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Abstract

Previous research has shown that people are able to use distri-
butional information about the environment to make inferences.
However, how people learn these probability distributions is
less well understood, especially for those that are not normal
or unimodal. In this paper we focus on how people learn prob-
ability distributions that are bimodal. We examined on how
the distance between the two peaks of a bimodal distribution
and the numbers of observations influence how participants
learn each distribution, using two types of stimuli with different
degrees of perceptual noise. Overall, participants were able to
learn the various distributions quickly and accurately. However,
their performance is moderated by stimuli type—whether par-
ticipants were learning a distribution over numbers (low noise)
or over sizes of circles (high noise). This work suggests that al-
though people are able to quickly learn a variety of distributions,
many factors may influence their performance.
Keywords: probability distributions; learning; subjective be-
lief; intuitive statistics.

Introduction

Previous research has found that individuals are sensitive to
distributional information in the environment, and are able to
use that knowledge to make good judgments and predictions,
even when the distributions are non-normal. In many cases,
this is a particularly challenging task because non-normal
distributions are encountered less often than normal ones. Yet
individuals still perform well, across different tasks that have
different underlying distributions. For example, individuals
were able to make approximately optimal predictions for the
total box office of a movie based on its current take, a quantity
roughly in a power-law distribution (Griffiths & Tenenbaum,
2006; Lewandowsky, Griffiths, & Kalish, 2009). The ease
at which individuals are able to make these and distribution-
based estimates (e.g., Sanborn, Griffiths, & Shiffrin, 2010;
Maye, Werker, & Gerken, 2002) opens up the question of how
individuals learn the probability distributions that underlay
reality (Peterson & Beach, 1967; Posner & Keele, 1968).

Because of the importance of distribution learning in solv-
ing many tasks, it is perhaps not surprising that recent research
has found that people are quite adept in learning a range of
distributions. Goldstein and Rothschild (2014) taught partic-
ipants various unimodal distributions using samples in the
form of numbers, and then evaluated how well they learned
by requiring them to graphically reconstruct the distribution.
They found that individuals were able to build distributions
with statistical properties that matched well with the original
stimuli. Similar methods have been successfully applied in
eliciting people’s implicit statistical knowledge (Haran, Moore,
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& Morewedge, 2010), suggesting that individuals are capable
at learning and retaining a range of unimodal distributions.

Although many real world distributions are unimodal, other
types of distributions, like bimodal distributions, are also nec-
essary for every day and scientific tasks because they help us
discover latent categorical differences. For example, male go-
rillas are on average twice the size of their female counterparts.
Therefore, learning the bimodality of one observable attribute
(size) enable us to infer another (sex) that is harder to diagnose.
Moreover, examining how people learn bimodal distributions
provides a foundation on which we can study broader ques-
tions of how individuals learn complex, non-normal distribu-
tions, and how they use the knowledge to make inferences and
predictions about the world.

Prior studies have used a variety of stimuli to examine
learning of distribution, including numbers (Goldstein & Roth-
schild, 2014), sizes (Xu & Griffiths, 2010), sensorimotor noise
(Körding & Wolpert, 2004). A brief review of these studies
suggests that learning bimodal distributions can take a sub-
stantial amount of training. Moreover, how well and how long
it takes individuals to learn a distribution may depend on the
kind of stimuli being learned. However, the methodological
differences between studies confound the question of stimuli
choice and learning rates, making it hard to draw any conclu-
sions based on these studies alone. Therefore, here we also
aim to understand the influence of stimuli type in the context
of distribution learning.

In this paper, we first review the existing literature on learn-
ing of bimodal distributions. We then present a series of
experiments that examine how individuals learn bimodal distri-
butions over numbers, and analyze how the learning outcome
varies as a function of the overall shape of the distribution
and the number of training examples. We then replicate these
experiments in a slightly more naturalistic domain, by look-
ing at how individuals learn distributions over different sized
circles. This procedure allowed us to examine how factors
external to the distribution, such as perceptual noise, interact
with distributional properties to influence people’s learning.

Learning Bimodal Distributions

A large body of previous work has found that individuals can
learn and make inferences based on bimodal distributions.
For example, infants and adults were found to be sensitive
to the distributional properties of sounds in learning phonetic
categories (Maye et al., 2002). Infants who were exposed
to sounds sampled from a bimodal distribution were found
to later distinguish between sounds from the endpoints of
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the continuum, whereas infants who were exposed to sounds
from a unimodal distribution did not. In the domain of social
cognition, it has been found that people’s estimates concerning
frequency of social behaviors that exhibit bimodality partially
track the actual behaviors (Nisbett & Kunda, 1985).

Even so, bimodal distributions can be hard to teach in the
laboratory. For example, while Körding and Wolpert (2004)
were able to train people to adapt to bimodally distributed
sensory noise, their experiment involved over 1,000 trials.
McKinley and Nosofsky (1995) found that stimuli with bi-
modally distributed category boundaries were very difficult
for participants to learn. A similar result was also noted by Xu
and Griffiths (2010).

However, these three studies assessed participants’ ability
to make inferences based on the distributions, and did not test
their explicit knowledge of what the distributions were. This
leaves open the possibility that individuals may have correctly
learned the shape of the distribution, but may have had diffi-
culty applying that knowledge to these inferences. In order
to more directly examine the learning of these distributions,
we instead adopt a new experimental framework in which dis-
tribution information were explicitly elicited in the form of
samples (Goldstein & Rothschild, 2014).

Experiments 1 and 2: Learning about numbers

In Experiment 1, we examined how individual’s learning of
distributions over numbers is influenced by the distance be-
tween the two modes of the distribution, and in Experiment 2,
how it is influenced by the number of observations.

Participants and procedure

In Experiment 1, we recruited 200 participants from Amazon
Mechanical Turk and in Experiment 2, 163 participants. Partic-
ipants were required to be 18 years or older, reside in the U.S.,
and have a lifetime acceptance rate on MTurk of at least 95%.
Each participant was compensated US$0.30. Participants who
took Experiment 1 were ineligible to take Experiment 2.

Both experiments were web-based, administered using
Qualtrics, and with animations of numbers displayed using
JavaScript. In the learning phase, participants were told:

Imagine we have large bag filled with ping pong balls. A
number between 1 and 10 is written on each ball. On the
next screen we will show you the numbers written on 48
of the balls. Please say the number as it is shown. Try to
remember as many of the values as you can.

They were then shown 48 numbers, one at a time, in a
random order. Each number was drawn in white on a black
background and was displayed for 1000 milliseconds. After
the display of each number, the stimuli area was cleared for
500 milliseconds before the next number was shown. After
all the numbers were displayed they would move on to the
elicitation phase, here they were asked:

Now imagine we place all the balls back into the bag. We
will now draw 100 balls from the bag. How many balls
of each value (from 1 to 10) do you think we will draw?

Table 1: Stimuli distribution of the experiments. The distributions
used in Experiments 1 and 3 are shown on top, and those for Experi-
ments 2 and 4 in the bottom. Each column represents, for each value
of a distribution, the number of samples shown during the learning
phase. For example, in the diffµ = 0 condition, values of 5 and 6 were
each shown 16 times.

1 2 3 4 5 6 7 8 9 10

diffµ = 0 0 0 1 7 16 16 7 1 0 0
diffµ = 2 0 1 3 9 11 11 9 3 1 0
diffµ = 4 1 3 8 8 4 4 8 8 3 1
diffµ = 6 4 8 8 3 1 1 3 8 8 4
diffµ = 8 12 8 3 1 0 0 1 3 8 12

n “ 12 0 1 2 2 1 1 2 2 1 0
n “ 24 0 2 4 4 2 2 4 4 2 0
n “ 48 0 4 8 8 4 4 8 8 4 0
n “ 96 0 8 16 16 8 8 16 16 8 0

Participants then gave their expected distribution over the
numbers 1–10 using a constant-sum scale that ensured the
frequency of all numbers summed to 100. The order in which
the response options were presented was counter-balanced:
responses were either listed from 1 to 10, or 10 to 1. Finally,
participants completed an optional demographics survey.

In Experiment 1, participants were randomly assigned to
one of five between-subjects conditions, each representing a
different degree of bimodality (Table 1). These conditions
were created by combining two normal distributions with a
variance of 1 and varying distances between the two modes,
indexed by the condition label diffµ. It can be seen that in
condition 0 and 2, participants were shown a unimodal distri-
bution, whereas in conditions 4, 6, and 8, participants were
shown a bimodal distribution. In the learning phase, partici-
pants were shown numbers in frequencies that correspond to
their conditions.

Experiment 2 followed the design of Experiment 1, except
that, instead of always seeing 48 samples, participants saw
either 12, 24, 48, or 96 samples. Because we wanted to create
conditions with similar degrees of bimodality, the frequency
of stimuli in each condition were multiples of the frequencies
in the 12 samples condition. Note that the distributions here
did not exactly match any condition from Experiment 1, but
the relative frequencies are similar to the diffµ = 4 condition.

Results of Experiment 1

The average age of the participants in Experiment 1 was 32.6,
and 41.0% were female. The demographics of the remaining
experiments are similar and will not be reported.

The aggregate responses of the five conditions are shown
in Figure 1. The histograms represent the mean responses
at each of the 10 possible values, with error bars showing
˘1 standard error. The blue lines represent the extrapolated
training distribution—observed frequency of stimuli in the
learning phase, scaled up linearly (from 48 to 100). Overall,
the aggregated responses closely tracked the training distri-
bution, suggesting that as a group, participants learned the
challenging distributions very well.
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Figure 1: Aggregate results of Experiment 1. Each histogram repre-
sents a different condition, which is labeled on top. The histograms
illustrate the mean human responses (with error bars of ˘1 s.e.) at
each value. The blue lines correspond to the proportions of each
value in the learning phase.

To quantitatively evaluate the responses we tracked two
sets of statistics. We computed the Kolmogorov-Smirnov
statistic D between each individual’s responses and the training
distribution to measure the raw accuracy of the responses.
D gives a measure of the distance between two probability
distributions, assigning a value of 0 to distributions that are
identical, and 1 to distributions that are maximally different.
D is computed as

Dn “ sup
x

|Fnpxq ´ Fpxq| (1)

where supx is the supremum of the set of distances, F the
cumulative distribution function, and Fn the empirical one.

While D gives insights to the fit of a distribution, it does
little to tell us the degree of bimodality of a distribution. There-
fore, we also computed the bimodality coefficient b (Freeman
& Dale, 2013; SAS/STAT 12.1 User’s Guide, 2012) and AICd
(McLachlan & Peel, 2004). b is computed based on the as-
sumption that a bimodal distribution should have very low
kurtosis and/or high skewness:

b “ g2 ` 1

k ` 3pn´1q2

pn´2qpn´3q
(2)

where n is the number of samples, g the sample skewness
and k the sample excess kurtosis. It ranges from 0 to 1, with
values above 5/9 suggest bimodality. AICd is computed based
on the difference in Akaike information criterion (AIC) of a
model assuming a single normal distribution (unimodal) and a
model assuming the combination of two normal distributions
(bimodal). AICd does not have theoretical bounds, but higher
values indicate better fits with bimodal distributions.

Figure 2 displays the means and standard errors of each of
D, b, and AICd in each condition. Results of Experiment 1 are
displayed by the graphs on the left. Overall, the D statistics
were fairly low and stable across conditions, suggesting that
participants were able to learn the distribution well, and their
ability to learn the distribution was not largely influenced by
the bimodality of the distribution. To test whether diffµ indeed
influences these statistics, we performed three regression anal-
yses on each of D, b, and AICd , with diffµ as the independent
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Figure 2: Comparison of the Kolmogorov-Smirnov statistics (D; top
row), bimodality coefficient (b; middle row), and AICd (bottom row)
between results of Experiments 1 and 3 (left), and of Experiments 2
and 4 (right). Error bars indicate ˘1 s.e.

variable. A regression showed that diffµ did not influence D
(Fp1,198q “ 0.03, p “ 0.86), suggesting that individuals were
able to learn the distributions equally well no matter the degree
of bimodality.1

We next turn to b and AICd to evaluate the degree of
bimodality at each diffµ. As expected, both b and AICd
increase along with the distance between the two modes.
A regression analysis showed that diffµ indeed explained
a significant proportion of the variance in the b and AICd
scores (b: Fp1,198q “ 300.35, p † 0.001, R2 “ .60; AICd :
Fp1,198q “ 128.49, p † 0.001, R2 “ .39), and suggested
that bimodality in the stimuli influenced bimodality in the
responses.

The increase in these values also closely tracked the values
of the b and AICd for the training distribution (bt and AIC t

d ,

1We used parametric statistical tests even though the data were
not necessarily normally distributed. However, non-parametric tests
gave similar results.
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Figure 3: Aggregate results of Experiment 2, split according to
conditions (shown on top). Please refer to Figure 1 for legend.

respectively). For example, in the diffµ = 0 condition, the b of
the (unimodal) target distribution was 0.36, while the mean
of participants’ distribution was 0.43; whereas in the diffµ = 8
condition, the b of the target distribution was 0.81, compared
to participants’ response at 0.71. This suggests that although
the participants were sensitive to the bimodality in the stimuli,
at an individual level participant’s responses were more noisy.
However, the correlations between b and bt (rp198q “ 0.79,
p † 0.001), and between AICd and AIC t

d (rp198q “ 0.68,
p † 0.001) were both significant, suggesting higher bimodality
in the stimuli corresponds to stronger inference of bimodality.

Overall the results suggest that participants were surpris-
ingly good at inferring bimodality when the observations were
indeed so, even with an observation of only 48 samples.

Results of Experiment 2

In Experiment 2 we varied the number of observations and
investigate how amount of training influences learning of dis-
tributions and inference of bimodality. We first visually in-
spected the aggregate results of Experiments 2 (Figure 3),
and found that participants’ responses track quite well with
the observations across all conditions. The D, b, and AICd
statistics for Experiment 2 are shown in the right column of
Figure 2. Overall, participant accuracy on this task was high,
with a relatively low D. We used a regression analysis to test
whether the number of observations influenced the various
statistics of learning and bimodality, using the logged number
of observations as independent variable. We found that the
number of observations did not influence D (Fp1,161q “ 0.41,
p “ 0.52). Similarly, there was no significant effect of num-
ber of observations on neither b nor AICd (ps ° 0.05).2 This
shows that when learning numbers, participants’ accuracy or
inference of bimodality were not influenced by the number of
samples shown, at least within the range of samples used here.

Discussion

We carried out two experiments to examine how the distances
between the two modes and amount of training influence learn-
ing of bimodal distributions using numbers as stimuli. We
found that the distance between the peaks of distributions in-
fluenced people’s inference of bimodality. While these results
might be expected, other findings were surprising. Participants
appeared to be able to learn bimodal distributions based on a

2The results of the analyses here and in Experiment 4 were similar
regardless of whether the number of observation is logged.

fairly small number of observations, even when the difference
in the modes was small (e.g., diffµ = 4 condition in Experi-
ment 1), or when receiving a limited number of observations
(e.g., n “ 12 condition in Experiment 2).

The results of Experiments 1 and 2 stand in contrast to
previous experimental work on distribution learning in which
participants needed dozens or hundreds of trials to learn the
correct underlying distribution. One reason for this difference
may be the types of stimuli that participants were presented
with. For example, Körding and Wolpert (2004) found that
participants could learn bimodally distributed uncertainties in
a sensory feedback task. However, participants received 1,000
training trials and it is not clear whether the same performance
could be obtained with less training. Similarly, in Xu and
Griffiths (2010), participants were presented with graphical
fish with widths sampled from a 2-mixture normal distribution,
and they had to correct learn and categorize fish based on the
width. Results showed that participants needed on average
more than 60 samples to categorize the fish correctly.

In both Körding and Wolpert (2004) and Xu and Griffiths
(2010), the task was a perceptual one where participants did
not have access to external reference (i.e., estimated displace-
ment and size of fish). This may lead to participants making
noisy judgments of how far the image was displaced, or how
large a fish was, making it harder to learn the underlying
distribution. In contrast, Experiments 1 and 2 relied on the
perception of numbers which are more familiar, easily distin-
guishable, and memorable, making it easier for the participant
to perceive, encode, and recall the sample values. Further-
more, prior research has shown that continuous quantities are
more noisily represented than discrete quantities (Feigenson,
Dehaene, & Spelke, 2004), a fact that perhaps contributed to
the difference in performance.

Experiments 3 and 4: Learning about circles

To explore how perceptual noise inherent to stimuli might
influence the distribution learning task, in Experiments 3 and
4 we replicated Experiments 1 and 2 using a more perceptually
challenging type of stimuli: circles of varying sizes. The
results of these experiments should shed light on the role that
stimuli type play in distribution learning.

Participants and procedures

Participants were recruited from Amazon Mechanical Turk,
and were randomly assigned to a condition. The conditions
and distributions in Experiments 3 and 4 were identical to
those of Experiments 1 and 2, respectively (Table 1). We
recruited 204 participants for Experiment 3 and 162 partici-
pants for Experiment 4. Participants who had taken a previous
experiment were ineligible to take Experiments 3 or 4. Each
participant was compensated $0.30 for their time.

Except for the following changes, Experiments 3 and 4
mimicked Experiments 1 and 2. Participants were told “Imag-
ine we have a large bag filled with black ping pong balls of
different sizes. On the next screen we will show you 48 of
them. Please try to remember the sizes of the balls as they
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Figure 4: Aggregate results of Experiment 3.

are shown.” The stimuli were solid black circles on a white
background. The circles were of 10 different sizes, varying
between 10 and 55 pixels wide in increments of 5 pixels. Cir-
cles of these 10 possible sizes are distributed the same way as
numbers 1–10 in Experiments 1 and 2. Each circle was shown
for 1000ms with a 500ms delay between presentations. There
were additional, minor textual changes to address the fact that
the stimuli were circles instead of numbers.

Results of Experiment 3

The mean responses for Experiment 3 are shown graphically
in Figure 4. These means were not as close to the training
distributions as in Experiment 1. This may be mainly due to
perceptual noise and biases in reconstructing the distributions,
resulting in variation in overall mean and placement of the
modes of each participant’s response. We see some hint of this
in the diffµ = 8 condition where individuals place very little
weight on the largest circles, but a large amount of weight
on the third to largest circle. As a result, the distributions
of these aggregate responses were quite different from the
training distributions, especially in contrast to the results from
the numbers experiments.

We next analyzed the distribution fit and bimodality statis-
tics (Figure 2). Similar to Experiment 1, there was a significant
increasing trend in b (Fp1,202q “ 64.30, p † 0.001, R2 “ .24)
and AICd (Fp1,202q “ 9.95, p † 0.01, R2 “ .05), but not in D
(Fp1,202q “ 0.10, p “ 0.75), suggesting that participants re-
produced increasingly bimodal distributions as diffµ increased,
but their learning performance was similar across conditions.

The correlations between b and bt (rp202q “ 0.51, p †
0.001), and between AICd and AIC t

d (rp202q “ 0.25, p †
0.001) were both significant. This demonstrates that, similar
to Experiment 1, there was a close match between the stimuli
and the learned distribution in terms of bimodality.

In order to assess the influence of perceptual noise on par-
ticipants’ inferences, we compared the distribution fit and
bimodality statistics between Experiments 1 and 3. We first
used a series of t-tests to compare D in corresponding condi-
tions between the two experiments, e.g., diffµ = 0 conditions
in both experiments. Results show that D in Experiment 3 is
significantly higher in all five comparison (ps † 0.05), demon-
strating that distributions presented as sizes of circles were
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Figure 5: Aggregate results of Experiment 4.

harder for participants to learn.
As both b and AICd had an increasing trend, we used both

stimuli type and diffµ as independent variables, with b or AICd
as the dependent variable in a regression analysis. Results
showed that, for b, there was a significant effect of stimuli
type and diffµ (ps † 0.05). More interestingly, there was an
interaction effect (Fp4,400q “ 33.5, p † 0.001), showing that
the increasing trend is bigger when numbers were used as stim-
uli. Somewhat similar results were obtained in the regression
using AICd , where the interaction effect was also significant
(Fp4,400q “ 17.5, p † 0.001). Taken together, these results
suggest that diffµ had a bigger effect on b and AICd (steeper
slope) when participants learned the distributions of numbers,
compared to when they learned sizes of circles.

Results of Experiment 4

As in Experiment 3, we found that the aggregate responses
in Experiment 4 appeared to be substantially less bimodal
than the corresponding numbers experiment (Figure 5). We
next analyzed how well individual participants learned the
distributions. We found that D decreased as (logged) num-
ber of observations increased (Fp1,160q “ 8.48, p “ 0.004,
R2 “ .05), showing that, overall, participants were learning
the distributions better as they see more samples. In contrast,
D between conditions in Experiment 2 were not significantly
different. Bimodality coefficient b and AICd were not sig-
nificantly different between conditions (b: Fp1,160q “ 0.23,
p “ 0.63; AICd : Fp1,160q “ 0.54, p “ 0.46), showing that,
as in Experiment 2, the distributions that individuals produced
were not more bimodal with more observed samples.

We also compared the results between Experiments 2 and 4,
by running a series of regression analyses using stimuli type
and (logged) number of observations as independent variables,
and D, b, or AICd as dependent variables. We focused on
the interaction of the independent variables, because this test
can assess whether stimuli type moderates the learning of bi-
modality with different amount of observations. We found that
there was a significant interaction for D (Fp3,321q “ 5.15,
p “ 0.02), demonstrating that higher number of observations
helped learning the distributions better when circles are be-
ing learned. In contrast, for both b and AICd , there was no
interaction (both p ° 0.05), suggesting that there was no dif-
ference between the two stimuli type in terms of whether more
observations would lead to higher inference of bimodality.

This result suggests that in the numbers experiments, partici-
pants were able to learn the distribution so quickly that amount
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of observations did not influence learning. However, learn-
ing the distribution of sizes was more difficult that additional
observations helped.

Discussion

We carried out two experiments to investigate how people
learn distributions over the sizes of circles. Although in gen-
eral, individuals were able to learn that these distributions
were bimodal, there were substantial variations in where they
located the modes of the distributions. Overall performance
on a number of measures in Experiments 3 and 4 was lower
than those in Experiments 1 and 2. Moreover, we found an
interesting interaction. When the participants were learning
numbers, their accuracy in learning the distributions remained
stable for each number of training examples, but when they
were learning sizes of circles their accuracy increased as they
had access to more training examples. However, inference of
bimodality with neither stimuli type increased with number
of training. This suggests that amount of training might not
be a major factor with respect to learning bimodality, at least
within the range of training considered here.

General Discussion

In this paper we reported four experiments in which partici-
pants learned bimodal distributions. We found that when par-
ticipants learned distributions over numbers, they were able to
accurately learn bimodal distributions based on a small num-
ber of samples, including distributions with a relatively small
distance between the two modes. However, when participants
learned distributions of perceptually more challenging stimuli,
sizes of circles, overall performance decreased, and partici-
pants were less likely to infer bimodality compared to when
learning numbers. These results demonstrate that individuals
are likely to be able to learn a wide range of distributions in a
variety of settings, although not all distributions are learned
equally—the difficulty of learning a distribution depends on
what the distribution is of.

The current findings have potential implications for several
different aspects of cognitive and decision research. First,
our findings showed that people were able to learn bimodal
distributions relatively quickly, even with few observations,
especially with stimuli of lower perceptual noise. These results
revealed a deeper correspondence between probabilities in
the mind and those in the world than what was previously
suggested, and complemented recent research on Bayesian
decision theory in which people were provided with explicit
priors (Acerbi, Vijayakumar, & Wolpert, 2014).

Second, one of the key parameters concerning learning of
distributions seems to be stimuli type. Using experiments
with the exact same parameterizations, we directly contrasted
how people learned distributions based on stimuli that were
different only in modes of presentation. Compared to learning
distributions over numbers, learning distributions over sizes
was far more challenging, albeit still possible, especially with
more training. This difference may be driven by the relative

difficulty in perceiving or encoding size of circles compared
to numbers.

Third, in Experiments 2 and 4 people were sensitive to
bimodality even in very small sample sizes. Results here are
in agreement with prior works in which people were found to
believe in the representativeness of small samples (Tversky &
Kahneman, 1971), and show that the finding applies even in
the learning of complicated continuous distributions.

Overall we found that individuals were able to quickly and
accurately learn bimodal distributions, although their accuracy
and inference depended on the interaction of many factors,
including types of stimuli presented, distributional properties
of the stimuli, and amount of evidence. While these results
speak to people’s ability to acquire statistical information from
their environment, it also highlights the difficulty of the task.
Understanding how we learn and use these statistical infor-
mation will help explain how humans can carry out complex
everyday tasks so efficiently.
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