as the area of
each mesh cell. The expected ratio of the null hypothesis to the alternative hypothesis events in each
cell is given by the Boltzmann factor in Equation (29). It dies off exponentially as a function of energy.
The color intensity in the plot is proportional to this Boltzmann factor, which is shown along one
radial direction as a blue line. False-positive rate counts all the states in the region exterior to the
circle of observed F(x) and weights them with the Boltzmann factor (29). Only the region close to the
observed test statistic circle will contribute due to the exponential suppression. Increasing the prior
on w1 and w2 increases the total number of states and reduces the Bayes factor but has no impact
on the p-value (17). Right panel: Now, we also vary the frequency, searching for sinusoidal signal
(18) over all frequencies within some prior range. The observed F(x) surface is a cylinder, and the
false-positive rate is proportional to its surface area. Increasing the prior range of ω over which we
search for sinusoidal signal reduces the Bayes factor because additional states were introduced (16).
Contrary to the first example, the false-positive rate has now also increased (21) because some new
states are close to the observed F(x) shell.
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6. Discussion

This paper compares the frequentist and Bayesian significance testing between hy-
potheses of different dimensionality, where the null hypothesis is a well-defined accepted
model for the reality of the data, while the alternative hypothesis tries to replace the null
hypothesis. Both the Bayesian and frequentist methodologies have advantages and dis-
advantages in the setting where the alternative hypothesis has not been observed with
sufficient frequency to develop a reliable prior. We argue that for optimal significance
testing, the Bayes factor between the two hypotheses should be used as the test statistic
with the highest power. However, the Bayes factor should not be used to quantify the test
significance when the prior of the alternative hypothesis is poorly known. Instead, the
frequentist false-positive rate of a null hypothesis (Type I error or p-value) can be used,
which only depends on the properties of the null hypothesis, which is assumed to be well
understood. The sensitivity of the Bayes factor to the choice of prior is known in the context
of Lindley’s paradox [32]. While there is no actual paradox, it highlights the dependence
of the Bayes factor on the choice of prior, which is undesirable because we often do not
know it. Our solution to this paradox is to relate the Bayes factor to the p-value, which
is independent of the alternative hypothesis, as it only tests the distribution of the null
hypothesis. In this way, one can use the p-value for hypothesis testing even when using
Bayesian methods, by using the Bayes factor as a test statistic.

While it is common to use the MLR as a test statistic, this is not prior independent
but corresponds to the generalized Jeffrey’s prior. If some prior information is available,
as in our exoplanet example of transit duration being determined by the period P via
the Kepler law, one should use it to reduce the Type II error. We note that Jeffrey’s prior
can be unreasonable, even in unknown prior situations: if, in a given experiment, the
posterior volume is strongly varying across the parameter space, the Jeffrey’s prior is very
experiment-specific. A prior that is smooth across the parameter space is undoubtedly a
better prior, even if we do not know what the specific form should be. Nevertheless, when
Jeffrey’s prior is reasonable, it simplifies the analytic calculation of the p-value.

We show that both the p-value and the Bayes factor can be expressed as an energy
versus entropy competition. We define energy as the maximum logarithm of the likelihood
ratio and Bayesian entropy as the logarithm of the number of posterior volumes that fit in
the prior volume. The constant-energy Bayes factor is analogous to the thermodynamical
free energy. Conversely, the p-value in the asymptotic regime corresponds to the canonical
partition function, which is a Boltzmann factor weighted sum over the posterior states with
the test statistic above the observed one. In the low p-value regime, only the states close to
the observed test statistic contribute to the sum. Therefore, the constant-energy Bayes factor
and the asymptotic p-value are related. This also happens in physics, where the statistical
and thermodynamical definitions of the free energy coincide in the thermodynamical limit.
As an example, we show that the p-value of the standard χ2 distribution of d degrees of
freedom can be interpreted as an energy versus entropy competition, with the latter defined
as the logarithm of the number of states on the constant-energy shell. The entropy grows
as the log of the area of a sphere in d dimensions with a radius proportional to the square
root of the energy.

The formalism developed here extends the Wilks’ theorem [15] in several ways. First,
the connection to the Bayes factor allows us to define the posterior volume beyond the
Gaussian approximation inherent in the asymptotic limit assumed for the Wilks’ theorem.
Second, the Wilks’ theorem assumes the parameter values are inside the boundaries. We
show that a generalization counting the states as a function of energy provides a proper
generalization that gives better results. Third, Wilks’ theorem does not account for the
multiplicity of the look-elsewhere effect. Our method correctly handles these situations.

As an example application, we apply the formalism to the exoplanet transit search in
the stellar variability-polluted data. We search for exoplanets by scanning over the period,
phase, and transit duration, and we show that the multiplicity from the look-elsewhere
effect is of order 107. We find that the Laplace approximation for the uncertainty volume
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Vpost is inaccurate, while the numerical integration of the Bayesian evidence gives very
accurate results when compared to simulations. We emphasize the role of informative
priors, such as the planet transit time prior, which reduce the Type II error, leading to a
higher fraction of true planets discovered at a fixed Type I error (p-value) threshold. The
method enables a fast evaluation of the false-positive rate for every exoplanet candidate
without running expensive simulations.

There are other practical implications that follow from our analysis. For example, the
multiplicity depends not only on the prior range but also on the posterior error on the
scanning parameters. If this error is small in one part of the parameter space but large in
others, then the MLR test statistic leads to a large multiplicity that will increase the p-value
for all events. We show that analytic predictions reproduce the distribution of false positives
as a function of the period and transit duration. An informed choice of the prior guided
by what we know about the problem and what our goals are may change this balance and
reduce the multiplicity penalty, thus reducing the Type II error: the Bayes factor can be a
better test statistic for the Type II error than the MLR. One is of course not allowed to pick
and choose the prior a posteriori: we must choose it prior to the data analysis.

In many situations, it is possible to analytically obtain the false-positive rate as a
function of the Bayes factor test statistic from Equation (11), which gives a p-value estimate
that is more reliable for hypothesis testing than the corresponding Bayes factor in situations
of a new discovery where the prior is not yet known. As a general recommendation, we
thus advocate that Bayesian analyses report the frequentist p-value using the Bayes factor
test statistic against the null hypothesis as a way to quantify the significance of a new
discovery, and that frequentist analyses use the Bayes factor as the optimal test statistic for
hypothesis testing while using frequentist methods to quantify its significance.
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Appendix A. Gaussian Likelihood

We will here assume the likelihood is Gaussian and the hypotheses only differ in their
prediction for the data mean. This is a common situation that applies in our examples
in Sections 4.1–4.3. We will better motivate some of the assumptions that we needed to
derive our p-value expressions (9) and (11). Furthermore, we will present a complementary
geometric approach and re-derive the p-value expressions from the frequentist perspective,
so without using the concept of a prior.

Appendix A.1. Laplace Approximation for the Amplitude Is Exact

Because the null hypothesis has no free parameters, we can choose to work in the
coordinates in which the likelihood covariance matrix is the identity matrix and the mean
prediction under the null hypothesis is zero. The negative log-likelihood of the data is then

− log p(x|H0) =
1
2
‖x‖2 (A1)

− log p(x|H1) =
1
2
‖x−m(z)‖2,

where z is the parameters of the alternative hypothesis. Let us decompose the alternative
model as

m(z) = z1M(z>1), (A2)

where z1 is the amplitude and M(z>1) is the template, which depends on the nonlinear
parameters z>1 = (z2, z2, ..., zd). By suitably rescaling z1, we can take the template to be
normalized, ‖M(z>1)‖2 = 1, where the norm is the l2 norm.

We will assume that the prior variations are much slower than the likelihood variations,
so the MAP model m(ẑ) is the point on the model manifold, which is locally the closest to
the data. It has to satisfy:

(x−m) · ∂im = 0 i = 1, 2, ..., d. (A3)

The Gaussian MLR is directly related to ẑ1:

E ≡ log
p(x|ẑ)

p(x|H0)
= −1

2

(
‖x‖2 − ‖x−m(ẑ)‖2

)
=

1
2

(
2x ·m(ẑ)− ‖m(ẑ)‖2

)
=

1
2

ẑ2
1. (A4)

In the last step, we have used x ·m(ẑ) = m(ẑ) ·m(ẑ) by Equation (A3) for i = 1. Note also
that ‖m(ẑ)‖2 = ẑ2

1 by Equation (A2) and the choice of normalization. We can therefore
identify ẑ1 as the signal-to-noise ratio.

Appendix A.2. Posterior Volume Approximately Depends on the Local MAP Parameters Only

The posterior is in general not Gaussian, and the Laplace approximation may be a
poor approximation (e.g., Section 4.3), but we first adopt it anyway to gain some intuition.
Equation (4) gives the posterior covariance matrix:

Σ−1
ij = ∂im · ∂jm− (x−m) · ∂i∂jm. (A5)

The first term is independent of the data and equals the Fisher information matrix (5)

Iij = ∂im · ∂jm, (A6)

while we drop the second term because x−m is rapidly oscillating around zero if there
are no systematic residuals and the Hessian of the model is typically varying more slowly
(Gauss–Newton approximation).
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Although the Bayes factor (3) is in general a function of the data x, we have here
approximated it solely as a function of the best fit parameters ẑ, inferred from the data:

B(ẑ) =
(2π)d/2 p(ẑ)
[det I(ẑ)]1/2 exp

{
1
2

ẑ2
1

}
. (A7)

Note that the Fisher determinant can be restricted to the z>1 components only, be-
cause there are no correlations between z1 and the other parameters: I1i = M · z1∂i M =
1
2 z1∂i‖M‖2 = 0 and I11 = ‖M‖2 = 1. This property is exact and does not rely on the
Laplace approximation, as can be seen by using the Gaussian likelihood (A1) in the Bayes
factor computation (1). We also note that the errors on the nonlinear parameters scale as
the inverse signal-to-noise ratio, because Iij = z2

1 ∂i M · ∂j M, but this is only true under the
Fisher approximation to the posterior.

Using the Gauss–Newton approximation in the Laplace approximation, we were able
to show that the Bayes factor depends on the data only through the MAP parameters,
inferred from the data, but not on the specific data realization. This is true even if the
Laplace approximation fails. The posterior volume is then

Vpost(x) =
∫ p(x|z)p(z)

p(x|ẑ)p(ẑ)
dz =

∫ p(z)
p(ẑ)

e−
1
2 (‖x−m(z)‖2−‖x−m(ẑ)‖2)dz (A8)

=
∫ p(z)

p(ẑ)
e−

1
2 ‖m(z)−m(ẑ)‖2

e−(x−m(ẑ))·(m(ẑ)−m(z))dz ≈
∫ p(z)

p(ẑ)
e−

1
2 ‖m(z)−m(ẑ)‖2

dz = Vpost(ẑ),

where in the approximation we have used m(ẑ) as the stationary model of the likelihood
(see Equation (A3)) if the prior is sufficiently smooth; therefore, the exponent in the second
factor vanishes at the linear order in z− ẑ.

Appendix A.3. Frequentist Derivation of p-Value

We will here present an approach that is complementary to Section 3 in the sense that
it does not use any of the Bayesian concepts but still reproduces the same results. Because
there is no concept of a prior, we will be working with the MLR as a test statistic (which is
approximately the Bayes factor with the generalized Jeffrey’s prior). We will assume the
setup as in Appendix A.

First, let us determine how likely we would have seen some model m(z) as the MLE
model if the null hypothesis was true. We add the probabilities over the suitable region of
the data space:

p(m(z)|H0) =
∫

N
p(x|H0)dx, (A9)

where N is the set of all points which have m(z) as their MLE model. N is a subset of
the plane defined by Equation (A3). This equation defines an affine n− d-dimensional
plane which is an orthogonal complement to the tangent plane to theH1 manifold at the
point m(z) (for illustration, see Figure A1). However, N is not the entire plane because
Equation (A3) is a necessary but not sufficient condition. In other words, the posterior may
be multi-modal. To make progress, we will have to neglect this and assume N to be the
entire plane. By doing so, our final result for the p-value is in fact an upper bound, which
becomes more and more accurate the lower the p-value.

The model m(z) is both a point on the plane N and a normal to the plane, as can be
seen from Equation (A3) with i = 1. Writing x = m(z) + x⊥ for points on the plane and
using orthogonality, we can easily evaluate the Gaussian integrals (A9):

p(m(z)|H0) =
∫

p(x|H0)dx⊥ =
e−‖m‖

2
/2

(2π)d/2 . (A10)

This result is saying that the probability density in the data space of a model occurring as an
MLE model underH0 depends only on 1

2‖m‖2 = E. Therefore, the probability of observing
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E under the null hypothesis equals the probability of finding any m with 1
2‖m‖2 = E as the

MLE model. This gives

p(E|H0) =
1√
2E

e−E

(2π)d/2 Vshell, (A11)

where Vshell is the data-space volume of models with 1
2‖m‖2 = E, in other words, the

constant MLR surface volume. We have picked up a factor (2E)−1/2 when transforming
the density with respect to ẑ1 to the density with respect to E. The volume of the constant
MLR shell in the data space is an integral over theH1 manifold at fixed z1 =

√
2E. It can

be evaluated in the z>1 parameter space by integrating the square root of the determinant
of the metric over the coordinate range:

Vshell =
∫

dm(
√

2E, z>1) =
∫

det Iij(
√

2E, z>1)
1/2dz>1, (A12)

where the metric on the H1 manifold coincides with the Fisher information matrix (A6).
Combining Equations (A11) and (A12), we find

p(E|H0) =
e−E
√

2E

∫ dz>1

Vpost(
√

2E, z>1)
, (A13)

where Vpost = (2π)d/2 det I−1/2
ij .

Even though we use frequentist formalism, the expected posterior volume enters as
the determinant of the transformation from the data space to the parameter space. We
reproduce the result of Equation (9).

There are some exciting applications where the derived expressions are exact (see
Section 4.1) because the posterior has a single mode. However, in general, the frequentist
derivation made it manifest that in the presence of multiple modes, the p-value results are
only an upper bound, which becomes useless if the p-value is high. In that case, one can
apply a correction (13) if the posterior is narrow compared to the prior.
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Figure A1. Illustration of a two-dimensional data space (n = 2). The concentric circles are the
likelihood contours of H0. The solid line is the H1 manifold (d = 1). If the data point x lies on
the dashed line, the model m(z) satisfies Equation (A3) and is at least locally the MLE model. The
integral of Equation (A10) runs over the dashed line.

Appendix B. Fisher Analysis of the Periodogram

We here perform the Fisher analysis of the periodogram example in Section 4.2 by
employing Equation (A7). To make the calculations tractable, we assume dense data
sampling over many periods of the signal (ti+1 − ti � 1/ω � T) so that we can replace
the discrete sum in the scalar products of Appendix A with the integral ∑n

i=1 −→ n
T
∫ T

0 dt,
where T is the total time of the measurements. We will work with the amplitude z1 relative
to the normalized template M, which has A =. The log-MLR is E = 1

2 ẑ2
1 by Equation (A4).

We compute the Fisher matrix (A6) component by component, for example,

Iφω = ẑ2
1 ∂φ M · ∂ω M =

ẑ2
1

σ2 ∑
k

∂φ Mk∂ω Mk (A14)

≈ ẑ2
1

σ2
n
T

∫ T

0
σ

√
2
n

∂φ sin{ωt + φ}
√

2
n

∂φ sin{ωt + φ}dt

=
4E
T

∫ T

0
cos2{ωtφ}tdt ≈

T�1/ω

4E
T

1
2

∫ T

0
tdt = TE,

and take the inverse to obtain
[

σ2
ω σωφ

σωφ σ2
φ

]
≡ I−1 =

[
2T2E/3 TE

TE 2E

]−1

= E−1
[

6/T2 −3/T
−3/T 2

]
. (A15)

Interestingly, the frequency-phase correlation is relatively high σωφ/σωσφ = −
√

3/2 ≈ −0.87.
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Appendix C. Jeffrey’s Prior in the Exoplanet Example

Here, we derive the approximate Jeffrey’s prior in the exoplanet example by analyzing
the Fisher information matrix (A6):

Iij(z) = Re
∫

∂F{m}
∂zi

∂F{m}∗
∂zj

dω

P(ω)
. (A16)

Let us first determine the scaling of the Iφφ. Fourier transforming the signal from Equation (22),
differentiating it with respect to φ, inserting into Equation (A16), and expressing the
amplitude A = z1 with E, we obtain

Iφφ = 2E

∫ ω2P2|F{m}|2dω
P(ω)∫ |F{m}|2dω
P(ω)

∝
P2

τ2 , (A17)

where in the second step we change the variable of integration to the dimensionless quantity
ωτ and neglect a residual mild dependence of the dimensionless integral on P and τ.

In a scenario where τ is an independent quantity, we similarly obtain IPP ∝ P−2τ−1

and Iττ ∝ τ−1; therefore, the Jeffrey’s prior is:

p(z) ∝ det I1/2 ∝ τ−2 . (A18)

In the other scenario, where τ is fixed by the period, we have IPP ∝ P−2 and Jeffrey’s prior is:

p(z) ∝ τ−1
K ∝ P−1/3 . (A19)

An estimate of the Jeffrey’s prior is obtained by normalizing in the given range of the parameters.

References
1. Jeffreys, H. The Theory of Probability; OUP Oxford: Oxford, UK, 1998.
2. Teh, Y.W.; Jordan, M.I. Hierarchical Bayesian nonparametric models with applications. Bayesian Nonparametrics 2010, 1, 158–207.
3. Casella, G. An introduction to empirical Bayes data analysis. Am. Stat. 1985, 39, 83–87.
4. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 1995.
5. Handley, W.; Lemos, P. Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio. Phys. Rev. D 2019,

100, 043504. [CrossRef]
6. Pereira, C.A.d.B.; Stern, J.M. Evidence and credibility: full Bayesian significance test for precise hypotheses. Entropy 1999,

1, 99–110. [CrossRef]
7. MacKay, D. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.
8. Bayer, A.E.; Seljak, U. The look-elsewhere effect from a unified Bayesian and frequentist perspective. J. Cosmol. Astropart. Phys.

2020, 2020, 009. [CrossRef]
9. Miller, R.G. Simultaneous Statistical Inference; Springer: New York, NY, USA, 1981. [CrossRef]
10. Shaffer, J.P. Multiple Hypothesis Testing. Annu. Rev. Psychol. 1995, 46, 561–584. [CrossRef]
11. Zhang, J. Bayesian (mean) most powerful tests. Aust. N. Z. J. Stat. 2017, 59, 43–56. [CrossRef]
12. Fowlie, A. Neyman–Pearson lemma for Bayes factors. Commun. Stat. Theory Methods 2021, 1–8. [CrossRef]
13. Balasubramanian, V. Statistical inference, Occam’s razor, and statistical mechanics on the space of probability distributions.

Neural Comput. 1997, 9, 349–368. [CrossRef]
14. Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [CrossRef]
15. Wilks, S.S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 1938, 9, 60–62.

[CrossRef]
16. Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [CrossRef]
17. Scargle, J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data.

Astrophys. J. 1982, 263, 835–853. [CrossRef]
18. VanderPlas, J.T. Understanding the Lomb–Scargle Periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [CrossRef]
19. Baluev, R.V. Assessing the statistical significance of periodogram peaks. Mon. Not. R. Astron. Soc. 2008, 385, 1279–1285. [CrossRef]
20. Davies, R.B. Hypothesis Testing When a Nuisance Parameter is Present Only under the Alternative. Biometrika 1977, 64, 247–254.

[CrossRef]
21. Davies, R.B. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 1987, 74, 33–43.

[CrossRef]

http://doi.org/10.1103/PhysRevD.100.043504
http://dx.doi.org/10.3390/e1040099
http://dx.doi.org/10.1088/1475-7516/2020/10/009
http://dx.doi.org/10.1007/978-1-4613-8122-8
http://dx.doi.org/10.1146/annurev.ps.46.020195.003021
http://dx.doi.org/10.1111/anzs.12171
http://dx.doi.org/10.1080/03610926.2021.2007265
http://dx.doi.org/10.1162/neco.1997.9.2.349
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1214/aoms/1177732360
http://dx.doi.org/10.1007/BF00648343
http://dx.doi.org/10.1086/160554
http://dx.doi.org/10.3847/1538-4365/aab766
http://dx.doi.org/10.1111/j.1365-2966.2008.12689.x
http://dx.doi.org/10.2307/2335690
http://dx.doi.org/10.1093/biomet/74.1.33


Entropy 2022, 24, 1328 24 of 24

22. Jenkins, J.M.; Tenenbaum, P.; Seader, S.; Burke, C.J.; McCauliff, S.D.; Smith, J.C.; Twicken, J.D.; Chandrasekaran, H. Kepler Data
Processing Handbook: Transiting Planet Search; Kepler Science Document; 2017. Available online: https://ui.adsabs.harvard.edu/
abs/2017ksci.rept....9J/abstract (accessed on 20 September 2022) .

23. Robnik, J.; Seljak, U. Matched filtering with non-Gaussian noise for planet transit detections. Mon. Not. RAS 2021, 504, 5829–5839.
[CrossRef].

24. Koch, D.G.; Borucki, W.J.; Basri, G.; Batalha, N.M.; Brown, T.M.; Caldwell, D.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore,
E.; Dunham, E.W.; et al. Kepler mission design, realized photometric performance, and early science. Astrophys. J. Lett. 2010,
713, L79. [CrossRef]

25. Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.;
Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 2015, 1, 014003. [CrossRef]

26. Kipping, D.M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc.
2013, 435, 2152–2160. [CrossRef]

27. Robnik, J.; Seljak, U. Kepler Data Analysis: Non-Gaussian Noise and Fourier Gaussian Process Analysis of Stellar Variability.
Astron. J. 2020, 159, 224. [CrossRef]

28. Stroud, A.; Secrest, D. Approximate integration formulas for certain spherically symmetric regions. Math. Comput. 1963,
17, 105–135. [CrossRef]

29. Schlomer, N. Quadpy. Available online: https://zenodo.org/record/5541216#.YymgMbRBxPY (accessed on 20 September 2022)
30. Kipping, D.M. Bayesian priors for the eccentricity of transiting planets. Mon. Not. R. Astron. Soc. 2014, 444, 2263–2269. [CrossRef]
31. Hergt, L.T.; Handley, W.J.; Hobson, M.P.; Lasenby, A.N. Bayesian evidence for the tensor-to-scalar ratio r and neutrino masses m

ν: Effects of uniform versus logarithmic priors. Phys. Rev. D 2021, 103, 123511. [CrossRef]
32. Lindley, D.V. A statistical paradox. Biometrika 1957, 44, 187–192. [CrossRef]

https://ui.adsabs.harvard.edu/abs/2017ksci.rept....9J/abstract
https://ui.adsabs.harvard.edu/abs/2017ksci.rept....9J/abstract
https://doi.org/10.1093/mnras/stab1178
http://dx.doi.org/10.1088/2041-8205/713/2/L79
http://dx.doi.org/10.1117/1.JATIS.1.1.014003
http://dx.doi.org/10.1093/mnras/stt1435
http://dx.doi.org/10.3847/1538-3881/ab8460
http://dx.doi.org/10.1090/S0025-5718-1963-0161473-0
https://zenodo.org/record/5541216#.YymgMbRBxPY
http://dx.doi.org/10.1093/mnras/stu1561
http://dx.doi.org/10.1103/PhysRevD.103.123511
http://dx.doi.org/10.1093/biomet/44.1-2.187

	Introduction
	Bayesian Hypothesis Testing
	Frequentist Hypothesis Testing
	Results
	Linear Model
	Periodogram
	Exoplanet Search
	Bayes Factor
	p-Value
	The Choice of Prior

	Non-Gaussian Likelihood

	Statistical Mechanics Interpretation
	Bayes Factor
	p-Value

	Discussion
	Gaussian Likelihood
	Laplace Approximation for the Amplitude Is Exact
	Posterior Volume Approximately Depends on the Local MAP Parameters Only
	Frequentist Derivation of p-Value

	Appendix B
	Appendix C
	References



