UC Irvine
UC Irvine Previously Published Works

Title
MPCP: Multi Packet Congestion-control Protocol

Permalink
https://escholarship.org/uc/item/9s77r6zd

Journal
Computer Communication Review, 39(5)

Authors

Li, Xiaolong
Yousefi'zadeh, Homayoun

Publication Date
2009-10-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9s77r6zc
https://escholarship.org
http://www.cdlib.org/

MPCP: Multi Packet Congestion-control Protocol

Xiaolong Li

Homayoun Yousefi’zadeh

Department of EECS
University of California, Irvine

[xiaolonl,hyousefi]Quci.edu

ABSTRACT

In the recent years, end-to-end feedback-based variants of
TCP as well as VCP have emerged as practical alternatives
of congestion control by requiring the use of only one or two
ECN bits in the IP header. However, all such schemes suf-
fer from a relatively low speed of convergence and exhibit a
biased fairness behavior in moderate bandwidth high delay
networks due to utilizing an insufficient amount of conges-
tion feedback. In this paper, we propose a novel distributed
ECN-based congestion control protocol to which we refer as
Multi Packet Congestion Control Protocol (MPCP). In con-
trast to other alternatives, MPCP is able to relay a more
precise congestion feedback yet preserve the utilization of
the two ECN bits. MPCP distributes (extracts) congestion
related information into (from) a series of n packets, thus
allowing for a 2n-bit quantization of congestion measures
with each packet carrying two of 2n bits in its ECN bits.
We describe the design, implementation, and performance
evaluation of MPCP through both simulations and experi-
mental studies.

Categories and Subject Descriptors

C.2.2 [Computer Communication Networks]: Network
Protocols

General Terms

Algorithms, Experimentation, Measurement, Performance

Keywords
Congestion control, TCP, VCP, ECN, Fairness, Efficiency

1. INTRODUCTION
It has been demonstrated in [7] that conventional TCP

and end-to-end TCP-based Active Queue Management (AQM)

schemes such as [8, 15, 6, 1] suffer from inefficiency and un-
fairness in high Bandwidth-Delay Product (BDP) networks.
In order to address such problems, numerous techniques
such as those in [19, 11, 9, 3, 17, 5] have been proposed.
However, these techniques often fail to achieve both effi-
ciency and fairness due to their integrated controller design
approach. By decoupling the fairness of congestion control

*This work was sponsored by grants from the Boeing Com-
pany and UC Discovery Industry-University Cooperative
Research Program. A preliminary version of this work ap-
pears in the Proc. of ICC2009 [13].

*

from its efficiency, recently proposed eXplicit Congestion-

control Protocol (XCP) [10] and Variable-structure Congestion-

control Protocol (VCP) [18] can achieve high utilization, low
persistent queue length, insignificant packet loss rate, and
sound fairness depending on the heterogeneity characteris-
tics of a network.

While both XCP and VCP require routers to extract and
forward congestion related information to end nodes along a
transmitting path, their operations are quite distinctive. In
XCP, routers are required to explicitly relay the next trans-
mitting rate to the transmitting side. As a result, XCP
typically requires the use of a larger number of bits in the
IP header of each packet to relay congestion information
thus introducing significant deployment obstacles. In con-
trast, VCP only marks one of the three levels of conges-
tion sampled by routers to the transmitting side of a flow,
which allows for utilizing the two existing ECN bits in the IP
header for indicating three congestion levels. Hence, VCP
represents a more practical alternative of deployment than
XCP.

By the nature of its design, VCP can only deliver lim-
ited feedback to end hosts due to the fact that two bits can
at most represent four levels of congestion. While the de-
sign of VCP offers more practicality, it falls short in the
following aspects. First, VCP has to control the growth
of transmission rates by setting artificial bounds to prevent
potential bursts yielding slow convergence speed and high
transition times. Second, VCP can only use fixed parame-
ters for fairness control producing poor fairness characteris-
tics in high delay networks. In essence, any feedback-based
congestion control protocol must address the tradeoff be-
tween the amount of feedback information and practicality.
It is this tradeoff that provides the motivation of the work
reported in this paper.

Following the design philosophy of decoupling the fair-
ness and efficiency of congestion control, this paper pro-
poses a distributed ECN-based congestion control protocol
to which we refer as Multi Packet Congestion control Proto-
col (MPCP). Compared to VCP, MPCP can converge faster
and exhibit a significantly better fairness characteristic in
high BDP networks. In MPCP, the transmitting side can
be fed with finer-grained congestion levels without requir-
ing the use of any extra bits in the IP header beyond the
two ECN bits. Specifically, a congestion level is carried by
a chain of n packets and each packet provides two bits out
of 2n bits of information associated with a congestion level.
While routers compute and distribute congestion signaling
into n packets, end nodes retrieve a congestion level by con-

catenating a group of 2n ECN bits together from a set of
packets. A noteworthy comment is that while the recent
work of UNO [16] may seem to share a similar idea with
MPCP, it differs from MPCP in several aspects. First, al-
though UNO passively utilizes existing bits in the IP ID field
of a packet header, it introduces deployment issues. For ex-
ample, UNO will not work in certain encrypted networks
where only 6 ToS and 2 ECN packet header bits can pass
through encryption boundaries. In contrast, MPCP only re-
quires the use of two ECN bits in each packet. Second, UNO
senders need to collect at least 8 specific packets translating
to an average of 81n8 = 24 consecutively transmitted pack-
ets in order to derive the maximum congestion level before
regulating cwnd, while MPCP senders perform regulations
on a per-ACK basis. Over lossy wireless links, consecutive
loss of packets associated with the maximum load factor
could yield an oscillatory behavior in the case of UNO.

Most notably, this paper makes several key contributions.
First, a novel approach is proposed to overcome the limita-
tions of end-to-end feedback based congestion control pro-
tocols including VCP in high BDP networks. While the
approach allows for relaying a fine-grain quantized conges-
tion information necessary to provide accurate feedback to
the sender, it only demands the use of two ECN bits in
each packet header by utilizing a chain of packets to carry
congestion information. Second, a simple and low-overhead
yet efficient scheme is designed for distributing and extract-
ing congestion related information into and from a chain of
packets. Finally, we implement MPCP in both NS2 and
Linux kernel. Through experimental studies, we demon-
strate that MPCP is able to make significant performance
improvements compared to VCP in terms of convergence
speed and fairness.

The rest of the paper is organized as follows. In Section 2,
we review the high level design methodology of VCP along
with its limitations. In Section 3, we present the fundamen-
tals of our protocol design by focusing on the double packet
version of our protocol to which we refer as Double Packet
Congestion-control Protocol (DPCP). Experimental studies
are presented in Section 4. In Section 5, we present the ex-
tension of DPCP to a multi packet protocol version. Finally,
several conclusions are presented in Section 6.

2. BACKGROUND

In this section, we first review the fundamentals of VCP.
Then, we discuss the limitations of VCP in high BDP net-
works.

2.1 Fundamentalsof VCP

Fundamentally, VCP inherits the sliding window char-
acteristic of TCP while applying a quite different window
management mechanism. In VCP, the cwnd is regulated by
different congestion control policies defined according to the
level of congestion in the network. Three congestion levels
are defined as low-load, high-load, and overload that can
be encoded as the level of congestion into two ECN bits of
the IP packet header. VCP capable routers frequently com-
pute the so-called Load Factor (LF) and map it to one of
the congestion levels mentioned above. When a data packet
arrives, each router examines the congestion level of its up-
stream link carried in the ECN bits of a packet and updates
ECN bits only if its downstream link is more congested.
Finally, a receiver receives the congestion level associated

with the most congested link. Then, the receiver signals the
sender of its session with the congestion information via AC-
Knowledgement (ACK) packets. Accordingly, a VCP sender
reacts with three congestion control policies: Multiplicative
Increase (MI) in the low-load region, Additive Increase (AI)
in the high-load region, and Multiplicative Decrease (MD) in
the overload region. The MI operation is utilized to achieve
a better efficiency than that of TCP tied to slow start phe-
nomenon, while the AI and MD operations are used to sup-
port the fairness characteristic of TCP.

2.2 Limitationsof VCP

We open this section by noting that VCP executes a MI-
AIMD policy to achieve the so-called max-min fairness [2]
characteristic. As the result of implementing MIAIMD through
the use of a quantized representation of LF instead of its ex-
act value, VCP tends to allocate more bandwidth to flows
that traverse fewer bottleneck links [18]. Additionally, VCP
enforces the MD policy only once with a fixed parameter of
0.875 if an overload is detected. After holding a decreased
value of cwnd for a Round Trip Time (RTT), VCP applies
the Al policy. However, such a decrease is insufficient when
the real value of the LF exceeds 115% (resulted by a param-
eter setting of 115% x 0.875 > 100%). After that, the LF
remains in the over-load region and a subsequent AI makes
the network even more congested. As evidenced by Section
4, VCP exhibits a fairness bias in multi-bottleneck environ-
ments, especially in networks with large delays typical of
wireless and satellite networks.

Furthermore, VCP applies artificial bounds to its MI and
AT parameters in order to avoid sudden bursts. As a result,
VCP’s bandwidth consumption speed can be very low in
moderate bandwidth high delay networks.

While it has been shown that increasing the number of bits
used for encoding LF can improve fairness and convergence
speed of VCP in such environments [18], such increase will
introduce significant deployment obstacles. Therefore, the
important question that we raise in this paper is whether
one can use a larger number of bits to quantize LF with-
out requiring the use of more than two ECN bits in the IP
packet header. The answer to this question is the subject of
investigation in this paper.

3. DPCP: DOUBLE PACKET CONGESTION

CONTROL PROTOCOL

We start our discussion by describing the design of DPCP,
the two packet, i.e. n = 2, version of MPCP. DPCP focuses
on overcoming the limitations of VCP by utilizing more bits
in encoding the LF. Rather than demanding more bits in
a single packet header, DPCP distributes the bits necessary
for encoding the LF into a chain of two packets. Each packet
uses the two ECN bits in the IP header to carry partial
feedback information associated with its chain. By concate-
nating the set of ECN bits in a packet chain, DPCP allows
for signaling end nodes with a more accurate feedback than
VCP.

Although the concept of using more bits for encoding LF
is not new [14, 16], DPCP minimizes the overhead and pre-
serves the transparency of deploying VCP and TCP. To that
end, DPCP attempts at transparently segmenting and re-
assembling the header bits used to encode LF without chang-
ing the format of the packet. This segmentation and re-

Table 1: LF and MD Specifications of DPCP

Low Load High Load Over Load

MSP LSP LF MSP LSP LF MSP LSP LF
01 01 <20% 10 01 < 85% 11 01 <105% 0.875
01 10 <40% 10 10 < 95% 11 10 < 140% 0.6
01 11 <80% 10 11 < 100% 11 11 < 200% 0.43

MD Factor

assembly introduces unique challenges of this work related
to out of order arrival of packets in a chain, partial loss
of packets in a chain, and backward compatibility to VCP.
Specifically, the key concepts of the DPCP can be divided
into the following categories: i) Segmentation and Reassem-
bly (SAR) of LF: As DPCP distributes the LF among a
chain of packets, LF needs to be segmented and reassembled
at routers and end nodes. To keep backward compatibility,
the utilized SAR scheme allows for easy exception handling
and downgradability to the original VCP. i) Packet order-
ing management: DPCP relies on the feedback distributed
in a chain of packets. To retrieve the correct LF, the rel-
ative ordering of packets has to be assessed and managed.
DPCP provides a simple and efficient mechanism that al-
lows for easily identifying the Packet Ordering (PO) of a
chain. Most importantly, there is no need to buffer pack-
ets for maintaining the ordering of packets belonging to a
chain internally at the routers. i) Exception handling: Dur-
ing transmission, exceptions such as packet loss and Out of
Order (OO) packet delivery may occur. By detecting the
appropriate ordering of packets at the end nodes, DPCP re-
acts appropriately to exceptions in order to avoid failure.
We discuss the impacts of exceptions later in this paper.

3.1 DPCP Overview

DPCP utilizes 4 bits to encode the LF allowing for defin-
ing 16 congestion levels. In DPCP, the four bits necessary to
encode an LF are distributed between two packets transmit-
ted consecutively. We refer the packet carrying the first part
of LF as the Most Significant Packet (MSP) and the other
packet as the Least Significant Packet (LSP). The MSP is
sent out first. For example, given an LF of 1011, the MSP
carries 10 in its ECN bits and the LSP carries 11 in its
ECN bits. To keep backward compatibility with TCP, we
exclude the combinations containing 00 in both MSP and
LSP. Thus, DPCP is left with 9 combinations that can be
used for encoding LF.

In contrast to VCP, DPCP defines three congestion zones
with three congestion levels in each zone. The boundaries
for MIAIMD operations remain the same as those in VCP.
Consequently, in low-load and high-load zones, DPCP grows
the cwnd using both multiplicative and additive factors as
the original MIAIMD model of [2] does. While the original
MIAIMD model uses one value of LF per region, each LF
represents a range of values in DPCP. Thus when growing
cwnd, DPCP conservatively computes increments using the
upper bound of an LF. In overload zone, DPCP cuts the
cwnd with three factors to guarantee a safe descent to the
high-load zone. Table 1 shows the specifications of LF and
MD factors for DPCP.

3.2 Packet Ordering Management

DPCP’s design introduces an integrated scheme for appro-
priately managing PO. First, we note that there is no room
in the packet header for ordering information. That men-
tioned, it is important to note that PO information can be

captured by a binary value pointing to either MSP or LSP.
Exploring the TCP header of a packet, we note that there
are two 32-bit numbers, a sequence number (seq), and an
acknowledgement number (ack)l. During communications,
both numbers can only grow at end nodes and the rela-
tive ordering of seq and ack barely changes. Furthermore,
modern implementations of TCP make initial seq and ack
sufficiently apart from each other. Under typical network
operation scenarios, there is a slim chance to change the rel-
ative ordering of seq and ack as both numbers grow. It is
this observation that forms the foundation of DPCP.

Specifically, upon the establishment of a TCP connection,
the first data packet is treated as the MSP of the packet
chain. To simplify the operation, DPCP utilizes the relative
ordering of seq and ack as an indication of MSP (seq > ack)
or LSP (seq < ack). Once the relative ordering is deter-
mined, it will never be changed during transmission. There
is a binary flag M S P maintained at end nodes which flips
over upon the receipt of each packet. The sender is respon-
sible for signaling the routers MSP or LSP by switching the
seq and the ack. The operation at the sender is described
by the pseudo code below.

Algorithm 1 Packet Ordering Manager

if MSP is TRUE then
if seq > ack then
Do nothing
else if seq < ack then
Switch seq and ack
else
ack — 1
end if
else
if seq < ack then
Do nothing
else if seq > ack then
Switch seq and ack
else
seq — 1
end if
end if
MSP +—~ MSP

At the receiving side, the same logic is followed for the
ACK packet processing. Note that routers do not utilize
the information in the ACK packets and the maintenance
of the ordering of seq and ack for ACK packets is only for
retrieving the LF at the sender. By simply using the relative
ordering of information between seq and ack, DPCP is able
to distribute the LF between two packets without needing
to buffer those packets. Furthermore, this mechanism sig-
nificantly simplifies the routers operation. Since the original
ordering of transmission might not reflect at the arriving se-
quence of packets due to loss or other factors, a router might
not know if a packet is the MSP or LSP for a particular
chain. Relying on the observation described above, a router
simply compares the seq and ack, and directly encodes the
MSP /LSP of the current LF into the ECN bits of the current

! As defined in TCP standard, every octet of data sent over
a TCP connection has a sequence number. The seq denotes
the sequence number of the first data octet in a segment,
while the ack contains the value of the next sequence num-
ber the sender of the segment is expecting to receive. The
initial values of both numbers for a connection are randomly
determined when the connection is established. After com-
pleting a three-way handshake, both sides of a connection
have the initial sequence number of others.

packet. The simple approach described above does not in-
troduce any significant overhead. Moreover, the mechanism
eliminates the need for keeping a mapping between packets
and an LF. In the case of facing a tie, i.e., when the seq value
is the same as the ack value, the end node simply subtracts
1 from either the ack or the seq number whichever that is
supposed to be smaller. For example, for an MSP, the sender
will subtract 1 from the ack to make seq > ack. If the dif-
ference between seq and ack is equal to 1 at the receiving
side, the TCP checksum needs to be checked. In the latter
case, an incorrect checksum indicates a tie. Before further
processing of the packet, DPCP recovers the original value
by adding 1 to seq and/or ack number whichever is smaller.
While resolving the tie breaker introduces computing over-
head, such overhead is nearly negligible considering the fact
that facing a tie situation is extremely unlikely and that the
processing only happens at end nodes. In next subsection,
the details of encoding and decoding are presented.

3.3 Encoding & Decoding

The encoding happens at both routers and end nodes.
For correct encoding, the router needs to keep track of a
flag for each flow. That is the only state that needs to be
kept at the router. Specifically, the operations associated
with encoding and decoding are presented below. Given a
router, assume MSP1 and LSP1 are associated with the
router’s downstream link and M SP2 and LSP2 exist in the
header of incoming packets that represent the LF of the
router’s most congested upstream link.

Algorithm 2 Encoding

if seq > ack then
if MSP1 > MSP2 then
Mark ECN bits with MSP1
flag — MSP_LOW
else if MSP1 < MSP2 then
flag — MSP_HIGH
else
flag — MSP_HIGH
end if
else
if flag = MSP_LOW then
Mark ECN bits with LSP1
else if flag = MSP_EQ then
if LSP1 > LSP2 then
Mark ECN bits with LSP1
end if
end if
end if

The complete decoding operation happens only at end
hosts, where complete means that intermediate routers can
accomplish encoding without knowing the complete value of
an LF. Initially, at the sender, the LF is set as LOW _LOAD,
i.e., 0101. Upon the arrival of the first ACK packet, the
sender immediately starts regulating cwnd without waiting
for the LSP. This will cut the response time from two RTTs
to one RTT. Once the sender gets a complete LF, DPCP
does a finer adjustment based on the new value. Specifi-
cally, upon arrival of an MSP, the sender simply replaces
the MSP part of the saved LF with the newly arrived MSP.
Meanwhile, the sender starts adjusting cwnd conservatively
under the assumption that the LF is the highest one in the
congestion zone defined by the MSP. For example, if an MSP
indicates HIGH -LOAD, then DPCP assumes the complete
LF is 1011. In the subsequent steps, the previous LSP is
ignored and replaced with 11 whenever an MSP is updated.

O Bottl;neck O

i v v
Local Flows
(a) (b)

Figure 1: An illustration of (a) parking lot and (b) dumbbell

topologies used in our experiments.

Normally, the appearance of MSP and LSP should follow
an interleaved pattern. The case for a consecutive MSP and
LSP pair will be discussed in the next subsection.

3.4 Exception Handling

DPCP relies on the feedback carried by two in order pack-
ets. Thus, DPCP must be able to handle OO transmission
and packet loss events. Specifically, DPCP provides mecha-
nisms to respond to the following exceptions: i)Packet Loss
& OO transmission: In this case, end nodes will receive con-
secutive MSPs/LSPs. Rather than attempting to recover
the appropriate order, DPCP uses the higher value in MSPs
to construct the LF if receiving consecutive MSPs. Other-
wise, it ignores arriving LSPs, and uses a pairing of saved
MSP and 11 to construct the LF. Generally speaking, re-
ceiving consecutive MSPs/LSPs is an indication of conges-
tion. Thus, after receiving three consecutive MSPs/LSPs,
DPCP downgrades to the original VCP by simply skipping
the PO operation, i.e., no change to the PO is made and
then all nodes treat packets as MSP. This behavior allows
DPCP to seamlessly convert its behavior to that of the origi-
nal VCP. After several RTTs, DPCP can resume its normal
multi packet operation. Note that only the sender is in-
volved with the switching of operation between DPCP and
the original VCP, while routers and the receiving end are not
even aware of it. If OO transmission continues happening, it
implies a lossy link. Then, DPCP will not try to switch back
to its multi packet operation mode from the VCP operation
mode. In such situation, a more complicated scheme can
be implemented by keeping track of received seq numbers.
Due to the limitation of space, we omit a detail discussion
of the latter scenario. di)Multipath: While it is possible
that packets follow different paths during transmission, it is
unlikely that packets are assigned to different paths in an
interleaved way. Thus from the perspective of end nodes,
the arrival pattern of packets appears to be according to an
OO transmission pattern when transmission switches paths.
Therefore, DPCP will not be ill-behaved in this case.

4. PERFORMANCE EVALUATION

In this section, simulation studies and experimental stud-
ies of DPCP are presented. We implement DPCP in both
NS2 simulator and Linux kernel. Performance of DPCP and
VCP are compared in terms of efficiency and fairness. Since
DPCP is proposed to address the limitations of VCP, our
target environment is characterized by topologies includ-
ing moderate bandwidth (2 — 10Mbps) high delay (200 —
1000ms) links.

4.1 Simulation Studies

In this subsection, we compare the performance of DPCP
and VCP over a four bottleneck parking lot topology as il-

Utilization (%)

100 F— T T T T L— 100 T T T T
g 80 ‘:'_”m e ey g 80 | T s e et
5 60| VEP Long Flows —- 5§ 60 |- ‘
§ awf ¥§P Local Flows - g wf VEP Long Flows — 1
5 2} = 5 0}l VC;)P Local Flows -----
0 + + + + £ 0 I o S— T I
0 500 10001500200025003000 0 500 10001500200025003000

Time (s)

(a)

Time (s)

(b)

100 'DPCP Long Flows — | . 100 T
80 DPCPR.localFlows, - o & 80 B
60 e \»"1"@%?"&,'@’?}*%”1 S 60
40 18 \

= DPCP Long Flows — _|
20 > 2 DPCP Local Flows -
O 1 1 1 1 1 O 1 1 1 1
0 500 1000 1500200025003000 0 500 1000 1500200025003000
Time (s) Time (s)

() (d)

Figure 2: A performance illustration for (a) VCP over link Lo, (b) VCP over link L, (c¢) DPCP over link Lo, and (d) DPCP

over link Lo.

800

700
600
500
400
300
200
100

0 N

80 B
60 |- g
40 | g

Utilization (%)

20 DPCP Flows —&—

VCP Elows e

DPdP Flom)s —a
VCP Flows —+—

10 15 20
Time (s)

25 30 35 0 5 10

Average FTP Completion Time (s)

Figure 3: A Performance Comparison
of VCP and DPCP.

lustrated by Figure 1(a). All of the links have a 250ms
one-way delay and 4Mbps bandwidth except L2 that has
a bandwidth of 2Mbps. There are two types of aggregate
FTP flows traversing the topology. The first type is referred
to as a Long Flow and represents the combined traffic of
30 FTP flows traversing all of the links in the forward left-
to-right direction. The second type is referred as to as a
Local Flow. There are four Local Flows each of which rep-
resenting 10 F'TP flows traversing each individual link in the
forward direction. Except those flows that traverse link Lo
and start after 1000 seconds, all other Local Flows start at
the beginning of the experiments.

Ideally speaking, both Long and Local Flows are to equally
split the bandwidth of a shared link during the first 1000 sec-
onds. Starting from the 1000-th second when an extra Local
Flow starts utilizing L2, the utilization of Long Flows at Lo
is expected to decrease to 25% while the utilization of Local
Flows is expected to increase to 75%. Figure 2(a) shows the
split of link bandwidth among Local and Long Flows in the
case of VCP. In the figure, VCP exhibits a biased fairness
characteristic splitting the bandwidth of Lo with a ratio of
15 to 1. In contrast, DPCP demonstrates a significantly
better fairness characteristic as shown in Fig 2(c).

We also expect to see a nearly 100% bandwidth utilization
of Lj for Long Flows during the first 1000 seconds and a split
of 50% in the last 2000 seconds between the Long and Local
Flow after the Local Flow starts. As illustrated by Figure
2(d), DPCP shows good fairness and responsiveness. To the
contrary and as shown by Figure 2(b) for VCP, the band-
width split ratio does not change even when Local Flows are
turned on. The latter observation proves that VCP fails to
achieve fairness in high BDP multiple bottleneck topologies
serving flows with heterogeneous RTTs.

While not shown here due to shortage of space, we also
evaluate the performance of DPCP in various scenarios sim-
ilar to those presented in [18]. In all experiments, DPCP
achieves slightly better bandwidth utilizations in steady sta-
tus and significant better convergence speeds than VCP.

15

Packet Loss Rate (%)

Figure 4: The effect of packet loss on
the performance of VCP and DPCP.

Bottleneck Queue (% buffer)

20 25 30 35

Figure 5:

Queue dynamics of VCP,
DPCP, and MPCP.

4.2 Experimental Studies

In this section, we present our experimental study con-
ducted over a wireless emulation Linux testbed comparing
the performance of VCP and DPCP. Due the limitation of
space, we cannot describe the details of our Linux kernel
implementation. We refer the interested reader to our work
of [12] for the details of our implementation. Further, we
can only present the results associated with a single bottle-
neck scenario. We use a dumbbell topology as illustrated
by Figure 1(b). Figure 3 compares the bottleneck band-
width utilization of VCP and DPCP. In contrast to VCP,
DPCP converges rapidly and introduces a transition time of
less than 4s compared to 20s observed in the case of VCP.
In addition, DPCP achieves a higher bandwidth utilization
compared to VCP. While not shown here, the performance
of DPCP in multi-bottleneck scenarios follows the same pat-
terns as those shown in our simulation studies.

4.3 The Effect of the Number of Exceptions

As our proposed PO scheme can well handle OO delivery,
we only measure the effect of packet loss only. Note that
packet loss causes OO delivery as well. We install Nistnet
network emulator [4] to enforce packet loss. Figure 4 shows
the effects of loss on the average FTP completion time as a
function of packet loss rate. While the performance of both
protocols degrades as the number of PLR increases, DPCP
consistently outperforms VCP since it achieves faster con-
vergence and higher bandwidth utilization than VCP. No-
tably, the performance of DPCP is not significantly affected
for packet loss rates less than 30% although DPCP is sen-
sitive to packet loss. Since DPCP will downgrade to VCP
when the link is identified as a lossy link, DPCP shows a
significant performance degradation when packet loss rates
exceed 35%. The performance gap between DPCP and VCP
shrinks as packet loss rates grow larger.

5. MPCP BEYOND DPCP

The design of MPCP can be easily expanded to cover
packet chains of more than two packets. Beyond DPCP, we
implement and evaluate a triple packet version of MPCP. We
refer to the triple packet version of MPCP as Triple Packet
Congestion-control Protocol (TPCP). Simply put, the PO
management of TPCP can be done by using the checksum
approach. In the case of TPCP, a binary indicator of PO,
i.e., the relative order of seq and ack is not sufficient for
determining the ordering of a chain of packets. Thus, by
directly subtracting the order number from the ack or seg,
MPCP is able to retrieve the ordering number from the dif-
ference between the calculated TCP checksum and the one
in the packet. This approach allows for using an arbitrary
number of packets to encapsulate congestion information.

We evaluate the performance of MPCP utilizing the testbed
of Section 4. Figure 5 compares the bottleneck queue dy-
namics of VCP, DPCP, and TPCP. While VCP yields the
longest transition time due to conservatively growing the
transmitting rate, VCP achieves the lowest persistent bottle-
neck queue length. To the contrary, both DPCP and TPCP
consume three times as much buffer space of the bottleneck
link as VCP does. In exchange, both DPCP and MPCP
converge faster and achieve a better fairness than VCP. The
oscillatory pattern of DPCP demonstrates that while the
amount of feedback to sender has been increased nearly by
a factor of three, the reaction to congestion remains at a
relatively coarse level. In the case of TPCP, a smoother
pattern is observed while the queue length is slightly higher
than DPCP. The latter is due to the fact that the sender can
obtain an even finer-grained feedback. While not shown in
the paper due to shortage of space, we have observed that
DPCP and TPCP achieve comparable bandwidth utiliza-
tion and convergence speed in all our experiments?. Con-
sidering the performance gains and the overhead associated
with the TPCP, we believe DPCP represents a better alter-
native of MPCP design and implementation. Notably, the
PO management of MPCP may introduce compatibility is-
sues in the context of IPSec, NAT, and IDS or DPI. While
for IPsec an alternative PO scheme could differentiate be-
tween MSP and LSP relying on the LSB bit of the IP ID
field of the IP header, in-order delivery of ECN bits cross-
ing encryption boundaries is not trivial. For NAT, IDS, and
DPI, MPCP must be aware of their existence and integrate
necessary functionality in its router module.

6. CONCLUSION

In this paper, we discussed the design, implementation,
and performance evaluation of Multi Packet Congestion con-
trol Protocol (MPCP). We demonstrated how MPCP used
multiple consecutive packets to carry congestion informa-
tion in a distributed manner without demanding the use of
more than two ECN bits in the header of individual pack-
ets. Moreover, a low-complexity packet ordering manage-
ment scheme was proposed to deal with segmentation and
reassembly. We discussed the double and triple packet ver-
sions of MPCP and also demonstrated how our design could

2While this approach requires all nodes along the trans-
mission path to compute the TCP checksum, the overhead
can be easily alleviated relying on TCP Checksum Offload
(TCO) feature supported in hardware by many of today’s
Network Interface Cards. In terms of our protocol design,
the required slight change can be easily inserted to the TCO
code.

be expanded to an arbitrary number of packets by manipu-
lating the sequence number, the acknowledgement number,
and the checksum in TCP header. We implemented both
double packet and triple packet versions of MPCP in both
NS2 and the Linux kernel. Through both simulations and
experimental studies, we demonstrated that MPCP could
overcome the limitations of end-to-end feedback-based con-
gestion control protocols thereby achieving a significant fair-
ness and efficiency improvements, specially in high BDP net-
works. Moreover, we compared the performance of the dou-
ble packet version of MPCP with its triple packet version.

7. REFERENCES

(1] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. REM:
Active Queue Management. IEEE Network, 15(3):48 — 53,
May/June 2001.

[2] D. Bertsekas and R. Gallager. Data networks (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[3] S. Bhandarkar, S. Jain, and A. Reddy. Improving TCP
Performance in High Bandwidth High RTT Links Using
Layered Congestion Control. In Proc. of the PFLDNet 05,
Feb. 2005.

[4] M. Carson and D. Santay. NIST Net-A Linux-based
Network Emulation Tool. Computer Communication
Review, June 2003.

[5] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start
for TCP and IP. In IETF RFC 4782, Jan. 2007.

[6] S. Floyd and V. Jacobson. Random Early Detection
gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(9):397-413, Aug 1993.

[7] M. Goutelle, Y. Gu, and E. He. A Survey of Transport
Protocols other than Standard TCP. In Data Transport
Research Group, 2004. work in progress, April 2004.

[8] V. Jacobson. Congestion Avoidance and Control. In ACM
SIGCOMM ’88, Stanford, CA, Aug. 1988.

[9] C. Jin, D. Wei, and S. Low. FAST TCP: Motivation,
Architecture, Algorithms, Performance. In Proc. of the
Infocom 04, 2004.

[10] D. Katabi, M. Handley, and C. Rohrs. Congestion Control
for High Bandwidth-Delay Product Networks. In Proc.
ACM SIGCOMM, 2002, Aug. 2002.

[11] T. Kelly. Scalable TCP: Improving Performance in
HighSpeed Wide Area Networks. Feb. 2003. Available at
http://wwwlce. eng.cam.ac.uk/ctk21/scalable/.

[12] X. Li and H. Yousefi’zadeh. An Implementation and
Experimental Study of the Vraiable-Structure Congestion
Control Protocol (VCP). In Proc. of the IEEE MILCOM,
2007, Oct. 2007.

[13] X. Li and H. Yousefi’zadeh. Distributed ECN-Based
Congestion Control. In Proc. of the IEEE ICC, June 2009.

[14] 1. A. Qazi and T. Znati. On the design of load factor based
congestion control protocols for next-generation networks. In
Proc. of the IEEE INFOCOM 2008, Apr. 2008.

[15] K. Ramakrishnan, S. Floyd, and D. Black. The addition of
explicit congestion notification (ECN) to IP. In IETF RFC
3168, 2001.

[16] N. Vasic, S. Kuntimaddi, and D. Kostic. One Bit Is
Enough: a Framework for Deploying Explicit Feedback
Congestion Control Protocols. In Proc. of the First
COMSNETS, Jan. 2009.

[17] B. Wydrowski and M. Zukerman. MaxNet: A Congestion
Control Architecture for Maxmin Fairness. IEEE Comm.
Letters, 6(11):512 — 514, Nov. 2002.

[18] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman.
One More Bit Is Enough. In Proc. ACM SIGCOMM, 2005,
Aug. 2005.

[19] L. Xu, K. Harfoush, and I. Rhee. Binary Increase
Congestion Control (BIC) for Fast Long-Distance Networks.
In Proc. of the Infocom 04, 2004.

