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Sequence analysis
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Abstract 
Motivation: Taxonomic classification of short reads and taxonomic profiling of metagenomic samples are well-studied yet challenging 
problems. The presence of species belonging to groups without close representation in a reference dataset is particularly challenging. While 
k-mer-based methods have performed well in terms of running time and accuracy, they tend to have reduced accuracy for such novel species. 
Thus, there is a growing need for methods that combine the scalability of k-mers with increased sensitivity.
Results: Here, we show that using locality-sensitive hashing (LSH) can increase the sensitivity of the k-mer-based search. Our method, which 
combines LSH with several heuristics techniques including soft lowest common ancestor labeling and voting, is more accurate than alternatives 
in both taxonomic classification of individual reads and abundance profiling.
Availability and implementation: CONSULT-II is implemented in Cþþ, and the software, together with reference libraries, is publicly available 
on GitHub https://github.com/bo1929/CONSULT-II.

1 Introduction
Metagenomic sequencing of microbial communities produces 
short DNA reads from unknown microorganisms (Handelsman 
2004), leading to a need for taxonomic identification based on 
reference datasets. One approach is to taxonomically identify 
reads and summarize the results to obtain the taxonomic profile 
of a sample, showing the relative abundances of taxonomic 
groups. However, despite the availability of mature read classifi
cation and profiling tools, benchmarking has revealed major 
gaps in the accuracy of existing methods (McIntyre et al. 2017, 
Sczyrba et al. 2017, Meyer et al. 2019, Ye et al. 2019). Precise 
identification is often hampered by the novelty of queries versus 
the genome-wide reference datasets and ambiguous matches. In 
addition, searching against large numbers of genomes is compu
tationally demanding.

Taxonomic identification methods employ various strate
gies, including k-mer matching (Ames et al. 2013, Ounit et al. 
2015, Lu et al. 2017, Lau et al. 2019, Wood et al. 2019), 
read mapping (Zhu et al. 2022), marker-based alignment 
(Liu et al. 2011, Segata et al. 2012, Sunagawa et al. 2013, 
Milanese et al. 2019), and phylogenetic placement (Truong 
et al. 2015, Asnicar et al. 2020, Shah et al. 2021). Regardless, 
they all essentially search for matches between reads in the 
sample and a reference set. The challenge is that a significant 
portion of the earth’s microbial diversity lacks close represen
tatives in reference datasets (Choi et al. 2017), especially in 
poorly known microbial habitats like seawater or soil 
(Pachiadaki et al. 2019). Thus, most methods use some 

strategy to seek inexact matches between the query and refer
ences and use the results for classification and profiling.

Classification methods often exhibit reduced accuracy for 
novel sequences, which lack representation in reference sets 
(Nasko et al. 2018, von Meijenfeldt et al. 2019, Pachiadaki 
et al. 2019, Liang et al. 2020). For instance, Rachtman et al. 
(2020) found a leading tool, Kraken-II (Wood et al. 2019), 
faced significant degradation in domain-level classification as 
the genomic distance to the closest reference increased be
yond 10%. Analyses of reads from less commonly sampled 
environments often fail at classification, even at the phylum 
level (e.g. Pachiadaki et al. 2019). To tackle these challenges, 
efforts to build more dense reference sets are ongoing (Parks 
et al. 2020, Wu et al. 2020, McDonald et al. 2023), but these 
databases remain incomplete compared to the estimated 1012 

microbial species (Locey and Lennon 2016). In addition, 
computational challenges arise in searching against large ref
erence sets. Thus, we need accurate and scalable methods of 
identifying novel sequences with respect to distant refer
ence genomes.

As reference sets grow larger, k-mer-based methods become 
more attractive than alignment-based approaches and phyloge
netic placement due to their favorable balance between scalabil
ity, ease of use, and high accuracy (McIntyre et al. 2017, Ye 
et al. 2019). However, k-mer-based methods can be sensitive to 
reference set completeness if they only allow exact matches. The 
k-mer-based methods that rely on the presence/absence of long 
k-mers can accommodate novel sequences by allowing inexact 
matches. Kraken-II achieves this by masking some positions in a 
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k-mer (default: 7 out of 31). Rachtman et al. (2021) showed 
that novel reads (e.g. those with 10%–15% distance to the clos
est match) can be identified with higher accuracy by making in
exact matches a central feature of the search. The resulting 
method, CONSULT, uses locality-sensitive hashing (LSH) to 
partition k-mers in the reference set into fixed-size buckets such 
that for a given k-mer, the reference k-mers with distance up to 
a certain threshold are in pre-determined buckets with high 
probability. By allowing inexact k-mer matching, CONSULT 
increased sensitivity without compromising precision in the con
tamination removal application (domain-level classification). 
However, CONSULT did not perform taxonomic identification 
at lower levels.

This paper adopts CONSULT and its increased k-mer 
matching sensitivity to the taxonomic classification problem. 
CONSULT estimates the Hamming distance (HD) between 
the query k-mer and its closest reference k-mers, a feature 
that Kraken-II lacks. Using the distances is the essence of our 
proposed approach, which we call CONSULT-II. To enable 
taxonomic classification, we need to track the reference ge
nome(s) associated with each reference k-mer, a feature that 
CONSULT lacks and can require unrealistically large mem
ory if done naively. We propose a probabilistic method to re
tain a single taxonomic ID per k-mer, making it possible to 
fit the database in the memory of modern server nodes. The 
next challenge is producing a single assignment based on po
tentially conflicting signals of different k-mers; we address 
this need using a weighted voting scheme that accounts for 
distances. Finally, we use a two-level normalization scheme 
for producing abundance profiles of complex samples using 
the votes directly. We evaluate the resulting method, 
CONSULT-II, using a large reference dataset in simulation 
studies, and show improved accuracy.

2 Algorithm
2.1 Background: CONSULT
The core idea of CONSULT is to find low HD matches effi
ciently using the bit-sampling LSH method (Har-Peled et al. 
2012). The use of LSH for finding similar DNA sequences is 
not new (Buhler 2001, Rasheed et al. 2013, Berlin et al. 2015, 
Luo et al. 2019). For example, Brown and Truszkowski (2013)
addressed the related problem of phylogenetic placement using 
LSH to limit parts of the reference tree searched. The main focus 
and novelty of CONSULT, compared to existing work, is being 
able to search against a large number of reference sequences.

CONSULT tackles the following problem: are there any 
k-mers in a given set of reference k-mers with HD less than 
some threshold p to a query k-mer? By default, CONSULT 
uses k ¼ 32 and p ¼ 3 (these are adjustable) and can feasibly 
index a large set of reference k-mers (e.g. 233).

CONSULT employs two main data structures to represent a 
set of reference k-mers: an array K that encodes each 32-mer as 
a 64-bit number, and l-many (default: l ¼ 2) fixed-sized hash 
tables H1; . . . ;Hl with 4-byte pointers to K (and extra nþ 1 
bits when jKj>232þ n). Each hash table is a simple 22h × b 
matrix (default: h ¼ 15 and b ¼ 7) where each row is indexed 
by a hash value and the columns store pointers to k-mers in K. 
For each hash table Hi, we select h random but fixed positions 
of a 32-mer as its hash index. Thus, k-mer hashes are computed 
by simply extracting the corresponding bits from the 64-bit 
encoding of the k-mer, which is specifically designed to make 
these extractions efficient. For each query k-mer, the l hashes 

are computed, pointers from all ≤b×l entries in the H1; . . . ;Hr 

are followed to corresponding encodings in K, and the HD is 
explicitly computed for each such encoding. CONSULT returns 
a match if there exist k-mers with distance ≤p. As such, it has 
no false positive matches but false negatives (not finding a 
match) are possible. Using LSH, CONSULT limits the number 
of HD computations to a constant.

In our bit-sampling scheme (Har-Peled et al. 2012), two inde
pendent k-mers at HD¼ d have the same hash with probability 
ð1− d

kÞ
h. Hence, given two independent k-mers, the probability 

that at least one of the hash functions is the same for both k- 
mers is given by 

ρ dð Þ ¼ 1− 1− 1− d
k

� �h
� �l

: (1) 

As desired, for d≤p, ρðdÞ is close to 1. For d� p and for 
some small enough p (e.g. p ¼ 3), it quickly drops to small 
values for several choices of l and h. Furthermore, since clas
sification is done at the read level, we have L − kþ 1 chances 
for a k-mer match (L ¼ read length). While k-mer depen
dence across a read hampers computing the probability of 
having at least one LSH match between a read and a database 
(and independence assumption would be too inaccurate; see 
Supplementary Fig. S1), we can still compute the expected 
number of such matches. Assuming the probability of a mis
match between each base pair of a read and a reference spe
cies is d

k, the expected number of matching k-mers is 
ðL − kþ 1ÞρðdÞ, which can be a large value for realistic set
tings (Fig. 1a). For example, with the default settings of 
k ¼ 32; h ¼ 15; l ¼ 2, for a 150 bp read at 25% distance from 
the closest reference, we still expect 3.2 k-mer matches and 
can potentially classify it (assuming that b is large enough to 
fit all reference k-mers). Had we used l ¼ 1 tables, this 
expected value would have been 1.6, making it likely to miss 
many such reads. If we assume 3–4 expected matches provide 
a sufficiently high probability of at least one match, l ¼ 1 
would suffice for d≤0:21, while l ¼ 3 and l ¼ 4 would only 
increase our tolerance to d≤0:27 and d≤0:28. Given the lin
ear increase in memory with l, we choose l ¼ 2 as a tradeoff.

2.2 Overview of the CONSULT-II changes 
versus CONSULT
To enable taxonomic classification, CONSULT needs to be 
extended to address several challenges. (i) CONSULT was 
designed for a fixed reference library size. As a result, all the 
hashing settings (h, l, b) were fixed for a library of roughly 
233 32-mers. To make the method more usable and flexible, 
it needs to be adjusted to the size of the input library. 
CONSULT-II uses several heuristics [see Şapcı et al. (2023)
and Supplementary Section S1] to estimate an efficient pa
rameter configuration, as a function of the number of k-mers 
in the reference set and probability of matching two k-mers 
w.r.t. distance ρðdÞ. This heuristic enables adjusting the 
needed memory to reference size. (ii) When building the refer
ence library, we need to keep track of which k-mers belong to 
which set of taxonomic groups. Since keeping a fine-grained 
map will lead to an explosion of memory, we need heuristics 
(detailed below) to store some taxonomic information but 
also to keep the memory manageable. (iii) At the query time, 
we need some way of combining all the inexact matches from 
all the k-mers of a read to derive a final identification and to 
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summarize the results across all reads in a sample into a 
final profile.

2.3 Soft lowest common ancestors per k-mer
Considering the density of modern reference datasets, k-mers 
can appear frequently in several reference species, despite be
ing long (e.g. k ¼ 32). The required memory for keeping the 
associated set of taxonomic groups for each k-mer would 
quickly become infeasible. However, for ≤65 536 taxonomic 
labels, keeping a single ID requires 2 bytes. Hence, storing 
one ID per k-mer would consume 16 Gb for our standard li
braries with 233 k-mers, which is doable. We choose a single 
taxonomic ID representing a ‘soft’ lowest common ancestors 
(LCA) of all the genomes that include the k-mer using the fol
lowing procedure.

Let Ni denote the number of genomes that include k-mer 
xi 2 K, which can be easily computed using pre-processing. 
At any point in time during the construction, a k-mer xi 2 K

is assigned a 2-byte taxonomic ID, denoted by ti. We process 
through each reference genome g; for each k-mer xi of g, if it 
can be added to the database, we set or update the taxonomic 
ID ti to be the LCA of the current ti and species of g with 
probability 

puðNiÞ ¼ min
w

maxfNiþw−s;wg
þ

1
s2 ; 1

� �

(2) 

where w and s parameterize the rate of decrease and the off
set of the probability function pu, respectively. We set s ¼ 5 
and w ¼ 4 as the default values (see Fig. 1b). Note that the 
order of processing of the reference genomes has no signifi
cance, as every k-mer, including the first encountered, will be 
ignored with the same probability. Also, k-mers appearing in 
more than s genomes have a very small, but nonzero, 

probability of not having a taxonomic ID at all. The goal of 
the probabilistic soft LCA is to avoid pushing up taxonomic 
identifications due to errors in the reference libraries, as 
higher ranks are less informative. Imagine a k-mer that is 
found exclusively in 20 species of a particular genus, but is 
also found in one species of a completely different phylum. 
Using the hard LCA would push the k-mer up to the kingdom 
level, whereas the soft LCA will stay at the genus rank with 
85% probability.

The probability function pu is a heuristic without a theoret
ical ground but has two goals. First, it ensures k-mers are 
assigned an ID if they are rare among references (i.e. 
Ni≤s ¼ 5). Second, the probability of ignoring a genome 
smoothly increases as Ni grows. The 1

s2 term is to ensure that 
each k-mer has a nonzero probability of having a taxonomic 
ID associated with it, even if it is extremely common.

2.4 Read-level taxonomic identification
For each read, CONSULT-II produces a list of matched k- 
mers; and for each matched k-mer x, it outputs the soft LCA 
taxonomic ID and the distances between x and its closest 
match with the same hash index. To identify a read, we need 
to derive a single conclusion from all these potentially con
flicting signals. We do so by considering each k-mer as pro
viding a vote to the corresponding taxonomic ID, but weight 
votes by the match distance.

Let T denote the set of all taxonomic IDs, and KðtÞ; t 2 T
be all reference k-mers with t as their soft LCA. Each k-mer x 
in the set R of query read k-mers might match multiple k- 
mers in the reference set K with varying distances. A match of 
a lower distance should provide a strong signal. CONSULT- 
II accounts for this by giving a k-mer x 2 R a vote for the tax
onomic ID t using: 

(a) (c)

(b)

Figure 1. (a) The expected number of 32-mers matched by the LSH approach for a short read of length L ¼ 150 as the normalized distance dk of the read 
to the closest match varies: ðL−kþ1ÞρðdÞ. Lines show different settings of l and h for an infinite b, i.e. all reference k-mers are stored in the library. 
The black line corresponds to k ¼ 35, h ¼ 35−7, and l ¼ 1, mimicking the default Kraken-II settings. (b) The probability of updating the LCA per each 
new k-mer goes down with the number of reference genomes in which that k-mer appears; we use w ¼ 4 and s ¼ 5 as shown. (c) Overview of the 
classification algorithm, consisting of three main stages: (i) finding the closest inexact k-mer match using LSH, (ii) computing vote values based on the 
Hamming distances (HD) and aggregating vote values on the taxonomic tree, and (iii) determining the most specific taxon, i.e. the lowest rank, above 
the threshold.

CONSULT-II: accurate taxonomic identification and profiling locality-sensitive hashing                                                                                          3 



vxðtÞ ¼ 1− miny2KðtÞ hdðx;yÞ
k

� �k
(3) 

where hd gives the Hamming distance. The voting function (3) 
drops close to exponentially with distance miny2KðtÞhdðx; yÞ. 
Computing (3) exactly is intractable due to the large size of 
KðtÞ. Instead, using LSH, we compare x only to k-mers y with 
the same hash index as x, finding matches with high probability. 
Moreover, we let x to vote for only a single taxonomic ID with 
the minimum distance (breaking ties arbitrarily). As LSH is not 
effective for high distances, we let a k-mer vote only if its 
minimum distance is below a threshold dmax (default: 
roundð3p

2 Þ ¼ 5). We set dmax to be higher than p because 
matches with distance above p might also be found; the LSH 
guarantees that k-mers with distance ≤p are found with high 
probability, but more distant k-mers can also be found 
(see Fig. 1a).

Equation (3), however, is not enough because a vote for a 
child should also count toward parent ranks. We recursively 
sum up individual votes in a bottom-up manner using the 
taxonomic tree to derive a total vote value for each taxo
nomic ID: 

�vRðtÞ ¼
X

x2R

vxðtÞþ
X

t0 2CðtÞ

�vRðt0Þ (4) 

where CðtÞ is the set of children of the taxon t.
By design, the votes �vðtÞ increase for higher ranks and 

reach their maximum at the root (Fig. 1c). To balance specif
icity and sensitivity, we require a majority vote. Let 
τ ¼ 1

2 maxt2T �vðtÞ. CONSULT-II classifies the read with the 
taxonomic ID ̂t that belongs to the lowest rank satisfying the 
condition �vð̂tÞ>τ. This choice of τ has a special property: 
only a single taxonomic ID t can exceed τ at a given rank. 
Therefore, the taxonomic ID predicted by the described clas
sification scheme is unique. Effectively, the classifier starts 
seeking a taxon at the lowest rank possible but also requires 
a certain level of confidence; hence, it immediately stops con
sidering upper ranks once the vote value is large enough. In 
addition, to avoid classification based on only high-distance 
matches, we require �vð̂tÞ to be greater than some small 
threshold, which we explore in our experimental results.

2.5 Taxonomic profiling
To derive taxonomic abundance profiles, instead of using 
read identifications, we use votes directly. For each taxo
nomic rank r (e.g. genus), we first normalize the total votes 
per read per rank, equalizing the contributions of each read 
to the profile (if it has any matches). For a read Ri, we sim
ply set 

v�Ri
ðtÞ ¼

�vRiðtÞP
t02T r

�vRiðt0Þ
(5) 

where T r is the set of all taxa at rank r. Next, we gather 
normalized total vote values of all n reads R1; . . . ;Rn in a 
sample, and normalize again to obtain the final profile. Let 
pr ¼ ½pr

t �t2T r 
denote the relative abundance profile at rank r, 

summing up to 1. Then, we can set the relative abundance of 
taxon t to: 

pr
t ¼

Pn
i v�Ri
ðtÞ

P
t02T r

Pn
i v�Ri
ðt0Þ

: (6) 

Here, pr
t estimates the ratio of reads belonging to the taxon 

t in a given sample. Often, we are interested in the relative 
abundances of cells belonging to a taxon t (denoted by 
p̂

r
¼ ½ p̂r

t �t2T r
), which needs incorporating genome sizes. We 

simply do so using: 

p̂r
t ¼

pr
t l

−1
tP

t02T r
pr

t l−1
t0
; (7) 

where lt is the average genome length of all references in 
taxon t.

For both pr
t and p̂r

t , relative abundances sum up to 1. By de
fault, CONSULT-II relaxes this constraint by including an 
unclassified taxon. This is achieved by propagating votes 
down to an artificial lineage that corresponds to the unclassi
fied group, as each k-mer match to an LCA taxon provides 
evidence for its children—but it is unclear which. In other 
words, we augment the taxonomic tree by adding a lineage 
under each taxon, which continues until the species rank. 
Then, all votes to any nonspecies taxon are moved along this 
lineage to an artificial node at species rank. This is equivalent 
to changing the denominator of Equation (5) with the total 
vote at the root of the taxonomic tree.

3 Experimental setup
To benchmark CONSULT-II, we constructed reference li
braries using the WoL microbial genomic dataset of Zhu 
et al. (2019a), which is composed of 10 575 species and a ref
erence phylogeny. Five genomes with IDs missing from NCBI 
were excluded. All methods were run with the same reference 
set. The hashing parameters of CONSULT-II were set to 
h ¼ 15, b ¼ 7, l ¼ 2, and k ¼ 32 (minimized from canonical 
35-mers). For other parameters, default values were used: 
w ¼ 4; s ¼ 5 for LCA probability function pu (Fig. 1b) and 
dmax ¼ 5 for the vote function. We used default settings for 
Kraken-II, without masking low-complexity sequences, as 
Rachtman et al. (2020) found default settings to be preferable 
for query identification. We also constructed the CLARK 
database using the standard parameters, e.g. k ¼ 31, default 
classification mode, species rank for classification. Note that 
following Rachtman et al. (2021), 100 archaeal genomes 
were left out from the reference and used as part of the 
query set.

3.1 Experiment 1: controlled novelty
We compared the classification performance of CONSULT-II 
with two popular methods: Kraken-II (Wood et al. 2019) and 
CLARK (Ounit et al. 2015), which are among the leading 
metagenomic identification tools based on benchmarking 
studies (McIntyre et al. 2017, Sczyrba et al. 2017, Meyer 
et al. 2019, Ye et al. 2019). Kraken-II maps each k-mer in a 
read to the LCA of all genomes that contain that k-mer and 
then counts the mapped k-mers on the taxonomic tree to infer 
a taxon prediction. CLARK is a supervised sequence classifi
cation method that again relies on exact k-mer matching. It 
uses the notion of discriminative k-mers to build a library of 
reference genomes. Here, we evaluate accuracy one read at a 
time, each simulated from a query genome.

4                                                                                                                                                                                                                                      Şapcı et al. 



Let the novelty of a query genome be defined as its minimum 
genomic nucleotide distance (i.e. one minus average nucleotide 
identity), as approximated by Mash (Ondov et al. 2016), to any 
genome in the reference database. We refer to this quantity as 
MinGND. We carefully selected query genomes to span a range 
of novelty (Supplementary Fig. S2), expecting that more novel 
queries will be more challenging. We created two sets of queries: 
bacterial and archaeal. For the bacterial set, we selected 120 
bacterial genomes among genomes added to RefSeq after WoL 
was constructed. Queries range from near-identical to reference 
genomes to very novel (e.g. 22 with MinGND >0:22; 
Supplementary Fig. S2). Query genomes span 29 phyla, and 
most queries are from distinct genera (102 genera across 120 
queries); only two query genomes belong to the same species. 
The 100 archaeal queries were chosen by Rachtman et al. 
(2021) from WoL set using a similar approach and were 
excluded from the reference set. We generated 150-bp synthetic 
reads using ART (Huang et al. 2012) at higher coverage 
and then subsampled down to 66 667 reads for each query (i.e. 
10Mbp per sample).

We evaluated the predictions of each tool with respect to 
the NCBI taxonomy. For each read, we evaluate it separately 
at each taxonomic rank r. When the reference library had at 
least one genome matching the query taxon at rank r, we 
called it a positive: TP if a tool found the correct label, FP if 
it found an incorrect label, and FN if it did not classify at 
rank r. When the reference library did not have any genomes 
from the query taxon at rank r, we called it a negative: TN if 
a tool did not classify at rank r, FP if it classified it, which 
would necessarily be false. We show the precision TP

ðTPþFPÞ, the 

recall TP
ðTPþFNÞ, and F1 2TP

ð2TPþFPþFNÞ which combines both sensi
tivity and specificity. We ignored queries at levels where the 
true taxonomic ID given by NCBI is 0, which indicates a 
missing rank.

3.2 Experiment 2: abundance profiling
We also evaluated the ability of CONSULT-II to perform tax
onomic abundance profiling using CAMI-I (Sczyrba et al. 
2017) and CAMI-II (Meyer et al. 2022) benchmarking chal
lenges. We compared tools using metrics provided by the 
open-community profiling assessment tool (OPAL) (Meyer 
et al. 2019). For CONSULT-II, we allowed unclassified taxa 
in the profile.

CAMI-I dataset contains five different high-complexity sam
ples, each of size 75 Gbp, which are simulated to mimic the 
abundance distribution of the underlying microbial communi
ties. Among many metrics, we chose two metrics singled out in 
the original OPAL paper: the Bray–Curtis dissimilarity between 
the estimated profile and the true profile and Shannon’s equita
bility as a measure of alpha diversity. We report the summary 
of these two metrics across five samples. We use CAMI-I dataset 
for empirical evaluation of our method’s heuristics. Here, we 
used the same reference libraries constructed for controlled 
novelty experiments from the WoL dataset. As a result, we 
include only Bracken (Lu et al. 2017) and CLARK as alterna
tives. Bracken extends Kraken-II by combining its taxonomic 
identification results with Bayesian priors to obtain profiles. For 
both CLARK and Bracken, we estimated abundance profiles 
with their default parameters.

On CAMI-II queries, we evaluated CONSULT-II against a 
host of methods studied by CAMI-II. In particular, we fo
cused on the ten-sample (5 Gbp each) marine dataset and the 
100-sample (2 Gbp each) strain-madness dataset. For 

alternative methods, submitted results were available from 
CAMI-II. To make comparisons fair, a new CONSULT-II 
library was constructed using the reference genomes provided 
under the scope of the challenge (NCBI RefSeq snapshot as of 
2019/01/08); among these, we randomly selected b

ffiffiffiffiffi
ns
p
c

genomes per each species s represented by ns genome (for a 
total of 18 381 genomes) and included these in the library. 
We followed the same evaluation approach as the original 
paper and compared tools by measuring purity versus 
completeness and L1 norm versus weighted UniFrac error 
(Lozupone and Knight 2005). Note that we only included 
CAMI-II versions of the tools considered, and omitted 
earlier versions.

4 Results
4.1 Empirical evaluation of CONSULT-II heuristics
4.1.1 Accuracy of k-mer matches
We start by evaluating LCAs of matched k-mers across different 
ranks and HD values (Fig. 2a), keeping in mind that incorrect 
k-mer-level matches do not immediately lead to read-level 
errors. For the queries with low novelty (MinGND <0:06), 
�9% of query k-mers exactly match the reference and have the 
correct species-level ID; far fewer exact matches have a soft 
LCA label at higher taxonomic levels, and the proportion of 
true matches decreases rapidly with higher HD at all ranks. In 
contrast, less than 0.5% of the k-mers of novel queries 
(MinGND ≥ 0:22) match any reference, and correct matches 
peak at HD¼ 1 or HD¼ 2. For mildly novel genomes (0:06 ≤ 
MinGND<0:22), nonexact matches provide a substantial 
portion of all correct matches. Unlike true matches, the propor
tion of false matches tends to increase or remain flat as the HD 
increases. Nevertheless, in many cases especially at higher 
taxonomic levels, there are more correct inexact matches with 
HD ≥ 1 than incorrect ones. For example, 80% of phylum-level 
inexact matches in the middle novelty range are correct.

4.1.2 Advantages of the soft LCA approach
We next compare the use of hard and soft LCA (Fig. 2b). 
Overall, soft LCA provides a dramatic improvement com
pared to naively computing LCA. The improvements are es
pecially large for less novel queries (< 0:12 MinGND). 
Interestingly, at the species rank, hard LCA completely fails 
while soft LCA has acceptable accuracy for the less novel 
queries. While a soft LCA approach is clearly helpful, the 
choice of the ideal probability function is unclear. Since 
tuning parameters w and s with a validation set is not practi
cally feasible, we only tested the sensitivity of CONSULT-II 
performance; settings w ¼ 2 and w ¼ 4 are almost identical, 
with a negligible advantage for w ¼ 4 (no more than 0.001 in 
terms of F1). Hence, we use w ¼ 4 and set it as the 
default value.

4.1.3 Impact of the total vote on classification
Our majority vote mechanism classifies a read at some level, 
even if the total vote in Equation (4) is small. However, the 
total vote correlates with whether a classification is correct 
(Fig. 2c). In particular, about 35% of the FP predictions have 
�vðtÞ<0:01 (corresponding to up to two k-mers with 
HD¼ 5), compared to � 2% of TP predictions. Similarly, 
around 55% of FPs have �vðtÞ<0:03 (i.e. less than two 
matches of HD¼ 4), compared to �6% of TPs. Thus, filter
ing reads with low �vðtÞ reduces the FPs at the expense of 
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removing some TPs, improving precision and reducing recall 
(Supplementary Fig. S3b) with only small changes in F1 
scores (Supplementary Fig. S3a). To ensure our precision lev
els are similar to other methods, we avoid classifying reads 
with low total votes (default: �vðtÞ<0:03).

4.1.4 Impact of normalization and unclassified on profiling
Since the total vote values at the root vary widely across reads, 
we face a question in profiling samples: should each read con
tribute equally to the abundance profile of a given sample? If so, 
we should normalize total vote values per read, as in Equation 
(5). Alternatively, we may skip this step and use the total vote 
values directly in Equation (6). In CONSULT-II v0.1.1 de
scribed in Şapcı et al. (2023), we followed the latter approach 
and skipped Equation (5); we also used a slightly different equa
tion for Equation (6) and took the square root of �vðtÞ
(Supplementary Section S1.2). Empirically, adding read-level 
normalization results in a dramatic improvement in accuracy 
(Fig. 2d) measured by the Bray–Curtis dissimilarity (up to 
�20%). Surprisingly, skipping the read normalization provides 
extremely accurate estimates of Shannon’s equitability. Thus, 
we keep the nonnormalized version as a nondefault option 
(since v0.3.0). The use of genome sizes [Equation (6) versus 
Equation. (7)] also improves the profile accuracy 
(Supplementary Fig. S9). When we added the unclassified op
tion to profiles, as much as 35% at the species rank and as little 

as 6% at the phylum rank were unclassified (Supplementary 
Fig. S8a). Adding unclassified taxa results in slightly more accu
rate relative abundances in terms of Bray–Curtis dissimilarity 
(Supplementary Fig. S8b). Thus, we include unclassified taxa in 
output profiles by default (since v0.4.0). Finally, note that Eq. 
(6) reports independent profiles for each rank. Şapcı et al. 
(2023) instead reported metrics computed at the species level 
and aggregated to higher ranks (Supplementary Fig. S7).

4.2 Comparison to other methods
4.2.1 Controlled novelty experiments
On the bacterial query set, CONSULT-II has better F1 scores 
than CLARK and Kraken-II on all levels above species (Fig. 3a). 
Only for queries with almost identical genomes in the reference 
set do all methods have high accuracy with a slight advantage at 
upper ranks for CONSULT-II. As queries become more novel, 
accuracy drops across all ranks for all methods. However, 
CONSULT-II degrades much slower and shows clear improve
ments for novel genomes. For queries with MinGND >0:05, 
CONSULT-II outperforms Kraken-II and CLARK across all 
levels above species with substantial margins. Moreover, the 
improvements become more substantial at higher taxonomic 
levels. For instance, with MinGND >0:15, CONSULT-II has 
mean F1 scores that are 0.12, 0.13, 0.14, and 0.19 more than 
the second-best method (Kraken-II) respectively for family, or
der, class, and phylum ranks. Similar patterns are observed 
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when CONSULT-II is run with different total vote thresholds 
(Supplementary Fig. S3a). Between CLARK and Kraken-II, 
Kraken-II has a slight advantage in all levels, except at the spe
cies level.

The advantage of CONSULT-II is due to higher recall and 
not precision (Fig. 3b) as the precision levels of methods are 
comparable in most cases, with only slight differences. At the 
species level, all methods fail to classify moderately novel 
queries (MinGND >0:1), and CONSULT-II does not show 
consistent improvements. At the higher levels, the advantage of 
CONSULT-II is most clear for novel queries which have the 
closest reference genome within the ð0:05; 0:2ÞMinGND range. 
For these queries, CONSULT-II often has equal precision to 
other methods but much higher recall. For the most novel 
queries (≥0:2 MinGND) while CONSULT-II shows some im
provement, its precision and recall are still not high. Note that 
the improved recall of CONSULT-II further increases if we de
crease the total vote threshold at the expense of precision (see 
Supplementary Fig. S3b).

Results on the archaeal queries are similar to bacterial 
queries, with some notable differences (Supplementary Fig. 
S4). Compared to bacterial queries, all methods tend to have 
higher F1 scores for queries in the ½0:05; 0:2Þ MinGND 
range. For all methods, beyond the species rank, the precision 
tends to be higher regardless of the novelty and recall tends 
to be lower compared to bacterial queries, especially for less 
novel genomes. Here, for the bin with the most novel 
genomes, CONSULT-II has noticeably higher recall and 
lower precision than alternatives; the gain in the recall offsets 
the loss in the precision judging by F1.

4.2.2 Profiling results for CAMI-I and CAMI-II challenges
For the CAMI-I challenge, CONSULT-II abundance profiles are 
consistently better than Bracken and CLARK in terms of the 
Bray–Curtis score (Fig. 4a). At the species level, all methods 
have high errors and are comparable. CLARK and Braken are 
similar across ranks, and the advantage of CONSULT-II is most 
pronounced at higher levels; the second-best method’s error is 

40%, 18%, 44%, and 44% higher compared to CONSULT-II 
at the family to phylum levels, respectively. In terms of 
Shannon’s equitability, which is a measure of the variety and 
distribution of taxa present in a sample, all methods underesti
mate it. CONSULT-II and Bracken are comparable, and they 
both outperform CLARK substantially. Bracken is closer to the 
gold standard at the phylum level, while CONSULT-II is better 
at family and below (Fig. 4a).

On the CAMI-II datasets, we compare across 12 methods 
(Fig. 4b and Supplementary Fig. S6). CONSULT-II is ranked 
as the second-best performing method for both marine and 
strain-madness datasets, according to rank-invariant 
weighted UniFrac error, losing to MetaPhlAn 2.9.22 in the 
strain-madness dataset and to mOTUs 2.5.1 in the marine 
dataset (Fig. 4b). Note that MetaPhlAn is ranked third on the 
marine dataset and mOTUs is ranked 9th in the strain- 
madness dataset (51% higher weighted UniFrac error than 
CONSULT-II). CONSULT-II is among the top three tools 
according to L1 norm error in most cases, except at the spe
cies rank (Supplementary Fig. S6). For species, CONSULT-II 
did not have high purity and was not among the best for the 
L1 norm error, especially in the strain-madness dataset. On 
the marine dataset, CONSULT-II followed mOTUs, with 
0.20 versus 0.13 L1 norm error on average across all ranks. 
On the strain-madness dataset, it ranked 3rd across all ranks 
after MetaPhyler and MetaPhlAn with 0.16 versus 0.12 and 
0.06 average L1 norm errors across ranks above species (as 
MetaPhyler lacks species-level profile), respectively.

4.2.3 Resource usages of tools
We benchmark resource usage of all tools over queries se
lected from 30 genomes generated by simulating 66 667 short 
reads from each. CONSULT-II and Kraken-II are more than 
4× and 9× faster than CLARK, respectively (Fig. 5). While 
Kraken-II is considerably faster than CONSULT-II (91 versus 
390 s), the difference is partly because CONSULT-II splits the 
task into two independent stages for the sake of backward 
compatibility with CONSULT. One subprogram finds k-mer 
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matches and writes them to the disk; a second subprogram 
reads results and performs prediction.

We also observed significant differences in terms of library 
construction times. Kraken-II was again the fastest tool 
(�3.5 h with 96 threads), followed by CLARK (�10 h with 
96 threads). CONSULT-II took �19 h (with 128 threads) to 
construct, and this time was dominated by the soft LCA com
putation step. Note, however, that library construction is a 
one-time operation; once constructed, libraries can be 
distributed.

CONSULT-II, in its default mode, has the highest memory 
footprint (140 Gb), followed by CLARK (130 Gb). Kraken-II 

has much better memory efficiency, using only 44 Gb. The 
CLARK’s memory requirement increased substantially dur
ing the library building, exceeding 350 Gb. Although it is not 
as dramatic as CLARK, both CONSULT-II and Kraken-II 
consumed more memory during the library building (16 and 
1 Gb, respectively).

Since CONSULT-II uses more than three times as much 
memory as Kraken-II, we asked if its improved performance 
was because of its higher memory usage. To answer this ques
tion, we analyzed the performance of CONSULT-II with a 
much smaller library (32 Gb) by setting h ¼ 14 and b ¼ 10 to 
store fewer k-mers (see Supplementary Fig. S5). Compared to 
the default CONSULT library, the lightweight CONSULT-II 
had 13%, 12%, 5%, 11%, 10%, and 4% decrease in F1, for 
phylum to species ranks. Nevertheless, compared to Kraken- 
II, CONSULT-II achieved 16%, 14%, 10%, 11%, 5% higher 
F1 scores for phylum to genus ranks, and 6% less at species, 
despite using less memory (32 versus 44 Gb). Thus, the 
advantages of CONSULT-II over Kraken-II persist, especially 
for higher ranks, but at a lower level when using simi
lar memory.

5 Discussion
We introduced CONSULT-II for taxonomic classification 
and abundance profiling. Our approach uses LSH to effi
ciently find inexact k-mer matches and the match distances 
between reference genomes and a query. Heuristics are then 
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used to translate k-mer-level matches and their HD to read- 
level classification and sample-level profiling. While they lack 
theoretical guarantees, these heuristics performed remarkably 
well in our experiments and outperformed popular k-mer- 
based methods. In particular, our equations for LCA update 
probability (2) and vote-versus-distance (3) are based on intu
itive assumptions and expectations, without much fine- 
tuning and very few parameters. Future research should ex
plore alternative approaches, including using machine learn
ing to automatically train parameter-rich functions instead of 
heuristics. To ensure robustness, it would be essential to eval
uate such fine-tuned methods on more varied datasets.

An alternative direction of future work is developing a the
oretical framework for translating k-mer distances to taxo
nomic classifications. Connecting taxonomic profiling to 
distance-based phylogenetic placement could provide a 
framework to tackle this goal. Such a framework may allow 
us to go beyond taxonomic identification and could provide 
alignment-free phylogenetic placement of reads, as others 
have attempted (Blanke and Morgenstern 2020). Finally, fu
ture work should address the high memory consumption of 
CONSULT-II compared to alternatives, perhaps by smart 
subsampling of k-mers.
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Supplementary data are available at Bioinformatics online.
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