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ABSTRACT OF THE DISSERTATION

Unsupervised Learning for Object Representations

by Watching and Moving

by

Yanchao Yang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Stefano Soatto, Chair

The power of deep neural networks comes mainly from huge labeled datasets. Even though

it shines on many computer vision tasks, supervised learning bears little hope to hack into

the core of intelligent visual systems. On the other side, unsupervised learning is believed to

be the future of AI; however, its performance is always inferior compared to the supervised

counterpart. The goal of our research is to develop unsupervised learning algorithms for

computer vision tasks while matching or even outperforming the supervised ones. Our key

is a representation that is as informative as the supervisory labels, which can be constructed

from an unlimited amount of unlabeled data. In theory, this representation contains richer

information than the processed supervisory signal. Moreover, we develop algorithms that can

utilize existing labeled datasets to expedite the information extraction from the unlimited

unlabeled data. Our research is lined up in an order similar to the visual development

in early infancy, such that we can also investigate the interplay between different visual

functionalities. The final goal is to develop a robotic visual system akin to a human’s, that

can automatically acquire semantics from concepts of objects fostered by basic perceptions

of motion and depth with the minimum amount of human supervision.
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CHAPTER 1

Introduction

Deep Neural Networks (DNNs) have improved the performance on many computer vision

tasks, for example, image classification [HZR16], object detection [RDG16], semantic seg-

mentation [CPK18] and image captioning [DAG15]. However, vision is still far from being

solved in at least three aspects. Firstly, neural networks for different vision tasks are usually

trained in a supervised manner, with the performance strongly depends on the quality of

labeled datasets, and there is no guarantee that the trained networks generalize to unseen

data when deployed to real-world applications. Secondly, each task is mostly being solved

independently from the other tasks, different datasets for different tasks, and the interplay

between tasks becomes hard to capture and understand. Thirdly, how these visual abili-

ties are developed through “unsupervised”1 experience/exploration in the natural world is

still not clear. Certainly, a full understanding of all these aspects is indispensable for the

construction of general intelligence of vision.

Before the revival of deep learning, there is already a large amount of work on the mech-

anisms of visual functionalities in both the field of computer vision and neural science. Most

of the algorithms proposed are unsupervised due to the lack of big datasets specifically in-

vented for a task and efficient computational devices. The representations and corresponding

algorithms are explicitly designed through our understanding of the underlying principles.

They are predictable since each computation is known to accomplish a certain subtask, and

explainable as each subtask contributes to the final output in an explicit manner. However,

the difficulty lies in the online incorporation (learning) of new principles into the model,

which is usually related to the modification of the representations and the algorithms. A

1no manual label or very few manual labels are provided.
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re-programming is often needed which deviates from the goal to build a machine that can

constantly learn from new experiences without too much human intervention.

The focus of this thesis is mainly on unsupervised methods for the visual functionalities

sequentially developed in the infant visual system. Because we want to minimize the reliance

on manually labeled data as much as possible, such that the learning method proposed can

learn from the unlimited amount of unlabeled data or the experience of an autonomous

robot, by adjusting the network parameters. Why do we investigate the visual functionalities

emerge in early infancy? Because the order of development of these visual functionalities may

provide an “optimal”2 guide map for learning in the sense that if one functionality emerges

after the others, then the earlier ones could be utilized by the later, which is always a harder

and more complex problem. For example, learning object may help to learn categorization

and semantics, again learning motion may help to discover objects. The milestones of the

visual development in early infancy are listed in Tab. 1.1. For more details, please refer to

[Wat96, Kau95, GYP84, Xu99].

month visual functionality

1 visual motion perception

3 moving object detection and tracking

5 - 7 depth perception

> 12 object categorization & language

Table 1.1: Milestones of the visual development in early infancy.

Next, we provide a summary of our technical contributions harvested along the way to

develop a 6-month-old infant visual system, with the abilities of motion perception, depth

perception, and moving object detection all learned in an unsupervised manner. Despite the

preference for unsupervised learning, our algorithms do allow incorporation of existing la-

beled data to regulate the learning process. We then have a brief overview of the organization

2by nature
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of this manuscript.

1.1 Summary of Contributions

Our first contribution is a framework for multiple objects precise shape tracking. To main-

tain the quality of the shapes, occlusions between objects and self-occlusions are jointly

determined with the dense warp between two consecutive video frames via Sobolev gradient

descent. This joint problem we have formulated naturally encompasses coarse-to-fine defor-

mation inference without an explicit regularizer and the associated weighting constant. To

partition and group unoccluded regions to various objects, we leverage on the complemen-

tarity of motion and appearance cues by introducing a novel data term that encompasses

both. We derive an efficient numerical scheme and test it against competing methods on

benchmark datasets and obtain state-of-the-art performance.

Next, we describe a system to causally process a video to discover “objects” without

initialization or supervision. Objects are defined by generic regularities of the scene, that

manifest in the images as simply-connected regions with occluding boundaries that deform

smoothly over time. The result is a method for detecting and tracking regions that can be

used to prime object labeling or semi-supervised training of object detectors. Such regions

can be of interest per se in video analysis, as they produce a video “segmentation” that can

be evaluated using benchmark datasets.

Our third contribution is a method to compute optical flow at multiple scales of motion,

without resorting to multi-resolution or combinatorial methods. It addresses the key problem

of small objects moving fast and resolves the artificial binding between how large an object

is and how fast it can move before being diffused away by classical scale-space. Even with

no learning, it achieves top performance on the most challenging optical flow benchmark.

Moreover, the results are interpretable, and indeed we list the assumptions underlying our

method explicitly. The key to our approach is the matching progression from slow to fast, as

well as the choice of the interpolation method, or equivalently the prior, to fill in regions where

the data allows it. We use several off-the-shelf components, with relatively low sensitivity

3



to parameter tuning.

The fourth contribution is a method that learns rich priors on the set of possible flows that

are statistically compatible with an image. Classical computation of optical flow involves

generic priors (regularizers) that capture rudimentary statistics of images, but not long-range

correlations or semantics. On the other hand, fully supervised methods learn the regularity

in the annotated data, without explicit regularization and with the risk of overfitting. Given

our supervisedly learned prior, one can easily learn the full map to infer optical flow directly

from two or more images, without any need for (additional) supervision. We introduce a

novel architecture, called Conditional Prior Network (CPN), and show how to train it to

yield a conditional prior. When used in conjunction with a simple optical flow architecture,

the CPN beats all variational methods and all unsupervised learning-based ones using the

same data term. It performs comparably to fully supervised ones, that however are fine-

tuned to a particular dataset. Our method, on the other hand, performs well even when

transferred between datasets.

The fifth contribution is a deep learning system to infer the posterior distribution of a

dense depth map associated with an image, by exploiting sparse range measurements, for

instance from a lidar. While the lidar may provide a depth value for a small percentage of

the pixels, we exploit regularities reflected in the training set to complete the map so as to

have a probability over depth for each pixel in the image. We exploit the Conditional Prior

Network, which allows associating a probability to each depth value given an image, and

combine it with a likelihood term that uses the sparse measurements. Optionally we can

also exploit the availability of stereo during training, but in any case, only require a single

image and a sparse point cloud at run-time. We test our approach on both unsupervised and

supervised depth completion using the KITTI benchmark and improve the state-of-the-art

in both.

The sixth contribution is an adversarial contextual model for detecting moving objects

in videos. A deep neural network is trained to predict the optical flow in a region using

information from everywhere else but that region (context), while another network attempts

to make such context as uninformative as possible. The result is a model where hypotheses

4



naturally compete with no need for explicit regularization or hyper-parameter tuning. Al-

though our method requires no supervision whatsoever, it outperforms several methods that

are pre-trained on large annotated datasets. Our model can be thought of as a generaliza-

tion of classical variational generative region-based segmentation, but in a way that avoids

explicit regularization or solution of partial differential equations at run-time.

The content presented here has also been released through the following articles:

1 . Yanchao Yang, Ganesh Sundaramoorthi, and Stefano Soatto. Self-occlusions and dis-

occlusions in causal video object segmentation. Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2015 [YSS15b].

2 . Yanchao Yang, Brian Taylor, and Stefano Soatto. Building Object Hypotheses by

Generic Detection and Tracking in Video. Under Review, 2016.

3 . Yanchao Yang and Stefano Soatto. S2F: Slow-To-Fast Interpolator Flow. Conference

on Computer Vision and Pattern Recognition (CVPR), 2017 [YS17].

4 . Yanchao Yang and Stefano Soatto. Conditional Prior Networks for Optical Flow.

European Conference on Computer Vision (ECCV), 2018 [YS18].

5 . Yanchao Yang, Alex Wong and Stefano Soatto. Dense Depth Posterior (DDP)

from Single Image and Sparse Range. Conference on Computer Vision and Pattern

Recognition (CVPR), 2019 [YWS19].

6 . Yanchao Yang, Antonio Loquercio, Davide Scaramuzza and Stefano Soatto. Unsu-

pervised Moving Object Detection via Contextual Information Separation. Conference

on Computer Vision and Pattern Recognition (CVPR), 2019 [YLS19].

1.2 Organization of the Thesis

This thesis is divided into three parts, corresponding to the milestones of the visual devel-

opment in early infancy.
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Chapter 2 to 3 form the first part of the thesis. The focus of this part is motion percep-

tion, specifically, optical flow estimation. Chapter 2 describes a method that relies on sparse

feature matching and dense interpolation for optical flow. The key idea is to match features

extracted at different scales of motion in a manner that slow motion is first matched, then

fast motion and large deformation. Without resorting to the classical multi-scale technique

embodied by image hierarchy, how large an object is and how fast it can move are disen-

tangled. Then an interpolation scheme utilizing the topology of the scene is used to fill in

the gaps where matching is not found. Quality of the interpolated flow depends heavily on

how well the topology used for interpolation represents the scene depicted by the image.

This observation motivates the Conditional Prior Networks (CPN) as described in Chapter

3. Instead of engineering the scene topology with heuristics coming from our understanding

of the physical world, we propose to learn it from a dataset where images and corresponding

compatible flows are given. When the CPN is trained correctly with a bottleneck, it can

represent the scene topology up to a conditional prior, which can be used for unsupervised

learning of optical flow estimation from a pair of images in any scenarios.

The second part in Chapter 4 develops a deep learning framework to infer the posterior

distribution of a dense depth map corresponds to an image. This posterior in its form

is divided into two parts, with one part the likelihood part that represents the fidelity of

the dense depth given some sparse depth measurements, and the other part a conditional

prior term that measures the compatibility of the dense depth given the current observed

image and all past experience. Instead of processing the given image and sparse depth

measurements alone, which could not generate better decision or control action than the

raw input (Data Processing Inequality), the network trained using our framework is able

to harvest side information from the previously seen images and corresponding dense depth

maps.

Chapter 5 to 6 form the third part of this thesis with the main focus on general object

detection and tracking. Chapter 5 develops a system to discover objects without manual

initialization by causally processing a video. It consists of two modules, with one module

provides pseudo object measurements utilizing occlusion cues and the other module tracks
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these pseudo measurements in precise shape for temporal association based on explicit mod-

eling of occlusions and dis-occlusions in a Sobolev framework. In Chapter 6, we ask a more

fundamental question on what makes an object an object. If there is an answer, what is the

representation and algorithm we should use to individualize the objects out of the scene?

Finally, this quest turns out to give us the first adversarial contextual model to detect moving

objects in images. It is fully unsupervised in terms that it can learn the representation of

objects and how to detect moving objects by only watching videos. It captures the desirable

features of variational region-based segmentation, but it does not require solving a partial

differential equation (PDE) at run-time, nor to pick regularizers. It even outperforms several

methods using supervision (ground truth object masks) for training.

We conclude in Chapter 7 with a discussion on future directions to develop general

intelligence for robot vision based on the ideas explored in this thesis.
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CHAPTER 2

Optical Flow via Matching and Interpolation

Optical flow has been a core concern in Computer Vision for over two decades. It is a building

block in many low-level vision tasks, and plays a role in a large number of applications, from

autonomous navigation to video post-production, only to mention a few. An overview of

recent developments is in [SRB14]. Most existing optical flow algorithms struggle with small

things that move fast. This phenomenon does not have a dramatic impact on the benchmarks

since the problem being with small objects makes it such algorithms are not penalized too

harshly. Nevertheless, small objects are important: humans can effortlessly pick out a bee

flying at a distance.

In analyzing the root causes for the failure by most algorithms to capture small things

moving fast, we honed in on a fundamental problem with classical scale-space, which trades

off spatial frequencies (by blurring and down-sampling images) with temporal anti-aliasing

(to compute temporal derivatives) as illustrated in Fig. 2.1. This ties the size of objects to

the speed at which they can move before being blurred-away in the multi-resolution pyramid

that is routinely used in multi-scale/multi-resolution stages common to most variational

optical flow techniques. This multi-scale structure is also common in convolutional neural

network architectures, so optical flow schemes based on them are typically subject to similar

failure modes.

The case of fast motion has been tackled head-on in many recent works on large displace-

ment optical flow, for instance [BBM09, RWH15b, BTS15, TV15, WRH13, CW13, BYJ14,

CJL13] and references therein. Several methods are proposed, mixing sparse matching with

interpolation [WB15, RWH15b], a philosophy we adopt. Some have used coarse-to-fine

matching that maintains the native resolution [RWH15a, BTS15, HSL, YLS15, SY12], or

8



Figure 2.1: Small things moving fast. 1st: two images from the Middlebury dataset

(shown superimposed) with the fast-moving ball highlighted, a classic failure mode of multi-

resolution optical flow (2nd: the inset color wheel shows the map from color to image dis-

placement). Small objects disappear at coarse resolution, where large motions are computed

(3rd, 4th), and are never recovered in a differential-based variational scheme.

other multi-scale approaches in a combinatorial setting [TV15, DOR15]. Other samples of

relevant related work include [WC11, XDJ12, BDB13, YL15, CSH11]. [XJM12] addresses

the problem of lost details in the coarse-to-fine matching by not completely relying on the

flow propagated from the upper levels.

However, to the best of our knowledge, none addresses specifically the interplay of size

and motion in multi-scale processing, and proposes an iteration that increases the region-of-

interest, acting on a decreasing residual domain on the image. In particular, [TV15] addresses

matching from small to large displacements, however, it follows the standard scale-space of

[BBM09], and focuses on a novel descriptor inspired by sparse coding. Also, [WB15] learns

a basis from the computed flow, which however follows a standard approach to scale-space.

Both significantly underperform our method on the benchmarks.

In our proposed scheme for multi-scale matching, the scale-space variable is not the

amount of diffusion/subsampling of spatial resolution, but instead the size of the interest

region on which local matching is based, at the native resolution. Thus, like others have

done before, we perform multi-scale without multi-resolution. The iteration is instead over

the radius of the region-of-interest, whereby regions with larger and larger radii operate on

smaller and smaller subsets of the image domains. Slower objects are matched first, and

then faster and smaller ones, hence the name S2F.
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Clearly, the prior or regularization model plays a key role in optical flow. Rather than

delegating it to a dataset and a generic function approximator, we discuss the specific model

assumptions made in our method, and the topology with respect to which we consider pixels

to be “nearby.” In other words, we hand-engineer the prior, almost anathema in the age of

Deep Learning.

Despite the absence of any learning, our algorithm achieves top performance in the most

challenging optical flow benchmark, Sintel. More importantly, we can at least try to explain

the performance, which we do in Sect. 2.3. Before doing so, we summarize the motivations

and the actual algorithm in Sect. 2.1, and describe empirical tests in Sect. 2.2.

2.1 Rationale and Underlying Assumptions

Given two (grayscale) images I1, I2 : D ⊂ R2 → R+, optical flow is a map w : R2 → R2

defined at points x ∈ D ⊂ R2 implicitly by I1(x) = I2(w(x)) + n(x), where n(x) is an

uninformative (white) residual. Optical flow is related to motion field (the projection of the

displacement of points in space when seen in I1 and I2 [VP89]) under several assumptions

on the scene around the (pre-image) point X ∈ R3 of x ∈ D, including: (i) Lambertian

reflection and constant illumination, (ii) co-visibility.

When (i) is violated, there is in general no relation between optical flow and motion field.

When (ii) is violated (occlusion) there exists no transformation w mapping x in image I1

onto a corresponding point in image I2. When w exists, it may not be unique, i.e., (iii) flow

can be non-identifiable, which happens when the irradiance (“intensity”) is not sufficiently

exciting (e.g., constant). This issue is usually addressed via regularization, by allowing a

prior to fill in the flow from sufficiently exciting areas.

A final assumption that is not necessary but common to many algorithms, is (iv) small

displacement w(x) ' x. This allows using differential operations (regularized gradient) that

facilitate variational optimization. This issue is not present in a combinatorial setting, where

any large displacement is allowed, but at a prohibitive computational cost. In the variational

setting, the issue is usually addressed via multi-scale methods, where temporal anti-aliasing
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is performed by spatial smoothing, through the creation of multi-resolution image pyramids

(smoothed and sub-sampled versions of an image [Lin13]), where large displacements at

fine-scale correspond to small displacements at coarse-scale.

Small things moving fast

There is a fundamental problem with multi-scale approaches based on classical scale-space,

in that it couples spatial and temporal frequencies. In other words, it ties the size of objects to

their allowable speed. This is manifested in typical failure cases with small things moving fast

(Fig. 2.1). In general, the size of an object and the speed at which it moves are independent,

and they should be treated as such, rather than be coupled for mathematical convenience.

How then to address the spatial variability of image velocity?

Multi-scale without multi-resolution

Our approach to avoid the pitfall of multi-resolution, while addressing the intrinsically space-

varying scale of motion and respecting the assumptions underlying optical flow computation,

is to design a method that is multi-scale but not multi-resolution. It operates at the native

resolution, using increasingly large regions-of-interest operating on a decreasing subset of

the image domain. Instead of using spatial blurring as the scale parameter, it uses speed, or

magnitude of displacement. This is the key to our method, and explains the name “slow-to-

fast”. The next section sketches a generic implementation of our algorithm, and subsequent

sections detail our choices of components and parameters.

Sketch of S2F-IF

Call φ(x;w, I1, I2) the point-wise cost function used by any baseline optical flow algorithm,

for instance φ(x; ŵ, I1, I2) = |I1(x) − I2(ŵ(x))|, where we may omit some of the arguments

when obvious from the context. Then:

1. Choose an initial radius r > 0;
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2. Use a baseline optical flow algorithm to compute putative forward ŵ and backward ŵ−1

displacements; point-wise residual ρ, where ŵ = arg minw
∫
D
φ(x;w, I1, I2)dx, ρ(x) =

φ(x; ŵ), and ŵ−1 = arg minw
∫
D
φ(x;w, I2, I1)dx. Also compute forward-backward (f-b)

compatibility b(x)
.
= ‖I2×2 − ŵ ◦ ŵ−1(x)‖.

Test violations of (i) and (ii) using the residual ρ(x) and f-b compatibility b(x) re-

spectively, aggregated on a region/window B(r) with radius r, using a conservative

threshold.

This leaves a (typically sparse) set of points D = {xi}N(r)
i=1 , and yields their (by as-

sumption, typically small) displacements wi = w(xi).

3. Interpolate the sparse matches to fill unmatched regions D\D that violated (i)-(iv),

based on a choice of prior/regularizer, leading again to a dense field w̃ and point-

wise residual ρ̃(x) = φ(x; w̃). Given flow at each point, check f-b compatibility after

warping; large residuals are considered occlusions (violations of (ii)).

4. Optionally partition I1 into piecewise constant regions {Sj}Mj=1 (super-pixels), to fa-

cilitate computation, and expand D to include simply-connected regions with small

residual Sj ∩ χ(ρ̃ < εr).

5. Mask the matched regions D from the images, I1 ← I1 · χ(D\D), and similarly for the

warped I2 ◦ w̃, where the dot indicates point-wise multiplication (matched regions are

now black).

6. r ← r + δ, and go to step 2. We use δ ≥ 1 pixels, and terminate when r reaches the

size of the image, or no more matches could be found.

Several comments are now in order:

• We choose r = 5, 8 pixels in (1.) for KITTI and Sintel respectively as in [BTS15];

we use [BTS15] as a baseline optical flow in (2.), and the census transform to test

compatibility with (i)-(ii). We reject points that fail either the residual (εr = 30) or

the f-b test(εc = 1, 5). We choose [RWH15b] for interpolation in (3.), and [DZ15] for

superpixelization. Finally, we use δ = 1, 2 pixels for the scale increment.
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• Step 2 implements a conservative sparse matching procedure for regions of size r, that

leads to a set of sparse matches. Our choice [BTS15] can be replaced by any other

conservative sparse matching.

• The matched region D typically grows monotonically, so the procedure either termi-

nates with a non-empty unmatched set, if no further matches could be found, or each

pixel is matched D = D.

• In theory, the process should be terminated before each pixel is matched, as displace-

ment is not defined in occluded region. In practice, all pixels are typically matched,

exploiting the regularizer imposed by the interpolation step.

• The first regions of the scene to be matched are the ones that are (i) Lambertian,

with (ii) sufficiently exciting radiance, are (iii) co-visible, and (iv) moving slowly. As

iterations progress, smaller and smaller regions that are moving faster and faster are

matched. For this reason, we call this scheme Slow-To-Fast (S2F) Interpolator Flow

(IF), as the final solution is influenced heavily by the prior.

• The crucial characteristic of the algorithm above, which is responsible for edging the

state-of-the-art, is its lossless multi-scale nature, that is the search at multiple scales

of motion, without changing the resolution of the images.

• The algorithm is relatively insensitive to the choice of component algorithms at each

step, although the most crucial is the choice of interpolation, which we discussed at in

Sect. 2.3.2

2.2 Experiments

2.2.1 Qualitative results

Fig. 2.1 illustrates the key characteristic of our method in comparison to most alternate

methods, which we choose to represent with a close-to state-of-the-art baseline [SRB14].

Small objects that move fast are diffused away by scale-space by the time their displacement
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becomes small enough for a variational optical flow algorithm to resolve. Modifying spatial

frequencies (smoothing and down-sampling) to achieve temporal anti-aliasing (to enable

approximation of temporal derivatives with first differences) ties the size of objects with

their speed, in ways that are detrimental. Our approach treats them as independent, thus

enabling us to capture their motion. It should be mentioned that combinatorial search-

base schemes are not subject to this limitation, but suffer from prohibitive computational

complexity.

Fig. 2.2 illustrates the various stages of evolution of our algorithm, corresponding to the

sketch in Sect. 2.1.

Figure 2.2: Visualization of the stages of our algorithm: Original images (left), initial

sparse matches (middle-left, step 2), interpolated flow (middle-left, step 3), super-pixelization

(middle-right, step 4), matched set (middle-right, step 5) and residual masked image (right)

after the first iteration.

Fig. 2.3 shows the evolution of the matched domain, which typically shrinks monotoni-

cally to encompass the entire image domain, with the last, unmatched region filled in by the

regularizer.

2.2.2 Benchmark comparisons

Fig. 2.4 shows representative samples for the benchmarks used. The Middlebury dataset

[SZS08] comprises 12 pairs of images of mostly static man-made scenes seen under a short

baseline. There are few small objects, and none moves fast in the only 8 ground-truthed pairs.
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Figure 2.3: Matched regions as the iteration evolves from the first (top row) to the last

(bottom rows). The unmatched region (white) shrinks in size, until it converges to regions

that are compatible with the hypotheses, but where there is no unique match (third row).

On these, the regularizer has license to fill in (bottom), where we highlight details on the legs

of the dinosaur, where the overall procedure corrects initial matching errors of the baseline

flow algorithm.

The only pairs showing large displacement of small objects are the 4 with no ground truth,

including the one shown in Fig. 2.4, which are unfortunately not included in the evaluation.

Our algorithm estimates flow more accurately on these sequences. In overall performance,

our method ranks in the middle-of-the-pack on this dataset. As a sanity check, we use the

Middlebury dataset to compare against the algorithms that report top performance on Sintel,

which is a larger dataset showing a wider variety of motions, including large displacement of

small objects. The results in Tab. 2.1, show our algorithms comparing favorably. The fact

that top performers on Sintel are different from top performers on Middlebury suggests that

one of the datasets, or both, are easily overfitted. Middlebury only has 12 image pairs, only

8 of which with ground truth, none of them with large displacement.
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Figure 2.4: Representative samples from various datasets: Middlebury (row 1), KITTI (rows

2, 3, 4), Sintel (rows 5,6). We compare the component flow [BTS15] (FlowFields), with ours

(S2F). Details are highlighted in yellow rectangles.

A better benchmark is the KITTI dataset [GLS13], which consists of outdoor driving

sequences, with sparse ground truth. Quantitative comparisons with competing algorithms

are shown in Tab. 2.2. We use default parameters, not fine-tuned for the dataset, and show

competitive performance. As expected, we outperform the baseline flow algorithm we use as

a component, shown as the last line on the table as FlowField-. It should be noticed that

the same algorithm has been fine-tuned to the KITTI dataset by the authors, shown on the

table as FlowFields, with a considerable improvement in performance, suggesting that this

dataset can also be overfitted. Since the parameters chosen for the test are not disclosed,
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Method Avg. Rank Method Avg. Rank

CPM-Flow [HSL16] 53.7 EpicFlow [RWH15b] 57.4

DeepFlow2 [WRH13] 54.0 FlowNetS [FDI15] 80.4

S2F-IF 38.6 FlowFields [BTS15] 41.2

Table 2.1: Average endpoint error on Middlebury for the top-performing algorithms on

Sintel. Full ranking can be accessed directly on the Middlebury flow page http://vision.

middlebury.edu/flow/eval/.

we use the same parameters of the baseline as released, with no fine-tuning for the dataset.

We feel that this test is more representative than reporting the best score with different

parameters for each dataset.

Method Out-Noc Out-All Avg-Noc Avg-All

CPM-Flow [HSL16] 5.79 % 13.70 % 1.3 px 3.2 px

EpicFlow [RWH15b] 7.88 % 17.08 % 1.5 px 3.8 px

DeepFlow2 [WRH13] 6.61 % 17.35 % 1.4 px 5.3 px

FlowNetS [FDI15] 37.05 % 44.49 % 5.0 px 9.1 px

FlowFields [BTS15] 5.77 % 14.01 % 1.4 px 3.5 px

S2F-IF 6.20 % 15.68 % 1.4 px 3.5 px

FlowField- [BTS15] 6.49 % 15.94 % 1.5 px 3.9 px

Table 2.2: Comparison on the KITTI dataset. Our method uses as a component FlowField-

for flow computation. As expected, it improves its performance. The same algorithm,

however, fine-tuned to the dataset (indicted as FlowFields, for which no parameters are

disclosed) further improves performance. We do not fine-tune ours, and simply report our

performance with the same tuning for all datasets. Out-Noc indicates the percentage of

pixels with error larger than 3 pixels in non-occluded regions, whereas Out-All indicates the

percentage of outliers among all pixels. Avg denotes the average end-point error, again for

non-occluded, or all pixels.
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Again, we use the same settings as in [BTS15] on the Sintel dataset [BWS12a], which is

a synthetic one, but challenging in that it includes fast motion, motion blur, and has precise

ground truth. We report the performance in the official benchmark in Tab. 2.3, with our

algorithm exhibiting top performance in overall end-point error at the time of writing.

Method all mat. unmat. d0-10 d10-60 d60-140 s0-10 s10-40 s40+

FlowFields [BTS15] 5.81 2.62 31.79 4.85 2.23 1.68 1.15 3.73 33.89

FlowFields+ [BTS15] 5.70 2.68 30.35 4.69 2.11 1.79 1.13 3.33 34.16

SPM-BPv2 [LMB15] 5.81 2.75 30.74 4.73 2.25 1.93 1.04 3.46 35.11

FullFlow [CK16] 5.89 2.83 30.79 4.90 2.50 1.91 1.13 3.37 35.59

CPM-Flow [HSL16] 5.96 2.99 30.17 5.03 2.41 2.14 1.15 3.75 35.13

EpicFlow [RWH15b] 6.28 3.06 32.56 5.20 2.61 2.21 1.13 3.72 38.02

DeepFlow2 [WRH13] 6.92 3.09 38.16 5.20 2.81 2.14 1.18 3.85 42.85

S2F-IF 5.41 2.54 28.79 4.74 2.19 1.71 1.15 3.46 31.26

Table 2.3: Comparison on the Sintel dataset. all, mat., unmat., respectively stands for end-

point error, among all, matched, and unmatched pixels (second through the fourth column).

dX-Y stands for error restricted to pixels between X and Y of objects boundaries, thus

discounting error at occluded regions. sX-Y stands for pixels with displacements between X

and Y pixels. Our method is competitive on all counts, and shines for large displacements,

as expected.

These results illustrate the benefit in specifically handling multi-scale phenomena without

sacrificing resolution and confusing spatial statistics with temporal ones. More qualitative

comparisons can be found in Fig. 2.5.

The next section gives more details on our choice of component methods for the generic

algorithm described in Sect. 2.1.
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Figure 2.5: More comparisons to [BTS15]. Left to right: overlapped image pairs, results of

[BTS15], results of S2F-IF. Details are highlighted using yellow rectangles. KITTI: 1st-4th

row; Sintel: 5th-9th row.

2.3 Technical Details

The basic algorithm was described in Sect. 2.1, and consists of sparse matching, followed by

interpolation, followed by testing for violation of the hypotheses, where the iteration is with
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respect to a growing radius for the region of interest, which operates on smaller and smaller

residual unmatched portion of the image domain.

2.3.1 Sparse matching

Step 2 of our algorithm results in a sparse set of regions being matched over short displace-

ments. This is not because we actively seek for sparse matches with small displacement. On

the contrary, we start with a dense flow, specifically [BTS15], but then conservatively reject

all regions that fail hypotheses (i)-(ii) based on residual or f-b compatibility. This naturally

results in a sparse set, because sufficient excitation conditions (which are tested through f-b

compatibility) require large gradients in two independent directions, which is typically only

satisfied on a sparse subset of the image domain. Conceptually, any other sparse matching

would do, and the algorithm is not very sensitive to the choice of method for this step, which

we therefore do not further discuss.

2.3.2 Interpolation

The algorithm is sensitive to the choice of prior, which in our case corresponds to the choice

of the interpolation algorithm. To describe and motivate our choice, let x, y ∈ D ⊂ R2

be two points on the pixel lattice, with distance d(x, y) for some choice of norm. We are

interested in inferring the value of the displacement w(x) at x from observations performed

at y. We assume a parametric form for the likelihood function

pθ(w(x)|y) = N (Ax+ b; Σ(x, y)) . (2.1)

whereby the displacement w at x is a Gaussian random vector having as mean an affine

deformation, depends on y, of the point x, with an uncertainty

Σ(x, y) = β2 exp (d(x, y)) I2×2 (2.2)

that grows exponentially with the distance of the observation point. The parameters θ =

{A, b} can be inferred via maximum-likelihood, given a sample D = {xi, wi}Ni=1, where
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wi = w(xi), as

Â, b̂ = arg max
θ

N∏
i=1

pθ(wi|x)

= arg max
A,b

N∏
i=1

N (Axi + b; Σ(xi, x))

= arg min
A,b

N∑
i=1

‖wi − Axi − b‖2
2

β2 exp (d(xi, x))
(2.3)

leaving β as a tuning parameter. This is essentially the locally-weighted (LA) estimator in

Eq. (2) of [RWH15b]. Note that pθ(w(x)|x) = N (Ax + b; β2I2×2) and the parameters θ

(which are the sufficient statistics of the dataset D for the displacement w(x)) are a function

of the location x. We make this explicit by writing θ = {A(x), b(x)}. A point-estimate, for

instance the conditional mean, of the displacement can be obtained at each point x,

w(x) = A(x)x+ b(x). (2.4)

This approach follows [RWH15b] to avoid solving a variational optimization problem with

explicit regularization, which is instead implicit in the finite-dimensional class of transfor-

mations (affine) and the finite data sample D. The behavior of this interpolation method

hinges critically on the choice of distance d in (2.3), which we describe next.

2.3.3 Topology

The distance between two points d(x, y) can be based on the topology of the image domain,

for instance d2(x, y) = ‖x− y‖2, where nearby pixels are considered close, or the topology of

the image range, for instance dI(x, y) = ‖I(x)−I(y)‖, where pixels with similar intensity are

considered close. Ideally, we would like to use the topology of the scene, and consider points

x, y ∈ D close if the distance between their pre-images (back-projection) onto the scene

X, Y ∈ R3 is close. This would be a geodesic distance, assuming the scene to be multiply-

connected and piecewise smooth, infinite if X, Y are on different connected components.

Since we do not have a model of the scene, we use a proxy, whereby the distance between

two points on the same connected component X, Y is the distance between their projec-

tions x = π(X), y = π(Y ) on the image, whereas the distance between points on different

21



connected components adds a term proportional to their depth differential relative to the

distance from the camera.

While we do not know their depth, disconnected components result in occlusion regions

with area proportional to the relative depth differential, where the optical flow residual

φ(x) = minw ‖I1(x)− I2(w(x))‖ is generally large. Therefore, we can take the path-integral

of optical flow residual as a proxy of the geodesic distance:

dw(x, y)
.
= min

γ

∫
γx→y

φ(z)dz (2.5)

where γx→y is any path from x to y.

We can also assume that objects are smoothly colored, and therefore large intensity

changes can be attributed to points being on different objects. Clearly this is not always

the case, as smooth objects can have sharp material transitions, but nevertheless one can

restrict the topology to simply connected components of the piecewise smooth albedo, and

define dI as

dI(x, y)
.
= min

γ

∫
γx→y

|∇I(z)|dz (2.6)

and similarly bypass the minimization by using a cordal distance. Various product distances,

and various approximations to the geodesic, can be derived, for instance those in [RWH15b].

We use (2.6) in our algorithm.

2.3.4 Hypotheses (i)-(iv) testing

The key to our algorithm is the multi-scale iteration, starting from large regions that move

slowly, eventually matching small regions that move fast. At each iteration, hypotheses

of (i) Lambertian reflection and constant illumination, and (ii) co-visibility (large residual)

are tested conservatively relative to a fixed radius of the region of interest. Furthermore,

backward-forward compatibility tests (iii) sufficient excitation; where failed, the regularizer

(which in our case is implicit in the interpolation scheme) has license to take over.

While it would be desirable to have an integrated Bayesian framework where the thresh-

olds are automatically determined by competing hypotheses, in practice these stages boil
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down to threshold selection. Importantly, the algorithm is not extremely sensitive to the

choice of thresholds.

2.3.5 Computational cost

The computational cost of our algorithm is essentially dictated by the choice of components.

Run-time depends on the complexity of the motion, since the length of our iteration is data-

dependent. On average, it takes about 1m per pair of frames in Sintel, where images are of

size 1024× 436, on a commodity 4-core 3.1GHz desktop. We have observed convergence in

as little as 20s, and as long as 2m. This includes all component elements of our pipeline. On

smaller images, for instance, Middlebury’s, (300×400), our algorithm runs in about 15s/pair

of frames. On KITTI, that has 400× 1234 pixels per image, our algorithm runs, on average,

at 1.5m per pair of frames.

23



CHAPTER 3

Learning Conditional Prior for Optical Flow

As seen in the previous chapter, the computation of optical flow always involves generic priors

(regularizers) that capture rudimentary statistics of images, but not long-range correlations

or semantics. Generic priors for regularizing optical flow have been used for decades, starting

with Horn & Schunk’s `2 norm of the gradient, to `1, Total Variation, etc.

Consider Fig. 3.1: A given image (left) could give rise to many different optical flows (OF)

depending on what another image of the same scene looks like: It could show a car moving to

the right (top), or the same apparently moving to the left due to camera motion to the right

(middle), or it could be an artificial motion because the scene was a picture portraying the

car, rather than the actual physical scene. A single image biases, but does not constrain, the

set of possible flows the underlying scene can generate. We wish to leverage the information

an image contains about possible compatible flows to learn better priors than those implied

by generic regularizers. Note that all three flows in Fig. 3.1 are equally valid under a generic

prior (piecewise smoothness), but not under a natural prior (cars moving in the scene).

A regularizer is a criterion that, when added to a data fitting term, constrains the so-

lution of an inverse problem. These two criteria (data term and regularizer) are usually

formalized as an energy function, which is minimized to, ideally, find a unique global op-

timum.1 In variational OF, the regularizer captures very rudimentary low-order statistics

[BSL11, BWS05, PBB06, BA93, XJM12], for instance the high kurtosis of the gradient dis-

tribution. This does not help with the scenario in Fig. 3.1. There has been a recent surge

of (supervised) learning-based approaches to OF [DFI15, IMS17, RB17], that do not have

1We use the terms regularizer, prior, model, or assumption, interchangeably and broadly to include any
restriction on the solution space, or bias on the solution, imposed without full knowledge of the data. In
OF, the full data is (at least) two images.
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Figure 3.1: A single image biases, but does not constrain, the set of optical flows that can

be generated from it, depending on whether the camera was static but objects were moving

(top), or the camera was moving (center), or the scene was flat (bottom) and moving on a

plane in an un-natural scenario. Flow fields here are generated by our CPNFlow.

explicit regularization nor do they use geometric reprojection error as a criterion for data fit.

Instead, a map is learned from pairs of images to flows, where regularization is implicit in

the function class [CS16],2 in the training procedure [CS17] (e.g. noise of stochastic gradient

descent – SGD), and in the datasets used for training (e.g. Sintel [BWS12b], Flying Chair

[DFI15]).

Our method does not attempt to learn geometric optics anew, even though black-box

approaches are the top performers in several benchmarks. Instead, we seek to learn richer

priors on the set of possible flows that are statistically compatible with an image (Fig. 3.1).

Supervised learning methods typically rely on synthesized datasets, due to the extreme

difficulty in obtaining ground truth flows for realistic videos. Recently, unsupervised optical

flow learning methods have flourished, making use of a vast amount of unlabeled videos.

Although unsupervised optical flow learning methods are able to learn from an unlimited

2In theory, deep neural networks are universal approximants, but there is a considerable amount of
engineering in the architectures to capture suitable inductive biases.
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amount of data, when compared to variational methods, their performance usually falls

behind. Unsupervised learning-based approaches use the same or similar loss functions

as variational methods [JHD16, RYN17, MHR18, AP16], including priors, but restrict the

function class to a parametric model, for instance convolutional neural networks (CNNs)

trained with SGD, thus adding implicit regularization [CS17], which is minute when explicit

regularizer is applied. Again, the priors only encode first-order statistics, which fail to

capture the phenomena in Fig. 3.1.

We advocate learning a conditional prior, or regularizer, from data, but do so once and

for all, and then use it in conjunction with any data fitting term, with any model and

optimization one wishes.

What we learn is a prior in the sense that it imposes a bias on the possible solutions,

but it does not alone constraint them, which happens only in conjunction with a data term.

Once the prior is learned, in a supervised fashion, one can also learn the full map to infer

optical flow directly from data, without any need for (additional) supervision. In this sense,

our method is “semi-unsupervised”: Once we learn the prior, anyone can train an optical

flow architecture entirely unsupervised. The key idea here is to learn a prior for the set of

optical flows that are statistically compatible with a single image. Once done, we train a

relatively simple network in an unsupervised fashion to map pairs of images to optical flows,

where the loss function used for training includes explicit regularization in the form of the

conditional prior, added to the reprojection error.

Despite a relatively simple architecture and low computational complexity, our method

beats all variational ones and all unsupervised learning-based ones. It is on par or slightly

below a few fully supervised ones, that however are fine-tuned to a particular dataset, and are

extremely onerous to train. More importantly, available fully supervised methods perform

best on the dataset on which they are trained. Our method, on the other hand, performs

well even when the prior is trained on one dataset and used on a different one. For instance,

a fully-supervised method trained on Flying Chair beats our method on Flying Chair, but

underperforms it on KITTI and vice-versa (Tab. 3.1). Ours is consistently among the top in

all datasets. More importantly, our method is complementary, and can be used in conjunction
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with more sophisticated networks and data terms.

Formalization

Let I1, I2 ∈ RH×W×3
+ be two consecutive images and f : R2 → R2 the flow, implicitly defined

in the co-visible region by I1 = I2 ◦ f + n where n ∼ Pn is some distribution. The posterior

P (f |I1, I2) ∝ Pn(I1 − I2 ◦ f) can be decomposed as

logP (f |I1, I2) = logP (I2|I1, f) + logP (f |I1)− logP (I2|I1)

≈ logP (I2|I1, f) + logP (f |I1) (3.1)

We call the first term (data) prediction error, and the second conditional prior. It is a

prior in the sense that, given I1 alone, many flows can have high likelihood for a suitable I2.

However, it is informed by I1 in the sense of capturing image-dependent regularities such as

flow discontinuities often occurring at object boundaries, which may or may not correspond

to generic image discontinuities. A special case of this model assumes a Gaussian likelihood

(`2 prediction error) and an ad-hoc prior of the form

E(f, I1, I2) =

∫
(I1(x)− I2(x+ f(x)))2dx+

∫
α(x, I1)‖∇f(x)‖2dx (3.2)

where α is a scalar function that incorporates our belief in an irradiance boundary of I1

corresponding to an object boundary.3 Image-dependent priors as in Eq. (3.2) include [KK12,

RBP14, CK16, DKA95, PVP94, BBP04, XJM12]. This type of conditional prior has several

limitations: First, in the absence of semantic context, it is not possible to differentiate

occluding boundaries (where f can be discontinuous) from material boundaries (irradiance

discontinuities), or illumination boundaries (cast shadows) where f is smooth. Second, the

image I1 only informs the flow locally, through its gradient, and does not capture global

regularities. Fig. 3.2 shows that flow fails to propagate into homogeneous region. This can

be mitigated by using a fully connected CRF [SM12] but at a heavy computational cost.

3When α is constant, we get an even more special case, the original Horn & Schunk model where the
prior is also Gaussian and unconditional (independent of I1).
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Figure 3.2: First row: two images I1, I2 from the Flying Chair dataset; Second row: warped

image I2 ◦ f̂ (left) using the flow (right) estimated by minimizing Eq. (3.2); Third row:

residual n = ‖I1 − I2 ◦ f‖ (left) compared to the edge strength of I1 (right). Note the flow

estimated at the right side of the chair fails to propagate into the homogeneous region where

the image gradient is close to zero.

Our goal can be formalized as learning the conditional prior P (f |I1) in a manner that

exploits the semantic context of the scene4 and captures the global statistics of I1. We will

do so by leveraging the power of deep convolutional neural networks trained end-to-end, to

enable which we need to design differentiable models, which we do next.

3.1 Method

To learn a conditional prior we need to specify the inference criterion (loss function), which

we do in Sect. 3.1.2 and the class of functions (architecture), with respect to which the loss

4The word “semantic” is often used to refer to identities and relations among discrete entities (objects).
What matters in our case is the geometric and topological relations that may result in occluding boundaries
on the image plane. The name of an object does not matter to that end, so we ignore identities and do not
require object labels.
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is minimized end-to-end. We introduce our choice of architecture next, and the optimization

in Sect. 3.1.4.

3.1.1 Conditional Prior Network (CPN)

We construct the conditional prior from a modified autoencoder trained to reconstruct a

flow f that is compatible with the given (single) image I. We call this a Conditional Prior

Network (CPN) shown in Fig. 3.3.

Figure 3.3: Conditional Prior Network (CPN) architecture for learning P (f |I): ψ is an

encoder of the flow f , and ϕ is a decoder that has full access to the image I.

In a CPN, ψ encodes only the flow f , then ϕ takes the image I and the output of ψ

to generate a reconstruction of f , f̂ = ϕ(I, ψ(f)). Both ψ and ϕ are realized by pure

convolutional layers with subsampling (striding) by two to create a bottleneck. Note that ϕ

is a U-shape net [DFI15] with skip connections, at whose center a concatenation with ψ(f) is

applied. Before we articulate the reasons for our choice of architecture, and argue that it is

better than an ordinary autoencoder that encodes both f and I in one branch, we introduce

the choice of loss function and how it is trained next.

3.1.2 Loss function

We are given a dataset D sampled from the joint distribution D = {(fj, Ij)}nj=1 ∼ P (f, I),

with n samples. We propose approximating P (f |I) with a CPN as follows

Qwϕ,wψ(f |I) = exp
(
−‖ϕ(I, ψ(f))− f‖2

)
∝ P (f |I) (3.3)
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where wϕ, wψ are the parameters of ϕ and ψ respectively. Given I, for every flow f , the

above returns a positive value whose log, after training, is equal to the negative squared

autoencoding loss. To determine the parameters that yield an approximation of P (f |I), we

should solve the following optimization problem

w∗ϕ, w
∗
ψ = arg min

wϕ,wψ
EI∼P (I)KL(P (f |I)‖Qwϕ,wψ(f |I)) (3.4)

where the expectation is with respect to all possible images I, and KL is the Kullback-Leibler

divergence between P (f |I) and the CPN Qwϕ,wψ(f |I). We show that the above is equivalent

to:

w∗ϕ, w
∗
ψ = arg min

wϕ,wψ
EI∼P (I)KL(P (f |I)‖Qwϕ,wψ(f |I))

= arg min
wϕ,wψ

∫
I

P (I)KL(P (f |I)‖Qwϕ,wψ(f |I))

= arg min
wϕ,wψ

∫
I

P (I)

∫
f

(P (f |I)log
P (f |I)

Qwϕ,wψ(f |I)
)dfdI

= arg min
wϕ,wψ

∫
I

∫
f

P (I)P (f |I)logP (f |I)dfdI −
∫
I

∫
f

P (I)P (f |I)logQwϕ,wψ(f |I)dfdI

= arg max
wϕ,wψ

∫
I

∫
f

P (f, I)logQwϕ,wψ(f |I)dfdI

= arg max
wϕ,wψ

−
∫
I

∫
f

P (f, I)‖ϕwϕ(I, ψwψ(f))− f‖2dfdI

= arg min
wϕ,wψ

∫
I

∫
f

P (f, I)‖ϕwϕ(I, ψwψ(f))− f‖2dfdI (3.5)

which is equivalent to minimizing the empirical autoencoding loss since the ground truth

flow is quantized,
∑n

j=1 ‖f̂j − fj‖2. If the encoder had no bottleneck (sufficient information

capacity), it could overfit by returning f̂ = ϕwϕ(I, ψwψ(f)) = f , rendering the conditional

prior Qwϕ,wψ(f |I) uninformative (constant). Thus we introduce an information regularizer

(bottleneck) on the encoder ψ leading to the CPN training loss

w∗ϕ, w
∗
ψ = arg min

wϕ,wψ
EI∼P (I)KL(P (f |I)‖Qwϕ,wψ(f |I)) + βI(f, ψwψ(f)) (3.6)

where β > 0 modulates complexity (information capacity) and fidelity (data fit), and

I(f, ψwψ(f)) is the mutual information between the flow f and its representation (code)
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ψwψ(f). When β is large, the encoder is lossy, thus preventing Qwϕ,wψ(f |I) from being

uninformative.5

3.1.3 Reasoning behind the CPN structure

Now we show our reasoning that leads us to the current CPN structure instead of the ordinary

autoencoder which encodes both f and I in one branch as follows:

Qwϕ,wψ(f |I) = exp
(
−‖ϕ ◦ ψ(f, I)− f‖2

)
(3.7)

where ϕ is a decoder and ψ is an encoder of both f and I, parameterized by wϕ, wψ respec-

tively. The optimal parameters w∗ϕ, w
∗
ψ should be obtained by minimizing the average KL

divergence between the proposed conditional Q and P (f |I):

w∗ϕ, w
∗
ψ = arg min

wϕ,wψ
EI∼P (I)KL(P (f |I)‖Qwϕ,wψ(f |I)) (3.8)

similarly to former subsection, we can show that the above optimization problem is equivalent

to:

w∗ϕ, w
∗
ψ = arg max

wϕ,wψ

∫
I

∫
f

P (f, I) log[Qwϕ,wψ(f |I)]dfdI

= arg min
wϕ,wψ

∫
I

∫
f

P (f, I)‖ϕwϕ ◦ ψwψ(f, I)− f‖2dfdI (3.9)

However, we are not done as ψ is an encoder with limited capacity, thus ψ is not one-to-one,

which makes the following subset non-empty:

Iψ,f = {I|ψwψ(f, I) = ψ}. (3.10)

We can rewrite the optimization problem Eq. (3.9) as:

w∗ϕ, w
∗
ψ = arg min

wϕ,wψ

∫
f

∫
ψ

∫
I∈Iψ,f

P (f, I)‖ϕwϕ ◦ ψwψ(f, I)− f‖2dIdψdf

= arg min
wϕ,wψ

∫
f

∫
ψ

‖ϕwϕ(ψ)− f‖2

(∫
I∈Iψ,f

P (f, I)dI

)
dψdf

= arg min
wϕ,wψ

∫
f

∫
ψ

‖ϕwϕ(ψ)− f‖2P (f)Pwψ(ψ|f)dψdf (3.11)

5the decoder ϕ imposes no architectural bottleneck due to skip connections.
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Pwψ(ψ|f) is a probability measure induced by the encoder ψ. Thus, the original optimization

problem is essentially minimizing the following quantity:

w∗ϕ, w
∗
ψ = KL

(
P (f)Pwψ(ψ|f)‖Qwϕ(ψ, f)

)
(3.12)

During the optimization process, the encoder is trying to push P (f)Pwψ(ψ|f) towards

Qwϕ(ψ, f) and the decoder is pushing from the other side. After optimization:

Qwϕ,wψ(f |I) = exp
(
−‖ϕ ◦ ψ(f, I)− f‖2

)
∝ P (f)Pwψ(ψ(f, I)|f) (3.13)

which is not P (f |I) nor P (f, I)! In order to let Qwϕ,wψ(f |I) approximate P (f |I), the condi-

tion Pwψ(ψ|f) = P (I|f) should be true. And this is satisfied when ψ imposes no compression

on I. i.e. ψ : (f, I) → (ψ(f), I), which enforces Eq. (3.10) to be a singleton, and now we

have the proposed CPN structure.

3.1.4 Training a CPN

While the first term in Eq. (3.6) can simply be the empirical autoencoding loss, the second

term can be realized in many ways, e.g., an `2 or `1 penalty on the parameters wψ. Here

we directly increase the bottleneck β by decreasing the coding length `ψ of ψ. Hence the

training procedure of the proposed CPN can be summarized as follows:

1. Initialize the coding length of the encoder `ψ with a large number (β = 0).

2. Train the encoder-decoder ψ, ϕ jointly by minimizing e =
1

n

∑n
j=1 ‖f̂j − fj‖2 until

convergence. The error at convergence is denoted as e∗.

3. If e∗ > λ, training done.6

Otherwise, decrease `ψ, (increase β), and goto step 2.

It would be time consuming to train for every single coding length `ψ. We only iteratively

train for the integer powers, 2k, k ≤ 10.

6in our experiments, λ = 0.5.
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Inference: suppose the optimal parameters obtained from the training procedure are

w∗ψ, w∗ϕ, then for any given pair (f, I), we can use Qw∗ϕ,w
∗
ψ
(f |I) as the conditional prior up to

a constant. In the next section we add a data discrepancy term to the (log) prior to obtain

an energy functional for learning direct mapping from images to optical flows.

3.1.5 Semi-unsupervised learning optical flow

Figure 3.4: FlowNet architecture for learning the mapping from I1, I2 to optical flow f .

Unlike a generative model such as a variational autoencoder [KW13], where sampling is

required in order to evaluate the probability of a given observation, here (f, I) is directly

mapped to a scalar using Eq. (3.3), thus differentiable w.r.t f , and suitable for training a

new network as shown in Fig. 3.4 to predict optical flow given images I1, I2, by minimizing

the following compound loss:

E(f |I1, I2) =

∫
Ω\O

ρ(I1(x)− I2(x+ f(x)))dx− α log[Qw∗ϕ,w
∗
ψ
(f |I1)]

=

∫
Ω\O

ρ(I1(x)− I2(x+ f(x)))dx+ α‖ϕ∗(I1, ψ
∗(f))− f‖2 (3.14)

with α > 0, Qw∗ϕ,w
∗
ψ

our learned conditional prior, and ρ(x) = (x2 + 0.0012)η the generalized

Charbonnier penalty function [BW05]. Note that the integration in the data term is on the

co-visible area, i.e. the image domain Ω minus the occluded area O, which can be set to

empty for simplicity or modeled using the forward-backward consistency as done in [MHR18]

with a penalty on O to prevent trivial solutions. In the following section, we describe our

implementation and report results and comparisons on several benchmarks.
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3.2 Experiments

3.2.1 Network details

CPN: we adapt the FlowNetS network structure proposed in [DFI15] to be the decoder

ϕ, and the contraction part of FlowNetS to be the encoder ψ in our CPN respectively.

Both parts are shrunk versions of the original FlowNetS with a factor of 1/4; altogether our

CPN has 2.8M parameters, which is an order of magnitude less than the 38M parameters in

FlowNetS. As we mentioned before, the bottleneck in Eq. (3.6) is controlled by the coding

length `ψ of the encoder ψ, here we make the definition of `ψ explicit, which is the number

of the convolutional kernels in the last layer of the encoder. In our experiments, `ψ = 128

always satisfies the stopping criterion described in Sect. 3.1.4, which ends up with a reduction

rate of 0.015 in the dimension of the flow f .

CPNFlow: we term our flow prediction network CPNFlow. The network used on all

benchmarks for comparison is the original FlowNetS with no modifications, letting us focus

on the effects of different loss terms. The total number of parameters is 38M. FlowNetS is

the most basic network structure for learning optical flow [DFI15], i.e., only convolutional

layers with striding for dimension reduction, however, when trained with loss Eq. (3.14) that

contains the learned conditional prior (CPN), it achieves better performance than the more

complex network structure FlowNetC [DFI15], or even stack of FlowNetS and FlowNetC.

Please refer to Sect. 3.2.4 for details and quantitative comparisons.

3.2.2 Datasets for training

Flying Chairs is a synthesized dataset proposed in [DFI15], by superimposing images of

chairs on background images from Flickr. Randomly sampled 2-D affine transformations

are applied to both chairs and background images. Thus there are independently moving

objects together with background motion. The whole dataset contains about 22k 512× 384

image pairs with ground truth flows.

MPI-Sintel [BWS12b] is collected from an animation that made to be realistic. It contains
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scenes with natural illumination, objects moving fast, and articulated motion. Final and

clean versions of the dataset are provided. The final version contains motion blur and fog

effects. The training set contains only 1, 041 pairs of images, much smaller compared to

Flying Chairs.

KITTI 2012 [GLU12] and 2015 [MG15] are the largest real-world datasets containing ground

truth optical flows collected in a driving scenario. The ground truth flows are obtained from

simultaneously recorded video and 3-D laser scans, together with some manual corrections.

Even though the multi-view extended version contains roughly 15k image pairs, ground truth

flows exist for only 394 pairs of image, which makes fully supervised training of optical flow

prediction from scratch under this scenario infeasible. However, it provides a base for un-

supervised learning of optical flow, and a stage to show the benefit of semi-unsupervised

optical flow learning, that utilizes both the conditional prior (CPN) learned from the syn-

thetic dataset, and the virtually unlimited amount of real-world videos.

3.2.3 Training details

We use Adam [KB14] as the optimizer with its default parameters in all our experiments.

We train our conditional prior network (CPN) using Flying Chairs dataset due to its large

amount of synthesized ground truth flows. The initial learning rate is 1.0e-4, and is halved

every 100k steps until the maximum 600k training steps. The batch size is 8, and the

autoencoding loss after training is around 0.6.

There are two versions of our CPNFlow, i.e. CPNFlow-C and CPNFlow-K. Both employ

the FlowNetS structure, and they differ in the training set on which Eq. (3.14) is minimized.

CPNFlow-C is trained on Flying Chairs dataset, similarly, CPNFlow-K is trained on KITTI

dataset with the multi-view extension. The consideration here is: when trained on Flying

Chairs dataset, the conditional prior network (CPN) is supposed to only capture the statistics

of the affine transformations (a) CPNFlow-C is to test whether our learned prior works

properly or not. If it works, (b) CPNFlow-K tests how the learned prior generalizes to real-

world scenarios. Both CPNFlow-C and CPNFlow-K have the same training schedule with the
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initial learning rate 1.0e-4, which is halved every 100k steps until the maximum 400k steps.7

Note that in [RYN17], layer-wise loss adjustment is used during training to simulate coarse-

to-fine estimation, however, we will not adopt this training technique to avoid repeatedly

interrupting the training process. In a similar spirit, we will not do network stacking as in

[MHR18, IMS17], which increases both the training complexity and the network size.

In terms of data augmentation, we apply the same augmentation method as in [DFI15]

whenever our network is trained on Flying Chairs dataset with a cropping of 384x448. When

trained on KITTI, resized to 384x512, only vertical flipping, horizontal flipping and image

order switching are applied. The batch size used for training on Flying Chairs is 8 and on

KITTI is 4.

3.2.4 Benchmark results

Tab. 3.1 summarizes our evaluation on all benchmarks mentioned above, together with quan-

titative comparisons to the state-of-the-art methods from different categories: Fully super-

vised, variational, and unsupervised learning methods. Since CPNFlow has the same network

structure as FlowNetS, and both CPNFlow-C and FlowNetS are trained on Flying Chairs

dataset, the comparison between CPNFlow-C and FlowNetS shows that even if CPNFlow-C

is trained without knowing the correspondences between pairs of image and the ground truth

flows, it can still achieve similar performance compared to the fully supervised ones on the

synthetic dataset MPI-Sintel. When both are applied to KITTI, CPNFlow-C achieves 11.2%

and 21.6% improvement over FlowNetS and FlowNetC respectively on KITTI 2012 Train,

hence CPNFlow generalizes better to out of domain data.

One might notice that FlowNet2 [IMS17] consistently achieves the highest score on MPI-

Sintel and KITTI Train, however, it has a totally different network structure where several

FlownetS [DFI15] and FlowNetC [DFI15] are stacked together, and it is trained in a sequen-

tial manner, and on additional datasets, e.g. FlyingThings3D [MIH16] and a new dataset

designed for small displacement [IMS17], thus not directly comparable to CPNFlow. How-

7α = 0.1, η = 0.25 for CPNFlow-C, and α = 0.045, η = 0.38 for CPNFlow-K.
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Chairs Sintel Train Sintel Test KITTI Train KITTI Test

Methods test clean final clean final 2012 2015 2012 2015
S

u
p

FlowNetS [DFI15] 2.71 4.50 5.45 7.42 8.43 8.26 —– 9.1 —–

FlowNetC [DFI15] 2.19 4.31 5.87 7.28 8.81 9.35 —– —– —–

SPyNet [RB17] 2.63 4.12 5.57 6.69 8.43 9.12 —– 10.1 —–

FlowNet2 [IMS17] —– 2.02 3.14 3.96 6.02 4.09 10.06 —– —–

V
a
r

Classic-NL [SRB10] —– 6.03 7.99 7.96 9.15 —– —– 16.4 —–

LDOF [BM11] 3.47 4.29 6.42 7.56 9.12 13.7 —– 12.4 —–

HornSchunck

[SRB14]

—– 7.23 8.38 8.73 9.61 —– —– 11.7 41.8%

DIS-Fast [KTD16] —– 5.61 6.31 9.35 10.13 11.01 21.2 14.4 —–

U
n

su
p

DSTFlow [RYN17] 5.11 6.93 7.82 10.40 11.11 16.98 24.30 —– —–

DSTFlow-ft [RYN17] 5.11 (6.16) (6.81) 10.41 11.27 10.43 16.79 12.4 39%

BackToBasic

[JHD16]

5.30 —– —– —– —– 11.30 —– 9.9 —–

UnFlowC [MHR18] —– —– —– —– —– 7.11 14.17 —– —–

UnFlowC-oc

[MHR18]

—– —– 8.64 —– —– 3.78 8.80 —– —–

UnFlowCSS-oc

[MHR18]

—– —– 7.91 9.37 10.22 3.29 8.10 —– —–

DenseNetF [ZN17] 4.73 —– —– —– 10.07 —– —– 11.6 —–

CPNFlow-C 3.81 4.87 5.95 7.66 8.58 7.33 14.61 —– —–

CPNFlow-K 4.37 6.46 7.12 —– —– 3.76 9.63 4.7 30.8%

CPNFlow-K-o —– 7.01 7.52 —– —– 3.11 7.82 3.6 30.4%

Table 3.1: Quantitative evaluation and comparison to the state-of-the-art optical flow estima-

tion methods coming from three different categories. Sup: Fully supervised, Var: Variational

methods, and Unsup: Unsupervised learning methods. The performance measure is the end-

point-error (EPE), except for the last column where percentage of erroneous pixels is used.

The best performer in each category is highlighted in bold, and the number in parentheses is

fine-tuned on the tested dataset. For more detailed comparisons on KITTI test sets, please

refer to the online benchmark website: http://www.cvlibs.net/datasets/kitti/eval_

flow.php.

ever, when we simply apply the learned conditional prior to train our CPNFlow on KITTI

using Eq. (3.14), the final network CPNFlow-K surpasses FlowNet2 by 8% on KITTI 2012

Train, yet the training procedure of CPNFlow is much simpler, and there is no need to switch

between datasets nor between different modules of the network.
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Since the emergence of unsupervised training of optical flow [JHD16], there has not been

a single method that beats the variational methods, as shown in Tab. 3.1, even if both vari-

ational methods and unsupervised learning methods are minimizing the same type of loss

function. One reason might be that when we implement the variational methods, we could

apply some “secret” operations as mentioned in [SRB10], e.g. median filtering, such that

implicit regularization is triggered. Extra data term can also be added to bias the optimiza-

tion, as in [BM11], sparse matches are used as a data term to deal with large displacements.

However, when combined with our learned conditional prior, even the simplest data term

would help unsupervisedly train a network that outperforms the state-of-the-art variational

optical flow methods. As shown in Tab. 3.1 our CPNFlow consistently achieves similar or

better performance than LDOF [BM11], especially on KITTI 2012 Train, the improvement

is at least 40%.

Compared to unsupervised optical flow learning, the advantage of our learned conditional

prior becomes obvious. Although DenseNetF [ZN17] and UnFlowC [MHR18] employ more

powerful network structures than FlowNetS, their EPEs on MPI-Sintel Test are still 1.5

higher than our CPNFlow. Note that in [MHR18], several versions of result are reported, e.g.

UnFlowC: trained with brightness data term and second order smoothness term, UnFlowC-

oc: census transform based data term together with occlusion modeling and bidirectional

flow consistency penalty, and UnFlowCSS-oc: a stack of one FlowNetC and two FlowNetS’s

sequentially trained using the same loss as in UnFlowC-oc. Our CPNFlow-K outperforms

UnFlowC by 47% on KITTI 2012 Train and 32% on KITTI 2015 Train. When occlusion

reasoning is effective in Eq. (3.14) as done in [MHR18], our CPNFlow-K-o outperforms

UnFlowC-oc by 17.7% on KITTI 2012 Train, 11.1% on KITTI 2015 Train, and 12.9% on

Sintel Train Final, even without a more robust census transform based data term and flow

consistency penalty, which demonstrates the effectiveness of our learned conditional prior

across different data terms. Note that our CPNFlow-K-o even outperforms UnFlowCSS-oc,

which is far more complex in training and network architecture.

Fig. 3.5, Fig. 3.6, Fig. 3.7 show the visual comparisons on MPI-Sintel, KITTI 2012 and

KITTI 2015 respectively. Note that our CPNFlow is generally much smoother, and at the
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Figure 3.5: Visual comparison on MPI-Sintel. Variational: CLassic-NL [SRB10], Supervised:

SPyNet [RB17], Unsupervised: UnFlowC [MHR18] and our CPNFlow-C.
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Figure 3.6: Visual comparison on KITTI 2012. Variational: HornSchunck [SRB14], Super-

vised: FlowNetS [DFI15], Unsupervised: BackToBasic [JHD16] and our CPNFlow-K.

same time sharper at object boundaries, e.g. the girl in the 3rd, 4th rows and the dragon

in the 5th row in Fig. 3.5. This demonstrates that our conditional prior network (CPN) is

capable of learning high level (semantic) regularities imposed by object entities. In Fig. 3.6,

we can also observe that discontinuities in the flow fields align well with object boundaries,

for example, the cars in all pairs. This, again, demonstrates that our learned conditional

prior is able to generalize to different scenarios. The error of the estimated flows is also

displayed in Fig. 3.7.
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Figure 3.7: Visual comparison on KITTI 2015. Variational: HornSchunck [SRB14], Super-

vised: SPyNet [RB17] and our CPNFlow-K. The 2nd row in each pair shows the end-point-

error of the estimated flow, red is high and blue is low.

3.3 Discussion

It would be tempting to use a GAN [GPM14] to learn the prior distribution of interest. A

GAN can be thought of as a method to learn a map g such that its push-forward g∗ maps

two distributions, one known µ, and one we can sample from, p, so ĝ = arg minKL(g∗µ||p).
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It does so via an adversarial process such that a generative model G will capture the data

distribution pdata. If we sample from the generative model G, we will have samples that

are equivalently sampled from pdata, in order to evaluate pdata(x) of a sample x, we can not

circumvent the sampling step, thus making the method unsuitable for our purpose where we

want a differentiable scalar function.

Our work entails constructing an autoencoder of the flow, so it naturally relates to

[KW13]. Similarly, evaluating the probability of a test example is intractable, even if we

can approximately evaluate the lower bound of the probability of a data point, which again

cannot be computed in closed form due to the expectation over the noise.
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CHAPTER 4

Dense Depth Posterior from Single Image & Sparse Range

In this chapter, we shift a bit from motion perception to depth perception. Since motion

and depth are two closely related problems in computer vision, algorithms developed for

motion estimation, e.g. optical flow, can usually be applied to depth perception, e.g. stereo.

However, here we focus on a slightly different flavor. We present a deep learning system to

infer the posterior distribution of a dense depth map associated with an image, by exploiting

sparse range measurements, for instance from a lidar or a SLAM system. While the sparse

depth value is only valid on a small percentage of the pixels, we exploit regularities reflected

in the training set (past experience) to complete the depth map so as to have a probability

over depth for each pixel in the image. Optionally we can also exploit the availability of

stereo during training, but in any case, only require a single image and a sparse point cloud

at run-time.

Depth completion is highly ill-posed: There are infinitely many dense depth maps that

are compatible with a given image and a sparse point cloud. Any point-estimate, therefore,

depends critically on the prior assumptions made. Ideally, one would compute the entire

posterior distribution of depth maps, rather than a point-estimate, given an image and a

sparse point cloud. The posterior affords to reason about confidence, integrating evidence

over time, and in general, is a (Bayesian) sufficient representation that accounts for all the

information in the data.

In autonomous navigation, a sparse point cloud from lidar may be insufficient to make

planning decisions: Is the surface of the road in Fig. 4.1 (middle, better viewed when en-

larged) littered with pot-holes, or is it a smooth surface? Points that are nearby in image

topology, projecting onto adjacent pixels, may be arbitrarily far in the scene. For instance,
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pixels that straddle an occluding boundary correspond to large depth gaps in the scene.

While the lidar may not measure every pixel, if we know it projects onto a tree, trees tend

to stand out from the ground, which informs the topology of the scene. On the other hand,

pixels that straddle illumination boundaries, like shadows cast by trees, seldom correspond

to large depth discontinuities.

Figure 4.1: An image (top) is insufficient to determine the geometry of the scene; a point

cloud alone (middle) is similarly ambiguous. Lidar returns are shown as colored points, but

black regions are uninformative: Are the black regions holes in the road surface, or due to

radiometric absorption? Combining a single image, the lidar point cloud, and previously

seen scenes allows inferring a dense depth map (bottom) with high confidence. Color bar

from left to right: zero to infinity.

Structured light sensors typically provide dense depth measurements with about 20%

missing values; At this density, the problem is akin to inpainting [CS12, LRL14, SC13] that
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use morphological operations [KHW18, PGA16]. There is no need for annotated datasets

[GLU12, SF11, SHK12]. The regime we are interested in involves far sparser point clouds

(> 90% missing values).

Depth completion is the process of assigning a depth value to each pixel. Supervised

deep learning-based methods [EFK18, HFY18, RPY18, USS17, ZF18] minimize the corre-

sponding loss between prediction (from a single RGB image and its associated sparse depth

measurements) and ground truth depth. [USS17] trains a deep network to regress depth

using a sparse convolutional layer that discounts the invalid depth measurements while

[HFY18] proposes a sparsity-invariant upsampling layer, sparsity-invariant summation, and

joint sparsity-invariant concatenation and convolution. [EFK18] treat the binary validity

map as a confidence map and adapts normalized convolution for confidence propagation

through layers. [DVP18a] implements an approximation of morphological operators using

the contra-harmonic mean (CHM) filter [MAS13] and incorporates it as a layer in a U-Net ar-

chitecture for depth completion. [CWL18] proposes a deep recurrent auto-encoder to mimic

the optimization procedure of compressive sensing for depth completion, where the dictionary

is embedded in the neural network. [ZF18] predicts surface normals and occlusion boundaries

from the RGB image, which gives a coarse representation of the scene structure. When the

dense depth map is not available for training, we have the unsupervised depth completion

[MWA18, WBZ18, ZBS17]. [MCK18] proposes minimizing the photometric constancy loss

among a sequence of images with a second-order smoothness prior. [FNP16, XGF16] and

unsupervised single image depth prediction [GBC16, GMB17] proposed using novel view syn-

thesis to hallucinate the existence of a novel view using an image reconstruction loss. In the

case of stereo pairs, [GBC16, GMB17] propose training networks to predict the disparities of

an input image by reconstructing the unseen right view of a stereo pair given the left image

as input. [GMB17] additionally proposed edge-aware smoothness and left-right consistency.

We also exploit stereo as in Sect. 4.1.3, where we incorporate only the stereo photometric

reconstruction term. While methods [EFK18, HFY18, MCK18, RPY18, USS17, ZF18] learn

a representation for the depth completion task through ground truth supervision, they do

not have any explicit modeling of the semantics of the scene. Recently, [SSP16] explored
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this direction by predicting object boundary and semantic labels through a deep network

and using them to construct locally planar elements that serve as input to a global energy

minimization for depth completion. [CWY18] proposes to complete the depth by anisotropic

diffusion with a recurrent convolution network, where the affinity matrix is computed locally

from an image. [JDW18] also trains a U-Net for joint depth completion and semantic seg-

mentation in the form of multitask learning in an effort to incorporate semantics in the

learning process.

We wish to infer the entire posterior estimate over depths. Sparse range measurements

serve to ground the posterior estimate in a metric space. This could then be used by a

decision and control engine downstream. We exploit Conditional Prior Network (CPN)

[YS18] to learn the conditional prior to take into account scene semantics rather than using

a local smoothness assumption. We leverage this technique and formulate depth completion

as a maximum a-posteriori problem by factorizing it into a likelihood term and a conditional

prior term, making it possible to explicitly model the semantics induced regularity of a single

image.

Side information. If the dense depth map is obtained by processing the given image

and sparse point cloud alone, the quality of the resulting decision or control action could be

no better than if the raw data was fed downstream (Data Processing Inequality). However,

if depth completion can exploit a prior or aggregate experience from previously seen images

and corresponding dense depth maps, then it is possible for the resulting dense depth map

to improve the quality of the decision or action, assuming that the training set is represen-

tative. To analyze a depth completion algorithm, it is important to understand what prior

assumptions, hypotheses or side information is being exploited.

Goal. We seek methods to estimate the geometry and topology of the scene given an im-

age, a sparse depth map, and a body of training data consisting of images and the associated

dense depth maps. Our assumption is that the distribution of seen images and correspond-

ing depth maps is representative of the present data (image and sparse point cloud) once

restricted to a sparse domain.
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Our method yields the full posterior over depth maps, which is much more powerful than

any point estimate. For instance, it allows reasoning about confidence intervals. Since there

is no benchmark dataset to evaluate the accuracy of the posterior, we elect the simplest

point estimate possible, which is the maximum. It should be noted, however, that when

there are multiple hypotheses with similar posterior, the point estimate could jump from

one mode to another, and yet the posterior being an accurate representation of the unknown

variable. More sophisticated point estimators, for instance, taking into account memory, or

spatial distribution, non-maximum suppression, etc. could be considered, but here we limit

ourselves to the simplest one.

Key idea. While an image alone is insufficient to determine a depth map, certain depth

maps are more probable than others given the image and a previously seen dataset. The key

to our approach is a conditional prior model P (d|I,D) that scores the compatibility of each

dense depth map d with the given image I based on the previously observed dataset D. This

is computed using a Conditional Prior Network (CPN) [YS18] in conjunction with a model

of the likelihood of the observed sparse point cloud z under the hypothesized depth map d,

to yield the posterior probability and, from it, a maximum a-posteriori (MAP) estimate of

the depth map for evaluation:

d̂ = arg max
d
P (d|I, z) ∝ P (z|d)PD(d|I) (4.1)

Here D ⊂ R2 is the image domain, sampled on a regular lattice of dimension N × M ,

I : D → R3 is a color image, with the range quantized to a finite set of colors, d : D → R+

is the dense depth map defined on the lattice D, which we represent with an abuse of

notation as a vector of dimension MN : d ∈ RNM
+ . Ω ⊂ D is a sparse subset of the image

domain, with cardinality K = |Ω|, where the function d takes values d(Ω) = z ∈ RK
+ .

Finally, D = {dj, Ij}nj=1 is a dataset of images Ij and their corresponding dense depth maps

dj ∈ RNM
+ . Since we do not treat D as a random variable but a given set of data, we write

it as a subscript. In some cases, we may have additional data available during training, for

instance stereo imagery, in which case we include it in the dataset, and discuss in detail how

to exploit it in Sect. 4.1.3.
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4.1 Method

In order to exploit a previously observed dataset D, we use the Conditional Prior Network

(CPN) described in the previous Chapter, integrated into the loss for training the Depth

Completion Network (DCN) shown in Fig. 4.2. Conditional Prior Networks infer the prob-

ability of an optical flow given a single image. During training, ground truth optical flow

is encoded (upper branch in Fig. 4.2-A), concatenated with the encoder of an image (lower

branch), and then decoded into a reconstruction of optical flow.

Figure 4.2: (A): the architecture of the Conditional Prior Network (CPN) to learn the

conditional of the dense depth given a single image. (B): Our proposed Depth Completion

Network (DCN) for learning the mapping from a sparse depth map and an image to a dense

depth map. Connections within each encoder/decoder block are omitted for simplicity.

In our implementation, the upper branch encodes dense depth, concatenated with the

encoding of the image, to produce a dense reconstruction of depth at the decoder, together

with a normalized likelihood that can serve as a posterior score. We consider a CPN as a

function that, given an image (lower branch input) maps any sample putative depth map

(upper branch input) to a positive real number, which represents the conditional probability

of the input dense depth map given the image.

We denote the ensemble of parameters in the CPN as wCPN ; with an abuse of notation,

we denote the decoded depth with d′ = wCPN(d, I). When trained with a bottleneck imposed
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on the encoder (upper branch), the reconstruction error is proportional to the conditional

distribution:

Q(d, I;wCPN) = e−‖w
CPN (d,I)−d‖η ∝ PD(d|I) (4.2)

where, η indicates the specific norm used for calculating Q. In Sect. 4.2.2 and Sect. 4.3,

we show the training details of CPN for a conditional prior on dense depth maps, and also

quantitatively show the effect of different choices of the norm η.

In order to obtain a posterior estimate of depth, the CPN needs to be coupled with a

likelihood term.

4.1.1 Supervised single image depth completion

Supervised learning of dense depth assumes the availability of ground truth dense depth

maps. In the KITTI depth completion benchmark [USS17], these are generated by accumu-

lating the neighboring sparse lidar measurements. Even though it is called ground truth,

the density is only ∼ 30% of the image domain, whereas the density of the unsupervised

benchmark is ∼ 5%. The training loss in the supervised modality is just the prediction error:

L(w) =
N∑
j=1

‖φ(zj, Ij;w)− dj‖γ (4.3)

where φ is the map from sparse depth z and image I to dense depth, realized by a deep

neural network with parameters w, and γ = 1 fixed in the supervised training.

Our network structure for φ is detailed in Fig. 4.2-B, which has a symmetric two-branch

structure, each encoding different types of input: one sparse depth, the other an image;

skip connections are enabled for two branches. Note that our network structure is unique

among all the top performing ones on the KITTI depth completion benchmark: We do not

use specifically-designed layers for sparse inputs, such as sparsity invariant layers [HFY18,

USS17]. Instead of early fusion of sparse depth and image, our depth defers fusion to

decoding, which entails fewer learnable parameters. To elaborate, Ma’s [MCK18] encoder

contains a total of ≈12.1M parameters and ours ≈6.2M. We use the same decoder, which

contains ≈1.6M. This gives Ma’s architecture a total of ≈13.7M and ours ≈7.8M – an
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effective 48.8% reduction in the encoder and a 43% reduction overall. A related idea was

also proposed in [JDW18]; instead of a more sophisticated NASNet block [ZVS], we use more

common ResNet block [HZR16]. Although simpler than competing methods, our network

achieves state-of-the-art performance (Sect. 4.3).

4.1.2 Unsupervised single image depth completion

Supervised learning requires ground truth dense depth, which is hard to come by. Even the

“ground truth” provided in the KITTI benchmark is only 30% dense and interpolated from

even sparser maps. When only sparse independent measurements of depth are available, for

instance from lidar, with less than 10% coverage (e.g. 5% for KITTI), we call depth comple-

tion unsupervised as the only input are sensory data, from images and a range measurement

device, with no annotation or pre-processing of the data.

The key to our approach is the use of a CPN to score the compatibility of each dense

depth map d with the given image I based on the previously observed data D. In some cases,

we may have additional sensory data available during training, for instance, a second image

taken with a camera with a known relative pose, such as stereo. In this case, we include

the reading from the second camera in the training set D, as described in Sect. 4.1.3. When

only a single image is given, the CPN (4.2) is combined with a model of the likelihood of

the observed sparse point cloud z under the hypothesized depth map d:

P (z|d) ∝ e−‖z−d(Ω)‖γ (4.4)

which is simply a Gaussian around the hypothesized depth, restricted to the sparse subset

Ω, when γ = 2. The overall loss is:

Lu(w) = −
N∑
j=1

logP (dj|Ij, zj,D)

=
N∑
j=1

‖zj − dj(Ω)‖γ + α

N∑
j=1

‖wCPN(dj, Ij)− dj‖η

=
N∑
j=1

‖zj − φ(zj, Ij;w)(Ω)‖γ + α

N∑
j=1

‖wCPN(φ(zj, Ij;w), Ij)− φ(zj, Ij;w)‖η (4.5)
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Note that γ, η control the actual norm used during training, as well as the modeling of the

likelihood and conditional distribution. We experiment with these parameters in Sect. 4.3.1,

and show the quantitative analysis there.

4.1.3 Disparity supervision

Some datasets come with stereo imagery. We want to be able to exploit it, but without

having to require its availability at inference time. We exploit the strong relation between

depth and disparity. In addition to the sparse depth z and the image I, we are given a second

image I ′ as part of a stereo pair, which is rectified (standard pre-processing), to first-order

we assume that there exists a displacement s = s(x), x ∈ D such that

I(x) ≈ I ′(x+ s) (4.6)

which is the intensity constancy assumption. We model, again simplistically, disparity s as

s = FB/d, where F is the focal length and B is the baseline (distance between the optical

centers) of the cameras. Hence, we can synthesize s from the predicted d, thus to constrain

the recovery of 3-d scene geometry. More specifically, we model the likelihood of seeing I ′

given I, d as:

P (I ′|I, d) ∝ e
−

∑
x

‖I(x)− I ′(x+ s(d(x)))‖

δ2 (4.7)

However, the validity of the intensity constancy assumption is affected by complex phenom-

ena such as translucency, transparency, inter-reflection, etc. In order to mitigate the error

in the assumption, we could also employ a perceptual metric of structural similarity (SSIM)

[WBS04]. SSIM scores corresponding 3× 3 patches p(x), p′(x) ∈ R3×3
+ centered at x in I and

I ′, respectively, to measure their local structural similarity. A higher score denotes more

similarity; hence we can subtract the scores from 1 to form a robust version of Eq. 4.7. We

use Praw(I ′|I, d) and Pssim(I ′|I, d) to represent the likelihood measured in raw photomet-

ric value and SSIM score respectively. When the stereo pair is available, we can form the

conditional prior as follows:

P (d|I, I ′,D) ∝ P (I ′|I, d,D)P (d|I,D) = P (I ′|I, d)PD(d|I) (4.8)
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Similar to the training loss Eq. (4.5) for unsupervised single image setting, we can derive the

loss for stereo setting as follows:

Ls(w) = −
N∑
j=1

logP (dj|Ij, I ′j, zj,D)

= Lu(w) + β
∑
j,x

‖Ij(x)− I ′j(x+ s(dj(x)))‖ (4.9)

where dj = φ(zj, Ij;w) and Lu is the loss defined in Eq. (4.5). Note that, the above sum-

mation term is the instantiation for Praw(I ′|I, d), which can also be replaced by the SSIM

counterpart. Rather than choosing one or the other, we compose the two with tunable

parameters βc and βs, our final loss for stereo setting depth completion is:

Ls(w) = Lu(w) + βcψc + βsψs (4.10)

with ψc represents the raw intensity summation term in Eq. (4.9), and ψs for the SSIM

counterpart. Next, we elaborate our implementation details and evaluate the performance

of our proposed method in different depth completion settings.

4.2 Implementation Details

4.2.1 Network architecture

We modify the public implementation of CPN [YS18] by replacing the input of the encoding

branch with a dense depth map. Fusion of the two branches is simply a concatenation of

the encodings. The encoders have only convolutional layers, while the decoder is made of

transposed convolutional layers for upsampling.

Our proposed network, unlike the base CPN, as seen in Fig. 4.2-A, contains skip connec-

tions between the layers of the depth encoder and the corresponding decoder layers, which

makes the network symmetric. We also use ResNet blocks [HZR16] in the encoders instead of

pure convolutions. A stride of 2 is used for downsampling in the encoder and the number of

channels in the feature map after each encoding layer is [64∗k, 128∗k, 256∗k, 512∗k, 512∗k].

In all our experiments, we use k = 0.25 for the depth branch, and k = 0.75 for the image
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branch, taking into consideration that an RGB image has three channels while depth map

only has one channel.

4.2.2 Training Procedure

We begin by detailing the training procedure for CPN. Once learned, we apply CPN as part

of our training loss and do not need it during inference. In order to learn the conditional prior

of the dense depth maps given an image, we require a dataset with images and corresponding

dense depth maps. We are unaware of any real-world dataset for outdoor scenes that meets

our criterion. Therefore, we train the CPN using the Virtual KITTI dataset [GWC16]. It

contains 50 high-resolution monocular videos with a total of 21, 260 frames, together with

ground truth dense depth maps, generated from five different virtual worlds under different

lighting and weather conditions. The original Virtual KITTI image has a large resolution

of 1242 × 375, which is too large to feed into a normal commercial GPU. So we crop it to

768× 320 and use a batch size of 4 for training. The initial learning rate is set to 1e−4, and

is halved every 50,000 steps 300,000 steps in total.

We implement our approach using TensorFlow [ABC16]. We use Adam [KB14] to op-

timize our network with the same batch size and learning rate schedule as the training of

CPN. We apply histogram equalization and also randomly crop the image to 768× 320. We

additionally apply random flipping both vertical and horizontal to prevent overfitting. In the

case of unsupervised training, we also perform a random shift within a 3× 3 neighborhood

to the sparse depth input and the corresponding validity map. We use α = 0.045, β = 1.20

for Eq. (4.9), and the same α is applied with βc = 0.15, βs = 0.425 for Eq. (4.10). We

choose γ = 1 and η = 2, but as one may notice in Eq. (4.2), the actual conditional prior

also depends on the choice of the norm η. To show the reasoning behind our choice, we will

present as an empirical study in Fig. 4.3 to show the effects of the different pairing of norms

with a varying α by evaluating each model on the RMSE metric.

In the next section, we report representative experiments in both the supervised and

unsupervised benchmarks.
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4.3 Experiments

We evaluate our approach on the KITTI depth completion benchmark [USS17]. The dataset

provides ∼ 80k raw image frames and corresponding sparse depth maps. The sparse depth

maps are the raw output from the Velodyne lidar sensor, each with a density of about

5%. The ground truth depth map is created by accumulating the neighboring 11 raw lidar

scans, with roughly 30% pixels annotated. We use the officially selected 1,000 samples for

validation and we apply our method to 1,000 testing samples, with which we submit to the

official KITTI website for evaluation.

Method iRMSE iMAE RMSE MAE Rank

Dimitrievski [DVP18b] 3.84 1.57 1045.45 310.49 13.0

Cheng [CWY18] 2.93 1.15 1019.64 279.46 7.5

Huang [HFY18] 2.73 1.13 841.78 253.47 6.0

Ma [MCK18] 2.80 1.21 814.73 249.95 5.5

Eldesokey [EFK18] 2.60 1.03 829.98 233.26 4.75

Jaritz [JDW18] 2.17 0.95 917.64 234.81 3.0

Ours 2.12 0.86 836.00 205.40 1.5

Table 4.1: Quantitative results on the supervised KITTI depth completion benchmark. Our

method achieves state of the art performance in three metrics, iRMSE, iMAE, and MAE.

[MCK18] performs better than us by 2.6% on the RMSE metric; however, we outperform

[MCK18] on all other metrics by 24.3%, 28.9% and 17.8% on the iRMSE, iMAE and MAE,

respectively. The last column is the average rank over ranks on all the four metrics.

4.3.1 Norm Selection

As seen in Eq. (4.5), γ, η control the actual norms (penalty functions) applied to the likelihood

term and conditional prior term respectively, which in turn determine how we model the

distributions. General options are from the binary set {1, 2}. i.e. {L1,L2}, however, there is
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Validation Set Test Set

Loss RMSE MAE iRMSE iMAE RMSE MAE

Ma [MCK18] 1384.85 358.92 4.07 1.57 1299.85 350.32

Lu 1325.79 355.86 3.69 1.37 1285.14 353.16

Lu + ψc 1320.26 353.24 3.63 1.34 1274.65 349.88

Lu + ψc + ψs 1310.03 347.17 3.58 1.32 1263.19 343.46

Table 4.2: Quantitative results on the unsupervised KITTI depth completion benchmark.

Our baseline approach using CPN as a regularizer outperforms [MCK18] on the iRMSE,

iMAE and RMSE metrics on the test set, whereas [MCK18] marginally performs better than

us on MAE by 0.8%. We note that [MCK18] achieves this performance using photometric

supervision. When including our photometric term (Eq. (4.10)), we outperform [MCK18] on

every metric and achieve state-of-the-art performance.

currently no agreement on which one is better suited for the depth completion task. [MCK18]

shows γ = 2 gives significant improvement for their network, while both [USS17, JDW18]

claim to have better performance when γ = 1 is applied. In our approximation of the

posterior in Eq. (4.5), the choice of the norms gets more complex as the modeling (norm) of

the conditional prior will also depend on the likelihood model. Currently, there is no clear

guidance on how to make the best choice, as it may also depend on the network structure.

Here we try to explore the characteristic of different norms, at least for our network structure,

by conducting an empirical study on a simple version (channel number of features reduced)

of our depth completion network using different combinations of γ and η. As shown in

Fig. 4.3, the performance on the KITTI depth completion validation set varies in a wide

range with different γ, η. Clearly for our depth completion network, L1 is always better than

L2 on the likelihood term. And the lowest RMSE is achieved when a L2 is also applied on

the conditional prior term. Thus the best coupling is γ = 1, η = 2 for Eq. (4.5).
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Figure 4.3: This plot shows the empirical study on the choice of norms γ, η in the likelihood

term and the conditional prior term respectively. Each curve is generated by varying α in

Eq. (4.5) with fixed γ, η. And the performance is measured in RMSE.

4.3.2 Supervised depth completion

We evaluate the proposed Depth Completion Network described in Sect. 4.1.1 on the KITTI

depth completion benchmark. We show a quantitative comparison between our approach and

the top performers on the benchmark in Tab. 4.1. Our approach achieves the state-of-the-art

in three metrics by outperforming [EFK18, JDW18], who each held the state-of-the-art in

different metrics on the benchmark. We improve over [JDW18] in iRMSE and iMAE by

2.3% and 9.5%, respectively, and [EFK18] in MAE by 11.9%. [MCK18] performs better on

the RMSE metric by 2.6%; however, we outperform [MCK18] by 24.3%, 28.9% and 17.8%

on the iRMSE, iMAE and MAE metrics, respectively. Note in the online table of KITTI

depth completion benchmark1, all methods are solely ranked by the RMSE metric, which

may not fully reflect the performance of each method. Thus we propose to rank all methods

by averaging over the rank numbers on each metric, and the overall ranking is shown in the

last column of Tab. 4.1. Not surprisingly, our depth completion network gets the smallest

rank number due to its generally good performance on all metrics.

Fig. 4.4 shows a qualitative comparison of our method to the top performing method on

the test set of the KITTI benchmark. We see that our method produces depths that are more

consistent with the scene with fewer artifacts (e.g. grid-like structures [MCK18], holes in

1http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion
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Figure 4.4: Qualitative comparison to Ma et al. [MCK18] on KITTI depth completion test

set using ground truth depth as supervision. From left to right: image and validity map of

the sparse measurements, dense depth results and corresponding error map of [MCK18] and

our results and error map. Warmer colors in the error map denote higher error. The yellow

rectangles highlight the regions for detailed comparison. Note that our network consistently

performs better on fine and far structures and our completed dense depth maps have less

visual artifacts.

objects [EFK18]). Also, our network performs consistently better on fine and far structures,

which may be traffic signs and poles on the roadside that provide critical information for

safe driving as shown in the second row in Fig. 4.4.
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Figure 4.5: Qualitative comparison to Ma et al. [MCK18] on KITTI depth completion test

set in the unsupervised setting. From left to right: image and validity map of the sparse

measurements, dense depth results and corresponding error map of [MCK18] and our results

and error map. Warmer colors in the error map denote higher error. The yellow rectangles

highlight the regions for detailed comparison. Note again that our network consistently

performs better on fine and far structures and our completed dense depth maps have less

visual artifacts. This includes the circle in the center of their prediction (row 1).

4.3.3 Unsupervised depth completion

We show that our network can also be applied to unsupervised setting using only the training

loss Eq. (4.5) to achieve the state-of-the-art results as well. We note that the simplest way

for the network to minimize the data term is to directly copy the sparse input to the output,

which will make the learning inefficient. To facilitate the training, we change the stride of

the first layer from 1 to 2 and replace the final layer of the decoder with a nearest neighbor

upsampling.

We show a quantitative comparison (Tab. 4.2) between our method and that of [MCK18]

along with an ablation study on our loss function. We note that the results of [MCK18]
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are achieved using their full model, which includes their multi-view photometric term. Our

approach using just Eq. (4.5) is able to outperform [MCK18] in every metric with the excep-

tion of MAE where [MCK18] marginally beats us by 0.8%. By applying our reconstruction

loss Eq. (4.9), we outperform [MCK18] in every metric. Moreover, our full model Eq. (4.10)

further improves over all other variants and is state-of-the-art in unsupervised depth com-

pletion. We present a qualitative comparison between our approach and that of [MCK18]

in Fig. 4.5. Visually, we observe the results of [MCK18] still contain the artifacts as seen

before. The artifacts, i.e. circles, as detailed in Fig. 4.5, are signs that their network is

probably overfitted to the input sparse depth, due to the lack of semantic regularity. Our

approach, however, does not suffer from these artifacts; instead, our predictions are globally

correct and consistent with the scene geometry.

4.4 Summary

In this work, we have described a system to infer a posterior probability over the depth of

points in the scene corresponding to each pixel, given an image and a sparse aligned point

cloud. Our method leverages a Conditional Prior Network, that allows the association of a

probability to each depth value based on a single image, and combines it with a likelihood

term for sparse depth measurements. Moreover, we exploit the availability of stereo imagery

in constructing a photometric reconstruction term that further constrains the predicted depth

to adhere to the scene geometry.

We have tested the approach both in a supervised and unsupervised setting. It should

be noted that the difference between “supervised” and “unsupervised” in the KITTI bench-

mark is more quantitative than qualitative: the former has about 30% coverage in depth

measurements, the latter about 5%. We show in Tab. 4.1 and 4.2 that our method achieves

state-of-the-art performance in both supervised and unsupervised depth completion on the

KITTI benchmark. Although we outperform other methods on score metrics that measures

the deviation from the ground truth, we want to emphasize that our method does not simply

produce a point estimate of depth, but provides a confidence measure, that can be used for
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more downstream processing, for instance for planning, control and decision making.

We have explored the effect of various hyperparameters, and are in the process of ex-

panding the testing to real-world environments, where there could be additional errors and

uncertainty due to possible time-varying misalignment between the range sensor and the

camera, or between the two cameras when stereo is available, faulty intrinsic camera calibra-

tion, and other nuisance variability inevitably present on the field that is carefully weeded

out in evaluation benchmarks such as KITTI. This experimentation is a matter of years, and

well beyond the scope of this paper. Here we have shown that a suitably modified Condi-

tional Prior Network can successfully transfer knowledge from prior data, including synthetic

ones, to provide context to input range values for inferring missing data. This is important

for downstream processing as the context can, for instance, help differentiate whether gaps

in the point cloud are free space or photometrically homogeneous obstacles, as discussed in

our motivating example in Fig. 4.1.
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CHAPTER 5

Deformable Object Tracking

From now on, we assume the existence of an autonomous robot equipped with the perception

of motion and depth. The next question we are going to ask is how could this robot “see”

objects in the 3D scene. Here “seeing” the objects has two folds of meaning, first, if there

is an object in the scene, how does it know which subset in the projected domain on the

image corresponds to the object? Then, if it is given already the corresponding subset, how

would the robot maintain a representation that enables itself to temporally track the object

no matter how the scene changes? We leave the first part to the next chapter, and here we

focus on precise shape tracking assuming that we know where the object is in the beginning.

In order to track object shape precisely, we propose a method to detect disocclusion in

video sequences of three-dimensional scenes and to partition the disoccluded regions into

objects, defined by coherent deformation corresponding to surfaces in the scene. We jointly

infer occlusion and deformation fields that are piecewise smooth in a Sobolev framework

where no explicit regularizer is needed. It then partitions the disoccluded region and groups

its components with objects by leveraging on the complementarity of motion and appearance

cues: Where appearance changes within an object, motion can usually be reliably inferred

and used for grouping. Where appearance is close to constant, it can be used for grouping

directly.

Persistent tracking of three-dimensional (3D) objects in video presents long-standing

challenges unless they are flat [WA94a], or the video is short. As surfaces move in 3D rela-

tive to the viewer, previously unseen portions of the scene become visible and will have to be

attributed to different objects to maintain tracking. Such disocclusion phenomena are the

focus of our investigation. Persistent object tracking in video touches upon a large body of
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work in video segmentation [GKH10a, LKG11, XXC12, JG14], tracking [XBM04, BWS09,

GCS04, LKH13, DCS13], optical flow [HS81, BA96, BBP04, ZPB07, BBM09], and motion

segmentation [WA94a, SWS13a]. In dealing with visibility phenomena, our work relates to

the literature on occlusion detection. There is a literature on detecting occluding boundaries

from static images or short-baseline video (see [BSC00, SBM11] and references therein). Our

work is related to [AS12a] that partitions the image domain into (flat) layers like [WA94a],

but in a convex optimization setting after relaxing the `0 norm to `1. We detect occlusions

without the need for such a relaxation and without the need for regularization of the de-

formation field, which can cause over-smoothing in some regions, and under-smoothing in

others. Instead, following [YS15] we employ a Sobolev approach [SYM07] to infer defor-

mation fields that are by construction smooth in a naturally coarse-to-fine manner. On a

short time-scale, such deformation fields are related to optical flow, except for when the

flow is explicitly partitioned into regions, as in motion segmentation. There, the flow field

is often assumed to be piecewise parametric. Here we allow each component to be a generic

diffeomorphism to handle articulated and deforming objects without over-segmenting them.

Other motion segmentation approaches perform clustering of optical flow, often non-causally

[OMB14b, GKH10a]. Taylor et al. [TKS15a] perform layer segmentation in longer video se-

quences leveraging occlusion cues, but do not explicitly address the interplay of motion

and intensity cues in disocclusion. Similarly, [SWS13a] performs layered segmentation by

grouping. Only intensity cues are used for the disocclusion in [CF13, YS15].

Consider a camera rotating around a box in Fig 5.1: Both the occluded and unoccluded

regions involve portions of different objects, in this case just the box and the “background.”

Occlusions have been addressed by [SBM11, AS12a]. We focus on disocclusions, by deter-

mining the disoccluded area (Sect. 5.1), partitioning it and grouping each portion with an

object (Sect. 5.2).

Grouping unseen portions of the scene into different objects requires prior assumptions

on their properties. One could assume that the “appearance” or “texture” of objects is

homogeneous (i.e. their reflectance exhibits spatially stationary statistics) and leverage on

the similarity of image color histograms to partition and group disoccluded regions. How-
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Figure 5.1: Relative motion between a three-dimensional scene and the camera (here rotating

around the box) causes disocclusion, i.e. regions of the image domain where previously unseen

portions of the scene project to. Unless objects in the scene are flat, the disocclusion include

portions of different objects. Persistent tracking requires detecting the disocclusion and

attributing their components to different objects.

ever, this assumption often fails, as in Fig. 5.1. Alternatively, one could assume that the

“apparent motion” of objects is homogeneous (i.e. the deformation undergone by the image

domain is smooth within objects, and discontinuous across). However, when objects exhibit

“textureless” surfaces (i.e. constant reflectance), such a deformation is undetermined, and

cannot be used for grouping.

Fortunately, motion and appearance cues are complementary: When one fails to be

informative, the other may be. When the disoccluded region exhibits complex appearance,

motion can be reliably inferred and exploited for grouping. Otherwise, when the disoccluded

region is textureless, photometric statistics are spatially homogeneous and can be reliably

used for grouping. Of course, both cues can fail if an object has a piecewise constant

appearance, and the transition happens right at the disocclusion (Fig. 5.2). However, these

are accidental phenomena that do not persist in long temporal sequences.

Here, objects are layouts of piecewise smooth and smoothly deforming surfaces in 3D

supporting Lambertian reflection seen under constant illumination throughout a video se-

quence. There can be multiple objects moving independently, in addition to the viewer (or

equivalently background) motion. Under these assumptions, the domain of a video image

of a scene can be partitioned into two types of regions: Those that are co-visible, that un-
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background object

occlusion

object moves left at frame t+1

image at frame t 

Figure 5.2: Illustration of an error that arises in segmentation by grouping pixels only based on

motion residuals. The object (dark yellow) moves to the left to occlude a portion of the background

(dark green). Pixels in the occluded region are likely to be classified incorrectly in frame t if only

motion residuals are used since both residuals are large. When the background is constant in the

occluded region and around it, classifying by residuals almost certainly leads to misclassifications.

der the stated assumptions are a smooth deformation of regions in the previous frame, and

those that are disoccluded, i.e. whose pre-image under perspective projection is a portion

of a surface that was not visible in the previous frame(s). In addition, occluded regions are

subsets of a region that, in the previous frame, was occupied by an object different than the

current one. These have been addressed by others [AS12a].

Disoccluded regions in a video are the occluded regions in the video played backwards.

Because we eventually aim at real-time closed-loop operation we wish to process the data

causally. Furthermore, parts of objects can appear in a frame and disappear in the next,

a case which forward-backward sweeps would not address (Sect. 5.3). With an abuse of

nomenclature, we refer to “objects” as both the connected surfaces in 3D, and the subsets

of the (2D) image domain where they project. We extend the Sobolev framework of [YS15]

to multiple objects to detect disocclusions. This framework naturally encompasses coarse-

to-fine deformation inference without an explicit regularizer and the associated weighting

constant (Sect. 5.1).
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5.1 Sobolev Warps and Occlusions

We seek to partition the domain D of a time-varying color image It : D ⊂ R2 → R+ for

t = 1, 2, . . . , into a collection {Rt
i}Ni=1 of regions Rt

i. We omit the time index hereafter for

simplicity. These regions are also called “objects,” that move coherently, as defined next.

The (apparent) motion of each region Ri, also referred to as warp or deformation, is

defined in the domain of the image It as the map wi : Ri → R2 that transforms It+1 back to

It. Assuming the scene is Lambertian, illumination is constant, and the image is corrupted

by additive zero-mean Gaussian noise, the maximum-likelihood estimate of wi is obtained

by minimizing Ewarp(wi, Oi), given by

Ewarp =

∫
Ri\Oi

(It+1(wi(x))− It(x))2 dx+ β

∫
Oi

dx, (5.1)

where Oi ⊂ Ri is the (unknown) occluded region that is visible at time t but not at time t+1.

Note that, although wi is defined on all of Ri, the data It+1, It only provides evidence in the

co-visible region Ri\Oi. To avoid the trivial solution Oi = Ri and thus wi undetermined, we

put a penalty on the occluded area as in [AS12a].

Eq. (5.1) is reminiscent of many optical flow estimation algorithms [HS81, BA96, BBP04,

ZPB07], but there are important differences: First, each warp is restricted to a subset Ri ⊂ D

with no compatibility condition or relation among the different warps. Second, there is no

regularizer for the warps. Most motion segmentation or optical flow schemes either assume

that each warp belongs to a (small-dimensional) parametric family such as the group of

affine transformations, or impose a penalty on the (piecewise) smoothness of wi. Instead, we

leverage on the Sobolev framework [SYM07] to impose regularity in a naturally coarse-to-fine

framework, while allowing the warps to be arbitrary diffeomorphisms (smooth maps with a

smooth inverse). So, rather than adding a regularizer for the warps in (5.1), we compute

each warp as the integral of a smooth time-varying vector field that, at each instant, belongs

to a Sobolev space. This allows us to efficiently optimize (5.1) without imposing global

regularization, which may be too much for fine-scale objects, and too little for large ones.

65



Given the warp wi, the optimal occlusion Oi is

Oi = {x ∈ Ri : (It+1(wi(x))− It(x))2 > β}. (5.2)

Substituting the expression above into the energy, we obtain

Ewarp(wi) =

∫
Ri

ρ(It+1(wi(x))− It(x)) dx, (5.3)

which now depends only on the warp wi, and where

ρ(x) = x2 for x2 < β and ρ(x) = β for x2 ≥ β (5.4)

With this, we can finally clarify the the notion of “coherent motion” used to define the

regions Ri: A region Ri moves coherently if there is a warp wi that is smooth according to

the Sobolev metric, that minimizes (5.3).

The gradient of Ewarp, Gi : wi(Ri) → R2, with respect to the Sobolev metric has been

computed by [YS15] and is

Gi(x) := ∇SobE(wi)(x) = avg(Fi) +
1

α
G̃i(x), (5.5)

where α > 0 is a parameter that will be eliminated below, Fi : wi(Ri)→ R2 is

Fi = ∇It+1∇ρ(It+1 − It ◦ w−1
i ) det∇w−1

i , (5.6)

avg(Fi) is the average over wi(R), ∇ is the spatial gradient, and G̃i satisfies the partial

differential equation (PDE):
−∆G̃i(x) = Fi(x)− avg(Fi) x ∈ wi(Ri)

∇G̃i(x) ·N = 0 x ∈ ∂wi(Ri)

avg(G̃i) = 0

, (5.7)

where ∆ is the Laplacian, N is normal to ∂wi(Ri), G̃i is the deformation, and avg(Fi) is the

translation.
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To extend the framework to multiple regions, we extend each warp wi to the entire domain

D by imposing ∆G̃i(x) = 0 for x ∈ D\Ri and a Dirichlet condition on ∂Ri. The extension

is continuous, but not differentiable across Ri.
1

Starting with the identity map wi(x) = x, we deform it by the gradient descent (5.5) as

follows. Define φ0,τ
i : D → D and φτ,0i : D → D as the evolving warp and its inverse where τ

is an artificial time variable parameterizing the evolution. The inverse is needed to compute

Fi. The evolution of the warps according to the gradient descent of Ewarp is

Gτ
i = ∇SobEwarp(φ0,τ

i ), (5.8)

∂τφ
τ,0
i (x) = ∇φτ,0i (x) ·Gτ

i (x), (5.9)

∂τφ
0,τ
i (x) = −Gτ

i (φ
0,τ
i (x)) (5.10)

for all x ∈ D. This gives a coarse-to-fine evolution. One can eliminate the parameter α by

noting the independence of the deformation and translation components on α in (5.5). This

gives Algorithm 1, which decreases the energy.

Algorithm 1 Sobolev Warp Computation

1: Set φτ,0i (x) = φ0,τ
i (x) = x for τ = 0

2: repeat

3: repeat

4: Let α→∞ so Gτ
i = avg(F τ

i ) is a translation

5: Translate: Perform one iteration of (5.9)-(5.10)

6: until avg(F τ
i ) = 0.

7: Deform: Do one iteration of (5.9)-(5.10) with Gτ
i = G̃τ

i

8: until G̃τ
i = 0

9: Set wi = φ0,τ∞
i where τ∞ is the convergence time

In the next section, we will need to compute the occlusion so that it can be removed in

1While one can define the Sobolev metric over the entire domain D [BMT05], thus naturally having a
regular gradient defined over the entire domain D, this is avoided to enable capturing fine-scale structures
in a manner that is not influenced by neighboring large-scale structures, for instance an arm swinging near
the torso of a person.
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the next frame. It can be computed at the end of the evolution as

Oτ∞
i = {x ∈ Ri : (It+1(φ0,τ∞

i (x))− It(x))2 > β}. (5.11)

5.2 Causal Shape Tracking

If the motion of each region Ri was reliably inferred, one could attempt to propagate forward

the Ri to segment the next frame. Unfortunately, regions that become disoccluded between

t and t + 1 are not included in any of the Ri. While this is not a major problem if we are

interested in only two adjacent frames, t and t+ 1, as the area of the occluded/disoccluded

regions is small, as time goes by the disocclusion typically grows. The challenge becomes to

assign the various components of the disocclusion to regions. This is illustrated in Fig. 5.1:

So long as the scene is populated by non-flat surfaces, multiple objects contribute to the

disoccluded region.

We assume a partition into objects at time t− 1 and propagate it forward to time t. The

disocclusion, i.e., the part of the domain D not covered by the propagated segmentation, is

initially assigned to regions based on estimated warps, and this is refined by minimizing the

energy in Section 5.2.1.

5.2.1 Complementarity of motion and appearance

Of course both appearance and motion cues are obtained from image irradiance. What

we mean by “cues” is bottom-up computation that leverages on the assumption of smooth

spatial variation of image irradiance (appearance cues) versus smooth temporal variation of

the same (motion cues).

To attribute disoccluded regions to any of the existing objects, we can leverage the photo-

metric regularity and assign each segment to the object that has similar “texture” or motion.

We favor the latter, as objects can have spatially-varying appearance, as in the cereal box in

Fig. 5.1. This fails when the object and the background are textureless, as in Figure 5.2, or

when they exhibit similar fine-scale texture. However, in this case grouping by appearance
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is straightforward. We leverage on this complementarity by exploiting preferentially motion

regularity, consistent with our definition of objects, resorting to appearance regularity when

the photometry is not suitable to reliably estimate motion.

Textureless regions: To leverage on this complementarity, we use the local standard

deviation σi(x) of It in a neighborhood Bx,r′ ∩Ri where Bx,r′ = {y ∈ D : |x− y| ≤ r′} is the

ball of radius r′ centered at point x. We can then define a measure of local constancy of any

region local to a point x as the minimum standard deviation over all regions that intersect

the ball:

σ(x) = min
i, Bx,r′∩Ri 6=∅

σi(x). (5.12)

Low values of σ(x) indicate that the underlying intensity is not sufficiently exciting and

therefore motion estimates can be expected to be unreliable.

Motion ambiguity function: Grouping by residuals also should not be done when

current warp residuals are large. Define the forward, backward and minimum residuals as

Resfi (x) = (It+1(wfi (x))− It(x))2 (5.13)

Resbi(x) = (It(w
b
i (x))− It−1(x))2 (5.14)

Resi(x) = min{Resfi (x),Resbi(x)} (5.15)

where wfi and wbi are the current forward and backward warps of region Ri. The backward

residual is used to remove some ambiguity in Fig. 5.2 as sometimes occluded pixels at time

t+ 1 are visible at time t− 1, and hence the backward motion is reliable. The minimum of

Resi over all regions that intersect with a ball around x,

Res(x) = min
i, Bx,r′∩Ri 6=∅

Resi(x), (5.16)

is small when motion cues are reliable. We define the motion ambiguity function, maf : D →

{0, 1}, which indicates whether motion cues are unreliable, as

maf(x) =


1 if σ(x) < k/r′ or Res(x) > β

0 otherwise

, (5.17)
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where k > 0 is a parameter, the sensitivity to which is studied empirically in Sect. 5.3. maf

is 1 if the pixel is in or borders a constant region or if all the current motion residuals are

large.

Complementary data term: The cost for x ∈ Ri is

fi(x)=(1−maf(x))Resi(x)−maf(x) log pi,x(It(x)), (5.18)

where pi,x are local normalized histograms [BC09] of the image It within the region Ri.

Therefore, if the motion is reliable, as defined by the maf, the cost is the residual of the

pixel in the region and if the motion is unreliable, the cost is the fidelity of pixel to the local

intensity distribution of the region Ri. The data energy for region Ri is then:

Ei
data =

∫
Ri

fi(x) dx. (5.19)

This complementary data term is a key feature in resolving disocclusions (Fig. 5.3).

5.2.2 Temporal and Spatial Regularity

To leverage on temporal and spatial regularity of the regions, we first note that the warps

are regular by construction within the Sobolev framework. We also note that, in between

frames, disoccluded regions are small, adjacent to the object they belong to, and typically

result in an updated region of similar shape. Thus, if R′i is the forward warping of the ith

region from frame t to t + 1, we bias the final regions Ri to be close to R′i in shape and

location.

To this end, we construct a local shape similarity prior. Measuring the similarity of Ri

and R′i generally requires knowledge of point correspondences. Similar to ICP [BM92], we

assume that x ∈ Ri corresponds to its closest point in R′i, cli(x), which can be computed

efficiently with Fast Marching [Set96]. Define the local shape similarity, Si : Ri → R+, of Ri

within the ball Br,x to R′i within Br,cli(x) as follows:

Si(x)=
1

|Bx,r|

∫
Bx,r

|1Ri(y)− 1R′i(cli(x)− x+ y)|dy, (5.20)

where 1R is the indicator function of R, and |Bx,r| is the area of Br,x. See Figure 5.4. The

score measures the difference between the shapes Ri∩Bx,r and R′i∩Bcli(x),r using translation
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Disocclusion assignment with appearance only [YS15]

Disocclusion with direct combination of motion and appearance [TKS15a]

Disocclusion with complementary motion and appearance (ours)

Figure 5.3: Rotating around an object. Disoccluded parts of an object that have different ap-

pearance than the visible parts in the previous frame (cereal box) pose difficulties to existing

algorithms. Labeled above are various strategies for addressing disocclusions. To show that our

method performs even under self-similar appearance, we have included the statue.
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Br,cli(x)

cli(x)

x

Br,x

R0
i

Ri

Figure 5.4: Illustration of the quantities in the local shape similarity term, Si. R
′
i is the forward

warped region and Ri is a candidate in frame t+ 1. The region Ri in a ball around x is compared

to R′i in a ball around cli(x), the closest point on R′i to x to from Si(x).

invariant set symmetric difference. The shape similarity energy is:

Ei
shape =

∫
Ri

Si(x) dx. (5.21)

In addition, to bias regions Ri towards being close to R′i, let dR′i denote the distance function

to ∂R′i, and define

Ei
dist =

∫
Ri

dR′i(x) dx. (5.22)

Finally, we induce spatial regularity of Ri, i.e., nearby points x and y are penalized if

they do not belong to the same region. Let

WRi = Gs ∗ (1− 1Ri) (5.23)

be a Gaussian smoothing of standard deviation s of the complement of the indicator function

of Ri [ET06]. A large value of WRi(x) implies that x ∈ Ri is near many points of D\Ri. We

induce spatial regularity of Ri by

Ei
smooth =

∫
Ri

WRi(x) dx. (5.24)

5.2.3 Overall Model and Optimization Method

The assumptions underlying our model are captured by the following energy, which is mini-

mized with respect to the regions Ri:

Eseg =
N∑
i=1

Ei
data + γlsE

i
shape + γdE

i
dist + γsE

i
smooth, (5.25)
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where γls, γd, γs > 0 are weights. We optimize the energy above by a first order approximation

to the gradient descent, ignoring terms that involve integrals over Ri. They could be easily

included, at a high computational cost and modest performance gain. By defining

Hi(x) = fi(x) + γlsSi(x) + γddR′i(x) + γsWRi(x), (5.26)

we arrive at our optimization scheme in Algorithm 2.

Algorithm 2 Assigning Disocclusion to Regions

1: // initialize Ri for gradient descent

2: Compute propagation of segmentation, R′i using (5.27)

3: Compute disocclusion D = D\ ∪i R′i
4: Compute warps of R′i using Algorithm 1

5: Compute Hi by substituting Ri with R′i ∪D

6: Set Ri = R′i ∪ {x ∈ D : Hi(x) ≤ Hj(x), ∀j}

7: // end initialize

8: repeat // first order approximation of gradient descent

9: Update warps of Ri using Algorithm 1

10: Compute Hi

11: Rnew
i ={x∈D : dRi(x)<ε, Hi(x) ≤ Hj(x),∀j}

12: Update regions by Ri = Rnew
i

13: until Ri’s do not change between iterations

Algorithm 2 first computes an initialization of regions Ri to the gradient descent (lines

2-6). This is accomplished by propagating forward the segmentation at time t− 1 to t:

R′i = {x ∈ D : 1Rti\Oti (w
−1
i (x)) ≥ 1Rtj\Otj(w

−1
j (x)), ∀j} (5.27)

where Ot
i ⊂ Rt

i is the part of the ith region that is occluded at frame t (5.11), which is

removed, and wi is the warp from t − 1 to t. R′i does not partition all of D because of

disocclusion. Therefore, the disoccluded region D = D\ ∪i R′i is initially assigned based on

motion cues computed from R′i and other terms in Hi.
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Figure 5.5: [Left]: Segmentation from the frame t. [Middle, left]: the propagation of the segmenta-

tion from frame t to t+1 (black regions indicate disoccluded regions). [Middle, right]: initialization

of the regions. [Right]: final segmentation.

With this initialization, the first order approximation to the gradient descent is computed

(lines 9-12). Note that the condition, dRj(x) < ε, is to allow pixel changes only within a

band of the boundaries of the current regions so as to approximate the gradient descent.

Each step of the warp computation (from t to t + 1 and from t to t − 1) in line 9 requires

only a few iterations in Algorithm 1 since the warps in the previous iteration of line 9 are

close to the final. See Fig. 5.5 for an example of various stages of this method.

5.2.4 Initialization for the First Frame

So far we have assumed that, at time t, we have a partition at time t − 1. This is the case

during regime operation when processing a video sequence, but not when t = 0. For certain

applications, such as interactive video segmentation [BWS09, BWS10], one can assume that

the user provides an initial partition. More in general, a number of methods could be

employed to obtain an initial partition, using a variety of cues, including semantic labeling

from trained detectors. While this process may be costly, it only needs to be performed once

as our method affords us the ability to correct initial errors based on motion and appearance

regularity.

In the next section, we present results for an initialization performed by clustering opti-

cal flow (with regularity (5.24) using Classic-NL [SRB10]) during a longer initial temporal

segment, until enough motion is observed (see Fig. 5.6).
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Figure 5.6: Illustration of initialization method in the first frame. [Left]: Aggregation of optical

flow fields, [Right]: initial segmentation in the first frame.

5.3 Experiments

Our algorithm aims to track objects in precise shape, thus we test it on benchmarks with

ground truth object annotation: the Freiburg-Berkeley Motion Seg. (FBMS-59) [OMB14b],

and SegTrack (v1 & v2) [TFN12, LKH13]. FBMS-59’s two sets - training (29 sequences)

and test (30 sequences), range between 19-800 frames with multiple objects. SegTrack v2

consists of 14 sequences ranging from 29-279 frames with multiple objects. SegTrack v1 is an

earlier version with single objects, which we use to expand the comparison to more methods.

Evaluation: FBMS-59 scores a subset of frames (3-41). Results are reported in terms

of precision, recall, F-measure, and the number of objects with F ≥ 0.75. SegTrack (v1 &

v2) evaluates, on all frames, the number of pixels incorrectly classified. Results are reported

as average intersection over union overlap.

Comparisons: On FBMS-59, we compare against a baseline approach [GKH10a], one

based on clustering motion tracks [OMB14b], one segmenting based on occlusion, motion

and appearance cues [AS12a], and finally a most recent one integrating motion, appearance,

occlusion, and temporal regularity [TKS15a]. On SegTrack, we compare to [CF13] that

attempts to solve disocclusions using only appearance and to other state-of-the-art methods

[LKH13, LKG11, ML12, JG14, WDL15].

Initialization: On FBMS-59, we report results of our method automatically initialized

as described in Sect. 5.2.4. On SegTrack our method is initialized by the user in frame 1

and compared with similarly initialized methods and also automated methods. Typically,

sequences in SegTrack do not have enough object motion in the first few frames to ensure

proper initialization.
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Training set (29 sequences) Test set (30 sequences)

P R F N/65 P R F N/69

[GKH10a] 79.17 47.55 59.42 4 77.11 42.99 55.20 5

[OMB14b] 81.50 63.23 71.21 16 74.91 60.14 66.72 20

[AS12a] 87.20 59.60 70.81 17 79.64 50.73 61.98 7

[TKS15a] 85.00 67.99 75.55 21 82.37 58.37 68.32 17

[TKS15a]-NC 83.00 70.10 76.01 23 77.94 59.14 67.25 15

ours 89.53 70.74 79.03 26 91.47 64.75 75.82 27

Table 5.1: FBMS-59 results. Average precision (P), recall (R) and f-measure (F) over all sequences

in the training and test datasets of FMS-59. Higher values indicate superior performance. All

methods are fully automatic. Methods [TKS15a] and our method are causal. The other methods

process the whole video in batch.

Parameters: For FBMS-59, we tune the parameters on a few sequences in the training

dataset, and then fix them over both training and test datasets. On SegTrack, we fix

parameters over all sequences to the same values. Sensitivity of key parameters is addressed

later.

Results on FBMS-59: Are in Table 5.5. Figure 5.7 shows some representative out-

comes. Overall our method is more accurate in all measures, even compared to non-causal

(NC) methods that process the video in batch. This suggests that good disocclusion is key

to accurate object segmentation.

Failure Cases on FBMS-59: The main source of error is the automatic initialization

in frame 1. This could be mitigated by running our method on multiple candidate initializa-

tions, although initialization is not our focus here. To show that better initialization would

resolve failures, we show that the results of the 10 most inaccurate cases (typically when

an object failed to be detected) improves with user annotation in the first frame (Tab. 5.2,

Fig. 5.8 ). Fig. 5.9 shows that our method recovers from errors in the first frame (short of

failed detection).

Forward-Backward Sweeps on FBMS-59: Although disocclusions are backward-
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image ground truth Lee [LKG11] Grund. [GKH10a] Ochs [OMB14b] Taylor [TKS15a] ours

Figure 5.7: Sample Visual Results on FBMS-59. Comparison of various state-of-the-art methods.

Only a single frame on various sequences are shown. Failure cases (bottom two) in our method

typically arise when not enough motion is present in the first few frames.

marple9 cats4 farm1 goats1 giraffes1 all

ours (auto) 0.7950 0.7723 0.6730 0.6166 0.7515 0.7217

ours (manual) 0.9782 0.9025 0.7519 0.7505 0.9255 0.8617

Table 5.2: Failure cases on FBMS-59 in Fig. 5.7 can be enhanced with user annotation in the first

frame. Thus, the main source of error in our method is the initialization. Results are in terms of

F-measure.

Figure 5.8: Sample failure cases (various frames) on FBMS-59 in Fig. 5.7 are enhanced with user

annonation in the first frame.
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Figure 5.9: Results (on FBMS-59) with four different levels of errors, in initialization. Errors are

mitigated in subsequent frames.

human ours [WDL15] [JG14] [CF13] [ML12] [LKG11]

Mean 347 409 535 874 455 677* 740*

Birdfall 130 144 163 189 265 189 288

Cheetah 308 623 806 1170 570 806 905

Girl 762 835 1904 2883 841 1698 1785

Monkeydog 306 252 342 333 289 472 521

Parachute 299 169 275 228 310 221 201

Penguin 279 429 571 443 456 - 136285

Table 5.3: SegTrack v1 results. Evaluation is performed in terms of the number of pixels clas-

sified incorrectly; smaller values indicate superior results. Note that our method, [WDL15],

[JG14], and [CF13] use user annotation in frame 1, and [ML12], [LKG11] do not.

occlusions, addressed extensively in the literature [SBM11, AS12a], computing disocclusions

via forward-backward sweeps followed by a grouping procedure does not perform as well as

our method. We compare to the non-causal version of [TKS15a], consisting of one forward

and one backward pass. Then, advanced grouping is performed based on motion, appear-

ance, temporal continuity, and constraints imposed by occlusions/disocclusions. The result,

labeled [TKS15a]-NC in Tab. 5.5, is worse than ours on all measures. This reaffirms that

forward-backward sweeps is not an adequate approach to resolve disocclusions.

Results on SegTrack: Tab. 5.3. We let the user annotate the first frame, as in

[JG14, CF13, WDL15]. Our method outperforms all others on all but one sequence. That

our method outperforms [CF13] reaffirms our that exploiting complementary motion and

appearance cues is beneficial. Results on v2 (Tab. 5.4, Fig. 5.10) show that our method

out-performs fully automated ones but also those using user annotation.
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ours [WDL15] [LKH13] [LKG11] [GKH10a]

Mean per object 76.4 71.8 65.9 45.3 51.8

Mean per sequence 77.0 72.2 71.2 57.3 50.8

Girl 91.6 84.6 89.2 87.7 31.9

Birdfall 77.3 78.7 62.5 49.0 57.4

Parachute 96.1 94.4 93.4 96.3 69.1

CheetahDeer 62.4 66.1 37.3 44.5 18.8

CheetahCheetah 52.2 35.3 40.9 11.7 24.4

Monkeydog-Monkey 84.1 82.2 71.3 74.3 68.3

Monkeydog-Dog 43.7 21.1 18.9 4.9 18.8

Penguin1 94.0 94.2 51.5 12.6 72.0

Penguin2 82.1 91.8 76.5 11.3 80.7

Penguin3 78.4 91.9 75.2 11.3 75.2

Penguin4 86.3 90.3 57.8 7.7 80.6

Penguin5 77.1 76.3 66.7 4.2 62.7

Penguin6 89.0 88.7 50.2 8.5 75.5

Drifting Car1 82.3 67.3 74.8 63.7 55.2

Drifting Car2 77.6 63.7 60.6 30.1 27.2

Hummingbird1 39.0 58.3 54.4 46.3 13.7

Hummingbird2 69.0 50.7 72.3 74.0 25.2

Frog 76.7 56.3 72.3 0 67.1

Worm 83.4 79.3 82.8 84.4 34.7

Soldier 84.0 81.1 83.8 66.6 66.5

Monkey 85.1 86.0 84.8 79.0 61.9

Bird of Paradise 96.1 93.0 94.0 92.2 86.8

BMXPerson 92.8 88.9 85.4 87.4 39.2

BMXBike 32.5 5.70 24.9 38.6 32.5

Table 5.4: SegTrack v2. The evaluation is performed in terms of the overlap of the best segments;

larger values indicate superior results. Our method and [WDL15] uses user annotation in frame 1.
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Figure 5.10: Sample SegTrack v2 results of our method.

Figure 5.11: Analysis of sensitivity of key parameters (the threshold and ball size of the textureless

detector). [Left]: ROC curve fixing the ball size and varying the threshold. [Right]: ROC curve

fixing the threshold and varying the ball size.

Sensitivity to Key Parameters: These include the ball size r′ and the threshold

parameter k in our textureless region detector (5.12) and (5.17). To this end, we plot PR

curves (measured in terms of correct/incorrectly classified pixels) by fixing one parameter

and varying the other and vice-versa. Results (5.11) on the cereal box and statue sequences

show that within the operating range, precision does not drop much as recall is increased.
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Computational cost and implementation: The costliest component is solving for the

warps. This requires solving a linear PDE, for which there are many available fast-solvers

that could be leveraged. We used conjugate gradient, which can be sped up. The overall cost

of our algorithm varies with the amount of deformation between frames. Using a 3.1GHz

12-core processor, processing one frame on FBMS-59 takes on average 30 secs.

5.4 Integrating Tracking and Detection

In the previous sections, we propose a method for handling occlusion and disocclusion in

object tracking that does not require explicit motion regularization, operates naturally in a

coarse-to-fine framework, and leverages complementary motion and appearance cues. How-

ever, it assumes that a current estimate of the partition into objects is given at time t to

infer the same at t+1. If the given partition is nonsensical, most likely so will be the out-

put of our inference scheme. This issue is particularly cogent at time t = 0. It can be

addressed by spawning multiple trackers corresponding to different initialization hypotheses,

later aggregating them through a voting scheme.

5.4.1 Methodology

Our goal is to partition a video It : Ω ⊂ R2 → R3 for t = 1, 2, . . . , where Ω is the image

domain, into regions {Ri
t}Nti=1, corresponding to (projections of partially) visible objects onto

the current frame, the number of which can vary over time. We call a point-estimate of

these regions based on prior image measurements the “objects state,” which is maintained

by a tracker. We proceed recursively: At each instant t and given measurements up to t,

the objects state, Ri
t|t (Fig. 5.12, row 1), serves to predict the regions at the next instant

of time, Ri
t+1|t (Fig. 5.12, row 2). In the meantime, a pseudo-measurement module (object

detector) processes the next frame It+1 or small batch of frames (for us, 3) to produce object

hypotheses or “proposals” P j
t+1 (Fig. 5.12, row 3) used to update the current estimate of

the existing regions, Ri
t+1|t+1, i = 1, . . . , Nt, as well as to detect new objects not currently

represented in the state of the tracker (marked in orange in Fig. 5.12). This update, described
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in Sect. 5.4.2, also ensures that visibility constraints are satisfied, so each point on the image

It+1 corresponds to a single object, which is equivalent to enforcing opacity of objects in the

scene. Initially, we assume that the scene is empty, N0 = 0.

Figure 5.12: Illustration of our framework causally processing a video. The pseudo-

measurement (object detector) (bottom 2 rows) proposes regions in the image that cor-

respond to objects in the scene, which are integrated with the prediction (row 2) into the

final object labeling (row 1). We begin with no objects in the state (left column) and an

object is only added to the state after being detected across multiple frames (highlighted by

orange arrows).

Prediction: Given the current state of objects {Ri
t|t}

Nt
i=1, we predict their next state

{Ri
t+1|t}

Nt+1

i=1 by warping the current regions with ωit, defined on the regions Ri
t. The oc-

cluded portion of each region Oi
t must be predicted and removed, while the disoccluded

parts Di
t+1 must be estimated and added, yielding {Ri

t+1|t = ωit(R
i
t|t \ Oi

t) ∪ Di
t+1}∀i. We

employ deformable shape tracker developed in previous sections that automatically infers

disocclusions [YSS15a]. Since each object is predicted independently, the update phase must
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manage conflicts among different objects predicted to overlap in the next image, in order to

make our method viable.

Object detection: The pseudo-measurement module provides object proposals {P j
t+1}, j =

0, 1, 2, . . . using the image at time It+1 or a small batch of images (short-term memory; long-

term memory is represented by the objects state), to produce hypotheses of objects informed

by occlusion relations. These exploit assumptions of spatial connectedness of objects as well

as the topology of the scene. Object proposals also spawn new objects that appear and are

not attributed to existing predicted ones. Occlusions have been used extensively to prime

object detection or layer segmentation [WA94a, BM98, AS12b]. Again, we employ [AS12b]

as our pseudo-measurement module.

To be robust to gross failure of the pseudo-measurement module, we require objects to

be detected in multiple frames before they are added to the objects state in the tracker. This

is useful when the motion or the scene is very complex (see Fig. 5.13 for an example where

multiple horses are moving independently), as occlusion detection and subsequently object

detection from occlusions can be considerably noisy in these cases. This reduces the number

of false positives in our output and helps to keep the computational cost of prediction, which

scales linearly with the number of objects tracked, manageable.

Thus, object proposals are accumulated over time before being declared as a true object.

For the accumulation, each proposal P j
t , j = 1, 2, . . . ,Mt is associated with a confidence score

as follows:

s(P j
t ) =

∫
∂P jt

e(x)dx

|P j
t |

(5.28)

where |P j
t | is the area of proposal P j

t and e(x) measures the intensity and motion discontinuity

strength, defined as

e(x)
.
= max{c1eimage(x) + c2emotion(x), ε}, (5.29)

where eimage and emotion are the output of an edge detector on the image data and motion

field, respectively, and 0 < ε � 1. We then associate each proposal P j
t+1, j = 1, 2, . . . from

the current frame with a warped proposal ωt(P̄
k
t ), k = 1, 2, . . . ,Mt from the past if P j

t+1 and
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ωt(P̄
k
t ) achieve a sufficient overlap as measured by the intersection over union score:

IU(P j
t+1, ωt(P̄

k
t )) =

P j
t+1 ∩ wt(P̄

j
t )

P i
t+1 ∪ wt(P̄ k

t )
(5.30)

Here we abuse the notation and let ωt refer to the warp of the entire image domain Ω from

time t to t+ 1, which is computed during prediction. Each matched proposal contributes its

shape and score to the accumulated proposal. We define the running score or likelihood of

P̄ k
t+1 recursively as

pkt+1(x) = s(P j
t+1)I(P j

t+1) + pkt (wt(x)), (5.31)

where I(P j
t+1) = {x|x ∈ P j

t+1}, the indicator function of the proposal, and pkτ (x) = s(P k
τ )I(P k

τ )

when the proposal was first added into the proposal pool at time τ . Finally, proposals with

pkt+1 exceeding a nominal threshold λ = 0.5 are promoted to objects added to the objects

state maintained by the tracker as

Rk
t+1 = {x, pkt+1(x) > λ} (5.32)

and removed from the proposal pool.

Figure 5.13: Object detections from our pseudo-measurement module in six nonconsecutive

but chronological frames from a video of horses. In this difficult scenario containing multiple

deforming objects with complex motion dynamics, object detection generates many false

positives. In this work, we trust consistently appearing regions to correspond to true objects

in the scene. The accumulation of evidence from detections identifies the red segment (by

the 4th frame) and the blue segment (by the 6th frame) as real objects and allows us to ignore

the remaining proposals as noisy measurements.

5.4.2 Update

At time t+1, given a set of object predictions {Ri
t+1|t = ωit(R

i
t|t \Oi

t)∪Di
t+1}, i = 1, 2, . . . , Nt

and object proposals from the pseudo-measurement module {P j
t+1}, k = 1, 2, . . . , we wish to
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update the object state {Ri
t+1|t+1}, i = 0, 1, 2, . . . , Nt+1. Notice that the number of objects

could be different than number predicted.

Updating each object region: For each proposal P j
t+1, we first try to assign it to one

of the existing objects Ri
t+1|t if IU(P j

t+1, R
i
t+1|t) > τ, τ ∈ (0, 1). This would suggest that the

proposal comes from an already-present object Ri
t|t+1, and P j

t+1 and Ri
t+1|t are then fused to

generate the estimate of Ri
t+1|t+1. Let ∂P j

t+1 and ∂Rj
t+1|t be the boundaries to the proposal

and predicted object respectively, we define weight functions of pixel location x, with respect

to the corresponding boundary,

g∂P jt+1
(x) = exp

−d2
∂P jt+1

(x)

δ2

 (5.33)

where d∂P jt+1
is the distance function of the boundary ∂P j

t+1, and δ > 0. g∂Ri
t+1|t

(x) is defined

similarly for Ri
t+1|t. Additionally, we define

Coh(x)
.
= max{

∑
t

I∪
P
j
t

(ω−1
t (x)), 1} (5.34)

where I∪
P
j
t

is the indicator function of the union of object proposals from the detector at

time t. Coh(x) will have a high value if proposals are frequently generated at x. The update

of the objects state R̂i
t+1|t+1 is then obtained as

R̂i
t+1|t+1 = arg max

R

∫
∂R

e(x)

Coh(x)

(
g∂P jt+1

(x) + g∂Ri
t+1|t

(x)
)

(5.35)

s.t. R ⊂ Ri
t+1|t ∪ P

j
t+1, R ⊃ Ri

t+1|t ∩ P
j
t+1 (5.36)

This problem can be solved efficiently with graph cuts. Specifically, we convert the above to

the standard form

E(l) =
∑
x∈Ω

f(x, l(x))dx+
∑

|y−x|<ε, x,y∈Ω

v(l(x), l(y)) (5.37)

where the data term f(x, l(x)) is the cost of assigning label l(x) to pixel x, and the regularizer

v(l(x), l(y)) is the cost of assigning labels l(x), l(y) to neighbouring pixels x, y, so that graph

cuts can return the label map l∗ that minimizes the energy in eq. 5.37. Here we only

solve a binary graph cuts problem (i.e. l(x) = 1 for the object region and l(x) = 0 for the
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background). The data term is

f(x, l(x)) =



0, x ∈ Ri
t+1|t ∩ P

j
t+1, l(x) = 1

η1, x ∈ Ri
t+1|t ∪ P

j
t+1, x 6∈ Ri

t+1|t ∩ P
j
t+1, l(x) = 1

η2, x ∈ Ω r (Ri
t+1|t ∪ P

j
t+1), l(x) = 1

η2, x ∈ Ri
t+1|t ∩ P

j
t+1, l(x) = 0

η1, x ∈ Ri
t+1|t ∪ P

j
t+1, x 6∈ Ri

t+1|t ∩ P
j
t+1, l(x) = 0

0, x ∈ Ω r (Ri
t+1|t ∪ P

j
t+1), l(x) = 0,

(5.38)

where η1, η2 are positive numbers and η2 � η1. This ensures that the boundary is decided

only in the area where the proposal and the predicted object region disagree. The overlap

of the the predicted region and the proposal region is forced to object and the complement

of the union of the two regions is set to background. The regularizer v(l(x), l(y)) is
Coh(x)(

g∂P jt+1
(x) + g∂Ri

t+1|t
(x)
)
e(x)

+
Coh(y)(

g∂P jt+1
(y) + g∂Ri

t+1|t
(y)
)
e(y)

, l(x) 6= l(y)

0, l(x) = l(y)

(5.39)

Given l∗ is the solution of Eq. (5.37) with (5.38)-(5.39); The updated objects state R̂i
t+1|t+1

in Eq (5.36) is given by:

R̂i
t+1|t+1 = {x, l∗(x) = 1}. (5.40)

Enforcing opacity for all object regions: After updating object regions that had

overlapped with new proposals, we append the set of promoted object proposals, resulting

in the combined set {R̂i
t+1|t+1}

Nt+1

i=1 = {R̂i
t+1|t+1}

Nt
i=1 ∪ {R̂k

t+1|t+1}
Nt+1

k=Nt+1.

Note that the updated objects might overlap one another, which does not satisfy the

visibility constriant ∩Nt+1

i=0 R̂i
t+1|t+1 = ∅ and ∪Nt+1

i=0 R̂i
t+1|t+1 = Ω. To ensure that only a single

object label occupies each pixel, we obtain our final object estimates by solving a multi-label
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graph cut problem described below. The data term is

f(x, l(x)) =


0, x ∈ R̂i

t+1|t+1, x 6∈ ∪j 6=iR̂
j
t+1|t+1, l(x) = i

η1, x ∈ R̂i
t+1|t+1 ∪ R̂

j
t+1|t+1, j 6= i, l(x) = i

η2, x ∈ Ω r R̂i
t+1|t+1, l(x) = i

(5.41)

where l(x) could have multiple values in the set {1, 2, . . . , Nt+1}. Here, R̂0
t+1|t+1 represents

the background region and is automatically set to be the complement of the union of all

objects. The regularity term is:

v(l(x), l(y)) =


1
e(x)

+ 1
e(y)

, l(x) 6= l(y)

0, l(x) = l(y)

(5.42)

Suppose l∗ is the solution of the above graph cut problem, then the final update of the

objects is:

Ri
t+1|t+1 = {x, l∗(x) = i} (5.43)

A high-level view of this update procedure is summarized in Alg. 3. In Fig. 5.14, we show

examples where both the prediction and the proposals are incorrect, but the update corrects

the mistakes of both.

5.4.3 Testing of the integrated system

Our integrated system segments video into object labels. We evaluate on two popular

datasets, FBMS59 [OMB14a] and BVSD [GNJ13]. We used the toolbox of [DZ13] for edge

detection on both the image and motion field to obtain eimage and emotion mentioned in

Eq. 5.29. The linear weights are set to c1 = 0.1, c2 = 0.9 for Moseg and c1 = 0.3, c2 = 0.7 for

BVSD. For both datasets, δ = 5, ε = 0.0001.

Following the evaluation protocol of [OMB14a], we report precision, recall, F-measure,

and the number of extracted objects (labeled regions with F-measure ≥ 0.75) in Tab. 5.5.

In Fig. 5.15, we visually compare our output with other state-of-the-art methods on

sample frames from FBMS59. Our conservative approach to labeling object yields little to

87



Algorithm 3 Update Algorithm

1: procedure Update

2: for each P j
t+1 do

3: if P j
t+1 overlaps sufficiently with existing object Ri

t+1|t then

4: R̂j
t+1|t+1 ← apply update scheme for each object region to P j

t+1 and Ri
t+1|t

5: else if P j
t+1 overlaps sufficiently with existing proposal P̄ k

t+1|t then

6: pkt+1|t+1(x)← pkt+1|t(x) + s(P j
t+1)IP jt+1

(x)

7: else

8: append P j
t+1 to the proposal pool

9: Mt+1 = Mt + 1

10: pMt

t+1|t+1(x) = s(P j
t+1)IP jt+1

(x)

11: end if

12: end for

13: Enforcing opacity for all object regions.

14: end procedure

Training set (29 sequences) Test set (30 sequences)

P R F N/65 P R F N/69

[GKH10b] 79.17 47.55 59.42 4 77.11 42.99 55.20 5

[OMB14a] 81.50 63.23 71.21 16 74.91 60.14 66.72 20

[AS12b] 87.20 59.60 70.81 17 79.64 50.73 61.98 7

[TKS15c] 85.00 67.99 75.55 21 82.37 58.37 68.32 17

[TKS15c]-NC 83.00 70.10 76.01 23 77.94 59.14 67.25 15

[YSS15a] 89.53 70.74 79.03 26 91.47 64.75 75.82 27

ours 87.43 77.03 81.9 29 89.19 70.74 78.9 32

Table 5.5: FBMS-59 results. Average precision (P), recall (R) and f-measure (F) over all sequences

in the training and test datasets of FMS-59. Higher values indicate superior performance. All

methods are fully automatic. Methods [TKS15c] and our method are causal. The other methods

process the whole video in batch.
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Boundary Volume

P R F P R F

[OMB14a] 0.566 0.100 0.170 0.146 0.852 0.249

[TKS15c] 0.760 0.186 0.299 0.136 0.870 0.234

ours 0.697 0.198 0.308 0.164 0.874 0.276

Table 5.6: Quantitative results on BVSD dataset. Average precision (P), recall (R) and f-measure

(F) over all sequences in the test datasets of BVSD. Higher values indicate superior performance.

no spurious object detections, even when the sequence has complex motion with multiple in-

dependently moving objects (rows 2, 3, 4 in Fig. 5.15 and additionally, Fig. 5.13). Moreover,

our system shows better visual performance than the others due to the interplay between

the two modules in our system, as each component accounts for the failures of the other.

Our system can still fail when objects are far away and do not generate sufficient occlusions

for the pseudo-measurement modular to produce an object proposal (see Fig. 5.15 row 8).

In Tab. 5.6, we show our quantitative results on the BVSD dataset. We report both

boundary precision-recall (BPR), a commonly used metric in image segmentation, and vol-

ume precision-recall (VPR), which quantifies the spatio-temporal overlap of our labels and

the groundtruth regions.

For a VGA frame, our method takes approximately 2 minutes with 3 objects in the state

on a single core, and around 1 minute per frame when running in parallel running on a

standard desktop (8 core i7-3770 3.4GHz with 16GB RAM).

The developed causal video object detection and tracking system can discover objects

and localize their boundaries in video. It should be noted that we wish to track the evolving

occluding boundary of objects as a geometric entity, as that is informed by the shape of

the object in 3D. One could also track bounding boxes, in our case, we make the separation

of geometric and photometric properties explicit, which can be useful for the analysis and

classification of objects that are defined solely by their shape, irrespective of reflectance, or

vice-versa.
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Figure 5.14: Illustration of the update of tracking and detection. From left to right: original

image, prediction from tracker, object proposal from detector, updated estimate of objects.

Errors made by prediction or detection are marked by the red rectangles, which are corrected

in the final estimate in 4th column.
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Figure 5.15: Visual Comparison on FBMS59. From left to right: Original frame,

groundtruth, [GKH10c], [OMB14a], [TKS15c], [YSS15a], Ours. Notice the tracker and de-

tector independently perform worse that our method, were we obtain all of the goats (row

2) and both horses and the man (row 3). We miss the horse in the far field (row 7) as the

object remains stationary throughout the video.
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CHAPTER 6

Adversarial Contextual Model for Unsupervised

Moving Object Detection

Even though occlusion cues provide a representation to individualize an object from the

scene as seen in the previous chapter, the quality of the detection heavily depends on the

estimation of occlusions. And by Information Processing Inequality, the processed occlusion

contains less information than what we can infer from the raw optical flows or images. In

this chapter, we want to develop a richer representation of objects, which can be used for

robust real-time object detection, in an unsupervised manner. And this is also closely related

to the question asked by Marr [Mar82], what makes an object so special that it should be

recoverable as a region in an image?

We propose an adversarial contextual model for detecting moving objects in images. A

deep neural network is trained to predict the optical flow in a region using information from

everywhere else but that region (context), while another network attempts to make such

context as uninformative as possible. The result is a model where hypotheses naturally

compete with no need for explicit regularization or hyper-parameter tuning. Although our

method requires no supervision whatsoever, it outperforms several methods that are pre-

trained on large annotated datasets. Our model can be thought of as a generalization of

classical variational generative region-based segmentation, but in a way that avoids explicit

regularization or solution of partial differential equations at run-time.

Consider Fig. 6.1: Even relatively simple objects, when moving in the scene, cause com-

plex discontinuous changes in the image. Being able to rapidly detect independently moving

objects in a wide variety of scenes from images is functional to survival for animals and
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Figure 6.1: An encounter between a hawk and a drone (top). The latter will not survive without

being aware of the attack. Detecting moving objects is crucial to survival of animal and artificial

systems alike. Note that the optical flow (middle row) is quite diverse within the region where the

hawk projects: It changes both in space and time. Grouping this into a moving object (bottom

row) is our goal in this work. Note the object is detected by our algorithm across multiple scales,

partial occlusions from the viewpoint, and complex boundaries.

autonomous vehicles alike. We wish to endow artificial systems with similar capabilities,

without the need to pre-condition or learn similar-looking backgrounds. This problem re-

lates to motion segmentation, foreground/background separation, visual attention, video

object segmentation as we discuss in Sect. 6.2. For now, we use the words “object” or “fore-

ground” informally1 to mean (possibly multiple) connected regions of the image domain, to

be distinguished from their surrounding, which we call “background” or “context,” according

to some criterion.

Since objects exist in the scene, not in the image, a method to infer them from the latter

rests on an operational definition based on measurable image correlates. We call moving

objects regions of the image whose motion cannot be explained by that of their surround-

ings. In other words, the motion of the background is uninformative of the motion of the

foreground and vice-versa. The “information separation” can be quantified by the informa-

1The precise meaning of these terms will be formalized in Sect. 6.1.
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tion reduction rate (IRR) between the two as defined in Sect. 6.1. This naturally translates

into an adversarial inference criterion that has close connections with classical variational

region-based segmentation, but with a twist: Instead of learning a generative model of a

region that explains the image in that region as well as possible, our approach yields a model

that tries to explain it as poorly as possible using measurements from everywhere else but

that region.

In generative model-based segmentation, one can always explain the image with a trivial

model, the image itself. To avoid that, one has to impose model complexity bounds, bottle-

necks or regularization. Our model does not have access to trivial solutions, as it is forced

to predict a region without looking at it. What we learn instead is a contextual adversarial

model, without the need for explicit regularization, where foreground and background hy-

potheses compete to explain the data with no pre-training nor (hyper)parameter selection.

In this sense, our approach relates to adversarial learning and self-supervision as discussed

in Sect. 6.2.

The result is a completely unsupervised method, unlike many recent approaches that are

called unsupervised but still require supervised pre-training on massive labeled datasets and

can perform poorly in contexts that are not well represented in the training set. Despite the

complete lack of supervision, our method performs competitively even compared with those

that use supervised pre-training (Sect. 6.3).

Our method captures the desirable features of variational region-based segmentation:

Robustness, lack of thresholds or tunable parameters, no need for training. However, it does

not require solving a partial differential equation (PDE) at run-time, nor to pick regularizers,

or Lagrange multipliers, nor to restrict the model to one that is simple-enough to be tractable

analytically. It also exploits the power of modern deep learning methods: It uses deep neural

networks as the model class, optimizes it efficiently with stochastic gradient descent (SGD),

and can be computed efficiently at run time. However, it requires no supervision whatsoever.

While our approach has close relations to both classical region-based variational seg-

mentation and generative models, as well as modern deep learning-based self-supervision,
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Figure 6.2: During training our method entails two modules. One is the generator (G), which

produces a mask of the object by looking at the image and the associated optical flow. The

other module is the inpainter (I), which tries to inpaint back the optical flow masked out by the

corresponding mask. Both modules employ the encoder-decoder structure with skip connections,

except that the inpainter (I) is equipped with two separate encoding branches. See section 6.3.1

for network details.

discussed in detail in Sect. 6.2, to the best of our knowledge, it is the first adversarial

contextual model to detect moving objects in images.

6.1 Method

We call “moving object(s)” or “foreground” any region of an image whose motion is unex-

plainable from the context. A “region of an image” Ω is a compact and multiply-connected

subset of the domain of the image, discretized into a lattice D. “Context” or “background” is

the complement of the foreground in the image domain, Ωc = D\Ω. Given a measured image

I and/or its optical flow to the next (or previous) image u, foreground and background are

uncertain, and therefore treated as random variables. A random variable u1 is “unexplain-

able” from (or “uninformed” by) another u2 if their mutual information I(u1;u2) is zero, that

is if their joint distribution equals the product of the marginals, P (u1, u2) = P (u1)P (u2).

More specifically, the optical flow u : D1 → D2 ⊂ R2 maps the domain of an image

I1 : D1 → R3
+ onto another D2 of I2, so that if xi ∈ D1, then xi + ui ∈ D2, where ui = u(xi)

up to a discretization into the lattice and cropping of the boundary (occlusions). Ideally,
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background path 
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is observed. 
Easy! 
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reconstruction! 
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know how 

to do it! 
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background path 

 
Have no clue 

where the 
dog/bkgd moves. 

Difficult… 

Bad 
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Figure 6.3: The two diagrams above show the learning process of the mask generator (G), when the

inpainter (I) has already learned the conditionals to accurately inpaint the masked flow. The upper

diagram shows that when the mask generated is not covering the object precisely, the inpainter will

be informed about the optical flow in the mask by the flow in the complement mask, and be able to

make a good reconstruction. Similarly for the complement mask. However, in the lower diagram,

when the object is precisely masked against the background, the inpainter (I) only observes the flow

in the context, and has no information to predict the flow inside the object. Note that a randomly

initialized inpainter (I) also knows nothing about the conditionals, thus we propose to jointly train

both the generator (G) and the inpainter (I) in an adversarial manner as in Sect. 6.1.
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if the brightness constancy constraint equation that defines optical flow was satisfied, we

would have I1 = I2 ◦ u point-wise.

If we consider the flow at two locations i, j, we can formalize the notion of foreground as

a region Ω that is uninformed by the background:
I(ui, uj|I) > 0, i, j ∈ Ω

I(ui, uj|I) = 0, i ∈ Ω, j ∈ D \ Ω.

(6.1)

As one would expect, based on this definition, a subset of an object informs the remaining

part of this object, and a subset of the foreground does not inform a subset of the background.

6.1.1 Loss function

We now operationalize the definition of foreground into a criterion to infer it. We use the

information reduction rate (IRR) γ, which takes two subsets x,y ⊂ D as input and returns

a positive scalar:

γ(x|y; I) =
I(ux, uy|I)

H(ux|I)
= 1− H(ux|uy, I)

H(ux|I)
(6.2)

where H denotes (Shannon) entropy. It is zero when the two variables are independent, but

the normalization prevents the trivial solution (empty set).2 As proven next, objects as we

defined them are the regions that minimize the following loss function

L(Ω; I) = γ(Ω|Ωc; I) + γ(Ωc|Ω; I). (6.3)

Note that L does not have a complexity term, or regularizer, as one would expect in most

region-based segmentation methods. This is a key strength of our approach, that involves

no modeling hyperparameters, as we elaborate on in Sect. 6.2.

Before we start the proof, we make the following two statements:

statement 1: a subset of an object informs the remaining part of this object. If the

object is Ω, and there is a subset Ω̂ ⊂ Ω, suppose i ∈ Ω̂, j ∈ Ω \ Ω̂ respectively, then:

I(uΩ̂, uΩ\Ω̂|I) ≥ I(ui, uΩ\Ω̂|I) ≥ I(ui, uj|I) > 0 by Eq. (6.1).

2A small constant 0 < ε � 1 is added to the denominator to avoid singularities, and whenever x 6= ∅,
H(ux|I)� ε, thus we will omit ε from now on.

97



statement 2: a subset of the foreground does not inform a subset of the background.

Suppose Ω is the foreground, if Ω̂ ⊂ Ω, and Ω′ ⊂ D \ Ω, then I(uΩ̂, uΩ′ |I) = 0. Otherwise,

we can find at least two pixels i ∈ Ω̂, j ∈ Ω′ such that I(ui, uj|I) > 0, which is contradictory

to definition Eq. (6.1).

Proof: First we show that the estimate Ω∗ right on the object achieves the minimum

value of the loss function, since:

L(Ω∗; I) = γ(Ω∗|D \ Ω∗; I) + γ(D \ Ω∗|Ω∗; I) =
I(uΩ∗ , uD\Ω∗|I)

H(uΩ∗ |I)
+

I(uD\Ω∗ , uΩ∗ |I)

H(uD\Ω∗|I)
= 0

(6.4)

by statement (2) above. Thus Ω∗ achieves the minimum value of the loss Eq. (6.3). Now

we need to show that Ω∗ is unique, for which, we just need to check the following two

inclusive cases for Ω̂ 6= Ω∗ (note that L(∅; I) = L(D; I) = 1.0 as 0 < ε � 1 is added to the

denominator):

• Ω̂ is either a subset of foreground or a subset of background: Ω̂ ∩ D \ Ω∗ = ∅ or

Ω̂ ∩ Ω∗ = ∅.

• Ω̂ is neither a subset of foreground nor a subset of background: Ω̂ ∩ D \ Ω∗ 6= ∅ and

Ω̂ ∩ Ω∗ 6= ∅.

In both cases L(Ω̂; I) is strictly larger than 0 with some set operations under statements

(1,2) above. Thus the object satisfies the definition Eq. (6.1) is a unique optima of the loss

Eq. (6.3).

Tame as it may look, (6.3) is intractable in general. For simplicity we indicate the flow in-

side the region(s) Ω (foreground) with uin = {ui, i ∈ Ω}, and similarly for uout, the flow in the

background Ωc. The only term that matters in the IRR is the ratio H(uin|uout, I)/H(uin|I),

which is ∫
logP (uin|uout, I)dP (uin|uout, I)∫

logP (uin|I)dP (uin|I)
(6.5)

that measures the information transfer from the background to the foreground. This is

minimized when knowledge of the background flow is sufficient to predict the foreground. To
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enable computation, we have to make draconian, yet common, assumptions on the underlying

probability model, namely that

P (uin = x|I) ∝ exp

(
−‖x‖

2

σ2

)
(6.6)

P (uin = x|uout = y, I) ∝ exp

(
−‖x− φ(Ω, y, I)‖2

σ2

)
where φ(Ω, y, I) =

∫
uindP (uin|uout, I) is the conditional mean given the image and the

complementary observation. Here we assume φ(Ω, ∅, I) = 0, since given a single image the

most probable guess of the flow is zeros. With these assumptions, (6.5) can be simplified, to∫
‖uin − φ(Ω, uout, I)‖2dP (uin|uout, I)∫

‖uin‖2dP (uin|I)
≈
∑N

i=1 ‖uiin − φ(Ω, ui
out, I)‖2∑N

i=1 ‖uiin‖2
(6.7)

where N = |D| is the cardinality of D, or the number of flow samples available. Finally, our

loss (6.3) to be minimized can be approximated as

L(Ω; I) = 1−
∑N

i=1 ‖uiin − φ(Ω, ui
out, I)‖2∑N

i=1 ‖uiin‖2 + ε
+ 1−

∑N
i=1 ‖uiout − φ(Ωc, ui

in, I)‖2∑N
i=1 ‖uiout‖2 + ε

. (6.8)

In order to minimize this loss, we have to choose a representation for the unknown region Ω

and for the function φ.

6.1.2 Function class

The region Ω that minimizes (6.8) belongs to the power set of D, that is the set of all possible

subsets of the image domain, which has exponential complexity.3 We represent it with the

indicator function

χ : D → {0, 1}

i 7→ 1 if i ∈ Ω; 0 otherwise (6.9)

so that the flow inside the region Ω can be written as ui
in = χui, and outside as ui

out =

(1− χ)ui.

3In the continuum, it belongs to the infinite-dimensional set of compact and multiply-connected regions
of the unit square.
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Similarly, the function φ is non-linear, non-local, and high-dimensional, as it has to

predict the flow in a region of the image of varying size and shape, given the flow in a

different region. In other words, φ has to capture the context of a region to recover its flow.

Characteristically for the ages, we choose both φ and χ to be in the parametric function

class of deep convolutional neural networks, as shown in Fig. 6.2, the specifics of which are

in Sect. 6.3.1. We indicate the parameters with w, and the corresponding functions φw1 and

χw2 . Accordingly, after discarding the constants, the negative loss (6.8) can be written as a

function of the parameters

L(w1, w2; I) =

∑
i

‖χw2(ui − φw1(χw2 , ui
out, I))‖2∑

i

‖uiin‖2
+

∑
i

‖(1− χw2)(ui − φw1(1− χw2 , ui
in, I)‖2∑

i

‖uiout‖2

(6.10)

φw1 is called the inpainter network, and must be chosen to minimize the loss above. At

the same time, the region Ω, represented by the parameters w2 of its indicator function χw2

called mask generator network, should be chosen so that uout is as uninformative as possible

of uin, and therefore the same loss is maximized with respect to w2. This naturally gives rise

to a minimax problem:

ŵ = arg min
w1

max
w2

L(w1, w2; I). (6.11)

This loss has interesting connections to classical region-based segmentation, but with a twist

as we discuss next.

6.2 Relation to Prior Work

To understand the relation of our approach to classical methods, consider the simplest model

for region-based segmentation [CV01]

L(Ω, ci, co) =

∫
Ω

|uin(x)− ci|2dx+

∫
Ωc
|uout(x)− co|2dx (6.12)

typically combined with a regularizing term, for instance the length of the boundary of Ω.

This is a convex infinite-dimensional optimization problem that can be solved by numerically

100



integrating a partial differential equation (PDE). The result enjoys significant robustness to

noise, provided the underlying scene has piecewise constant radiance and is measured by

image irradiance, to which it is related by a simple “signal-plus-noise” model. Not many

scenes of interest have piecewise constant radiance, although this method has enjoyed a

long career in medical image analysis. If we enrich the model by replacing the constants ci

with smooth functions, φi(x), we obtain the celebrated Mumford-Shah functional [MS89],

also optimized by integrating a PDE. Since smooth functions are an infinite-dimensional

space, regularization is needed, which opens the Pandora box of regularization criteria, not

to mention hyperparameters: Too much regularization and details are missed; too little and

the model gets stuck in noise-induced minima. A modern version of this program would

replace φ(x) with a parametrized model φw(x), for instance a deep neural network with

weights w pre-trained on a dataset D. In this case, the loss is a function of w, with natural

model complexity bounds. Evaluating φw at a point inside, x ∈ Ω, requires knowledge of

the entire function u inside Ω, which we indicate with φw(x, uin):∫
Ω

|uin(x)− φw(x, uin)|2dx+

∫
Ωc
|uout(x)− φw(x, uout)|2dx. (6.13)

Here, a network can just map φw(x, uin) = uin providing a trivial solution, avoided by

introducing (architectural or information) bottlenecks, akin to explicit regularizers. We turn

the table around and use the outside to predict the inside and vice-versa:∫
Ω

|uin(x)− φw(x, uout)|2dx+

∫
Ωc
|uout(x)− φw(x, uin)|2dx (6.14)

After normalization and discretization, this leads to our loss function (6.8). The two regions

compete: for one to grow, the other has to shrink. In this sense, our approach relates to region

competition methods, and specifically Motion Competition [CS05], but also to adversarial

training, since we can think of φ as the “discriminator” presented in a classification problem

(GAN [ACB17]), reflected in the loss function we use. This also relates to what is called

“self-supervised learning,” a misnomer since there is no supervision, just a loss function

that does not involve externally annotated data. Several variants of our approach can be

constructed by using different norms, or correspondingly different models for the joint and

marginal distributions (6.6).
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More broadly, the ability to detect independently moving objects is primal, so there is a

long history of motion-based segmentation, or moving object detection. Early attempts to

explicitly model occlusions include the layer model [WA94b] with piecewise affine regions,

with computational complexity improvements using graph-based methods [SM98] and varia-

tional inference [CS04, BBW06, SWS13b, YSS15b] to jointly optimize for motion estimation

and segmentation; [OMB14c] use of long-term temporal consistency and color constancy,

making however the optimization more difficult and sensitive to parameter choices. Similar

ideas were applied to motion detection in crowds [BC06], traffic monitoring [BMC97] and

medical image analysis [EGS11]. Our work also related to the literature on visual attention

[IK00, BDR15].

More recent data-driven methods [TAS17b, TAS17a, CTW17a, SWZ18] learn discrim-

inative spatio-temporal features and differ mainly for the type of inputs and architec-

tures. Inputs can be either image pairs [SWZ18, CTW17a] or image plus dense optical

flow [TAS17b, TAS17a]. Architectures can be either time-independent [TAS17a], or with

recurrent memory [TAS17b, SWZ18]. Overall, those methods outperform traditional ones

on benchmark datasets [OMB14c, PPM16], but at the cost of requiring a large amount of

labeled training data and with evidence of poor generalization to previously unseen data.

It must be noted that, unlike in Machine Learning at large, it is customary in video object

segmentation to call “unsupervised” methods that do rely on massive amounts of manually

annotated data, so long as they do not require manual annotation at run-time. We adopt

the broader use of the term where unsupervised means that there is no supervision of any

kind both at training and test time.

Like classical variational methods, our approach does not need any annotated training

data. However, like modern learning methods, our approach learns a contextual model,

which would be impossible to engineer given the complexity of image formation and scene

dynamics.
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6.3 Experiments

We compare our approach to a set of state-of-the-art baselines on the task of video ob-

ject segmentation to evaluate the accuracy of detection. We first present experiments on

a controlled toy-example, where the assumptions of our model are perfectly satisfied. The

aim of this experiment is to get a sense of the capabilities of the presented approach in

ideal conditions. In the second set of experiments, we evaluate the effectiveness of the

proposed model on three public, widely used datasets: Densely Annotated VIdeo Segmenta-

tion (DAVIS) [PPM16], Freiburg-Berkeley Motion Segmentation (FBMS59) [OMB14c], and

SegTrackV2 [TFR10]. Provided the high degree of appearance and resolution differences

between them, these datasets represent a challenging benchmark for any moving object seg-

mentation method. While the DAVIS dataset has always a single object per scene, FBMS

and SegTrackV2 scenes can contain multiple objects per frame. We show that our method

not only outperforms the unsupervised approaches, but even edges out other supervised

algorithms that, in contrast to ours, have access to a large amount of labeled data with

precise manual segmentation at training time. For quantitative evaluation, we employ the

most common metric for video object segmentation, i.e. the mean Jaccard score, a.k.a.

intersection-over-union score, J .

6.3.1 Implementation and Networks Details

Generator, G: Depicted on the left of Fig. 6.3, the generator architecture is a shrunk

version of SegNet [BKC17]. Its encoder part consists of 5 convolutional layers each followed

by batch normalization, reducing the input image to 1
4

of its original dimensions. The encoder

is followed by a set of 4 atrous convolutions with increasing radius (2,4,8,16). The decoder

part consists of 5 convolutional layers, that, with upsampling, generate an output with the

same size of the input image. As in SegNet [BKC17], a final softmax layer generates the

probabilities for each pixel to be foreground or background. The generator input consists

of an RGB image It and the optical flow ut:t+δT between It and It+δT , to introduce more

variations in the optical flows conditioned on image It. At training time, δT is randomly
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sampled from the uniform distribution U = [−5, 5], with δT 6= 0. The optical flow ut:t+δT

is generated with the pretrained PWC network [SYL18], given its state-of-the-art accuracy

and efficiency. The generator network has a total of 3.4M parameters.

Inpainter, I : We adapt the architecture of CPN [YS18] to build our inpainter network.

Its structure is depicted on the right of Fig. 6.3. The input to this network consists of the

input image It and the flow masked according to the generator output, χu, the latter con-

catenated with χ, to make the inpainter aware of the region to look for context. Differently

from the CPN, these two branches are balanced, and have the same number of parameters.

The encoded features are then concatenated and passed to the CPN decoder, that outputs

an optical flow û = φ(χ, (1 − χ)u, It) of the same size of the input image, whose inside is

going to be used for the difference between uin and the recovered flow inside. Similarly, we

can run the same procedure for the complement part. Our inpainter network has a total of

1.5M parameters.

At test time, only the generator G is used. Given It and ut:t+δT , it outputs a probability

for each pixel to be foreground or background, Pt(δT ). To encourage temporal consistency,

we compute the temporal average:

Pt =
δT=5∑

δT=−5,6=0

Pt(δT ) (6.15)

The final mask χ is generated with a CRF [KK11] post-processing step on the final Pt.

6.3.2 Experiments in Ideal Conditions

Our method relies on basic, fundamental assumptions: The optical flow of the foreground

and of the background are independent. To get a sense of the capabilities of our approach

in ideal conditions, we artificially produce datasets where this assumption is fully satisfied.

The datasets are generated as a modification of DAVIS2016 [PPM16], FMBS [OMB14c],

and SegTrackV2 [TFR10]. While images are kept unchanged, ground truth masks are used

to artificially perturb the optical flow generated by PWC [SYL18] such that foreground and

background are statistically independent. More specifically, a different (constant) optical flow
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DAVIS [PPM16] FBMS59 [OMB14c] SegTrackV2 [TFR10]

J ↑ 92.5 88.5 92.1

Table 6.1: Performance under ideal conditions: When the assumptions made by our

model are fully satisfied, our approach can successfully detect moving objects.. Indeed, our

model reaches near maximum Jaccard score in all considered datasets.

field is sampled from a uniform distribution independently at each frame, and associated to

the foreground and the background, respectively. It can be observed that in Table 6.1, our

method reaches very high performance in all considered datasets. This confirms the validity

of our algorithm and that our loss function (6.11) is a valid and tractable approximation of

the functional (6.3).

6.3.3 Performance on Video Object Segmentation

As previously stated, we use the term Unsupervised with a different meaning with respect to

its definition in literature of video object segmentation. In our definition and for what follows,

the supervision refers to the algorithm’s usage of ground truth object annotations at training

time. In contrast, the literature usually defines methods as semi-supervised, if at test time

they assume the ground-truth segmentation of the first frame to be known [BWL, MCC18].

This could be posed as tracking problem [YS15] since the detection of the target is human

generated. Instead, here we focus on moving object detection and thus we compare our

approach to the methods that are usually referred to as “unsupervised” in the video object

segmentation domain. However we make further differentiation on whether the ground truth

object segmentation is needed (supervised) or not (truly unsupervised) during training.

In this section we compare our method with other 8 methods that represent the state

of the art for moving object segmentation. For comparison, we use the same metric defined

above, which is the Jaccard score J between the real and predicted masks.

Table 6.2 shows the performance of our method and the baseline methods on three
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PDB FSEG LVO ARP FTS NLC SAGE CUT Ours

DAVIS2016 J ↑ 77.2 70.7 75.9 76.2 55.8 55.1 42.6 55.2 71.5

FBMS59 J ↑ 74.0 68.4 65.1 59.8 47.7 51.5 61.2 57.2 63.6

SegTrackV2 J ↑ 60.9 61.4 57.3 57.2 47.8 67.2 57.6 54.3 62.0

DNN-Based Yes Yes Yes No No No No No Yes

Pre-Training Required Yes Yes Yes No No No No No No

Table 6.2: Moving Object Segmentation Benchmarks: We compare our approach

with 8 different baselines on the task of moving object segmentation (PDB [SWZ18],

FSEG [JXG17], LVO [TAS17b], ARP [KK17], FTS [PF13], NLC [FI14], SAGE [WSP15],

CUT [KAB15]). In order to do so, we use three popular datasets, i.e. DAVIS2016 [PPM16],

FBMS59 [OMB14c], and SegTrackV2 [TFR10]. Methods in blue require ground truth an-

notations at training time and are pre-trained on image segmentation datasets. In contrast,

methods in red are unsupervised and not require any ground-truth annotation. Our ap-

proach is top-two in all the considered benchmarks, comparing to the other unsupervised

methods. Bold indicates best among all methods, while Bold Red and red represent the

best and second best for unsupervised methods, respectively.

106



popular datasets, DAVIS2016 [PPM16], FBMS59 [OMB14c] and SegTrackV2 [TFR10]. Our

approach is top-two in each of the considered datasets, and even outperforms baselines that

need a large amount of labelled data at training time, i.e. FSEG [JXG17].

As can be observed in Table 6.2, unsupervised baselines typically perform well in one

dataset but significantly worse in others. For example, despite being the best performing

unsupervised method on DAVIS2016, the performance of ARP [KK17] drops significantly in

the FBMS59 [OMB14c] and SegTrackV2 [OMB14c] datasets. ARP outperforms our method

by 6.5% on DAVIS, however, our method outperforms ARP by 6.3% and 8.4%, on FBMS59

and SegTrackV2 respectively. Similarly, NLC [FI14] and SAGE [WSP15] are extremely com-

petitive in the Segtrack and FBMS59 benchmarks, respectively, but not in others. NLC

outperforms us on SegTrackV2 by 8.4%, however we outperform NLC by 29.8% and 24.7%,

on DAVIS and FBMS respectively.

It has been established that being second-best in multiple benchmarks is more indica-

tive of robust performance than being best in one [PL13]. Indeed, existing unsupervised

approaches for moving object segmentation are typically highly-engineered pipeline methods

which are tuned on one dataset but do not necessarily generalize to others. Also, consisting

of several computationally intensive steps, extant unsupervised methods are generally orders

of magnitude slower than our method (Table 6.3).

Interestingly, a similar pattern is observable for supervised methods. This is particularly

evident on the SegTrackV2 dataset [TFR10], which is particularly challenging since several

frames have very low resolution and are motion blurred. Indeed, supervised methods have

difficulties with the covariate shift due to changes in the distribution between training and

testing data. Generally, supervised methods alleviate this problem by pre-training on image

segmentation datasets, but this solution clearly does not scale to every possible case. In

contrast, our method can be finetuned on any data without the need for the latter to be

annotated. As a result, our approach outperforms the majority of unsupervised methods as

well as all the supervised ones, in terms of segmentation quality and training efficiency.
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6.3.4 Qualitative experiments and Failure Cases

In Fig. 6.4 we show a qualitative comparison of the detection generated by our and others’

methods on the DAVIS dataset. Our algorithm can segment precisely the moving object

regardless of cluttered background, occlusions, or large depth discontinuities. The typical

failure case of our method is the detection of objects whose motion is due to the primary

object. An example is given in the last row of Fig. 6.4, where the water moved by the surfer

is also classified as foreground by our algorithm.

ARP [KK17] FTS [PF13] NLC [FI14] SAGE [WSP15] CUT [KAB15] Ours

Runtime(s) 74.5 0.5 11.0 0.88 103.0 0.098

DNN-based No No No No No Yes

Table 6.3: Run-time analysis: Our method is not only effective (top-two in each considered

dataset), but also orders of magnitude faster than other unsupervised methods. All timings

are indicated without optical flow computation.

6.3.5 Training and Runtime Analysis

The generator and inpainter network’s parameters are trained at the same time by optimizing

the functional (6.11). The training time is approximately 6 hours on a single GPU Nvidia

Titan XP. Since both our generator and inpainter networks are relatively small, we can

afford very fast training/finetuning times. This stands in contrast to larger modules, e.g.

PDB [SWZ18], that require up to 40 hrs of training.

At test time, predictions Pt (defined in eq. 6.15) are generated at 3.15 FPS, or with

an average time of 320ms per frame, including the time to compute optical flow with

PWC [SYL18]. Excluding the time to generate optical flow, our model can generate pre-

dictions at 10.2 FPS, or 98ms per frame. All previous timings do not include the CRF

post-processing step. Table 6.3 compares the inference time of our method with respect to

other unsupervised methods. Since our method at test time requires only a pass through

a relatively shallow network, it is orders of magnitude faster than other unsupervised ap-
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GT SFL LMP PDB CVOS FTS ELM Ours

Figure 6.4: Qualitative Results: We qualitatively compare the performance of our ap-

proach with several state-of-the-art baselines as well as the Ground-Truth (GT) mask (

SFL[CTW17b], LMP[TAS17a], PDB[SWZ18], CVOS[TKS15b], FTS[PF13], ELM[LS18]).

Our prediction are robust to background clutter, large depth discontinuities and occlusions.

The last row shows a typical failure case of our method, i.e. objects which are moved by the

primary objects are detected as foreground (water is moved by the surfer in this case).

proaches.

6.4 Discussion

We have introduced a contextual adversarial model for moving object detection, based on

information separation between foreground and background. The foreground (object) can

be multiply-connected. Our model shows some strengths, and has limitations.

The strengths relate to the ability of the model to learn complex relations between

foreground and background, that allows us to separate objects in ways that a generative
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model cannot, even when one plays with regularization parameters extensively. This is

made possible by using modern deep neural network architectures, like SegNet [BKC17] and

CPN [YS18], but does not require pre-training on massive annotated datasets.

This can be seen as a strength but also a limitation: If massive datasets are available,

why not use them? In part because even massive is not large enough: There is evidence

that models pre-trained on all available datasets still suffer performance drops whenever a

new benchmark appears that has a significant covariate shift, as we show in the experi-

ments. Moreover, our method outperforms models that require pre-training, despite being

in principle at a disadvantage compared to them. In principle, the networks trained using

our method can still finetune on the limited annotated datasets.

Our method is illustrated on motion-based segmentation, where the starting point is

optical flow. One could argue that optical flow is costly, local, error-prone, all valid concerns.

Our approach is general and could be applied to other statistics than optical flow.

Another possible limitation is that we do not make full use of the image: In some cases,

the optical flow is ambiguous, in others intensity, but rarely is the combination of the two

insufficient. Again, our framework allows in theory exploitation of both, and we intend to

expand in this direction. Having said that, our method does make use of the image as a

conditioning factor in the inpainter network.

Our definition of objects, and the resulting inference criterion, is related to generative

model-based segmentation and region-based methods popular in the nineties, but with an

important difference: Instead of using the evidence inside a region to infer a model of that

region that is as accurate as possible, we use evidence everywhere else but that region to infer

a model within, and we seek that model to be as bad as possible. This relation explored in

detail in Sect. 6.2, forces learning a contextual model of the image, which is not otherwise

the outcome of a generative model in region-based segmentation. For instance, if we choose

a rich enough model class, we can trivially model the appearance of an object inside an

image region as the image itself. This is not an option in our model: We can only predict

the inside of a region by looking outside of it. This frees us from having to impose modeling
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assumptions to avoid trivial solutions, but requires a much richer class of function to harvest

contextual information.

This naturally gives rise an adversarial (min-max) optimization: An inpainter network,

tries to hallucinate the flow inside from the outside. Another network, a discriminator or

regressor, tries to force the inpainting network to do the lousiest possible job.
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CHAPTER 7

Look into the Future

Conceptualization of objects is a building block for high-level semantics related tasks. To

build object representations, an agent would have to see objects in videos at first. We follow

the course of visual development in early infancy to construct the components enabling the

perception of objects, with a prioritization on unsupervised learning, such that the agent

can learn from unlimited video data. We have presented Conditional Prior Networks (CPN)

that help us achieving state-of-the-art performance in unsupervised optical flow prediction

and depth estimation, by harvesting regularity of the scene from previous observations. We

have also introduced the Adversarial Contextual Model (ACM) for unsupervised object de-

tection using the contextual information separation criteria. With no manual annotation,

the network trained using ACM achieves state-of-the-art performance on video object seg-

mentation benchmarks, demonstrating its potential for building object representations with

the minimum amount of human supervision.

It would be extremely interesting to see if we can incorporate all the unsupervised com-

ponents into a robot, such that it can move and detect objects around. Moreover, given the

ability of the robot to interact with the environment, we should expect that semantics would

appear based on the concept of objects, where all the information about affordance, utility,

and dynamics is grounded. One step further, we would expect natural language to appear

among robots if they are going to collectively pursue a goal in the form of adaptation.
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